blkcg: s/CFQ_WEIGHT_*/CFQ_WEIGHT_LEGACY_*/
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 unsigned long saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319 * Per block device queue structure
320 */
321 struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 unsigned long workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct timer_list idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_fifo_expire[2];
378 unsigned int cfq_back_penalty;
379 unsigned int cfq_back_max;
380 unsigned int cfq_slice[2];
381 unsigned int cfq_slice_async_rq;
382 unsigned int cfq_slice_idle;
383 unsigned int cfq_group_idle;
384 unsigned int cfq_latency;
385 unsigned int cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 unsigned long last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401 {
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429 { \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431 } \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433 { \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435 } \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437 { \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467 { \
468 stats->flags |= (1 << CFQG_stats_##name); \
469 } \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471 { \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473 } \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475 { \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477 } \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline void cfqg_get(struct cfq_group *cfqg)
636 {
637 return blkg_get(cfqg_to_blkg(cfqg));
638 }
639
640 static inline void cfqg_put(struct cfq_group *cfqg)
641 {
642 return blkg_put(cfqg_to_blkg(cfqg));
643 }
644
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
646 char __pbuf[128]; \
647 \
648 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
649 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
651 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
652 __pbuf, ##args); \
653 } while (0)
654
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
656 char __pbuf[128]; \
657 \
658 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
659 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
660 } while (0)
661
662 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
663 struct cfq_group *curr_cfqg, int rw)
664 {
665 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
666 cfqg_stats_end_empty_time(&cfqg->stats);
667 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
668 }
669
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671 unsigned long time, unsigned long unaccounted_time)
672 {
673 blkg_stat_add(&cfqg->stats.time, time);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
676 #endif
677 }
678
679 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
680 {
681 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
682 }
683
684 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
685 {
686 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
687 }
688
689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690 uint64_t start_time, uint64_t io_start_time, int rw)
691 {
692 struct cfqg_stats *stats = &cfqg->stats;
693 unsigned long long now = sched_clock();
694
695 if (time_after64(now, io_start_time))
696 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
697 if (time_after64(io_start_time, start_time))
698 blkg_rwstat_add(&stats->wait_time, rw,
699 io_start_time - start_time);
700 }
701
702 /* @stats = 0 */
703 static void cfqg_stats_reset(struct cfqg_stats *stats)
704 {
705 /* queued stats shouldn't be cleared */
706 blkg_rwstat_reset(&stats->merged);
707 blkg_rwstat_reset(&stats->service_time);
708 blkg_rwstat_reset(&stats->wait_time);
709 blkg_stat_reset(&stats->time);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711 blkg_stat_reset(&stats->unaccounted_time);
712 blkg_stat_reset(&stats->avg_queue_size_sum);
713 blkg_stat_reset(&stats->avg_queue_size_samples);
714 blkg_stat_reset(&stats->dequeue);
715 blkg_stat_reset(&stats->group_wait_time);
716 blkg_stat_reset(&stats->idle_time);
717 blkg_stat_reset(&stats->empty_time);
718 #endif
719 }
720
721 /* @to += @from */
722 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
723 {
724 /* queued stats shouldn't be cleared */
725 blkg_rwstat_add_aux(&to->merged, &from->merged);
726 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
727 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
728 blkg_stat_add_aux(&from->time, &from->time);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
731 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
732 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
733 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
734 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
735 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
736 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
737 #endif
738 }
739
740 /*
741 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742 * recursive stats can still account for the amount used by this cfqg after
743 * it's gone.
744 */
745 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
746 {
747 struct cfq_group *parent = cfqg_parent(cfqg);
748
749 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
750
751 if (unlikely(!parent))
752 return;
753
754 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
755 cfqg_stats_reset(&cfqg->stats);
756 }
757
758 #else /* CONFIG_CFQ_GROUP_IOSCHED */
759
760 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
761 static inline void cfqg_get(struct cfq_group *cfqg) { }
762 static inline void cfqg_put(struct cfq_group *cfqg) { }
763
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
765 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
766 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
767 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
768 ##args)
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
770
771 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
772 struct cfq_group *curr_cfqg, int rw) { }
773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
774 unsigned long time, unsigned long unaccounted_time) { }
775 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
776 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
777 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
778 uint64_t start_time, uint64_t io_start_time, int rw) { }
779
780 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
781
782 #define cfq_log(cfqd, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
784
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787 for (i = 0; i <= IDLE_WORKLOAD; i++) \
788 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789 : &cfqg->service_tree_idle; \
790 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791 (i == IDLE_WORKLOAD && j == 0); \
792 j++, st = i < IDLE_WORKLOAD ? \
793 &cfqg->service_trees[i][j]: NULL) \
794
795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796 struct cfq_ttime *ttime, bool group_idle)
797 {
798 unsigned long slice;
799 if (!sample_valid(ttime->ttime_samples))
800 return false;
801 if (group_idle)
802 slice = cfqd->cfq_group_idle;
803 else
804 slice = cfqd->cfq_slice_idle;
805 return ttime->ttime_mean > slice;
806 }
807
808 static inline bool iops_mode(struct cfq_data *cfqd)
809 {
810 /*
811 * If we are not idling on queues and it is a NCQ drive, parallel
812 * execution of requests is on and measuring time is not possible
813 * in most of the cases until and unless we drive shallower queue
814 * depths and that becomes a performance bottleneck. In such cases
815 * switch to start providing fairness in terms of number of IOs.
816 */
817 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
818 return true;
819 else
820 return false;
821 }
822
823 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
824 {
825 if (cfq_class_idle(cfqq))
826 return IDLE_WORKLOAD;
827 if (cfq_class_rt(cfqq))
828 return RT_WORKLOAD;
829 return BE_WORKLOAD;
830 }
831
832
833 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
834 {
835 if (!cfq_cfqq_sync(cfqq))
836 return ASYNC_WORKLOAD;
837 if (!cfq_cfqq_idle_window(cfqq))
838 return SYNC_NOIDLE_WORKLOAD;
839 return SYNC_WORKLOAD;
840 }
841
842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
843 struct cfq_data *cfqd,
844 struct cfq_group *cfqg)
845 {
846 if (wl_class == IDLE_WORKLOAD)
847 return cfqg->service_tree_idle.count;
848
849 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
850 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
851 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 }
853
854 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
855 struct cfq_group *cfqg)
856 {
857 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
858 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 }
860
861 static void cfq_dispatch_insert(struct request_queue *, struct request *);
862 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
863 struct cfq_io_cq *cic, struct bio *bio);
864
865 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 {
867 /* cic->icq is the first member, %NULL will convert to %NULL */
868 return container_of(icq, struct cfq_io_cq, icq);
869 }
870
871 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
872 struct io_context *ioc)
873 {
874 if (ioc)
875 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
876 return NULL;
877 }
878
879 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 {
881 return cic->cfqq[is_sync];
882 }
883
884 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
885 bool is_sync)
886 {
887 cic->cfqq[is_sync] = cfqq;
888 }
889
890 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 {
892 return cic->icq.q->elevator->elevator_data;
893 }
894
895 /*
896 * We regard a request as SYNC, if it's either a read or has the SYNC bit
897 * set (in which case it could also be direct WRITE).
898 */
899 static inline bool cfq_bio_sync(struct bio *bio)
900 {
901 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
902 }
903
904 /*
905 * scheduler run of queue, if there are requests pending and no one in the
906 * driver that will restart queueing
907 */
908 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 {
910 if (cfqd->busy_queues) {
911 cfq_log(cfqd, "schedule dispatch");
912 kblockd_schedule_work(&cfqd->unplug_work);
913 }
914 }
915
916 /*
917 * Scale schedule slice based on io priority. Use the sync time slice only
918 * if a queue is marked sync and has sync io queued. A sync queue with async
919 * io only, should not get full sync slice length.
920 */
921 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
922 unsigned short prio)
923 {
924 const int base_slice = cfqd->cfq_slice[sync];
925
926 WARN_ON(prio >= IOPRIO_BE_NR);
927
928 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
929 }
930
931 static inline int
932 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 {
934 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
935 }
936
937 /**
938 * cfqg_scale_charge - scale disk time charge according to cfqg weight
939 * @charge: disk time being charged
940 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 *
942 * Scale @charge according to @vfraction, which is in range (0, 1]. The
943 * scaling is inversely proportional.
944 *
945 * scaled = charge / vfraction
946 *
947 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 */
949 static inline u64 cfqg_scale_charge(unsigned long charge,
950 unsigned int vfraction)
951 {
952 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
953
954 /* charge / vfraction */
955 c <<= CFQ_SERVICE_SHIFT;
956 do_div(c, vfraction);
957 return c;
958 }
959
960 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 {
962 s64 delta = (s64)(vdisktime - min_vdisktime);
963 if (delta > 0)
964 min_vdisktime = vdisktime;
965
966 return min_vdisktime;
967 }
968
969 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 {
971 s64 delta = (s64)(vdisktime - min_vdisktime);
972 if (delta < 0)
973 min_vdisktime = vdisktime;
974
975 return min_vdisktime;
976 }
977
978 static void update_min_vdisktime(struct cfq_rb_root *st)
979 {
980 struct cfq_group *cfqg;
981
982 if (st->left) {
983 cfqg = rb_entry_cfqg(st->left);
984 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
985 cfqg->vdisktime);
986 }
987 }
988
989 /*
990 * get averaged number of queues of RT/BE priority.
991 * average is updated, with a formula that gives more weight to higher numbers,
992 * to quickly follows sudden increases and decrease slowly
993 */
994
995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
996 struct cfq_group *cfqg, bool rt)
997 {
998 unsigned min_q, max_q;
999 unsigned mult = cfq_hist_divisor - 1;
1000 unsigned round = cfq_hist_divisor / 2;
1001 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002
1003 min_q = min(cfqg->busy_queues_avg[rt], busy);
1004 max_q = max(cfqg->busy_queues_avg[rt], busy);
1005 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1006 cfq_hist_divisor;
1007 return cfqg->busy_queues_avg[rt];
1008 }
1009
1010 static inline unsigned
1011 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 {
1013 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1014 }
1015
1016 static inline unsigned
1017 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 {
1019 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1020 if (cfqd->cfq_latency) {
1021 /*
1022 * interested queues (we consider only the ones with the same
1023 * priority class in the cfq group)
1024 */
1025 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1026 cfq_class_rt(cfqq));
1027 unsigned sync_slice = cfqd->cfq_slice[1];
1028 unsigned expect_latency = sync_slice * iq;
1029 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030
1031 if (expect_latency > group_slice) {
1032 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1033 /* scale low_slice according to IO priority
1034 * and sync vs async */
1035 unsigned low_slice =
1036 min(slice, base_low_slice * slice / sync_slice);
1037 /* the adapted slice value is scaled to fit all iqs
1038 * into the target latency */
1039 slice = max(slice * group_slice / expect_latency,
1040 low_slice);
1041 }
1042 }
1043 return slice;
1044 }
1045
1046 static inline void
1047 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 {
1049 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050
1051 cfqq->slice_start = jiffies;
1052 cfqq->slice_end = jiffies + slice;
1053 cfqq->allocated_slice = slice;
1054 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1055 }
1056
1057 /*
1058 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059 * isn't valid until the first request from the dispatch is activated
1060 * and the slice time set.
1061 */
1062 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 {
1064 if (cfq_cfqq_slice_new(cfqq))
1065 return false;
1066 if (time_before(jiffies, cfqq->slice_end))
1067 return false;
1068
1069 return true;
1070 }
1071
1072 /*
1073 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074 * We choose the request that is closest to the head right now. Distance
1075 * behind the head is penalized and only allowed to a certain extent.
1076 */
1077 static struct request *
1078 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 {
1080 sector_t s1, s2, d1 = 0, d2 = 0;
1081 unsigned long back_max;
1082 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1084 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085
1086 if (rq1 == NULL || rq1 == rq2)
1087 return rq2;
1088 if (rq2 == NULL)
1089 return rq1;
1090
1091 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1092 return rq_is_sync(rq1) ? rq1 : rq2;
1093
1094 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1095 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096
1097 s1 = blk_rq_pos(rq1);
1098 s2 = blk_rq_pos(rq2);
1099
1100 /*
1101 * by definition, 1KiB is 2 sectors
1102 */
1103 back_max = cfqd->cfq_back_max * 2;
1104
1105 /*
1106 * Strict one way elevator _except_ in the case where we allow
1107 * short backward seeks which are biased as twice the cost of a
1108 * similar forward seek.
1109 */
1110 if (s1 >= last)
1111 d1 = s1 - last;
1112 else if (s1 + back_max >= last)
1113 d1 = (last - s1) * cfqd->cfq_back_penalty;
1114 else
1115 wrap |= CFQ_RQ1_WRAP;
1116
1117 if (s2 >= last)
1118 d2 = s2 - last;
1119 else if (s2 + back_max >= last)
1120 d2 = (last - s2) * cfqd->cfq_back_penalty;
1121 else
1122 wrap |= CFQ_RQ2_WRAP;
1123
1124 /* Found required data */
1125
1126 /*
1127 * By doing switch() on the bit mask "wrap" we avoid having to
1128 * check two variables for all permutations: --> faster!
1129 */
1130 switch (wrap) {
1131 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1132 if (d1 < d2)
1133 return rq1;
1134 else if (d2 < d1)
1135 return rq2;
1136 else {
1137 if (s1 >= s2)
1138 return rq1;
1139 else
1140 return rq2;
1141 }
1142
1143 case CFQ_RQ2_WRAP:
1144 return rq1;
1145 case CFQ_RQ1_WRAP:
1146 return rq2;
1147 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1148 default:
1149 /*
1150 * Since both rqs are wrapped,
1151 * start with the one that's further behind head
1152 * (--> only *one* back seek required),
1153 * since back seek takes more time than forward.
1154 */
1155 if (s1 <= s2)
1156 return rq1;
1157 else
1158 return rq2;
1159 }
1160 }
1161
1162 /*
1163 * The below is leftmost cache rbtree addon
1164 */
1165 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 {
1167 /* Service tree is empty */
1168 if (!root->count)
1169 return NULL;
1170
1171 if (!root->left)
1172 root->left = rb_first(&root->rb);
1173
1174 if (root->left)
1175 return rb_entry(root->left, struct cfq_queue, rb_node);
1176
1177 return NULL;
1178 }
1179
1180 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 {
1182 if (!root->left)
1183 root->left = rb_first(&root->rb);
1184
1185 if (root->left)
1186 return rb_entry_cfqg(root->left);
1187
1188 return NULL;
1189 }
1190
1191 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 {
1193 rb_erase(n, root);
1194 RB_CLEAR_NODE(n);
1195 }
1196
1197 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 {
1199 if (root->left == n)
1200 root->left = NULL;
1201 rb_erase_init(n, &root->rb);
1202 --root->count;
1203 }
1204
1205 /*
1206 * would be nice to take fifo expire time into account as well
1207 */
1208 static struct request *
1209 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1210 struct request *last)
1211 {
1212 struct rb_node *rbnext = rb_next(&last->rb_node);
1213 struct rb_node *rbprev = rb_prev(&last->rb_node);
1214 struct request *next = NULL, *prev = NULL;
1215
1216 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217
1218 if (rbprev)
1219 prev = rb_entry_rq(rbprev);
1220
1221 if (rbnext)
1222 next = rb_entry_rq(rbnext);
1223 else {
1224 rbnext = rb_first(&cfqq->sort_list);
1225 if (rbnext && rbnext != &last->rb_node)
1226 next = rb_entry_rq(rbnext);
1227 }
1228
1229 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1230 }
1231
1232 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1233 struct cfq_queue *cfqq)
1234 {
1235 /*
1236 * just an approximation, should be ok.
1237 */
1238 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1239 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1240 }
1241
1242 static inline s64
1243 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 {
1245 return cfqg->vdisktime - st->min_vdisktime;
1246 }
1247
1248 static void
1249 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 {
1251 struct rb_node **node = &st->rb.rb_node;
1252 struct rb_node *parent = NULL;
1253 struct cfq_group *__cfqg;
1254 s64 key = cfqg_key(st, cfqg);
1255 int left = 1;
1256
1257 while (*node != NULL) {
1258 parent = *node;
1259 __cfqg = rb_entry_cfqg(parent);
1260
1261 if (key < cfqg_key(st, __cfqg))
1262 node = &parent->rb_left;
1263 else {
1264 node = &parent->rb_right;
1265 left = 0;
1266 }
1267 }
1268
1269 if (left)
1270 st->left = &cfqg->rb_node;
1271
1272 rb_link_node(&cfqg->rb_node, parent, node);
1273 rb_insert_color(&cfqg->rb_node, &st->rb);
1274 }
1275
1276 /*
1277 * This has to be called only on activation of cfqg
1278 */
1279 static void
1280 cfq_update_group_weight(struct cfq_group *cfqg)
1281 {
1282 if (cfqg->new_weight) {
1283 cfqg->weight = cfqg->new_weight;
1284 cfqg->new_weight = 0;
1285 }
1286 }
1287
1288 static void
1289 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1290 {
1291 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1292
1293 if (cfqg->new_leaf_weight) {
1294 cfqg->leaf_weight = cfqg->new_leaf_weight;
1295 cfqg->new_leaf_weight = 0;
1296 }
1297 }
1298
1299 static void
1300 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1301 {
1302 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1303 struct cfq_group *pos = cfqg;
1304 struct cfq_group *parent;
1305 bool propagate;
1306
1307 /* add to the service tree */
1308 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1309
1310 /*
1311 * Update leaf_weight. We cannot update weight at this point
1312 * because cfqg might already have been activated and is
1313 * contributing its current weight to the parent's child_weight.
1314 */
1315 cfq_update_group_leaf_weight(cfqg);
1316 __cfq_group_service_tree_add(st, cfqg);
1317
1318 /*
1319 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320 * entitled to. vfraction is calculated by walking the tree
1321 * towards the root calculating the fraction it has at each level.
1322 * The compounded ratio is how much vfraction @cfqg owns.
1323 *
1324 * Start with the proportion tasks in this cfqg has against active
1325 * children cfqgs - its leaf_weight against children_weight.
1326 */
1327 propagate = !pos->nr_active++;
1328 pos->children_weight += pos->leaf_weight;
1329 vfr = vfr * pos->leaf_weight / pos->children_weight;
1330
1331 /*
1332 * Compound ->weight walking up the tree. Both activation and
1333 * vfraction calculation are done in the same loop. Propagation
1334 * stops once an already activated node is met. vfraction
1335 * calculation should always continue to the root.
1336 */
1337 while ((parent = cfqg_parent(pos))) {
1338 if (propagate) {
1339 cfq_update_group_weight(pos);
1340 propagate = !parent->nr_active++;
1341 parent->children_weight += pos->weight;
1342 }
1343 vfr = vfr * pos->weight / parent->children_weight;
1344 pos = parent;
1345 }
1346
1347 cfqg->vfraction = max_t(unsigned, vfr, 1);
1348 }
1349
1350 static void
1351 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1352 {
1353 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1354 struct cfq_group *__cfqg;
1355 struct rb_node *n;
1356
1357 cfqg->nr_cfqq++;
1358 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1359 return;
1360
1361 /*
1362 * Currently put the group at the end. Later implement something
1363 * so that groups get lesser vtime based on their weights, so that
1364 * if group does not loose all if it was not continuously backlogged.
1365 */
1366 n = rb_last(&st->rb);
1367 if (n) {
1368 __cfqg = rb_entry_cfqg(n);
1369 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1370 } else
1371 cfqg->vdisktime = st->min_vdisktime;
1372 cfq_group_service_tree_add(st, cfqg);
1373 }
1374
1375 static void
1376 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1377 {
1378 struct cfq_group *pos = cfqg;
1379 bool propagate;
1380
1381 /*
1382 * Undo activation from cfq_group_service_tree_add(). Deactivate
1383 * @cfqg and propagate deactivation upwards.
1384 */
1385 propagate = !--pos->nr_active;
1386 pos->children_weight -= pos->leaf_weight;
1387
1388 while (propagate) {
1389 struct cfq_group *parent = cfqg_parent(pos);
1390
1391 /* @pos has 0 nr_active at this point */
1392 WARN_ON_ONCE(pos->children_weight);
1393 pos->vfraction = 0;
1394
1395 if (!parent)
1396 break;
1397
1398 propagate = !--parent->nr_active;
1399 parent->children_weight -= pos->weight;
1400 pos = parent;
1401 }
1402
1403 /* remove from the service tree */
1404 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1405 cfq_rb_erase(&cfqg->rb_node, st);
1406 }
1407
1408 static void
1409 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1410 {
1411 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1412
1413 BUG_ON(cfqg->nr_cfqq < 1);
1414 cfqg->nr_cfqq--;
1415
1416 /* If there are other cfq queues under this group, don't delete it */
1417 if (cfqg->nr_cfqq)
1418 return;
1419
1420 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1421 cfq_group_service_tree_del(st, cfqg);
1422 cfqg->saved_wl_slice = 0;
1423 cfqg_stats_update_dequeue(cfqg);
1424 }
1425
1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1427 unsigned int *unaccounted_time)
1428 {
1429 unsigned int slice_used;
1430
1431 /*
1432 * Queue got expired before even a single request completed or
1433 * got expired immediately after first request completion.
1434 */
1435 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1436 /*
1437 * Also charge the seek time incurred to the group, otherwise
1438 * if there are mutiple queues in the group, each can dispatch
1439 * a single request on seeky media and cause lots of seek time
1440 * and group will never know it.
1441 */
1442 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1443 1);
1444 } else {
1445 slice_used = jiffies - cfqq->slice_start;
1446 if (slice_used > cfqq->allocated_slice) {
1447 *unaccounted_time = slice_used - cfqq->allocated_slice;
1448 slice_used = cfqq->allocated_slice;
1449 }
1450 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1451 *unaccounted_time += cfqq->slice_start -
1452 cfqq->dispatch_start;
1453 }
1454
1455 return slice_used;
1456 }
1457
1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459 struct cfq_queue *cfqq)
1460 {
1461 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462 unsigned int used_sl, charge, unaccounted_sl = 0;
1463 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464 - cfqg->service_tree_idle.count;
1465 unsigned int vfr;
1466
1467 BUG_ON(nr_sync < 0);
1468 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1469
1470 if (iops_mode(cfqd))
1471 charge = cfqq->slice_dispatch;
1472 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1473 charge = cfqq->allocated_slice;
1474
1475 /*
1476 * Can't update vdisktime while on service tree and cfqg->vfraction
1477 * is valid only while on it. Cache vfr, leave the service tree,
1478 * update vdisktime and go back on. The re-addition to the tree
1479 * will also update the weights as necessary.
1480 */
1481 vfr = cfqg->vfraction;
1482 cfq_group_service_tree_del(st, cfqg);
1483 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1484 cfq_group_service_tree_add(st, cfqg);
1485
1486 /* This group is being expired. Save the context */
1487 if (time_after(cfqd->workload_expires, jiffies)) {
1488 cfqg->saved_wl_slice = cfqd->workload_expires
1489 - jiffies;
1490 cfqg->saved_wl_type = cfqd->serving_wl_type;
1491 cfqg->saved_wl_class = cfqd->serving_wl_class;
1492 } else
1493 cfqg->saved_wl_slice = 0;
1494
1495 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496 st->min_vdisktime);
1497 cfq_log_cfqq(cfqq->cfqd, cfqq,
1498 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499 used_sl, cfqq->slice_dispatch, charge,
1500 iops_mode(cfqd), cfqq->nr_sectors);
1501 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502 cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504
1505 /**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514 struct cfq_rb_root *st;
1515 int i, j;
1516
1517 for_each_cfqg_st(cfqg, i, j, st)
1518 *st = CFQ_RB_ROOT;
1519 RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521 cfqg->ttime.last_end_request = jiffies;
1522 }
1523
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static void cfqg_stats_exit(struct cfqg_stats *stats)
1526 {
1527 blkg_rwstat_exit(&stats->merged);
1528 blkg_rwstat_exit(&stats->service_time);
1529 blkg_rwstat_exit(&stats->wait_time);
1530 blkg_rwstat_exit(&stats->queued);
1531 blkg_stat_exit(&stats->time);
1532 #ifdef CONFIG_DEBUG_BLK_CGROUP
1533 blkg_stat_exit(&stats->unaccounted_time);
1534 blkg_stat_exit(&stats->avg_queue_size_sum);
1535 blkg_stat_exit(&stats->avg_queue_size_samples);
1536 blkg_stat_exit(&stats->dequeue);
1537 blkg_stat_exit(&stats->group_wait_time);
1538 blkg_stat_exit(&stats->idle_time);
1539 blkg_stat_exit(&stats->empty_time);
1540 #endif
1541 }
1542
1543 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1544 {
1545 if (blkg_rwstat_init(&stats->merged, gfp) ||
1546 blkg_rwstat_init(&stats->service_time, gfp) ||
1547 blkg_rwstat_init(&stats->wait_time, gfp) ||
1548 blkg_rwstat_init(&stats->queued, gfp) ||
1549 blkg_stat_init(&stats->time, gfp))
1550 goto err;
1551
1552 #ifdef CONFIG_DEBUG_BLK_CGROUP
1553 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1554 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1555 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1556 blkg_stat_init(&stats->dequeue, gfp) ||
1557 blkg_stat_init(&stats->group_wait_time, gfp) ||
1558 blkg_stat_init(&stats->idle_time, gfp) ||
1559 blkg_stat_init(&stats->empty_time, gfp))
1560 goto err;
1561 #endif
1562 return 0;
1563 err:
1564 cfqg_stats_exit(stats);
1565 return -ENOMEM;
1566 }
1567
1568 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1569 {
1570 struct cfq_group_data *cgd;
1571
1572 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1573 if (!cgd)
1574 return NULL;
1575 return &cgd->cpd;
1576 }
1577
1578 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1579 {
1580 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1581
1582 if (cpd_to_blkcg(cpd) == &blkcg_root) {
1583 cgd->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
1584 cgd->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
1585 } else {
1586 cgd->weight = CFQ_WEIGHT_LEGACY_DFL;
1587 cgd->leaf_weight = CFQ_WEIGHT_LEGACY_DFL;
1588 }
1589 }
1590
1591 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1592 {
1593 kfree(cpd_to_cfqgd(cpd));
1594 }
1595
1596 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1597 {
1598 struct cfq_group *cfqg;
1599
1600 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1601 if (!cfqg)
1602 return NULL;
1603
1604 cfq_init_cfqg_base(cfqg);
1605 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1606 kfree(cfqg);
1607 return NULL;
1608 }
1609
1610 return &cfqg->pd;
1611 }
1612
1613 static void cfq_pd_init(struct blkg_policy_data *pd)
1614 {
1615 struct cfq_group *cfqg = pd_to_cfqg(pd);
1616 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1617
1618 cfqg->weight = cgd->weight;
1619 cfqg->leaf_weight = cgd->leaf_weight;
1620 }
1621
1622 static void cfq_pd_offline(struct blkg_policy_data *pd)
1623 {
1624 struct cfq_group *cfqg = pd_to_cfqg(pd);
1625 int i;
1626
1627 for (i = 0; i < IOPRIO_BE_NR; i++) {
1628 if (cfqg->async_cfqq[0][i])
1629 cfq_put_queue(cfqg->async_cfqq[0][i]);
1630 if (cfqg->async_cfqq[1][i])
1631 cfq_put_queue(cfqg->async_cfqq[1][i]);
1632 }
1633
1634 if (cfqg->async_idle_cfqq)
1635 cfq_put_queue(cfqg->async_idle_cfqq);
1636
1637 /*
1638 * @blkg is going offline and will be ignored by
1639 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1640 * that they don't get lost. If IOs complete after this point, the
1641 * stats for them will be lost. Oh well...
1642 */
1643 cfqg_stats_xfer_dead(cfqg);
1644 }
1645
1646 static void cfq_pd_free(struct blkg_policy_data *pd)
1647 {
1648 struct cfq_group *cfqg = pd_to_cfqg(pd);
1649
1650 cfqg_stats_exit(&cfqg->stats);
1651 return kfree(cfqg);
1652 }
1653
1654 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1655 {
1656 struct cfq_group *cfqg = pd_to_cfqg(pd);
1657
1658 cfqg_stats_reset(&cfqg->stats);
1659 }
1660
1661 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1662 struct blkcg *blkcg)
1663 {
1664 struct blkcg_gq *blkg;
1665
1666 blkg = blkg_lookup(blkcg, cfqd->queue);
1667 if (likely(blkg))
1668 return blkg_to_cfqg(blkg);
1669 return NULL;
1670 }
1671
1672 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1673 {
1674 cfqq->cfqg = cfqg;
1675 /* cfqq reference on cfqg */
1676 cfqg_get(cfqg);
1677 }
1678
1679 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1680 struct blkg_policy_data *pd, int off)
1681 {
1682 struct cfq_group *cfqg = pd_to_cfqg(pd);
1683
1684 if (!cfqg->dev_weight)
1685 return 0;
1686 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1687 }
1688
1689 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1690 {
1691 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1692 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1693 0, false);
1694 return 0;
1695 }
1696
1697 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1698 struct blkg_policy_data *pd, int off)
1699 {
1700 struct cfq_group *cfqg = pd_to_cfqg(pd);
1701
1702 if (!cfqg->dev_leaf_weight)
1703 return 0;
1704 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1705 }
1706
1707 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1708 {
1709 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1710 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1711 0, false);
1712 return 0;
1713 }
1714
1715 static int cfq_print_weight(struct seq_file *sf, void *v)
1716 {
1717 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1718 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1719 unsigned int val = 0;
1720
1721 if (cgd)
1722 val = cgd->weight;
1723
1724 seq_printf(sf, "%u\n", val);
1725 return 0;
1726 }
1727
1728 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1729 {
1730 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1731 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1732 unsigned int val = 0;
1733
1734 if (cgd)
1735 val = cgd->leaf_weight;
1736
1737 seq_printf(sf, "%u\n", val);
1738 return 0;
1739 }
1740
1741 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1742 char *buf, size_t nbytes, loff_t off,
1743 bool on_dfl, bool is_leaf_weight)
1744 {
1745 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1746 struct blkg_conf_ctx ctx;
1747 struct cfq_group *cfqg;
1748 struct cfq_group_data *cfqgd;
1749 int ret;
1750 u64 v;
1751
1752 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1753 if (ret)
1754 return ret;
1755
1756 if (sscanf(ctx.body, "%llu", &v) == 1) {
1757 /* require "default" on dfl */
1758 ret = -ERANGE;
1759 if (!v && on_dfl)
1760 goto out_finish;
1761 } else if (!strcmp(strim(ctx.body), "default")) {
1762 v = 0;
1763 } else {
1764 ret = -EINVAL;
1765 goto out_finish;
1766 }
1767
1768 cfqg = blkg_to_cfqg(ctx.blkg);
1769 cfqgd = blkcg_to_cfqgd(blkcg);
1770
1771 ret = -ERANGE;
1772 if (!v || (v >= CFQ_WEIGHT_LEGACY_MIN && v <= CFQ_WEIGHT_LEGACY_MAX)) {
1773 if (!is_leaf_weight) {
1774 cfqg->dev_weight = v;
1775 cfqg->new_weight = v ?: cfqgd->weight;
1776 } else {
1777 cfqg->dev_leaf_weight = v;
1778 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1779 }
1780 ret = 0;
1781 }
1782 out_finish:
1783 blkg_conf_finish(&ctx);
1784 return ret ?: nbytes;
1785 }
1786
1787 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1788 char *buf, size_t nbytes, loff_t off)
1789 {
1790 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1791 }
1792
1793 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1794 char *buf, size_t nbytes, loff_t off)
1795 {
1796 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1797 }
1798
1799 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1800 bool is_leaf_weight)
1801 {
1802 struct blkcg *blkcg = css_to_blkcg(css);
1803 struct blkcg_gq *blkg;
1804 struct cfq_group_data *cfqgd;
1805 int ret = 0;
1806
1807 if (val < CFQ_WEIGHT_LEGACY_MIN || val > CFQ_WEIGHT_LEGACY_MAX)
1808 return -EINVAL;
1809
1810 spin_lock_irq(&blkcg->lock);
1811 cfqgd = blkcg_to_cfqgd(blkcg);
1812 if (!cfqgd) {
1813 ret = -EINVAL;
1814 goto out;
1815 }
1816
1817 if (!is_leaf_weight)
1818 cfqgd->weight = val;
1819 else
1820 cfqgd->leaf_weight = val;
1821
1822 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1823 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1824
1825 if (!cfqg)
1826 continue;
1827
1828 if (!is_leaf_weight) {
1829 if (!cfqg->dev_weight)
1830 cfqg->new_weight = cfqgd->weight;
1831 } else {
1832 if (!cfqg->dev_leaf_weight)
1833 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1834 }
1835 }
1836
1837 out:
1838 spin_unlock_irq(&blkcg->lock);
1839 return ret;
1840 }
1841
1842 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1843 u64 val)
1844 {
1845 return __cfq_set_weight(css, val, false);
1846 }
1847
1848 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1849 struct cftype *cft, u64 val)
1850 {
1851 return __cfq_set_weight(css, val, true);
1852 }
1853
1854 static int cfqg_print_stat(struct seq_file *sf, void *v)
1855 {
1856 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1857 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1858 return 0;
1859 }
1860
1861 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1862 {
1863 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1864 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1865 return 0;
1866 }
1867
1868 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1869 struct blkg_policy_data *pd, int off)
1870 {
1871 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1872 &blkcg_policy_cfq, off);
1873 return __blkg_prfill_u64(sf, pd, sum);
1874 }
1875
1876 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1877 struct blkg_policy_data *pd, int off)
1878 {
1879 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1880 &blkcg_policy_cfq, off);
1881 return __blkg_prfill_rwstat(sf, pd, &sum);
1882 }
1883
1884 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1885 {
1886 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1887 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1888 seq_cft(sf)->private, false);
1889 return 0;
1890 }
1891
1892 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1893 {
1894 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1895 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1896 seq_cft(sf)->private, true);
1897 return 0;
1898 }
1899
1900 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1901 int off)
1902 {
1903 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1904
1905 return __blkg_prfill_u64(sf, pd, sum >> 9);
1906 }
1907
1908 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1909 {
1910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1912 return 0;
1913 }
1914
1915 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1916 struct blkg_policy_data *pd, int off)
1917 {
1918 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1919 offsetof(struct blkcg_gq, stat_bytes));
1920 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1921 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1922
1923 return __blkg_prfill_u64(sf, pd, sum >> 9);
1924 }
1925
1926 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1927 {
1928 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1929 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1930 false);
1931 return 0;
1932 }
1933
1934 #ifdef CONFIG_DEBUG_BLK_CGROUP
1935 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1936 struct blkg_policy_data *pd, int off)
1937 {
1938 struct cfq_group *cfqg = pd_to_cfqg(pd);
1939 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1940 u64 v = 0;
1941
1942 if (samples) {
1943 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1944 v = div64_u64(v, samples);
1945 }
1946 __blkg_prfill_u64(sf, pd, v);
1947 return 0;
1948 }
1949
1950 /* print avg_queue_size */
1951 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1952 {
1953 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1954 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1955 0, false);
1956 return 0;
1957 }
1958 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1959
1960 static struct cftype cfq_blkcg_legacy_files[] = {
1961 /* on root, weight is mapped to leaf_weight */
1962 {
1963 .name = "weight_device",
1964 .flags = CFTYPE_ONLY_ON_ROOT,
1965 .seq_show = cfqg_print_leaf_weight_device,
1966 .write = cfqg_set_leaf_weight_device,
1967 },
1968 {
1969 .name = "weight",
1970 .flags = CFTYPE_ONLY_ON_ROOT,
1971 .seq_show = cfq_print_leaf_weight,
1972 .write_u64 = cfq_set_leaf_weight,
1973 },
1974
1975 /* no such mapping necessary for !roots */
1976 {
1977 .name = "weight_device",
1978 .flags = CFTYPE_NOT_ON_ROOT,
1979 .seq_show = cfqg_print_weight_device,
1980 .write = cfqg_set_weight_device,
1981 },
1982 {
1983 .name = "weight",
1984 .flags = CFTYPE_NOT_ON_ROOT,
1985 .seq_show = cfq_print_weight,
1986 .write_u64 = cfq_set_weight,
1987 },
1988
1989 {
1990 .name = "leaf_weight_device",
1991 .seq_show = cfqg_print_leaf_weight_device,
1992 .write = cfqg_set_leaf_weight_device,
1993 },
1994 {
1995 .name = "leaf_weight",
1996 .seq_show = cfq_print_leaf_weight,
1997 .write_u64 = cfq_set_leaf_weight,
1998 },
1999
2000 /* statistics, covers only the tasks in the cfqg */
2001 {
2002 .name = "time",
2003 .private = offsetof(struct cfq_group, stats.time),
2004 .seq_show = cfqg_print_stat,
2005 },
2006 {
2007 .name = "sectors",
2008 .seq_show = cfqg_print_stat_sectors,
2009 },
2010 {
2011 .name = "io_service_bytes",
2012 .private = (unsigned long)&blkcg_policy_cfq,
2013 .seq_show = blkg_print_stat_bytes,
2014 },
2015 {
2016 .name = "io_serviced",
2017 .private = (unsigned long)&blkcg_policy_cfq,
2018 .seq_show = blkg_print_stat_ios,
2019 },
2020 {
2021 .name = "io_service_time",
2022 .private = offsetof(struct cfq_group, stats.service_time),
2023 .seq_show = cfqg_print_rwstat,
2024 },
2025 {
2026 .name = "io_wait_time",
2027 .private = offsetof(struct cfq_group, stats.wait_time),
2028 .seq_show = cfqg_print_rwstat,
2029 },
2030 {
2031 .name = "io_merged",
2032 .private = offsetof(struct cfq_group, stats.merged),
2033 .seq_show = cfqg_print_rwstat,
2034 },
2035 {
2036 .name = "io_queued",
2037 .private = offsetof(struct cfq_group, stats.queued),
2038 .seq_show = cfqg_print_rwstat,
2039 },
2040
2041 /* the same statictics which cover the cfqg and its descendants */
2042 {
2043 .name = "time_recursive",
2044 .private = offsetof(struct cfq_group, stats.time),
2045 .seq_show = cfqg_print_stat_recursive,
2046 },
2047 {
2048 .name = "sectors_recursive",
2049 .seq_show = cfqg_print_stat_sectors_recursive,
2050 },
2051 {
2052 .name = "io_service_bytes_recursive",
2053 .private = (unsigned long)&blkcg_policy_cfq,
2054 .seq_show = blkg_print_stat_bytes_recursive,
2055 },
2056 {
2057 .name = "io_serviced_recursive",
2058 .private = (unsigned long)&blkcg_policy_cfq,
2059 .seq_show = blkg_print_stat_ios_recursive,
2060 },
2061 {
2062 .name = "io_service_time_recursive",
2063 .private = offsetof(struct cfq_group, stats.service_time),
2064 .seq_show = cfqg_print_rwstat_recursive,
2065 },
2066 {
2067 .name = "io_wait_time_recursive",
2068 .private = offsetof(struct cfq_group, stats.wait_time),
2069 .seq_show = cfqg_print_rwstat_recursive,
2070 },
2071 {
2072 .name = "io_merged_recursive",
2073 .private = offsetof(struct cfq_group, stats.merged),
2074 .seq_show = cfqg_print_rwstat_recursive,
2075 },
2076 {
2077 .name = "io_queued_recursive",
2078 .private = offsetof(struct cfq_group, stats.queued),
2079 .seq_show = cfqg_print_rwstat_recursive,
2080 },
2081 #ifdef CONFIG_DEBUG_BLK_CGROUP
2082 {
2083 .name = "avg_queue_size",
2084 .seq_show = cfqg_print_avg_queue_size,
2085 },
2086 {
2087 .name = "group_wait_time",
2088 .private = offsetof(struct cfq_group, stats.group_wait_time),
2089 .seq_show = cfqg_print_stat,
2090 },
2091 {
2092 .name = "idle_time",
2093 .private = offsetof(struct cfq_group, stats.idle_time),
2094 .seq_show = cfqg_print_stat,
2095 },
2096 {
2097 .name = "empty_time",
2098 .private = offsetof(struct cfq_group, stats.empty_time),
2099 .seq_show = cfqg_print_stat,
2100 },
2101 {
2102 .name = "dequeue",
2103 .private = offsetof(struct cfq_group, stats.dequeue),
2104 .seq_show = cfqg_print_stat,
2105 },
2106 {
2107 .name = "unaccounted_time",
2108 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2109 .seq_show = cfqg_print_stat,
2110 },
2111 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2112 { } /* terminate */
2113 };
2114
2115 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2116 {
2117 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2118 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2119
2120 seq_printf(sf, "default %u\n", cgd->weight);
2121 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2122 &blkcg_policy_cfq, 0, false);
2123 return 0;
2124 }
2125
2126 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2127 char *buf, size_t nbytes, loff_t off)
2128 {
2129 char *endp;
2130 int ret;
2131 u64 v;
2132
2133 buf = strim(buf);
2134
2135 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2136 v = simple_strtoull(buf, &endp, 0);
2137 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2138 ret = __cfq_set_weight(of_css(of), v, false);
2139 return ret ?: nbytes;
2140 }
2141
2142 /* "MAJ:MIN WEIGHT" */
2143 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2144 }
2145
2146 static struct cftype cfq_blkcg_files[] = {
2147 {
2148 .name = "weight",
2149 .flags = CFTYPE_NOT_ON_ROOT,
2150 .seq_show = cfq_print_weight_on_dfl,
2151 .write = cfq_set_weight_on_dfl,
2152 },
2153 { } /* terminate */
2154 };
2155
2156 #else /* GROUP_IOSCHED */
2157 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2158 struct blkcg *blkcg)
2159 {
2160 return cfqd->root_group;
2161 }
2162
2163 static inline void
2164 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2165 cfqq->cfqg = cfqg;
2166 }
2167
2168 #endif /* GROUP_IOSCHED */
2169
2170 /*
2171 * The cfqd->service_trees holds all pending cfq_queue's that have
2172 * requests waiting to be processed. It is sorted in the order that
2173 * we will service the queues.
2174 */
2175 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2176 bool add_front)
2177 {
2178 struct rb_node **p, *parent;
2179 struct cfq_queue *__cfqq;
2180 unsigned long rb_key;
2181 struct cfq_rb_root *st;
2182 int left;
2183 int new_cfqq = 1;
2184
2185 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2186 if (cfq_class_idle(cfqq)) {
2187 rb_key = CFQ_IDLE_DELAY;
2188 parent = rb_last(&st->rb);
2189 if (parent && parent != &cfqq->rb_node) {
2190 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2191 rb_key += __cfqq->rb_key;
2192 } else
2193 rb_key += jiffies;
2194 } else if (!add_front) {
2195 /*
2196 * Get our rb key offset. Subtract any residual slice
2197 * value carried from last service. A negative resid
2198 * count indicates slice overrun, and this should position
2199 * the next service time further away in the tree.
2200 */
2201 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2202 rb_key -= cfqq->slice_resid;
2203 cfqq->slice_resid = 0;
2204 } else {
2205 rb_key = -HZ;
2206 __cfqq = cfq_rb_first(st);
2207 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2208 }
2209
2210 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2211 new_cfqq = 0;
2212 /*
2213 * same position, nothing more to do
2214 */
2215 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2216 return;
2217
2218 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2219 cfqq->service_tree = NULL;
2220 }
2221
2222 left = 1;
2223 parent = NULL;
2224 cfqq->service_tree = st;
2225 p = &st->rb.rb_node;
2226 while (*p) {
2227 parent = *p;
2228 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2229
2230 /*
2231 * sort by key, that represents service time.
2232 */
2233 if (time_before(rb_key, __cfqq->rb_key))
2234 p = &parent->rb_left;
2235 else {
2236 p = &parent->rb_right;
2237 left = 0;
2238 }
2239 }
2240
2241 if (left)
2242 st->left = &cfqq->rb_node;
2243
2244 cfqq->rb_key = rb_key;
2245 rb_link_node(&cfqq->rb_node, parent, p);
2246 rb_insert_color(&cfqq->rb_node, &st->rb);
2247 st->count++;
2248 if (add_front || !new_cfqq)
2249 return;
2250 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2251 }
2252
2253 static struct cfq_queue *
2254 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2255 sector_t sector, struct rb_node **ret_parent,
2256 struct rb_node ***rb_link)
2257 {
2258 struct rb_node **p, *parent;
2259 struct cfq_queue *cfqq = NULL;
2260
2261 parent = NULL;
2262 p = &root->rb_node;
2263 while (*p) {
2264 struct rb_node **n;
2265
2266 parent = *p;
2267 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2268
2269 /*
2270 * Sort strictly based on sector. Smallest to the left,
2271 * largest to the right.
2272 */
2273 if (sector > blk_rq_pos(cfqq->next_rq))
2274 n = &(*p)->rb_right;
2275 else if (sector < blk_rq_pos(cfqq->next_rq))
2276 n = &(*p)->rb_left;
2277 else
2278 break;
2279 p = n;
2280 cfqq = NULL;
2281 }
2282
2283 *ret_parent = parent;
2284 if (rb_link)
2285 *rb_link = p;
2286 return cfqq;
2287 }
2288
2289 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2290 {
2291 struct rb_node **p, *parent;
2292 struct cfq_queue *__cfqq;
2293
2294 if (cfqq->p_root) {
2295 rb_erase(&cfqq->p_node, cfqq->p_root);
2296 cfqq->p_root = NULL;
2297 }
2298
2299 if (cfq_class_idle(cfqq))
2300 return;
2301 if (!cfqq->next_rq)
2302 return;
2303
2304 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2305 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2306 blk_rq_pos(cfqq->next_rq), &parent, &p);
2307 if (!__cfqq) {
2308 rb_link_node(&cfqq->p_node, parent, p);
2309 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2310 } else
2311 cfqq->p_root = NULL;
2312 }
2313
2314 /*
2315 * Update cfqq's position in the service tree.
2316 */
2317 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2318 {
2319 /*
2320 * Resorting requires the cfqq to be on the RR list already.
2321 */
2322 if (cfq_cfqq_on_rr(cfqq)) {
2323 cfq_service_tree_add(cfqd, cfqq, 0);
2324 cfq_prio_tree_add(cfqd, cfqq);
2325 }
2326 }
2327
2328 /*
2329 * add to busy list of queues for service, trying to be fair in ordering
2330 * the pending list according to last request service
2331 */
2332 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2333 {
2334 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2335 BUG_ON(cfq_cfqq_on_rr(cfqq));
2336 cfq_mark_cfqq_on_rr(cfqq);
2337 cfqd->busy_queues++;
2338 if (cfq_cfqq_sync(cfqq))
2339 cfqd->busy_sync_queues++;
2340
2341 cfq_resort_rr_list(cfqd, cfqq);
2342 }
2343
2344 /*
2345 * Called when the cfqq no longer has requests pending, remove it from
2346 * the service tree.
2347 */
2348 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2349 {
2350 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2351 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2352 cfq_clear_cfqq_on_rr(cfqq);
2353
2354 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2355 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2356 cfqq->service_tree = NULL;
2357 }
2358 if (cfqq->p_root) {
2359 rb_erase(&cfqq->p_node, cfqq->p_root);
2360 cfqq->p_root = NULL;
2361 }
2362
2363 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2364 BUG_ON(!cfqd->busy_queues);
2365 cfqd->busy_queues--;
2366 if (cfq_cfqq_sync(cfqq))
2367 cfqd->busy_sync_queues--;
2368 }
2369
2370 /*
2371 * rb tree support functions
2372 */
2373 static void cfq_del_rq_rb(struct request *rq)
2374 {
2375 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2376 const int sync = rq_is_sync(rq);
2377
2378 BUG_ON(!cfqq->queued[sync]);
2379 cfqq->queued[sync]--;
2380
2381 elv_rb_del(&cfqq->sort_list, rq);
2382
2383 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2384 /*
2385 * Queue will be deleted from service tree when we actually
2386 * expire it later. Right now just remove it from prio tree
2387 * as it is empty.
2388 */
2389 if (cfqq->p_root) {
2390 rb_erase(&cfqq->p_node, cfqq->p_root);
2391 cfqq->p_root = NULL;
2392 }
2393 }
2394 }
2395
2396 static void cfq_add_rq_rb(struct request *rq)
2397 {
2398 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2399 struct cfq_data *cfqd = cfqq->cfqd;
2400 struct request *prev;
2401
2402 cfqq->queued[rq_is_sync(rq)]++;
2403
2404 elv_rb_add(&cfqq->sort_list, rq);
2405
2406 if (!cfq_cfqq_on_rr(cfqq))
2407 cfq_add_cfqq_rr(cfqd, cfqq);
2408
2409 /*
2410 * check if this request is a better next-serve candidate
2411 */
2412 prev = cfqq->next_rq;
2413 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2414
2415 /*
2416 * adjust priority tree position, if ->next_rq changes
2417 */
2418 if (prev != cfqq->next_rq)
2419 cfq_prio_tree_add(cfqd, cfqq);
2420
2421 BUG_ON(!cfqq->next_rq);
2422 }
2423
2424 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2425 {
2426 elv_rb_del(&cfqq->sort_list, rq);
2427 cfqq->queued[rq_is_sync(rq)]--;
2428 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2429 cfq_add_rq_rb(rq);
2430 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2431 rq->cmd_flags);
2432 }
2433
2434 static struct request *
2435 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2436 {
2437 struct task_struct *tsk = current;
2438 struct cfq_io_cq *cic;
2439 struct cfq_queue *cfqq;
2440
2441 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2442 if (!cic)
2443 return NULL;
2444
2445 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2446 if (cfqq)
2447 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2448
2449 return NULL;
2450 }
2451
2452 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2453 {
2454 struct cfq_data *cfqd = q->elevator->elevator_data;
2455
2456 cfqd->rq_in_driver++;
2457 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2458 cfqd->rq_in_driver);
2459
2460 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2461 }
2462
2463 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2464 {
2465 struct cfq_data *cfqd = q->elevator->elevator_data;
2466
2467 WARN_ON(!cfqd->rq_in_driver);
2468 cfqd->rq_in_driver--;
2469 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2470 cfqd->rq_in_driver);
2471 }
2472
2473 static void cfq_remove_request(struct request *rq)
2474 {
2475 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2476
2477 if (cfqq->next_rq == rq)
2478 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2479
2480 list_del_init(&rq->queuelist);
2481 cfq_del_rq_rb(rq);
2482
2483 cfqq->cfqd->rq_queued--;
2484 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2485 if (rq->cmd_flags & REQ_PRIO) {
2486 WARN_ON(!cfqq->prio_pending);
2487 cfqq->prio_pending--;
2488 }
2489 }
2490
2491 static int cfq_merge(struct request_queue *q, struct request **req,
2492 struct bio *bio)
2493 {
2494 struct cfq_data *cfqd = q->elevator->elevator_data;
2495 struct request *__rq;
2496
2497 __rq = cfq_find_rq_fmerge(cfqd, bio);
2498 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2499 *req = __rq;
2500 return ELEVATOR_FRONT_MERGE;
2501 }
2502
2503 return ELEVATOR_NO_MERGE;
2504 }
2505
2506 static void cfq_merged_request(struct request_queue *q, struct request *req,
2507 int type)
2508 {
2509 if (type == ELEVATOR_FRONT_MERGE) {
2510 struct cfq_queue *cfqq = RQ_CFQQ(req);
2511
2512 cfq_reposition_rq_rb(cfqq, req);
2513 }
2514 }
2515
2516 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2517 struct bio *bio)
2518 {
2519 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2520 }
2521
2522 static void
2523 cfq_merged_requests(struct request_queue *q, struct request *rq,
2524 struct request *next)
2525 {
2526 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2527 struct cfq_data *cfqd = q->elevator->elevator_data;
2528
2529 /*
2530 * reposition in fifo if next is older than rq
2531 */
2532 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2533 time_before(next->fifo_time, rq->fifo_time) &&
2534 cfqq == RQ_CFQQ(next)) {
2535 list_move(&rq->queuelist, &next->queuelist);
2536 rq->fifo_time = next->fifo_time;
2537 }
2538
2539 if (cfqq->next_rq == next)
2540 cfqq->next_rq = rq;
2541 cfq_remove_request(next);
2542 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2543
2544 cfqq = RQ_CFQQ(next);
2545 /*
2546 * all requests of this queue are merged to other queues, delete it
2547 * from the service tree. If it's the active_queue,
2548 * cfq_dispatch_requests() will choose to expire it or do idle
2549 */
2550 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2551 cfqq != cfqd->active_queue)
2552 cfq_del_cfqq_rr(cfqd, cfqq);
2553 }
2554
2555 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2556 struct bio *bio)
2557 {
2558 struct cfq_data *cfqd = q->elevator->elevator_data;
2559 struct cfq_io_cq *cic;
2560 struct cfq_queue *cfqq;
2561
2562 /*
2563 * Disallow merge of a sync bio into an async request.
2564 */
2565 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2566 return false;
2567
2568 /*
2569 * Lookup the cfqq that this bio will be queued with and allow
2570 * merge only if rq is queued there.
2571 */
2572 cic = cfq_cic_lookup(cfqd, current->io_context);
2573 if (!cic)
2574 return false;
2575
2576 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2577 return cfqq == RQ_CFQQ(rq);
2578 }
2579
2580 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2581 {
2582 del_timer(&cfqd->idle_slice_timer);
2583 cfqg_stats_update_idle_time(cfqq->cfqg);
2584 }
2585
2586 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2587 struct cfq_queue *cfqq)
2588 {
2589 if (cfqq) {
2590 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2591 cfqd->serving_wl_class, cfqd->serving_wl_type);
2592 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2593 cfqq->slice_start = 0;
2594 cfqq->dispatch_start = jiffies;
2595 cfqq->allocated_slice = 0;
2596 cfqq->slice_end = 0;
2597 cfqq->slice_dispatch = 0;
2598 cfqq->nr_sectors = 0;
2599
2600 cfq_clear_cfqq_wait_request(cfqq);
2601 cfq_clear_cfqq_must_dispatch(cfqq);
2602 cfq_clear_cfqq_must_alloc_slice(cfqq);
2603 cfq_clear_cfqq_fifo_expire(cfqq);
2604 cfq_mark_cfqq_slice_new(cfqq);
2605
2606 cfq_del_timer(cfqd, cfqq);
2607 }
2608
2609 cfqd->active_queue = cfqq;
2610 }
2611
2612 /*
2613 * current cfqq expired its slice (or was too idle), select new one
2614 */
2615 static void
2616 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2617 bool timed_out)
2618 {
2619 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2620
2621 if (cfq_cfqq_wait_request(cfqq))
2622 cfq_del_timer(cfqd, cfqq);
2623
2624 cfq_clear_cfqq_wait_request(cfqq);
2625 cfq_clear_cfqq_wait_busy(cfqq);
2626
2627 /*
2628 * If this cfqq is shared between multiple processes, check to
2629 * make sure that those processes are still issuing I/Os within
2630 * the mean seek distance. If not, it may be time to break the
2631 * queues apart again.
2632 */
2633 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2634 cfq_mark_cfqq_split_coop(cfqq);
2635
2636 /*
2637 * store what was left of this slice, if the queue idled/timed out
2638 */
2639 if (timed_out) {
2640 if (cfq_cfqq_slice_new(cfqq))
2641 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2642 else
2643 cfqq->slice_resid = cfqq->slice_end - jiffies;
2644 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2645 }
2646
2647 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2648
2649 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2650 cfq_del_cfqq_rr(cfqd, cfqq);
2651
2652 cfq_resort_rr_list(cfqd, cfqq);
2653
2654 if (cfqq == cfqd->active_queue)
2655 cfqd->active_queue = NULL;
2656
2657 if (cfqd->active_cic) {
2658 put_io_context(cfqd->active_cic->icq.ioc);
2659 cfqd->active_cic = NULL;
2660 }
2661 }
2662
2663 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2664 {
2665 struct cfq_queue *cfqq = cfqd->active_queue;
2666
2667 if (cfqq)
2668 __cfq_slice_expired(cfqd, cfqq, timed_out);
2669 }
2670
2671 /*
2672 * Get next queue for service. Unless we have a queue preemption,
2673 * we'll simply select the first cfqq in the service tree.
2674 */
2675 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2676 {
2677 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2678 cfqd->serving_wl_class, cfqd->serving_wl_type);
2679
2680 if (!cfqd->rq_queued)
2681 return NULL;
2682
2683 /* There is nothing to dispatch */
2684 if (!st)
2685 return NULL;
2686 if (RB_EMPTY_ROOT(&st->rb))
2687 return NULL;
2688 return cfq_rb_first(st);
2689 }
2690
2691 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2692 {
2693 struct cfq_group *cfqg;
2694 struct cfq_queue *cfqq;
2695 int i, j;
2696 struct cfq_rb_root *st;
2697
2698 if (!cfqd->rq_queued)
2699 return NULL;
2700
2701 cfqg = cfq_get_next_cfqg(cfqd);
2702 if (!cfqg)
2703 return NULL;
2704
2705 for_each_cfqg_st(cfqg, i, j, st)
2706 if ((cfqq = cfq_rb_first(st)) != NULL)
2707 return cfqq;
2708 return NULL;
2709 }
2710
2711 /*
2712 * Get and set a new active queue for service.
2713 */
2714 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2715 struct cfq_queue *cfqq)
2716 {
2717 if (!cfqq)
2718 cfqq = cfq_get_next_queue(cfqd);
2719
2720 __cfq_set_active_queue(cfqd, cfqq);
2721 return cfqq;
2722 }
2723
2724 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2725 struct request *rq)
2726 {
2727 if (blk_rq_pos(rq) >= cfqd->last_position)
2728 return blk_rq_pos(rq) - cfqd->last_position;
2729 else
2730 return cfqd->last_position - blk_rq_pos(rq);
2731 }
2732
2733 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2734 struct request *rq)
2735 {
2736 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2737 }
2738
2739 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2740 struct cfq_queue *cur_cfqq)
2741 {
2742 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2743 struct rb_node *parent, *node;
2744 struct cfq_queue *__cfqq;
2745 sector_t sector = cfqd->last_position;
2746
2747 if (RB_EMPTY_ROOT(root))
2748 return NULL;
2749
2750 /*
2751 * First, if we find a request starting at the end of the last
2752 * request, choose it.
2753 */
2754 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2755 if (__cfqq)
2756 return __cfqq;
2757
2758 /*
2759 * If the exact sector wasn't found, the parent of the NULL leaf
2760 * will contain the closest sector.
2761 */
2762 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2763 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2764 return __cfqq;
2765
2766 if (blk_rq_pos(__cfqq->next_rq) < sector)
2767 node = rb_next(&__cfqq->p_node);
2768 else
2769 node = rb_prev(&__cfqq->p_node);
2770 if (!node)
2771 return NULL;
2772
2773 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2774 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2775 return __cfqq;
2776
2777 return NULL;
2778 }
2779
2780 /*
2781 * cfqd - obvious
2782 * cur_cfqq - passed in so that we don't decide that the current queue is
2783 * closely cooperating with itself.
2784 *
2785 * So, basically we're assuming that that cur_cfqq has dispatched at least
2786 * one request, and that cfqd->last_position reflects a position on the disk
2787 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2788 * assumption.
2789 */
2790 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2791 struct cfq_queue *cur_cfqq)
2792 {
2793 struct cfq_queue *cfqq;
2794
2795 if (cfq_class_idle(cur_cfqq))
2796 return NULL;
2797 if (!cfq_cfqq_sync(cur_cfqq))
2798 return NULL;
2799 if (CFQQ_SEEKY(cur_cfqq))
2800 return NULL;
2801
2802 /*
2803 * Don't search priority tree if it's the only queue in the group.
2804 */
2805 if (cur_cfqq->cfqg->nr_cfqq == 1)
2806 return NULL;
2807
2808 /*
2809 * We should notice if some of the queues are cooperating, eg
2810 * working closely on the same area of the disk. In that case,
2811 * we can group them together and don't waste time idling.
2812 */
2813 cfqq = cfqq_close(cfqd, cur_cfqq);
2814 if (!cfqq)
2815 return NULL;
2816
2817 /* If new queue belongs to different cfq_group, don't choose it */
2818 if (cur_cfqq->cfqg != cfqq->cfqg)
2819 return NULL;
2820
2821 /*
2822 * It only makes sense to merge sync queues.
2823 */
2824 if (!cfq_cfqq_sync(cfqq))
2825 return NULL;
2826 if (CFQQ_SEEKY(cfqq))
2827 return NULL;
2828
2829 /*
2830 * Do not merge queues of different priority classes
2831 */
2832 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2833 return NULL;
2834
2835 return cfqq;
2836 }
2837
2838 /*
2839 * Determine whether we should enforce idle window for this queue.
2840 */
2841
2842 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2843 {
2844 enum wl_class_t wl_class = cfqq_class(cfqq);
2845 struct cfq_rb_root *st = cfqq->service_tree;
2846
2847 BUG_ON(!st);
2848 BUG_ON(!st->count);
2849
2850 if (!cfqd->cfq_slice_idle)
2851 return false;
2852
2853 /* We never do for idle class queues. */
2854 if (wl_class == IDLE_WORKLOAD)
2855 return false;
2856
2857 /* We do for queues that were marked with idle window flag. */
2858 if (cfq_cfqq_idle_window(cfqq) &&
2859 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2860 return true;
2861
2862 /*
2863 * Otherwise, we do only if they are the last ones
2864 * in their service tree.
2865 */
2866 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2867 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2868 return true;
2869 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2870 return false;
2871 }
2872
2873 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2874 {
2875 struct cfq_queue *cfqq = cfqd->active_queue;
2876 struct cfq_io_cq *cic;
2877 unsigned long sl, group_idle = 0;
2878
2879 /*
2880 * SSD device without seek penalty, disable idling. But only do so
2881 * for devices that support queuing, otherwise we still have a problem
2882 * with sync vs async workloads.
2883 */
2884 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2885 return;
2886
2887 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2888 WARN_ON(cfq_cfqq_slice_new(cfqq));
2889
2890 /*
2891 * idle is disabled, either manually or by past process history
2892 */
2893 if (!cfq_should_idle(cfqd, cfqq)) {
2894 /* no queue idling. Check for group idling */
2895 if (cfqd->cfq_group_idle)
2896 group_idle = cfqd->cfq_group_idle;
2897 else
2898 return;
2899 }
2900
2901 /*
2902 * still active requests from this queue, don't idle
2903 */
2904 if (cfqq->dispatched)
2905 return;
2906
2907 /*
2908 * task has exited, don't wait
2909 */
2910 cic = cfqd->active_cic;
2911 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2912 return;
2913
2914 /*
2915 * If our average think time is larger than the remaining time
2916 * slice, then don't idle. This avoids overrunning the allotted
2917 * time slice.
2918 */
2919 if (sample_valid(cic->ttime.ttime_samples) &&
2920 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2921 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2922 cic->ttime.ttime_mean);
2923 return;
2924 }
2925
2926 /* There are other queues in the group, don't do group idle */
2927 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2928 return;
2929
2930 cfq_mark_cfqq_wait_request(cfqq);
2931
2932 if (group_idle)
2933 sl = cfqd->cfq_group_idle;
2934 else
2935 sl = cfqd->cfq_slice_idle;
2936
2937 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2938 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2939 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2940 group_idle ? 1 : 0);
2941 }
2942
2943 /*
2944 * Move request from internal lists to the request queue dispatch list.
2945 */
2946 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2947 {
2948 struct cfq_data *cfqd = q->elevator->elevator_data;
2949 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2950
2951 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2952
2953 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2954 cfq_remove_request(rq);
2955 cfqq->dispatched++;
2956 (RQ_CFQG(rq))->dispatched++;
2957 elv_dispatch_sort(q, rq);
2958
2959 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2960 cfqq->nr_sectors += blk_rq_sectors(rq);
2961 }
2962
2963 /*
2964 * return expired entry, or NULL to just start from scratch in rbtree
2965 */
2966 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2967 {
2968 struct request *rq = NULL;
2969
2970 if (cfq_cfqq_fifo_expire(cfqq))
2971 return NULL;
2972
2973 cfq_mark_cfqq_fifo_expire(cfqq);
2974
2975 if (list_empty(&cfqq->fifo))
2976 return NULL;
2977
2978 rq = rq_entry_fifo(cfqq->fifo.next);
2979 if (time_before(jiffies, rq->fifo_time))
2980 rq = NULL;
2981
2982 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2983 return rq;
2984 }
2985
2986 static inline int
2987 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2988 {
2989 const int base_rq = cfqd->cfq_slice_async_rq;
2990
2991 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2992
2993 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2994 }
2995
2996 /*
2997 * Must be called with the queue_lock held.
2998 */
2999 static int cfqq_process_refs(struct cfq_queue *cfqq)
3000 {
3001 int process_refs, io_refs;
3002
3003 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3004 process_refs = cfqq->ref - io_refs;
3005 BUG_ON(process_refs < 0);
3006 return process_refs;
3007 }
3008
3009 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3010 {
3011 int process_refs, new_process_refs;
3012 struct cfq_queue *__cfqq;
3013
3014 /*
3015 * If there are no process references on the new_cfqq, then it is
3016 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3017 * chain may have dropped their last reference (not just their
3018 * last process reference).
3019 */
3020 if (!cfqq_process_refs(new_cfqq))
3021 return;
3022
3023 /* Avoid a circular list and skip interim queue merges */
3024 while ((__cfqq = new_cfqq->new_cfqq)) {
3025 if (__cfqq == cfqq)
3026 return;
3027 new_cfqq = __cfqq;
3028 }
3029
3030 process_refs = cfqq_process_refs(cfqq);
3031 new_process_refs = cfqq_process_refs(new_cfqq);
3032 /*
3033 * If the process for the cfqq has gone away, there is no
3034 * sense in merging the queues.
3035 */
3036 if (process_refs == 0 || new_process_refs == 0)
3037 return;
3038
3039 /*
3040 * Merge in the direction of the lesser amount of work.
3041 */
3042 if (new_process_refs >= process_refs) {
3043 cfqq->new_cfqq = new_cfqq;
3044 new_cfqq->ref += process_refs;
3045 } else {
3046 new_cfqq->new_cfqq = cfqq;
3047 cfqq->ref += new_process_refs;
3048 }
3049 }
3050
3051 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3052 struct cfq_group *cfqg, enum wl_class_t wl_class)
3053 {
3054 struct cfq_queue *queue;
3055 int i;
3056 bool key_valid = false;
3057 unsigned long lowest_key = 0;
3058 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3059
3060 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3061 /* select the one with lowest rb_key */
3062 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3063 if (queue &&
3064 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3065 lowest_key = queue->rb_key;
3066 cur_best = i;
3067 key_valid = true;
3068 }
3069 }
3070
3071 return cur_best;
3072 }
3073
3074 static void
3075 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3076 {
3077 unsigned slice;
3078 unsigned count;
3079 struct cfq_rb_root *st;
3080 unsigned group_slice;
3081 enum wl_class_t original_class = cfqd->serving_wl_class;
3082
3083 /* Choose next priority. RT > BE > IDLE */
3084 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3085 cfqd->serving_wl_class = RT_WORKLOAD;
3086 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3087 cfqd->serving_wl_class = BE_WORKLOAD;
3088 else {
3089 cfqd->serving_wl_class = IDLE_WORKLOAD;
3090 cfqd->workload_expires = jiffies + 1;
3091 return;
3092 }
3093
3094 if (original_class != cfqd->serving_wl_class)
3095 goto new_workload;
3096
3097 /*
3098 * For RT and BE, we have to choose also the type
3099 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3100 * expiration time
3101 */
3102 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3103 count = st->count;
3104
3105 /*
3106 * check workload expiration, and that we still have other queues ready
3107 */
3108 if (count && !time_after(jiffies, cfqd->workload_expires))
3109 return;
3110
3111 new_workload:
3112 /* otherwise select new workload type */
3113 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3114 cfqd->serving_wl_class);
3115 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3116 count = st->count;
3117
3118 /*
3119 * the workload slice is computed as a fraction of target latency
3120 * proportional to the number of queues in that workload, over
3121 * all the queues in the same priority class
3122 */
3123 group_slice = cfq_group_slice(cfqd, cfqg);
3124
3125 slice = group_slice * count /
3126 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3127 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3128 cfqg));
3129
3130 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3131 unsigned int tmp;
3132
3133 /*
3134 * Async queues are currently system wide. Just taking
3135 * proportion of queues with-in same group will lead to higher
3136 * async ratio system wide as generally root group is going
3137 * to have higher weight. A more accurate thing would be to
3138 * calculate system wide asnc/sync ratio.
3139 */
3140 tmp = cfqd->cfq_target_latency *
3141 cfqg_busy_async_queues(cfqd, cfqg);
3142 tmp = tmp/cfqd->busy_queues;
3143 slice = min_t(unsigned, slice, tmp);
3144
3145 /* async workload slice is scaled down according to
3146 * the sync/async slice ratio. */
3147 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3148 } else
3149 /* sync workload slice is at least 2 * cfq_slice_idle */
3150 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3151
3152 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3153 cfq_log(cfqd, "workload slice:%d", slice);
3154 cfqd->workload_expires = jiffies + slice;
3155 }
3156
3157 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3158 {
3159 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3160 struct cfq_group *cfqg;
3161
3162 if (RB_EMPTY_ROOT(&st->rb))
3163 return NULL;
3164 cfqg = cfq_rb_first_group(st);
3165 update_min_vdisktime(st);
3166 return cfqg;
3167 }
3168
3169 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3170 {
3171 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3172
3173 cfqd->serving_group = cfqg;
3174
3175 /* Restore the workload type data */
3176 if (cfqg->saved_wl_slice) {
3177 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3178 cfqd->serving_wl_type = cfqg->saved_wl_type;
3179 cfqd->serving_wl_class = cfqg->saved_wl_class;
3180 } else
3181 cfqd->workload_expires = jiffies - 1;
3182
3183 choose_wl_class_and_type(cfqd, cfqg);
3184 }
3185
3186 /*
3187 * Select a queue for service. If we have a current active queue,
3188 * check whether to continue servicing it, or retrieve and set a new one.
3189 */
3190 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3191 {
3192 struct cfq_queue *cfqq, *new_cfqq = NULL;
3193
3194 cfqq = cfqd->active_queue;
3195 if (!cfqq)
3196 goto new_queue;
3197
3198 if (!cfqd->rq_queued)
3199 return NULL;
3200
3201 /*
3202 * We were waiting for group to get backlogged. Expire the queue
3203 */
3204 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3205 goto expire;
3206
3207 /*
3208 * The active queue has run out of time, expire it and select new.
3209 */
3210 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3211 /*
3212 * If slice had not expired at the completion of last request
3213 * we might not have turned on wait_busy flag. Don't expire
3214 * the queue yet. Allow the group to get backlogged.
3215 *
3216 * The very fact that we have used the slice, that means we
3217 * have been idling all along on this queue and it should be
3218 * ok to wait for this request to complete.
3219 */
3220 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3221 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3222 cfqq = NULL;
3223 goto keep_queue;
3224 } else
3225 goto check_group_idle;
3226 }
3227
3228 /*
3229 * The active queue has requests and isn't expired, allow it to
3230 * dispatch.
3231 */
3232 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3233 goto keep_queue;
3234
3235 /*
3236 * If another queue has a request waiting within our mean seek
3237 * distance, let it run. The expire code will check for close
3238 * cooperators and put the close queue at the front of the service
3239 * tree. If possible, merge the expiring queue with the new cfqq.
3240 */
3241 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3242 if (new_cfqq) {
3243 if (!cfqq->new_cfqq)
3244 cfq_setup_merge(cfqq, new_cfqq);
3245 goto expire;
3246 }
3247
3248 /*
3249 * No requests pending. If the active queue still has requests in
3250 * flight or is idling for a new request, allow either of these
3251 * conditions to happen (or time out) before selecting a new queue.
3252 */
3253 if (timer_pending(&cfqd->idle_slice_timer)) {
3254 cfqq = NULL;
3255 goto keep_queue;
3256 }
3257
3258 /*
3259 * This is a deep seek queue, but the device is much faster than
3260 * the queue can deliver, don't idle
3261 **/
3262 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3263 (cfq_cfqq_slice_new(cfqq) ||
3264 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3265 cfq_clear_cfqq_deep(cfqq);
3266 cfq_clear_cfqq_idle_window(cfqq);
3267 }
3268
3269 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3270 cfqq = NULL;
3271 goto keep_queue;
3272 }
3273
3274 /*
3275 * If group idle is enabled and there are requests dispatched from
3276 * this group, wait for requests to complete.
3277 */
3278 check_group_idle:
3279 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3280 cfqq->cfqg->dispatched &&
3281 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3282 cfqq = NULL;
3283 goto keep_queue;
3284 }
3285
3286 expire:
3287 cfq_slice_expired(cfqd, 0);
3288 new_queue:
3289 /*
3290 * Current queue expired. Check if we have to switch to a new
3291 * service tree
3292 */
3293 if (!new_cfqq)
3294 cfq_choose_cfqg(cfqd);
3295
3296 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3297 keep_queue:
3298 return cfqq;
3299 }
3300
3301 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3302 {
3303 int dispatched = 0;
3304
3305 while (cfqq->next_rq) {
3306 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3307 dispatched++;
3308 }
3309
3310 BUG_ON(!list_empty(&cfqq->fifo));
3311
3312 /* By default cfqq is not expired if it is empty. Do it explicitly */
3313 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3314 return dispatched;
3315 }
3316
3317 /*
3318 * Drain our current requests. Used for barriers and when switching
3319 * io schedulers on-the-fly.
3320 */
3321 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3322 {
3323 struct cfq_queue *cfqq;
3324 int dispatched = 0;
3325
3326 /* Expire the timeslice of the current active queue first */
3327 cfq_slice_expired(cfqd, 0);
3328 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3329 __cfq_set_active_queue(cfqd, cfqq);
3330 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3331 }
3332
3333 BUG_ON(cfqd->busy_queues);
3334
3335 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3336 return dispatched;
3337 }
3338
3339 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3340 struct cfq_queue *cfqq)
3341 {
3342 /* the queue hasn't finished any request, can't estimate */
3343 if (cfq_cfqq_slice_new(cfqq))
3344 return true;
3345 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3346 cfqq->slice_end))
3347 return true;
3348
3349 return false;
3350 }
3351
3352 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3353 {
3354 unsigned int max_dispatch;
3355
3356 /*
3357 * Drain async requests before we start sync IO
3358 */
3359 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3360 return false;
3361
3362 /*
3363 * If this is an async queue and we have sync IO in flight, let it wait
3364 */
3365 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3366 return false;
3367
3368 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3369 if (cfq_class_idle(cfqq))
3370 max_dispatch = 1;
3371
3372 /*
3373 * Does this cfqq already have too much IO in flight?
3374 */
3375 if (cfqq->dispatched >= max_dispatch) {
3376 bool promote_sync = false;
3377 /*
3378 * idle queue must always only have a single IO in flight
3379 */
3380 if (cfq_class_idle(cfqq))
3381 return false;
3382
3383 /*
3384 * If there is only one sync queue
3385 * we can ignore async queue here and give the sync
3386 * queue no dispatch limit. The reason is a sync queue can
3387 * preempt async queue, limiting the sync queue doesn't make
3388 * sense. This is useful for aiostress test.
3389 */
3390 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3391 promote_sync = true;
3392
3393 /*
3394 * We have other queues, don't allow more IO from this one
3395 */
3396 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3397 !promote_sync)
3398 return false;
3399
3400 /*
3401 * Sole queue user, no limit
3402 */
3403 if (cfqd->busy_queues == 1 || promote_sync)
3404 max_dispatch = -1;
3405 else
3406 /*
3407 * Normally we start throttling cfqq when cfq_quantum/2
3408 * requests have been dispatched. But we can drive
3409 * deeper queue depths at the beginning of slice
3410 * subjected to upper limit of cfq_quantum.
3411 * */
3412 max_dispatch = cfqd->cfq_quantum;
3413 }
3414
3415 /*
3416 * Async queues must wait a bit before being allowed dispatch.
3417 * We also ramp up the dispatch depth gradually for async IO,
3418 * based on the last sync IO we serviced
3419 */
3420 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3421 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3422 unsigned int depth;
3423
3424 depth = last_sync / cfqd->cfq_slice[1];
3425 if (!depth && !cfqq->dispatched)
3426 depth = 1;
3427 if (depth < max_dispatch)
3428 max_dispatch = depth;
3429 }
3430
3431 /*
3432 * If we're below the current max, allow a dispatch
3433 */
3434 return cfqq->dispatched < max_dispatch;
3435 }
3436
3437 /*
3438 * Dispatch a request from cfqq, moving them to the request queue
3439 * dispatch list.
3440 */
3441 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3442 {
3443 struct request *rq;
3444
3445 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3446
3447 if (!cfq_may_dispatch(cfqd, cfqq))
3448 return false;
3449
3450 /*
3451 * follow expired path, else get first next available
3452 */
3453 rq = cfq_check_fifo(cfqq);
3454 if (!rq)
3455 rq = cfqq->next_rq;
3456
3457 /*
3458 * insert request into driver dispatch list
3459 */
3460 cfq_dispatch_insert(cfqd->queue, rq);
3461
3462 if (!cfqd->active_cic) {
3463 struct cfq_io_cq *cic = RQ_CIC(rq);
3464
3465 atomic_long_inc(&cic->icq.ioc->refcount);
3466 cfqd->active_cic = cic;
3467 }
3468
3469 return true;
3470 }
3471
3472 /*
3473 * Find the cfqq that we need to service and move a request from that to the
3474 * dispatch list
3475 */
3476 static int cfq_dispatch_requests(struct request_queue *q, int force)
3477 {
3478 struct cfq_data *cfqd = q->elevator->elevator_data;
3479 struct cfq_queue *cfqq;
3480
3481 if (!cfqd->busy_queues)
3482 return 0;
3483
3484 if (unlikely(force))
3485 return cfq_forced_dispatch(cfqd);
3486
3487 cfqq = cfq_select_queue(cfqd);
3488 if (!cfqq)
3489 return 0;
3490
3491 /*
3492 * Dispatch a request from this cfqq, if it is allowed
3493 */
3494 if (!cfq_dispatch_request(cfqd, cfqq))
3495 return 0;
3496
3497 cfqq->slice_dispatch++;
3498 cfq_clear_cfqq_must_dispatch(cfqq);
3499
3500 /*
3501 * expire an async queue immediately if it has used up its slice. idle
3502 * queue always expire after 1 dispatch round.
3503 */
3504 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3505 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3506 cfq_class_idle(cfqq))) {
3507 cfqq->slice_end = jiffies + 1;
3508 cfq_slice_expired(cfqd, 0);
3509 }
3510
3511 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3512 return 1;
3513 }
3514
3515 /*
3516 * task holds one reference to the queue, dropped when task exits. each rq
3517 * in-flight on this queue also holds a reference, dropped when rq is freed.
3518 *
3519 * Each cfq queue took a reference on the parent group. Drop it now.
3520 * queue lock must be held here.
3521 */
3522 static void cfq_put_queue(struct cfq_queue *cfqq)
3523 {
3524 struct cfq_data *cfqd = cfqq->cfqd;
3525 struct cfq_group *cfqg;
3526
3527 BUG_ON(cfqq->ref <= 0);
3528
3529 cfqq->ref--;
3530 if (cfqq->ref)
3531 return;
3532
3533 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3534 BUG_ON(rb_first(&cfqq->sort_list));
3535 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3536 cfqg = cfqq->cfqg;
3537
3538 if (unlikely(cfqd->active_queue == cfqq)) {
3539 __cfq_slice_expired(cfqd, cfqq, 0);
3540 cfq_schedule_dispatch(cfqd);
3541 }
3542
3543 BUG_ON(cfq_cfqq_on_rr(cfqq));
3544 kmem_cache_free(cfq_pool, cfqq);
3545 cfqg_put(cfqg);
3546 }
3547
3548 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3549 {
3550 struct cfq_queue *__cfqq, *next;
3551
3552 /*
3553 * If this queue was scheduled to merge with another queue, be
3554 * sure to drop the reference taken on that queue (and others in
3555 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3556 */
3557 __cfqq = cfqq->new_cfqq;
3558 while (__cfqq) {
3559 if (__cfqq == cfqq) {
3560 WARN(1, "cfqq->new_cfqq loop detected\n");
3561 break;
3562 }
3563 next = __cfqq->new_cfqq;
3564 cfq_put_queue(__cfqq);
3565 __cfqq = next;
3566 }
3567 }
3568
3569 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3570 {
3571 if (unlikely(cfqq == cfqd->active_queue)) {
3572 __cfq_slice_expired(cfqd, cfqq, 0);
3573 cfq_schedule_dispatch(cfqd);
3574 }
3575
3576 cfq_put_cooperator(cfqq);
3577
3578 cfq_put_queue(cfqq);
3579 }
3580
3581 static void cfq_init_icq(struct io_cq *icq)
3582 {
3583 struct cfq_io_cq *cic = icq_to_cic(icq);
3584
3585 cic->ttime.last_end_request = jiffies;
3586 }
3587
3588 static void cfq_exit_icq(struct io_cq *icq)
3589 {
3590 struct cfq_io_cq *cic = icq_to_cic(icq);
3591 struct cfq_data *cfqd = cic_to_cfqd(cic);
3592
3593 if (cic_to_cfqq(cic, false)) {
3594 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3595 cic_set_cfqq(cic, NULL, false);
3596 }
3597
3598 if (cic_to_cfqq(cic, true)) {
3599 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3600 cic_set_cfqq(cic, NULL, true);
3601 }
3602 }
3603
3604 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3605 {
3606 struct task_struct *tsk = current;
3607 int ioprio_class;
3608
3609 if (!cfq_cfqq_prio_changed(cfqq))
3610 return;
3611
3612 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3613 switch (ioprio_class) {
3614 default:
3615 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3616 case IOPRIO_CLASS_NONE:
3617 /*
3618 * no prio set, inherit CPU scheduling settings
3619 */
3620 cfqq->ioprio = task_nice_ioprio(tsk);
3621 cfqq->ioprio_class = task_nice_ioclass(tsk);
3622 break;
3623 case IOPRIO_CLASS_RT:
3624 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3625 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3626 break;
3627 case IOPRIO_CLASS_BE:
3628 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3629 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3630 break;
3631 case IOPRIO_CLASS_IDLE:
3632 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3633 cfqq->ioprio = 7;
3634 cfq_clear_cfqq_idle_window(cfqq);
3635 break;
3636 }
3637
3638 /*
3639 * keep track of original prio settings in case we have to temporarily
3640 * elevate the priority of this queue
3641 */
3642 cfqq->org_ioprio = cfqq->ioprio;
3643 cfq_clear_cfqq_prio_changed(cfqq);
3644 }
3645
3646 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3647 {
3648 int ioprio = cic->icq.ioc->ioprio;
3649 struct cfq_data *cfqd = cic_to_cfqd(cic);
3650 struct cfq_queue *cfqq;
3651
3652 /*
3653 * Check whether ioprio has changed. The condition may trigger
3654 * spuriously on a newly created cic but there's no harm.
3655 */
3656 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3657 return;
3658
3659 cfqq = cic_to_cfqq(cic, false);
3660 if (cfqq) {
3661 cfq_put_queue(cfqq);
3662 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3663 cic_set_cfqq(cic, cfqq, false);
3664 }
3665
3666 cfqq = cic_to_cfqq(cic, true);
3667 if (cfqq)
3668 cfq_mark_cfqq_prio_changed(cfqq);
3669
3670 cic->ioprio = ioprio;
3671 }
3672
3673 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3674 pid_t pid, bool is_sync)
3675 {
3676 RB_CLEAR_NODE(&cfqq->rb_node);
3677 RB_CLEAR_NODE(&cfqq->p_node);
3678 INIT_LIST_HEAD(&cfqq->fifo);
3679
3680 cfqq->ref = 0;
3681 cfqq->cfqd = cfqd;
3682
3683 cfq_mark_cfqq_prio_changed(cfqq);
3684
3685 if (is_sync) {
3686 if (!cfq_class_idle(cfqq))
3687 cfq_mark_cfqq_idle_window(cfqq);
3688 cfq_mark_cfqq_sync(cfqq);
3689 }
3690 cfqq->pid = pid;
3691 }
3692
3693 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3694 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3695 {
3696 struct cfq_data *cfqd = cic_to_cfqd(cic);
3697 struct cfq_queue *cfqq;
3698 uint64_t serial_nr;
3699
3700 rcu_read_lock();
3701 serial_nr = bio_blkcg(bio)->css.serial_nr;
3702 rcu_read_unlock();
3703
3704 /*
3705 * Check whether blkcg has changed. The condition may trigger
3706 * spuriously on a newly created cic but there's no harm.
3707 */
3708 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3709 return;
3710
3711 /*
3712 * Drop reference to queues. New queues will be assigned in new
3713 * group upon arrival of fresh requests.
3714 */
3715 cfqq = cic_to_cfqq(cic, false);
3716 if (cfqq) {
3717 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3718 cic_set_cfqq(cic, NULL, false);
3719 cfq_put_queue(cfqq);
3720 }
3721
3722 cfqq = cic_to_cfqq(cic, true);
3723 if (cfqq) {
3724 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3725 cic_set_cfqq(cic, NULL, true);
3726 cfq_put_queue(cfqq);
3727 }
3728
3729 cic->blkcg_serial_nr = serial_nr;
3730 }
3731 #else
3732 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3733 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3734
3735 static struct cfq_queue **
3736 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3737 {
3738 switch (ioprio_class) {
3739 case IOPRIO_CLASS_RT:
3740 return &cfqg->async_cfqq[0][ioprio];
3741 case IOPRIO_CLASS_NONE:
3742 ioprio = IOPRIO_NORM;
3743 /* fall through */
3744 case IOPRIO_CLASS_BE:
3745 return &cfqg->async_cfqq[1][ioprio];
3746 case IOPRIO_CLASS_IDLE:
3747 return &cfqg->async_idle_cfqq;
3748 default:
3749 BUG();
3750 }
3751 }
3752
3753 static struct cfq_queue *
3754 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3755 struct bio *bio)
3756 {
3757 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3758 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3759 struct cfq_queue **async_cfqq = NULL;
3760 struct cfq_queue *cfqq;
3761 struct cfq_group *cfqg;
3762
3763 rcu_read_lock();
3764 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3765 if (!cfqg) {
3766 cfqq = &cfqd->oom_cfqq;
3767 goto out;
3768 }
3769
3770 if (!is_sync) {
3771 if (!ioprio_valid(cic->ioprio)) {
3772 struct task_struct *tsk = current;
3773 ioprio = task_nice_ioprio(tsk);
3774 ioprio_class = task_nice_ioclass(tsk);
3775 }
3776 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3777 cfqq = *async_cfqq;
3778 if (cfqq)
3779 goto out;
3780 }
3781
3782 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3783 cfqd->queue->node);
3784 if (!cfqq) {
3785 cfqq = &cfqd->oom_cfqq;
3786 goto out;
3787 }
3788
3789 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3790 cfq_init_prio_data(cfqq, cic);
3791 cfq_link_cfqq_cfqg(cfqq, cfqg);
3792 cfq_log_cfqq(cfqd, cfqq, "alloced");
3793
3794 if (async_cfqq) {
3795 /* a new async queue is created, pin and remember */
3796 cfqq->ref++;
3797 *async_cfqq = cfqq;
3798 }
3799 out:
3800 cfqq->ref++;
3801 rcu_read_unlock();
3802 return cfqq;
3803 }
3804
3805 static void
3806 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3807 {
3808 unsigned long elapsed = jiffies - ttime->last_end_request;
3809 elapsed = min(elapsed, 2UL * slice_idle);
3810
3811 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3812 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3813 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3814 }
3815
3816 static void
3817 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3818 struct cfq_io_cq *cic)
3819 {
3820 if (cfq_cfqq_sync(cfqq)) {
3821 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3822 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3823 cfqd->cfq_slice_idle);
3824 }
3825 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3826 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3827 #endif
3828 }
3829
3830 static void
3831 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3832 struct request *rq)
3833 {
3834 sector_t sdist = 0;
3835 sector_t n_sec = blk_rq_sectors(rq);
3836 if (cfqq->last_request_pos) {
3837 if (cfqq->last_request_pos < blk_rq_pos(rq))
3838 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3839 else
3840 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3841 }
3842
3843 cfqq->seek_history <<= 1;
3844 if (blk_queue_nonrot(cfqd->queue))
3845 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3846 else
3847 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3848 }
3849
3850 /*
3851 * Disable idle window if the process thinks too long or seeks so much that
3852 * it doesn't matter
3853 */
3854 static void
3855 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3856 struct cfq_io_cq *cic)
3857 {
3858 int old_idle, enable_idle;
3859
3860 /*
3861 * Don't idle for async or idle io prio class
3862 */
3863 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3864 return;
3865
3866 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3867
3868 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3869 cfq_mark_cfqq_deep(cfqq);
3870
3871 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3872 enable_idle = 0;
3873 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3874 !cfqd->cfq_slice_idle ||
3875 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3876 enable_idle = 0;
3877 else if (sample_valid(cic->ttime.ttime_samples)) {
3878 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3879 enable_idle = 0;
3880 else
3881 enable_idle = 1;
3882 }
3883
3884 if (old_idle != enable_idle) {
3885 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3886 if (enable_idle)
3887 cfq_mark_cfqq_idle_window(cfqq);
3888 else
3889 cfq_clear_cfqq_idle_window(cfqq);
3890 }
3891 }
3892
3893 /*
3894 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3895 * no or if we aren't sure, a 1 will cause a preempt.
3896 */
3897 static bool
3898 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3899 struct request *rq)
3900 {
3901 struct cfq_queue *cfqq;
3902
3903 cfqq = cfqd->active_queue;
3904 if (!cfqq)
3905 return false;
3906
3907 if (cfq_class_idle(new_cfqq))
3908 return false;
3909
3910 if (cfq_class_idle(cfqq))
3911 return true;
3912
3913 /*
3914 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3915 */
3916 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3917 return false;
3918
3919 /*
3920 * if the new request is sync, but the currently running queue is
3921 * not, let the sync request have priority.
3922 */
3923 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3924 return true;
3925
3926 if (new_cfqq->cfqg != cfqq->cfqg)
3927 return false;
3928
3929 if (cfq_slice_used(cfqq))
3930 return true;
3931
3932 /* Allow preemption only if we are idling on sync-noidle tree */
3933 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3934 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3935 new_cfqq->service_tree->count == 2 &&
3936 RB_EMPTY_ROOT(&cfqq->sort_list))
3937 return true;
3938
3939 /*
3940 * So both queues are sync. Let the new request get disk time if
3941 * it's a metadata request and the current queue is doing regular IO.
3942 */
3943 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3944 return true;
3945
3946 /*
3947 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3948 */
3949 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3950 return true;
3951
3952 /* An idle queue should not be idle now for some reason */
3953 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3954 return true;
3955
3956 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3957 return false;
3958
3959 /*
3960 * if this request is as-good as one we would expect from the
3961 * current cfqq, let it preempt
3962 */
3963 if (cfq_rq_close(cfqd, cfqq, rq))
3964 return true;
3965
3966 return false;
3967 }
3968
3969 /*
3970 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3971 * let it have half of its nominal slice.
3972 */
3973 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3974 {
3975 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3976
3977 cfq_log_cfqq(cfqd, cfqq, "preempt");
3978 cfq_slice_expired(cfqd, 1);
3979
3980 /*
3981 * workload type is changed, don't save slice, otherwise preempt
3982 * doesn't happen
3983 */
3984 if (old_type != cfqq_type(cfqq))
3985 cfqq->cfqg->saved_wl_slice = 0;
3986
3987 /*
3988 * Put the new queue at the front of the of the current list,
3989 * so we know that it will be selected next.
3990 */
3991 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3992
3993 cfq_service_tree_add(cfqd, cfqq, 1);
3994
3995 cfqq->slice_end = 0;
3996 cfq_mark_cfqq_slice_new(cfqq);
3997 }
3998
3999 /*
4000 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4001 * something we should do about it
4002 */
4003 static void
4004 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4005 struct request *rq)
4006 {
4007 struct cfq_io_cq *cic = RQ_CIC(rq);
4008
4009 cfqd->rq_queued++;
4010 if (rq->cmd_flags & REQ_PRIO)
4011 cfqq->prio_pending++;
4012
4013 cfq_update_io_thinktime(cfqd, cfqq, cic);
4014 cfq_update_io_seektime(cfqd, cfqq, rq);
4015 cfq_update_idle_window(cfqd, cfqq, cic);
4016
4017 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4018
4019 if (cfqq == cfqd->active_queue) {
4020 /*
4021 * Remember that we saw a request from this process, but
4022 * don't start queuing just yet. Otherwise we risk seeing lots
4023 * of tiny requests, because we disrupt the normal plugging
4024 * and merging. If the request is already larger than a single
4025 * page, let it rip immediately. For that case we assume that
4026 * merging is already done. Ditto for a busy system that
4027 * has other work pending, don't risk delaying until the
4028 * idle timer unplug to continue working.
4029 */
4030 if (cfq_cfqq_wait_request(cfqq)) {
4031 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
4032 cfqd->busy_queues > 1) {
4033 cfq_del_timer(cfqd, cfqq);
4034 cfq_clear_cfqq_wait_request(cfqq);
4035 __blk_run_queue(cfqd->queue);
4036 } else {
4037 cfqg_stats_update_idle_time(cfqq->cfqg);
4038 cfq_mark_cfqq_must_dispatch(cfqq);
4039 }
4040 }
4041 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4042 /*
4043 * not the active queue - expire current slice if it is
4044 * idle and has expired it's mean thinktime or this new queue
4045 * has some old slice time left and is of higher priority or
4046 * this new queue is RT and the current one is BE
4047 */
4048 cfq_preempt_queue(cfqd, cfqq);
4049 __blk_run_queue(cfqd->queue);
4050 }
4051 }
4052
4053 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4054 {
4055 struct cfq_data *cfqd = q->elevator->elevator_data;
4056 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4057
4058 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4059 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4060
4061 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4062 list_add_tail(&rq->queuelist, &cfqq->fifo);
4063 cfq_add_rq_rb(rq);
4064 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4065 rq->cmd_flags);
4066 cfq_rq_enqueued(cfqd, cfqq, rq);
4067 }
4068
4069 /*
4070 * Update hw_tag based on peak queue depth over 50 samples under
4071 * sufficient load.
4072 */
4073 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4074 {
4075 struct cfq_queue *cfqq = cfqd->active_queue;
4076
4077 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4078 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4079
4080 if (cfqd->hw_tag == 1)
4081 return;
4082
4083 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4084 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4085 return;
4086
4087 /*
4088 * If active queue hasn't enough requests and can idle, cfq might not
4089 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4090 * case
4091 */
4092 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4093 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4094 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4095 return;
4096
4097 if (cfqd->hw_tag_samples++ < 50)
4098 return;
4099
4100 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4101 cfqd->hw_tag = 1;
4102 else
4103 cfqd->hw_tag = 0;
4104 }
4105
4106 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4107 {
4108 struct cfq_io_cq *cic = cfqd->active_cic;
4109
4110 /* If the queue already has requests, don't wait */
4111 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4112 return false;
4113
4114 /* If there are other queues in the group, don't wait */
4115 if (cfqq->cfqg->nr_cfqq > 1)
4116 return false;
4117
4118 /* the only queue in the group, but think time is big */
4119 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4120 return false;
4121
4122 if (cfq_slice_used(cfqq))
4123 return true;
4124
4125 /* if slice left is less than think time, wait busy */
4126 if (cic && sample_valid(cic->ttime.ttime_samples)
4127 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4128 return true;
4129
4130 /*
4131 * If think times is less than a jiffy than ttime_mean=0 and above
4132 * will not be true. It might happen that slice has not expired yet
4133 * but will expire soon (4-5 ns) during select_queue(). To cover the
4134 * case where think time is less than a jiffy, mark the queue wait
4135 * busy if only 1 jiffy is left in the slice.
4136 */
4137 if (cfqq->slice_end - jiffies == 1)
4138 return true;
4139
4140 return false;
4141 }
4142
4143 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4144 {
4145 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4146 struct cfq_data *cfqd = cfqq->cfqd;
4147 const int sync = rq_is_sync(rq);
4148 unsigned long now;
4149
4150 now = jiffies;
4151 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4152 !!(rq->cmd_flags & REQ_NOIDLE));
4153
4154 cfq_update_hw_tag(cfqd);
4155
4156 WARN_ON(!cfqd->rq_in_driver);
4157 WARN_ON(!cfqq->dispatched);
4158 cfqd->rq_in_driver--;
4159 cfqq->dispatched--;
4160 (RQ_CFQG(rq))->dispatched--;
4161 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4162 rq_io_start_time_ns(rq), rq->cmd_flags);
4163
4164 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4165
4166 if (sync) {
4167 struct cfq_rb_root *st;
4168
4169 RQ_CIC(rq)->ttime.last_end_request = now;
4170
4171 if (cfq_cfqq_on_rr(cfqq))
4172 st = cfqq->service_tree;
4173 else
4174 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4175 cfqq_type(cfqq));
4176
4177 st->ttime.last_end_request = now;
4178 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4179 cfqd->last_delayed_sync = now;
4180 }
4181
4182 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4183 cfqq->cfqg->ttime.last_end_request = now;
4184 #endif
4185
4186 /*
4187 * If this is the active queue, check if it needs to be expired,
4188 * or if we want to idle in case it has no pending requests.
4189 */
4190 if (cfqd->active_queue == cfqq) {
4191 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4192
4193 if (cfq_cfqq_slice_new(cfqq)) {
4194 cfq_set_prio_slice(cfqd, cfqq);
4195 cfq_clear_cfqq_slice_new(cfqq);
4196 }
4197
4198 /*
4199 * Should we wait for next request to come in before we expire
4200 * the queue.
4201 */
4202 if (cfq_should_wait_busy(cfqd, cfqq)) {
4203 unsigned long extend_sl = cfqd->cfq_slice_idle;
4204 if (!cfqd->cfq_slice_idle)
4205 extend_sl = cfqd->cfq_group_idle;
4206 cfqq->slice_end = jiffies + extend_sl;
4207 cfq_mark_cfqq_wait_busy(cfqq);
4208 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4209 }
4210
4211 /*
4212 * Idling is not enabled on:
4213 * - expired queues
4214 * - idle-priority queues
4215 * - async queues
4216 * - queues with still some requests queued
4217 * - when there is a close cooperator
4218 */
4219 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4220 cfq_slice_expired(cfqd, 1);
4221 else if (sync && cfqq_empty &&
4222 !cfq_close_cooperator(cfqd, cfqq)) {
4223 cfq_arm_slice_timer(cfqd);
4224 }
4225 }
4226
4227 if (!cfqd->rq_in_driver)
4228 cfq_schedule_dispatch(cfqd);
4229 }
4230
4231 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4232 {
4233 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4234 cfq_mark_cfqq_must_alloc_slice(cfqq);
4235 return ELV_MQUEUE_MUST;
4236 }
4237
4238 return ELV_MQUEUE_MAY;
4239 }
4240
4241 static int cfq_may_queue(struct request_queue *q, int rw)
4242 {
4243 struct cfq_data *cfqd = q->elevator->elevator_data;
4244 struct task_struct *tsk = current;
4245 struct cfq_io_cq *cic;
4246 struct cfq_queue *cfqq;
4247
4248 /*
4249 * don't force setup of a queue from here, as a call to may_queue
4250 * does not necessarily imply that a request actually will be queued.
4251 * so just lookup a possibly existing queue, or return 'may queue'
4252 * if that fails
4253 */
4254 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4255 if (!cic)
4256 return ELV_MQUEUE_MAY;
4257
4258 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4259 if (cfqq) {
4260 cfq_init_prio_data(cfqq, cic);
4261
4262 return __cfq_may_queue(cfqq);
4263 }
4264
4265 return ELV_MQUEUE_MAY;
4266 }
4267
4268 /*
4269 * queue lock held here
4270 */
4271 static void cfq_put_request(struct request *rq)
4272 {
4273 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4274
4275 if (cfqq) {
4276 const int rw = rq_data_dir(rq);
4277
4278 BUG_ON(!cfqq->allocated[rw]);
4279 cfqq->allocated[rw]--;
4280
4281 /* Put down rq reference on cfqg */
4282 cfqg_put(RQ_CFQG(rq));
4283 rq->elv.priv[0] = NULL;
4284 rq->elv.priv[1] = NULL;
4285
4286 cfq_put_queue(cfqq);
4287 }
4288 }
4289
4290 static struct cfq_queue *
4291 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4292 struct cfq_queue *cfqq)
4293 {
4294 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4295 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4296 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4297 cfq_put_queue(cfqq);
4298 return cic_to_cfqq(cic, 1);
4299 }
4300
4301 /*
4302 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4303 * was the last process referring to said cfqq.
4304 */
4305 static struct cfq_queue *
4306 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4307 {
4308 if (cfqq_process_refs(cfqq) == 1) {
4309 cfqq->pid = current->pid;
4310 cfq_clear_cfqq_coop(cfqq);
4311 cfq_clear_cfqq_split_coop(cfqq);
4312 return cfqq;
4313 }
4314
4315 cic_set_cfqq(cic, NULL, 1);
4316
4317 cfq_put_cooperator(cfqq);
4318
4319 cfq_put_queue(cfqq);
4320 return NULL;
4321 }
4322 /*
4323 * Allocate cfq data structures associated with this request.
4324 */
4325 static int
4326 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4327 gfp_t gfp_mask)
4328 {
4329 struct cfq_data *cfqd = q->elevator->elevator_data;
4330 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4331 const int rw = rq_data_dir(rq);
4332 const bool is_sync = rq_is_sync(rq);
4333 struct cfq_queue *cfqq;
4334
4335 spin_lock_irq(q->queue_lock);
4336
4337 check_ioprio_changed(cic, bio);
4338 check_blkcg_changed(cic, bio);
4339 new_queue:
4340 cfqq = cic_to_cfqq(cic, is_sync);
4341 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4342 if (cfqq)
4343 cfq_put_queue(cfqq);
4344 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4345 cic_set_cfqq(cic, cfqq, is_sync);
4346 } else {
4347 /*
4348 * If the queue was seeky for too long, break it apart.
4349 */
4350 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4351 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4352 cfqq = split_cfqq(cic, cfqq);
4353 if (!cfqq)
4354 goto new_queue;
4355 }
4356
4357 /*
4358 * Check to see if this queue is scheduled to merge with
4359 * another, closely cooperating queue. The merging of
4360 * queues happens here as it must be done in process context.
4361 * The reference on new_cfqq was taken in merge_cfqqs.
4362 */
4363 if (cfqq->new_cfqq)
4364 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4365 }
4366
4367 cfqq->allocated[rw]++;
4368
4369 cfqq->ref++;
4370 cfqg_get(cfqq->cfqg);
4371 rq->elv.priv[0] = cfqq;
4372 rq->elv.priv[1] = cfqq->cfqg;
4373 spin_unlock_irq(q->queue_lock);
4374 return 0;
4375 }
4376
4377 static void cfq_kick_queue(struct work_struct *work)
4378 {
4379 struct cfq_data *cfqd =
4380 container_of(work, struct cfq_data, unplug_work);
4381 struct request_queue *q = cfqd->queue;
4382
4383 spin_lock_irq(q->queue_lock);
4384 __blk_run_queue(cfqd->queue);
4385 spin_unlock_irq(q->queue_lock);
4386 }
4387
4388 /*
4389 * Timer running if the active_queue is currently idling inside its time slice
4390 */
4391 static void cfq_idle_slice_timer(unsigned long data)
4392 {
4393 struct cfq_data *cfqd = (struct cfq_data *) data;
4394 struct cfq_queue *cfqq;
4395 unsigned long flags;
4396 int timed_out = 1;
4397
4398 cfq_log(cfqd, "idle timer fired");
4399
4400 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4401
4402 cfqq = cfqd->active_queue;
4403 if (cfqq) {
4404 timed_out = 0;
4405
4406 /*
4407 * We saw a request before the queue expired, let it through
4408 */
4409 if (cfq_cfqq_must_dispatch(cfqq))
4410 goto out_kick;
4411
4412 /*
4413 * expired
4414 */
4415 if (cfq_slice_used(cfqq))
4416 goto expire;
4417
4418 /*
4419 * only expire and reinvoke request handler, if there are
4420 * other queues with pending requests
4421 */
4422 if (!cfqd->busy_queues)
4423 goto out_cont;
4424
4425 /*
4426 * not expired and it has a request pending, let it dispatch
4427 */
4428 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4429 goto out_kick;
4430
4431 /*
4432 * Queue depth flag is reset only when the idle didn't succeed
4433 */
4434 cfq_clear_cfqq_deep(cfqq);
4435 }
4436 expire:
4437 cfq_slice_expired(cfqd, timed_out);
4438 out_kick:
4439 cfq_schedule_dispatch(cfqd);
4440 out_cont:
4441 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4442 }
4443
4444 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4445 {
4446 del_timer_sync(&cfqd->idle_slice_timer);
4447 cancel_work_sync(&cfqd->unplug_work);
4448 }
4449
4450 static void cfq_exit_queue(struct elevator_queue *e)
4451 {
4452 struct cfq_data *cfqd = e->elevator_data;
4453 struct request_queue *q = cfqd->queue;
4454
4455 cfq_shutdown_timer_wq(cfqd);
4456
4457 spin_lock_irq(q->queue_lock);
4458
4459 if (cfqd->active_queue)
4460 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4461
4462 spin_unlock_irq(q->queue_lock);
4463
4464 cfq_shutdown_timer_wq(cfqd);
4465
4466 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4467 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4468 #else
4469 kfree(cfqd->root_group);
4470 #endif
4471 kfree(cfqd);
4472 }
4473
4474 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4475 {
4476 struct cfq_data *cfqd;
4477 struct blkcg_gq *blkg __maybe_unused;
4478 int i, ret;
4479 struct elevator_queue *eq;
4480
4481 eq = elevator_alloc(q, e);
4482 if (!eq)
4483 return -ENOMEM;
4484
4485 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4486 if (!cfqd) {
4487 kobject_put(&eq->kobj);
4488 return -ENOMEM;
4489 }
4490 eq->elevator_data = cfqd;
4491
4492 cfqd->queue = q;
4493 spin_lock_irq(q->queue_lock);
4494 q->elevator = eq;
4495 spin_unlock_irq(q->queue_lock);
4496
4497 /* Init root service tree */
4498 cfqd->grp_service_tree = CFQ_RB_ROOT;
4499
4500 /* Init root group and prefer root group over other groups by default */
4501 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4502 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4503 if (ret)
4504 goto out_free;
4505
4506 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4507 #else
4508 ret = -ENOMEM;
4509 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4510 GFP_KERNEL, cfqd->queue->node);
4511 if (!cfqd->root_group)
4512 goto out_free;
4513
4514 cfq_init_cfqg_base(cfqd->root_group);
4515 #endif
4516 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4517 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4518
4519 /*
4520 * Not strictly needed (since RB_ROOT just clears the node and we
4521 * zeroed cfqd on alloc), but better be safe in case someone decides
4522 * to add magic to the rb code
4523 */
4524 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4525 cfqd->prio_trees[i] = RB_ROOT;
4526
4527 /*
4528 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4529 * Grab a permanent reference to it, so that the normal code flow
4530 * will not attempt to free it. oom_cfqq is linked to root_group
4531 * but shouldn't hold a reference as it'll never be unlinked. Lose
4532 * the reference from linking right away.
4533 */
4534 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4535 cfqd->oom_cfqq.ref++;
4536
4537 spin_lock_irq(q->queue_lock);
4538 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4539 cfqg_put(cfqd->root_group);
4540 spin_unlock_irq(q->queue_lock);
4541
4542 init_timer(&cfqd->idle_slice_timer);
4543 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4544 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4545
4546 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4547
4548 cfqd->cfq_quantum = cfq_quantum;
4549 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4550 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4551 cfqd->cfq_back_max = cfq_back_max;
4552 cfqd->cfq_back_penalty = cfq_back_penalty;
4553 cfqd->cfq_slice[0] = cfq_slice_async;
4554 cfqd->cfq_slice[1] = cfq_slice_sync;
4555 cfqd->cfq_target_latency = cfq_target_latency;
4556 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4557 cfqd->cfq_slice_idle = cfq_slice_idle;
4558 cfqd->cfq_group_idle = cfq_group_idle;
4559 cfqd->cfq_latency = 1;
4560 cfqd->hw_tag = -1;
4561 /*
4562 * we optimistically start assuming sync ops weren't delayed in last
4563 * second, in order to have larger depth for async operations.
4564 */
4565 cfqd->last_delayed_sync = jiffies - HZ;
4566 return 0;
4567
4568 out_free:
4569 kfree(cfqd);
4570 kobject_put(&eq->kobj);
4571 return ret;
4572 }
4573
4574 static void cfq_registered_queue(struct request_queue *q)
4575 {
4576 struct elevator_queue *e = q->elevator;
4577 struct cfq_data *cfqd = e->elevator_data;
4578
4579 /*
4580 * Default to IOPS mode with no idling for SSDs
4581 */
4582 if (blk_queue_nonrot(q))
4583 cfqd->cfq_slice_idle = 0;
4584 }
4585
4586 /*
4587 * sysfs parts below -->
4588 */
4589 static ssize_t
4590 cfq_var_show(unsigned int var, char *page)
4591 {
4592 return sprintf(page, "%u\n", var);
4593 }
4594
4595 static ssize_t
4596 cfq_var_store(unsigned int *var, const char *page, size_t count)
4597 {
4598 char *p = (char *) page;
4599
4600 *var = simple_strtoul(p, &p, 10);
4601 return count;
4602 }
4603
4604 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4605 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4606 { \
4607 struct cfq_data *cfqd = e->elevator_data; \
4608 unsigned int __data = __VAR; \
4609 if (__CONV) \
4610 __data = jiffies_to_msecs(__data); \
4611 return cfq_var_show(__data, (page)); \
4612 }
4613 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4614 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4615 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4616 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4617 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4618 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4619 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4620 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4621 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4622 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4623 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4624 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4625 #undef SHOW_FUNCTION
4626
4627 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4628 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4629 { \
4630 struct cfq_data *cfqd = e->elevator_data; \
4631 unsigned int __data; \
4632 int ret = cfq_var_store(&__data, (page), count); \
4633 if (__data < (MIN)) \
4634 __data = (MIN); \
4635 else if (__data > (MAX)) \
4636 __data = (MAX); \
4637 if (__CONV) \
4638 *(__PTR) = msecs_to_jiffies(__data); \
4639 else \
4640 *(__PTR) = __data; \
4641 return ret; \
4642 }
4643 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4644 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4645 UINT_MAX, 1);
4646 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4647 UINT_MAX, 1);
4648 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4649 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4650 UINT_MAX, 0);
4651 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4652 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4653 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4654 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4655 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4656 UINT_MAX, 0);
4657 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4658 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4659 #undef STORE_FUNCTION
4660
4661 #define CFQ_ATTR(name) \
4662 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4663
4664 static struct elv_fs_entry cfq_attrs[] = {
4665 CFQ_ATTR(quantum),
4666 CFQ_ATTR(fifo_expire_sync),
4667 CFQ_ATTR(fifo_expire_async),
4668 CFQ_ATTR(back_seek_max),
4669 CFQ_ATTR(back_seek_penalty),
4670 CFQ_ATTR(slice_sync),
4671 CFQ_ATTR(slice_async),
4672 CFQ_ATTR(slice_async_rq),
4673 CFQ_ATTR(slice_idle),
4674 CFQ_ATTR(group_idle),
4675 CFQ_ATTR(low_latency),
4676 CFQ_ATTR(target_latency),
4677 __ATTR_NULL
4678 };
4679
4680 static struct elevator_type iosched_cfq = {
4681 .ops = {
4682 .elevator_merge_fn = cfq_merge,
4683 .elevator_merged_fn = cfq_merged_request,
4684 .elevator_merge_req_fn = cfq_merged_requests,
4685 .elevator_allow_merge_fn = cfq_allow_merge,
4686 .elevator_bio_merged_fn = cfq_bio_merged,
4687 .elevator_dispatch_fn = cfq_dispatch_requests,
4688 .elevator_add_req_fn = cfq_insert_request,
4689 .elevator_activate_req_fn = cfq_activate_request,
4690 .elevator_deactivate_req_fn = cfq_deactivate_request,
4691 .elevator_completed_req_fn = cfq_completed_request,
4692 .elevator_former_req_fn = elv_rb_former_request,
4693 .elevator_latter_req_fn = elv_rb_latter_request,
4694 .elevator_init_icq_fn = cfq_init_icq,
4695 .elevator_exit_icq_fn = cfq_exit_icq,
4696 .elevator_set_req_fn = cfq_set_request,
4697 .elevator_put_req_fn = cfq_put_request,
4698 .elevator_may_queue_fn = cfq_may_queue,
4699 .elevator_init_fn = cfq_init_queue,
4700 .elevator_exit_fn = cfq_exit_queue,
4701 .elevator_registered_fn = cfq_registered_queue,
4702 },
4703 .icq_size = sizeof(struct cfq_io_cq),
4704 .icq_align = __alignof__(struct cfq_io_cq),
4705 .elevator_attrs = cfq_attrs,
4706 .elevator_name = "cfq",
4707 .elevator_owner = THIS_MODULE,
4708 };
4709
4710 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4711 static struct blkcg_policy blkcg_policy_cfq = {
4712 .dfl_cftypes = cfq_blkcg_files,
4713 .legacy_cftypes = cfq_blkcg_legacy_files,
4714
4715 .cpd_alloc_fn = cfq_cpd_alloc,
4716 .cpd_init_fn = cfq_cpd_init,
4717 .cpd_free_fn = cfq_cpd_free,
4718
4719 .pd_alloc_fn = cfq_pd_alloc,
4720 .pd_init_fn = cfq_pd_init,
4721 .pd_offline_fn = cfq_pd_offline,
4722 .pd_free_fn = cfq_pd_free,
4723 .pd_reset_stats_fn = cfq_pd_reset_stats,
4724 };
4725 #endif
4726
4727 static int __init cfq_init(void)
4728 {
4729 int ret;
4730
4731 /*
4732 * could be 0 on HZ < 1000 setups
4733 */
4734 if (!cfq_slice_async)
4735 cfq_slice_async = 1;
4736 if (!cfq_slice_idle)
4737 cfq_slice_idle = 1;
4738
4739 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4740 if (!cfq_group_idle)
4741 cfq_group_idle = 1;
4742
4743 ret = blkcg_policy_register(&blkcg_policy_cfq);
4744 if (ret)
4745 return ret;
4746 #else
4747 cfq_group_idle = 0;
4748 #endif
4749
4750 ret = -ENOMEM;
4751 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4752 if (!cfq_pool)
4753 goto err_pol_unreg;
4754
4755 ret = elv_register(&iosched_cfq);
4756 if (ret)
4757 goto err_free_pool;
4758
4759 return 0;
4760
4761 err_free_pool:
4762 kmem_cache_destroy(cfq_pool);
4763 err_pol_unreg:
4764 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4765 blkcg_policy_unregister(&blkcg_policy_cfq);
4766 #endif
4767 return ret;
4768 }
4769
4770 static void __exit cfq_exit(void)
4771 {
4772 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4773 blkcg_policy_unregister(&blkcg_policy_cfq);
4774 #endif
4775 elv_unregister(&iosched_cfq);
4776 kmem_cache_destroy(cfq_pool);
4777 }
4778
4779 module_init(cfq_init);
4780 module_exit(cfq_exit);
4781
4782 MODULE_AUTHOR("Jens Axboe");
4783 MODULE_LICENSE("GPL");
4784 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.120275 seconds and 6 git commands to generate.