Merge branch 'for-linus' into for-2.6.33
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31 static const int cfq_hist_divisor = 4;
32
33 /*
34 * offset from end of service tree
35 */
36 #define CFQ_IDLE_DELAY (HZ / 5)
37
38 /*
39 * below this threshold, we consider thinktime immediate
40 */
41 #define CFQ_MIN_TT (2)
42
43 /*
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
46 */
47 #define CFQQ_COOP_TOUT (HZ)
48
49 #define CFQ_SLICE_SCALE (5)
50 #define CFQ_HW_QUEUE_MIN (5)
51
52 #define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75 struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
78 unsigned count;
79 };
80 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81
82 /*
83 * Per process-grouping structure
84 */
85 struct cfq_queue {
86 /* reference count */
87 atomic_t ref;
88 /* various state flags, see below */
89 unsigned int flags;
90 /* parent cfq_data */
91 struct cfq_data *cfqd;
92 /* service_tree member */
93 struct rb_node rb_node;
94 /* service_tree key */
95 unsigned long rb_key;
96 /* prio tree member */
97 struct rb_node p_node;
98 /* prio tree root we belong to, if any */
99 struct rb_root *p_root;
100 /* sorted list of pending requests */
101 struct rb_root sort_list;
102 /* if fifo isn't expired, next request to serve */
103 struct request *next_rq;
104 /* requests queued in sort_list */
105 int queued[2];
106 /* currently allocated requests */
107 int allocated[2];
108 /* fifo list of requests in sort_list */
109 struct list_head fifo;
110
111 unsigned long slice_end;
112 long slice_resid;
113 unsigned int slice_dispatch;
114
115 /* pending metadata requests */
116 int meta_pending;
117 /* number of requests that are on the dispatch list or inside driver */
118 int dispatched;
119
120 /* io prio of this group */
121 unsigned short ioprio, org_ioprio;
122 unsigned short ioprio_class, org_ioprio_class;
123
124 unsigned int seek_samples;
125 u64 seek_total;
126 sector_t seek_mean;
127 sector_t last_request_pos;
128 unsigned long seeky_start;
129
130 pid_t pid;
131
132 struct cfq_rb_root *service_tree;
133 struct cfq_queue *new_cfqq;
134 };
135
136 /*
137 * First index in the service_trees.
138 * IDLE is handled separately, so it has negative index
139 */
140 enum wl_prio_t {
141 IDLE_WORKLOAD = -1,
142 BE_WORKLOAD = 0,
143 RT_WORKLOAD = 1
144 };
145
146 /*
147 * Second index in the service_trees.
148 */
149 enum wl_type_t {
150 ASYNC_WORKLOAD = 0,
151 SYNC_NOIDLE_WORKLOAD = 1,
152 SYNC_WORKLOAD = 2
153 };
154
155
156 /*
157 * Per block device queue structure
158 */
159 struct cfq_data {
160 struct request_queue *queue;
161
162 /*
163 * rr lists of queues with requests, onle rr for each priority class.
164 * Counts are embedded in the cfq_rb_root
165 */
166 struct cfq_rb_root service_trees[2][3];
167 struct cfq_rb_root service_tree_idle;
168 /*
169 * The priority currently being served
170 */
171 enum wl_prio_t serving_prio;
172 enum wl_type_t serving_type;
173 unsigned long workload_expires;
174
175 /*
176 * Each priority tree is sorted by next_request position. These
177 * trees are used when determining if two or more queues are
178 * interleaving requests (see cfq_close_cooperator).
179 */
180 struct rb_root prio_trees[CFQ_PRIO_LISTS];
181
182 unsigned int busy_queues;
183 unsigned int busy_queues_avg[2];
184
185 int rq_in_driver[2];
186 int sync_flight;
187
188 /*
189 * queue-depth detection
190 */
191 int rq_queued;
192 int hw_tag;
193 int hw_tag_samples;
194 int rq_in_driver_peak;
195
196 /*
197 * idle window management
198 */
199 struct timer_list idle_slice_timer;
200 struct work_struct unplug_work;
201
202 struct cfq_queue *active_queue;
203 struct cfq_io_context *active_cic;
204
205 /*
206 * async queue for each priority case
207 */
208 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
209 struct cfq_queue *async_idle_cfqq;
210
211 sector_t last_position;
212
213 /*
214 * tunables, see top of file
215 */
216 unsigned int cfq_quantum;
217 unsigned int cfq_fifo_expire[2];
218 unsigned int cfq_back_penalty;
219 unsigned int cfq_back_max;
220 unsigned int cfq_slice[2];
221 unsigned int cfq_slice_async_rq;
222 unsigned int cfq_slice_idle;
223 unsigned int cfq_latency;
224
225 struct list_head cic_list;
226
227 /*
228 * Fallback dummy cfqq for extreme OOM conditions
229 */
230 struct cfq_queue oom_cfqq;
231
232 unsigned long last_end_sync_rq;
233 };
234
235 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
236 enum wl_type_t type,
237 struct cfq_data *cfqd)
238 {
239 if (prio == IDLE_WORKLOAD)
240 return &cfqd->service_tree_idle;
241
242 return &cfqd->service_trees[prio][type];
243 }
244
245 enum cfqq_state_flags {
246 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
247 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
248 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
249 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
250 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
251 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
252 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
253 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
254 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
255 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
256 CFQ_CFQQ_FLAG_coop_preempt, /* coop preempt */
257 };
258
259 #define CFQ_CFQQ_FNS(name) \
260 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
261 { \
262 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
263 } \
264 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
265 { \
266 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
267 } \
268 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
269 { \
270 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
271 }
272
273 CFQ_CFQQ_FNS(on_rr);
274 CFQ_CFQQ_FNS(wait_request);
275 CFQ_CFQQ_FNS(must_dispatch);
276 CFQ_CFQQ_FNS(must_alloc_slice);
277 CFQ_CFQQ_FNS(fifo_expire);
278 CFQ_CFQQ_FNS(idle_window);
279 CFQ_CFQQ_FNS(prio_changed);
280 CFQ_CFQQ_FNS(slice_new);
281 CFQ_CFQQ_FNS(sync);
282 CFQ_CFQQ_FNS(coop);
283 CFQ_CFQQ_FNS(coop_preempt);
284 #undef CFQ_CFQQ_FNS
285
286 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
287 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
288 #define cfq_log(cfqd, fmt, args...) \
289 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
290
291 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
292 {
293 if (cfq_class_idle(cfqq))
294 return IDLE_WORKLOAD;
295 if (cfq_class_rt(cfqq))
296 return RT_WORKLOAD;
297 return BE_WORKLOAD;
298 }
299
300
301 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
302 {
303 if (!cfq_cfqq_sync(cfqq))
304 return ASYNC_WORKLOAD;
305 if (!cfq_cfqq_idle_window(cfqq))
306 return SYNC_NOIDLE_WORKLOAD;
307 return SYNC_WORKLOAD;
308 }
309
310 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
311 {
312 if (wl == IDLE_WORKLOAD)
313 return cfqd->service_tree_idle.count;
314
315 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
316 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
317 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
318 }
319
320 static void cfq_dispatch_insert(struct request_queue *, struct request *);
321 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
322 struct io_context *, gfp_t);
323 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
324 struct io_context *);
325
326 static inline int rq_in_driver(struct cfq_data *cfqd)
327 {
328 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
329 }
330
331 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
332 bool is_sync)
333 {
334 return cic->cfqq[is_sync];
335 }
336
337 static inline void cic_set_cfqq(struct cfq_io_context *cic,
338 struct cfq_queue *cfqq, bool is_sync)
339 {
340 cic->cfqq[is_sync] = cfqq;
341 }
342
343 /*
344 * We regard a request as SYNC, if it's either a read or has the SYNC bit
345 * set (in which case it could also be direct WRITE).
346 */
347 static inline bool cfq_bio_sync(struct bio *bio)
348 {
349 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
350 }
351
352 /*
353 * scheduler run of queue, if there are requests pending and no one in the
354 * driver that will restart queueing
355 */
356 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
357 {
358 if (cfqd->busy_queues) {
359 cfq_log(cfqd, "schedule dispatch");
360 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
361 }
362 }
363
364 static int cfq_queue_empty(struct request_queue *q)
365 {
366 struct cfq_data *cfqd = q->elevator->elevator_data;
367
368 return !cfqd->busy_queues;
369 }
370
371 /*
372 * Scale schedule slice based on io priority. Use the sync time slice only
373 * if a queue is marked sync and has sync io queued. A sync queue with async
374 * io only, should not get full sync slice length.
375 */
376 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
377 unsigned short prio)
378 {
379 const int base_slice = cfqd->cfq_slice[sync];
380
381 WARN_ON(prio >= IOPRIO_BE_NR);
382
383 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
384 }
385
386 static inline int
387 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
388 {
389 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
390 }
391
392 /*
393 * get averaged number of queues of RT/BE priority.
394 * average is updated, with a formula that gives more weight to higher numbers,
395 * to quickly follows sudden increases and decrease slowly
396 */
397
398 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
399 {
400 unsigned min_q, max_q;
401 unsigned mult = cfq_hist_divisor - 1;
402 unsigned round = cfq_hist_divisor / 2;
403 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
404
405 min_q = min(cfqd->busy_queues_avg[rt], busy);
406 max_q = max(cfqd->busy_queues_avg[rt], busy);
407 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
408 cfq_hist_divisor;
409 return cfqd->busy_queues_avg[rt];
410 }
411
412 static inline void
413 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
414 {
415 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
416 if (cfqd->cfq_latency) {
417 /* interested queues (we consider only the ones with the same
418 * priority class) */
419 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
420 unsigned sync_slice = cfqd->cfq_slice[1];
421 unsigned expect_latency = sync_slice * iq;
422 if (expect_latency > cfq_target_latency) {
423 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
424 /* scale low_slice according to IO priority
425 * and sync vs async */
426 unsigned low_slice =
427 min(slice, base_low_slice * slice / sync_slice);
428 /* the adapted slice value is scaled to fit all iqs
429 * into the target latency */
430 slice = max(slice * cfq_target_latency / expect_latency,
431 low_slice);
432 }
433 }
434 cfqq->slice_end = jiffies + slice;
435 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
436 }
437
438 /*
439 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
440 * isn't valid until the first request from the dispatch is activated
441 * and the slice time set.
442 */
443 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
444 {
445 if (cfq_cfqq_slice_new(cfqq))
446 return 0;
447 if (time_before(jiffies, cfqq->slice_end))
448 return 0;
449
450 return 1;
451 }
452
453 /*
454 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
455 * We choose the request that is closest to the head right now. Distance
456 * behind the head is penalized and only allowed to a certain extent.
457 */
458 static struct request *
459 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
460 {
461 sector_t last, s1, s2, d1 = 0, d2 = 0;
462 unsigned long back_max;
463 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
464 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
465 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
466
467 if (rq1 == NULL || rq1 == rq2)
468 return rq2;
469 if (rq2 == NULL)
470 return rq1;
471
472 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
473 return rq1;
474 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
475 return rq2;
476 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
477 return rq1;
478 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
479 return rq2;
480
481 s1 = blk_rq_pos(rq1);
482 s2 = blk_rq_pos(rq2);
483
484 last = cfqd->last_position;
485
486 /*
487 * by definition, 1KiB is 2 sectors
488 */
489 back_max = cfqd->cfq_back_max * 2;
490
491 /*
492 * Strict one way elevator _except_ in the case where we allow
493 * short backward seeks which are biased as twice the cost of a
494 * similar forward seek.
495 */
496 if (s1 >= last)
497 d1 = s1 - last;
498 else if (s1 + back_max >= last)
499 d1 = (last - s1) * cfqd->cfq_back_penalty;
500 else
501 wrap |= CFQ_RQ1_WRAP;
502
503 if (s2 >= last)
504 d2 = s2 - last;
505 else if (s2 + back_max >= last)
506 d2 = (last - s2) * cfqd->cfq_back_penalty;
507 else
508 wrap |= CFQ_RQ2_WRAP;
509
510 /* Found required data */
511
512 /*
513 * By doing switch() on the bit mask "wrap" we avoid having to
514 * check two variables for all permutations: --> faster!
515 */
516 switch (wrap) {
517 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
518 if (d1 < d2)
519 return rq1;
520 else if (d2 < d1)
521 return rq2;
522 else {
523 if (s1 >= s2)
524 return rq1;
525 else
526 return rq2;
527 }
528
529 case CFQ_RQ2_WRAP:
530 return rq1;
531 case CFQ_RQ1_WRAP:
532 return rq2;
533 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
534 default:
535 /*
536 * Since both rqs are wrapped,
537 * start with the one that's further behind head
538 * (--> only *one* back seek required),
539 * since back seek takes more time than forward.
540 */
541 if (s1 <= s2)
542 return rq1;
543 else
544 return rq2;
545 }
546 }
547
548 /*
549 * The below is leftmost cache rbtree addon
550 */
551 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
552 {
553 if (!root->left)
554 root->left = rb_first(&root->rb);
555
556 if (root->left)
557 return rb_entry(root->left, struct cfq_queue, rb_node);
558
559 return NULL;
560 }
561
562 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
563 {
564 rb_erase(n, root);
565 RB_CLEAR_NODE(n);
566 }
567
568 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
569 {
570 if (root->left == n)
571 root->left = NULL;
572 rb_erase_init(n, &root->rb);
573 --root->count;
574 }
575
576 /*
577 * would be nice to take fifo expire time into account as well
578 */
579 static struct request *
580 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
581 struct request *last)
582 {
583 struct rb_node *rbnext = rb_next(&last->rb_node);
584 struct rb_node *rbprev = rb_prev(&last->rb_node);
585 struct request *next = NULL, *prev = NULL;
586
587 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
588
589 if (rbprev)
590 prev = rb_entry_rq(rbprev);
591
592 if (rbnext)
593 next = rb_entry_rq(rbnext);
594 else {
595 rbnext = rb_first(&cfqq->sort_list);
596 if (rbnext && rbnext != &last->rb_node)
597 next = rb_entry_rq(rbnext);
598 }
599
600 return cfq_choose_req(cfqd, next, prev);
601 }
602
603 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
604 struct cfq_queue *cfqq)
605 {
606 /*
607 * just an approximation, should be ok.
608 */
609 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
610 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
611 }
612
613 /*
614 * The cfqd->service_trees holds all pending cfq_queue's that have
615 * requests waiting to be processed. It is sorted in the order that
616 * we will service the queues.
617 */
618 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
619 bool add_front)
620 {
621 struct rb_node **p, *parent;
622 struct cfq_queue *__cfqq;
623 unsigned long rb_key;
624 struct cfq_rb_root *service_tree;
625 int left;
626
627 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
628 if (cfq_class_idle(cfqq)) {
629 rb_key = CFQ_IDLE_DELAY;
630 parent = rb_last(&service_tree->rb);
631 if (parent && parent != &cfqq->rb_node) {
632 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
633 rb_key += __cfqq->rb_key;
634 } else
635 rb_key += jiffies;
636 } else if (!add_front) {
637 /*
638 * Get our rb key offset. Subtract any residual slice
639 * value carried from last service. A negative resid
640 * count indicates slice overrun, and this should position
641 * the next service time further away in the tree.
642 */
643 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
644 rb_key -= cfqq->slice_resid;
645 cfqq->slice_resid = 0;
646 } else {
647 rb_key = -HZ;
648 __cfqq = cfq_rb_first(service_tree);
649 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
650 }
651
652 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
653 /*
654 * same position, nothing more to do
655 */
656 if (rb_key == cfqq->rb_key &&
657 cfqq->service_tree == service_tree)
658 return;
659
660 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
661 cfqq->service_tree = NULL;
662 }
663
664 left = 1;
665 parent = NULL;
666 cfqq->service_tree = service_tree;
667 p = &service_tree->rb.rb_node;
668 while (*p) {
669 struct rb_node **n;
670
671 parent = *p;
672 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
673
674 /*
675 * sort by key, that represents service time.
676 */
677 if (time_before(rb_key, __cfqq->rb_key))
678 n = &(*p)->rb_left;
679 else {
680 n = &(*p)->rb_right;
681 left = 0;
682 }
683
684 p = n;
685 }
686
687 if (left)
688 service_tree->left = &cfqq->rb_node;
689
690 cfqq->rb_key = rb_key;
691 rb_link_node(&cfqq->rb_node, parent, p);
692 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
693 service_tree->count++;
694 }
695
696 static struct cfq_queue *
697 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
698 sector_t sector, struct rb_node **ret_parent,
699 struct rb_node ***rb_link)
700 {
701 struct rb_node **p, *parent;
702 struct cfq_queue *cfqq = NULL;
703
704 parent = NULL;
705 p = &root->rb_node;
706 while (*p) {
707 struct rb_node **n;
708
709 parent = *p;
710 cfqq = rb_entry(parent, struct cfq_queue, p_node);
711
712 /*
713 * Sort strictly based on sector. Smallest to the left,
714 * largest to the right.
715 */
716 if (sector > blk_rq_pos(cfqq->next_rq))
717 n = &(*p)->rb_right;
718 else if (sector < blk_rq_pos(cfqq->next_rq))
719 n = &(*p)->rb_left;
720 else
721 break;
722 p = n;
723 cfqq = NULL;
724 }
725
726 *ret_parent = parent;
727 if (rb_link)
728 *rb_link = p;
729 return cfqq;
730 }
731
732 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733 {
734 struct rb_node **p, *parent;
735 struct cfq_queue *__cfqq;
736
737 if (cfqq->p_root) {
738 rb_erase(&cfqq->p_node, cfqq->p_root);
739 cfqq->p_root = NULL;
740 }
741
742 if (cfq_class_idle(cfqq))
743 return;
744 if (!cfqq->next_rq)
745 return;
746
747 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
748 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
749 blk_rq_pos(cfqq->next_rq), &parent, &p);
750 if (!__cfqq) {
751 rb_link_node(&cfqq->p_node, parent, p);
752 rb_insert_color(&cfqq->p_node, cfqq->p_root);
753 } else
754 cfqq->p_root = NULL;
755 }
756
757 /*
758 * Update cfqq's position in the service tree.
759 */
760 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
761 {
762 /*
763 * Resorting requires the cfqq to be on the RR list already.
764 */
765 if (cfq_cfqq_on_rr(cfqq)) {
766 cfq_service_tree_add(cfqd, cfqq, 0);
767 cfq_prio_tree_add(cfqd, cfqq);
768 }
769 }
770
771 /*
772 * add to busy list of queues for service, trying to be fair in ordering
773 * the pending list according to last request service
774 */
775 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
776 {
777 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
778 BUG_ON(cfq_cfqq_on_rr(cfqq));
779 cfq_mark_cfqq_on_rr(cfqq);
780 cfqd->busy_queues++;
781
782 cfq_resort_rr_list(cfqd, cfqq);
783 }
784
785 /*
786 * Called when the cfqq no longer has requests pending, remove it from
787 * the service tree.
788 */
789 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
790 {
791 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
792 BUG_ON(!cfq_cfqq_on_rr(cfqq));
793 cfq_clear_cfqq_on_rr(cfqq);
794
795 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
796 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
797 cfqq->service_tree = NULL;
798 }
799 if (cfqq->p_root) {
800 rb_erase(&cfqq->p_node, cfqq->p_root);
801 cfqq->p_root = NULL;
802 }
803
804 BUG_ON(!cfqd->busy_queues);
805 cfqd->busy_queues--;
806 }
807
808 /*
809 * rb tree support functions
810 */
811 static void cfq_del_rq_rb(struct request *rq)
812 {
813 struct cfq_queue *cfqq = RQ_CFQQ(rq);
814 struct cfq_data *cfqd = cfqq->cfqd;
815 const int sync = rq_is_sync(rq);
816
817 BUG_ON(!cfqq->queued[sync]);
818 cfqq->queued[sync]--;
819
820 elv_rb_del(&cfqq->sort_list, rq);
821
822 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
823 cfq_del_cfqq_rr(cfqd, cfqq);
824 }
825
826 static void cfq_add_rq_rb(struct request *rq)
827 {
828 struct cfq_queue *cfqq = RQ_CFQQ(rq);
829 struct cfq_data *cfqd = cfqq->cfqd;
830 struct request *__alias, *prev;
831
832 cfqq->queued[rq_is_sync(rq)]++;
833
834 /*
835 * looks a little odd, but the first insert might return an alias.
836 * if that happens, put the alias on the dispatch list
837 */
838 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
839 cfq_dispatch_insert(cfqd->queue, __alias);
840
841 if (!cfq_cfqq_on_rr(cfqq))
842 cfq_add_cfqq_rr(cfqd, cfqq);
843
844 /*
845 * check if this request is a better next-serve candidate
846 */
847 prev = cfqq->next_rq;
848 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
849
850 /*
851 * adjust priority tree position, if ->next_rq changes
852 */
853 if (prev != cfqq->next_rq)
854 cfq_prio_tree_add(cfqd, cfqq);
855
856 BUG_ON(!cfqq->next_rq);
857 }
858
859 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
860 {
861 elv_rb_del(&cfqq->sort_list, rq);
862 cfqq->queued[rq_is_sync(rq)]--;
863 cfq_add_rq_rb(rq);
864 }
865
866 static struct request *
867 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
868 {
869 struct task_struct *tsk = current;
870 struct cfq_io_context *cic;
871 struct cfq_queue *cfqq;
872
873 cic = cfq_cic_lookup(cfqd, tsk->io_context);
874 if (!cic)
875 return NULL;
876
877 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
878 if (cfqq) {
879 sector_t sector = bio->bi_sector + bio_sectors(bio);
880
881 return elv_rb_find(&cfqq->sort_list, sector);
882 }
883
884 return NULL;
885 }
886
887 static void cfq_activate_request(struct request_queue *q, struct request *rq)
888 {
889 struct cfq_data *cfqd = q->elevator->elevator_data;
890
891 cfqd->rq_in_driver[rq_is_sync(rq)]++;
892 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
893 rq_in_driver(cfqd));
894
895 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
896 }
897
898 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
899 {
900 struct cfq_data *cfqd = q->elevator->elevator_data;
901 const int sync = rq_is_sync(rq);
902
903 WARN_ON(!cfqd->rq_in_driver[sync]);
904 cfqd->rq_in_driver[sync]--;
905 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
906 rq_in_driver(cfqd));
907 }
908
909 static void cfq_remove_request(struct request *rq)
910 {
911 struct cfq_queue *cfqq = RQ_CFQQ(rq);
912
913 if (cfqq->next_rq == rq)
914 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
915
916 list_del_init(&rq->queuelist);
917 cfq_del_rq_rb(rq);
918
919 cfqq->cfqd->rq_queued--;
920 if (rq_is_meta(rq)) {
921 WARN_ON(!cfqq->meta_pending);
922 cfqq->meta_pending--;
923 }
924 }
925
926 static int cfq_merge(struct request_queue *q, struct request **req,
927 struct bio *bio)
928 {
929 struct cfq_data *cfqd = q->elevator->elevator_data;
930 struct request *__rq;
931
932 __rq = cfq_find_rq_fmerge(cfqd, bio);
933 if (__rq && elv_rq_merge_ok(__rq, bio)) {
934 *req = __rq;
935 return ELEVATOR_FRONT_MERGE;
936 }
937
938 return ELEVATOR_NO_MERGE;
939 }
940
941 static void cfq_merged_request(struct request_queue *q, struct request *req,
942 int type)
943 {
944 if (type == ELEVATOR_FRONT_MERGE) {
945 struct cfq_queue *cfqq = RQ_CFQQ(req);
946
947 cfq_reposition_rq_rb(cfqq, req);
948 }
949 }
950
951 static void
952 cfq_merged_requests(struct request_queue *q, struct request *rq,
953 struct request *next)
954 {
955 /*
956 * reposition in fifo if next is older than rq
957 */
958 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
959 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
960 list_move(&rq->queuelist, &next->queuelist);
961 rq_set_fifo_time(rq, rq_fifo_time(next));
962 }
963
964 cfq_remove_request(next);
965 }
966
967 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
968 struct bio *bio)
969 {
970 struct cfq_data *cfqd = q->elevator->elevator_data;
971 struct cfq_io_context *cic;
972 struct cfq_queue *cfqq;
973
974 /*
975 * Disallow merge of a sync bio into an async request.
976 */
977 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
978 return false;
979
980 /*
981 * Lookup the cfqq that this bio will be queued with. Allow
982 * merge only if rq is queued there.
983 */
984 cic = cfq_cic_lookup(cfqd, current->io_context);
985 if (!cic)
986 return false;
987
988 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
989 return cfqq == RQ_CFQQ(rq);
990 }
991
992 static void __cfq_set_active_queue(struct cfq_data *cfqd,
993 struct cfq_queue *cfqq)
994 {
995 if (cfqq) {
996 cfq_log_cfqq(cfqd, cfqq, "set_active");
997 cfqq->slice_end = 0;
998 cfqq->slice_dispatch = 0;
999
1000 cfq_clear_cfqq_wait_request(cfqq);
1001 cfq_clear_cfqq_must_dispatch(cfqq);
1002 cfq_clear_cfqq_must_alloc_slice(cfqq);
1003 cfq_clear_cfqq_fifo_expire(cfqq);
1004 cfq_mark_cfqq_slice_new(cfqq);
1005
1006 del_timer(&cfqd->idle_slice_timer);
1007 }
1008
1009 cfqd->active_queue = cfqq;
1010 }
1011
1012 /*
1013 * current cfqq expired its slice (or was too idle), select new one
1014 */
1015 static void
1016 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1017 bool timed_out)
1018 {
1019 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1020
1021 if (cfq_cfqq_wait_request(cfqq))
1022 del_timer(&cfqd->idle_slice_timer);
1023
1024 cfq_clear_cfqq_wait_request(cfqq);
1025
1026 /*
1027 * store what was left of this slice, if the queue idled/timed out
1028 */
1029 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1030 cfqq->slice_resid = cfqq->slice_end - jiffies;
1031 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1032 }
1033
1034 cfq_resort_rr_list(cfqd, cfqq);
1035
1036 if (cfqq == cfqd->active_queue)
1037 cfqd->active_queue = NULL;
1038
1039 if (cfqd->active_cic) {
1040 put_io_context(cfqd->active_cic->ioc);
1041 cfqd->active_cic = NULL;
1042 }
1043 }
1044
1045 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1046 {
1047 struct cfq_queue *cfqq = cfqd->active_queue;
1048
1049 if (cfqq)
1050 __cfq_slice_expired(cfqd, cfqq, timed_out);
1051 }
1052
1053 /*
1054 * Get next queue for service. Unless we have a queue preemption,
1055 * we'll simply select the first cfqq in the service tree.
1056 */
1057 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1058 {
1059 struct cfq_rb_root *service_tree =
1060 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1061
1062 if (RB_EMPTY_ROOT(&service_tree->rb))
1063 return NULL;
1064 return cfq_rb_first(service_tree);
1065 }
1066
1067 /*
1068 * Get and set a new active queue for service.
1069 */
1070 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1071 struct cfq_queue *cfqq)
1072 {
1073 if (!cfqq) {
1074 cfqq = cfq_get_next_queue(cfqd);
1075
1076 if (cfqq && !cfq_cfqq_coop_preempt(cfqq))
1077 cfq_clear_cfqq_coop(cfqq);
1078 }
1079
1080 if (cfqq)
1081 cfq_clear_cfqq_coop_preempt(cfqq);
1082
1083 __cfq_set_active_queue(cfqd, cfqq);
1084 return cfqq;
1085 }
1086
1087 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1088 struct request *rq)
1089 {
1090 if (blk_rq_pos(rq) >= cfqd->last_position)
1091 return blk_rq_pos(rq) - cfqd->last_position;
1092 else
1093 return cfqd->last_position - blk_rq_pos(rq);
1094 }
1095
1096 #define CFQQ_SEEK_THR 8 * 1024
1097 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1098
1099 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100 struct request *rq)
1101 {
1102 sector_t sdist = cfqq->seek_mean;
1103
1104 if (!sample_valid(cfqq->seek_samples))
1105 sdist = CFQQ_SEEK_THR;
1106
1107 return cfq_dist_from_last(cfqd, rq) <= sdist;
1108 }
1109
1110 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1111 struct cfq_queue *cur_cfqq)
1112 {
1113 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1114 struct rb_node *parent, *node;
1115 struct cfq_queue *__cfqq;
1116 sector_t sector = cfqd->last_position;
1117
1118 if (RB_EMPTY_ROOT(root))
1119 return NULL;
1120
1121 /*
1122 * First, if we find a request starting at the end of the last
1123 * request, choose it.
1124 */
1125 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1126 if (__cfqq)
1127 return __cfqq;
1128
1129 /*
1130 * If the exact sector wasn't found, the parent of the NULL leaf
1131 * will contain the closest sector.
1132 */
1133 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1134 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1135 return __cfqq;
1136
1137 if (blk_rq_pos(__cfqq->next_rq) < sector)
1138 node = rb_next(&__cfqq->p_node);
1139 else
1140 node = rb_prev(&__cfqq->p_node);
1141 if (!node)
1142 return NULL;
1143
1144 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1145 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1146 return __cfqq;
1147
1148 return NULL;
1149 }
1150
1151 /*
1152 * cfqd - obvious
1153 * cur_cfqq - passed in so that we don't decide that the current queue is
1154 * closely cooperating with itself.
1155 *
1156 * So, basically we're assuming that that cur_cfqq has dispatched at least
1157 * one request, and that cfqd->last_position reflects a position on the disk
1158 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1159 * assumption.
1160 */
1161 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1162 struct cfq_queue *cur_cfqq)
1163 {
1164 struct cfq_queue *cfqq;
1165
1166 if (!cfq_cfqq_sync(cur_cfqq))
1167 return NULL;
1168 if (CFQQ_SEEKY(cur_cfqq))
1169 return NULL;
1170
1171 /*
1172 * We should notice if some of the queues are cooperating, eg
1173 * working closely on the same area of the disk. In that case,
1174 * we can group them together and don't waste time idling.
1175 */
1176 cfqq = cfqq_close(cfqd, cur_cfqq);
1177 if (!cfqq)
1178 return NULL;
1179
1180 /*
1181 * It only makes sense to merge sync queues.
1182 */
1183 if (!cfq_cfqq_sync(cfqq))
1184 return NULL;
1185 if (CFQQ_SEEKY(cfqq))
1186 return NULL;
1187
1188 /*
1189 * Do not merge queues of different priority classes
1190 */
1191 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1192 return NULL;
1193
1194 return cfqq;
1195 }
1196
1197 /*
1198 * Determine whether we should enforce idle window for this queue.
1199 */
1200
1201 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1202 {
1203 enum wl_prio_t prio = cfqq_prio(cfqq);
1204 struct cfq_rb_root *service_tree = cfqq->service_tree;
1205
1206 /* We never do for idle class queues. */
1207 if (prio == IDLE_WORKLOAD)
1208 return false;
1209
1210 /* We do for queues that were marked with idle window flag. */
1211 if (cfq_cfqq_idle_window(cfqq))
1212 return true;
1213
1214 /*
1215 * Otherwise, we do only if they are the last ones
1216 * in their service tree.
1217 */
1218 if (!service_tree)
1219 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1220
1221 if (service_tree->count == 0)
1222 return true;
1223
1224 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1225 }
1226
1227 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1228 {
1229 struct cfq_queue *cfqq = cfqd->active_queue;
1230 struct cfq_io_context *cic;
1231 unsigned long sl;
1232
1233 /*
1234 * SSD device without seek penalty, disable idling. But only do so
1235 * for devices that support queuing, otherwise we still have a problem
1236 * with sync vs async workloads.
1237 */
1238 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1239 return;
1240
1241 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1242 WARN_ON(cfq_cfqq_slice_new(cfqq));
1243
1244 /*
1245 * idle is disabled, either manually or by past process history
1246 */
1247 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1248 return;
1249
1250 /*
1251 * still requests with the driver, don't idle
1252 */
1253 if (rq_in_driver(cfqd))
1254 return;
1255
1256 /*
1257 * task has exited, don't wait
1258 */
1259 cic = cfqd->active_cic;
1260 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1261 return;
1262
1263 /*
1264 * If our average think time is larger than the remaining time
1265 * slice, then don't idle. This avoids overrunning the allotted
1266 * time slice.
1267 */
1268 if (sample_valid(cic->ttime_samples) &&
1269 (cfqq->slice_end - jiffies < cic->ttime_mean))
1270 return;
1271
1272 cfq_mark_cfqq_wait_request(cfqq);
1273
1274 sl = cfqd->cfq_slice_idle;
1275 /* are we servicing noidle tree, and there are more queues?
1276 * non-rotational or NCQ: no idle
1277 * non-NCQ rotational : very small idle, to allow
1278 * fair distribution of slice time for a process doing back-to-back
1279 * seeks.
1280 */
1281 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
1282 service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
1283 ->count > 0) {
1284 if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
1285 return;
1286 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1287 }
1288
1289 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1290 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1291 }
1292
1293 /*
1294 * Move request from internal lists to the request queue dispatch list.
1295 */
1296 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1297 {
1298 struct cfq_data *cfqd = q->elevator->elevator_data;
1299 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1300
1301 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1302
1303 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1304 cfq_remove_request(rq);
1305 cfqq->dispatched++;
1306 elv_dispatch_sort(q, rq);
1307
1308 if (cfq_cfqq_sync(cfqq))
1309 cfqd->sync_flight++;
1310 }
1311
1312 /*
1313 * return expired entry, or NULL to just start from scratch in rbtree
1314 */
1315 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1316 {
1317 struct request *rq = NULL;
1318
1319 if (cfq_cfqq_fifo_expire(cfqq))
1320 return NULL;
1321
1322 cfq_mark_cfqq_fifo_expire(cfqq);
1323
1324 if (list_empty(&cfqq->fifo))
1325 return NULL;
1326
1327 rq = rq_entry_fifo(cfqq->fifo.next);
1328 if (time_before(jiffies, rq_fifo_time(rq)))
1329 rq = NULL;
1330
1331 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1332 return rq;
1333 }
1334
1335 static inline int
1336 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1337 {
1338 const int base_rq = cfqd->cfq_slice_async_rq;
1339
1340 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1341
1342 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1343 }
1344
1345 /*
1346 * Must be called with the queue_lock held.
1347 */
1348 static int cfqq_process_refs(struct cfq_queue *cfqq)
1349 {
1350 int process_refs, io_refs;
1351
1352 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1353 process_refs = atomic_read(&cfqq->ref) - io_refs;
1354 BUG_ON(process_refs < 0);
1355 return process_refs;
1356 }
1357
1358 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1359 {
1360 int process_refs, new_process_refs;
1361 struct cfq_queue *__cfqq;
1362
1363 /* Avoid a circular list and skip interim queue merges */
1364 while ((__cfqq = new_cfqq->new_cfqq)) {
1365 if (__cfqq == cfqq)
1366 return;
1367 new_cfqq = __cfqq;
1368 }
1369
1370 process_refs = cfqq_process_refs(cfqq);
1371 /*
1372 * If the process for the cfqq has gone away, there is no
1373 * sense in merging the queues.
1374 */
1375 if (process_refs == 0)
1376 return;
1377
1378 /*
1379 * Merge in the direction of the lesser amount of work.
1380 */
1381 new_process_refs = cfqq_process_refs(new_cfqq);
1382 if (new_process_refs >= process_refs) {
1383 cfqq->new_cfqq = new_cfqq;
1384 atomic_add(process_refs, &new_cfqq->ref);
1385 } else {
1386 new_cfqq->new_cfqq = cfqq;
1387 atomic_add(new_process_refs, &cfqq->ref);
1388 }
1389 }
1390
1391 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1392 bool prio_changed)
1393 {
1394 struct cfq_queue *queue;
1395 int i;
1396 bool key_valid = false;
1397 unsigned long lowest_key = 0;
1398 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1399
1400 if (prio_changed) {
1401 /*
1402 * When priorities switched, we prefer starting
1403 * from SYNC_NOIDLE (first choice), or just SYNC
1404 * over ASYNC
1405 */
1406 if (service_tree_for(prio, cur_best, cfqd)->count)
1407 return cur_best;
1408 cur_best = SYNC_WORKLOAD;
1409 if (service_tree_for(prio, cur_best, cfqd)->count)
1410 return cur_best;
1411
1412 return ASYNC_WORKLOAD;
1413 }
1414
1415 for (i = 0; i < 3; ++i) {
1416 /* otherwise, select the one with lowest rb_key */
1417 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1418 if (queue &&
1419 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1420 lowest_key = queue->rb_key;
1421 cur_best = i;
1422 key_valid = true;
1423 }
1424 }
1425
1426 return cur_best;
1427 }
1428
1429 static void choose_service_tree(struct cfq_data *cfqd)
1430 {
1431 enum wl_prio_t previous_prio = cfqd->serving_prio;
1432 bool prio_changed;
1433 unsigned slice;
1434 unsigned count;
1435
1436 /* Choose next priority. RT > BE > IDLE */
1437 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1438 cfqd->serving_prio = RT_WORKLOAD;
1439 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1440 cfqd->serving_prio = BE_WORKLOAD;
1441 else {
1442 cfqd->serving_prio = IDLE_WORKLOAD;
1443 cfqd->workload_expires = jiffies + 1;
1444 return;
1445 }
1446
1447 /*
1448 * For RT and BE, we have to choose also the type
1449 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1450 * expiration time
1451 */
1452 prio_changed = (cfqd->serving_prio != previous_prio);
1453 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1454 ->count;
1455
1456 /*
1457 * If priority didn't change, check workload expiration,
1458 * and that we still have other queues ready
1459 */
1460 if (!prio_changed && count &&
1461 !time_after(jiffies, cfqd->workload_expires))
1462 return;
1463
1464 /* otherwise select new workload type */
1465 cfqd->serving_type =
1466 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1467 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1468 ->count;
1469
1470 /*
1471 * the workload slice is computed as a fraction of target latency
1472 * proportional to the number of queues in that workload, over
1473 * all the queues in the same priority class
1474 */
1475 slice = cfq_target_latency * count /
1476 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1477 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1478
1479 if (cfqd->serving_type == ASYNC_WORKLOAD)
1480 /* async workload slice is scaled down according to
1481 * the sync/async slice ratio. */
1482 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1483 else
1484 /* sync workload slice is at least 2 * cfq_slice_idle */
1485 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1486
1487 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1488 cfqd->workload_expires = jiffies + slice;
1489 }
1490
1491 /*
1492 * Select a queue for service. If we have a current active queue,
1493 * check whether to continue servicing it, or retrieve and set a new one.
1494 */
1495 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1496 {
1497 struct cfq_queue *cfqq, *new_cfqq = NULL;
1498
1499 cfqq = cfqd->active_queue;
1500 if (!cfqq)
1501 goto new_queue;
1502
1503 /*
1504 * The active queue has run out of time, expire it and select new.
1505 */
1506 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1507 goto expire;
1508
1509 /*
1510 * The active queue has requests and isn't expired, allow it to
1511 * dispatch.
1512 */
1513 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1514 goto keep_queue;
1515
1516 /*
1517 * If another queue has a request waiting within our mean seek
1518 * distance, let it run. The expire code will check for close
1519 * cooperators and put the close queue at the front of the service
1520 * tree. If possible, merge the expiring queue with the new cfqq.
1521 */
1522 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1523 if (new_cfqq) {
1524 if (!cfqq->new_cfqq)
1525 cfq_setup_merge(cfqq, new_cfqq);
1526 goto expire;
1527 }
1528
1529 /*
1530 * No requests pending. If the active queue still has requests in
1531 * flight or is idling for a new request, allow either of these
1532 * conditions to happen (or time out) before selecting a new queue.
1533 */
1534 if (timer_pending(&cfqd->idle_slice_timer) ||
1535 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1536 cfqq = NULL;
1537 goto keep_queue;
1538 }
1539
1540 expire:
1541 cfq_slice_expired(cfqd, 0);
1542 new_queue:
1543 /*
1544 * Current queue expired. Check if we have to switch to a new
1545 * service tree
1546 */
1547 if (!new_cfqq)
1548 choose_service_tree(cfqd);
1549
1550 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1551 keep_queue:
1552 return cfqq;
1553 }
1554
1555 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1556 {
1557 int dispatched = 0;
1558
1559 while (cfqq->next_rq) {
1560 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1561 dispatched++;
1562 }
1563
1564 BUG_ON(!list_empty(&cfqq->fifo));
1565 return dispatched;
1566 }
1567
1568 /*
1569 * Drain our current requests. Used for barriers and when switching
1570 * io schedulers on-the-fly.
1571 */
1572 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1573 {
1574 struct cfq_queue *cfqq;
1575 int dispatched = 0;
1576 int i, j;
1577 for (i = 0; i < 2; ++i)
1578 for (j = 0; j < 3; ++j)
1579 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1580 != NULL)
1581 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1582
1583 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1584 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1585
1586 cfq_slice_expired(cfqd, 0);
1587
1588 BUG_ON(cfqd->busy_queues);
1589
1590 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1591 return dispatched;
1592 }
1593
1594 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1595 {
1596 unsigned int max_dispatch;
1597
1598 /*
1599 * Drain async requests before we start sync IO
1600 */
1601 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1602 return false;
1603
1604 /*
1605 * If this is an async queue and we have sync IO in flight, let it wait
1606 */
1607 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1608 return false;
1609
1610 max_dispatch = cfqd->cfq_quantum;
1611 if (cfq_class_idle(cfqq))
1612 max_dispatch = 1;
1613
1614 /*
1615 * Does this cfqq already have too much IO in flight?
1616 */
1617 if (cfqq->dispatched >= max_dispatch) {
1618 /*
1619 * idle queue must always only have a single IO in flight
1620 */
1621 if (cfq_class_idle(cfqq))
1622 return false;
1623
1624 /*
1625 * We have other queues, don't allow more IO from this one
1626 */
1627 if (cfqd->busy_queues > 1)
1628 return false;
1629
1630 /*
1631 * Sole queue user, allow bigger slice
1632 */
1633 max_dispatch *= 4;
1634 }
1635
1636 /*
1637 * Async queues must wait a bit before being allowed dispatch.
1638 * We also ramp up the dispatch depth gradually for async IO,
1639 * based on the last sync IO we serviced
1640 */
1641 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1642 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1643 unsigned int depth;
1644
1645 depth = last_sync / cfqd->cfq_slice[1];
1646 if (!depth && !cfqq->dispatched)
1647 depth = 1;
1648 if (depth < max_dispatch)
1649 max_dispatch = depth;
1650 }
1651
1652 /*
1653 * If we're below the current max, allow a dispatch
1654 */
1655 return cfqq->dispatched < max_dispatch;
1656 }
1657
1658 /*
1659 * Dispatch a request from cfqq, moving them to the request queue
1660 * dispatch list.
1661 */
1662 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1663 {
1664 struct request *rq;
1665
1666 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1667
1668 if (!cfq_may_dispatch(cfqd, cfqq))
1669 return false;
1670
1671 /*
1672 * follow expired path, else get first next available
1673 */
1674 rq = cfq_check_fifo(cfqq);
1675 if (!rq)
1676 rq = cfqq->next_rq;
1677
1678 /*
1679 * insert request into driver dispatch list
1680 */
1681 cfq_dispatch_insert(cfqd->queue, rq);
1682
1683 if (!cfqd->active_cic) {
1684 struct cfq_io_context *cic = RQ_CIC(rq);
1685
1686 atomic_long_inc(&cic->ioc->refcount);
1687 cfqd->active_cic = cic;
1688 }
1689
1690 return true;
1691 }
1692
1693 /*
1694 * Find the cfqq that we need to service and move a request from that to the
1695 * dispatch list
1696 */
1697 static int cfq_dispatch_requests(struct request_queue *q, int force)
1698 {
1699 struct cfq_data *cfqd = q->elevator->elevator_data;
1700 struct cfq_queue *cfqq;
1701
1702 if (!cfqd->busy_queues)
1703 return 0;
1704
1705 if (unlikely(force))
1706 return cfq_forced_dispatch(cfqd);
1707
1708 cfqq = cfq_select_queue(cfqd);
1709 if (!cfqq)
1710 return 0;
1711
1712 /*
1713 * Dispatch a request from this cfqq, if it is allowed
1714 */
1715 if (!cfq_dispatch_request(cfqd, cfqq))
1716 return 0;
1717
1718 cfqq->slice_dispatch++;
1719 cfq_clear_cfqq_must_dispatch(cfqq);
1720
1721 /*
1722 * expire an async queue immediately if it has used up its slice. idle
1723 * queue always expire after 1 dispatch round.
1724 */
1725 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1726 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1727 cfq_class_idle(cfqq))) {
1728 cfqq->slice_end = jiffies + 1;
1729 cfq_slice_expired(cfqd, 0);
1730 }
1731
1732 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1733 return 1;
1734 }
1735
1736 /*
1737 * task holds one reference to the queue, dropped when task exits. each rq
1738 * in-flight on this queue also holds a reference, dropped when rq is freed.
1739 *
1740 * queue lock must be held here.
1741 */
1742 static void cfq_put_queue(struct cfq_queue *cfqq)
1743 {
1744 struct cfq_data *cfqd = cfqq->cfqd;
1745
1746 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1747
1748 if (!atomic_dec_and_test(&cfqq->ref))
1749 return;
1750
1751 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1752 BUG_ON(rb_first(&cfqq->sort_list));
1753 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1754 BUG_ON(cfq_cfqq_on_rr(cfqq));
1755
1756 if (unlikely(cfqd->active_queue == cfqq)) {
1757 __cfq_slice_expired(cfqd, cfqq, 0);
1758 cfq_schedule_dispatch(cfqd);
1759 }
1760
1761 kmem_cache_free(cfq_pool, cfqq);
1762 }
1763
1764 /*
1765 * Must always be called with the rcu_read_lock() held
1766 */
1767 static void
1768 __call_for_each_cic(struct io_context *ioc,
1769 void (*func)(struct io_context *, struct cfq_io_context *))
1770 {
1771 struct cfq_io_context *cic;
1772 struct hlist_node *n;
1773
1774 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1775 func(ioc, cic);
1776 }
1777
1778 /*
1779 * Call func for each cic attached to this ioc.
1780 */
1781 static void
1782 call_for_each_cic(struct io_context *ioc,
1783 void (*func)(struct io_context *, struct cfq_io_context *))
1784 {
1785 rcu_read_lock();
1786 __call_for_each_cic(ioc, func);
1787 rcu_read_unlock();
1788 }
1789
1790 static void cfq_cic_free_rcu(struct rcu_head *head)
1791 {
1792 struct cfq_io_context *cic;
1793
1794 cic = container_of(head, struct cfq_io_context, rcu_head);
1795
1796 kmem_cache_free(cfq_ioc_pool, cic);
1797 elv_ioc_count_dec(cfq_ioc_count);
1798
1799 if (ioc_gone) {
1800 /*
1801 * CFQ scheduler is exiting, grab exit lock and check
1802 * the pending io context count. If it hits zero,
1803 * complete ioc_gone and set it back to NULL
1804 */
1805 spin_lock(&ioc_gone_lock);
1806 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1807 complete(ioc_gone);
1808 ioc_gone = NULL;
1809 }
1810 spin_unlock(&ioc_gone_lock);
1811 }
1812 }
1813
1814 static void cfq_cic_free(struct cfq_io_context *cic)
1815 {
1816 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1817 }
1818
1819 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1820 {
1821 unsigned long flags;
1822
1823 BUG_ON(!cic->dead_key);
1824
1825 spin_lock_irqsave(&ioc->lock, flags);
1826 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1827 hlist_del_rcu(&cic->cic_list);
1828 spin_unlock_irqrestore(&ioc->lock, flags);
1829
1830 cfq_cic_free(cic);
1831 }
1832
1833 /*
1834 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1835 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1836 * and ->trim() which is called with the task lock held
1837 */
1838 static void cfq_free_io_context(struct io_context *ioc)
1839 {
1840 /*
1841 * ioc->refcount is zero here, or we are called from elv_unregister(),
1842 * so no more cic's are allowed to be linked into this ioc. So it
1843 * should be ok to iterate over the known list, we will see all cic's
1844 * since no new ones are added.
1845 */
1846 __call_for_each_cic(ioc, cic_free_func);
1847 }
1848
1849 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1850 {
1851 struct cfq_queue *__cfqq, *next;
1852
1853 if (unlikely(cfqq == cfqd->active_queue)) {
1854 __cfq_slice_expired(cfqd, cfqq, 0);
1855 cfq_schedule_dispatch(cfqd);
1856 }
1857
1858 /*
1859 * If this queue was scheduled to merge with another queue, be
1860 * sure to drop the reference taken on that queue (and others in
1861 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1862 */
1863 __cfqq = cfqq->new_cfqq;
1864 while (__cfqq) {
1865 if (__cfqq == cfqq) {
1866 WARN(1, "cfqq->new_cfqq loop detected\n");
1867 break;
1868 }
1869 next = __cfqq->new_cfqq;
1870 cfq_put_queue(__cfqq);
1871 __cfqq = next;
1872 }
1873
1874 cfq_put_queue(cfqq);
1875 }
1876
1877 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1878 struct cfq_io_context *cic)
1879 {
1880 struct io_context *ioc = cic->ioc;
1881
1882 list_del_init(&cic->queue_list);
1883
1884 /*
1885 * Make sure key == NULL is seen for dead queues
1886 */
1887 smp_wmb();
1888 cic->dead_key = (unsigned long) cic->key;
1889 cic->key = NULL;
1890
1891 if (ioc->ioc_data == cic)
1892 rcu_assign_pointer(ioc->ioc_data, NULL);
1893
1894 if (cic->cfqq[BLK_RW_ASYNC]) {
1895 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1896 cic->cfqq[BLK_RW_ASYNC] = NULL;
1897 }
1898
1899 if (cic->cfqq[BLK_RW_SYNC]) {
1900 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1901 cic->cfqq[BLK_RW_SYNC] = NULL;
1902 }
1903 }
1904
1905 static void cfq_exit_single_io_context(struct io_context *ioc,
1906 struct cfq_io_context *cic)
1907 {
1908 struct cfq_data *cfqd = cic->key;
1909
1910 if (cfqd) {
1911 struct request_queue *q = cfqd->queue;
1912 unsigned long flags;
1913
1914 spin_lock_irqsave(q->queue_lock, flags);
1915
1916 /*
1917 * Ensure we get a fresh copy of the ->key to prevent
1918 * race between exiting task and queue
1919 */
1920 smp_read_barrier_depends();
1921 if (cic->key)
1922 __cfq_exit_single_io_context(cfqd, cic);
1923
1924 spin_unlock_irqrestore(q->queue_lock, flags);
1925 }
1926 }
1927
1928 /*
1929 * The process that ioc belongs to has exited, we need to clean up
1930 * and put the internal structures we have that belongs to that process.
1931 */
1932 static void cfq_exit_io_context(struct io_context *ioc)
1933 {
1934 call_for_each_cic(ioc, cfq_exit_single_io_context);
1935 }
1936
1937 static struct cfq_io_context *
1938 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1939 {
1940 struct cfq_io_context *cic;
1941
1942 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1943 cfqd->queue->node);
1944 if (cic) {
1945 cic->last_end_request = jiffies;
1946 INIT_LIST_HEAD(&cic->queue_list);
1947 INIT_HLIST_NODE(&cic->cic_list);
1948 cic->dtor = cfq_free_io_context;
1949 cic->exit = cfq_exit_io_context;
1950 elv_ioc_count_inc(cfq_ioc_count);
1951 }
1952
1953 return cic;
1954 }
1955
1956 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1957 {
1958 struct task_struct *tsk = current;
1959 int ioprio_class;
1960
1961 if (!cfq_cfqq_prio_changed(cfqq))
1962 return;
1963
1964 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1965 switch (ioprio_class) {
1966 default:
1967 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1968 case IOPRIO_CLASS_NONE:
1969 /*
1970 * no prio set, inherit CPU scheduling settings
1971 */
1972 cfqq->ioprio = task_nice_ioprio(tsk);
1973 cfqq->ioprio_class = task_nice_ioclass(tsk);
1974 break;
1975 case IOPRIO_CLASS_RT:
1976 cfqq->ioprio = task_ioprio(ioc);
1977 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1978 break;
1979 case IOPRIO_CLASS_BE:
1980 cfqq->ioprio = task_ioprio(ioc);
1981 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1982 break;
1983 case IOPRIO_CLASS_IDLE:
1984 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1985 cfqq->ioprio = 7;
1986 cfq_clear_cfqq_idle_window(cfqq);
1987 break;
1988 }
1989
1990 /*
1991 * keep track of original prio settings in case we have to temporarily
1992 * elevate the priority of this queue
1993 */
1994 cfqq->org_ioprio = cfqq->ioprio;
1995 cfqq->org_ioprio_class = cfqq->ioprio_class;
1996 cfq_clear_cfqq_prio_changed(cfqq);
1997 }
1998
1999 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2000 {
2001 struct cfq_data *cfqd = cic->key;
2002 struct cfq_queue *cfqq;
2003 unsigned long flags;
2004
2005 if (unlikely(!cfqd))
2006 return;
2007
2008 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2009
2010 cfqq = cic->cfqq[BLK_RW_ASYNC];
2011 if (cfqq) {
2012 struct cfq_queue *new_cfqq;
2013 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2014 GFP_ATOMIC);
2015 if (new_cfqq) {
2016 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2017 cfq_put_queue(cfqq);
2018 }
2019 }
2020
2021 cfqq = cic->cfqq[BLK_RW_SYNC];
2022 if (cfqq)
2023 cfq_mark_cfqq_prio_changed(cfqq);
2024
2025 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2026 }
2027
2028 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2029 {
2030 call_for_each_cic(ioc, changed_ioprio);
2031 ioc->ioprio_changed = 0;
2032 }
2033
2034 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2035 pid_t pid, bool is_sync)
2036 {
2037 RB_CLEAR_NODE(&cfqq->rb_node);
2038 RB_CLEAR_NODE(&cfqq->p_node);
2039 INIT_LIST_HEAD(&cfqq->fifo);
2040
2041 atomic_set(&cfqq->ref, 0);
2042 cfqq->cfqd = cfqd;
2043
2044 cfq_mark_cfqq_prio_changed(cfqq);
2045
2046 if (is_sync) {
2047 if (!cfq_class_idle(cfqq))
2048 cfq_mark_cfqq_idle_window(cfqq);
2049 cfq_mark_cfqq_sync(cfqq);
2050 }
2051 cfqq->pid = pid;
2052 }
2053
2054 static struct cfq_queue *
2055 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2056 struct io_context *ioc, gfp_t gfp_mask)
2057 {
2058 struct cfq_queue *cfqq, *new_cfqq = NULL;
2059 struct cfq_io_context *cic;
2060
2061 retry:
2062 cic = cfq_cic_lookup(cfqd, ioc);
2063 /* cic always exists here */
2064 cfqq = cic_to_cfqq(cic, is_sync);
2065
2066 /*
2067 * Always try a new alloc if we fell back to the OOM cfqq
2068 * originally, since it should just be a temporary situation.
2069 */
2070 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2071 cfqq = NULL;
2072 if (new_cfqq) {
2073 cfqq = new_cfqq;
2074 new_cfqq = NULL;
2075 } else if (gfp_mask & __GFP_WAIT) {
2076 spin_unlock_irq(cfqd->queue->queue_lock);
2077 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2078 gfp_mask | __GFP_ZERO,
2079 cfqd->queue->node);
2080 spin_lock_irq(cfqd->queue->queue_lock);
2081 if (new_cfqq)
2082 goto retry;
2083 } else {
2084 cfqq = kmem_cache_alloc_node(cfq_pool,
2085 gfp_mask | __GFP_ZERO,
2086 cfqd->queue->node);
2087 }
2088
2089 if (cfqq) {
2090 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2091 cfq_init_prio_data(cfqq, ioc);
2092 cfq_log_cfqq(cfqd, cfqq, "alloced");
2093 } else
2094 cfqq = &cfqd->oom_cfqq;
2095 }
2096
2097 if (new_cfqq)
2098 kmem_cache_free(cfq_pool, new_cfqq);
2099
2100 return cfqq;
2101 }
2102
2103 static struct cfq_queue **
2104 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2105 {
2106 switch (ioprio_class) {
2107 case IOPRIO_CLASS_RT:
2108 return &cfqd->async_cfqq[0][ioprio];
2109 case IOPRIO_CLASS_BE:
2110 return &cfqd->async_cfqq[1][ioprio];
2111 case IOPRIO_CLASS_IDLE:
2112 return &cfqd->async_idle_cfqq;
2113 default:
2114 BUG();
2115 }
2116 }
2117
2118 static struct cfq_queue *
2119 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2120 gfp_t gfp_mask)
2121 {
2122 const int ioprio = task_ioprio(ioc);
2123 const int ioprio_class = task_ioprio_class(ioc);
2124 struct cfq_queue **async_cfqq = NULL;
2125 struct cfq_queue *cfqq = NULL;
2126
2127 if (!is_sync) {
2128 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2129 cfqq = *async_cfqq;
2130 }
2131
2132 if (!cfqq)
2133 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2134
2135 /*
2136 * pin the queue now that it's allocated, scheduler exit will prune it
2137 */
2138 if (!is_sync && !(*async_cfqq)) {
2139 atomic_inc(&cfqq->ref);
2140 *async_cfqq = cfqq;
2141 }
2142
2143 atomic_inc(&cfqq->ref);
2144 return cfqq;
2145 }
2146
2147 /*
2148 * We drop cfq io contexts lazily, so we may find a dead one.
2149 */
2150 static void
2151 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2152 struct cfq_io_context *cic)
2153 {
2154 unsigned long flags;
2155
2156 WARN_ON(!list_empty(&cic->queue_list));
2157
2158 spin_lock_irqsave(&ioc->lock, flags);
2159
2160 BUG_ON(ioc->ioc_data == cic);
2161
2162 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2163 hlist_del_rcu(&cic->cic_list);
2164 spin_unlock_irqrestore(&ioc->lock, flags);
2165
2166 cfq_cic_free(cic);
2167 }
2168
2169 static struct cfq_io_context *
2170 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2171 {
2172 struct cfq_io_context *cic;
2173 unsigned long flags;
2174 void *k;
2175
2176 if (unlikely(!ioc))
2177 return NULL;
2178
2179 rcu_read_lock();
2180
2181 /*
2182 * we maintain a last-hit cache, to avoid browsing over the tree
2183 */
2184 cic = rcu_dereference(ioc->ioc_data);
2185 if (cic && cic->key == cfqd) {
2186 rcu_read_unlock();
2187 return cic;
2188 }
2189
2190 do {
2191 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2192 rcu_read_unlock();
2193 if (!cic)
2194 break;
2195 /* ->key must be copied to avoid race with cfq_exit_queue() */
2196 k = cic->key;
2197 if (unlikely(!k)) {
2198 cfq_drop_dead_cic(cfqd, ioc, cic);
2199 rcu_read_lock();
2200 continue;
2201 }
2202
2203 spin_lock_irqsave(&ioc->lock, flags);
2204 rcu_assign_pointer(ioc->ioc_data, cic);
2205 spin_unlock_irqrestore(&ioc->lock, flags);
2206 break;
2207 } while (1);
2208
2209 return cic;
2210 }
2211
2212 /*
2213 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2214 * the process specific cfq io context when entered from the block layer.
2215 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2216 */
2217 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2218 struct cfq_io_context *cic, gfp_t gfp_mask)
2219 {
2220 unsigned long flags;
2221 int ret;
2222
2223 ret = radix_tree_preload(gfp_mask);
2224 if (!ret) {
2225 cic->ioc = ioc;
2226 cic->key = cfqd;
2227
2228 spin_lock_irqsave(&ioc->lock, flags);
2229 ret = radix_tree_insert(&ioc->radix_root,
2230 (unsigned long) cfqd, cic);
2231 if (!ret)
2232 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2233 spin_unlock_irqrestore(&ioc->lock, flags);
2234
2235 radix_tree_preload_end();
2236
2237 if (!ret) {
2238 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2239 list_add(&cic->queue_list, &cfqd->cic_list);
2240 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2241 }
2242 }
2243
2244 if (ret)
2245 printk(KERN_ERR "cfq: cic link failed!\n");
2246
2247 return ret;
2248 }
2249
2250 /*
2251 * Setup general io context and cfq io context. There can be several cfq
2252 * io contexts per general io context, if this process is doing io to more
2253 * than one device managed by cfq.
2254 */
2255 static struct cfq_io_context *
2256 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2257 {
2258 struct io_context *ioc = NULL;
2259 struct cfq_io_context *cic;
2260
2261 might_sleep_if(gfp_mask & __GFP_WAIT);
2262
2263 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2264 if (!ioc)
2265 return NULL;
2266
2267 cic = cfq_cic_lookup(cfqd, ioc);
2268 if (cic)
2269 goto out;
2270
2271 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2272 if (cic == NULL)
2273 goto err;
2274
2275 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2276 goto err_free;
2277
2278 out:
2279 smp_read_barrier_depends();
2280 if (unlikely(ioc->ioprio_changed))
2281 cfq_ioc_set_ioprio(ioc);
2282
2283 return cic;
2284 err_free:
2285 cfq_cic_free(cic);
2286 err:
2287 put_io_context(ioc);
2288 return NULL;
2289 }
2290
2291 static void
2292 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2293 {
2294 unsigned long elapsed = jiffies - cic->last_end_request;
2295 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2296
2297 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2298 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2299 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2300 }
2301
2302 static void
2303 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2304 struct request *rq)
2305 {
2306 sector_t sdist;
2307 u64 total;
2308
2309 if (!cfqq->last_request_pos)
2310 sdist = 0;
2311 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2312 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2313 else
2314 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2315
2316 /*
2317 * Don't allow the seek distance to get too large from the
2318 * odd fragment, pagein, etc
2319 */
2320 if (cfqq->seek_samples <= 60) /* second&third seek */
2321 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2322 else
2323 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2324
2325 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2326 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2327 total = cfqq->seek_total + (cfqq->seek_samples/2);
2328 do_div(total, cfqq->seek_samples);
2329 cfqq->seek_mean = (sector_t)total;
2330
2331 /*
2332 * If this cfqq is shared between multiple processes, check to
2333 * make sure that those processes are still issuing I/Os within
2334 * the mean seek distance. If not, it may be time to break the
2335 * queues apart again.
2336 */
2337 if (cfq_cfqq_coop(cfqq)) {
2338 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2339 cfqq->seeky_start = jiffies;
2340 else if (!CFQQ_SEEKY(cfqq))
2341 cfqq->seeky_start = 0;
2342 }
2343 }
2344
2345 /*
2346 * Disable idle window if the process thinks too long or seeks so much that
2347 * it doesn't matter
2348 */
2349 static void
2350 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2351 struct cfq_io_context *cic)
2352 {
2353 int old_idle, enable_idle;
2354
2355 /*
2356 * Don't idle for async or idle io prio class
2357 */
2358 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2359 return;
2360
2361 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2362
2363 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2364 (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2365 enable_idle = 0;
2366 else if (sample_valid(cic->ttime_samples)) {
2367 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2368 enable_idle = 0;
2369 else
2370 enable_idle = 1;
2371 }
2372
2373 if (old_idle != enable_idle) {
2374 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2375 if (enable_idle)
2376 cfq_mark_cfqq_idle_window(cfqq);
2377 else
2378 cfq_clear_cfqq_idle_window(cfqq);
2379 }
2380 }
2381
2382 /*
2383 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2384 * no or if we aren't sure, a 1 will cause a preempt.
2385 */
2386 static bool
2387 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2388 struct request *rq)
2389 {
2390 struct cfq_queue *cfqq;
2391
2392 cfqq = cfqd->active_queue;
2393 if (!cfqq)
2394 return false;
2395
2396 if (cfq_slice_used(cfqq))
2397 return true;
2398
2399 if (cfq_class_idle(new_cfqq))
2400 return false;
2401
2402 if (cfq_class_idle(cfqq))
2403 return true;
2404
2405 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
2406 && new_cfqq->service_tree == cfqq->service_tree)
2407 return true;
2408
2409 /*
2410 * if the new request is sync, but the currently running queue is
2411 * not, let the sync request have priority.
2412 */
2413 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2414 return true;
2415
2416 /*
2417 * So both queues are sync. Let the new request get disk time if
2418 * it's a metadata request and the current queue is doing regular IO.
2419 */
2420 if (rq_is_meta(rq) && !cfqq->meta_pending)
2421 return true;
2422
2423 /*
2424 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2425 */
2426 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2427 return true;
2428
2429 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2430 return false;
2431
2432 /*
2433 * if this request is as-good as one we would expect from the
2434 * current cfqq, let it preempt
2435 */
2436 if (cfq_rq_close(cfqd, cfqq, rq))
2437 if (cfq_rq_close(cfqd, cfqq, rq) && (!cfq_cfqq_coop(new_cfqq) ||
2438 cfqd->busy_queues == 1)) {
2439 /*
2440 * Mark new queue coop_preempt, so its coop flag will not be
2441 * cleared when new queue gets scheduled at the very first time
2442 */
2443 cfq_mark_cfqq_coop_preempt(new_cfqq);
2444 cfq_mark_cfqq_coop(new_cfqq);
2445 return true;
2446 }
2447
2448 return false;
2449 }
2450
2451 /*
2452 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2453 * let it have half of its nominal slice.
2454 */
2455 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2456 {
2457 cfq_log_cfqq(cfqd, cfqq, "preempt");
2458 cfq_slice_expired(cfqd, 1);
2459
2460 /*
2461 * Put the new queue at the front of the of the current list,
2462 * so we know that it will be selected next.
2463 */
2464 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2465
2466 cfq_service_tree_add(cfqd, cfqq, 1);
2467
2468 cfqq->slice_end = 0;
2469 cfq_mark_cfqq_slice_new(cfqq);
2470 }
2471
2472 /*
2473 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2474 * something we should do about it
2475 */
2476 static void
2477 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2478 struct request *rq)
2479 {
2480 struct cfq_io_context *cic = RQ_CIC(rq);
2481
2482 cfqd->rq_queued++;
2483 if (rq_is_meta(rq))
2484 cfqq->meta_pending++;
2485
2486 cfq_update_io_thinktime(cfqd, cic);
2487 cfq_update_io_seektime(cfqd, cfqq, rq);
2488 cfq_update_idle_window(cfqd, cfqq, cic);
2489
2490 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2491
2492 if (cfqq == cfqd->active_queue) {
2493 /*
2494 * Remember that we saw a request from this process, but
2495 * don't start queuing just yet. Otherwise we risk seeing lots
2496 * of tiny requests, because we disrupt the normal plugging
2497 * and merging. If the request is already larger than a single
2498 * page, let it rip immediately. For that case we assume that
2499 * merging is already done. Ditto for a busy system that
2500 * has other work pending, don't risk delaying until the
2501 * idle timer unplug to continue working.
2502 */
2503 if (cfq_cfqq_wait_request(cfqq)) {
2504 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2505 cfqd->busy_queues > 1) {
2506 del_timer(&cfqd->idle_slice_timer);
2507 __blk_run_queue(cfqd->queue);
2508 }
2509 cfq_mark_cfqq_must_dispatch(cfqq);
2510 }
2511 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2512 /*
2513 * not the active queue - expire current slice if it is
2514 * idle and has expired it's mean thinktime or this new queue
2515 * has some old slice time left and is of higher priority or
2516 * this new queue is RT and the current one is BE
2517 */
2518 cfq_preempt_queue(cfqd, cfqq);
2519 __blk_run_queue(cfqd->queue);
2520 }
2521 }
2522
2523 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2524 {
2525 struct cfq_data *cfqd = q->elevator->elevator_data;
2526 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2527
2528 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2529 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2530
2531 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2532 list_add_tail(&rq->queuelist, &cfqq->fifo);
2533 cfq_add_rq_rb(rq);
2534
2535 cfq_rq_enqueued(cfqd, cfqq, rq);
2536 }
2537
2538 /*
2539 * Update hw_tag based on peak queue depth over 50 samples under
2540 * sufficient load.
2541 */
2542 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2543 {
2544 struct cfq_queue *cfqq = cfqd->active_queue;
2545
2546 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2547 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2548
2549 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2550 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2551 return;
2552
2553 /*
2554 * If active queue hasn't enough requests and can idle, cfq might not
2555 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2556 * case
2557 */
2558 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2559 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2560 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2561 return;
2562
2563 if (cfqd->hw_tag_samples++ < 50)
2564 return;
2565
2566 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2567 cfqd->hw_tag = 1;
2568 else
2569 cfqd->hw_tag = 0;
2570
2571 cfqd->hw_tag_samples = 0;
2572 cfqd->rq_in_driver_peak = 0;
2573 }
2574
2575 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2576 {
2577 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2578 struct cfq_data *cfqd = cfqq->cfqd;
2579 const int sync = rq_is_sync(rq);
2580 unsigned long now;
2581
2582 now = jiffies;
2583 cfq_log_cfqq(cfqd, cfqq, "complete");
2584
2585 cfq_update_hw_tag(cfqd);
2586
2587 WARN_ON(!cfqd->rq_in_driver[sync]);
2588 WARN_ON(!cfqq->dispatched);
2589 cfqd->rq_in_driver[sync]--;
2590 cfqq->dispatched--;
2591
2592 if (cfq_cfqq_sync(cfqq))
2593 cfqd->sync_flight--;
2594
2595 if (sync) {
2596 RQ_CIC(rq)->last_end_request = now;
2597 cfqd->last_end_sync_rq = now;
2598 }
2599
2600 /*
2601 * If this is the active queue, check if it needs to be expired,
2602 * or if we want to idle in case it has no pending requests.
2603 */
2604 if (cfqd->active_queue == cfqq) {
2605 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2606
2607 if (cfq_cfqq_slice_new(cfqq)) {
2608 cfq_set_prio_slice(cfqd, cfqq);
2609 cfq_clear_cfqq_slice_new(cfqq);
2610 }
2611 /*
2612 * If there are no requests waiting in this queue, and
2613 * there are other queues ready to issue requests, AND
2614 * those other queues are issuing requests within our
2615 * mean seek distance, give them a chance to run instead
2616 * of idling.
2617 */
2618 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2619 cfq_slice_expired(cfqd, 1);
2620 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2621 sync && !rq_noidle(rq))
2622 cfq_arm_slice_timer(cfqd);
2623 }
2624
2625 if (!rq_in_driver(cfqd))
2626 cfq_schedule_dispatch(cfqd);
2627 }
2628
2629 /*
2630 * we temporarily boost lower priority queues if they are holding fs exclusive
2631 * resources. they are boosted to normal prio (CLASS_BE/4)
2632 */
2633 static void cfq_prio_boost(struct cfq_queue *cfqq)
2634 {
2635 if (has_fs_excl()) {
2636 /*
2637 * boost idle prio on transactions that would lock out other
2638 * users of the filesystem
2639 */
2640 if (cfq_class_idle(cfqq))
2641 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2642 if (cfqq->ioprio > IOPRIO_NORM)
2643 cfqq->ioprio = IOPRIO_NORM;
2644 } else {
2645 /*
2646 * unboost the queue (if needed)
2647 */
2648 cfqq->ioprio_class = cfqq->org_ioprio_class;
2649 cfqq->ioprio = cfqq->org_ioprio;
2650 }
2651 }
2652
2653 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2654 {
2655 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2656 cfq_mark_cfqq_must_alloc_slice(cfqq);
2657 return ELV_MQUEUE_MUST;
2658 }
2659
2660 return ELV_MQUEUE_MAY;
2661 }
2662
2663 static int cfq_may_queue(struct request_queue *q, int rw)
2664 {
2665 struct cfq_data *cfqd = q->elevator->elevator_data;
2666 struct task_struct *tsk = current;
2667 struct cfq_io_context *cic;
2668 struct cfq_queue *cfqq;
2669
2670 /*
2671 * don't force setup of a queue from here, as a call to may_queue
2672 * does not necessarily imply that a request actually will be queued.
2673 * so just lookup a possibly existing queue, or return 'may queue'
2674 * if that fails
2675 */
2676 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2677 if (!cic)
2678 return ELV_MQUEUE_MAY;
2679
2680 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2681 if (cfqq) {
2682 cfq_init_prio_data(cfqq, cic->ioc);
2683 cfq_prio_boost(cfqq);
2684
2685 return __cfq_may_queue(cfqq);
2686 }
2687
2688 return ELV_MQUEUE_MAY;
2689 }
2690
2691 /*
2692 * queue lock held here
2693 */
2694 static void cfq_put_request(struct request *rq)
2695 {
2696 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2697
2698 if (cfqq) {
2699 const int rw = rq_data_dir(rq);
2700
2701 BUG_ON(!cfqq->allocated[rw]);
2702 cfqq->allocated[rw]--;
2703
2704 put_io_context(RQ_CIC(rq)->ioc);
2705
2706 rq->elevator_private = NULL;
2707 rq->elevator_private2 = NULL;
2708
2709 cfq_put_queue(cfqq);
2710 }
2711 }
2712
2713 static struct cfq_queue *
2714 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2715 struct cfq_queue *cfqq)
2716 {
2717 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2718 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2719 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2720 cfq_put_queue(cfqq);
2721 return cic_to_cfqq(cic, 1);
2722 }
2723
2724 static int should_split_cfqq(struct cfq_queue *cfqq)
2725 {
2726 if (cfqq->seeky_start &&
2727 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2728 return 1;
2729 return 0;
2730 }
2731
2732 /*
2733 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2734 * was the last process referring to said cfqq.
2735 */
2736 static struct cfq_queue *
2737 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2738 {
2739 if (cfqq_process_refs(cfqq) == 1) {
2740 cfqq->seeky_start = 0;
2741 cfqq->pid = current->pid;
2742 cfq_clear_cfqq_coop(cfqq);
2743 return cfqq;
2744 }
2745
2746 cic_set_cfqq(cic, NULL, 1);
2747 cfq_put_queue(cfqq);
2748 return NULL;
2749 }
2750 /*
2751 * Allocate cfq data structures associated with this request.
2752 */
2753 static int
2754 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2755 {
2756 struct cfq_data *cfqd = q->elevator->elevator_data;
2757 struct cfq_io_context *cic;
2758 const int rw = rq_data_dir(rq);
2759 const bool is_sync = rq_is_sync(rq);
2760 struct cfq_queue *cfqq;
2761 unsigned long flags;
2762
2763 might_sleep_if(gfp_mask & __GFP_WAIT);
2764
2765 cic = cfq_get_io_context(cfqd, gfp_mask);
2766
2767 spin_lock_irqsave(q->queue_lock, flags);
2768
2769 if (!cic)
2770 goto queue_fail;
2771
2772 new_queue:
2773 cfqq = cic_to_cfqq(cic, is_sync);
2774 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2775 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2776 cic_set_cfqq(cic, cfqq, is_sync);
2777 } else {
2778 /*
2779 * If the queue was seeky for too long, break it apart.
2780 */
2781 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2782 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2783 cfqq = split_cfqq(cic, cfqq);
2784 if (!cfqq)
2785 goto new_queue;
2786 }
2787
2788 /*
2789 * Check to see if this queue is scheduled to merge with
2790 * another, closely cooperating queue. The merging of
2791 * queues happens here as it must be done in process context.
2792 * The reference on new_cfqq was taken in merge_cfqqs.
2793 */
2794 if (cfqq->new_cfqq)
2795 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2796 }
2797
2798 cfqq->allocated[rw]++;
2799 atomic_inc(&cfqq->ref);
2800
2801 spin_unlock_irqrestore(q->queue_lock, flags);
2802
2803 rq->elevator_private = cic;
2804 rq->elevator_private2 = cfqq;
2805 return 0;
2806
2807 queue_fail:
2808 if (cic)
2809 put_io_context(cic->ioc);
2810
2811 cfq_schedule_dispatch(cfqd);
2812 spin_unlock_irqrestore(q->queue_lock, flags);
2813 cfq_log(cfqd, "set_request fail");
2814 return 1;
2815 }
2816
2817 static void cfq_kick_queue(struct work_struct *work)
2818 {
2819 struct cfq_data *cfqd =
2820 container_of(work, struct cfq_data, unplug_work);
2821 struct request_queue *q = cfqd->queue;
2822
2823 spin_lock_irq(q->queue_lock);
2824 __blk_run_queue(cfqd->queue);
2825 spin_unlock_irq(q->queue_lock);
2826 }
2827
2828 /*
2829 * Timer running if the active_queue is currently idling inside its time slice
2830 */
2831 static void cfq_idle_slice_timer(unsigned long data)
2832 {
2833 struct cfq_data *cfqd = (struct cfq_data *) data;
2834 struct cfq_queue *cfqq;
2835 unsigned long flags;
2836 int timed_out = 1;
2837
2838 cfq_log(cfqd, "idle timer fired");
2839
2840 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2841
2842 cfqq = cfqd->active_queue;
2843 if (cfqq) {
2844 timed_out = 0;
2845
2846 /*
2847 * We saw a request before the queue expired, let it through
2848 */
2849 if (cfq_cfqq_must_dispatch(cfqq))
2850 goto out_kick;
2851
2852 /*
2853 * expired
2854 */
2855 if (cfq_slice_used(cfqq))
2856 goto expire;
2857
2858 /*
2859 * only expire and reinvoke request handler, if there are
2860 * other queues with pending requests
2861 */
2862 if (!cfqd->busy_queues)
2863 goto out_cont;
2864
2865 /*
2866 * not expired and it has a request pending, let it dispatch
2867 */
2868 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2869 goto out_kick;
2870 }
2871 expire:
2872 cfq_slice_expired(cfqd, timed_out);
2873 out_kick:
2874 cfq_schedule_dispatch(cfqd);
2875 out_cont:
2876 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2877 }
2878
2879 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2880 {
2881 del_timer_sync(&cfqd->idle_slice_timer);
2882 cancel_work_sync(&cfqd->unplug_work);
2883 }
2884
2885 static void cfq_put_async_queues(struct cfq_data *cfqd)
2886 {
2887 int i;
2888
2889 for (i = 0; i < IOPRIO_BE_NR; i++) {
2890 if (cfqd->async_cfqq[0][i])
2891 cfq_put_queue(cfqd->async_cfqq[0][i]);
2892 if (cfqd->async_cfqq[1][i])
2893 cfq_put_queue(cfqd->async_cfqq[1][i]);
2894 }
2895
2896 if (cfqd->async_idle_cfqq)
2897 cfq_put_queue(cfqd->async_idle_cfqq);
2898 }
2899
2900 static void cfq_exit_queue(struct elevator_queue *e)
2901 {
2902 struct cfq_data *cfqd = e->elevator_data;
2903 struct request_queue *q = cfqd->queue;
2904
2905 cfq_shutdown_timer_wq(cfqd);
2906
2907 spin_lock_irq(q->queue_lock);
2908
2909 if (cfqd->active_queue)
2910 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2911
2912 while (!list_empty(&cfqd->cic_list)) {
2913 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2914 struct cfq_io_context,
2915 queue_list);
2916
2917 __cfq_exit_single_io_context(cfqd, cic);
2918 }
2919
2920 cfq_put_async_queues(cfqd);
2921
2922 spin_unlock_irq(q->queue_lock);
2923
2924 cfq_shutdown_timer_wq(cfqd);
2925
2926 kfree(cfqd);
2927 }
2928
2929 static void *cfq_init_queue(struct request_queue *q)
2930 {
2931 struct cfq_data *cfqd;
2932 int i, j;
2933
2934 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2935 if (!cfqd)
2936 return NULL;
2937
2938 for (i = 0; i < 2; ++i)
2939 for (j = 0; j < 3; ++j)
2940 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2941 cfqd->service_tree_idle = CFQ_RB_ROOT;
2942
2943 /*
2944 * Not strictly needed (since RB_ROOT just clears the node and we
2945 * zeroed cfqd on alloc), but better be safe in case someone decides
2946 * to add magic to the rb code
2947 */
2948 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2949 cfqd->prio_trees[i] = RB_ROOT;
2950
2951 /*
2952 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2953 * Grab a permanent reference to it, so that the normal code flow
2954 * will not attempt to free it.
2955 */
2956 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2957 atomic_inc(&cfqd->oom_cfqq.ref);
2958
2959 INIT_LIST_HEAD(&cfqd->cic_list);
2960
2961 cfqd->queue = q;
2962
2963 init_timer(&cfqd->idle_slice_timer);
2964 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2965 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2966
2967 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2968
2969 cfqd->cfq_quantum = cfq_quantum;
2970 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2971 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2972 cfqd->cfq_back_max = cfq_back_max;
2973 cfqd->cfq_back_penalty = cfq_back_penalty;
2974 cfqd->cfq_slice[0] = cfq_slice_async;
2975 cfqd->cfq_slice[1] = cfq_slice_sync;
2976 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2977 cfqd->cfq_slice_idle = cfq_slice_idle;
2978 cfqd->cfq_latency = 1;
2979 cfqd->hw_tag = 1;
2980 cfqd->last_end_sync_rq = jiffies;
2981 return cfqd;
2982 }
2983
2984 static void cfq_slab_kill(void)
2985 {
2986 /*
2987 * Caller already ensured that pending RCU callbacks are completed,
2988 * so we should have no busy allocations at this point.
2989 */
2990 if (cfq_pool)
2991 kmem_cache_destroy(cfq_pool);
2992 if (cfq_ioc_pool)
2993 kmem_cache_destroy(cfq_ioc_pool);
2994 }
2995
2996 static int __init cfq_slab_setup(void)
2997 {
2998 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2999 if (!cfq_pool)
3000 goto fail;
3001
3002 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3003 if (!cfq_ioc_pool)
3004 goto fail;
3005
3006 return 0;
3007 fail:
3008 cfq_slab_kill();
3009 return -ENOMEM;
3010 }
3011
3012 /*
3013 * sysfs parts below -->
3014 */
3015 static ssize_t
3016 cfq_var_show(unsigned int var, char *page)
3017 {
3018 return sprintf(page, "%d\n", var);
3019 }
3020
3021 static ssize_t
3022 cfq_var_store(unsigned int *var, const char *page, size_t count)
3023 {
3024 char *p = (char *) page;
3025
3026 *var = simple_strtoul(p, &p, 10);
3027 return count;
3028 }
3029
3030 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3031 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3032 { \
3033 struct cfq_data *cfqd = e->elevator_data; \
3034 unsigned int __data = __VAR; \
3035 if (__CONV) \
3036 __data = jiffies_to_msecs(__data); \
3037 return cfq_var_show(__data, (page)); \
3038 }
3039 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3040 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3041 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3042 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3043 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3044 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3045 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3046 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3047 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3048 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3049 #undef SHOW_FUNCTION
3050
3051 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3052 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3053 { \
3054 struct cfq_data *cfqd = e->elevator_data; \
3055 unsigned int __data; \
3056 int ret = cfq_var_store(&__data, (page), count); \
3057 if (__data < (MIN)) \
3058 __data = (MIN); \
3059 else if (__data > (MAX)) \
3060 __data = (MAX); \
3061 if (__CONV) \
3062 *(__PTR) = msecs_to_jiffies(__data); \
3063 else \
3064 *(__PTR) = __data; \
3065 return ret; \
3066 }
3067 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3068 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3069 UINT_MAX, 1);
3070 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3071 UINT_MAX, 1);
3072 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3073 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3074 UINT_MAX, 0);
3075 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3076 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3077 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3078 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3079 UINT_MAX, 0);
3080 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3081 #undef STORE_FUNCTION
3082
3083 #define CFQ_ATTR(name) \
3084 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3085
3086 static struct elv_fs_entry cfq_attrs[] = {
3087 CFQ_ATTR(quantum),
3088 CFQ_ATTR(fifo_expire_sync),
3089 CFQ_ATTR(fifo_expire_async),
3090 CFQ_ATTR(back_seek_max),
3091 CFQ_ATTR(back_seek_penalty),
3092 CFQ_ATTR(slice_sync),
3093 CFQ_ATTR(slice_async),
3094 CFQ_ATTR(slice_async_rq),
3095 CFQ_ATTR(slice_idle),
3096 CFQ_ATTR(low_latency),
3097 __ATTR_NULL
3098 };
3099
3100 static struct elevator_type iosched_cfq = {
3101 .ops = {
3102 .elevator_merge_fn = cfq_merge,
3103 .elevator_merged_fn = cfq_merged_request,
3104 .elevator_merge_req_fn = cfq_merged_requests,
3105 .elevator_allow_merge_fn = cfq_allow_merge,
3106 .elevator_dispatch_fn = cfq_dispatch_requests,
3107 .elevator_add_req_fn = cfq_insert_request,
3108 .elevator_activate_req_fn = cfq_activate_request,
3109 .elevator_deactivate_req_fn = cfq_deactivate_request,
3110 .elevator_queue_empty_fn = cfq_queue_empty,
3111 .elevator_completed_req_fn = cfq_completed_request,
3112 .elevator_former_req_fn = elv_rb_former_request,
3113 .elevator_latter_req_fn = elv_rb_latter_request,
3114 .elevator_set_req_fn = cfq_set_request,
3115 .elevator_put_req_fn = cfq_put_request,
3116 .elevator_may_queue_fn = cfq_may_queue,
3117 .elevator_init_fn = cfq_init_queue,
3118 .elevator_exit_fn = cfq_exit_queue,
3119 .trim = cfq_free_io_context,
3120 },
3121 .elevator_attrs = cfq_attrs,
3122 .elevator_name = "cfq",
3123 .elevator_owner = THIS_MODULE,
3124 };
3125
3126 static int __init cfq_init(void)
3127 {
3128 /*
3129 * could be 0 on HZ < 1000 setups
3130 */
3131 if (!cfq_slice_async)
3132 cfq_slice_async = 1;
3133 if (!cfq_slice_idle)
3134 cfq_slice_idle = 1;
3135
3136 if (cfq_slab_setup())
3137 return -ENOMEM;
3138
3139 elv_register(&iosched_cfq);
3140
3141 return 0;
3142 }
3143
3144 static void __exit cfq_exit(void)
3145 {
3146 DECLARE_COMPLETION_ONSTACK(all_gone);
3147 elv_unregister(&iosched_cfq);
3148 ioc_gone = &all_gone;
3149 /* ioc_gone's update must be visible before reading ioc_count */
3150 smp_wmb();
3151
3152 /*
3153 * this also protects us from entering cfq_slab_kill() with
3154 * pending RCU callbacks
3155 */
3156 if (elv_ioc_count_read(cfq_ioc_count))
3157 wait_for_completion(&all_gone);
3158 cfq_slab_kill();
3159 }
3160
3161 module_init(cfq_init);
3162 module_exit(cfq_exit);
3163
3164 MODULE_AUTHOR("Jens Axboe");
3165 MODULE_LICENSE("GPL");
3166 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.11677 seconds and 6 git commands to generate.