blkcg: refine error codes returned during blkcg configuration
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN 10
72 #define CFQ_WEIGHT_MAX 1000
73 #define CFQ_WEIGHT_DEFAULT 500
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 unsigned long saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319 * Per block device queue structure
320 */
321 struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 unsigned long workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct timer_list idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_fifo_expire[2];
378 unsigned int cfq_back_penalty;
379 unsigned int cfq_back_max;
380 unsigned int cfq_slice[2];
381 unsigned int cfq_slice_async_rq;
382 unsigned int cfq_slice_idle;
383 unsigned int cfq_group_idle;
384 unsigned int cfq_latency;
385 unsigned int cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 unsigned long last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401 {
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429 { \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431 } \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433 { \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435 } \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437 { \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467 { \
468 stats->flags |= (1 << CFQG_stats_##name); \
469 } \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471 { \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473 } \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475 { \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477 } \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline void cfqg_get(struct cfq_group *cfqg)
636 {
637 return blkg_get(cfqg_to_blkg(cfqg));
638 }
639
640 static inline void cfqg_put(struct cfq_group *cfqg)
641 {
642 return blkg_put(cfqg_to_blkg(cfqg));
643 }
644
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
646 char __pbuf[128]; \
647 \
648 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
649 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
651 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
652 __pbuf, ##args); \
653 } while (0)
654
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
656 char __pbuf[128]; \
657 \
658 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
659 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
660 } while (0)
661
662 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
663 struct cfq_group *curr_cfqg, int rw)
664 {
665 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
666 cfqg_stats_end_empty_time(&cfqg->stats);
667 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
668 }
669
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671 unsigned long time, unsigned long unaccounted_time)
672 {
673 blkg_stat_add(&cfqg->stats.time, time);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
676 #endif
677 }
678
679 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
680 {
681 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
682 }
683
684 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
685 {
686 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
687 }
688
689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690 uint64_t start_time, uint64_t io_start_time, int rw)
691 {
692 struct cfqg_stats *stats = &cfqg->stats;
693 unsigned long long now = sched_clock();
694
695 if (time_after64(now, io_start_time))
696 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
697 if (time_after64(io_start_time, start_time))
698 blkg_rwstat_add(&stats->wait_time, rw,
699 io_start_time - start_time);
700 }
701
702 /* @stats = 0 */
703 static void cfqg_stats_reset(struct cfqg_stats *stats)
704 {
705 /* queued stats shouldn't be cleared */
706 blkg_rwstat_reset(&stats->merged);
707 blkg_rwstat_reset(&stats->service_time);
708 blkg_rwstat_reset(&stats->wait_time);
709 blkg_stat_reset(&stats->time);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711 blkg_stat_reset(&stats->unaccounted_time);
712 blkg_stat_reset(&stats->avg_queue_size_sum);
713 blkg_stat_reset(&stats->avg_queue_size_samples);
714 blkg_stat_reset(&stats->dequeue);
715 blkg_stat_reset(&stats->group_wait_time);
716 blkg_stat_reset(&stats->idle_time);
717 blkg_stat_reset(&stats->empty_time);
718 #endif
719 }
720
721 /* @to += @from */
722 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
723 {
724 /* queued stats shouldn't be cleared */
725 blkg_rwstat_add_aux(&to->merged, &from->merged);
726 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
727 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
728 blkg_stat_add_aux(&from->time, &from->time);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
731 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
732 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
733 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
734 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
735 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
736 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
737 #endif
738 }
739
740 /*
741 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742 * recursive stats can still account for the amount used by this cfqg after
743 * it's gone.
744 */
745 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
746 {
747 struct cfq_group *parent = cfqg_parent(cfqg);
748
749 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
750
751 if (unlikely(!parent))
752 return;
753
754 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
755 cfqg_stats_reset(&cfqg->stats);
756 }
757
758 #else /* CONFIG_CFQ_GROUP_IOSCHED */
759
760 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
761 static inline void cfqg_get(struct cfq_group *cfqg) { }
762 static inline void cfqg_put(struct cfq_group *cfqg) { }
763
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
765 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
766 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
767 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
768 ##args)
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
770
771 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
772 struct cfq_group *curr_cfqg, int rw) { }
773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
774 unsigned long time, unsigned long unaccounted_time) { }
775 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
776 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
777 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
778 uint64_t start_time, uint64_t io_start_time, int rw) { }
779
780 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
781
782 #define cfq_log(cfqd, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
784
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787 for (i = 0; i <= IDLE_WORKLOAD; i++) \
788 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789 : &cfqg->service_tree_idle; \
790 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791 (i == IDLE_WORKLOAD && j == 0); \
792 j++, st = i < IDLE_WORKLOAD ? \
793 &cfqg->service_trees[i][j]: NULL) \
794
795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796 struct cfq_ttime *ttime, bool group_idle)
797 {
798 unsigned long slice;
799 if (!sample_valid(ttime->ttime_samples))
800 return false;
801 if (group_idle)
802 slice = cfqd->cfq_group_idle;
803 else
804 slice = cfqd->cfq_slice_idle;
805 return ttime->ttime_mean > slice;
806 }
807
808 static inline bool iops_mode(struct cfq_data *cfqd)
809 {
810 /*
811 * If we are not idling on queues and it is a NCQ drive, parallel
812 * execution of requests is on and measuring time is not possible
813 * in most of the cases until and unless we drive shallower queue
814 * depths and that becomes a performance bottleneck. In such cases
815 * switch to start providing fairness in terms of number of IOs.
816 */
817 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
818 return true;
819 else
820 return false;
821 }
822
823 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
824 {
825 if (cfq_class_idle(cfqq))
826 return IDLE_WORKLOAD;
827 if (cfq_class_rt(cfqq))
828 return RT_WORKLOAD;
829 return BE_WORKLOAD;
830 }
831
832
833 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
834 {
835 if (!cfq_cfqq_sync(cfqq))
836 return ASYNC_WORKLOAD;
837 if (!cfq_cfqq_idle_window(cfqq))
838 return SYNC_NOIDLE_WORKLOAD;
839 return SYNC_WORKLOAD;
840 }
841
842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
843 struct cfq_data *cfqd,
844 struct cfq_group *cfqg)
845 {
846 if (wl_class == IDLE_WORKLOAD)
847 return cfqg->service_tree_idle.count;
848
849 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
850 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
851 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 }
853
854 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
855 struct cfq_group *cfqg)
856 {
857 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
858 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 }
860
861 static void cfq_dispatch_insert(struct request_queue *, struct request *);
862 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
863 struct cfq_io_cq *cic, struct bio *bio);
864
865 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 {
867 /* cic->icq is the first member, %NULL will convert to %NULL */
868 return container_of(icq, struct cfq_io_cq, icq);
869 }
870
871 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
872 struct io_context *ioc)
873 {
874 if (ioc)
875 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
876 return NULL;
877 }
878
879 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 {
881 return cic->cfqq[is_sync];
882 }
883
884 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
885 bool is_sync)
886 {
887 cic->cfqq[is_sync] = cfqq;
888 }
889
890 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 {
892 return cic->icq.q->elevator->elevator_data;
893 }
894
895 /*
896 * We regard a request as SYNC, if it's either a read or has the SYNC bit
897 * set (in which case it could also be direct WRITE).
898 */
899 static inline bool cfq_bio_sync(struct bio *bio)
900 {
901 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
902 }
903
904 /*
905 * scheduler run of queue, if there are requests pending and no one in the
906 * driver that will restart queueing
907 */
908 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 {
910 if (cfqd->busy_queues) {
911 cfq_log(cfqd, "schedule dispatch");
912 kblockd_schedule_work(&cfqd->unplug_work);
913 }
914 }
915
916 /*
917 * Scale schedule slice based on io priority. Use the sync time slice only
918 * if a queue is marked sync and has sync io queued. A sync queue with async
919 * io only, should not get full sync slice length.
920 */
921 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
922 unsigned short prio)
923 {
924 const int base_slice = cfqd->cfq_slice[sync];
925
926 WARN_ON(prio >= IOPRIO_BE_NR);
927
928 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
929 }
930
931 static inline int
932 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 {
934 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
935 }
936
937 /**
938 * cfqg_scale_charge - scale disk time charge according to cfqg weight
939 * @charge: disk time being charged
940 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 *
942 * Scale @charge according to @vfraction, which is in range (0, 1]. The
943 * scaling is inversely proportional.
944 *
945 * scaled = charge / vfraction
946 *
947 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 */
949 static inline u64 cfqg_scale_charge(unsigned long charge,
950 unsigned int vfraction)
951 {
952 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
953
954 /* charge / vfraction */
955 c <<= CFQ_SERVICE_SHIFT;
956 do_div(c, vfraction);
957 return c;
958 }
959
960 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 {
962 s64 delta = (s64)(vdisktime - min_vdisktime);
963 if (delta > 0)
964 min_vdisktime = vdisktime;
965
966 return min_vdisktime;
967 }
968
969 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 {
971 s64 delta = (s64)(vdisktime - min_vdisktime);
972 if (delta < 0)
973 min_vdisktime = vdisktime;
974
975 return min_vdisktime;
976 }
977
978 static void update_min_vdisktime(struct cfq_rb_root *st)
979 {
980 struct cfq_group *cfqg;
981
982 if (st->left) {
983 cfqg = rb_entry_cfqg(st->left);
984 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
985 cfqg->vdisktime);
986 }
987 }
988
989 /*
990 * get averaged number of queues of RT/BE priority.
991 * average is updated, with a formula that gives more weight to higher numbers,
992 * to quickly follows sudden increases and decrease slowly
993 */
994
995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
996 struct cfq_group *cfqg, bool rt)
997 {
998 unsigned min_q, max_q;
999 unsigned mult = cfq_hist_divisor - 1;
1000 unsigned round = cfq_hist_divisor / 2;
1001 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002
1003 min_q = min(cfqg->busy_queues_avg[rt], busy);
1004 max_q = max(cfqg->busy_queues_avg[rt], busy);
1005 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1006 cfq_hist_divisor;
1007 return cfqg->busy_queues_avg[rt];
1008 }
1009
1010 static inline unsigned
1011 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 {
1013 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1014 }
1015
1016 static inline unsigned
1017 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 {
1019 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1020 if (cfqd->cfq_latency) {
1021 /*
1022 * interested queues (we consider only the ones with the same
1023 * priority class in the cfq group)
1024 */
1025 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1026 cfq_class_rt(cfqq));
1027 unsigned sync_slice = cfqd->cfq_slice[1];
1028 unsigned expect_latency = sync_slice * iq;
1029 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030
1031 if (expect_latency > group_slice) {
1032 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1033 /* scale low_slice according to IO priority
1034 * and sync vs async */
1035 unsigned low_slice =
1036 min(slice, base_low_slice * slice / sync_slice);
1037 /* the adapted slice value is scaled to fit all iqs
1038 * into the target latency */
1039 slice = max(slice * group_slice / expect_latency,
1040 low_slice);
1041 }
1042 }
1043 return slice;
1044 }
1045
1046 static inline void
1047 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 {
1049 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050
1051 cfqq->slice_start = jiffies;
1052 cfqq->slice_end = jiffies + slice;
1053 cfqq->allocated_slice = slice;
1054 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1055 }
1056
1057 /*
1058 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059 * isn't valid until the first request from the dispatch is activated
1060 * and the slice time set.
1061 */
1062 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 {
1064 if (cfq_cfqq_slice_new(cfqq))
1065 return false;
1066 if (time_before(jiffies, cfqq->slice_end))
1067 return false;
1068
1069 return true;
1070 }
1071
1072 /*
1073 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074 * We choose the request that is closest to the head right now. Distance
1075 * behind the head is penalized and only allowed to a certain extent.
1076 */
1077 static struct request *
1078 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 {
1080 sector_t s1, s2, d1 = 0, d2 = 0;
1081 unsigned long back_max;
1082 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1084 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085
1086 if (rq1 == NULL || rq1 == rq2)
1087 return rq2;
1088 if (rq2 == NULL)
1089 return rq1;
1090
1091 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1092 return rq_is_sync(rq1) ? rq1 : rq2;
1093
1094 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1095 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096
1097 s1 = blk_rq_pos(rq1);
1098 s2 = blk_rq_pos(rq2);
1099
1100 /*
1101 * by definition, 1KiB is 2 sectors
1102 */
1103 back_max = cfqd->cfq_back_max * 2;
1104
1105 /*
1106 * Strict one way elevator _except_ in the case where we allow
1107 * short backward seeks which are biased as twice the cost of a
1108 * similar forward seek.
1109 */
1110 if (s1 >= last)
1111 d1 = s1 - last;
1112 else if (s1 + back_max >= last)
1113 d1 = (last - s1) * cfqd->cfq_back_penalty;
1114 else
1115 wrap |= CFQ_RQ1_WRAP;
1116
1117 if (s2 >= last)
1118 d2 = s2 - last;
1119 else if (s2 + back_max >= last)
1120 d2 = (last - s2) * cfqd->cfq_back_penalty;
1121 else
1122 wrap |= CFQ_RQ2_WRAP;
1123
1124 /* Found required data */
1125
1126 /*
1127 * By doing switch() on the bit mask "wrap" we avoid having to
1128 * check two variables for all permutations: --> faster!
1129 */
1130 switch (wrap) {
1131 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1132 if (d1 < d2)
1133 return rq1;
1134 else if (d2 < d1)
1135 return rq2;
1136 else {
1137 if (s1 >= s2)
1138 return rq1;
1139 else
1140 return rq2;
1141 }
1142
1143 case CFQ_RQ2_WRAP:
1144 return rq1;
1145 case CFQ_RQ1_WRAP:
1146 return rq2;
1147 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1148 default:
1149 /*
1150 * Since both rqs are wrapped,
1151 * start with the one that's further behind head
1152 * (--> only *one* back seek required),
1153 * since back seek takes more time than forward.
1154 */
1155 if (s1 <= s2)
1156 return rq1;
1157 else
1158 return rq2;
1159 }
1160 }
1161
1162 /*
1163 * The below is leftmost cache rbtree addon
1164 */
1165 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 {
1167 /* Service tree is empty */
1168 if (!root->count)
1169 return NULL;
1170
1171 if (!root->left)
1172 root->left = rb_first(&root->rb);
1173
1174 if (root->left)
1175 return rb_entry(root->left, struct cfq_queue, rb_node);
1176
1177 return NULL;
1178 }
1179
1180 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 {
1182 if (!root->left)
1183 root->left = rb_first(&root->rb);
1184
1185 if (root->left)
1186 return rb_entry_cfqg(root->left);
1187
1188 return NULL;
1189 }
1190
1191 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 {
1193 rb_erase(n, root);
1194 RB_CLEAR_NODE(n);
1195 }
1196
1197 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 {
1199 if (root->left == n)
1200 root->left = NULL;
1201 rb_erase_init(n, &root->rb);
1202 --root->count;
1203 }
1204
1205 /*
1206 * would be nice to take fifo expire time into account as well
1207 */
1208 static struct request *
1209 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1210 struct request *last)
1211 {
1212 struct rb_node *rbnext = rb_next(&last->rb_node);
1213 struct rb_node *rbprev = rb_prev(&last->rb_node);
1214 struct request *next = NULL, *prev = NULL;
1215
1216 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217
1218 if (rbprev)
1219 prev = rb_entry_rq(rbprev);
1220
1221 if (rbnext)
1222 next = rb_entry_rq(rbnext);
1223 else {
1224 rbnext = rb_first(&cfqq->sort_list);
1225 if (rbnext && rbnext != &last->rb_node)
1226 next = rb_entry_rq(rbnext);
1227 }
1228
1229 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1230 }
1231
1232 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1233 struct cfq_queue *cfqq)
1234 {
1235 /*
1236 * just an approximation, should be ok.
1237 */
1238 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1239 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1240 }
1241
1242 static inline s64
1243 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 {
1245 return cfqg->vdisktime - st->min_vdisktime;
1246 }
1247
1248 static void
1249 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 {
1251 struct rb_node **node = &st->rb.rb_node;
1252 struct rb_node *parent = NULL;
1253 struct cfq_group *__cfqg;
1254 s64 key = cfqg_key(st, cfqg);
1255 int left = 1;
1256
1257 while (*node != NULL) {
1258 parent = *node;
1259 __cfqg = rb_entry_cfqg(parent);
1260
1261 if (key < cfqg_key(st, __cfqg))
1262 node = &parent->rb_left;
1263 else {
1264 node = &parent->rb_right;
1265 left = 0;
1266 }
1267 }
1268
1269 if (left)
1270 st->left = &cfqg->rb_node;
1271
1272 rb_link_node(&cfqg->rb_node, parent, node);
1273 rb_insert_color(&cfqg->rb_node, &st->rb);
1274 }
1275
1276 /*
1277 * This has to be called only on activation of cfqg
1278 */
1279 static void
1280 cfq_update_group_weight(struct cfq_group *cfqg)
1281 {
1282 if (cfqg->new_weight) {
1283 cfqg->weight = cfqg->new_weight;
1284 cfqg->new_weight = 0;
1285 }
1286 }
1287
1288 static void
1289 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1290 {
1291 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1292
1293 if (cfqg->new_leaf_weight) {
1294 cfqg->leaf_weight = cfqg->new_leaf_weight;
1295 cfqg->new_leaf_weight = 0;
1296 }
1297 }
1298
1299 static void
1300 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1301 {
1302 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1303 struct cfq_group *pos = cfqg;
1304 struct cfq_group *parent;
1305 bool propagate;
1306
1307 /* add to the service tree */
1308 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1309
1310 /*
1311 * Update leaf_weight. We cannot update weight at this point
1312 * because cfqg might already have been activated and is
1313 * contributing its current weight to the parent's child_weight.
1314 */
1315 cfq_update_group_leaf_weight(cfqg);
1316 __cfq_group_service_tree_add(st, cfqg);
1317
1318 /*
1319 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320 * entitled to. vfraction is calculated by walking the tree
1321 * towards the root calculating the fraction it has at each level.
1322 * The compounded ratio is how much vfraction @cfqg owns.
1323 *
1324 * Start with the proportion tasks in this cfqg has against active
1325 * children cfqgs - its leaf_weight against children_weight.
1326 */
1327 propagate = !pos->nr_active++;
1328 pos->children_weight += pos->leaf_weight;
1329 vfr = vfr * pos->leaf_weight / pos->children_weight;
1330
1331 /*
1332 * Compound ->weight walking up the tree. Both activation and
1333 * vfraction calculation are done in the same loop. Propagation
1334 * stops once an already activated node is met. vfraction
1335 * calculation should always continue to the root.
1336 */
1337 while ((parent = cfqg_parent(pos))) {
1338 if (propagate) {
1339 cfq_update_group_weight(pos);
1340 propagate = !parent->nr_active++;
1341 parent->children_weight += pos->weight;
1342 }
1343 vfr = vfr * pos->weight / parent->children_weight;
1344 pos = parent;
1345 }
1346
1347 cfqg->vfraction = max_t(unsigned, vfr, 1);
1348 }
1349
1350 static void
1351 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1352 {
1353 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1354 struct cfq_group *__cfqg;
1355 struct rb_node *n;
1356
1357 cfqg->nr_cfqq++;
1358 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1359 return;
1360
1361 /*
1362 * Currently put the group at the end. Later implement something
1363 * so that groups get lesser vtime based on their weights, so that
1364 * if group does not loose all if it was not continuously backlogged.
1365 */
1366 n = rb_last(&st->rb);
1367 if (n) {
1368 __cfqg = rb_entry_cfqg(n);
1369 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1370 } else
1371 cfqg->vdisktime = st->min_vdisktime;
1372 cfq_group_service_tree_add(st, cfqg);
1373 }
1374
1375 static void
1376 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1377 {
1378 struct cfq_group *pos = cfqg;
1379 bool propagate;
1380
1381 /*
1382 * Undo activation from cfq_group_service_tree_add(). Deactivate
1383 * @cfqg and propagate deactivation upwards.
1384 */
1385 propagate = !--pos->nr_active;
1386 pos->children_weight -= pos->leaf_weight;
1387
1388 while (propagate) {
1389 struct cfq_group *parent = cfqg_parent(pos);
1390
1391 /* @pos has 0 nr_active at this point */
1392 WARN_ON_ONCE(pos->children_weight);
1393 pos->vfraction = 0;
1394
1395 if (!parent)
1396 break;
1397
1398 propagate = !--parent->nr_active;
1399 parent->children_weight -= pos->weight;
1400 pos = parent;
1401 }
1402
1403 /* remove from the service tree */
1404 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1405 cfq_rb_erase(&cfqg->rb_node, st);
1406 }
1407
1408 static void
1409 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1410 {
1411 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1412
1413 BUG_ON(cfqg->nr_cfqq < 1);
1414 cfqg->nr_cfqq--;
1415
1416 /* If there are other cfq queues under this group, don't delete it */
1417 if (cfqg->nr_cfqq)
1418 return;
1419
1420 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1421 cfq_group_service_tree_del(st, cfqg);
1422 cfqg->saved_wl_slice = 0;
1423 cfqg_stats_update_dequeue(cfqg);
1424 }
1425
1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1427 unsigned int *unaccounted_time)
1428 {
1429 unsigned int slice_used;
1430
1431 /*
1432 * Queue got expired before even a single request completed or
1433 * got expired immediately after first request completion.
1434 */
1435 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1436 /*
1437 * Also charge the seek time incurred to the group, otherwise
1438 * if there are mutiple queues in the group, each can dispatch
1439 * a single request on seeky media and cause lots of seek time
1440 * and group will never know it.
1441 */
1442 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1443 1);
1444 } else {
1445 slice_used = jiffies - cfqq->slice_start;
1446 if (slice_used > cfqq->allocated_slice) {
1447 *unaccounted_time = slice_used - cfqq->allocated_slice;
1448 slice_used = cfqq->allocated_slice;
1449 }
1450 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1451 *unaccounted_time += cfqq->slice_start -
1452 cfqq->dispatch_start;
1453 }
1454
1455 return slice_used;
1456 }
1457
1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459 struct cfq_queue *cfqq)
1460 {
1461 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462 unsigned int used_sl, charge, unaccounted_sl = 0;
1463 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464 - cfqg->service_tree_idle.count;
1465 unsigned int vfr;
1466
1467 BUG_ON(nr_sync < 0);
1468 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1469
1470 if (iops_mode(cfqd))
1471 charge = cfqq->slice_dispatch;
1472 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1473 charge = cfqq->allocated_slice;
1474
1475 /*
1476 * Can't update vdisktime while on service tree and cfqg->vfraction
1477 * is valid only while on it. Cache vfr, leave the service tree,
1478 * update vdisktime and go back on. The re-addition to the tree
1479 * will also update the weights as necessary.
1480 */
1481 vfr = cfqg->vfraction;
1482 cfq_group_service_tree_del(st, cfqg);
1483 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1484 cfq_group_service_tree_add(st, cfqg);
1485
1486 /* This group is being expired. Save the context */
1487 if (time_after(cfqd->workload_expires, jiffies)) {
1488 cfqg->saved_wl_slice = cfqd->workload_expires
1489 - jiffies;
1490 cfqg->saved_wl_type = cfqd->serving_wl_type;
1491 cfqg->saved_wl_class = cfqd->serving_wl_class;
1492 } else
1493 cfqg->saved_wl_slice = 0;
1494
1495 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496 st->min_vdisktime);
1497 cfq_log_cfqq(cfqq->cfqd, cfqq,
1498 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499 used_sl, cfqq->slice_dispatch, charge,
1500 iops_mode(cfqd), cfqq->nr_sectors);
1501 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502 cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504
1505 /**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514 struct cfq_rb_root *st;
1515 int i, j;
1516
1517 for_each_cfqg_st(cfqg, i, j, st)
1518 *st = CFQ_RB_ROOT;
1519 RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521 cfqg->ttime.last_end_request = jiffies;
1522 }
1523
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static void cfqg_stats_exit(struct cfqg_stats *stats)
1526 {
1527 blkg_rwstat_exit(&stats->merged);
1528 blkg_rwstat_exit(&stats->service_time);
1529 blkg_rwstat_exit(&stats->wait_time);
1530 blkg_rwstat_exit(&stats->queued);
1531 blkg_stat_exit(&stats->time);
1532 #ifdef CONFIG_DEBUG_BLK_CGROUP
1533 blkg_stat_exit(&stats->unaccounted_time);
1534 blkg_stat_exit(&stats->avg_queue_size_sum);
1535 blkg_stat_exit(&stats->avg_queue_size_samples);
1536 blkg_stat_exit(&stats->dequeue);
1537 blkg_stat_exit(&stats->group_wait_time);
1538 blkg_stat_exit(&stats->idle_time);
1539 blkg_stat_exit(&stats->empty_time);
1540 #endif
1541 }
1542
1543 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1544 {
1545 if (blkg_rwstat_init(&stats->merged, gfp) ||
1546 blkg_rwstat_init(&stats->service_time, gfp) ||
1547 blkg_rwstat_init(&stats->wait_time, gfp) ||
1548 blkg_rwstat_init(&stats->queued, gfp) ||
1549 blkg_stat_init(&stats->time, gfp))
1550 goto err;
1551
1552 #ifdef CONFIG_DEBUG_BLK_CGROUP
1553 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1554 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1555 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1556 blkg_stat_init(&stats->dequeue, gfp) ||
1557 blkg_stat_init(&stats->group_wait_time, gfp) ||
1558 blkg_stat_init(&stats->idle_time, gfp) ||
1559 blkg_stat_init(&stats->empty_time, gfp))
1560 goto err;
1561 #endif
1562 return 0;
1563 err:
1564 cfqg_stats_exit(stats);
1565 return -ENOMEM;
1566 }
1567
1568 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1569 {
1570 struct cfq_group_data *cgd;
1571
1572 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1573 if (!cgd)
1574 return NULL;
1575 return &cgd->cpd;
1576 }
1577
1578 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1579 {
1580 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1581
1582 if (cpd_to_blkcg(cpd) == &blkcg_root) {
1583 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1584 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1585 } else {
1586 cgd->weight = CFQ_WEIGHT_DEFAULT;
1587 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1588 }
1589 }
1590
1591 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1592 {
1593 kfree(cpd_to_cfqgd(cpd));
1594 }
1595
1596 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1597 {
1598 struct cfq_group *cfqg;
1599
1600 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1601 if (!cfqg)
1602 return NULL;
1603
1604 cfq_init_cfqg_base(cfqg);
1605 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1606 kfree(cfqg);
1607 return NULL;
1608 }
1609
1610 return &cfqg->pd;
1611 }
1612
1613 static void cfq_pd_init(struct blkg_policy_data *pd)
1614 {
1615 struct cfq_group *cfqg = pd_to_cfqg(pd);
1616 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1617
1618 cfqg->weight = cgd->weight;
1619 cfqg->leaf_weight = cgd->leaf_weight;
1620 }
1621
1622 static void cfq_pd_offline(struct blkg_policy_data *pd)
1623 {
1624 struct cfq_group *cfqg = pd_to_cfqg(pd);
1625 int i;
1626
1627 for (i = 0; i < IOPRIO_BE_NR; i++) {
1628 if (cfqg->async_cfqq[0][i])
1629 cfq_put_queue(cfqg->async_cfqq[0][i]);
1630 if (cfqg->async_cfqq[1][i])
1631 cfq_put_queue(cfqg->async_cfqq[1][i]);
1632 }
1633
1634 if (cfqg->async_idle_cfqq)
1635 cfq_put_queue(cfqg->async_idle_cfqq);
1636
1637 /*
1638 * @blkg is going offline and will be ignored by
1639 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1640 * that they don't get lost. If IOs complete after this point, the
1641 * stats for them will be lost. Oh well...
1642 */
1643 cfqg_stats_xfer_dead(cfqg);
1644 }
1645
1646 static void cfq_pd_free(struct blkg_policy_data *pd)
1647 {
1648 struct cfq_group *cfqg = pd_to_cfqg(pd);
1649
1650 cfqg_stats_exit(&cfqg->stats);
1651 return kfree(cfqg);
1652 }
1653
1654 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1655 {
1656 struct cfq_group *cfqg = pd_to_cfqg(pd);
1657
1658 cfqg_stats_reset(&cfqg->stats);
1659 }
1660
1661 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1662 struct blkcg *blkcg)
1663 {
1664 struct blkcg_gq *blkg;
1665
1666 blkg = blkg_lookup(blkcg, cfqd->queue);
1667 if (likely(blkg))
1668 return blkg_to_cfqg(blkg);
1669 return NULL;
1670 }
1671
1672 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1673 {
1674 cfqq->cfqg = cfqg;
1675 /* cfqq reference on cfqg */
1676 cfqg_get(cfqg);
1677 }
1678
1679 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1680 struct blkg_policy_data *pd, int off)
1681 {
1682 struct cfq_group *cfqg = pd_to_cfqg(pd);
1683
1684 if (!cfqg->dev_weight)
1685 return 0;
1686 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1687 }
1688
1689 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1690 {
1691 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1692 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1693 0, false);
1694 return 0;
1695 }
1696
1697 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1698 struct blkg_policy_data *pd, int off)
1699 {
1700 struct cfq_group *cfqg = pd_to_cfqg(pd);
1701
1702 if (!cfqg->dev_leaf_weight)
1703 return 0;
1704 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1705 }
1706
1707 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1708 {
1709 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1710 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1711 0, false);
1712 return 0;
1713 }
1714
1715 static int cfq_print_weight(struct seq_file *sf, void *v)
1716 {
1717 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1718 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1719 unsigned int val = 0;
1720
1721 if (cgd)
1722 val = cgd->weight;
1723
1724 seq_printf(sf, "%u\n", val);
1725 return 0;
1726 }
1727
1728 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1729 {
1730 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1731 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1732 unsigned int val = 0;
1733
1734 if (cgd)
1735 val = cgd->leaf_weight;
1736
1737 seq_printf(sf, "%u\n", val);
1738 return 0;
1739 }
1740
1741 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1742 char *buf, size_t nbytes, loff_t off,
1743 bool is_leaf_weight)
1744 {
1745 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1746 struct blkg_conf_ctx ctx;
1747 struct cfq_group *cfqg;
1748 struct cfq_group_data *cfqgd;
1749 int ret;
1750
1751 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1752 if (ret)
1753 return ret;
1754
1755 cfqg = blkg_to_cfqg(ctx.blkg);
1756 cfqgd = blkcg_to_cfqgd(blkcg);
1757
1758 ret = -ERANGE;
1759 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1760 if (!is_leaf_weight) {
1761 cfqg->dev_weight = ctx.v;
1762 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1763 } else {
1764 cfqg->dev_leaf_weight = ctx.v;
1765 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1766 }
1767 ret = 0;
1768 }
1769
1770 blkg_conf_finish(&ctx);
1771 return ret ?: nbytes;
1772 }
1773
1774 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1775 char *buf, size_t nbytes, loff_t off)
1776 {
1777 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1778 }
1779
1780 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1781 char *buf, size_t nbytes, loff_t off)
1782 {
1783 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1784 }
1785
1786 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1787 u64 val, bool is_leaf_weight)
1788 {
1789 struct blkcg *blkcg = css_to_blkcg(css);
1790 struct blkcg_gq *blkg;
1791 struct cfq_group_data *cfqgd;
1792 int ret = 0;
1793
1794 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1795 return -EINVAL;
1796
1797 spin_lock_irq(&blkcg->lock);
1798 cfqgd = blkcg_to_cfqgd(blkcg);
1799 if (!cfqgd) {
1800 ret = -EINVAL;
1801 goto out;
1802 }
1803
1804 if (!is_leaf_weight)
1805 cfqgd->weight = val;
1806 else
1807 cfqgd->leaf_weight = val;
1808
1809 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1810 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1811
1812 if (!cfqg)
1813 continue;
1814
1815 if (!is_leaf_weight) {
1816 if (!cfqg->dev_weight)
1817 cfqg->new_weight = cfqgd->weight;
1818 } else {
1819 if (!cfqg->dev_leaf_weight)
1820 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1821 }
1822 }
1823
1824 out:
1825 spin_unlock_irq(&blkcg->lock);
1826 return ret;
1827 }
1828
1829 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1830 u64 val)
1831 {
1832 return __cfq_set_weight(css, cft, val, false);
1833 }
1834
1835 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1836 struct cftype *cft, u64 val)
1837 {
1838 return __cfq_set_weight(css, cft, val, true);
1839 }
1840
1841 static int cfqg_print_stat(struct seq_file *sf, void *v)
1842 {
1843 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1844 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1845 return 0;
1846 }
1847
1848 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1849 {
1850 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1851 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1852 return 0;
1853 }
1854
1855 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1856 struct blkg_policy_data *pd, int off)
1857 {
1858 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1859 &blkcg_policy_cfq, off);
1860 return __blkg_prfill_u64(sf, pd, sum);
1861 }
1862
1863 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1864 struct blkg_policy_data *pd, int off)
1865 {
1866 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1867 &blkcg_policy_cfq, off);
1868 return __blkg_prfill_rwstat(sf, pd, &sum);
1869 }
1870
1871 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1872 {
1873 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1874 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1875 seq_cft(sf)->private, false);
1876 return 0;
1877 }
1878
1879 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1880 {
1881 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1882 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1883 seq_cft(sf)->private, true);
1884 return 0;
1885 }
1886
1887 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1888 int off)
1889 {
1890 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1891
1892 return __blkg_prfill_u64(sf, pd, sum >> 9);
1893 }
1894
1895 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1896 {
1897 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1898 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1899 return 0;
1900 }
1901
1902 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1903 struct blkg_policy_data *pd, int off)
1904 {
1905 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1906 offsetof(struct blkcg_gq, stat_bytes));
1907 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1908 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1909
1910 return __blkg_prfill_u64(sf, pd, sum >> 9);
1911 }
1912
1913 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1914 {
1915 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1916 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1917 false);
1918 return 0;
1919 }
1920
1921 #ifdef CONFIG_DEBUG_BLK_CGROUP
1922 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1923 struct blkg_policy_data *pd, int off)
1924 {
1925 struct cfq_group *cfqg = pd_to_cfqg(pd);
1926 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1927 u64 v = 0;
1928
1929 if (samples) {
1930 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1931 v = div64_u64(v, samples);
1932 }
1933 __blkg_prfill_u64(sf, pd, v);
1934 return 0;
1935 }
1936
1937 /* print avg_queue_size */
1938 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1939 {
1940 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1941 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1942 0, false);
1943 return 0;
1944 }
1945 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1946
1947 static struct cftype cfq_blkcg_files[] = {
1948 /* on root, weight is mapped to leaf_weight */
1949 {
1950 .name = "weight_device",
1951 .flags = CFTYPE_ONLY_ON_ROOT,
1952 .seq_show = cfqg_print_leaf_weight_device,
1953 .write = cfqg_set_leaf_weight_device,
1954 },
1955 {
1956 .name = "weight",
1957 .flags = CFTYPE_ONLY_ON_ROOT,
1958 .seq_show = cfq_print_leaf_weight,
1959 .write_u64 = cfq_set_leaf_weight,
1960 },
1961
1962 /* no such mapping necessary for !roots */
1963 {
1964 .name = "weight_device",
1965 .flags = CFTYPE_NOT_ON_ROOT,
1966 .seq_show = cfqg_print_weight_device,
1967 .write = cfqg_set_weight_device,
1968 },
1969 {
1970 .name = "weight",
1971 .flags = CFTYPE_NOT_ON_ROOT,
1972 .seq_show = cfq_print_weight,
1973 .write_u64 = cfq_set_weight,
1974 },
1975
1976 {
1977 .name = "leaf_weight_device",
1978 .seq_show = cfqg_print_leaf_weight_device,
1979 .write = cfqg_set_leaf_weight_device,
1980 },
1981 {
1982 .name = "leaf_weight",
1983 .seq_show = cfq_print_leaf_weight,
1984 .write_u64 = cfq_set_leaf_weight,
1985 },
1986
1987 /* statistics, covers only the tasks in the cfqg */
1988 {
1989 .name = "time",
1990 .private = offsetof(struct cfq_group, stats.time),
1991 .seq_show = cfqg_print_stat,
1992 },
1993 {
1994 .name = "sectors",
1995 .seq_show = cfqg_print_stat_sectors,
1996 },
1997 {
1998 .name = "io_service_bytes",
1999 .private = (unsigned long)&blkcg_policy_cfq,
2000 .seq_show = blkg_print_stat_bytes,
2001 },
2002 {
2003 .name = "io_serviced",
2004 .private = (unsigned long)&blkcg_policy_cfq,
2005 .seq_show = blkg_print_stat_ios,
2006 },
2007 {
2008 .name = "io_service_time",
2009 .private = offsetof(struct cfq_group, stats.service_time),
2010 .seq_show = cfqg_print_rwstat,
2011 },
2012 {
2013 .name = "io_wait_time",
2014 .private = offsetof(struct cfq_group, stats.wait_time),
2015 .seq_show = cfqg_print_rwstat,
2016 },
2017 {
2018 .name = "io_merged",
2019 .private = offsetof(struct cfq_group, stats.merged),
2020 .seq_show = cfqg_print_rwstat,
2021 },
2022 {
2023 .name = "io_queued",
2024 .private = offsetof(struct cfq_group, stats.queued),
2025 .seq_show = cfqg_print_rwstat,
2026 },
2027
2028 /* the same statictics which cover the cfqg and its descendants */
2029 {
2030 .name = "time_recursive",
2031 .private = offsetof(struct cfq_group, stats.time),
2032 .seq_show = cfqg_print_stat_recursive,
2033 },
2034 {
2035 .name = "sectors_recursive",
2036 .seq_show = cfqg_print_stat_sectors_recursive,
2037 },
2038 {
2039 .name = "io_service_bytes_recursive",
2040 .private = (unsigned long)&blkcg_policy_cfq,
2041 .seq_show = blkg_print_stat_bytes_recursive,
2042 },
2043 {
2044 .name = "io_serviced_recursive",
2045 .private = (unsigned long)&blkcg_policy_cfq,
2046 .seq_show = blkg_print_stat_ios_recursive,
2047 },
2048 {
2049 .name = "io_service_time_recursive",
2050 .private = offsetof(struct cfq_group, stats.service_time),
2051 .seq_show = cfqg_print_rwstat_recursive,
2052 },
2053 {
2054 .name = "io_wait_time_recursive",
2055 .private = offsetof(struct cfq_group, stats.wait_time),
2056 .seq_show = cfqg_print_rwstat_recursive,
2057 },
2058 {
2059 .name = "io_merged_recursive",
2060 .private = offsetof(struct cfq_group, stats.merged),
2061 .seq_show = cfqg_print_rwstat_recursive,
2062 },
2063 {
2064 .name = "io_queued_recursive",
2065 .private = offsetof(struct cfq_group, stats.queued),
2066 .seq_show = cfqg_print_rwstat_recursive,
2067 },
2068 #ifdef CONFIG_DEBUG_BLK_CGROUP
2069 {
2070 .name = "avg_queue_size",
2071 .seq_show = cfqg_print_avg_queue_size,
2072 },
2073 {
2074 .name = "group_wait_time",
2075 .private = offsetof(struct cfq_group, stats.group_wait_time),
2076 .seq_show = cfqg_print_stat,
2077 },
2078 {
2079 .name = "idle_time",
2080 .private = offsetof(struct cfq_group, stats.idle_time),
2081 .seq_show = cfqg_print_stat,
2082 },
2083 {
2084 .name = "empty_time",
2085 .private = offsetof(struct cfq_group, stats.empty_time),
2086 .seq_show = cfqg_print_stat,
2087 },
2088 {
2089 .name = "dequeue",
2090 .private = offsetof(struct cfq_group, stats.dequeue),
2091 .seq_show = cfqg_print_stat,
2092 },
2093 {
2094 .name = "unaccounted_time",
2095 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2096 .seq_show = cfqg_print_stat,
2097 },
2098 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2099 { } /* terminate */
2100 };
2101 #else /* GROUP_IOSCHED */
2102 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2103 struct blkcg *blkcg)
2104 {
2105 return cfqd->root_group;
2106 }
2107
2108 static inline void
2109 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2110 cfqq->cfqg = cfqg;
2111 }
2112
2113 #endif /* GROUP_IOSCHED */
2114
2115 /*
2116 * The cfqd->service_trees holds all pending cfq_queue's that have
2117 * requests waiting to be processed. It is sorted in the order that
2118 * we will service the queues.
2119 */
2120 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2121 bool add_front)
2122 {
2123 struct rb_node **p, *parent;
2124 struct cfq_queue *__cfqq;
2125 unsigned long rb_key;
2126 struct cfq_rb_root *st;
2127 int left;
2128 int new_cfqq = 1;
2129
2130 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2131 if (cfq_class_idle(cfqq)) {
2132 rb_key = CFQ_IDLE_DELAY;
2133 parent = rb_last(&st->rb);
2134 if (parent && parent != &cfqq->rb_node) {
2135 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2136 rb_key += __cfqq->rb_key;
2137 } else
2138 rb_key += jiffies;
2139 } else if (!add_front) {
2140 /*
2141 * Get our rb key offset. Subtract any residual slice
2142 * value carried from last service. A negative resid
2143 * count indicates slice overrun, and this should position
2144 * the next service time further away in the tree.
2145 */
2146 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2147 rb_key -= cfqq->slice_resid;
2148 cfqq->slice_resid = 0;
2149 } else {
2150 rb_key = -HZ;
2151 __cfqq = cfq_rb_first(st);
2152 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2153 }
2154
2155 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2156 new_cfqq = 0;
2157 /*
2158 * same position, nothing more to do
2159 */
2160 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2161 return;
2162
2163 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2164 cfqq->service_tree = NULL;
2165 }
2166
2167 left = 1;
2168 parent = NULL;
2169 cfqq->service_tree = st;
2170 p = &st->rb.rb_node;
2171 while (*p) {
2172 parent = *p;
2173 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2174
2175 /*
2176 * sort by key, that represents service time.
2177 */
2178 if (time_before(rb_key, __cfqq->rb_key))
2179 p = &parent->rb_left;
2180 else {
2181 p = &parent->rb_right;
2182 left = 0;
2183 }
2184 }
2185
2186 if (left)
2187 st->left = &cfqq->rb_node;
2188
2189 cfqq->rb_key = rb_key;
2190 rb_link_node(&cfqq->rb_node, parent, p);
2191 rb_insert_color(&cfqq->rb_node, &st->rb);
2192 st->count++;
2193 if (add_front || !new_cfqq)
2194 return;
2195 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2196 }
2197
2198 static struct cfq_queue *
2199 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2200 sector_t sector, struct rb_node **ret_parent,
2201 struct rb_node ***rb_link)
2202 {
2203 struct rb_node **p, *parent;
2204 struct cfq_queue *cfqq = NULL;
2205
2206 parent = NULL;
2207 p = &root->rb_node;
2208 while (*p) {
2209 struct rb_node **n;
2210
2211 parent = *p;
2212 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2213
2214 /*
2215 * Sort strictly based on sector. Smallest to the left,
2216 * largest to the right.
2217 */
2218 if (sector > blk_rq_pos(cfqq->next_rq))
2219 n = &(*p)->rb_right;
2220 else if (sector < blk_rq_pos(cfqq->next_rq))
2221 n = &(*p)->rb_left;
2222 else
2223 break;
2224 p = n;
2225 cfqq = NULL;
2226 }
2227
2228 *ret_parent = parent;
2229 if (rb_link)
2230 *rb_link = p;
2231 return cfqq;
2232 }
2233
2234 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2235 {
2236 struct rb_node **p, *parent;
2237 struct cfq_queue *__cfqq;
2238
2239 if (cfqq->p_root) {
2240 rb_erase(&cfqq->p_node, cfqq->p_root);
2241 cfqq->p_root = NULL;
2242 }
2243
2244 if (cfq_class_idle(cfqq))
2245 return;
2246 if (!cfqq->next_rq)
2247 return;
2248
2249 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2250 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2251 blk_rq_pos(cfqq->next_rq), &parent, &p);
2252 if (!__cfqq) {
2253 rb_link_node(&cfqq->p_node, parent, p);
2254 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2255 } else
2256 cfqq->p_root = NULL;
2257 }
2258
2259 /*
2260 * Update cfqq's position in the service tree.
2261 */
2262 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2263 {
2264 /*
2265 * Resorting requires the cfqq to be on the RR list already.
2266 */
2267 if (cfq_cfqq_on_rr(cfqq)) {
2268 cfq_service_tree_add(cfqd, cfqq, 0);
2269 cfq_prio_tree_add(cfqd, cfqq);
2270 }
2271 }
2272
2273 /*
2274 * add to busy list of queues for service, trying to be fair in ordering
2275 * the pending list according to last request service
2276 */
2277 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2278 {
2279 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2280 BUG_ON(cfq_cfqq_on_rr(cfqq));
2281 cfq_mark_cfqq_on_rr(cfqq);
2282 cfqd->busy_queues++;
2283 if (cfq_cfqq_sync(cfqq))
2284 cfqd->busy_sync_queues++;
2285
2286 cfq_resort_rr_list(cfqd, cfqq);
2287 }
2288
2289 /*
2290 * Called when the cfqq no longer has requests pending, remove it from
2291 * the service tree.
2292 */
2293 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2294 {
2295 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2296 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2297 cfq_clear_cfqq_on_rr(cfqq);
2298
2299 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2300 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2301 cfqq->service_tree = NULL;
2302 }
2303 if (cfqq->p_root) {
2304 rb_erase(&cfqq->p_node, cfqq->p_root);
2305 cfqq->p_root = NULL;
2306 }
2307
2308 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2309 BUG_ON(!cfqd->busy_queues);
2310 cfqd->busy_queues--;
2311 if (cfq_cfqq_sync(cfqq))
2312 cfqd->busy_sync_queues--;
2313 }
2314
2315 /*
2316 * rb tree support functions
2317 */
2318 static void cfq_del_rq_rb(struct request *rq)
2319 {
2320 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2321 const int sync = rq_is_sync(rq);
2322
2323 BUG_ON(!cfqq->queued[sync]);
2324 cfqq->queued[sync]--;
2325
2326 elv_rb_del(&cfqq->sort_list, rq);
2327
2328 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2329 /*
2330 * Queue will be deleted from service tree when we actually
2331 * expire it later. Right now just remove it from prio tree
2332 * as it is empty.
2333 */
2334 if (cfqq->p_root) {
2335 rb_erase(&cfqq->p_node, cfqq->p_root);
2336 cfqq->p_root = NULL;
2337 }
2338 }
2339 }
2340
2341 static void cfq_add_rq_rb(struct request *rq)
2342 {
2343 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2344 struct cfq_data *cfqd = cfqq->cfqd;
2345 struct request *prev;
2346
2347 cfqq->queued[rq_is_sync(rq)]++;
2348
2349 elv_rb_add(&cfqq->sort_list, rq);
2350
2351 if (!cfq_cfqq_on_rr(cfqq))
2352 cfq_add_cfqq_rr(cfqd, cfqq);
2353
2354 /*
2355 * check if this request is a better next-serve candidate
2356 */
2357 prev = cfqq->next_rq;
2358 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2359
2360 /*
2361 * adjust priority tree position, if ->next_rq changes
2362 */
2363 if (prev != cfqq->next_rq)
2364 cfq_prio_tree_add(cfqd, cfqq);
2365
2366 BUG_ON(!cfqq->next_rq);
2367 }
2368
2369 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2370 {
2371 elv_rb_del(&cfqq->sort_list, rq);
2372 cfqq->queued[rq_is_sync(rq)]--;
2373 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2374 cfq_add_rq_rb(rq);
2375 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2376 rq->cmd_flags);
2377 }
2378
2379 static struct request *
2380 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2381 {
2382 struct task_struct *tsk = current;
2383 struct cfq_io_cq *cic;
2384 struct cfq_queue *cfqq;
2385
2386 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2387 if (!cic)
2388 return NULL;
2389
2390 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2391 if (cfqq)
2392 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2393
2394 return NULL;
2395 }
2396
2397 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2398 {
2399 struct cfq_data *cfqd = q->elevator->elevator_data;
2400
2401 cfqd->rq_in_driver++;
2402 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2403 cfqd->rq_in_driver);
2404
2405 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2406 }
2407
2408 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2409 {
2410 struct cfq_data *cfqd = q->elevator->elevator_data;
2411
2412 WARN_ON(!cfqd->rq_in_driver);
2413 cfqd->rq_in_driver--;
2414 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2415 cfqd->rq_in_driver);
2416 }
2417
2418 static void cfq_remove_request(struct request *rq)
2419 {
2420 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2421
2422 if (cfqq->next_rq == rq)
2423 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2424
2425 list_del_init(&rq->queuelist);
2426 cfq_del_rq_rb(rq);
2427
2428 cfqq->cfqd->rq_queued--;
2429 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2430 if (rq->cmd_flags & REQ_PRIO) {
2431 WARN_ON(!cfqq->prio_pending);
2432 cfqq->prio_pending--;
2433 }
2434 }
2435
2436 static int cfq_merge(struct request_queue *q, struct request **req,
2437 struct bio *bio)
2438 {
2439 struct cfq_data *cfqd = q->elevator->elevator_data;
2440 struct request *__rq;
2441
2442 __rq = cfq_find_rq_fmerge(cfqd, bio);
2443 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2444 *req = __rq;
2445 return ELEVATOR_FRONT_MERGE;
2446 }
2447
2448 return ELEVATOR_NO_MERGE;
2449 }
2450
2451 static void cfq_merged_request(struct request_queue *q, struct request *req,
2452 int type)
2453 {
2454 if (type == ELEVATOR_FRONT_MERGE) {
2455 struct cfq_queue *cfqq = RQ_CFQQ(req);
2456
2457 cfq_reposition_rq_rb(cfqq, req);
2458 }
2459 }
2460
2461 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2462 struct bio *bio)
2463 {
2464 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2465 }
2466
2467 static void
2468 cfq_merged_requests(struct request_queue *q, struct request *rq,
2469 struct request *next)
2470 {
2471 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2472 struct cfq_data *cfqd = q->elevator->elevator_data;
2473
2474 /*
2475 * reposition in fifo if next is older than rq
2476 */
2477 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2478 time_before(next->fifo_time, rq->fifo_time) &&
2479 cfqq == RQ_CFQQ(next)) {
2480 list_move(&rq->queuelist, &next->queuelist);
2481 rq->fifo_time = next->fifo_time;
2482 }
2483
2484 if (cfqq->next_rq == next)
2485 cfqq->next_rq = rq;
2486 cfq_remove_request(next);
2487 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2488
2489 cfqq = RQ_CFQQ(next);
2490 /*
2491 * all requests of this queue are merged to other queues, delete it
2492 * from the service tree. If it's the active_queue,
2493 * cfq_dispatch_requests() will choose to expire it or do idle
2494 */
2495 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2496 cfqq != cfqd->active_queue)
2497 cfq_del_cfqq_rr(cfqd, cfqq);
2498 }
2499
2500 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2501 struct bio *bio)
2502 {
2503 struct cfq_data *cfqd = q->elevator->elevator_data;
2504 struct cfq_io_cq *cic;
2505 struct cfq_queue *cfqq;
2506
2507 /*
2508 * Disallow merge of a sync bio into an async request.
2509 */
2510 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2511 return false;
2512
2513 /*
2514 * Lookup the cfqq that this bio will be queued with and allow
2515 * merge only if rq is queued there.
2516 */
2517 cic = cfq_cic_lookup(cfqd, current->io_context);
2518 if (!cic)
2519 return false;
2520
2521 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2522 return cfqq == RQ_CFQQ(rq);
2523 }
2524
2525 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2526 {
2527 del_timer(&cfqd->idle_slice_timer);
2528 cfqg_stats_update_idle_time(cfqq->cfqg);
2529 }
2530
2531 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2532 struct cfq_queue *cfqq)
2533 {
2534 if (cfqq) {
2535 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2536 cfqd->serving_wl_class, cfqd->serving_wl_type);
2537 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2538 cfqq->slice_start = 0;
2539 cfqq->dispatch_start = jiffies;
2540 cfqq->allocated_slice = 0;
2541 cfqq->slice_end = 0;
2542 cfqq->slice_dispatch = 0;
2543 cfqq->nr_sectors = 0;
2544
2545 cfq_clear_cfqq_wait_request(cfqq);
2546 cfq_clear_cfqq_must_dispatch(cfqq);
2547 cfq_clear_cfqq_must_alloc_slice(cfqq);
2548 cfq_clear_cfqq_fifo_expire(cfqq);
2549 cfq_mark_cfqq_slice_new(cfqq);
2550
2551 cfq_del_timer(cfqd, cfqq);
2552 }
2553
2554 cfqd->active_queue = cfqq;
2555 }
2556
2557 /*
2558 * current cfqq expired its slice (or was too idle), select new one
2559 */
2560 static void
2561 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2562 bool timed_out)
2563 {
2564 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2565
2566 if (cfq_cfqq_wait_request(cfqq))
2567 cfq_del_timer(cfqd, cfqq);
2568
2569 cfq_clear_cfqq_wait_request(cfqq);
2570 cfq_clear_cfqq_wait_busy(cfqq);
2571
2572 /*
2573 * If this cfqq is shared between multiple processes, check to
2574 * make sure that those processes are still issuing I/Os within
2575 * the mean seek distance. If not, it may be time to break the
2576 * queues apart again.
2577 */
2578 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2579 cfq_mark_cfqq_split_coop(cfqq);
2580
2581 /*
2582 * store what was left of this slice, if the queue idled/timed out
2583 */
2584 if (timed_out) {
2585 if (cfq_cfqq_slice_new(cfqq))
2586 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2587 else
2588 cfqq->slice_resid = cfqq->slice_end - jiffies;
2589 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2590 }
2591
2592 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2593
2594 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2595 cfq_del_cfqq_rr(cfqd, cfqq);
2596
2597 cfq_resort_rr_list(cfqd, cfqq);
2598
2599 if (cfqq == cfqd->active_queue)
2600 cfqd->active_queue = NULL;
2601
2602 if (cfqd->active_cic) {
2603 put_io_context(cfqd->active_cic->icq.ioc);
2604 cfqd->active_cic = NULL;
2605 }
2606 }
2607
2608 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2609 {
2610 struct cfq_queue *cfqq = cfqd->active_queue;
2611
2612 if (cfqq)
2613 __cfq_slice_expired(cfqd, cfqq, timed_out);
2614 }
2615
2616 /*
2617 * Get next queue for service. Unless we have a queue preemption,
2618 * we'll simply select the first cfqq in the service tree.
2619 */
2620 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2621 {
2622 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2623 cfqd->serving_wl_class, cfqd->serving_wl_type);
2624
2625 if (!cfqd->rq_queued)
2626 return NULL;
2627
2628 /* There is nothing to dispatch */
2629 if (!st)
2630 return NULL;
2631 if (RB_EMPTY_ROOT(&st->rb))
2632 return NULL;
2633 return cfq_rb_first(st);
2634 }
2635
2636 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2637 {
2638 struct cfq_group *cfqg;
2639 struct cfq_queue *cfqq;
2640 int i, j;
2641 struct cfq_rb_root *st;
2642
2643 if (!cfqd->rq_queued)
2644 return NULL;
2645
2646 cfqg = cfq_get_next_cfqg(cfqd);
2647 if (!cfqg)
2648 return NULL;
2649
2650 for_each_cfqg_st(cfqg, i, j, st)
2651 if ((cfqq = cfq_rb_first(st)) != NULL)
2652 return cfqq;
2653 return NULL;
2654 }
2655
2656 /*
2657 * Get and set a new active queue for service.
2658 */
2659 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2660 struct cfq_queue *cfqq)
2661 {
2662 if (!cfqq)
2663 cfqq = cfq_get_next_queue(cfqd);
2664
2665 __cfq_set_active_queue(cfqd, cfqq);
2666 return cfqq;
2667 }
2668
2669 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2670 struct request *rq)
2671 {
2672 if (blk_rq_pos(rq) >= cfqd->last_position)
2673 return blk_rq_pos(rq) - cfqd->last_position;
2674 else
2675 return cfqd->last_position - blk_rq_pos(rq);
2676 }
2677
2678 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2679 struct request *rq)
2680 {
2681 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2682 }
2683
2684 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2685 struct cfq_queue *cur_cfqq)
2686 {
2687 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2688 struct rb_node *parent, *node;
2689 struct cfq_queue *__cfqq;
2690 sector_t sector = cfqd->last_position;
2691
2692 if (RB_EMPTY_ROOT(root))
2693 return NULL;
2694
2695 /*
2696 * First, if we find a request starting at the end of the last
2697 * request, choose it.
2698 */
2699 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2700 if (__cfqq)
2701 return __cfqq;
2702
2703 /*
2704 * If the exact sector wasn't found, the parent of the NULL leaf
2705 * will contain the closest sector.
2706 */
2707 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2708 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2709 return __cfqq;
2710
2711 if (blk_rq_pos(__cfqq->next_rq) < sector)
2712 node = rb_next(&__cfqq->p_node);
2713 else
2714 node = rb_prev(&__cfqq->p_node);
2715 if (!node)
2716 return NULL;
2717
2718 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2719 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2720 return __cfqq;
2721
2722 return NULL;
2723 }
2724
2725 /*
2726 * cfqd - obvious
2727 * cur_cfqq - passed in so that we don't decide that the current queue is
2728 * closely cooperating with itself.
2729 *
2730 * So, basically we're assuming that that cur_cfqq has dispatched at least
2731 * one request, and that cfqd->last_position reflects a position on the disk
2732 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2733 * assumption.
2734 */
2735 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2736 struct cfq_queue *cur_cfqq)
2737 {
2738 struct cfq_queue *cfqq;
2739
2740 if (cfq_class_idle(cur_cfqq))
2741 return NULL;
2742 if (!cfq_cfqq_sync(cur_cfqq))
2743 return NULL;
2744 if (CFQQ_SEEKY(cur_cfqq))
2745 return NULL;
2746
2747 /*
2748 * Don't search priority tree if it's the only queue in the group.
2749 */
2750 if (cur_cfqq->cfqg->nr_cfqq == 1)
2751 return NULL;
2752
2753 /*
2754 * We should notice if some of the queues are cooperating, eg
2755 * working closely on the same area of the disk. In that case,
2756 * we can group them together and don't waste time idling.
2757 */
2758 cfqq = cfqq_close(cfqd, cur_cfqq);
2759 if (!cfqq)
2760 return NULL;
2761
2762 /* If new queue belongs to different cfq_group, don't choose it */
2763 if (cur_cfqq->cfqg != cfqq->cfqg)
2764 return NULL;
2765
2766 /*
2767 * It only makes sense to merge sync queues.
2768 */
2769 if (!cfq_cfqq_sync(cfqq))
2770 return NULL;
2771 if (CFQQ_SEEKY(cfqq))
2772 return NULL;
2773
2774 /*
2775 * Do not merge queues of different priority classes
2776 */
2777 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2778 return NULL;
2779
2780 return cfqq;
2781 }
2782
2783 /*
2784 * Determine whether we should enforce idle window for this queue.
2785 */
2786
2787 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2788 {
2789 enum wl_class_t wl_class = cfqq_class(cfqq);
2790 struct cfq_rb_root *st = cfqq->service_tree;
2791
2792 BUG_ON(!st);
2793 BUG_ON(!st->count);
2794
2795 if (!cfqd->cfq_slice_idle)
2796 return false;
2797
2798 /* We never do for idle class queues. */
2799 if (wl_class == IDLE_WORKLOAD)
2800 return false;
2801
2802 /* We do for queues that were marked with idle window flag. */
2803 if (cfq_cfqq_idle_window(cfqq) &&
2804 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2805 return true;
2806
2807 /*
2808 * Otherwise, we do only if they are the last ones
2809 * in their service tree.
2810 */
2811 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2812 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2813 return true;
2814 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2815 return false;
2816 }
2817
2818 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2819 {
2820 struct cfq_queue *cfqq = cfqd->active_queue;
2821 struct cfq_io_cq *cic;
2822 unsigned long sl, group_idle = 0;
2823
2824 /*
2825 * SSD device without seek penalty, disable idling. But only do so
2826 * for devices that support queuing, otherwise we still have a problem
2827 * with sync vs async workloads.
2828 */
2829 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2830 return;
2831
2832 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2833 WARN_ON(cfq_cfqq_slice_new(cfqq));
2834
2835 /*
2836 * idle is disabled, either manually or by past process history
2837 */
2838 if (!cfq_should_idle(cfqd, cfqq)) {
2839 /* no queue idling. Check for group idling */
2840 if (cfqd->cfq_group_idle)
2841 group_idle = cfqd->cfq_group_idle;
2842 else
2843 return;
2844 }
2845
2846 /*
2847 * still active requests from this queue, don't idle
2848 */
2849 if (cfqq->dispatched)
2850 return;
2851
2852 /*
2853 * task has exited, don't wait
2854 */
2855 cic = cfqd->active_cic;
2856 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2857 return;
2858
2859 /*
2860 * If our average think time is larger than the remaining time
2861 * slice, then don't idle. This avoids overrunning the allotted
2862 * time slice.
2863 */
2864 if (sample_valid(cic->ttime.ttime_samples) &&
2865 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2866 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2867 cic->ttime.ttime_mean);
2868 return;
2869 }
2870
2871 /* There are other queues in the group, don't do group idle */
2872 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2873 return;
2874
2875 cfq_mark_cfqq_wait_request(cfqq);
2876
2877 if (group_idle)
2878 sl = cfqd->cfq_group_idle;
2879 else
2880 sl = cfqd->cfq_slice_idle;
2881
2882 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2883 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2884 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2885 group_idle ? 1 : 0);
2886 }
2887
2888 /*
2889 * Move request from internal lists to the request queue dispatch list.
2890 */
2891 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2892 {
2893 struct cfq_data *cfqd = q->elevator->elevator_data;
2894 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2895
2896 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2897
2898 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2899 cfq_remove_request(rq);
2900 cfqq->dispatched++;
2901 (RQ_CFQG(rq))->dispatched++;
2902 elv_dispatch_sort(q, rq);
2903
2904 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2905 cfqq->nr_sectors += blk_rq_sectors(rq);
2906 }
2907
2908 /*
2909 * return expired entry, or NULL to just start from scratch in rbtree
2910 */
2911 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2912 {
2913 struct request *rq = NULL;
2914
2915 if (cfq_cfqq_fifo_expire(cfqq))
2916 return NULL;
2917
2918 cfq_mark_cfqq_fifo_expire(cfqq);
2919
2920 if (list_empty(&cfqq->fifo))
2921 return NULL;
2922
2923 rq = rq_entry_fifo(cfqq->fifo.next);
2924 if (time_before(jiffies, rq->fifo_time))
2925 rq = NULL;
2926
2927 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2928 return rq;
2929 }
2930
2931 static inline int
2932 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2933 {
2934 const int base_rq = cfqd->cfq_slice_async_rq;
2935
2936 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2937
2938 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2939 }
2940
2941 /*
2942 * Must be called with the queue_lock held.
2943 */
2944 static int cfqq_process_refs(struct cfq_queue *cfqq)
2945 {
2946 int process_refs, io_refs;
2947
2948 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2949 process_refs = cfqq->ref - io_refs;
2950 BUG_ON(process_refs < 0);
2951 return process_refs;
2952 }
2953
2954 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2955 {
2956 int process_refs, new_process_refs;
2957 struct cfq_queue *__cfqq;
2958
2959 /*
2960 * If there are no process references on the new_cfqq, then it is
2961 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2962 * chain may have dropped their last reference (not just their
2963 * last process reference).
2964 */
2965 if (!cfqq_process_refs(new_cfqq))
2966 return;
2967
2968 /* Avoid a circular list and skip interim queue merges */
2969 while ((__cfqq = new_cfqq->new_cfqq)) {
2970 if (__cfqq == cfqq)
2971 return;
2972 new_cfqq = __cfqq;
2973 }
2974
2975 process_refs = cfqq_process_refs(cfqq);
2976 new_process_refs = cfqq_process_refs(new_cfqq);
2977 /*
2978 * If the process for the cfqq has gone away, there is no
2979 * sense in merging the queues.
2980 */
2981 if (process_refs == 0 || new_process_refs == 0)
2982 return;
2983
2984 /*
2985 * Merge in the direction of the lesser amount of work.
2986 */
2987 if (new_process_refs >= process_refs) {
2988 cfqq->new_cfqq = new_cfqq;
2989 new_cfqq->ref += process_refs;
2990 } else {
2991 new_cfqq->new_cfqq = cfqq;
2992 cfqq->ref += new_process_refs;
2993 }
2994 }
2995
2996 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2997 struct cfq_group *cfqg, enum wl_class_t wl_class)
2998 {
2999 struct cfq_queue *queue;
3000 int i;
3001 bool key_valid = false;
3002 unsigned long lowest_key = 0;
3003 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3004
3005 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3006 /* select the one with lowest rb_key */
3007 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3008 if (queue &&
3009 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3010 lowest_key = queue->rb_key;
3011 cur_best = i;
3012 key_valid = true;
3013 }
3014 }
3015
3016 return cur_best;
3017 }
3018
3019 static void
3020 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3021 {
3022 unsigned slice;
3023 unsigned count;
3024 struct cfq_rb_root *st;
3025 unsigned group_slice;
3026 enum wl_class_t original_class = cfqd->serving_wl_class;
3027
3028 /* Choose next priority. RT > BE > IDLE */
3029 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3030 cfqd->serving_wl_class = RT_WORKLOAD;
3031 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3032 cfqd->serving_wl_class = BE_WORKLOAD;
3033 else {
3034 cfqd->serving_wl_class = IDLE_WORKLOAD;
3035 cfqd->workload_expires = jiffies + 1;
3036 return;
3037 }
3038
3039 if (original_class != cfqd->serving_wl_class)
3040 goto new_workload;
3041
3042 /*
3043 * For RT and BE, we have to choose also the type
3044 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3045 * expiration time
3046 */
3047 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3048 count = st->count;
3049
3050 /*
3051 * check workload expiration, and that we still have other queues ready
3052 */
3053 if (count && !time_after(jiffies, cfqd->workload_expires))
3054 return;
3055
3056 new_workload:
3057 /* otherwise select new workload type */
3058 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3059 cfqd->serving_wl_class);
3060 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3061 count = st->count;
3062
3063 /*
3064 * the workload slice is computed as a fraction of target latency
3065 * proportional to the number of queues in that workload, over
3066 * all the queues in the same priority class
3067 */
3068 group_slice = cfq_group_slice(cfqd, cfqg);
3069
3070 slice = group_slice * count /
3071 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3072 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3073 cfqg));
3074
3075 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3076 unsigned int tmp;
3077
3078 /*
3079 * Async queues are currently system wide. Just taking
3080 * proportion of queues with-in same group will lead to higher
3081 * async ratio system wide as generally root group is going
3082 * to have higher weight. A more accurate thing would be to
3083 * calculate system wide asnc/sync ratio.
3084 */
3085 tmp = cfqd->cfq_target_latency *
3086 cfqg_busy_async_queues(cfqd, cfqg);
3087 tmp = tmp/cfqd->busy_queues;
3088 slice = min_t(unsigned, slice, tmp);
3089
3090 /* async workload slice is scaled down according to
3091 * the sync/async slice ratio. */
3092 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3093 } else
3094 /* sync workload slice is at least 2 * cfq_slice_idle */
3095 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3096
3097 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3098 cfq_log(cfqd, "workload slice:%d", slice);
3099 cfqd->workload_expires = jiffies + slice;
3100 }
3101
3102 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3103 {
3104 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3105 struct cfq_group *cfqg;
3106
3107 if (RB_EMPTY_ROOT(&st->rb))
3108 return NULL;
3109 cfqg = cfq_rb_first_group(st);
3110 update_min_vdisktime(st);
3111 return cfqg;
3112 }
3113
3114 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3115 {
3116 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3117
3118 cfqd->serving_group = cfqg;
3119
3120 /* Restore the workload type data */
3121 if (cfqg->saved_wl_slice) {
3122 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3123 cfqd->serving_wl_type = cfqg->saved_wl_type;
3124 cfqd->serving_wl_class = cfqg->saved_wl_class;
3125 } else
3126 cfqd->workload_expires = jiffies - 1;
3127
3128 choose_wl_class_and_type(cfqd, cfqg);
3129 }
3130
3131 /*
3132 * Select a queue for service. If we have a current active queue,
3133 * check whether to continue servicing it, or retrieve and set a new one.
3134 */
3135 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3136 {
3137 struct cfq_queue *cfqq, *new_cfqq = NULL;
3138
3139 cfqq = cfqd->active_queue;
3140 if (!cfqq)
3141 goto new_queue;
3142
3143 if (!cfqd->rq_queued)
3144 return NULL;
3145
3146 /*
3147 * We were waiting for group to get backlogged. Expire the queue
3148 */
3149 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3150 goto expire;
3151
3152 /*
3153 * The active queue has run out of time, expire it and select new.
3154 */
3155 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3156 /*
3157 * If slice had not expired at the completion of last request
3158 * we might not have turned on wait_busy flag. Don't expire
3159 * the queue yet. Allow the group to get backlogged.
3160 *
3161 * The very fact that we have used the slice, that means we
3162 * have been idling all along on this queue and it should be
3163 * ok to wait for this request to complete.
3164 */
3165 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3166 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3167 cfqq = NULL;
3168 goto keep_queue;
3169 } else
3170 goto check_group_idle;
3171 }
3172
3173 /*
3174 * The active queue has requests and isn't expired, allow it to
3175 * dispatch.
3176 */
3177 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3178 goto keep_queue;
3179
3180 /*
3181 * If another queue has a request waiting within our mean seek
3182 * distance, let it run. The expire code will check for close
3183 * cooperators and put the close queue at the front of the service
3184 * tree. If possible, merge the expiring queue with the new cfqq.
3185 */
3186 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3187 if (new_cfqq) {
3188 if (!cfqq->new_cfqq)
3189 cfq_setup_merge(cfqq, new_cfqq);
3190 goto expire;
3191 }
3192
3193 /*
3194 * No requests pending. If the active queue still has requests in
3195 * flight or is idling for a new request, allow either of these
3196 * conditions to happen (or time out) before selecting a new queue.
3197 */
3198 if (timer_pending(&cfqd->idle_slice_timer)) {
3199 cfqq = NULL;
3200 goto keep_queue;
3201 }
3202
3203 /*
3204 * This is a deep seek queue, but the device is much faster than
3205 * the queue can deliver, don't idle
3206 **/
3207 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3208 (cfq_cfqq_slice_new(cfqq) ||
3209 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3210 cfq_clear_cfqq_deep(cfqq);
3211 cfq_clear_cfqq_idle_window(cfqq);
3212 }
3213
3214 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3215 cfqq = NULL;
3216 goto keep_queue;
3217 }
3218
3219 /*
3220 * If group idle is enabled and there are requests dispatched from
3221 * this group, wait for requests to complete.
3222 */
3223 check_group_idle:
3224 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3225 cfqq->cfqg->dispatched &&
3226 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3227 cfqq = NULL;
3228 goto keep_queue;
3229 }
3230
3231 expire:
3232 cfq_slice_expired(cfqd, 0);
3233 new_queue:
3234 /*
3235 * Current queue expired. Check if we have to switch to a new
3236 * service tree
3237 */
3238 if (!new_cfqq)
3239 cfq_choose_cfqg(cfqd);
3240
3241 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3242 keep_queue:
3243 return cfqq;
3244 }
3245
3246 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3247 {
3248 int dispatched = 0;
3249
3250 while (cfqq->next_rq) {
3251 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3252 dispatched++;
3253 }
3254
3255 BUG_ON(!list_empty(&cfqq->fifo));
3256
3257 /* By default cfqq is not expired if it is empty. Do it explicitly */
3258 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3259 return dispatched;
3260 }
3261
3262 /*
3263 * Drain our current requests. Used for barriers and when switching
3264 * io schedulers on-the-fly.
3265 */
3266 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3267 {
3268 struct cfq_queue *cfqq;
3269 int dispatched = 0;
3270
3271 /* Expire the timeslice of the current active queue first */
3272 cfq_slice_expired(cfqd, 0);
3273 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3274 __cfq_set_active_queue(cfqd, cfqq);
3275 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3276 }
3277
3278 BUG_ON(cfqd->busy_queues);
3279
3280 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3281 return dispatched;
3282 }
3283
3284 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3285 struct cfq_queue *cfqq)
3286 {
3287 /* the queue hasn't finished any request, can't estimate */
3288 if (cfq_cfqq_slice_new(cfqq))
3289 return true;
3290 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3291 cfqq->slice_end))
3292 return true;
3293
3294 return false;
3295 }
3296
3297 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3298 {
3299 unsigned int max_dispatch;
3300
3301 /*
3302 * Drain async requests before we start sync IO
3303 */
3304 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3305 return false;
3306
3307 /*
3308 * If this is an async queue and we have sync IO in flight, let it wait
3309 */
3310 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3311 return false;
3312
3313 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3314 if (cfq_class_idle(cfqq))
3315 max_dispatch = 1;
3316
3317 /*
3318 * Does this cfqq already have too much IO in flight?
3319 */
3320 if (cfqq->dispatched >= max_dispatch) {
3321 bool promote_sync = false;
3322 /*
3323 * idle queue must always only have a single IO in flight
3324 */
3325 if (cfq_class_idle(cfqq))
3326 return false;
3327
3328 /*
3329 * If there is only one sync queue
3330 * we can ignore async queue here and give the sync
3331 * queue no dispatch limit. The reason is a sync queue can
3332 * preempt async queue, limiting the sync queue doesn't make
3333 * sense. This is useful for aiostress test.
3334 */
3335 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3336 promote_sync = true;
3337
3338 /*
3339 * We have other queues, don't allow more IO from this one
3340 */
3341 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3342 !promote_sync)
3343 return false;
3344
3345 /*
3346 * Sole queue user, no limit
3347 */
3348 if (cfqd->busy_queues == 1 || promote_sync)
3349 max_dispatch = -1;
3350 else
3351 /*
3352 * Normally we start throttling cfqq when cfq_quantum/2
3353 * requests have been dispatched. But we can drive
3354 * deeper queue depths at the beginning of slice
3355 * subjected to upper limit of cfq_quantum.
3356 * */
3357 max_dispatch = cfqd->cfq_quantum;
3358 }
3359
3360 /*
3361 * Async queues must wait a bit before being allowed dispatch.
3362 * We also ramp up the dispatch depth gradually for async IO,
3363 * based on the last sync IO we serviced
3364 */
3365 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3366 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3367 unsigned int depth;
3368
3369 depth = last_sync / cfqd->cfq_slice[1];
3370 if (!depth && !cfqq->dispatched)
3371 depth = 1;
3372 if (depth < max_dispatch)
3373 max_dispatch = depth;
3374 }
3375
3376 /*
3377 * If we're below the current max, allow a dispatch
3378 */
3379 return cfqq->dispatched < max_dispatch;
3380 }
3381
3382 /*
3383 * Dispatch a request from cfqq, moving them to the request queue
3384 * dispatch list.
3385 */
3386 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3387 {
3388 struct request *rq;
3389
3390 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3391
3392 if (!cfq_may_dispatch(cfqd, cfqq))
3393 return false;
3394
3395 /*
3396 * follow expired path, else get first next available
3397 */
3398 rq = cfq_check_fifo(cfqq);
3399 if (!rq)
3400 rq = cfqq->next_rq;
3401
3402 /*
3403 * insert request into driver dispatch list
3404 */
3405 cfq_dispatch_insert(cfqd->queue, rq);
3406
3407 if (!cfqd->active_cic) {
3408 struct cfq_io_cq *cic = RQ_CIC(rq);
3409
3410 atomic_long_inc(&cic->icq.ioc->refcount);
3411 cfqd->active_cic = cic;
3412 }
3413
3414 return true;
3415 }
3416
3417 /*
3418 * Find the cfqq that we need to service and move a request from that to the
3419 * dispatch list
3420 */
3421 static int cfq_dispatch_requests(struct request_queue *q, int force)
3422 {
3423 struct cfq_data *cfqd = q->elevator->elevator_data;
3424 struct cfq_queue *cfqq;
3425
3426 if (!cfqd->busy_queues)
3427 return 0;
3428
3429 if (unlikely(force))
3430 return cfq_forced_dispatch(cfqd);
3431
3432 cfqq = cfq_select_queue(cfqd);
3433 if (!cfqq)
3434 return 0;
3435
3436 /*
3437 * Dispatch a request from this cfqq, if it is allowed
3438 */
3439 if (!cfq_dispatch_request(cfqd, cfqq))
3440 return 0;
3441
3442 cfqq->slice_dispatch++;
3443 cfq_clear_cfqq_must_dispatch(cfqq);
3444
3445 /*
3446 * expire an async queue immediately if it has used up its slice. idle
3447 * queue always expire after 1 dispatch round.
3448 */
3449 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3450 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3451 cfq_class_idle(cfqq))) {
3452 cfqq->slice_end = jiffies + 1;
3453 cfq_slice_expired(cfqd, 0);
3454 }
3455
3456 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3457 return 1;
3458 }
3459
3460 /*
3461 * task holds one reference to the queue, dropped when task exits. each rq
3462 * in-flight on this queue also holds a reference, dropped when rq is freed.
3463 *
3464 * Each cfq queue took a reference on the parent group. Drop it now.
3465 * queue lock must be held here.
3466 */
3467 static void cfq_put_queue(struct cfq_queue *cfqq)
3468 {
3469 struct cfq_data *cfqd = cfqq->cfqd;
3470 struct cfq_group *cfqg;
3471
3472 BUG_ON(cfqq->ref <= 0);
3473
3474 cfqq->ref--;
3475 if (cfqq->ref)
3476 return;
3477
3478 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3479 BUG_ON(rb_first(&cfqq->sort_list));
3480 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3481 cfqg = cfqq->cfqg;
3482
3483 if (unlikely(cfqd->active_queue == cfqq)) {
3484 __cfq_slice_expired(cfqd, cfqq, 0);
3485 cfq_schedule_dispatch(cfqd);
3486 }
3487
3488 BUG_ON(cfq_cfqq_on_rr(cfqq));
3489 kmem_cache_free(cfq_pool, cfqq);
3490 cfqg_put(cfqg);
3491 }
3492
3493 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3494 {
3495 struct cfq_queue *__cfqq, *next;
3496
3497 /*
3498 * If this queue was scheduled to merge with another queue, be
3499 * sure to drop the reference taken on that queue (and others in
3500 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3501 */
3502 __cfqq = cfqq->new_cfqq;
3503 while (__cfqq) {
3504 if (__cfqq == cfqq) {
3505 WARN(1, "cfqq->new_cfqq loop detected\n");
3506 break;
3507 }
3508 next = __cfqq->new_cfqq;
3509 cfq_put_queue(__cfqq);
3510 __cfqq = next;
3511 }
3512 }
3513
3514 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3515 {
3516 if (unlikely(cfqq == cfqd->active_queue)) {
3517 __cfq_slice_expired(cfqd, cfqq, 0);
3518 cfq_schedule_dispatch(cfqd);
3519 }
3520
3521 cfq_put_cooperator(cfqq);
3522
3523 cfq_put_queue(cfqq);
3524 }
3525
3526 static void cfq_init_icq(struct io_cq *icq)
3527 {
3528 struct cfq_io_cq *cic = icq_to_cic(icq);
3529
3530 cic->ttime.last_end_request = jiffies;
3531 }
3532
3533 static void cfq_exit_icq(struct io_cq *icq)
3534 {
3535 struct cfq_io_cq *cic = icq_to_cic(icq);
3536 struct cfq_data *cfqd = cic_to_cfqd(cic);
3537
3538 if (cic_to_cfqq(cic, false)) {
3539 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3540 cic_set_cfqq(cic, NULL, false);
3541 }
3542
3543 if (cic_to_cfqq(cic, true)) {
3544 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3545 cic_set_cfqq(cic, NULL, true);
3546 }
3547 }
3548
3549 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3550 {
3551 struct task_struct *tsk = current;
3552 int ioprio_class;
3553
3554 if (!cfq_cfqq_prio_changed(cfqq))
3555 return;
3556
3557 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3558 switch (ioprio_class) {
3559 default:
3560 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3561 case IOPRIO_CLASS_NONE:
3562 /*
3563 * no prio set, inherit CPU scheduling settings
3564 */
3565 cfqq->ioprio = task_nice_ioprio(tsk);
3566 cfqq->ioprio_class = task_nice_ioclass(tsk);
3567 break;
3568 case IOPRIO_CLASS_RT:
3569 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3570 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3571 break;
3572 case IOPRIO_CLASS_BE:
3573 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3574 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3575 break;
3576 case IOPRIO_CLASS_IDLE:
3577 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3578 cfqq->ioprio = 7;
3579 cfq_clear_cfqq_idle_window(cfqq);
3580 break;
3581 }
3582
3583 /*
3584 * keep track of original prio settings in case we have to temporarily
3585 * elevate the priority of this queue
3586 */
3587 cfqq->org_ioprio = cfqq->ioprio;
3588 cfq_clear_cfqq_prio_changed(cfqq);
3589 }
3590
3591 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3592 {
3593 int ioprio = cic->icq.ioc->ioprio;
3594 struct cfq_data *cfqd = cic_to_cfqd(cic);
3595 struct cfq_queue *cfqq;
3596
3597 /*
3598 * Check whether ioprio has changed. The condition may trigger
3599 * spuriously on a newly created cic but there's no harm.
3600 */
3601 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3602 return;
3603
3604 cfqq = cic_to_cfqq(cic, false);
3605 if (cfqq) {
3606 cfq_put_queue(cfqq);
3607 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3608 cic_set_cfqq(cic, cfqq, false);
3609 }
3610
3611 cfqq = cic_to_cfqq(cic, true);
3612 if (cfqq)
3613 cfq_mark_cfqq_prio_changed(cfqq);
3614
3615 cic->ioprio = ioprio;
3616 }
3617
3618 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3619 pid_t pid, bool is_sync)
3620 {
3621 RB_CLEAR_NODE(&cfqq->rb_node);
3622 RB_CLEAR_NODE(&cfqq->p_node);
3623 INIT_LIST_HEAD(&cfqq->fifo);
3624
3625 cfqq->ref = 0;
3626 cfqq->cfqd = cfqd;
3627
3628 cfq_mark_cfqq_prio_changed(cfqq);
3629
3630 if (is_sync) {
3631 if (!cfq_class_idle(cfqq))
3632 cfq_mark_cfqq_idle_window(cfqq);
3633 cfq_mark_cfqq_sync(cfqq);
3634 }
3635 cfqq->pid = pid;
3636 }
3637
3638 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3639 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3640 {
3641 struct cfq_data *cfqd = cic_to_cfqd(cic);
3642 struct cfq_queue *cfqq;
3643 uint64_t serial_nr;
3644
3645 rcu_read_lock();
3646 serial_nr = bio_blkcg(bio)->css.serial_nr;
3647 rcu_read_unlock();
3648
3649 /*
3650 * Check whether blkcg has changed. The condition may trigger
3651 * spuriously on a newly created cic but there's no harm.
3652 */
3653 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3654 return;
3655
3656 /*
3657 * Drop reference to queues. New queues will be assigned in new
3658 * group upon arrival of fresh requests.
3659 */
3660 cfqq = cic_to_cfqq(cic, false);
3661 if (cfqq) {
3662 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3663 cic_set_cfqq(cic, NULL, false);
3664 cfq_put_queue(cfqq);
3665 }
3666
3667 cfqq = cic_to_cfqq(cic, true);
3668 if (cfqq) {
3669 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3670 cic_set_cfqq(cic, NULL, true);
3671 cfq_put_queue(cfqq);
3672 }
3673
3674 cic->blkcg_serial_nr = serial_nr;
3675 }
3676 #else
3677 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3678 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3679
3680 static struct cfq_queue **
3681 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3682 {
3683 switch (ioprio_class) {
3684 case IOPRIO_CLASS_RT:
3685 return &cfqg->async_cfqq[0][ioprio];
3686 case IOPRIO_CLASS_NONE:
3687 ioprio = IOPRIO_NORM;
3688 /* fall through */
3689 case IOPRIO_CLASS_BE:
3690 return &cfqg->async_cfqq[1][ioprio];
3691 case IOPRIO_CLASS_IDLE:
3692 return &cfqg->async_idle_cfqq;
3693 default:
3694 BUG();
3695 }
3696 }
3697
3698 static struct cfq_queue *
3699 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3700 struct bio *bio)
3701 {
3702 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3703 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3704 struct cfq_queue **async_cfqq = NULL;
3705 struct cfq_queue *cfqq;
3706 struct cfq_group *cfqg;
3707
3708 rcu_read_lock();
3709 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3710 if (!cfqg) {
3711 cfqq = &cfqd->oom_cfqq;
3712 goto out;
3713 }
3714
3715 if (!is_sync) {
3716 if (!ioprio_valid(cic->ioprio)) {
3717 struct task_struct *tsk = current;
3718 ioprio = task_nice_ioprio(tsk);
3719 ioprio_class = task_nice_ioclass(tsk);
3720 }
3721 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3722 cfqq = *async_cfqq;
3723 if (cfqq)
3724 goto out;
3725 }
3726
3727 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3728 cfqd->queue->node);
3729 if (!cfqq) {
3730 cfqq = &cfqd->oom_cfqq;
3731 goto out;
3732 }
3733
3734 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3735 cfq_init_prio_data(cfqq, cic);
3736 cfq_link_cfqq_cfqg(cfqq, cfqg);
3737 cfq_log_cfqq(cfqd, cfqq, "alloced");
3738
3739 if (async_cfqq) {
3740 /* a new async queue is created, pin and remember */
3741 cfqq->ref++;
3742 *async_cfqq = cfqq;
3743 }
3744 out:
3745 cfqq->ref++;
3746 rcu_read_unlock();
3747 return cfqq;
3748 }
3749
3750 static void
3751 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3752 {
3753 unsigned long elapsed = jiffies - ttime->last_end_request;
3754 elapsed = min(elapsed, 2UL * slice_idle);
3755
3756 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3757 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3758 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3759 }
3760
3761 static void
3762 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3763 struct cfq_io_cq *cic)
3764 {
3765 if (cfq_cfqq_sync(cfqq)) {
3766 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3767 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3768 cfqd->cfq_slice_idle);
3769 }
3770 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3771 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3772 #endif
3773 }
3774
3775 static void
3776 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3777 struct request *rq)
3778 {
3779 sector_t sdist = 0;
3780 sector_t n_sec = blk_rq_sectors(rq);
3781 if (cfqq->last_request_pos) {
3782 if (cfqq->last_request_pos < blk_rq_pos(rq))
3783 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3784 else
3785 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3786 }
3787
3788 cfqq->seek_history <<= 1;
3789 if (blk_queue_nonrot(cfqd->queue))
3790 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3791 else
3792 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3793 }
3794
3795 /*
3796 * Disable idle window if the process thinks too long or seeks so much that
3797 * it doesn't matter
3798 */
3799 static void
3800 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3801 struct cfq_io_cq *cic)
3802 {
3803 int old_idle, enable_idle;
3804
3805 /*
3806 * Don't idle for async or idle io prio class
3807 */
3808 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3809 return;
3810
3811 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3812
3813 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3814 cfq_mark_cfqq_deep(cfqq);
3815
3816 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3817 enable_idle = 0;
3818 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3819 !cfqd->cfq_slice_idle ||
3820 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3821 enable_idle = 0;
3822 else if (sample_valid(cic->ttime.ttime_samples)) {
3823 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3824 enable_idle = 0;
3825 else
3826 enable_idle = 1;
3827 }
3828
3829 if (old_idle != enable_idle) {
3830 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3831 if (enable_idle)
3832 cfq_mark_cfqq_idle_window(cfqq);
3833 else
3834 cfq_clear_cfqq_idle_window(cfqq);
3835 }
3836 }
3837
3838 /*
3839 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3840 * no or if we aren't sure, a 1 will cause a preempt.
3841 */
3842 static bool
3843 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3844 struct request *rq)
3845 {
3846 struct cfq_queue *cfqq;
3847
3848 cfqq = cfqd->active_queue;
3849 if (!cfqq)
3850 return false;
3851
3852 if (cfq_class_idle(new_cfqq))
3853 return false;
3854
3855 if (cfq_class_idle(cfqq))
3856 return true;
3857
3858 /*
3859 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3860 */
3861 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3862 return false;
3863
3864 /*
3865 * if the new request is sync, but the currently running queue is
3866 * not, let the sync request have priority.
3867 */
3868 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3869 return true;
3870
3871 if (new_cfqq->cfqg != cfqq->cfqg)
3872 return false;
3873
3874 if (cfq_slice_used(cfqq))
3875 return true;
3876
3877 /* Allow preemption only if we are idling on sync-noidle tree */
3878 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3879 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3880 new_cfqq->service_tree->count == 2 &&
3881 RB_EMPTY_ROOT(&cfqq->sort_list))
3882 return true;
3883
3884 /*
3885 * So both queues are sync. Let the new request get disk time if
3886 * it's a metadata request and the current queue is doing regular IO.
3887 */
3888 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3889 return true;
3890
3891 /*
3892 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3893 */
3894 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3895 return true;
3896
3897 /* An idle queue should not be idle now for some reason */
3898 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3899 return true;
3900
3901 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3902 return false;
3903
3904 /*
3905 * if this request is as-good as one we would expect from the
3906 * current cfqq, let it preempt
3907 */
3908 if (cfq_rq_close(cfqd, cfqq, rq))
3909 return true;
3910
3911 return false;
3912 }
3913
3914 /*
3915 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3916 * let it have half of its nominal slice.
3917 */
3918 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3919 {
3920 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3921
3922 cfq_log_cfqq(cfqd, cfqq, "preempt");
3923 cfq_slice_expired(cfqd, 1);
3924
3925 /*
3926 * workload type is changed, don't save slice, otherwise preempt
3927 * doesn't happen
3928 */
3929 if (old_type != cfqq_type(cfqq))
3930 cfqq->cfqg->saved_wl_slice = 0;
3931
3932 /*
3933 * Put the new queue at the front of the of the current list,
3934 * so we know that it will be selected next.
3935 */
3936 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3937
3938 cfq_service_tree_add(cfqd, cfqq, 1);
3939
3940 cfqq->slice_end = 0;
3941 cfq_mark_cfqq_slice_new(cfqq);
3942 }
3943
3944 /*
3945 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3946 * something we should do about it
3947 */
3948 static void
3949 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3950 struct request *rq)
3951 {
3952 struct cfq_io_cq *cic = RQ_CIC(rq);
3953
3954 cfqd->rq_queued++;
3955 if (rq->cmd_flags & REQ_PRIO)
3956 cfqq->prio_pending++;
3957
3958 cfq_update_io_thinktime(cfqd, cfqq, cic);
3959 cfq_update_io_seektime(cfqd, cfqq, rq);
3960 cfq_update_idle_window(cfqd, cfqq, cic);
3961
3962 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3963
3964 if (cfqq == cfqd->active_queue) {
3965 /*
3966 * Remember that we saw a request from this process, but
3967 * don't start queuing just yet. Otherwise we risk seeing lots
3968 * of tiny requests, because we disrupt the normal plugging
3969 * and merging. If the request is already larger than a single
3970 * page, let it rip immediately. For that case we assume that
3971 * merging is already done. Ditto for a busy system that
3972 * has other work pending, don't risk delaying until the
3973 * idle timer unplug to continue working.
3974 */
3975 if (cfq_cfqq_wait_request(cfqq)) {
3976 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3977 cfqd->busy_queues > 1) {
3978 cfq_del_timer(cfqd, cfqq);
3979 cfq_clear_cfqq_wait_request(cfqq);
3980 __blk_run_queue(cfqd->queue);
3981 } else {
3982 cfqg_stats_update_idle_time(cfqq->cfqg);
3983 cfq_mark_cfqq_must_dispatch(cfqq);
3984 }
3985 }
3986 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3987 /*
3988 * not the active queue - expire current slice if it is
3989 * idle and has expired it's mean thinktime or this new queue
3990 * has some old slice time left and is of higher priority or
3991 * this new queue is RT and the current one is BE
3992 */
3993 cfq_preempt_queue(cfqd, cfqq);
3994 __blk_run_queue(cfqd->queue);
3995 }
3996 }
3997
3998 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3999 {
4000 struct cfq_data *cfqd = q->elevator->elevator_data;
4001 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4002
4003 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4004 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4005
4006 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4007 list_add_tail(&rq->queuelist, &cfqq->fifo);
4008 cfq_add_rq_rb(rq);
4009 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4010 rq->cmd_flags);
4011 cfq_rq_enqueued(cfqd, cfqq, rq);
4012 }
4013
4014 /*
4015 * Update hw_tag based on peak queue depth over 50 samples under
4016 * sufficient load.
4017 */
4018 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4019 {
4020 struct cfq_queue *cfqq = cfqd->active_queue;
4021
4022 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4023 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4024
4025 if (cfqd->hw_tag == 1)
4026 return;
4027
4028 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4029 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4030 return;
4031
4032 /*
4033 * If active queue hasn't enough requests and can idle, cfq might not
4034 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4035 * case
4036 */
4037 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4038 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4039 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4040 return;
4041
4042 if (cfqd->hw_tag_samples++ < 50)
4043 return;
4044
4045 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4046 cfqd->hw_tag = 1;
4047 else
4048 cfqd->hw_tag = 0;
4049 }
4050
4051 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4052 {
4053 struct cfq_io_cq *cic = cfqd->active_cic;
4054
4055 /* If the queue already has requests, don't wait */
4056 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4057 return false;
4058
4059 /* If there are other queues in the group, don't wait */
4060 if (cfqq->cfqg->nr_cfqq > 1)
4061 return false;
4062
4063 /* the only queue in the group, but think time is big */
4064 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4065 return false;
4066
4067 if (cfq_slice_used(cfqq))
4068 return true;
4069
4070 /* if slice left is less than think time, wait busy */
4071 if (cic && sample_valid(cic->ttime.ttime_samples)
4072 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4073 return true;
4074
4075 /*
4076 * If think times is less than a jiffy than ttime_mean=0 and above
4077 * will not be true. It might happen that slice has not expired yet
4078 * but will expire soon (4-5 ns) during select_queue(). To cover the
4079 * case where think time is less than a jiffy, mark the queue wait
4080 * busy if only 1 jiffy is left in the slice.
4081 */
4082 if (cfqq->slice_end - jiffies == 1)
4083 return true;
4084
4085 return false;
4086 }
4087
4088 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4089 {
4090 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4091 struct cfq_data *cfqd = cfqq->cfqd;
4092 const int sync = rq_is_sync(rq);
4093 unsigned long now;
4094
4095 now = jiffies;
4096 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4097 !!(rq->cmd_flags & REQ_NOIDLE));
4098
4099 cfq_update_hw_tag(cfqd);
4100
4101 WARN_ON(!cfqd->rq_in_driver);
4102 WARN_ON(!cfqq->dispatched);
4103 cfqd->rq_in_driver--;
4104 cfqq->dispatched--;
4105 (RQ_CFQG(rq))->dispatched--;
4106 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4107 rq_io_start_time_ns(rq), rq->cmd_flags);
4108
4109 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4110
4111 if (sync) {
4112 struct cfq_rb_root *st;
4113
4114 RQ_CIC(rq)->ttime.last_end_request = now;
4115
4116 if (cfq_cfqq_on_rr(cfqq))
4117 st = cfqq->service_tree;
4118 else
4119 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4120 cfqq_type(cfqq));
4121
4122 st->ttime.last_end_request = now;
4123 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4124 cfqd->last_delayed_sync = now;
4125 }
4126
4127 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4128 cfqq->cfqg->ttime.last_end_request = now;
4129 #endif
4130
4131 /*
4132 * If this is the active queue, check if it needs to be expired,
4133 * or if we want to idle in case it has no pending requests.
4134 */
4135 if (cfqd->active_queue == cfqq) {
4136 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4137
4138 if (cfq_cfqq_slice_new(cfqq)) {
4139 cfq_set_prio_slice(cfqd, cfqq);
4140 cfq_clear_cfqq_slice_new(cfqq);
4141 }
4142
4143 /*
4144 * Should we wait for next request to come in before we expire
4145 * the queue.
4146 */
4147 if (cfq_should_wait_busy(cfqd, cfqq)) {
4148 unsigned long extend_sl = cfqd->cfq_slice_idle;
4149 if (!cfqd->cfq_slice_idle)
4150 extend_sl = cfqd->cfq_group_idle;
4151 cfqq->slice_end = jiffies + extend_sl;
4152 cfq_mark_cfqq_wait_busy(cfqq);
4153 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4154 }
4155
4156 /*
4157 * Idling is not enabled on:
4158 * - expired queues
4159 * - idle-priority queues
4160 * - async queues
4161 * - queues with still some requests queued
4162 * - when there is a close cooperator
4163 */
4164 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4165 cfq_slice_expired(cfqd, 1);
4166 else if (sync && cfqq_empty &&
4167 !cfq_close_cooperator(cfqd, cfqq)) {
4168 cfq_arm_slice_timer(cfqd);
4169 }
4170 }
4171
4172 if (!cfqd->rq_in_driver)
4173 cfq_schedule_dispatch(cfqd);
4174 }
4175
4176 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4177 {
4178 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4179 cfq_mark_cfqq_must_alloc_slice(cfqq);
4180 return ELV_MQUEUE_MUST;
4181 }
4182
4183 return ELV_MQUEUE_MAY;
4184 }
4185
4186 static int cfq_may_queue(struct request_queue *q, int rw)
4187 {
4188 struct cfq_data *cfqd = q->elevator->elevator_data;
4189 struct task_struct *tsk = current;
4190 struct cfq_io_cq *cic;
4191 struct cfq_queue *cfqq;
4192
4193 /*
4194 * don't force setup of a queue from here, as a call to may_queue
4195 * does not necessarily imply that a request actually will be queued.
4196 * so just lookup a possibly existing queue, or return 'may queue'
4197 * if that fails
4198 */
4199 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4200 if (!cic)
4201 return ELV_MQUEUE_MAY;
4202
4203 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4204 if (cfqq) {
4205 cfq_init_prio_data(cfqq, cic);
4206
4207 return __cfq_may_queue(cfqq);
4208 }
4209
4210 return ELV_MQUEUE_MAY;
4211 }
4212
4213 /*
4214 * queue lock held here
4215 */
4216 static void cfq_put_request(struct request *rq)
4217 {
4218 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4219
4220 if (cfqq) {
4221 const int rw = rq_data_dir(rq);
4222
4223 BUG_ON(!cfqq->allocated[rw]);
4224 cfqq->allocated[rw]--;
4225
4226 /* Put down rq reference on cfqg */
4227 cfqg_put(RQ_CFQG(rq));
4228 rq->elv.priv[0] = NULL;
4229 rq->elv.priv[1] = NULL;
4230
4231 cfq_put_queue(cfqq);
4232 }
4233 }
4234
4235 static struct cfq_queue *
4236 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4237 struct cfq_queue *cfqq)
4238 {
4239 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4240 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4241 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4242 cfq_put_queue(cfqq);
4243 return cic_to_cfqq(cic, 1);
4244 }
4245
4246 /*
4247 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4248 * was the last process referring to said cfqq.
4249 */
4250 static struct cfq_queue *
4251 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4252 {
4253 if (cfqq_process_refs(cfqq) == 1) {
4254 cfqq->pid = current->pid;
4255 cfq_clear_cfqq_coop(cfqq);
4256 cfq_clear_cfqq_split_coop(cfqq);
4257 return cfqq;
4258 }
4259
4260 cic_set_cfqq(cic, NULL, 1);
4261
4262 cfq_put_cooperator(cfqq);
4263
4264 cfq_put_queue(cfqq);
4265 return NULL;
4266 }
4267 /*
4268 * Allocate cfq data structures associated with this request.
4269 */
4270 static int
4271 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4272 gfp_t gfp_mask)
4273 {
4274 struct cfq_data *cfqd = q->elevator->elevator_data;
4275 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4276 const int rw = rq_data_dir(rq);
4277 const bool is_sync = rq_is_sync(rq);
4278 struct cfq_queue *cfqq;
4279
4280 spin_lock_irq(q->queue_lock);
4281
4282 check_ioprio_changed(cic, bio);
4283 check_blkcg_changed(cic, bio);
4284 new_queue:
4285 cfqq = cic_to_cfqq(cic, is_sync);
4286 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4287 if (cfqq)
4288 cfq_put_queue(cfqq);
4289 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4290 cic_set_cfqq(cic, cfqq, is_sync);
4291 } else {
4292 /*
4293 * If the queue was seeky for too long, break it apart.
4294 */
4295 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4296 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4297 cfqq = split_cfqq(cic, cfqq);
4298 if (!cfqq)
4299 goto new_queue;
4300 }
4301
4302 /*
4303 * Check to see if this queue is scheduled to merge with
4304 * another, closely cooperating queue. The merging of
4305 * queues happens here as it must be done in process context.
4306 * The reference on new_cfqq was taken in merge_cfqqs.
4307 */
4308 if (cfqq->new_cfqq)
4309 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4310 }
4311
4312 cfqq->allocated[rw]++;
4313
4314 cfqq->ref++;
4315 cfqg_get(cfqq->cfqg);
4316 rq->elv.priv[0] = cfqq;
4317 rq->elv.priv[1] = cfqq->cfqg;
4318 spin_unlock_irq(q->queue_lock);
4319 return 0;
4320 }
4321
4322 static void cfq_kick_queue(struct work_struct *work)
4323 {
4324 struct cfq_data *cfqd =
4325 container_of(work, struct cfq_data, unplug_work);
4326 struct request_queue *q = cfqd->queue;
4327
4328 spin_lock_irq(q->queue_lock);
4329 __blk_run_queue(cfqd->queue);
4330 spin_unlock_irq(q->queue_lock);
4331 }
4332
4333 /*
4334 * Timer running if the active_queue is currently idling inside its time slice
4335 */
4336 static void cfq_idle_slice_timer(unsigned long data)
4337 {
4338 struct cfq_data *cfqd = (struct cfq_data *) data;
4339 struct cfq_queue *cfqq;
4340 unsigned long flags;
4341 int timed_out = 1;
4342
4343 cfq_log(cfqd, "idle timer fired");
4344
4345 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4346
4347 cfqq = cfqd->active_queue;
4348 if (cfqq) {
4349 timed_out = 0;
4350
4351 /*
4352 * We saw a request before the queue expired, let it through
4353 */
4354 if (cfq_cfqq_must_dispatch(cfqq))
4355 goto out_kick;
4356
4357 /*
4358 * expired
4359 */
4360 if (cfq_slice_used(cfqq))
4361 goto expire;
4362
4363 /*
4364 * only expire and reinvoke request handler, if there are
4365 * other queues with pending requests
4366 */
4367 if (!cfqd->busy_queues)
4368 goto out_cont;
4369
4370 /*
4371 * not expired and it has a request pending, let it dispatch
4372 */
4373 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4374 goto out_kick;
4375
4376 /*
4377 * Queue depth flag is reset only when the idle didn't succeed
4378 */
4379 cfq_clear_cfqq_deep(cfqq);
4380 }
4381 expire:
4382 cfq_slice_expired(cfqd, timed_out);
4383 out_kick:
4384 cfq_schedule_dispatch(cfqd);
4385 out_cont:
4386 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4387 }
4388
4389 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4390 {
4391 del_timer_sync(&cfqd->idle_slice_timer);
4392 cancel_work_sync(&cfqd->unplug_work);
4393 }
4394
4395 static void cfq_exit_queue(struct elevator_queue *e)
4396 {
4397 struct cfq_data *cfqd = e->elevator_data;
4398 struct request_queue *q = cfqd->queue;
4399
4400 cfq_shutdown_timer_wq(cfqd);
4401
4402 spin_lock_irq(q->queue_lock);
4403
4404 if (cfqd->active_queue)
4405 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4406
4407 spin_unlock_irq(q->queue_lock);
4408
4409 cfq_shutdown_timer_wq(cfqd);
4410
4411 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4412 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4413 #else
4414 kfree(cfqd->root_group);
4415 #endif
4416 kfree(cfqd);
4417 }
4418
4419 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4420 {
4421 struct cfq_data *cfqd;
4422 struct blkcg_gq *blkg __maybe_unused;
4423 int i, ret;
4424 struct elevator_queue *eq;
4425
4426 eq = elevator_alloc(q, e);
4427 if (!eq)
4428 return -ENOMEM;
4429
4430 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4431 if (!cfqd) {
4432 kobject_put(&eq->kobj);
4433 return -ENOMEM;
4434 }
4435 eq->elevator_data = cfqd;
4436
4437 cfqd->queue = q;
4438 spin_lock_irq(q->queue_lock);
4439 q->elevator = eq;
4440 spin_unlock_irq(q->queue_lock);
4441
4442 /* Init root service tree */
4443 cfqd->grp_service_tree = CFQ_RB_ROOT;
4444
4445 /* Init root group and prefer root group over other groups by default */
4446 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4447 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4448 if (ret)
4449 goto out_free;
4450
4451 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4452 #else
4453 ret = -ENOMEM;
4454 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4455 GFP_KERNEL, cfqd->queue->node);
4456 if (!cfqd->root_group)
4457 goto out_free;
4458
4459 cfq_init_cfqg_base(cfqd->root_group);
4460 #endif
4461 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4462 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4463
4464 /*
4465 * Not strictly needed (since RB_ROOT just clears the node and we
4466 * zeroed cfqd on alloc), but better be safe in case someone decides
4467 * to add magic to the rb code
4468 */
4469 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4470 cfqd->prio_trees[i] = RB_ROOT;
4471
4472 /*
4473 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4474 * Grab a permanent reference to it, so that the normal code flow
4475 * will not attempt to free it. oom_cfqq is linked to root_group
4476 * but shouldn't hold a reference as it'll never be unlinked. Lose
4477 * the reference from linking right away.
4478 */
4479 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4480 cfqd->oom_cfqq.ref++;
4481
4482 spin_lock_irq(q->queue_lock);
4483 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4484 cfqg_put(cfqd->root_group);
4485 spin_unlock_irq(q->queue_lock);
4486
4487 init_timer(&cfqd->idle_slice_timer);
4488 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4489 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4490
4491 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4492
4493 cfqd->cfq_quantum = cfq_quantum;
4494 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4495 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4496 cfqd->cfq_back_max = cfq_back_max;
4497 cfqd->cfq_back_penalty = cfq_back_penalty;
4498 cfqd->cfq_slice[0] = cfq_slice_async;
4499 cfqd->cfq_slice[1] = cfq_slice_sync;
4500 cfqd->cfq_target_latency = cfq_target_latency;
4501 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4502 cfqd->cfq_slice_idle = cfq_slice_idle;
4503 cfqd->cfq_group_idle = cfq_group_idle;
4504 cfqd->cfq_latency = 1;
4505 cfqd->hw_tag = -1;
4506 /*
4507 * we optimistically start assuming sync ops weren't delayed in last
4508 * second, in order to have larger depth for async operations.
4509 */
4510 cfqd->last_delayed_sync = jiffies - HZ;
4511 return 0;
4512
4513 out_free:
4514 kfree(cfqd);
4515 kobject_put(&eq->kobj);
4516 return ret;
4517 }
4518
4519 static void cfq_registered_queue(struct request_queue *q)
4520 {
4521 struct elevator_queue *e = q->elevator;
4522 struct cfq_data *cfqd = e->elevator_data;
4523
4524 /*
4525 * Default to IOPS mode with no idling for SSDs
4526 */
4527 if (blk_queue_nonrot(q))
4528 cfqd->cfq_slice_idle = 0;
4529 }
4530
4531 /*
4532 * sysfs parts below -->
4533 */
4534 static ssize_t
4535 cfq_var_show(unsigned int var, char *page)
4536 {
4537 return sprintf(page, "%u\n", var);
4538 }
4539
4540 static ssize_t
4541 cfq_var_store(unsigned int *var, const char *page, size_t count)
4542 {
4543 char *p = (char *) page;
4544
4545 *var = simple_strtoul(p, &p, 10);
4546 return count;
4547 }
4548
4549 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4550 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4551 { \
4552 struct cfq_data *cfqd = e->elevator_data; \
4553 unsigned int __data = __VAR; \
4554 if (__CONV) \
4555 __data = jiffies_to_msecs(__data); \
4556 return cfq_var_show(__data, (page)); \
4557 }
4558 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4559 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4560 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4561 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4562 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4563 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4564 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4565 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4566 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4567 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4568 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4569 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4570 #undef SHOW_FUNCTION
4571
4572 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4573 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4574 { \
4575 struct cfq_data *cfqd = e->elevator_data; \
4576 unsigned int __data; \
4577 int ret = cfq_var_store(&__data, (page), count); \
4578 if (__data < (MIN)) \
4579 __data = (MIN); \
4580 else if (__data > (MAX)) \
4581 __data = (MAX); \
4582 if (__CONV) \
4583 *(__PTR) = msecs_to_jiffies(__data); \
4584 else \
4585 *(__PTR) = __data; \
4586 return ret; \
4587 }
4588 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4589 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4590 UINT_MAX, 1);
4591 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4592 UINT_MAX, 1);
4593 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4594 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4595 UINT_MAX, 0);
4596 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4597 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4598 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4599 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4600 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4601 UINT_MAX, 0);
4602 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4603 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4604 #undef STORE_FUNCTION
4605
4606 #define CFQ_ATTR(name) \
4607 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4608
4609 static struct elv_fs_entry cfq_attrs[] = {
4610 CFQ_ATTR(quantum),
4611 CFQ_ATTR(fifo_expire_sync),
4612 CFQ_ATTR(fifo_expire_async),
4613 CFQ_ATTR(back_seek_max),
4614 CFQ_ATTR(back_seek_penalty),
4615 CFQ_ATTR(slice_sync),
4616 CFQ_ATTR(slice_async),
4617 CFQ_ATTR(slice_async_rq),
4618 CFQ_ATTR(slice_idle),
4619 CFQ_ATTR(group_idle),
4620 CFQ_ATTR(low_latency),
4621 CFQ_ATTR(target_latency),
4622 __ATTR_NULL
4623 };
4624
4625 static struct elevator_type iosched_cfq = {
4626 .ops = {
4627 .elevator_merge_fn = cfq_merge,
4628 .elevator_merged_fn = cfq_merged_request,
4629 .elevator_merge_req_fn = cfq_merged_requests,
4630 .elevator_allow_merge_fn = cfq_allow_merge,
4631 .elevator_bio_merged_fn = cfq_bio_merged,
4632 .elevator_dispatch_fn = cfq_dispatch_requests,
4633 .elevator_add_req_fn = cfq_insert_request,
4634 .elevator_activate_req_fn = cfq_activate_request,
4635 .elevator_deactivate_req_fn = cfq_deactivate_request,
4636 .elevator_completed_req_fn = cfq_completed_request,
4637 .elevator_former_req_fn = elv_rb_former_request,
4638 .elevator_latter_req_fn = elv_rb_latter_request,
4639 .elevator_init_icq_fn = cfq_init_icq,
4640 .elevator_exit_icq_fn = cfq_exit_icq,
4641 .elevator_set_req_fn = cfq_set_request,
4642 .elevator_put_req_fn = cfq_put_request,
4643 .elevator_may_queue_fn = cfq_may_queue,
4644 .elevator_init_fn = cfq_init_queue,
4645 .elevator_exit_fn = cfq_exit_queue,
4646 .elevator_registered_fn = cfq_registered_queue,
4647 },
4648 .icq_size = sizeof(struct cfq_io_cq),
4649 .icq_align = __alignof__(struct cfq_io_cq),
4650 .elevator_attrs = cfq_attrs,
4651 .elevator_name = "cfq",
4652 .elevator_owner = THIS_MODULE,
4653 };
4654
4655 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4656 static struct blkcg_policy blkcg_policy_cfq = {
4657 .cftypes = cfq_blkcg_files,
4658
4659 .cpd_alloc_fn = cfq_cpd_alloc,
4660 .cpd_init_fn = cfq_cpd_init,
4661 .cpd_free_fn = cfq_cpd_free,
4662
4663 .pd_alloc_fn = cfq_pd_alloc,
4664 .pd_init_fn = cfq_pd_init,
4665 .pd_offline_fn = cfq_pd_offline,
4666 .pd_free_fn = cfq_pd_free,
4667 .pd_reset_stats_fn = cfq_pd_reset_stats,
4668 };
4669 #endif
4670
4671 static int __init cfq_init(void)
4672 {
4673 int ret;
4674
4675 /*
4676 * could be 0 on HZ < 1000 setups
4677 */
4678 if (!cfq_slice_async)
4679 cfq_slice_async = 1;
4680 if (!cfq_slice_idle)
4681 cfq_slice_idle = 1;
4682
4683 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4684 if (!cfq_group_idle)
4685 cfq_group_idle = 1;
4686
4687 ret = blkcg_policy_register(&blkcg_policy_cfq);
4688 if (ret)
4689 return ret;
4690 #else
4691 cfq_group_idle = 0;
4692 #endif
4693
4694 ret = -ENOMEM;
4695 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4696 if (!cfq_pool)
4697 goto err_pol_unreg;
4698
4699 ret = elv_register(&iosched_cfq);
4700 if (ret)
4701 goto err_free_pool;
4702
4703 return 0;
4704
4705 err_free_pool:
4706 kmem_cache_destroy(cfq_pool);
4707 err_pol_unreg:
4708 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4709 blkcg_policy_unregister(&blkcg_policy_cfq);
4710 #endif
4711 return ret;
4712 }
4713
4714 static void __exit cfq_exit(void)
4715 {
4716 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4717 blkcg_policy_unregister(&blkcg_policy_cfq);
4718 #endif
4719 elv_unregister(&iosched_cfq);
4720 kmem_cache_destroy(cfq_pool);
4721 }
4722
4723 module_init(cfq_init);
4724 module_exit(cfq_exit);
4725
4726 MODULE_AUTHOR("Jens Axboe");
4727 MODULE_LICENSE("GPL");
4728 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.142506 seconds and 6 git commands to generate.