cfq-iosched: convert cfq_group_slice() to use cfqg->vfraction
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats;
293 };
294
295 struct cfq_io_cq {
296 struct io_cq icq; /* must be the first member */
297 struct cfq_queue *cfqq[2];
298 struct cfq_ttime ttime;
299 int ioprio; /* the current ioprio */
300 #ifdef CONFIG_CFQ_GROUP_IOSCHED
301 uint64_t blkcg_id; /* the current blkcg ID */
302 #endif
303 };
304
305 /*
306 * Per block device queue structure
307 */
308 struct cfq_data {
309 struct request_queue *queue;
310 /* Root service tree for cfq_groups */
311 struct cfq_rb_root grp_service_tree;
312 struct cfq_group *root_group;
313
314 /*
315 * The priority currently being served
316 */
317 enum wl_class_t serving_wl_class;
318 enum wl_type_t serving_wl_type;
319 unsigned long workload_expires;
320 struct cfq_group *serving_group;
321
322 /*
323 * Each priority tree is sorted by next_request position. These
324 * trees are used when determining if two or more queues are
325 * interleaving requests (see cfq_close_cooperator).
326 */
327 struct rb_root prio_trees[CFQ_PRIO_LISTS];
328
329 unsigned int busy_queues;
330 unsigned int busy_sync_queues;
331
332 int rq_in_driver;
333 int rq_in_flight[2];
334
335 /*
336 * queue-depth detection
337 */
338 int rq_queued;
339 int hw_tag;
340 /*
341 * hw_tag can be
342 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
343 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
344 * 0 => no NCQ
345 */
346 int hw_tag_est_depth;
347 unsigned int hw_tag_samples;
348
349 /*
350 * idle window management
351 */
352 struct timer_list idle_slice_timer;
353 struct work_struct unplug_work;
354
355 struct cfq_queue *active_queue;
356 struct cfq_io_cq *active_cic;
357
358 /*
359 * async queue for each priority case
360 */
361 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
362 struct cfq_queue *async_idle_cfqq;
363
364 sector_t last_position;
365
366 /*
367 * tunables, see top of file
368 */
369 unsigned int cfq_quantum;
370 unsigned int cfq_fifo_expire[2];
371 unsigned int cfq_back_penalty;
372 unsigned int cfq_back_max;
373 unsigned int cfq_slice[2];
374 unsigned int cfq_slice_async_rq;
375 unsigned int cfq_slice_idle;
376 unsigned int cfq_group_idle;
377 unsigned int cfq_latency;
378 unsigned int cfq_target_latency;
379
380 /*
381 * Fallback dummy cfqq for extreme OOM conditions
382 */
383 struct cfq_queue oom_cfqq;
384
385 unsigned long last_delayed_sync;
386 };
387
388 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
389
390 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
391 enum wl_class_t class,
392 enum wl_type_t type)
393 {
394 if (!cfqg)
395 return NULL;
396
397 if (class == IDLE_WORKLOAD)
398 return &cfqg->service_tree_idle;
399
400 return &cfqg->service_trees[class][type];
401 }
402
403 enum cfqq_state_flags {
404 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
405 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
406 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
407 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
408 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
409 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
410 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
411 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
412 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
413 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
414 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
415 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
416 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
417 };
418
419 #define CFQ_CFQQ_FNS(name) \
420 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
421 { \
422 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
423 } \
424 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
425 { \
426 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
427 } \
428 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
429 { \
430 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
431 }
432
433 CFQ_CFQQ_FNS(on_rr);
434 CFQ_CFQQ_FNS(wait_request);
435 CFQ_CFQQ_FNS(must_dispatch);
436 CFQ_CFQQ_FNS(must_alloc_slice);
437 CFQ_CFQQ_FNS(fifo_expire);
438 CFQ_CFQQ_FNS(idle_window);
439 CFQ_CFQQ_FNS(prio_changed);
440 CFQ_CFQQ_FNS(slice_new);
441 CFQ_CFQQ_FNS(sync);
442 CFQ_CFQQ_FNS(coop);
443 CFQ_CFQQ_FNS(split_coop);
444 CFQ_CFQQ_FNS(deep);
445 CFQ_CFQQ_FNS(wait_busy);
446 #undef CFQ_CFQQ_FNS
447
448 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
449 {
450 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
451 }
452
453 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
454 {
455 return pd_to_blkg(&cfqg->pd);
456 }
457
458 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
459
460 /* cfqg stats flags */
461 enum cfqg_stats_flags {
462 CFQG_stats_waiting = 0,
463 CFQG_stats_idling,
464 CFQG_stats_empty,
465 };
466
467 #define CFQG_FLAG_FNS(name) \
468 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
469 { \
470 stats->flags |= (1 << CFQG_stats_##name); \
471 } \
472 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
473 { \
474 stats->flags &= ~(1 << CFQG_stats_##name); \
475 } \
476 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
477 { \
478 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
479 } \
480
481 CFQG_FLAG_FNS(waiting)
482 CFQG_FLAG_FNS(idling)
483 CFQG_FLAG_FNS(empty)
484 #undef CFQG_FLAG_FNS
485
486 /* This should be called with the queue_lock held. */
487 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
488 {
489 unsigned long long now;
490
491 if (!cfqg_stats_waiting(stats))
492 return;
493
494 now = sched_clock();
495 if (time_after64(now, stats->start_group_wait_time))
496 blkg_stat_add(&stats->group_wait_time,
497 now - stats->start_group_wait_time);
498 cfqg_stats_clear_waiting(stats);
499 }
500
501 /* This should be called with the queue_lock held. */
502 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
503 struct cfq_group *curr_cfqg)
504 {
505 struct cfqg_stats *stats = &cfqg->stats;
506
507 if (cfqg_stats_waiting(stats))
508 return;
509 if (cfqg == curr_cfqg)
510 return;
511 stats->start_group_wait_time = sched_clock();
512 cfqg_stats_mark_waiting(stats);
513 }
514
515 /* This should be called with the queue_lock held. */
516 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
517 {
518 unsigned long long now;
519
520 if (!cfqg_stats_empty(stats))
521 return;
522
523 now = sched_clock();
524 if (time_after64(now, stats->start_empty_time))
525 blkg_stat_add(&stats->empty_time,
526 now - stats->start_empty_time);
527 cfqg_stats_clear_empty(stats);
528 }
529
530 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
531 {
532 blkg_stat_add(&cfqg->stats.dequeue, 1);
533 }
534
535 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
536 {
537 struct cfqg_stats *stats = &cfqg->stats;
538
539 if (blkg_rwstat_sum(&stats->queued))
540 return;
541
542 /*
543 * group is already marked empty. This can happen if cfqq got new
544 * request in parent group and moved to this group while being added
545 * to service tree. Just ignore the event and move on.
546 */
547 if (cfqg_stats_empty(stats))
548 return;
549
550 stats->start_empty_time = sched_clock();
551 cfqg_stats_mark_empty(stats);
552 }
553
554 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
555 {
556 struct cfqg_stats *stats = &cfqg->stats;
557
558 if (cfqg_stats_idling(stats)) {
559 unsigned long long now = sched_clock();
560
561 if (time_after64(now, stats->start_idle_time))
562 blkg_stat_add(&stats->idle_time,
563 now - stats->start_idle_time);
564 cfqg_stats_clear_idling(stats);
565 }
566 }
567
568 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
569 {
570 struct cfqg_stats *stats = &cfqg->stats;
571
572 BUG_ON(cfqg_stats_idling(stats));
573
574 stats->start_idle_time = sched_clock();
575 cfqg_stats_mark_idling(stats);
576 }
577
578 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
579 {
580 struct cfqg_stats *stats = &cfqg->stats;
581
582 blkg_stat_add(&stats->avg_queue_size_sum,
583 blkg_rwstat_sum(&stats->queued));
584 blkg_stat_add(&stats->avg_queue_size_samples, 1);
585 cfqg_stats_update_group_wait_time(stats);
586 }
587
588 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
589
590 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
591 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
592 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
597
598 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
599
600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
601
602 static struct blkcg_policy blkcg_policy_cfq;
603
604 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
605 {
606 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
607 }
608
609 /*
610 * Determine the parent cfqg for weight calculation. Currently, cfqg
611 * scheduling is flat and the root is the parent of everyone else.
612 */
613 static inline struct cfq_group *cfqg_flat_parent(struct cfq_group *cfqg)
614 {
615 struct blkcg_gq *blkg = cfqg_to_blkg(cfqg);
616 struct cfq_group *root;
617
618 while (blkg->parent)
619 blkg = blkg->parent;
620 root = blkg_to_cfqg(blkg);
621
622 return root != cfqg ? root : NULL;
623 }
624
625 static inline void cfqg_get(struct cfq_group *cfqg)
626 {
627 return blkg_get(cfqg_to_blkg(cfqg));
628 }
629
630 static inline void cfqg_put(struct cfq_group *cfqg)
631 {
632 return blkg_put(cfqg_to_blkg(cfqg));
633 }
634
635 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
636 char __pbuf[128]; \
637 \
638 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
639 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
640 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
641 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
642 __pbuf, ##args); \
643 } while (0)
644
645 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
646 char __pbuf[128]; \
647 \
648 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
649 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
650 } while (0)
651
652 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
653 struct cfq_group *curr_cfqg, int rw)
654 {
655 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
656 cfqg_stats_end_empty_time(&cfqg->stats);
657 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
658 }
659
660 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
661 unsigned long time, unsigned long unaccounted_time)
662 {
663 blkg_stat_add(&cfqg->stats.time, time);
664 #ifdef CONFIG_DEBUG_BLK_CGROUP
665 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
666 #endif
667 }
668
669 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
670 {
671 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
672 }
673
674 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
675 {
676 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
677 }
678
679 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
680 uint64_t bytes, int rw)
681 {
682 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
683 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
684 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
685 }
686
687 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
688 uint64_t start_time, uint64_t io_start_time, int rw)
689 {
690 struct cfqg_stats *stats = &cfqg->stats;
691 unsigned long long now = sched_clock();
692
693 if (time_after64(now, io_start_time))
694 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
695 if (time_after64(io_start_time, start_time))
696 blkg_rwstat_add(&stats->wait_time, rw,
697 io_start_time - start_time);
698 }
699
700 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
701 {
702 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
703 struct cfqg_stats *stats = &cfqg->stats;
704
705 /* queued stats shouldn't be cleared */
706 blkg_rwstat_reset(&stats->service_bytes);
707 blkg_rwstat_reset(&stats->serviced);
708 blkg_rwstat_reset(&stats->merged);
709 blkg_rwstat_reset(&stats->service_time);
710 blkg_rwstat_reset(&stats->wait_time);
711 blkg_stat_reset(&stats->time);
712 #ifdef CONFIG_DEBUG_BLK_CGROUP
713 blkg_stat_reset(&stats->unaccounted_time);
714 blkg_stat_reset(&stats->avg_queue_size_sum);
715 blkg_stat_reset(&stats->avg_queue_size_samples);
716 blkg_stat_reset(&stats->dequeue);
717 blkg_stat_reset(&stats->group_wait_time);
718 blkg_stat_reset(&stats->idle_time);
719 blkg_stat_reset(&stats->empty_time);
720 #endif
721 }
722
723 #else /* CONFIG_CFQ_GROUP_IOSCHED */
724
725 static inline struct cfq_group *cfqg_flat_parent(struct cfq_group *cfqg) { return NULL; }
726 static inline void cfqg_get(struct cfq_group *cfqg) { }
727 static inline void cfqg_put(struct cfq_group *cfqg) { }
728
729 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
730 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
731 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
732 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
733 ##args)
734 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
735
736 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
737 struct cfq_group *curr_cfqg, int rw) { }
738 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
739 unsigned long time, unsigned long unaccounted_time) { }
740 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
741 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
742 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
743 uint64_t bytes, int rw) { }
744 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
745 uint64_t start_time, uint64_t io_start_time, int rw) { }
746
747 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
748
749 #define cfq_log(cfqd, fmt, args...) \
750 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
751
752 /* Traverses through cfq group service trees */
753 #define for_each_cfqg_st(cfqg, i, j, st) \
754 for (i = 0; i <= IDLE_WORKLOAD; i++) \
755 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
756 : &cfqg->service_tree_idle; \
757 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
758 (i == IDLE_WORKLOAD && j == 0); \
759 j++, st = i < IDLE_WORKLOAD ? \
760 &cfqg->service_trees[i][j]: NULL) \
761
762 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
763 struct cfq_ttime *ttime, bool group_idle)
764 {
765 unsigned long slice;
766 if (!sample_valid(ttime->ttime_samples))
767 return false;
768 if (group_idle)
769 slice = cfqd->cfq_group_idle;
770 else
771 slice = cfqd->cfq_slice_idle;
772 return ttime->ttime_mean > slice;
773 }
774
775 static inline bool iops_mode(struct cfq_data *cfqd)
776 {
777 /*
778 * If we are not idling on queues and it is a NCQ drive, parallel
779 * execution of requests is on and measuring time is not possible
780 * in most of the cases until and unless we drive shallower queue
781 * depths and that becomes a performance bottleneck. In such cases
782 * switch to start providing fairness in terms of number of IOs.
783 */
784 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
785 return true;
786 else
787 return false;
788 }
789
790 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
791 {
792 if (cfq_class_idle(cfqq))
793 return IDLE_WORKLOAD;
794 if (cfq_class_rt(cfqq))
795 return RT_WORKLOAD;
796 return BE_WORKLOAD;
797 }
798
799
800 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
801 {
802 if (!cfq_cfqq_sync(cfqq))
803 return ASYNC_WORKLOAD;
804 if (!cfq_cfqq_idle_window(cfqq))
805 return SYNC_NOIDLE_WORKLOAD;
806 return SYNC_WORKLOAD;
807 }
808
809 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
810 struct cfq_data *cfqd,
811 struct cfq_group *cfqg)
812 {
813 if (wl_class == IDLE_WORKLOAD)
814 return cfqg->service_tree_idle.count;
815
816 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
817 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
818 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
819 }
820
821 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
822 struct cfq_group *cfqg)
823 {
824 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
825 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
826 }
827
828 static void cfq_dispatch_insert(struct request_queue *, struct request *);
829 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
830 struct cfq_io_cq *cic, struct bio *bio,
831 gfp_t gfp_mask);
832
833 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
834 {
835 /* cic->icq is the first member, %NULL will convert to %NULL */
836 return container_of(icq, struct cfq_io_cq, icq);
837 }
838
839 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
840 struct io_context *ioc)
841 {
842 if (ioc)
843 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
844 return NULL;
845 }
846
847 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
848 {
849 return cic->cfqq[is_sync];
850 }
851
852 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
853 bool is_sync)
854 {
855 cic->cfqq[is_sync] = cfqq;
856 }
857
858 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
859 {
860 return cic->icq.q->elevator->elevator_data;
861 }
862
863 /*
864 * We regard a request as SYNC, if it's either a read or has the SYNC bit
865 * set (in which case it could also be direct WRITE).
866 */
867 static inline bool cfq_bio_sync(struct bio *bio)
868 {
869 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
870 }
871
872 /*
873 * scheduler run of queue, if there are requests pending and no one in the
874 * driver that will restart queueing
875 */
876 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
877 {
878 if (cfqd->busy_queues) {
879 cfq_log(cfqd, "schedule dispatch");
880 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
881 }
882 }
883
884 /*
885 * Scale schedule slice based on io priority. Use the sync time slice only
886 * if a queue is marked sync and has sync io queued. A sync queue with async
887 * io only, should not get full sync slice length.
888 */
889 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
890 unsigned short prio)
891 {
892 const int base_slice = cfqd->cfq_slice[sync];
893
894 WARN_ON(prio >= IOPRIO_BE_NR);
895
896 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
897 }
898
899 static inline int
900 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
901 {
902 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
903 }
904
905 /**
906 * cfqg_scale_charge - scale disk time charge according to cfqg weight
907 * @charge: disk time being charged
908 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
909 *
910 * Scale @charge according to @vfraction, which is in range (0, 1]. The
911 * scaling is inversely proportional.
912 *
913 * scaled = charge / vfraction
914 *
915 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
916 */
917 static inline u64 cfqg_scale_charge(unsigned long charge,
918 unsigned int vfraction)
919 {
920 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
921
922 /* charge / vfraction */
923 c <<= CFQ_SERVICE_SHIFT;
924 do_div(c, vfraction);
925 return c;
926 }
927
928 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
929 {
930 s64 delta = (s64)(vdisktime - min_vdisktime);
931 if (delta > 0)
932 min_vdisktime = vdisktime;
933
934 return min_vdisktime;
935 }
936
937 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
938 {
939 s64 delta = (s64)(vdisktime - min_vdisktime);
940 if (delta < 0)
941 min_vdisktime = vdisktime;
942
943 return min_vdisktime;
944 }
945
946 static void update_min_vdisktime(struct cfq_rb_root *st)
947 {
948 struct cfq_group *cfqg;
949
950 if (st->left) {
951 cfqg = rb_entry_cfqg(st->left);
952 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
953 cfqg->vdisktime);
954 }
955 }
956
957 /*
958 * get averaged number of queues of RT/BE priority.
959 * average is updated, with a formula that gives more weight to higher numbers,
960 * to quickly follows sudden increases and decrease slowly
961 */
962
963 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
964 struct cfq_group *cfqg, bool rt)
965 {
966 unsigned min_q, max_q;
967 unsigned mult = cfq_hist_divisor - 1;
968 unsigned round = cfq_hist_divisor / 2;
969 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
970
971 min_q = min(cfqg->busy_queues_avg[rt], busy);
972 max_q = max(cfqg->busy_queues_avg[rt], busy);
973 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
974 cfq_hist_divisor;
975 return cfqg->busy_queues_avg[rt];
976 }
977
978 static inline unsigned
979 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
980 {
981 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
982 }
983
984 static inline unsigned
985 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
986 {
987 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
988 if (cfqd->cfq_latency) {
989 /*
990 * interested queues (we consider only the ones with the same
991 * priority class in the cfq group)
992 */
993 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
994 cfq_class_rt(cfqq));
995 unsigned sync_slice = cfqd->cfq_slice[1];
996 unsigned expect_latency = sync_slice * iq;
997 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
998
999 if (expect_latency > group_slice) {
1000 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1001 /* scale low_slice according to IO priority
1002 * and sync vs async */
1003 unsigned low_slice =
1004 min(slice, base_low_slice * slice / sync_slice);
1005 /* the adapted slice value is scaled to fit all iqs
1006 * into the target latency */
1007 slice = max(slice * group_slice / expect_latency,
1008 low_slice);
1009 }
1010 }
1011 return slice;
1012 }
1013
1014 static inline void
1015 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1016 {
1017 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1018
1019 cfqq->slice_start = jiffies;
1020 cfqq->slice_end = jiffies + slice;
1021 cfqq->allocated_slice = slice;
1022 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1023 }
1024
1025 /*
1026 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1027 * isn't valid until the first request from the dispatch is activated
1028 * and the slice time set.
1029 */
1030 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1031 {
1032 if (cfq_cfqq_slice_new(cfqq))
1033 return false;
1034 if (time_before(jiffies, cfqq->slice_end))
1035 return false;
1036
1037 return true;
1038 }
1039
1040 /*
1041 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1042 * We choose the request that is closest to the head right now. Distance
1043 * behind the head is penalized and only allowed to a certain extent.
1044 */
1045 static struct request *
1046 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1047 {
1048 sector_t s1, s2, d1 = 0, d2 = 0;
1049 unsigned long back_max;
1050 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1051 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1052 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1053
1054 if (rq1 == NULL || rq1 == rq2)
1055 return rq2;
1056 if (rq2 == NULL)
1057 return rq1;
1058
1059 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1060 return rq_is_sync(rq1) ? rq1 : rq2;
1061
1062 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1063 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1064
1065 s1 = blk_rq_pos(rq1);
1066 s2 = blk_rq_pos(rq2);
1067
1068 /*
1069 * by definition, 1KiB is 2 sectors
1070 */
1071 back_max = cfqd->cfq_back_max * 2;
1072
1073 /*
1074 * Strict one way elevator _except_ in the case where we allow
1075 * short backward seeks which are biased as twice the cost of a
1076 * similar forward seek.
1077 */
1078 if (s1 >= last)
1079 d1 = s1 - last;
1080 else if (s1 + back_max >= last)
1081 d1 = (last - s1) * cfqd->cfq_back_penalty;
1082 else
1083 wrap |= CFQ_RQ1_WRAP;
1084
1085 if (s2 >= last)
1086 d2 = s2 - last;
1087 else if (s2 + back_max >= last)
1088 d2 = (last - s2) * cfqd->cfq_back_penalty;
1089 else
1090 wrap |= CFQ_RQ2_WRAP;
1091
1092 /* Found required data */
1093
1094 /*
1095 * By doing switch() on the bit mask "wrap" we avoid having to
1096 * check two variables for all permutations: --> faster!
1097 */
1098 switch (wrap) {
1099 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1100 if (d1 < d2)
1101 return rq1;
1102 else if (d2 < d1)
1103 return rq2;
1104 else {
1105 if (s1 >= s2)
1106 return rq1;
1107 else
1108 return rq2;
1109 }
1110
1111 case CFQ_RQ2_WRAP:
1112 return rq1;
1113 case CFQ_RQ1_WRAP:
1114 return rq2;
1115 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1116 default:
1117 /*
1118 * Since both rqs are wrapped,
1119 * start with the one that's further behind head
1120 * (--> only *one* back seek required),
1121 * since back seek takes more time than forward.
1122 */
1123 if (s1 <= s2)
1124 return rq1;
1125 else
1126 return rq2;
1127 }
1128 }
1129
1130 /*
1131 * The below is leftmost cache rbtree addon
1132 */
1133 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1134 {
1135 /* Service tree is empty */
1136 if (!root->count)
1137 return NULL;
1138
1139 if (!root->left)
1140 root->left = rb_first(&root->rb);
1141
1142 if (root->left)
1143 return rb_entry(root->left, struct cfq_queue, rb_node);
1144
1145 return NULL;
1146 }
1147
1148 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1149 {
1150 if (!root->left)
1151 root->left = rb_first(&root->rb);
1152
1153 if (root->left)
1154 return rb_entry_cfqg(root->left);
1155
1156 return NULL;
1157 }
1158
1159 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1160 {
1161 rb_erase(n, root);
1162 RB_CLEAR_NODE(n);
1163 }
1164
1165 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1166 {
1167 if (root->left == n)
1168 root->left = NULL;
1169 rb_erase_init(n, &root->rb);
1170 --root->count;
1171 }
1172
1173 /*
1174 * would be nice to take fifo expire time into account as well
1175 */
1176 static struct request *
1177 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1178 struct request *last)
1179 {
1180 struct rb_node *rbnext = rb_next(&last->rb_node);
1181 struct rb_node *rbprev = rb_prev(&last->rb_node);
1182 struct request *next = NULL, *prev = NULL;
1183
1184 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1185
1186 if (rbprev)
1187 prev = rb_entry_rq(rbprev);
1188
1189 if (rbnext)
1190 next = rb_entry_rq(rbnext);
1191 else {
1192 rbnext = rb_first(&cfqq->sort_list);
1193 if (rbnext && rbnext != &last->rb_node)
1194 next = rb_entry_rq(rbnext);
1195 }
1196
1197 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1198 }
1199
1200 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1201 struct cfq_queue *cfqq)
1202 {
1203 /*
1204 * just an approximation, should be ok.
1205 */
1206 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1207 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1208 }
1209
1210 static inline s64
1211 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1212 {
1213 return cfqg->vdisktime - st->min_vdisktime;
1214 }
1215
1216 static void
1217 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1218 {
1219 struct rb_node **node = &st->rb.rb_node;
1220 struct rb_node *parent = NULL;
1221 struct cfq_group *__cfqg;
1222 s64 key = cfqg_key(st, cfqg);
1223 int left = 1;
1224
1225 while (*node != NULL) {
1226 parent = *node;
1227 __cfqg = rb_entry_cfqg(parent);
1228
1229 if (key < cfqg_key(st, __cfqg))
1230 node = &parent->rb_left;
1231 else {
1232 node = &parent->rb_right;
1233 left = 0;
1234 }
1235 }
1236
1237 if (left)
1238 st->left = &cfqg->rb_node;
1239
1240 rb_link_node(&cfqg->rb_node, parent, node);
1241 rb_insert_color(&cfqg->rb_node, &st->rb);
1242 }
1243
1244 static void
1245 cfq_update_group_weight(struct cfq_group *cfqg)
1246 {
1247 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1248
1249 if (cfqg->new_weight) {
1250 cfqg->weight = cfqg->new_weight;
1251 cfqg->new_weight = 0;
1252 }
1253
1254 if (cfqg->new_leaf_weight) {
1255 cfqg->leaf_weight = cfqg->new_leaf_weight;
1256 cfqg->new_leaf_weight = 0;
1257 }
1258 }
1259
1260 static void
1261 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1262 {
1263 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1264 struct cfq_group *pos = cfqg;
1265 struct cfq_group *parent;
1266 bool propagate;
1267
1268 /* add to the service tree */
1269 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1270
1271 cfq_update_group_weight(cfqg);
1272 __cfq_group_service_tree_add(st, cfqg);
1273
1274 /*
1275 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1276 * entitled to. vfraction is calculated by walking the tree
1277 * towards the root calculating the fraction it has at each level.
1278 * The compounded ratio is how much vfraction @cfqg owns.
1279 *
1280 * Start with the proportion tasks in this cfqg has against active
1281 * children cfqgs - its leaf_weight against children_weight.
1282 */
1283 propagate = !pos->nr_active++;
1284 pos->children_weight += pos->leaf_weight;
1285 vfr = vfr * pos->leaf_weight / pos->children_weight;
1286
1287 /*
1288 * Compound ->weight walking up the tree. Both activation and
1289 * vfraction calculation are done in the same loop. Propagation
1290 * stops once an already activated node is met. vfraction
1291 * calculation should always continue to the root.
1292 */
1293 while ((parent = cfqg_flat_parent(pos))) {
1294 if (propagate) {
1295 propagate = !parent->nr_active++;
1296 parent->children_weight += pos->weight;
1297 }
1298 vfr = vfr * pos->weight / parent->children_weight;
1299 pos = parent;
1300 }
1301
1302 cfqg->vfraction = max_t(unsigned, vfr, 1);
1303 }
1304
1305 static void
1306 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1307 {
1308 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1309 struct cfq_group *__cfqg;
1310 struct rb_node *n;
1311
1312 cfqg->nr_cfqq++;
1313 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1314 return;
1315
1316 /*
1317 * Currently put the group at the end. Later implement something
1318 * so that groups get lesser vtime based on their weights, so that
1319 * if group does not loose all if it was not continuously backlogged.
1320 */
1321 n = rb_last(&st->rb);
1322 if (n) {
1323 __cfqg = rb_entry_cfqg(n);
1324 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1325 } else
1326 cfqg->vdisktime = st->min_vdisktime;
1327 cfq_group_service_tree_add(st, cfqg);
1328 }
1329
1330 static void
1331 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1332 {
1333 struct cfq_group *pos = cfqg;
1334 bool propagate;
1335
1336 /*
1337 * Undo activation from cfq_group_service_tree_add(). Deactivate
1338 * @cfqg and propagate deactivation upwards.
1339 */
1340 propagate = !--pos->nr_active;
1341 pos->children_weight -= pos->leaf_weight;
1342
1343 while (propagate) {
1344 struct cfq_group *parent = cfqg_flat_parent(pos);
1345
1346 /* @pos has 0 nr_active at this point */
1347 WARN_ON_ONCE(pos->children_weight);
1348 pos->vfraction = 0;
1349
1350 if (!parent)
1351 break;
1352
1353 propagate = !--parent->nr_active;
1354 parent->children_weight -= pos->weight;
1355 pos = parent;
1356 }
1357
1358 /* remove from the service tree */
1359 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1360 cfq_rb_erase(&cfqg->rb_node, st);
1361 }
1362
1363 static void
1364 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1365 {
1366 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1367
1368 BUG_ON(cfqg->nr_cfqq < 1);
1369 cfqg->nr_cfqq--;
1370
1371 /* If there are other cfq queues under this group, don't delete it */
1372 if (cfqg->nr_cfqq)
1373 return;
1374
1375 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1376 cfq_group_service_tree_del(st, cfqg);
1377 cfqg->saved_wl_slice = 0;
1378 cfqg_stats_update_dequeue(cfqg);
1379 }
1380
1381 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1382 unsigned int *unaccounted_time)
1383 {
1384 unsigned int slice_used;
1385
1386 /*
1387 * Queue got expired before even a single request completed or
1388 * got expired immediately after first request completion.
1389 */
1390 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1391 /*
1392 * Also charge the seek time incurred to the group, otherwise
1393 * if there are mutiple queues in the group, each can dispatch
1394 * a single request on seeky media and cause lots of seek time
1395 * and group will never know it.
1396 */
1397 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1398 1);
1399 } else {
1400 slice_used = jiffies - cfqq->slice_start;
1401 if (slice_used > cfqq->allocated_slice) {
1402 *unaccounted_time = slice_used - cfqq->allocated_slice;
1403 slice_used = cfqq->allocated_slice;
1404 }
1405 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1406 *unaccounted_time += cfqq->slice_start -
1407 cfqq->dispatch_start;
1408 }
1409
1410 return slice_used;
1411 }
1412
1413 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1414 struct cfq_queue *cfqq)
1415 {
1416 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1417 unsigned int used_sl, charge, unaccounted_sl = 0;
1418 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1419 - cfqg->service_tree_idle.count;
1420 unsigned int vfr;
1421
1422 BUG_ON(nr_sync < 0);
1423 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1424
1425 if (iops_mode(cfqd))
1426 charge = cfqq->slice_dispatch;
1427 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1428 charge = cfqq->allocated_slice;
1429
1430 /*
1431 * Can't update vdisktime while on service tree and cfqg->vfraction
1432 * is valid only while on it. Cache vfr, leave the service tree,
1433 * update vdisktime and go back on. The re-addition to the tree
1434 * will also update the weights as necessary.
1435 */
1436 vfr = cfqg->vfraction;
1437 cfq_group_service_tree_del(st, cfqg);
1438 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1439 cfq_group_service_tree_add(st, cfqg);
1440
1441 /* This group is being expired. Save the context */
1442 if (time_after(cfqd->workload_expires, jiffies)) {
1443 cfqg->saved_wl_slice = cfqd->workload_expires
1444 - jiffies;
1445 cfqg->saved_wl_type = cfqd->serving_wl_type;
1446 cfqg->saved_wl_class = cfqd->serving_wl_class;
1447 } else
1448 cfqg->saved_wl_slice = 0;
1449
1450 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1451 st->min_vdisktime);
1452 cfq_log_cfqq(cfqq->cfqd, cfqq,
1453 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1454 used_sl, cfqq->slice_dispatch, charge,
1455 iops_mode(cfqd), cfqq->nr_sectors);
1456 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1457 cfqg_stats_set_start_empty_time(cfqg);
1458 }
1459
1460 /**
1461 * cfq_init_cfqg_base - initialize base part of a cfq_group
1462 * @cfqg: cfq_group to initialize
1463 *
1464 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1465 * is enabled or not.
1466 */
1467 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1468 {
1469 struct cfq_rb_root *st;
1470 int i, j;
1471
1472 for_each_cfqg_st(cfqg, i, j, st)
1473 *st = CFQ_RB_ROOT;
1474 RB_CLEAR_NODE(&cfqg->rb_node);
1475
1476 cfqg->ttime.last_end_request = jiffies;
1477 }
1478
1479 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1480 static void cfq_pd_init(struct blkcg_gq *blkg)
1481 {
1482 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1483
1484 cfq_init_cfqg_base(cfqg);
1485 cfqg->weight = blkg->blkcg->cfq_weight;
1486 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1487 }
1488
1489 /*
1490 * Search for the cfq group current task belongs to. request_queue lock must
1491 * be held.
1492 */
1493 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1494 struct blkcg *blkcg)
1495 {
1496 struct request_queue *q = cfqd->queue;
1497 struct cfq_group *cfqg = NULL;
1498
1499 /* avoid lookup for the common case where there's no blkcg */
1500 if (blkcg == &blkcg_root) {
1501 cfqg = cfqd->root_group;
1502 } else {
1503 struct blkcg_gq *blkg;
1504
1505 blkg = blkg_lookup_create(blkcg, q);
1506 if (!IS_ERR(blkg))
1507 cfqg = blkg_to_cfqg(blkg);
1508 }
1509
1510 return cfqg;
1511 }
1512
1513 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1514 {
1515 /* Currently, all async queues are mapped to root group */
1516 if (!cfq_cfqq_sync(cfqq))
1517 cfqg = cfqq->cfqd->root_group;
1518
1519 cfqq->cfqg = cfqg;
1520 /* cfqq reference on cfqg */
1521 cfqg_get(cfqg);
1522 }
1523
1524 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1525 struct blkg_policy_data *pd, int off)
1526 {
1527 struct cfq_group *cfqg = pd_to_cfqg(pd);
1528
1529 if (!cfqg->dev_weight)
1530 return 0;
1531 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1532 }
1533
1534 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1535 struct seq_file *sf)
1536 {
1537 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1538 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1539 false);
1540 return 0;
1541 }
1542
1543 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1544 struct blkg_policy_data *pd, int off)
1545 {
1546 struct cfq_group *cfqg = pd_to_cfqg(pd);
1547
1548 if (!cfqg->dev_leaf_weight)
1549 return 0;
1550 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1551 }
1552
1553 static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1554 struct cftype *cft,
1555 struct seq_file *sf)
1556 {
1557 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1558 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1559 false);
1560 return 0;
1561 }
1562
1563 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1564 struct seq_file *sf)
1565 {
1566 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1567 return 0;
1568 }
1569
1570 static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1571 struct seq_file *sf)
1572 {
1573 seq_printf(sf, "%u\n",
1574 cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1575 return 0;
1576 }
1577
1578 static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1579 const char *buf, bool is_leaf_weight)
1580 {
1581 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1582 struct blkg_conf_ctx ctx;
1583 struct cfq_group *cfqg;
1584 int ret;
1585
1586 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1587 if (ret)
1588 return ret;
1589
1590 ret = -EINVAL;
1591 cfqg = blkg_to_cfqg(ctx.blkg);
1592 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1593 if (!is_leaf_weight) {
1594 cfqg->dev_weight = ctx.v;
1595 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1596 } else {
1597 cfqg->dev_leaf_weight = ctx.v;
1598 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1599 }
1600 ret = 0;
1601 }
1602
1603 blkg_conf_finish(&ctx);
1604 return ret;
1605 }
1606
1607 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1608 const char *buf)
1609 {
1610 return __cfqg_set_weight_device(cgrp, cft, buf, false);
1611 }
1612
1613 static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1614 const char *buf)
1615 {
1616 return __cfqg_set_weight_device(cgrp, cft, buf, true);
1617 }
1618
1619 static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1620 bool is_leaf_weight)
1621 {
1622 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1623 struct blkcg_gq *blkg;
1624 struct hlist_node *n;
1625
1626 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1627 return -EINVAL;
1628
1629 spin_lock_irq(&blkcg->lock);
1630
1631 if (!is_leaf_weight)
1632 blkcg->cfq_weight = val;
1633 else
1634 blkcg->cfq_leaf_weight = val;
1635
1636 hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1637 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1638
1639 if (!cfqg)
1640 continue;
1641
1642 if (!is_leaf_weight) {
1643 if (!cfqg->dev_weight)
1644 cfqg->new_weight = blkcg->cfq_weight;
1645 } else {
1646 if (!cfqg->dev_leaf_weight)
1647 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1648 }
1649 }
1650
1651 spin_unlock_irq(&blkcg->lock);
1652 return 0;
1653 }
1654
1655 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1656 {
1657 return __cfq_set_weight(cgrp, cft, val, false);
1658 }
1659
1660 static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1661 {
1662 return __cfq_set_weight(cgrp, cft, val, true);
1663 }
1664
1665 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1666 struct seq_file *sf)
1667 {
1668 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1669
1670 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1671 cft->private, false);
1672 return 0;
1673 }
1674
1675 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1676 struct seq_file *sf)
1677 {
1678 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1679
1680 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1681 cft->private, true);
1682 return 0;
1683 }
1684
1685 #ifdef CONFIG_DEBUG_BLK_CGROUP
1686 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1687 struct blkg_policy_data *pd, int off)
1688 {
1689 struct cfq_group *cfqg = pd_to_cfqg(pd);
1690 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1691 u64 v = 0;
1692
1693 if (samples) {
1694 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1695 do_div(v, samples);
1696 }
1697 __blkg_prfill_u64(sf, pd, v);
1698 return 0;
1699 }
1700
1701 /* print avg_queue_size */
1702 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1703 struct seq_file *sf)
1704 {
1705 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1706
1707 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1708 &blkcg_policy_cfq, 0, false);
1709 return 0;
1710 }
1711 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1712
1713 static struct cftype cfq_blkcg_files[] = {
1714 /* on root, weight is mapped to leaf_weight */
1715 {
1716 .name = "weight_device",
1717 .flags = CFTYPE_ONLY_ON_ROOT,
1718 .read_seq_string = cfqg_print_leaf_weight_device,
1719 .write_string = cfqg_set_leaf_weight_device,
1720 .max_write_len = 256,
1721 },
1722 {
1723 .name = "weight",
1724 .flags = CFTYPE_ONLY_ON_ROOT,
1725 .read_seq_string = cfq_print_leaf_weight,
1726 .write_u64 = cfq_set_leaf_weight,
1727 },
1728
1729 /* no such mapping necessary for !roots */
1730 {
1731 .name = "weight_device",
1732 .flags = CFTYPE_NOT_ON_ROOT,
1733 .read_seq_string = cfqg_print_weight_device,
1734 .write_string = cfqg_set_weight_device,
1735 .max_write_len = 256,
1736 },
1737 {
1738 .name = "weight",
1739 .flags = CFTYPE_NOT_ON_ROOT,
1740 .read_seq_string = cfq_print_weight,
1741 .write_u64 = cfq_set_weight,
1742 },
1743
1744 {
1745 .name = "leaf_weight_device",
1746 .read_seq_string = cfqg_print_leaf_weight_device,
1747 .write_string = cfqg_set_leaf_weight_device,
1748 .max_write_len = 256,
1749 },
1750 {
1751 .name = "leaf_weight",
1752 .read_seq_string = cfq_print_leaf_weight,
1753 .write_u64 = cfq_set_leaf_weight,
1754 },
1755
1756 {
1757 .name = "time",
1758 .private = offsetof(struct cfq_group, stats.time),
1759 .read_seq_string = cfqg_print_stat,
1760 },
1761 {
1762 .name = "sectors",
1763 .private = offsetof(struct cfq_group, stats.sectors),
1764 .read_seq_string = cfqg_print_stat,
1765 },
1766 {
1767 .name = "io_service_bytes",
1768 .private = offsetof(struct cfq_group, stats.service_bytes),
1769 .read_seq_string = cfqg_print_rwstat,
1770 },
1771 {
1772 .name = "io_serviced",
1773 .private = offsetof(struct cfq_group, stats.serviced),
1774 .read_seq_string = cfqg_print_rwstat,
1775 },
1776 {
1777 .name = "io_service_time",
1778 .private = offsetof(struct cfq_group, stats.service_time),
1779 .read_seq_string = cfqg_print_rwstat,
1780 },
1781 {
1782 .name = "io_wait_time",
1783 .private = offsetof(struct cfq_group, stats.wait_time),
1784 .read_seq_string = cfqg_print_rwstat,
1785 },
1786 {
1787 .name = "io_merged",
1788 .private = offsetof(struct cfq_group, stats.merged),
1789 .read_seq_string = cfqg_print_rwstat,
1790 },
1791 {
1792 .name = "io_queued",
1793 .private = offsetof(struct cfq_group, stats.queued),
1794 .read_seq_string = cfqg_print_rwstat,
1795 },
1796 #ifdef CONFIG_DEBUG_BLK_CGROUP
1797 {
1798 .name = "avg_queue_size",
1799 .read_seq_string = cfqg_print_avg_queue_size,
1800 },
1801 {
1802 .name = "group_wait_time",
1803 .private = offsetof(struct cfq_group, stats.group_wait_time),
1804 .read_seq_string = cfqg_print_stat,
1805 },
1806 {
1807 .name = "idle_time",
1808 .private = offsetof(struct cfq_group, stats.idle_time),
1809 .read_seq_string = cfqg_print_stat,
1810 },
1811 {
1812 .name = "empty_time",
1813 .private = offsetof(struct cfq_group, stats.empty_time),
1814 .read_seq_string = cfqg_print_stat,
1815 },
1816 {
1817 .name = "dequeue",
1818 .private = offsetof(struct cfq_group, stats.dequeue),
1819 .read_seq_string = cfqg_print_stat,
1820 },
1821 {
1822 .name = "unaccounted_time",
1823 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1824 .read_seq_string = cfqg_print_stat,
1825 },
1826 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1827 { } /* terminate */
1828 };
1829 #else /* GROUP_IOSCHED */
1830 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1831 struct blkcg *blkcg)
1832 {
1833 return cfqd->root_group;
1834 }
1835
1836 static inline void
1837 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1838 cfqq->cfqg = cfqg;
1839 }
1840
1841 #endif /* GROUP_IOSCHED */
1842
1843 /*
1844 * The cfqd->service_trees holds all pending cfq_queue's that have
1845 * requests waiting to be processed. It is sorted in the order that
1846 * we will service the queues.
1847 */
1848 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1849 bool add_front)
1850 {
1851 struct rb_node **p, *parent;
1852 struct cfq_queue *__cfqq;
1853 unsigned long rb_key;
1854 struct cfq_rb_root *st;
1855 int left;
1856 int new_cfqq = 1;
1857
1858 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
1859 if (cfq_class_idle(cfqq)) {
1860 rb_key = CFQ_IDLE_DELAY;
1861 parent = rb_last(&st->rb);
1862 if (parent && parent != &cfqq->rb_node) {
1863 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1864 rb_key += __cfqq->rb_key;
1865 } else
1866 rb_key += jiffies;
1867 } else if (!add_front) {
1868 /*
1869 * Get our rb key offset. Subtract any residual slice
1870 * value carried from last service. A negative resid
1871 * count indicates slice overrun, and this should position
1872 * the next service time further away in the tree.
1873 */
1874 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1875 rb_key -= cfqq->slice_resid;
1876 cfqq->slice_resid = 0;
1877 } else {
1878 rb_key = -HZ;
1879 __cfqq = cfq_rb_first(st);
1880 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1881 }
1882
1883 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1884 new_cfqq = 0;
1885 /*
1886 * same position, nothing more to do
1887 */
1888 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
1889 return;
1890
1891 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1892 cfqq->service_tree = NULL;
1893 }
1894
1895 left = 1;
1896 parent = NULL;
1897 cfqq->service_tree = st;
1898 p = &st->rb.rb_node;
1899 while (*p) {
1900 parent = *p;
1901 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1902
1903 /*
1904 * sort by key, that represents service time.
1905 */
1906 if (time_before(rb_key, __cfqq->rb_key))
1907 p = &parent->rb_left;
1908 else {
1909 p = &parent->rb_right;
1910 left = 0;
1911 }
1912 }
1913
1914 if (left)
1915 st->left = &cfqq->rb_node;
1916
1917 cfqq->rb_key = rb_key;
1918 rb_link_node(&cfqq->rb_node, parent, p);
1919 rb_insert_color(&cfqq->rb_node, &st->rb);
1920 st->count++;
1921 if (add_front || !new_cfqq)
1922 return;
1923 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1924 }
1925
1926 static struct cfq_queue *
1927 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1928 sector_t sector, struct rb_node **ret_parent,
1929 struct rb_node ***rb_link)
1930 {
1931 struct rb_node **p, *parent;
1932 struct cfq_queue *cfqq = NULL;
1933
1934 parent = NULL;
1935 p = &root->rb_node;
1936 while (*p) {
1937 struct rb_node **n;
1938
1939 parent = *p;
1940 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1941
1942 /*
1943 * Sort strictly based on sector. Smallest to the left,
1944 * largest to the right.
1945 */
1946 if (sector > blk_rq_pos(cfqq->next_rq))
1947 n = &(*p)->rb_right;
1948 else if (sector < blk_rq_pos(cfqq->next_rq))
1949 n = &(*p)->rb_left;
1950 else
1951 break;
1952 p = n;
1953 cfqq = NULL;
1954 }
1955
1956 *ret_parent = parent;
1957 if (rb_link)
1958 *rb_link = p;
1959 return cfqq;
1960 }
1961
1962 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963 {
1964 struct rb_node **p, *parent;
1965 struct cfq_queue *__cfqq;
1966
1967 if (cfqq->p_root) {
1968 rb_erase(&cfqq->p_node, cfqq->p_root);
1969 cfqq->p_root = NULL;
1970 }
1971
1972 if (cfq_class_idle(cfqq))
1973 return;
1974 if (!cfqq->next_rq)
1975 return;
1976
1977 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1978 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1979 blk_rq_pos(cfqq->next_rq), &parent, &p);
1980 if (!__cfqq) {
1981 rb_link_node(&cfqq->p_node, parent, p);
1982 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1983 } else
1984 cfqq->p_root = NULL;
1985 }
1986
1987 /*
1988 * Update cfqq's position in the service tree.
1989 */
1990 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1991 {
1992 /*
1993 * Resorting requires the cfqq to be on the RR list already.
1994 */
1995 if (cfq_cfqq_on_rr(cfqq)) {
1996 cfq_service_tree_add(cfqd, cfqq, 0);
1997 cfq_prio_tree_add(cfqd, cfqq);
1998 }
1999 }
2000
2001 /*
2002 * add to busy list of queues for service, trying to be fair in ordering
2003 * the pending list according to last request service
2004 */
2005 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2006 {
2007 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2008 BUG_ON(cfq_cfqq_on_rr(cfqq));
2009 cfq_mark_cfqq_on_rr(cfqq);
2010 cfqd->busy_queues++;
2011 if (cfq_cfqq_sync(cfqq))
2012 cfqd->busy_sync_queues++;
2013
2014 cfq_resort_rr_list(cfqd, cfqq);
2015 }
2016
2017 /*
2018 * Called when the cfqq no longer has requests pending, remove it from
2019 * the service tree.
2020 */
2021 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2022 {
2023 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2024 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2025 cfq_clear_cfqq_on_rr(cfqq);
2026
2027 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2028 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2029 cfqq->service_tree = NULL;
2030 }
2031 if (cfqq->p_root) {
2032 rb_erase(&cfqq->p_node, cfqq->p_root);
2033 cfqq->p_root = NULL;
2034 }
2035
2036 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2037 BUG_ON(!cfqd->busy_queues);
2038 cfqd->busy_queues--;
2039 if (cfq_cfqq_sync(cfqq))
2040 cfqd->busy_sync_queues--;
2041 }
2042
2043 /*
2044 * rb tree support functions
2045 */
2046 static void cfq_del_rq_rb(struct request *rq)
2047 {
2048 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2049 const int sync = rq_is_sync(rq);
2050
2051 BUG_ON(!cfqq->queued[sync]);
2052 cfqq->queued[sync]--;
2053
2054 elv_rb_del(&cfqq->sort_list, rq);
2055
2056 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2057 /*
2058 * Queue will be deleted from service tree when we actually
2059 * expire it later. Right now just remove it from prio tree
2060 * as it is empty.
2061 */
2062 if (cfqq->p_root) {
2063 rb_erase(&cfqq->p_node, cfqq->p_root);
2064 cfqq->p_root = NULL;
2065 }
2066 }
2067 }
2068
2069 static void cfq_add_rq_rb(struct request *rq)
2070 {
2071 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2072 struct cfq_data *cfqd = cfqq->cfqd;
2073 struct request *prev;
2074
2075 cfqq->queued[rq_is_sync(rq)]++;
2076
2077 elv_rb_add(&cfqq->sort_list, rq);
2078
2079 if (!cfq_cfqq_on_rr(cfqq))
2080 cfq_add_cfqq_rr(cfqd, cfqq);
2081
2082 /*
2083 * check if this request is a better next-serve candidate
2084 */
2085 prev = cfqq->next_rq;
2086 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2087
2088 /*
2089 * adjust priority tree position, if ->next_rq changes
2090 */
2091 if (prev != cfqq->next_rq)
2092 cfq_prio_tree_add(cfqd, cfqq);
2093
2094 BUG_ON(!cfqq->next_rq);
2095 }
2096
2097 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2098 {
2099 elv_rb_del(&cfqq->sort_list, rq);
2100 cfqq->queued[rq_is_sync(rq)]--;
2101 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2102 cfq_add_rq_rb(rq);
2103 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2104 rq->cmd_flags);
2105 }
2106
2107 static struct request *
2108 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2109 {
2110 struct task_struct *tsk = current;
2111 struct cfq_io_cq *cic;
2112 struct cfq_queue *cfqq;
2113
2114 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2115 if (!cic)
2116 return NULL;
2117
2118 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2119 if (cfqq) {
2120 sector_t sector = bio->bi_sector + bio_sectors(bio);
2121
2122 return elv_rb_find(&cfqq->sort_list, sector);
2123 }
2124
2125 return NULL;
2126 }
2127
2128 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2129 {
2130 struct cfq_data *cfqd = q->elevator->elevator_data;
2131
2132 cfqd->rq_in_driver++;
2133 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2134 cfqd->rq_in_driver);
2135
2136 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2137 }
2138
2139 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2140 {
2141 struct cfq_data *cfqd = q->elevator->elevator_data;
2142
2143 WARN_ON(!cfqd->rq_in_driver);
2144 cfqd->rq_in_driver--;
2145 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2146 cfqd->rq_in_driver);
2147 }
2148
2149 static void cfq_remove_request(struct request *rq)
2150 {
2151 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2152
2153 if (cfqq->next_rq == rq)
2154 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2155
2156 list_del_init(&rq->queuelist);
2157 cfq_del_rq_rb(rq);
2158
2159 cfqq->cfqd->rq_queued--;
2160 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2161 if (rq->cmd_flags & REQ_PRIO) {
2162 WARN_ON(!cfqq->prio_pending);
2163 cfqq->prio_pending--;
2164 }
2165 }
2166
2167 static int cfq_merge(struct request_queue *q, struct request **req,
2168 struct bio *bio)
2169 {
2170 struct cfq_data *cfqd = q->elevator->elevator_data;
2171 struct request *__rq;
2172
2173 __rq = cfq_find_rq_fmerge(cfqd, bio);
2174 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2175 *req = __rq;
2176 return ELEVATOR_FRONT_MERGE;
2177 }
2178
2179 return ELEVATOR_NO_MERGE;
2180 }
2181
2182 static void cfq_merged_request(struct request_queue *q, struct request *req,
2183 int type)
2184 {
2185 if (type == ELEVATOR_FRONT_MERGE) {
2186 struct cfq_queue *cfqq = RQ_CFQQ(req);
2187
2188 cfq_reposition_rq_rb(cfqq, req);
2189 }
2190 }
2191
2192 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2193 struct bio *bio)
2194 {
2195 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2196 }
2197
2198 static void
2199 cfq_merged_requests(struct request_queue *q, struct request *rq,
2200 struct request *next)
2201 {
2202 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2203 struct cfq_data *cfqd = q->elevator->elevator_data;
2204
2205 /*
2206 * reposition in fifo if next is older than rq
2207 */
2208 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2209 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2210 cfqq == RQ_CFQQ(next)) {
2211 list_move(&rq->queuelist, &next->queuelist);
2212 rq_set_fifo_time(rq, rq_fifo_time(next));
2213 }
2214
2215 if (cfqq->next_rq == next)
2216 cfqq->next_rq = rq;
2217 cfq_remove_request(next);
2218 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2219
2220 cfqq = RQ_CFQQ(next);
2221 /*
2222 * all requests of this queue are merged to other queues, delete it
2223 * from the service tree. If it's the active_queue,
2224 * cfq_dispatch_requests() will choose to expire it or do idle
2225 */
2226 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2227 cfqq != cfqd->active_queue)
2228 cfq_del_cfqq_rr(cfqd, cfqq);
2229 }
2230
2231 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2232 struct bio *bio)
2233 {
2234 struct cfq_data *cfqd = q->elevator->elevator_data;
2235 struct cfq_io_cq *cic;
2236 struct cfq_queue *cfqq;
2237
2238 /*
2239 * Disallow merge of a sync bio into an async request.
2240 */
2241 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2242 return false;
2243
2244 /*
2245 * Lookup the cfqq that this bio will be queued with and allow
2246 * merge only if rq is queued there.
2247 */
2248 cic = cfq_cic_lookup(cfqd, current->io_context);
2249 if (!cic)
2250 return false;
2251
2252 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2253 return cfqq == RQ_CFQQ(rq);
2254 }
2255
2256 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2257 {
2258 del_timer(&cfqd->idle_slice_timer);
2259 cfqg_stats_update_idle_time(cfqq->cfqg);
2260 }
2261
2262 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2263 struct cfq_queue *cfqq)
2264 {
2265 if (cfqq) {
2266 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2267 cfqd->serving_wl_class, cfqd->serving_wl_type);
2268 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2269 cfqq->slice_start = 0;
2270 cfqq->dispatch_start = jiffies;
2271 cfqq->allocated_slice = 0;
2272 cfqq->slice_end = 0;
2273 cfqq->slice_dispatch = 0;
2274 cfqq->nr_sectors = 0;
2275
2276 cfq_clear_cfqq_wait_request(cfqq);
2277 cfq_clear_cfqq_must_dispatch(cfqq);
2278 cfq_clear_cfqq_must_alloc_slice(cfqq);
2279 cfq_clear_cfqq_fifo_expire(cfqq);
2280 cfq_mark_cfqq_slice_new(cfqq);
2281
2282 cfq_del_timer(cfqd, cfqq);
2283 }
2284
2285 cfqd->active_queue = cfqq;
2286 }
2287
2288 /*
2289 * current cfqq expired its slice (or was too idle), select new one
2290 */
2291 static void
2292 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2293 bool timed_out)
2294 {
2295 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2296
2297 if (cfq_cfqq_wait_request(cfqq))
2298 cfq_del_timer(cfqd, cfqq);
2299
2300 cfq_clear_cfqq_wait_request(cfqq);
2301 cfq_clear_cfqq_wait_busy(cfqq);
2302
2303 /*
2304 * If this cfqq is shared between multiple processes, check to
2305 * make sure that those processes are still issuing I/Os within
2306 * the mean seek distance. If not, it may be time to break the
2307 * queues apart again.
2308 */
2309 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2310 cfq_mark_cfqq_split_coop(cfqq);
2311
2312 /*
2313 * store what was left of this slice, if the queue idled/timed out
2314 */
2315 if (timed_out) {
2316 if (cfq_cfqq_slice_new(cfqq))
2317 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2318 else
2319 cfqq->slice_resid = cfqq->slice_end - jiffies;
2320 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2321 }
2322
2323 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2324
2325 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2326 cfq_del_cfqq_rr(cfqd, cfqq);
2327
2328 cfq_resort_rr_list(cfqd, cfqq);
2329
2330 if (cfqq == cfqd->active_queue)
2331 cfqd->active_queue = NULL;
2332
2333 if (cfqd->active_cic) {
2334 put_io_context(cfqd->active_cic->icq.ioc);
2335 cfqd->active_cic = NULL;
2336 }
2337 }
2338
2339 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2340 {
2341 struct cfq_queue *cfqq = cfqd->active_queue;
2342
2343 if (cfqq)
2344 __cfq_slice_expired(cfqd, cfqq, timed_out);
2345 }
2346
2347 /*
2348 * Get next queue for service. Unless we have a queue preemption,
2349 * we'll simply select the first cfqq in the service tree.
2350 */
2351 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2352 {
2353 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2354 cfqd->serving_wl_class, cfqd->serving_wl_type);
2355
2356 if (!cfqd->rq_queued)
2357 return NULL;
2358
2359 /* There is nothing to dispatch */
2360 if (!st)
2361 return NULL;
2362 if (RB_EMPTY_ROOT(&st->rb))
2363 return NULL;
2364 return cfq_rb_first(st);
2365 }
2366
2367 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2368 {
2369 struct cfq_group *cfqg;
2370 struct cfq_queue *cfqq;
2371 int i, j;
2372 struct cfq_rb_root *st;
2373
2374 if (!cfqd->rq_queued)
2375 return NULL;
2376
2377 cfqg = cfq_get_next_cfqg(cfqd);
2378 if (!cfqg)
2379 return NULL;
2380
2381 for_each_cfqg_st(cfqg, i, j, st)
2382 if ((cfqq = cfq_rb_first(st)) != NULL)
2383 return cfqq;
2384 return NULL;
2385 }
2386
2387 /*
2388 * Get and set a new active queue for service.
2389 */
2390 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2391 struct cfq_queue *cfqq)
2392 {
2393 if (!cfqq)
2394 cfqq = cfq_get_next_queue(cfqd);
2395
2396 __cfq_set_active_queue(cfqd, cfqq);
2397 return cfqq;
2398 }
2399
2400 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2401 struct request *rq)
2402 {
2403 if (blk_rq_pos(rq) >= cfqd->last_position)
2404 return blk_rq_pos(rq) - cfqd->last_position;
2405 else
2406 return cfqd->last_position - blk_rq_pos(rq);
2407 }
2408
2409 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2410 struct request *rq)
2411 {
2412 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2413 }
2414
2415 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2416 struct cfq_queue *cur_cfqq)
2417 {
2418 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2419 struct rb_node *parent, *node;
2420 struct cfq_queue *__cfqq;
2421 sector_t sector = cfqd->last_position;
2422
2423 if (RB_EMPTY_ROOT(root))
2424 return NULL;
2425
2426 /*
2427 * First, if we find a request starting at the end of the last
2428 * request, choose it.
2429 */
2430 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2431 if (__cfqq)
2432 return __cfqq;
2433
2434 /*
2435 * If the exact sector wasn't found, the parent of the NULL leaf
2436 * will contain the closest sector.
2437 */
2438 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2439 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2440 return __cfqq;
2441
2442 if (blk_rq_pos(__cfqq->next_rq) < sector)
2443 node = rb_next(&__cfqq->p_node);
2444 else
2445 node = rb_prev(&__cfqq->p_node);
2446 if (!node)
2447 return NULL;
2448
2449 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2450 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2451 return __cfqq;
2452
2453 return NULL;
2454 }
2455
2456 /*
2457 * cfqd - obvious
2458 * cur_cfqq - passed in so that we don't decide that the current queue is
2459 * closely cooperating with itself.
2460 *
2461 * So, basically we're assuming that that cur_cfqq has dispatched at least
2462 * one request, and that cfqd->last_position reflects a position on the disk
2463 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2464 * assumption.
2465 */
2466 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2467 struct cfq_queue *cur_cfqq)
2468 {
2469 struct cfq_queue *cfqq;
2470
2471 if (cfq_class_idle(cur_cfqq))
2472 return NULL;
2473 if (!cfq_cfqq_sync(cur_cfqq))
2474 return NULL;
2475 if (CFQQ_SEEKY(cur_cfqq))
2476 return NULL;
2477
2478 /*
2479 * Don't search priority tree if it's the only queue in the group.
2480 */
2481 if (cur_cfqq->cfqg->nr_cfqq == 1)
2482 return NULL;
2483
2484 /*
2485 * We should notice if some of the queues are cooperating, eg
2486 * working closely on the same area of the disk. In that case,
2487 * we can group them together and don't waste time idling.
2488 */
2489 cfqq = cfqq_close(cfqd, cur_cfqq);
2490 if (!cfqq)
2491 return NULL;
2492
2493 /* If new queue belongs to different cfq_group, don't choose it */
2494 if (cur_cfqq->cfqg != cfqq->cfqg)
2495 return NULL;
2496
2497 /*
2498 * It only makes sense to merge sync queues.
2499 */
2500 if (!cfq_cfqq_sync(cfqq))
2501 return NULL;
2502 if (CFQQ_SEEKY(cfqq))
2503 return NULL;
2504
2505 /*
2506 * Do not merge queues of different priority classes
2507 */
2508 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2509 return NULL;
2510
2511 return cfqq;
2512 }
2513
2514 /*
2515 * Determine whether we should enforce idle window for this queue.
2516 */
2517
2518 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2519 {
2520 enum wl_class_t wl_class = cfqq_class(cfqq);
2521 struct cfq_rb_root *st = cfqq->service_tree;
2522
2523 BUG_ON(!st);
2524 BUG_ON(!st->count);
2525
2526 if (!cfqd->cfq_slice_idle)
2527 return false;
2528
2529 /* We never do for idle class queues. */
2530 if (wl_class == IDLE_WORKLOAD)
2531 return false;
2532
2533 /* We do for queues that were marked with idle window flag. */
2534 if (cfq_cfqq_idle_window(cfqq) &&
2535 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2536 return true;
2537
2538 /*
2539 * Otherwise, we do only if they are the last ones
2540 * in their service tree.
2541 */
2542 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2543 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2544 return true;
2545 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2546 return false;
2547 }
2548
2549 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2550 {
2551 struct cfq_queue *cfqq = cfqd->active_queue;
2552 struct cfq_io_cq *cic;
2553 unsigned long sl, group_idle = 0;
2554
2555 /*
2556 * SSD device without seek penalty, disable idling. But only do so
2557 * for devices that support queuing, otherwise we still have a problem
2558 * with sync vs async workloads.
2559 */
2560 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2561 return;
2562
2563 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2564 WARN_ON(cfq_cfqq_slice_new(cfqq));
2565
2566 /*
2567 * idle is disabled, either manually or by past process history
2568 */
2569 if (!cfq_should_idle(cfqd, cfqq)) {
2570 /* no queue idling. Check for group idling */
2571 if (cfqd->cfq_group_idle)
2572 group_idle = cfqd->cfq_group_idle;
2573 else
2574 return;
2575 }
2576
2577 /*
2578 * still active requests from this queue, don't idle
2579 */
2580 if (cfqq->dispatched)
2581 return;
2582
2583 /*
2584 * task has exited, don't wait
2585 */
2586 cic = cfqd->active_cic;
2587 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2588 return;
2589
2590 /*
2591 * If our average think time is larger than the remaining time
2592 * slice, then don't idle. This avoids overrunning the allotted
2593 * time slice.
2594 */
2595 if (sample_valid(cic->ttime.ttime_samples) &&
2596 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2597 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2598 cic->ttime.ttime_mean);
2599 return;
2600 }
2601
2602 /* There are other queues in the group, don't do group idle */
2603 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2604 return;
2605
2606 cfq_mark_cfqq_wait_request(cfqq);
2607
2608 if (group_idle)
2609 sl = cfqd->cfq_group_idle;
2610 else
2611 sl = cfqd->cfq_slice_idle;
2612
2613 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2614 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2615 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2616 group_idle ? 1 : 0);
2617 }
2618
2619 /*
2620 * Move request from internal lists to the request queue dispatch list.
2621 */
2622 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2623 {
2624 struct cfq_data *cfqd = q->elevator->elevator_data;
2625 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2626
2627 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2628
2629 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2630 cfq_remove_request(rq);
2631 cfqq->dispatched++;
2632 (RQ_CFQG(rq))->dispatched++;
2633 elv_dispatch_sort(q, rq);
2634
2635 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2636 cfqq->nr_sectors += blk_rq_sectors(rq);
2637 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2638 }
2639
2640 /*
2641 * return expired entry, or NULL to just start from scratch in rbtree
2642 */
2643 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2644 {
2645 struct request *rq = NULL;
2646
2647 if (cfq_cfqq_fifo_expire(cfqq))
2648 return NULL;
2649
2650 cfq_mark_cfqq_fifo_expire(cfqq);
2651
2652 if (list_empty(&cfqq->fifo))
2653 return NULL;
2654
2655 rq = rq_entry_fifo(cfqq->fifo.next);
2656 if (time_before(jiffies, rq_fifo_time(rq)))
2657 rq = NULL;
2658
2659 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2660 return rq;
2661 }
2662
2663 static inline int
2664 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2665 {
2666 const int base_rq = cfqd->cfq_slice_async_rq;
2667
2668 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2669
2670 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2671 }
2672
2673 /*
2674 * Must be called with the queue_lock held.
2675 */
2676 static int cfqq_process_refs(struct cfq_queue *cfqq)
2677 {
2678 int process_refs, io_refs;
2679
2680 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2681 process_refs = cfqq->ref - io_refs;
2682 BUG_ON(process_refs < 0);
2683 return process_refs;
2684 }
2685
2686 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2687 {
2688 int process_refs, new_process_refs;
2689 struct cfq_queue *__cfqq;
2690
2691 /*
2692 * If there are no process references on the new_cfqq, then it is
2693 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2694 * chain may have dropped their last reference (not just their
2695 * last process reference).
2696 */
2697 if (!cfqq_process_refs(new_cfqq))
2698 return;
2699
2700 /* Avoid a circular list and skip interim queue merges */
2701 while ((__cfqq = new_cfqq->new_cfqq)) {
2702 if (__cfqq == cfqq)
2703 return;
2704 new_cfqq = __cfqq;
2705 }
2706
2707 process_refs = cfqq_process_refs(cfqq);
2708 new_process_refs = cfqq_process_refs(new_cfqq);
2709 /*
2710 * If the process for the cfqq has gone away, there is no
2711 * sense in merging the queues.
2712 */
2713 if (process_refs == 0 || new_process_refs == 0)
2714 return;
2715
2716 /*
2717 * Merge in the direction of the lesser amount of work.
2718 */
2719 if (new_process_refs >= process_refs) {
2720 cfqq->new_cfqq = new_cfqq;
2721 new_cfqq->ref += process_refs;
2722 } else {
2723 new_cfqq->new_cfqq = cfqq;
2724 cfqq->ref += new_process_refs;
2725 }
2726 }
2727
2728 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2729 struct cfq_group *cfqg, enum wl_class_t wl_class)
2730 {
2731 struct cfq_queue *queue;
2732 int i;
2733 bool key_valid = false;
2734 unsigned long lowest_key = 0;
2735 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2736
2737 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2738 /* select the one with lowest rb_key */
2739 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2740 if (queue &&
2741 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2742 lowest_key = queue->rb_key;
2743 cur_best = i;
2744 key_valid = true;
2745 }
2746 }
2747
2748 return cur_best;
2749 }
2750
2751 static void
2752 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2753 {
2754 unsigned slice;
2755 unsigned count;
2756 struct cfq_rb_root *st;
2757 unsigned group_slice;
2758 enum wl_class_t original_class = cfqd->serving_wl_class;
2759
2760 /* Choose next priority. RT > BE > IDLE */
2761 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2762 cfqd->serving_wl_class = RT_WORKLOAD;
2763 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2764 cfqd->serving_wl_class = BE_WORKLOAD;
2765 else {
2766 cfqd->serving_wl_class = IDLE_WORKLOAD;
2767 cfqd->workload_expires = jiffies + 1;
2768 return;
2769 }
2770
2771 if (original_class != cfqd->serving_wl_class)
2772 goto new_workload;
2773
2774 /*
2775 * For RT and BE, we have to choose also the type
2776 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2777 * expiration time
2778 */
2779 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2780 count = st->count;
2781
2782 /*
2783 * check workload expiration, and that we still have other queues ready
2784 */
2785 if (count && !time_after(jiffies, cfqd->workload_expires))
2786 return;
2787
2788 new_workload:
2789 /* otherwise select new workload type */
2790 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2791 cfqd->serving_wl_class);
2792 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2793 count = st->count;
2794
2795 /*
2796 * the workload slice is computed as a fraction of target latency
2797 * proportional to the number of queues in that workload, over
2798 * all the queues in the same priority class
2799 */
2800 group_slice = cfq_group_slice(cfqd, cfqg);
2801
2802 slice = group_slice * count /
2803 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2804 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2805 cfqg));
2806
2807 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2808 unsigned int tmp;
2809
2810 /*
2811 * Async queues are currently system wide. Just taking
2812 * proportion of queues with-in same group will lead to higher
2813 * async ratio system wide as generally root group is going
2814 * to have higher weight. A more accurate thing would be to
2815 * calculate system wide asnc/sync ratio.
2816 */
2817 tmp = cfqd->cfq_target_latency *
2818 cfqg_busy_async_queues(cfqd, cfqg);
2819 tmp = tmp/cfqd->busy_queues;
2820 slice = min_t(unsigned, slice, tmp);
2821
2822 /* async workload slice is scaled down according to
2823 * the sync/async slice ratio. */
2824 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2825 } else
2826 /* sync workload slice is at least 2 * cfq_slice_idle */
2827 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2828
2829 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2830 cfq_log(cfqd, "workload slice:%d", slice);
2831 cfqd->workload_expires = jiffies + slice;
2832 }
2833
2834 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2835 {
2836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2837 struct cfq_group *cfqg;
2838
2839 if (RB_EMPTY_ROOT(&st->rb))
2840 return NULL;
2841 cfqg = cfq_rb_first_group(st);
2842 update_min_vdisktime(st);
2843 return cfqg;
2844 }
2845
2846 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2847 {
2848 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2849
2850 cfqd->serving_group = cfqg;
2851
2852 /* Restore the workload type data */
2853 if (cfqg->saved_wl_slice) {
2854 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
2855 cfqd->serving_wl_type = cfqg->saved_wl_type;
2856 cfqd->serving_wl_class = cfqg->saved_wl_class;
2857 } else
2858 cfqd->workload_expires = jiffies - 1;
2859
2860 choose_wl_class_and_type(cfqd, cfqg);
2861 }
2862
2863 /*
2864 * Select a queue for service. If we have a current active queue,
2865 * check whether to continue servicing it, or retrieve and set a new one.
2866 */
2867 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2868 {
2869 struct cfq_queue *cfqq, *new_cfqq = NULL;
2870
2871 cfqq = cfqd->active_queue;
2872 if (!cfqq)
2873 goto new_queue;
2874
2875 if (!cfqd->rq_queued)
2876 return NULL;
2877
2878 /*
2879 * We were waiting for group to get backlogged. Expire the queue
2880 */
2881 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2882 goto expire;
2883
2884 /*
2885 * The active queue has run out of time, expire it and select new.
2886 */
2887 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2888 /*
2889 * If slice had not expired at the completion of last request
2890 * we might not have turned on wait_busy flag. Don't expire
2891 * the queue yet. Allow the group to get backlogged.
2892 *
2893 * The very fact that we have used the slice, that means we
2894 * have been idling all along on this queue and it should be
2895 * ok to wait for this request to complete.
2896 */
2897 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2898 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2899 cfqq = NULL;
2900 goto keep_queue;
2901 } else
2902 goto check_group_idle;
2903 }
2904
2905 /*
2906 * The active queue has requests and isn't expired, allow it to
2907 * dispatch.
2908 */
2909 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2910 goto keep_queue;
2911
2912 /*
2913 * If another queue has a request waiting within our mean seek
2914 * distance, let it run. The expire code will check for close
2915 * cooperators and put the close queue at the front of the service
2916 * tree. If possible, merge the expiring queue with the new cfqq.
2917 */
2918 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2919 if (new_cfqq) {
2920 if (!cfqq->new_cfqq)
2921 cfq_setup_merge(cfqq, new_cfqq);
2922 goto expire;
2923 }
2924
2925 /*
2926 * No requests pending. If the active queue still has requests in
2927 * flight or is idling for a new request, allow either of these
2928 * conditions to happen (or time out) before selecting a new queue.
2929 */
2930 if (timer_pending(&cfqd->idle_slice_timer)) {
2931 cfqq = NULL;
2932 goto keep_queue;
2933 }
2934
2935 /*
2936 * This is a deep seek queue, but the device is much faster than
2937 * the queue can deliver, don't idle
2938 **/
2939 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2940 (cfq_cfqq_slice_new(cfqq) ||
2941 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2942 cfq_clear_cfqq_deep(cfqq);
2943 cfq_clear_cfqq_idle_window(cfqq);
2944 }
2945
2946 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2947 cfqq = NULL;
2948 goto keep_queue;
2949 }
2950
2951 /*
2952 * If group idle is enabled and there are requests dispatched from
2953 * this group, wait for requests to complete.
2954 */
2955 check_group_idle:
2956 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2957 cfqq->cfqg->dispatched &&
2958 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2959 cfqq = NULL;
2960 goto keep_queue;
2961 }
2962
2963 expire:
2964 cfq_slice_expired(cfqd, 0);
2965 new_queue:
2966 /*
2967 * Current queue expired. Check if we have to switch to a new
2968 * service tree
2969 */
2970 if (!new_cfqq)
2971 cfq_choose_cfqg(cfqd);
2972
2973 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2974 keep_queue:
2975 return cfqq;
2976 }
2977
2978 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2979 {
2980 int dispatched = 0;
2981
2982 while (cfqq->next_rq) {
2983 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2984 dispatched++;
2985 }
2986
2987 BUG_ON(!list_empty(&cfqq->fifo));
2988
2989 /* By default cfqq is not expired if it is empty. Do it explicitly */
2990 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2991 return dispatched;
2992 }
2993
2994 /*
2995 * Drain our current requests. Used for barriers and when switching
2996 * io schedulers on-the-fly.
2997 */
2998 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2999 {
3000 struct cfq_queue *cfqq;
3001 int dispatched = 0;
3002
3003 /* Expire the timeslice of the current active queue first */
3004 cfq_slice_expired(cfqd, 0);
3005 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3006 __cfq_set_active_queue(cfqd, cfqq);
3007 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3008 }
3009
3010 BUG_ON(cfqd->busy_queues);
3011
3012 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3013 return dispatched;
3014 }
3015
3016 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3017 struct cfq_queue *cfqq)
3018 {
3019 /* the queue hasn't finished any request, can't estimate */
3020 if (cfq_cfqq_slice_new(cfqq))
3021 return true;
3022 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3023 cfqq->slice_end))
3024 return true;
3025
3026 return false;
3027 }
3028
3029 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3030 {
3031 unsigned int max_dispatch;
3032
3033 /*
3034 * Drain async requests before we start sync IO
3035 */
3036 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3037 return false;
3038
3039 /*
3040 * If this is an async queue and we have sync IO in flight, let it wait
3041 */
3042 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3043 return false;
3044
3045 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3046 if (cfq_class_idle(cfqq))
3047 max_dispatch = 1;
3048
3049 /*
3050 * Does this cfqq already have too much IO in flight?
3051 */
3052 if (cfqq->dispatched >= max_dispatch) {
3053 bool promote_sync = false;
3054 /*
3055 * idle queue must always only have a single IO in flight
3056 */
3057 if (cfq_class_idle(cfqq))
3058 return false;
3059
3060 /*
3061 * If there is only one sync queue
3062 * we can ignore async queue here and give the sync
3063 * queue no dispatch limit. The reason is a sync queue can
3064 * preempt async queue, limiting the sync queue doesn't make
3065 * sense. This is useful for aiostress test.
3066 */
3067 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3068 promote_sync = true;
3069
3070 /*
3071 * We have other queues, don't allow more IO from this one
3072 */
3073 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3074 !promote_sync)
3075 return false;
3076
3077 /*
3078 * Sole queue user, no limit
3079 */
3080 if (cfqd->busy_queues == 1 || promote_sync)
3081 max_dispatch = -1;
3082 else
3083 /*
3084 * Normally we start throttling cfqq when cfq_quantum/2
3085 * requests have been dispatched. But we can drive
3086 * deeper queue depths at the beginning of slice
3087 * subjected to upper limit of cfq_quantum.
3088 * */
3089 max_dispatch = cfqd->cfq_quantum;
3090 }
3091
3092 /*
3093 * Async queues must wait a bit before being allowed dispatch.
3094 * We also ramp up the dispatch depth gradually for async IO,
3095 * based on the last sync IO we serviced
3096 */
3097 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3098 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3099 unsigned int depth;
3100
3101 depth = last_sync / cfqd->cfq_slice[1];
3102 if (!depth && !cfqq->dispatched)
3103 depth = 1;
3104 if (depth < max_dispatch)
3105 max_dispatch = depth;
3106 }
3107
3108 /*
3109 * If we're below the current max, allow a dispatch
3110 */
3111 return cfqq->dispatched < max_dispatch;
3112 }
3113
3114 /*
3115 * Dispatch a request from cfqq, moving them to the request queue
3116 * dispatch list.
3117 */
3118 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3119 {
3120 struct request *rq;
3121
3122 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3123
3124 if (!cfq_may_dispatch(cfqd, cfqq))
3125 return false;
3126
3127 /*
3128 * follow expired path, else get first next available
3129 */
3130 rq = cfq_check_fifo(cfqq);
3131 if (!rq)
3132 rq = cfqq->next_rq;
3133
3134 /*
3135 * insert request into driver dispatch list
3136 */
3137 cfq_dispatch_insert(cfqd->queue, rq);
3138
3139 if (!cfqd->active_cic) {
3140 struct cfq_io_cq *cic = RQ_CIC(rq);
3141
3142 atomic_long_inc(&cic->icq.ioc->refcount);
3143 cfqd->active_cic = cic;
3144 }
3145
3146 return true;
3147 }
3148
3149 /*
3150 * Find the cfqq that we need to service and move a request from that to the
3151 * dispatch list
3152 */
3153 static int cfq_dispatch_requests(struct request_queue *q, int force)
3154 {
3155 struct cfq_data *cfqd = q->elevator->elevator_data;
3156 struct cfq_queue *cfqq;
3157
3158 if (!cfqd->busy_queues)
3159 return 0;
3160
3161 if (unlikely(force))
3162 return cfq_forced_dispatch(cfqd);
3163
3164 cfqq = cfq_select_queue(cfqd);
3165 if (!cfqq)
3166 return 0;
3167
3168 /*
3169 * Dispatch a request from this cfqq, if it is allowed
3170 */
3171 if (!cfq_dispatch_request(cfqd, cfqq))
3172 return 0;
3173
3174 cfqq->slice_dispatch++;
3175 cfq_clear_cfqq_must_dispatch(cfqq);
3176
3177 /*
3178 * expire an async queue immediately if it has used up its slice. idle
3179 * queue always expire after 1 dispatch round.
3180 */
3181 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3182 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3183 cfq_class_idle(cfqq))) {
3184 cfqq->slice_end = jiffies + 1;
3185 cfq_slice_expired(cfqd, 0);
3186 }
3187
3188 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3189 return 1;
3190 }
3191
3192 /*
3193 * task holds one reference to the queue, dropped when task exits. each rq
3194 * in-flight on this queue also holds a reference, dropped when rq is freed.
3195 *
3196 * Each cfq queue took a reference on the parent group. Drop it now.
3197 * queue lock must be held here.
3198 */
3199 static void cfq_put_queue(struct cfq_queue *cfqq)
3200 {
3201 struct cfq_data *cfqd = cfqq->cfqd;
3202 struct cfq_group *cfqg;
3203
3204 BUG_ON(cfqq->ref <= 0);
3205
3206 cfqq->ref--;
3207 if (cfqq->ref)
3208 return;
3209
3210 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3211 BUG_ON(rb_first(&cfqq->sort_list));
3212 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3213 cfqg = cfqq->cfqg;
3214
3215 if (unlikely(cfqd->active_queue == cfqq)) {
3216 __cfq_slice_expired(cfqd, cfqq, 0);
3217 cfq_schedule_dispatch(cfqd);
3218 }
3219
3220 BUG_ON(cfq_cfqq_on_rr(cfqq));
3221 kmem_cache_free(cfq_pool, cfqq);
3222 cfqg_put(cfqg);
3223 }
3224
3225 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3226 {
3227 struct cfq_queue *__cfqq, *next;
3228
3229 /*
3230 * If this queue was scheduled to merge with another queue, be
3231 * sure to drop the reference taken on that queue (and others in
3232 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3233 */
3234 __cfqq = cfqq->new_cfqq;
3235 while (__cfqq) {
3236 if (__cfqq == cfqq) {
3237 WARN(1, "cfqq->new_cfqq loop detected\n");
3238 break;
3239 }
3240 next = __cfqq->new_cfqq;
3241 cfq_put_queue(__cfqq);
3242 __cfqq = next;
3243 }
3244 }
3245
3246 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3247 {
3248 if (unlikely(cfqq == cfqd->active_queue)) {
3249 __cfq_slice_expired(cfqd, cfqq, 0);
3250 cfq_schedule_dispatch(cfqd);
3251 }
3252
3253 cfq_put_cooperator(cfqq);
3254
3255 cfq_put_queue(cfqq);
3256 }
3257
3258 static void cfq_init_icq(struct io_cq *icq)
3259 {
3260 struct cfq_io_cq *cic = icq_to_cic(icq);
3261
3262 cic->ttime.last_end_request = jiffies;
3263 }
3264
3265 static void cfq_exit_icq(struct io_cq *icq)
3266 {
3267 struct cfq_io_cq *cic = icq_to_cic(icq);
3268 struct cfq_data *cfqd = cic_to_cfqd(cic);
3269
3270 if (cic->cfqq[BLK_RW_ASYNC]) {
3271 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3272 cic->cfqq[BLK_RW_ASYNC] = NULL;
3273 }
3274
3275 if (cic->cfqq[BLK_RW_SYNC]) {
3276 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3277 cic->cfqq[BLK_RW_SYNC] = NULL;
3278 }
3279 }
3280
3281 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3282 {
3283 struct task_struct *tsk = current;
3284 int ioprio_class;
3285
3286 if (!cfq_cfqq_prio_changed(cfqq))
3287 return;
3288
3289 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3290 switch (ioprio_class) {
3291 default:
3292 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3293 case IOPRIO_CLASS_NONE:
3294 /*
3295 * no prio set, inherit CPU scheduling settings
3296 */
3297 cfqq->ioprio = task_nice_ioprio(tsk);
3298 cfqq->ioprio_class = task_nice_ioclass(tsk);
3299 break;
3300 case IOPRIO_CLASS_RT:
3301 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3302 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3303 break;
3304 case IOPRIO_CLASS_BE:
3305 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3306 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3307 break;
3308 case IOPRIO_CLASS_IDLE:
3309 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3310 cfqq->ioprio = 7;
3311 cfq_clear_cfqq_idle_window(cfqq);
3312 break;
3313 }
3314
3315 /*
3316 * keep track of original prio settings in case we have to temporarily
3317 * elevate the priority of this queue
3318 */
3319 cfqq->org_ioprio = cfqq->ioprio;
3320 cfq_clear_cfqq_prio_changed(cfqq);
3321 }
3322
3323 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3324 {
3325 int ioprio = cic->icq.ioc->ioprio;
3326 struct cfq_data *cfqd = cic_to_cfqd(cic);
3327 struct cfq_queue *cfqq;
3328
3329 /*
3330 * Check whether ioprio has changed. The condition may trigger
3331 * spuriously on a newly created cic but there's no harm.
3332 */
3333 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3334 return;
3335
3336 cfqq = cic->cfqq[BLK_RW_ASYNC];
3337 if (cfqq) {
3338 struct cfq_queue *new_cfqq;
3339 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3340 GFP_ATOMIC);
3341 if (new_cfqq) {
3342 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3343 cfq_put_queue(cfqq);
3344 }
3345 }
3346
3347 cfqq = cic->cfqq[BLK_RW_SYNC];
3348 if (cfqq)
3349 cfq_mark_cfqq_prio_changed(cfqq);
3350
3351 cic->ioprio = ioprio;
3352 }
3353
3354 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3355 pid_t pid, bool is_sync)
3356 {
3357 RB_CLEAR_NODE(&cfqq->rb_node);
3358 RB_CLEAR_NODE(&cfqq->p_node);
3359 INIT_LIST_HEAD(&cfqq->fifo);
3360
3361 cfqq->ref = 0;
3362 cfqq->cfqd = cfqd;
3363
3364 cfq_mark_cfqq_prio_changed(cfqq);
3365
3366 if (is_sync) {
3367 if (!cfq_class_idle(cfqq))
3368 cfq_mark_cfqq_idle_window(cfqq);
3369 cfq_mark_cfqq_sync(cfqq);
3370 }
3371 cfqq->pid = pid;
3372 }
3373
3374 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3375 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3376 {
3377 struct cfq_data *cfqd = cic_to_cfqd(cic);
3378 struct cfq_queue *sync_cfqq;
3379 uint64_t id;
3380
3381 rcu_read_lock();
3382 id = bio_blkcg(bio)->id;
3383 rcu_read_unlock();
3384
3385 /*
3386 * Check whether blkcg has changed. The condition may trigger
3387 * spuriously on a newly created cic but there's no harm.
3388 */
3389 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3390 return;
3391
3392 sync_cfqq = cic_to_cfqq(cic, 1);
3393 if (sync_cfqq) {
3394 /*
3395 * Drop reference to sync queue. A new sync queue will be
3396 * assigned in new group upon arrival of a fresh request.
3397 */
3398 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3399 cic_set_cfqq(cic, NULL, 1);
3400 cfq_put_queue(sync_cfqq);
3401 }
3402
3403 cic->blkcg_id = id;
3404 }
3405 #else
3406 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3407 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3408
3409 static struct cfq_queue *
3410 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3411 struct bio *bio, gfp_t gfp_mask)
3412 {
3413 struct blkcg *blkcg;
3414 struct cfq_queue *cfqq, *new_cfqq = NULL;
3415 struct cfq_group *cfqg;
3416
3417 retry:
3418 rcu_read_lock();
3419
3420 blkcg = bio_blkcg(bio);
3421 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3422 cfqq = cic_to_cfqq(cic, is_sync);
3423
3424 /*
3425 * Always try a new alloc if we fell back to the OOM cfqq
3426 * originally, since it should just be a temporary situation.
3427 */
3428 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3429 cfqq = NULL;
3430 if (new_cfqq) {
3431 cfqq = new_cfqq;
3432 new_cfqq = NULL;
3433 } else if (gfp_mask & __GFP_WAIT) {
3434 rcu_read_unlock();
3435 spin_unlock_irq(cfqd->queue->queue_lock);
3436 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3437 gfp_mask | __GFP_ZERO,
3438 cfqd->queue->node);
3439 spin_lock_irq(cfqd->queue->queue_lock);
3440 if (new_cfqq)
3441 goto retry;
3442 } else {
3443 cfqq = kmem_cache_alloc_node(cfq_pool,
3444 gfp_mask | __GFP_ZERO,
3445 cfqd->queue->node);
3446 }
3447
3448 if (cfqq) {
3449 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3450 cfq_init_prio_data(cfqq, cic);
3451 cfq_link_cfqq_cfqg(cfqq, cfqg);
3452 cfq_log_cfqq(cfqd, cfqq, "alloced");
3453 } else
3454 cfqq = &cfqd->oom_cfqq;
3455 }
3456
3457 if (new_cfqq)
3458 kmem_cache_free(cfq_pool, new_cfqq);
3459
3460 rcu_read_unlock();
3461 return cfqq;
3462 }
3463
3464 static struct cfq_queue **
3465 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3466 {
3467 switch (ioprio_class) {
3468 case IOPRIO_CLASS_RT:
3469 return &cfqd->async_cfqq[0][ioprio];
3470 case IOPRIO_CLASS_NONE:
3471 ioprio = IOPRIO_NORM;
3472 /* fall through */
3473 case IOPRIO_CLASS_BE:
3474 return &cfqd->async_cfqq[1][ioprio];
3475 case IOPRIO_CLASS_IDLE:
3476 return &cfqd->async_idle_cfqq;
3477 default:
3478 BUG();
3479 }
3480 }
3481
3482 static struct cfq_queue *
3483 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3484 struct bio *bio, gfp_t gfp_mask)
3485 {
3486 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3487 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3488 struct cfq_queue **async_cfqq = NULL;
3489 struct cfq_queue *cfqq = NULL;
3490
3491 if (!is_sync) {
3492 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3493 cfqq = *async_cfqq;
3494 }
3495
3496 if (!cfqq)
3497 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3498
3499 /*
3500 * pin the queue now that it's allocated, scheduler exit will prune it
3501 */
3502 if (!is_sync && !(*async_cfqq)) {
3503 cfqq->ref++;
3504 *async_cfqq = cfqq;
3505 }
3506
3507 cfqq->ref++;
3508 return cfqq;
3509 }
3510
3511 static void
3512 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3513 {
3514 unsigned long elapsed = jiffies - ttime->last_end_request;
3515 elapsed = min(elapsed, 2UL * slice_idle);
3516
3517 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3518 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3519 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3520 }
3521
3522 static void
3523 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3524 struct cfq_io_cq *cic)
3525 {
3526 if (cfq_cfqq_sync(cfqq)) {
3527 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3528 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3529 cfqd->cfq_slice_idle);
3530 }
3531 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3532 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3533 #endif
3534 }
3535
3536 static void
3537 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3538 struct request *rq)
3539 {
3540 sector_t sdist = 0;
3541 sector_t n_sec = blk_rq_sectors(rq);
3542 if (cfqq->last_request_pos) {
3543 if (cfqq->last_request_pos < blk_rq_pos(rq))
3544 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3545 else
3546 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3547 }
3548
3549 cfqq->seek_history <<= 1;
3550 if (blk_queue_nonrot(cfqd->queue))
3551 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3552 else
3553 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3554 }
3555
3556 /*
3557 * Disable idle window if the process thinks too long or seeks so much that
3558 * it doesn't matter
3559 */
3560 static void
3561 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3562 struct cfq_io_cq *cic)
3563 {
3564 int old_idle, enable_idle;
3565
3566 /*
3567 * Don't idle for async or idle io prio class
3568 */
3569 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3570 return;
3571
3572 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3573
3574 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3575 cfq_mark_cfqq_deep(cfqq);
3576
3577 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3578 enable_idle = 0;
3579 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3580 !cfqd->cfq_slice_idle ||
3581 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3582 enable_idle = 0;
3583 else if (sample_valid(cic->ttime.ttime_samples)) {
3584 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3585 enable_idle = 0;
3586 else
3587 enable_idle = 1;
3588 }
3589
3590 if (old_idle != enable_idle) {
3591 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3592 if (enable_idle)
3593 cfq_mark_cfqq_idle_window(cfqq);
3594 else
3595 cfq_clear_cfqq_idle_window(cfqq);
3596 }
3597 }
3598
3599 /*
3600 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3601 * no or if we aren't sure, a 1 will cause a preempt.
3602 */
3603 static bool
3604 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3605 struct request *rq)
3606 {
3607 struct cfq_queue *cfqq;
3608
3609 cfqq = cfqd->active_queue;
3610 if (!cfqq)
3611 return false;
3612
3613 if (cfq_class_idle(new_cfqq))
3614 return false;
3615
3616 if (cfq_class_idle(cfqq))
3617 return true;
3618
3619 /*
3620 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3621 */
3622 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3623 return false;
3624
3625 /*
3626 * if the new request is sync, but the currently running queue is
3627 * not, let the sync request have priority.
3628 */
3629 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3630 return true;
3631
3632 if (new_cfqq->cfqg != cfqq->cfqg)
3633 return false;
3634
3635 if (cfq_slice_used(cfqq))
3636 return true;
3637
3638 /* Allow preemption only if we are idling on sync-noidle tree */
3639 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3640 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3641 new_cfqq->service_tree->count == 2 &&
3642 RB_EMPTY_ROOT(&cfqq->sort_list))
3643 return true;
3644
3645 /*
3646 * So both queues are sync. Let the new request get disk time if
3647 * it's a metadata request and the current queue is doing regular IO.
3648 */
3649 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3650 return true;
3651
3652 /*
3653 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3654 */
3655 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3656 return true;
3657
3658 /* An idle queue should not be idle now for some reason */
3659 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3660 return true;
3661
3662 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3663 return false;
3664
3665 /*
3666 * if this request is as-good as one we would expect from the
3667 * current cfqq, let it preempt
3668 */
3669 if (cfq_rq_close(cfqd, cfqq, rq))
3670 return true;
3671
3672 return false;
3673 }
3674
3675 /*
3676 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3677 * let it have half of its nominal slice.
3678 */
3679 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3680 {
3681 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3682
3683 cfq_log_cfqq(cfqd, cfqq, "preempt");
3684 cfq_slice_expired(cfqd, 1);
3685
3686 /*
3687 * workload type is changed, don't save slice, otherwise preempt
3688 * doesn't happen
3689 */
3690 if (old_type != cfqq_type(cfqq))
3691 cfqq->cfqg->saved_wl_slice = 0;
3692
3693 /*
3694 * Put the new queue at the front of the of the current list,
3695 * so we know that it will be selected next.
3696 */
3697 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3698
3699 cfq_service_tree_add(cfqd, cfqq, 1);
3700
3701 cfqq->slice_end = 0;
3702 cfq_mark_cfqq_slice_new(cfqq);
3703 }
3704
3705 /*
3706 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3707 * something we should do about it
3708 */
3709 static void
3710 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3711 struct request *rq)
3712 {
3713 struct cfq_io_cq *cic = RQ_CIC(rq);
3714
3715 cfqd->rq_queued++;
3716 if (rq->cmd_flags & REQ_PRIO)
3717 cfqq->prio_pending++;
3718
3719 cfq_update_io_thinktime(cfqd, cfqq, cic);
3720 cfq_update_io_seektime(cfqd, cfqq, rq);
3721 cfq_update_idle_window(cfqd, cfqq, cic);
3722
3723 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3724
3725 if (cfqq == cfqd->active_queue) {
3726 /*
3727 * Remember that we saw a request from this process, but
3728 * don't start queuing just yet. Otherwise we risk seeing lots
3729 * of tiny requests, because we disrupt the normal plugging
3730 * and merging. If the request is already larger than a single
3731 * page, let it rip immediately. For that case we assume that
3732 * merging is already done. Ditto for a busy system that
3733 * has other work pending, don't risk delaying until the
3734 * idle timer unplug to continue working.
3735 */
3736 if (cfq_cfqq_wait_request(cfqq)) {
3737 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3738 cfqd->busy_queues > 1) {
3739 cfq_del_timer(cfqd, cfqq);
3740 cfq_clear_cfqq_wait_request(cfqq);
3741 __blk_run_queue(cfqd->queue);
3742 } else {
3743 cfqg_stats_update_idle_time(cfqq->cfqg);
3744 cfq_mark_cfqq_must_dispatch(cfqq);
3745 }
3746 }
3747 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3748 /*
3749 * not the active queue - expire current slice if it is
3750 * idle and has expired it's mean thinktime or this new queue
3751 * has some old slice time left and is of higher priority or
3752 * this new queue is RT and the current one is BE
3753 */
3754 cfq_preempt_queue(cfqd, cfqq);
3755 __blk_run_queue(cfqd->queue);
3756 }
3757 }
3758
3759 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3760 {
3761 struct cfq_data *cfqd = q->elevator->elevator_data;
3762 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3763
3764 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3765 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3766
3767 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3768 list_add_tail(&rq->queuelist, &cfqq->fifo);
3769 cfq_add_rq_rb(rq);
3770 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3771 rq->cmd_flags);
3772 cfq_rq_enqueued(cfqd, cfqq, rq);
3773 }
3774
3775 /*
3776 * Update hw_tag based on peak queue depth over 50 samples under
3777 * sufficient load.
3778 */
3779 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3780 {
3781 struct cfq_queue *cfqq = cfqd->active_queue;
3782
3783 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3784 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3785
3786 if (cfqd->hw_tag == 1)
3787 return;
3788
3789 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3790 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3791 return;
3792
3793 /*
3794 * If active queue hasn't enough requests and can idle, cfq might not
3795 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3796 * case
3797 */
3798 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3799 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3800 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3801 return;
3802
3803 if (cfqd->hw_tag_samples++ < 50)
3804 return;
3805
3806 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3807 cfqd->hw_tag = 1;
3808 else
3809 cfqd->hw_tag = 0;
3810 }
3811
3812 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3813 {
3814 struct cfq_io_cq *cic = cfqd->active_cic;
3815
3816 /* If the queue already has requests, don't wait */
3817 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3818 return false;
3819
3820 /* If there are other queues in the group, don't wait */
3821 if (cfqq->cfqg->nr_cfqq > 1)
3822 return false;
3823
3824 /* the only queue in the group, but think time is big */
3825 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3826 return false;
3827
3828 if (cfq_slice_used(cfqq))
3829 return true;
3830
3831 /* if slice left is less than think time, wait busy */
3832 if (cic && sample_valid(cic->ttime.ttime_samples)
3833 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3834 return true;
3835
3836 /*
3837 * If think times is less than a jiffy than ttime_mean=0 and above
3838 * will not be true. It might happen that slice has not expired yet
3839 * but will expire soon (4-5 ns) during select_queue(). To cover the
3840 * case where think time is less than a jiffy, mark the queue wait
3841 * busy if only 1 jiffy is left in the slice.
3842 */
3843 if (cfqq->slice_end - jiffies == 1)
3844 return true;
3845
3846 return false;
3847 }
3848
3849 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3850 {
3851 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3852 struct cfq_data *cfqd = cfqq->cfqd;
3853 const int sync = rq_is_sync(rq);
3854 unsigned long now;
3855
3856 now = jiffies;
3857 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3858 !!(rq->cmd_flags & REQ_NOIDLE));
3859
3860 cfq_update_hw_tag(cfqd);
3861
3862 WARN_ON(!cfqd->rq_in_driver);
3863 WARN_ON(!cfqq->dispatched);
3864 cfqd->rq_in_driver--;
3865 cfqq->dispatched--;
3866 (RQ_CFQG(rq))->dispatched--;
3867 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3868 rq_io_start_time_ns(rq), rq->cmd_flags);
3869
3870 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3871
3872 if (sync) {
3873 struct cfq_rb_root *st;
3874
3875 RQ_CIC(rq)->ttime.last_end_request = now;
3876
3877 if (cfq_cfqq_on_rr(cfqq))
3878 st = cfqq->service_tree;
3879 else
3880 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
3881 cfqq_type(cfqq));
3882
3883 st->ttime.last_end_request = now;
3884 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3885 cfqd->last_delayed_sync = now;
3886 }
3887
3888 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3889 cfqq->cfqg->ttime.last_end_request = now;
3890 #endif
3891
3892 /*
3893 * If this is the active queue, check if it needs to be expired,
3894 * or if we want to idle in case it has no pending requests.
3895 */
3896 if (cfqd->active_queue == cfqq) {
3897 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3898
3899 if (cfq_cfqq_slice_new(cfqq)) {
3900 cfq_set_prio_slice(cfqd, cfqq);
3901 cfq_clear_cfqq_slice_new(cfqq);
3902 }
3903
3904 /*
3905 * Should we wait for next request to come in before we expire
3906 * the queue.
3907 */
3908 if (cfq_should_wait_busy(cfqd, cfqq)) {
3909 unsigned long extend_sl = cfqd->cfq_slice_idle;
3910 if (!cfqd->cfq_slice_idle)
3911 extend_sl = cfqd->cfq_group_idle;
3912 cfqq->slice_end = jiffies + extend_sl;
3913 cfq_mark_cfqq_wait_busy(cfqq);
3914 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3915 }
3916
3917 /*
3918 * Idling is not enabled on:
3919 * - expired queues
3920 * - idle-priority queues
3921 * - async queues
3922 * - queues with still some requests queued
3923 * - when there is a close cooperator
3924 */
3925 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3926 cfq_slice_expired(cfqd, 1);
3927 else if (sync && cfqq_empty &&
3928 !cfq_close_cooperator(cfqd, cfqq)) {
3929 cfq_arm_slice_timer(cfqd);
3930 }
3931 }
3932
3933 if (!cfqd->rq_in_driver)
3934 cfq_schedule_dispatch(cfqd);
3935 }
3936
3937 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3938 {
3939 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3940 cfq_mark_cfqq_must_alloc_slice(cfqq);
3941 return ELV_MQUEUE_MUST;
3942 }
3943
3944 return ELV_MQUEUE_MAY;
3945 }
3946
3947 static int cfq_may_queue(struct request_queue *q, int rw)
3948 {
3949 struct cfq_data *cfqd = q->elevator->elevator_data;
3950 struct task_struct *tsk = current;
3951 struct cfq_io_cq *cic;
3952 struct cfq_queue *cfqq;
3953
3954 /*
3955 * don't force setup of a queue from here, as a call to may_queue
3956 * does not necessarily imply that a request actually will be queued.
3957 * so just lookup a possibly existing queue, or return 'may queue'
3958 * if that fails
3959 */
3960 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3961 if (!cic)
3962 return ELV_MQUEUE_MAY;
3963
3964 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3965 if (cfqq) {
3966 cfq_init_prio_data(cfqq, cic);
3967
3968 return __cfq_may_queue(cfqq);
3969 }
3970
3971 return ELV_MQUEUE_MAY;
3972 }
3973
3974 /*
3975 * queue lock held here
3976 */
3977 static void cfq_put_request(struct request *rq)
3978 {
3979 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3980
3981 if (cfqq) {
3982 const int rw = rq_data_dir(rq);
3983
3984 BUG_ON(!cfqq->allocated[rw]);
3985 cfqq->allocated[rw]--;
3986
3987 /* Put down rq reference on cfqg */
3988 cfqg_put(RQ_CFQG(rq));
3989 rq->elv.priv[0] = NULL;
3990 rq->elv.priv[1] = NULL;
3991
3992 cfq_put_queue(cfqq);
3993 }
3994 }
3995
3996 static struct cfq_queue *
3997 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3998 struct cfq_queue *cfqq)
3999 {
4000 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4001 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4002 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4003 cfq_put_queue(cfqq);
4004 return cic_to_cfqq(cic, 1);
4005 }
4006
4007 /*
4008 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4009 * was the last process referring to said cfqq.
4010 */
4011 static struct cfq_queue *
4012 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4013 {
4014 if (cfqq_process_refs(cfqq) == 1) {
4015 cfqq->pid = current->pid;
4016 cfq_clear_cfqq_coop(cfqq);
4017 cfq_clear_cfqq_split_coop(cfqq);
4018 return cfqq;
4019 }
4020
4021 cic_set_cfqq(cic, NULL, 1);
4022
4023 cfq_put_cooperator(cfqq);
4024
4025 cfq_put_queue(cfqq);
4026 return NULL;
4027 }
4028 /*
4029 * Allocate cfq data structures associated with this request.
4030 */
4031 static int
4032 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4033 gfp_t gfp_mask)
4034 {
4035 struct cfq_data *cfqd = q->elevator->elevator_data;
4036 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4037 const int rw = rq_data_dir(rq);
4038 const bool is_sync = rq_is_sync(rq);
4039 struct cfq_queue *cfqq;
4040
4041 might_sleep_if(gfp_mask & __GFP_WAIT);
4042
4043 spin_lock_irq(q->queue_lock);
4044
4045 check_ioprio_changed(cic, bio);
4046 check_blkcg_changed(cic, bio);
4047 new_queue:
4048 cfqq = cic_to_cfqq(cic, is_sync);
4049 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4050 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4051 cic_set_cfqq(cic, cfqq, is_sync);
4052 } else {
4053 /*
4054 * If the queue was seeky for too long, break it apart.
4055 */
4056 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4057 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4058 cfqq = split_cfqq(cic, cfqq);
4059 if (!cfqq)
4060 goto new_queue;
4061 }
4062
4063 /*
4064 * Check to see if this queue is scheduled to merge with
4065 * another, closely cooperating queue. The merging of
4066 * queues happens here as it must be done in process context.
4067 * The reference on new_cfqq was taken in merge_cfqqs.
4068 */
4069 if (cfqq->new_cfqq)
4070 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4071 }
4072
4073 cfqq->allocated[rw]++;
4074
4075 cfqq->ref++;
4076 cfqg_get(cfqq->cfqg);
4077 rq->elv.priv[0] = cfqq;
4078 rq->elv.priv[1] = cfqq->cfqg;
4079 spin_unlock_irq(q->queue_lock);
4080 return 0;
4081 }
4082
4083 static void cfq_kick_queue(struct work_struct *work)
4084 {
4085 struct cfq_data *cfqd =
4086 container_of(work, struct cfq_data, unplug_work);
4087 struct request_queue *q = cfqd->queue;
4088
4089 spin_lock_irq(q->queue_lock);
4090 __blk_run_queue(cfqd->queue);
4091 spin_unlock_irq(q->queue_lock);
4092 }
4093
4094 /*
4095 * Timer running if the active_queue is currently idling inside its time slice
4096 */
4097 static void cfq_idle_slice_timer(unsigned long data)
4098 {
4099 struct cfq_data *cfqd = (struct cfq_data *) data;
4100 struct cfq_queue *cfqq;
4101 unsigned long flags;
4102 int timed_out = 1;
4103
4104 cfq_log(cfqd, "idle timer fired");
4105
4106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4107
4108 cfqq = cfqd->active_queue;
4109 if (cfqq) {
4110 timed_out = 0;
4111
4112 /*
4113 * We saw a request before the queue expired, let it through
4114 */
4115 if (cfq_cfqq_must_dispatch(cfqq))
4116 goto out_kick;
4117
4118 /*
4119 * expired
4120 */
4121 if (cfq_slice_used(cfqq))
4122 goto expire;
4123
4124 /*
4125 * only expire and reinvoke request handler, if there are
4126 * other queues with pending requests
4127 */
4128 if (!cfqd->busy_queues)
4129 goto out_cont;
4130
4131 /*
4132 * not expired and it has a request pending, let it dispatch
4133 */
4134 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4135 goto out_kick;
4136
4137 /*
4138 * Queue depth flag is reset only when the idle didn't succeed
4139 */
4140 cfq_clear_cfqq_deep(cfqq);
4141 }
4142 expire:
4143 cfq_slice_expired(cfqd, timed_out);
4144 out_kick:
4145 cfq_schedule_dispatch(cfqd);
4146 out_cont:
4147 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4148 }
4149
4150 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4151 {
4152 del_timer_sync(&cfqd->idle_slice_timer);
4153 cancel_work_sync(&cfqd->unplug_work);
4154 }
4155
4156 static void cfq_put_async_queues(struct cfq_data *cfqd)
4157 {
4158 int i;
4159
4160 for (i = 0; i < IOPRIO_BE_NR; i++) {
4161 if (cfqd->async_cfqq[0][i])
4162 cfq_put_queue(cfqd->async_cfqq[0][i]);
4163 if (cfqd->async_cfqq[1][i])
4164 cfq_put_queue(cfqd->async_cfqq[1][i]);
4165 }
4166
4167 if (cfqd->async_idle_cfqq)
4168 cfq_put_queue(cfqd->async_idle_cfqq);
4169 }
4170
4171 static void cfq_exit_queue(struct elevator_queue *e)
4172 {
4173 struct cfq_data *cfqd = e->elevator_data;
4174 struct request_queue *q = cfqd->queue;
4175
4176 cfq_shutdown_timer_wq(cfqd);
4177
4178 spin_lock_irq(q->queue_lock);
4179
4180 if (cfqd->active_queue)
4181 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4182
4183 cfq_put_async_queues(cfqd);
4184
4185 spin_unlock_irq(q->queue_lock);
4186
4187 cfq_shutdown_timer_wq(cfqd);
4188
4189 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4190 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4191 #else
4192 kfree(cfqd->root_group);
4193 #endif
4194 kfree(cfqd);
4195 }
4196
4197 static int cfq_init_queue(struct request_queue *q)
4198 {
4199 struct cfq_data *cfqd;
4200 struct blkcg_gq *blkg __maybe_unused;
4201 int i, ret;
4202
4203 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4204 if (!cfqd)
4205 return -ENOMEM;
4206
4207 cfqd->queue = q;
4208 q->elevator->elevator_data = cfqd;
4209
4210 /* Init root service tree */
4211 cfqd->grp_service_tree = CFQ_RB_ROOT;
4212
4213 /* Init root group and prefer root group over other groups by default */
4214 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4215 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4216 if (ret)
4217 goto out_free;
4218
4219 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4220 #else
4221 ret = -ENOMEM;
4222 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4223 GFP_KERNEL, cfqd->queue->node);
4224 if (!cfqd->root_group)
4225 goto out_free;
4226
4227 cfq_init_cfqg_base(cfqd->root_group);
4228 #endif
4229 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4230 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4231
4232 /*
4233 * Not strictly needed (since RB_ROOT just clears the node and we
4234 * zeroed cfqd on alloc), but better be safe in case someone decides
4235 * to add magic to the rb code
4236 */
4237 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4238 cfqd->prio_trees[i] = RB_ROOT;
4239
4240 /*
4241 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4242 * Grab a permanent reference to it, so that the normal code flow
4243 * will not attempt to free it. oom_cfqq is linked to root_group
4244 * but shouldn't hold a reference as it'll never be unlinked. Lose
4245 * the reference from linking right away.
4246 */
4247 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4248 cfqd->oom_cfqq.ref++;
4249
4250 spin_lock_irq(q->queue_lock);
4251 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4252 cfqg_put(cfqd->root_group);
4253 spin_unlock_irq(q->queue_lock);
4254
4255 init_timer(&cfqd->idle_slice_timer);
4256 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4257 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4258
4259 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4260
4261 cfqd->cfq_quantum = cfq_quantum;
4262 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4263 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4264 cfqd->cfq_back_max = cfq_back_max;
4265 cfqd->cfq_back_penalty = cfq_back_penalty;
4266 cfqd->cfq_slice[0] = cfq_slice_async;
4267 cfqd->cfq_slice[1] = cfq_slice_sync;
4268 cfqd->cfq_target_latency = cfq_target_latency;
4269 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4270 cfqd->cfq_slice_idle = cfq_slice_idle;
4271 cfqd->cfq_group_idle = cfq_group_idle;
4272 cfqd->cfq_latency = 1;
4273 cfqd->hw_tag = -1;
4274 /*
4275 * we optimistically start assuming sync ops weren't delayed in last
4276 * second, in order to have larger depth for async operations.
4277 */
4278 cfqd->last_delayed_sync = jiffies - HZ;
4279 return 0;
4280
4281 out_free:
4282 kfree(cfqd);
4283 return ret;
4284 }
4285
4286 /*
4287 * sysfs parts below -->
4288 */
4289 static ssize_t
4290 cfq_var_show(unsigned int var, char *page)
4291 {
4292 return sprintf(page, "%d\n", var);
4293 }
4294
4295 static ssize_t
4296 cfq_var_store(unsigned int *var, const char *page, size_t count)
4297 {
4298 char *p = (char *) page;
4299
4300 *var = simple_strtoul(p, &p, 10);
4301 return count;
4302 }
4303
4304 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4305 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4306 { \
4307 struct cfq_data *cfqd = e->elevator_data; \
4308 unsigned int __data = __VAR; \
4309 if (__CONV) \
4310 __data = jiffies_to_msecs(__data); \
4311 return cfq_var_show(__data, (page)); \
4312 }
4313 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4314 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4315 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4316 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4317 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4318 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4319 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4320 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4321 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4322 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4323 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4324 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4325 #undef SHOW_FUNCTION
4326
4327 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4328 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4329 { \
4330 struct cfq_data *cfqd = e->elevator_data; \
4331 unsigned int __data; \
4332 int ret = cfq_var_store(&__data, (page), count); \
4333 if (__data < (MIN)) \
4334 __data = (MIN); \
4335 else if (__data > (MAX)) \
4336 __data = (MAX); \
4337 if (__CONV) \
4338 *(__PTR) = msecs_to_jiffies(__data); \
4339 else \
4340 *(__PTR) = __data; \
4341 return ret; \
4342 }
4343 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4344 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4345 UINT_MAX, 1);
4346 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4347 UINT_MAX, 1);
4348 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4349 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4350 UINT_MAX, 0);
4351 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4352 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4353 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4354 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4355 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4356 UINT_MAX, 0);
4357 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4358 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4359 #undef STORE_FUNCTION
4360
4361 #define CFQ_ATTR(name) \
4362 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4363
4364 static struct elv_fs_entry cfq_attrs[] = {
4365 CFQ_ATTR(quantum),
4366 CFQ_ATTR(fifo_expire_sync),
4367 CFQ_ATTR(fifo_expire_async),
4368 CFQ_ATTR(back_seek_max),
4369 CFQ_ATTR(back_seek_penalty),
4370 CFQ_ATTR(slice_sync),
4371 CFQ_ATTR(slice_async),
4372 CFQ_ATTR(slice_async_rq),
4373 CFQ_ATTR(slice_idle),
4374 CFQ_ATTR(group_idle),
4375 CFQ_ATTR(low_latency),
4376 CFQ_ATTR(target_latency),
4377 __ATTR_NULL
4378 };
4379
4380 static struct elevator_type iosched_cfq = {
4381 .ops = {
4382 .elevator_merge_fn = cfq_merge,
4383 .elevator_merged_fn = cfq_merged_request,
4384 .elevator_merge_req_fn = cfq_merged_requests,
4385 .elevator_allow_merge_fn = cfq_allow_merge,
4386 .elevator_bio_merged_fn = cfq_bio_merged,
4387 .elevator_dispatch_fn = cfq_dispatch_requests,
4388 .elevator_add_req_fn = cfq_insert_request,
4389 .elevator_activate_req_fn = cfq_activate_request,
4390 .elevator_deactivate_req_fn = cfq_deactivate_request,
4391 .elevator_completed_req_fn = cfq_completed_request,
4392 .elevator_former_req_fn = elv_rb_former_request,
4393 .elevator_latter_req_fn = elv_rb_latter_request,
4394 .elevator_init_icq_fn = cfq_init_icq,
4395 .elevator_exit_icq_fn = cfq_exit_icq,
4396 .elevator_set_req_fn = cfq_set_request,
4397 .elevator_put_req_fn = cfq_put_request,
4398 .elevator_may_queue_fn = cfq_may_queue,
4399 .elevator_init_fn = cfq_init_queue,
4400 .elevator_exit_fn = cfq_exit_queue,
4401 },
4402 .icq_size = sizeof(struct cfq_io_cq),
4403 .icq_align = __alignof__(struct cfq_io_cq),
4404 .elevator_attrs = cfq_attrs,
4405 .elevator_name = "cfq",
4406 .elevator_owner = THIS_MODULE,
4407 };
4408
4409 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4410 static struct blkcg_policy blkcg_policy_cfq = {
4411 .pd_size = sizeof(struct cfq_group),
4412 .cftypes = cfq_blkcg_files,
4413
4414 .pd_init_fn = cfq_pd_init,
4415 .pd_reset_stats_fn = cfq_pd_reset_stats,
4416 };
4417 #endif
4418
4419 static int __init cfq_init(void)
4420 {
4421 int ret;
4422
4423 /*
4424 * could be 0 on HZ < 1000 setups
4425 */
4426 if (!cfq_slice_async)
4427 cfq_slice_async = 1;
4428 if (!cfq_slice_idle)
4429 cfq_slice_idle = 1;
4430
4431 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4432 if (!cfq_group_idle)
4433 cfq_group_idle = 1;
4434
4435 ret = blkcg_policy_register(&blkcg_policy_cfq);
4436 if (ret)
4437 return ret;
4438 #else
4439 cfq_group_idle = 0;
4440 #endif
4441
4442 ret = -ENOMEM;
4443 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4444 if (!cfq_pool)
4445 goto err_pol_unreg;
4446
4447 ret = elv_register(&iosched_cfq);
4448 if (ret)
4449 goto err_free_pool;
4450
4451 return 0;
4452
4453 err_free_pool:
4454 kmem_cache_destroy(cfq_pool);
4455 err_pol_unreg:
4456 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4457 blkcg_policy_unregister(&blkcg_policy_cfq);
4458 #endif
4459 return ret;
4460 }
4461
4462 static void __exit cfq_exit(void)
4463 {
4464 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4465 blkcg_policy_unregister(&blkcg_policy_cfq);
4466 #endif
4467 elv_unregister(&iosched_cfq);
4468 kmem_cache_destroy(cfq_pool);
4469 }
4470
4471 module_init(cfq_init);
4472 module_exit(cfq_exit);
4473
4474 MODULE_AUTHOR("Jens Axboe");
4475 MODULE_LICENSE("GPL");
4476 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.114798 seconds and 6 git commands to generate.