cfq-iosched: fix queue depth detection
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define ASYNC (0)
60 #define SYNC (1)
61
62 #define sample_valid(samples) ((samples) > 80)
63
64 /*
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
69 */
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
73 };
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
75
76 /*
77 * Per block device queue structure
78 */
79 struct cfq_data {
80 struct request_queue *queue;
81
82 /*
83 * rr list of queues with requests and the count of them
84 */
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
87
88 int rq_in_driver;
89 int sync_flight;
90
91 /*
92 * queue-depth detection
93 */
94 int rq_queued;
95 int hw_tag;
96 int hw_tag_samples;
97 int rq_in_driver_peak;
98
99 /*
100 * idle window management
101 */
102 struct timer_list idle_slice_timer;
103 struct work_struct unplug_work;
104
105 struct cfq_queue *active_queue;
106 struct cfq_io_context *active_cic;
107
108 /*
109 * async queue for each priority case
110 */
111 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
112 struct cfq_queue *async_idle_cfqq;
113
114 sector_t last_position;
115 unsigned long last_end_request;
116
117 /*
118 * tunables, see top of file
119 */
120 unsigned int cfq_quantum;
121 unsigned int cfq_fifo_expire[2];
122 unsigned int cfq_back_penalty;
123 unsigned int cfq_back_max;
124 unsigned int cfq_slice[2];
125 unsigned int cfq_slice_async_rq;
126 unsigned int cfq_slice_idle;
127
128 struct list_head cic_list;
129 };
130
131 /*
132 * Per process-grouping structure
133 */
134 struct cfq_queue {
135 /* reference count */
136 atomic_t ref;
137 /* various state flags, see below */
138 unsigned int flags;
139 /* parent cfq_data */
140 struct cfq_data *cfqd;
141 /* service_tree member */
142 struct rb_node rb_node;
143 /* service_tree key */
144 unsigned long rb_key;
145 /* sorted list of pending requests */
146 struct rb_root sort_list;
147 /* if fifo isn't expired, next request to serve */
148 struct request *next_rq;
149 /* requests queued in sort_list */
150 int queued[2];
151 /* currently allocated requests */
152 int allocated[2];
153 /* fifo list of requests in sort_list */
154 struct list_head fifo;
155
156 unsigned long slice_end;
157 long slice_resid;
158
159 /* pending metadata requests */
160 int meta_pending;
161 /* number of requests that are on the dispatch list or inside driver */
162 int dispatched;
163
164 /* io prio of this group */
165 unsigned short ioprio, org_ioprio;
166 unsigned short ioprio_class, org_ioprio_class;
167
168 pid_t pid;
169 };
170
171 enum cfqq_state_flags {
172 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
173 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
174 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
175 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
176 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
177 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
178 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
179 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
180 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
181 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
182 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
183 };
184
185 #define CFQ_CFQQ_FNS(name) \
186 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
187 { \
188 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
189 } \
190 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
191 { \
192 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
193 } \
194 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
195 { \
196 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
197 }
198
199 CFQ_CFQQ_FNS(on_rr);
200 CFQ_CFQQ_FNS(wait_request);
201 CFQ_CFQQ_FNS(must_alloc);
202 CFQ_CFQQ_FNS(must_alloc_slice);
203 CFQ_CFQQ_FNS(must_dispatch);
204 CFQ_CFQQ_FNS(fifo_expire);
205 CFQ_CFQQ_FNS(idle_window);
206 CFQ_CFQQ_FNS(prio_changed);
207 CFQ_CFQQ_FNS(queue_new);
208 CFQ_CFQQ_FNS(slice_new);
209 CFQ_CFQQ_FNS(sync);
210 #undef CFQ_CFQQ_FNS
211
212 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
213 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
214 #define cfq_log(cfqd, fmt, args...) \
215 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
216
217 static void cfq_dispatch_insert(struct request_queue *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
219 struct io_context *, gfp_t);
220 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
221 struct io_context *);
222
223 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
224 int is_sync)
225 {
226 return cic->cfqq[!!is_sync];
227 }
228
229 static inline void cic_set_cfqq(struct cfq_io_context *cic,
230 struct cfq_queue *cfqq, int is_sync)
231 {
232 cic->cfqq[!!is_sync] = cfqq;
233 }
234
235 /*
236 * We regard a request as SYNC, if it's either a read or has the SYNC bit
237 * set (in which case it could also be direct WRITE).
238 */
239 static inline int cfq_bio_sync(struct bio *bio)
240 {
241 if (bio_data_dir(bio) == READ || bio_sync(bio))
242 return 1;
243
244 return 0;
245 }
246
247 /*
248 * scheduler run of queue, if there are requests pending and no one in the
249 * driver that will restart queueing
250 */
251 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
252 {
253 if (cfqd->busy_queues) {
254 cfq_log(cfqd, "schedule dispatch");
255 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
256 }
257 }
258
259 static int cfq_queue_empty(struct request_queue *q)
260 {
261 struct cfq_data *cfqd = q->elevator->elevator_data;
262
263 return !cfqd->busy_queues;
264 }
265
266 /*
267 * Scale schedule slice based on io priority. Use the sync time slice only
268 * if a queue is marked sync and has sync io queued. A sync queue with async
269 * io only, should not get full sync slice length.
270 */
271 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
272 unsigned short prio)
273 {
274 const int base_slice = cfqd->cfq_slice[sync];
275
276 WARN_ON(prio >= IOPRIO_BE_NR);
277
278 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
279 }
280
281 static inline int
282 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
283 {
284 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
285 }
286
287 static inline void
288 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
289 {
290 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
291 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
292 }
293
294 /*
295 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
296 * isn't valid until the first request from the dispatch is activated
297 * and the slice time set.
298 */
299 static inline int cfq_slice_used(struct cfq_queue *cfqq)
300 {
301 if (cfq_cfqq_slice_new(cfqq))
302 return 0;
303 if (time_before(jiffies, cfqq->slice_end))
304 return 0;
305
306 return 1;
307 }
308
309 /*
310 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
311 * We choose the request that is closest to the head right now. Distance
312 * behind the head is penalized and only allowed to a certain extent.
313 */
314 static struct request *
315 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
316 {
317 sector_t last, s1, s2, d1 = 0, d2 = 0;
318 unsigned long back_max;
319 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
320 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
321 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
322
323 if (rq1 == NULL || rq1 == rq2)
324 return rq2;
325 if (rq2 == NULL)
326 return rq1;
327
328 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
329 return rq1;
330 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
331 return rq2;
332 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
333 return rq1;
334 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
335 return rq2;
336
337 s1 = rq1->sector;
338 s2 = rq2->sector;
339
340 last = cfqd->last_position;
341
342 /*
343 * by definition, 1KiB is 2 sectors
344 */
345 back_max = cfqd->cfq_back_max * 2;
346
347 /*
348 * Strict one way elevator _except_ in the case where we allow
349 * short backward seeks which are biased as twice the cost of a
350 * similar forward seek.
351 */
352 if (s1 >= last)
353 d1 = s1 - last;
354 else if (s1 + back_max >= last)
355 d1 = (last - s1) * cfqd->cfq_back_penalty;
356 else
357 wrap |= CFQ_RQ1_WRAP;
358
359 if (s2 >= last)
360 d2 = s2 - last;
361 else if (s2 + back_max >= last)
362 d2 = (last - s2) * cfqd->cfq_back_penalty;
363 else
364 wrap |= CFQ_RQ2_WRAP;
365
366 /* Found required data */
367
368 /*
369 * By doing switch() on the bit mask "wrap" we avoid having to
370 * check two variables for all permutations: --> faster!
371 */
372 switch (wrap) {
373 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
374 if (d1 < d2)
375 return rq1;
376 else if (d2 < d1)
377 return rq2;
378 else {
379 if (s1 >= s2)
380 return rq1;
381 else
382 return rq2;
383 }
384
385 case CFQ_RQ2_WRAP:
386 return rq1;
387 case CFQ_RQ1_WRAP:
388 return rq2;
389 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
390 default:
391 /*
392 * Since both rqs are wrapped,
393 * start with the one that's further behind head
394 * (--> only *one* back seek required),
395 * since back seek takes more time than forward.
396 */
397 if (s1 <= s2)
398 return rq1;
399 else
400 return rq2;
401 }
402 }
403
404 /*
405 * The below is leftmost cache rbtree addon
406 */
407 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
408 {
409 if (!root->left)
410 root->left = rb_first(&root->rb);
411
412 if (root->left)
413 return rb_entry(root->left, struct cfq_queue, rb_node);
414
415 return NULL;
416 }
417
418 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
419 {
420 if (root->left == n)
421 root->left = NULL;
422
423 rb_erase(n, &root->rb);
424 RB_CLEAR_NODE(n);
425 }
426
427 /*
428 * would be nice to take fifo expire time into account as well
429 */
430 static struct request *
431 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct request *last)
433 {
434 struct rb_node *rbnext = rb_next(&last->rb_node);
435 struct rb_node *rbprev = rb_prev(&last->rb_node);
436 struct request *next = NULL, *prev = NULL;
437
438 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
439
440 if (rbprev)
441 prev = rb_entry_rq(rbprev);
442
443 if (rbnext)
444 next = rb_entry_rq(rbnext);
445 else {
446 rbnext = rb_first(&cfqq->sort_list);
447 if (rbnext && rbnext != &last->rb_node)
448 next = rb_entry_rq(rbnext);
449 }
450
451 return cfq_choose_req(cfqd, next, prev);
452 }
453
454 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
455 struct cfq_queue *cfqq)
456 {
457 /*
458 * just an approximation, should be ok.
459 */
460 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
461 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
462 }
463
464 /*
465 * The cfqd->service_tree holds all pending cfq_queue's that have
466 * requests waiting to be processed. It is sorted in the order that
467 * we will service the queues.
468 */
469 static void cfq_service_tree_add(struct cfq_data *cfqd,
470 struct cfq_queue *cfqq, int add_front)
471 {
472 struct rb_node **p, *parent;
473 struct cfq_queue *__cfqq;
474 unsigned long rb_key;
475 int left;
476
477 if (cfq_class_idle(cfqq)) {
478 rb_key = CFQ_IDLE_DELAY;
479 parent = rb_last(&cfqd->service_tree.rb);
480 if (parent && parent != &cfqq->rb_node) {
481 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
482 rb_key += __cfqq->rb_key;
483 } else
484 rb_key += jiffies;
485 } else if (!add_front) {
486 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
487 rb_key += cfqq->slice_resid;
488 cfqq->slice_resid = 0;
489 } else
490 rb_key = 0;
491
492 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
493 /*
494 * same position, nothing more to do
495 */
496 if (rb_key == cfqq->rb_key)
497 return;
498
499 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
500 }
501
502 left = 1;
503 parent = NULL;
504 p = &cfqd->service_tree.rb.rb_node;
505 while (*p) {
506 struct rb_node **n;
507
508 parent = *p;
509 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510
511 /*
512 * sort RT queues first, we always want to give
513 * preference to them. IDLE queues goes to the back.
514 * after that, sort on the next service time.
515 */
516 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
517 n = &(*p)->rb_left;
518 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
519 n = &(*p)->rb_right;
520 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
521 n = &(*p)->rb_left;
522 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
523 n = &(*p)->rb_right;
524 else if (rb_key < __cfqq->rb_key)
525 n = &(*p)->rb_left;
526 else
527 n = &(*p)->rb_right;
528
529 if (n == &(*p)->rb_right)
530 left = 0;
531
532 p = n;
533 }
534
535 if (left)
536 cfqd->service_tree.left = &cfqq->rb_node;
537
538 cfqq->rb_key = rb_key;
539 rb_link_node(&cfqq->rb_node, parent, p);
540 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
541 }
542
543 /*
544 * Update cfqq's position in the service tree.
545 */
546 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
547 {
548 /*
549 * Resorting requires the cfqq to be on the RR list already.
550 */
551 if (cfq_cfqq_on_rr(cfqq))
552 cfq_service_tree_add(cfqd, cfqq, 0);
553 }
554
555 /*
556 * add to busy list of queues for service, trying to be fair in ordering
557 * the pending list according to last request service
558 */
559 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
560 {
561 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
562 BUG_ON(cfq_cfqq_on_rr(cfqq));
563 cfq_mark_cfqq_on_rr(cfqq);
564 cfqd->busy_queues++;
565
566 cfq_resort_rr_list(cfqd, cfqq);
567 }
568
569 /*
570 * Called when the cfqq no longer has requests pending, remove it from
571 * the service tree.
572 */
573 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
574 {
575 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
576 BUG_ON(!cfq_cfqq_on_rr(cfqq));
577 cfq_clear_cfqq_on_rr(cfqq);
578
579 if (!RB_EMPTY_NODE(&cfqq->rb_node))
580 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
581
582 BUG_ON(!cfqd->busy_queues);
583 cfqd->busy_queues--;
584 }
585
586 /*
587 * rb tree support functions
588 */
589 static void cfq_del_rq_rb(struct request *rq)
590 {
591 struct cfq_queue *cfqq = RQ_CFQQ(rq);
592 struct cfq_data *cfqd = cfqq->cfqd;
593 const int sync = rq_is_sync(rq);
594
595 BUG_ON(!cfqq->queued[sync]);
596 cfqq->queued[sync]--;
597
598 elv_rb_del(&cfqq->sort_list, rq);
599
600 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
601 cfq_del_cfqq_rr(cfqd, cfqq);
602 }
603
604 static void cfq_add_rq_rb(struct request *rq)
605 {
606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
607 struct cfq_data *cfqd = cfqq->cfqd;
608 struct request *__alias;
609
610 cfqq->queued[rq_is_sync(rq)]++;
611
612 /*
613 * looks a little odd, but the first insert might return an alias.
614 * if that happens, put the alias on the dispatch list
615 */
616 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
617 cfq_dispatch_insert(cfqd->queue, __alias);
618
619 if (!cfq_cfqq_on_rr(cfqq))
620 cfq_add_cfqq_rr(cfqd, cfqq);
621
622 /*
623 * check if this request is a better next-serve candidate
624 */
625 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
626 BUG_ON(!cfqq->next_rq);
627 }
628
629 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
630 {
631 elv_rb_del(&cfqq->sort_list, rq);
632 cfqq->queued[rq_is_sync(rq)]--;
633 cfq_add_rq_rb(rq);
634 }
635
636 static struct request *
637 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
638 {
639 struct task_struct *tsk = current;
640 struct cfq_io_context *cic;
641 struct cfq_queue *cfqq;
642
643 cic = cfq_cic_lookup(cfqd, tsk->io_context);
644 if (!cic)
645 return NULL;
646
647 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
648 if (cfqq) {
649 sector_t sector = bio->bi_sector + bio_sectors(bio);
650
651 return elv_rb_find(&cfqq->sort_list, sector);
652 }
653
654 return NULL;
655 }
656
657 static void cfq_activate_request(struct request_queue *q, struct request *rq)
658 {
659 struct cfq_data *cfqd = q->elevator->elevator_data;
660
661 cfqd->rq_in_driver++;
662 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
663 cfqd->rq_in_driver);
664
665 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
666 }
667
668 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
669 {
670 struct cfq_data *cfqd = q->elevator->elevator_data;
671
672 WARN_ON(!cfqd->rq_in_driver);
673 cfqd->rq_in_driver--;
674 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
675 cfqd->rq_in_driver);
676 }
677
678 static void cfq_remove_request(struct request *rq)
679 {
680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
681
682 if (cfqq->next_rq == rq)
683 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
684
685 list_del_init(&rq->queuelist);
686 cfq_del_rq_rb(rq);
687
688 cfqq->cfqd->rq_queued--;
689 if (rq_is_meta(rq)) {
690 WARN_ON(!cfqq->meta_pending);
691 cfqq->meta_pending--;
692 }
693 }
694
695 static int cfq_merge(struct request_queue *q, struct request **req,
696 struct bio *bio)
697 {
698 struct cfq_data *cfqd = q->elevator->elevator_data;
699 struct request *__rq;
700
701 __rq = cfq_find_rq_fmerge(cfqd, bio);
702 if (__rq && elv_rq_merge_ok(__rq, bio)) {
703 *req = __rq;
704 return ELEVATOR_FRONT_MERGE;
705 }
706
707 return ELEVATOR_NO_MERGE;
708 }
709
710 static void cfq_merged_request(struct request_queue *q, struct request *req,
711 int type)
712 {
713 if (type == ELEVATOR_FRONT_MERGE) {
714 struct cfq_queue *cfqq = RQ_CFQQ(req);
715
716 cfq_reposition_rq_rb(cfqq, req);
717 }
718 }
719
720 static void
721 cfq_merged_requests(struct request_queue *q, struct request *rq,
722 struct request *next)
723 {
724 /*
725 * reposition in fifo if next is older than rq
726 */
727 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728 time_before(next->start_time, rq->start_time))
729 list_move(&rq->queuelist, &next->queuelist);
730
731 cfq_remove_request(next);
732 }
733
734 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735 struct bio *bio)
736 {
737 struct cfq_data *cfqd = q->elevator->elevator_data;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
740
741 /*
742 * Disallow merge of a sync bio into an async request.
743 */
744 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745 return 0;
746
747 /*
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
750 */
751 cic = cfq_cic_lookup(cfqd, current->io_context);
752 if (!cic)
753 return 0;
754
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756 if (cfqq == RQ_CFQQ(rq))
757 return 1;
758
759 return 0;
760 }
761
762 static void __cfq_set_active_queue(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764 {
765 if (cfqq) {
766 cfq_log_cfqq(cfqd, cfqq, "set_active");
767 cfqq->slice_end = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
770 cfq_mark_cfqq_slice_new(cfqq);
771 cfq_clear_cfqq_queue_new(cfqq);
772 }
773
774 cfqd->active_queue = cfqq;
775 }
776
777 /*
778 * current cfqq expired its slice (or was too idle), select new one
779 */
780 static void
781 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782 int timed_out)
783 {
784 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
785
786 if (cfq_cfqq_wait_request(cfqq))
787 del_timer(&cfqd->idle_slice_timer);
788
789 cfq_clear_cfqq_must_dispatch(cfqq);
790 cfq_clear_cfqq_wait_request(cfqq);
791
792 /*
793 * store what was left of this slice, if the queue idled/timed out
794 */
795 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796 cfqq->slice_resid = cfqq->slice_end - jiffies;
797 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
798 }
799
800 cfq_resort_rr_list(cfqd, cfqq);
801
802 if (cfqq == cfqd->active_queue)
803 cfqd->active_queue = NULL;
804
805 if (cfqd->active_cic) {
806 put_io_context(cfqd->active_cic->ioc);
807 cfqd->active_cic = NULL;
808 }
809 }
810
811 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
812 {
813 struct cfq_queue *cfqq = cfqd->active_queue;
814
815 if (cfqq)
816 __cfq_slice_expired(cfqd, cfqq, timed_out);
817 }
818
819 /*
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
822 */
823 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
824 {
825 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826 return NULL;
827
828 return cfq_rb_first(&cfqd->service_tree);
829 }
830
831 /*
832 * Get and set a new active queue for service.
833 */
834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
835 {
836 struct cfq_queue *cfqq;
837
838 cfqq = cfq_get_next_queue(cfqd);
839 __cfq_set_active_queue(cfqd, cfqq);
840 return cfqq;
841 }
842
843 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844 struct request *rq)
845 {
846 if (rq->sector >= cfqd->last_position)
847 return rq->sector - cfqd->last_position;
848 else
849 return cfqd->last_position - rq->sector;
850 }
851
852 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
853 {
854 struct cfq_io_context *cic = cfqd->active_cic;
855
856 if (!sample_valid(cic->seek_samples))
857 return 0;
858
859 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
860 }
861
862 static int cfq_close_cooperator(struct cfq_data *cfq_data,
863 struct cfq_queue *cfqq)
864 {
865 /*
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
869 */
870 return 0;
871 }
872
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
874
875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
876 {
877 struct cfq_queue *cfqq = cfqd->active_queue;
878 struct cfq_io_context *cic;
879 unsigned long sl;
880
881 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
882 WARN_ON(cfq_cfqq_slice_new(cfqq));
883
884 /*
885 * idle is disabled, either manually or by past process history
886 */
887 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
888 return;
889
890 /*
891 * still requests with the driver, don't idle
892 */
893 if (cfqd->rq_in_driver)
894 return;
895
896 /*
897 * task has exited, don't wait
898 */
899 cic = cfqd->active_cic;
900 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
901 return;
902
903 /*
904 * See if this prio level has a good candidate
905 */
906 if (cfq_close_cooperator(cfqd, cfqq) &&
907 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
908 return;
909
910 cfq_mark_cfqq_must_dispatch(cfqq);
911 cfq_mark_cfqq_wait_request(cfqq);
912
913 /*
914 * we don't want to idle for seeks, but we do want to allow
915 * fair distribution of slice time for a process doing back-to-back
916 * seeks. so allow a little bit of time for him to submit a new rq
917 */
918 sl = cfqd->cfq_slice_idle;
919 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
920 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
921
922 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
923 cfq_log(cfqd, "arm_idle: %lu", sl);
924 }
925
926 /*
927 * Move request from internal lists to the request queue dispatch list.
928 */
929 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
930 {
931 struct cfq_data *cfqd = q->elevator->elevator_data;
932 struct cfq_queue *cfqq = RQ_CFQQ(rq);
933
934 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
935
936 cfq_remove_request(rq);
937 cfqq->dispatched++;
938 elv_dispatch_sort(q, rq);
939
940 if (cfq_cfqq_sync(cfqq))
941 cfqd->sync_flight++;
942 }
943
944 /*
945 * return expired entry, or NULL to just start from scratch in rbtree
946 */
947 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
948 {
949 struct cfq_data *cfqd = cfqq->cfqd;
950 struct request *rq;
951 int fifo;
952
953 if (cfq_cfqq_fifo_expire(cfqq))
954 return NULL;
955
956 cfq_mark_cfqq_fifo_expire(cfqq);
957
958 if (list_empty(&cfqq->fifo))
959 return NULL;
960
961 fifo = cfq_cfqq_sync(cfqq);
962 rq = rq_entry_fifo(cfqq->fifo.next);
963
964 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
965 rq = NULL;
966
967 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
968 return rq;
969 }
970
971 static inline int
972 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
973 {
974 const int base_rq = cfqd->cfq_slice_async_rq;
975
976 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
977
978 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
979 }
980
981 /*
982 * Select a queue for service. If we have a current active queue,
983 * check whether to continue servicing it, or retrieve and set a new one.
984 */
985 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
986 {
987 struct cfq_queue *cfqq;
988
989 cfqq = cfqd->active_queue;
990 if (!cfqq)
991 goto new_queue;
992
993 /*
994 * The active queue has run out of time, expire it and select new.
995 */
996 if (cfq_slice_used(cfqq))
997 goto expire;
998
999 /*
1000 * The active queue has requests and isn't expired, allow it to
1001 * dispatch.
1002 */
1003 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1004 goto keep_queue;
1005
1006 /*
1007 * No requests pending. If the active queue still has requests in
1008 * flight or is idling for a new request, allow either of these
1009 * conditions to happen (or time out) before selecting a new queue.
1010 */
1011 if (timer_pending(&cfqd->idle_slice_timer) ||
1012 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1013 cfqq = NULL;
1014 goto keep_queue;
1015 }
1016
1017 expire:
1018 cfq_slice_expired(cfqd, 0);
1019 new_queue:
1020 cfqq = cfq_set_active_queue(cfqd);
1021 keep_queue:
1022 return cfqq;
1023 }
1024
1025 /*
1026 * Dispatch some requests from cfqq, moving them to the request queue
1027 * dispatch list.
1028 */
1029 static int
1030 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1031 int max_dispatch)
1032 {
1033 int dispatched = 0;
1034
1035 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1036
1037 do {
1038 struct request *rq;
1039
1040 /*
1041 * follow expired path, else get first next available
1042 */
1043 rq = cfq_check_fifo(cfqq);
1044 if (rq == NULL)
1045 rq = cfqq->next_rq;
1046
1047 /*
1048 * finally, insert request into driver dispatch list
1049 */
1050 cfq_dispatch_insert(cfqd->queue, rq);
1051
1052 dispatched++;
1053
1054 if (!cfqd->active_cic) {
1055 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1056 cfqd->active_cic = RQ_CIC(rq);
1057 }
1058
1059 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1060 break;
1061
1062 } while (dispatched < max_dispatch);
1063
1064 /*
1065 * expire an async queue immediately if it has used up its slice. idle
1066 * queue always expire after 1 dispatch round.
1067 */
1068 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1069 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1070 cfq_class_idle(cfqq))) {
1071 cfqq->slice_end = jiffies + 1;
1072 cfq_slice_expired(cfqd, 0);
1073 }
1074
1075 return dispatched;
1076 }
1077
1078 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1079 {
1080 int dispatched = 0;
1081
1082 while (cfqq->next_rq) {
1083 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1084 dispatched++;
1085 }
1086
1087 BUG_ON(!list_empty(&cfqq->fifo));
1088 return dispatched;
1089 }
1090
1091 /*
1092 * Drain our current requests. Used for barriers and when switching
1093 * io schedulers on-the-fly.
1094 */
1095 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1096 {
1097 struct cfq_queue *cfqq;
1098 int dispatched = 0;
1099
1100 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1101 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1102
1103 cfq_slice_expired(cfqd, 0);
1104
1105 BUG_ON(cfqd->busy_queues);
1106
1107 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1108 return dispatched;
1109 }
1110
1111 static int cfq_dispatch_requests(struct request_queue *q, int force)
1112 {
1113 struct cfq_data *cfqd = q->elevator->elevator_data;
1114 struct cfq_queue *cfqq;
1115 int dispatched;
1116
1117 if (!cfqd->busy_queues)
1118 return 0;
1119
1120 if (unlikely(force))
1121 return cfq_forced_dispatch(cfqd);
1122
1123 dispatched = 0;
1124 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1125 int max_dispatch;
1126
1127 max_dispatch = cfqd->cfq_quantum;
1128 if (cfq_class_idle(cfqq))
1129 max_dispatch = 1;
1130
1131 if (cfqq->dispatched >= max_dispatch) {
1132 if (cfqd->busy_queues > 1)
1133 break;
1134 if (cfqq->dispatched >= 4 * max_dispatch)
1135 break;
1136 }
1137
1138 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1139 break;
1140
1141 cfq_clear_cfqq_must_dispatch(cfqq);
1142 cfq_clear_cfqq_wait_request(cfqq);
1143 del_timer(&cfqd->idle_slice_timer);
1144
1145 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1146 }
1147
1148 cfq_log(cfqd, "dispatched=%d", dispatched);
1149 return dispatched;
1150 }
1151
1152 /*
1153 * task holds one reference to the queue, dropped when task exits. each rq
1154 * in-flight on this queue also holds a reference, dropped when rq is freed.
1155 *
1156 * queue lock must be held here.
1157 */
1158 static void cfq_put_queue(struct cfq_queue *cfqq)
1159 {
1160 struct cfq_data *cfqd = cfqq->cfqd;
1161
1162 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1163
1164 if (!atomic_dec_and_test(&cfqq->ref))
1165 return;
1166
1167 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1168 BUG_ON(rb_first(&cfqq->sort_list));
1169 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1170 BUG_ON(cfq_cfqq_on_rr(cfqq));
1171
1172 if (unlikely(cfqd->active_queue == cfqq)) {
1173 __cfq_slice_expired(cfqd, cfqq, 0);
1174 cfq_schedule_dispatch(cfqd);
1175 }
1176
1177 kmem_cache_free(cfq_pool, cfqq);
1178 }
1179
1180 /*
1181 * Must always be called with the rcu_read_lock() held
1182 */
1183 static void
1184 __call_for_each_cic(struct io_context *ioc,
1185 void (*func)(struct io_context *, struct cfq_io_context *))
1186 {
1187 struct cfq_io_context *cic;
1188 struct hlist_node *n;
1189
1190 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1191 func(ioc, cic);
1192 }
1193
1194 /*
1195 * Call func for each cic attached to this ioc.
1196 */
1197 static void
1198 call_for_each_cic(struct io_context *ioc,
1199 void (*func)(struct io_context *, struct cfq_io_context *))
1200 {
1201 rcu_read_lock();
1202 __call_for_each_cic(ioc, func);
1203 rcu_read_unlock();
1204 }
1205
1206 static void cfq_cic_free_rcu(struct rcu_head *head)
1207 {
1208 struct cfq_io_context *cic;
1209
1210 cic = container_of(head, struct cfq_io_context, rcu_head);
1211
1212 kmem_cache_free(cfq_ioc_pool, cic);
1213 elv_ioc_count_dec(ioc_count);
1214
1215 if (ioc_gone) {
1216 /*
1217 * CFQ scheduler is exiting, grab exit lock and check
1218 * the pending io context count. If it hits zero,
1219 * complete ioc_gone and set it back to NULL
1220 */
1221 spin_lock(&ioc_gone_lock);
1222 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1223 complete(ioc_gone);
1224 ioc_gone = NULL;
1225 }
1226 spin_unlock(&ioc_gone_lock);
1227 }
1228 }
1229
1230 static void cfq_cic_free(struct cfq_io_context *cic)
1231 {
1232 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1233 }
1234
1235 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1236 {
1237 unsigned long flags;
1238
1239 BUG_ON(!cic->dead_key);
1240
1241 spin_lock_irqsave(&ioc->lock, flags);
1242 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1243 hlist_del_rcu(&cic->cic_list);
1244 spin_unlock_irqrestore(&ioc->lock, flags);
1245
1246 cfq_cic_free(cic);
1247 }
1248
1249 /*
1250 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1251 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1252 * and ->trim() which is called with the task lock held
1253 */
1254 static void cfq_free_io_context(struct io_context *ioc)
1255 {
1256 /*
1257 * ioc->refcount is zero here, or we are called from elv_unregister(),
1258 * so no more cic's are allowed to be linked into this ioc. So it
1259 * should be ok to iterate over the known list, we will see all cic's
1260 * since no new ones are added.
1261 */
1262 __call_for_each_cic(ioc, cic_free_func);
1263 }
1264
1265 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1266 {
1267 if (unlikely(cfqq == cfqd->active_queue)) {
1268 __cfq_slice_expired(cfqd, cfqq, 0);
1269 cfq_schedule_dispatch(cfqd);
1270 }
1271
1272 cfq_put_queue(cfqq);
1273 }
1274
1275 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1276 struct cfq_io_context *cic)
1277 {
1278 struct io_context *ioc = cic->ioc;
1279
1280 list_del_init(&cic->queue_list);
1281
1282 /*
1283 * Make sure key == NULL is seen for dead queues
1284 */
1285 smp_wmb();
1286 cic->dead_key = (unsigned long) cic->key;
1287 cic->key = NULL;
1288
1289 if (ioc->ioc_data == cic)
1290 rcu_assign_pointer(ioc->ioc_data, NULL);
1291
1292 if (cic->cfqq[ASYNC]) {
1293 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1294 cic->cfqq[ASYNC] = NULL;
1295 }
1296
1297 if (cic->cfqq[SYNC]) {
1298 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1299 cic->cfqq[SYNC] = NULL;
1300 }
1301 }
1302
1303 static void cfq_exit_single_io_context(struct io_context *ioc,
1304 struct cfq_io_context *cic)
1305 {
1306 struct cfq_data *cfqd = cic->key;
1307
1308 if (cfqd) {
1309 struct request_queue *q = cfqd->queue;
1310 unsigned long flags;
1311
1312 spin_lock_irqsave(q->queue_lock, flags);
1313 __cfq_exit_single_io_context(cfqd, cic);
1314 spin_unlock_irqrestore(q->queue_lock, flags);
1315 }
1316 }
1317
1318 /*
1319 * The process that ioc belongs to has exited, we need to clean up
1320 * and put the internal structures we have that belongs to that process.
1321 */
1322 static void cfq_exit_io_context(struct io_context *ioc)
1323 {
1324 call_for_each_cic(ioc, cfq_exit_single_io_context);
1325 }
1326
1327 static struct cfq_io_context *
1328 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1329 {
1330 struct cfq_io_context *cic;
1331
1332 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1333 cfqd->queue->node);
1334 if (cic) {
1335 cic->last_end_request = jiffies;
1336 INIT_LIST_HEAD(&cic->queue_list);
1337 INIT_HLIST_NODE(&cic->cic_list);
1338 cic->dtor = cfq_free_io_context;
1339 cic->exit = cfq_exit_io_context;
1340 elv_ioc_count_inc(ioc_count);
1341 }
1342
1343 return cic;
1344 }
1345
1346 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1347 {
1348 struct task_struct *tsk = current;
1349 int ioprio_class;
1350
1351 if (!cfq_cfqq_prio_changed(cfqq))
1352 return;
1353
1354 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1355 switch (ioprio_class) {
1356 default:
1357 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1358 case IOPRIO_CLASS_NONE:
1359 /*
1360 * no prio set, inherit CPU scheduling settings
1361 */
1362 cfqq->ioprio = task_nice_ioprio(tsk);
1363 cfqq->ioprio_class = task_nice_ioclass(tsk);
1364 break;
1365 case IOPRIO_CLASS_RT:
1366 cfqq->ioprio = task_ioprio(ioc);
1367 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1368 break;
1369 case IOPRIO_CLASS_BE:
1370 cfqq->ioprio = task_ioprio(ioc);
1371 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1372 break;
1373 case IOPRIO_CLASS_IDLE:
1374 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1375 cfqq->ioprio = 7;
1376 cfq_clear_cfqq_idle_window(cfqq);
1377 break;
1378 }
1379
1380 /*
1381 * keep track of original prio settings in case we have to temporarily
1382 * elevate the priority of this queue
1383 */
1384 cfqq->org_ioprio = cfqq->ioprio;
1385 cfqq->org_ioprio_class = cfqq->ioprio_class;
1386 cfq_clear_cfqq_prio_changed(cfqq);
1387 }
1388
1389 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1390 {
1391 struct cfq_data *cfqd = cic->key;
1392 struct cfq_queue *cfqq;
1393 unsigned long flags;
1394
1395 if (unlikely(!cfqd))
1396 return;
1397
1398 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1399
1400 cfqq = cic->cfqq[ASYNC];
1401 if (cfqq) {
1402 struct cfq_queue *new_cfqq;
1403 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1404 if (new_cfqq) {
1405 cic->cfqq[ASYNC] = new_cfqq;
1406 cfq_put_queue(cfqq);
1407 }
1408 }
1409
1410 cfqq = cic->cfqq[SYNC];
1411 if (cfqq)
1412 cfq_mark_cfqq_prio_changed(cfqq);
1413
1414 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1415 }
1416
1417 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1418 {
1419 call_for_each_cic(ioc, changed_ioprio);
1420 ioc->ioprio_changed = 0;
1421 }
1422
1423 static struct cfq_queue *
1424 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1425 struct io_context *ioc, gfp_t gfp_mask)
1426 {
1427 struct cfq_queue *cfqq, *new_cfqq = NULL;
1428 struct cfq_io_context *cic;
1429
1430 retry:
1431 cic = cfq_cic_lookup(cfqd, ioc);
1432 /* cic always exists here */
1433 cfqq = cic_to_cfqq(cic, is_sync);
1434
1435 if (!cfqq) {
1436 if (new_cfqq) {
1437 cfqq = new_cfqq;
1438 new_cfqq = NULL;
1439 } else if (gfp_mask & __GFP_WAIT) {
1440 /*
1441 * Inform the allocator of the fact that we will
1442 * just repeat this allocation if it fails, to allow
1443 * the allocator to do whatever it needs to attempt to
1444 * free memory.
1445 */
1446 spin_unlock_irq(cfqd->queue->queue_lock);
1447 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1448 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1449 cfqd->queue->node);
1450 spin_lock_irq(cfqd->queue->queue_lock);
1451 goto retry;
1452 } else {
1453 cfqq = kmem_cache_alloc_node(cfq_pool,
1454 gfp_mask | __GFP_ZERO,
1455 cfqd->queue->node);
1456 if (!cfqq)
1457 goto out;
1458 }
1459
1460 RB_CLEAR_NODE(&cfqq->rb_node);
1461 INIT_LIST_HEAD(&cfqq->fifo);
1462
1463 atomic_set(&cfqq->ref, 0);
1464 cfqq->cfqd = cfqd;
1465
1466 cfq_mark_cfqq_prio_changed(cfqq);
1467 cfq_mark_cfqq_queue_new(cfqq);
1468
1469 cfq_init_prio_data(cfqq, ioc);
1470
1471 if (is_sync) {
1472 if (!cfq_class_idle(cfqq))
1473 cfq_mark_cfqq_idle_window(cfqq);
1474 cfq_mark_cfqq_sync(cfqq);
1475 }
1476 cfqq->pid = current->pid;
1477 cfq_log_cfqq(cfqd, cfqq, "alloced");
1478 }
1479
1480 if (new_cfqq)
1481 kmem_cache_free(cfq_pool, new_cfqq);
1482
1483 out:
1484 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1485 return cfqq;
1486 }
1487
1488 static struct cfq_queue **
1489 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1490 {
1491 switch (ioprio_class) {
1492 case IOPRIO_CLASS_RT:
1493 return &cfqd->async_cfqq[0][ioprio];
1494 case IOPRIO_CLASS_BE:
1495 return &cfqd->async_cfqq[1][ioprio];
1496 case IOPRIO_CLASS_IDLE:
1497 return &cfqd->async_idle_cfqq;
1498 default:
1499 BUG();
1500 }
1501 }
1502
1503 static struct cfq_queue *
1504 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1505 gfp_t gfp_mask)
1506 {
1507 const int ioprio = task_ioprio(ioc);
1508 const int ioprio_class = task_ioprio_class(ioc);
1509 struct cfq_queue **async_cfqq = NULL;
1510 struct cfq_queue *cfqq = NULL;
1511
1512 if (!is_sync) {
1513 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1514 cfqq = *async_cfqq;
1515 }
1516
1517 if (!cfqq) {
1518 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1519 if (!cfqq)
1520 return NULL;
1521 }
1522
1523 /*
1524 * pin the queue now that it's allocated, scheduler exit will prune it
1525 */
1526 if (!is_sync && !(*async_cfqq)) {
1527 atomic_inc(&cfqq->ref);
1528 *async_cfqq = cfqq;
1529 }
1530
1531 atomic_inc(&cfqq->ref);
1532 return cfqq;
1533 }
1534
1535 /*
1536 * We drop cfq io contexts lazily, so we may find a dead one.
1537 */
1538 static void
1539 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1540 struct cfq_io_context *cic)
1541 {
1542 unsigned long flags;
1543
1544 WARN_ON(!list_empty(&cic->queue_list));
1545
1546 spin_lock_irqsave(&ioc->lock, flags);
1547
1548 BUG_ON(ioc->ioc_data == cic);
1549
1550 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1551 hlist_del_rcu(&cic->cic_list);
1552 spin_unlock_irqrestore(&ioc->lock, flags);
1553
1554 cfq_cic_free(cic);
1555 }
1556
1557 static struct cfq_io_context *
1558 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1559 {
1560 struct cfq_io_context *cic;
1561 unsigned long flags;
1562 void *k;
1563
1564 if (unlikely(!ioc))
1565 return NULL;
1566
1567 rcu_read_lock();
1568
1569 /*
1570 * we maintain a last-hit cache, to avoid browsing over the tree
1571 */
1572 cic = rcu_dereference(ioc->ioc_data);
1573 if (cic && cic->key == cfqd) {
1574 rcu_read_unlock();
1575 return cic;
1576 }
1577
1578 do {
1579 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1580 rcu_read_unlock();
1581 if (!cic)
1582 break;
1583 /* ->key must be copied to avoid race with cfq_exit_queue() */
1584 k = cic->key;
1585 if (unlikely(!k)) {
1586 cfq_drop_dead_cic(cfqd, ioc, cic);
1587 rcu_read_lock();
1588 continue;
1589 }
1590
1591 spin_lock_irqsave(&ioc->lock, flags);
1592 rcu_assign_pointer(ioc->ioc_data, cic);
1593 spin_unlock_irqrestore(&ioc->lock, flags);
1594 break;
1595 } while (1);
1596
1597 return cic;
1598 }
1599
1600 /*
1601 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1602 * the process specific cfq io context when entered from the block layer.
1603 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1604 */
1605 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1606 struct cfq_io_context *cic, gfp_t gfp_mask)
1607 {
1608 unsigned long flags;
1609 int ret;
1610
1611 ret = radix_tree_preload(gfp_mask);
1612 if (!ret) {
1613 cic->ioc = ioc;
1614 cic->key = cfqd;
1615
1616 spin_lock_irqsave(&ioc->lock, flags);
1617 ret = radix_tree_insert(&ioc->radix_root,
1618 (unsigned long) cfqd, cic);
1619 if (!ret)
1620 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1621 spin_unlock_irqrestore(&ioc->lock, flags);
1622
1623 radix_tree_preload_end();
1624
1625 if (!ret) {
1626 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1627 list_add(&cic->queue_list, &cfqd->cic_list);
1628 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1629 }
1630 }
1631
1632 if (ret)
1633 printk(KERN_ERR "cfq: cic link failed!\n");
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Setup general io context and cfq io context. There can be several cfq
1640 * io contexts per general io context, if this process is doing io to more
1641 * than one device managed by cfq.
1642 */
1643 static struct cfq_io_context *
1644 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1645 {
1646 struct io_context *ioc = NULL;
1647 struct cfq_io_context *cic;
1648
1649 might_sleep_if(gfp_mask & __GFP_WAIT);
1650
1651 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1652 if (!ioc)
1653 return NULL;
1654
1655 cic = cfq_cic_lookup(cfqd, ioc);
1656 if (cic)
1657 goto out;
1658
1659 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1660 if (cic == NULL)
1661 goto err;
1662
1663 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1664 goto err_free;
1665
1666 out:
1667 smp_read_barrier_depends();
1668 if (unlikely(ioc->ioprio_changed))
1669 cfq_ioc_set_ioprio(ioc);
1670
1671 return cic;
1672 err_free:
1673 cfq_cic_free(cic);
1674 err:
1675 put_io_context(ioc);
1676 return NULL;
1677 }
1678
1679 static void
1680 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1681 {
1682 unsigned long elapsed = jiffies - cic->last_end_request;
1683 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1684
1685 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1686 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1687 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1688 }
1689
1690 static void
1691 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1692 struct request *rq)
1693 {
1694 sector_t sdist;
1695 u64 total;
1696
1697 if (cic->last_request_pos < rq->sector)
1698 sdist = rq->sector - cic->last_request_pos;
1699 else
1700 sdist = cic->last_request_pos - rq->sector;
1701
1702 /*
1703 * Don't allow the seek distance to get too large from the
1704 * odd fragment, pagein, etc
1705 */
1706 if (cic->seek_samples <= 60) /* second&third seek */
1707 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1708 else
1709 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1710
1711 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1712 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1713 total = cic->seek_total + (cic->seek_samples/2);
1714 do_div(total, cic->seek_samples);
1715 cic->seek_mean = (sector_t)total;
1716 }
1717
1718 /*
1719 * Disable idle window if the process thinks too long or seeks so much that
1720 * it doesn't matter
1721 */
1722 static void
1723 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1724 struct cfq_io_context *cic)
1725 {
1726 int old_idle, enable_idle;
1727
1728 /*
1729 * Don't idle for async or idle io prio class
1730 */
1731 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1732 return;
1733
1734 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1735
1736 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1737 (cfqd->hw_tag && CIC_SEEKY(cic)))
1738 enable_idle = 0;
1739 else if (sample_valid(cic->ttime_samples)) {
1740 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1741 enable_idle = 0;
1742 else
1743 enable_idle = 1;
1744 }
1745
1746 if (old_idle != enable_idle) {
1747 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1748 if (enable_idle)
1749 cfq_mark_cfqq_idle_window(cfqq);
1750 else
1751 cfq_clear_cfqq_idle_window(cfqq);
1752 }
1753 }
1754
1755 /*
1756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1757 * no or if we aren't sure, a 1 will cause a preempt.
1758 */
1759 static int
1760 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1761 struct request *rq)
1762 {
1763 struct cfq_queue *cfqq;
1764
1765 cfqq = cfqd->active_queue;
1766 if (!cfqq)
1767 return 0;
1768
1769 if (cfq_slice_used(cfqq))
1770 return 1;
1771
1772 if (cfq_class_idle(new_cfqq))
1773 return 0;
1774
1775 if (cfq_class_idle(cfqq))
1776 return 1;
1777
1778 /*
1779 * if the new request is sync, but the currently running queue is
1780 * not, let the sync request have priority.
1781 */
1782 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1783 return 1;
1784
1785 /*
1786 * So both queues are sync. Let the new request get disk time if
1787 * it's a metadata request and the current queue is doing regular IO.
1788 */
1789 if (rq_is_meta(rq) && !cfqq->meta_pending)
1790 return 1;
1791
1792 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1793 return 0;
1794
1795 /*
1796 * if this request is as-good as one we would expect from the
1797 * current cfqq, let it preempt
1798 */
1799 if (cfq_rq_close(cfqd, rq))
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1807 * let it have half of its nominal slice.
1808 */
1809 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1810 {
1811 cfq_log_cfqq(cfqd, cfqq, "preempt");
1812 cfq_slice_expired(cfqd, 1);
1813
1814 /*
1815 * Put the new queue at the front of the of the current list,
1816 * so we know that it will be selected next.
1817 */
1818 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1819
1820 cfq_service_tree_add(cfqd, cfqq, 1);
1821
1822 cfqq->slice_end = 0;
1823 cfq_mark_cfqq_slice_new(cfqq);
1824 }
1825
1826 /*
1827 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1828 * something we should do about it
1829 */
1830 static void
1831 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1832 struct request *rq)
1833 {
1834 struct cfq_io_context *cic = RQ_CIC(rq);
1835
1836 cfqd->rq_queued++;
1837 if (rq_is_meta(rq))
1838 cfqq->meta_pending++;
1839
1840 cfq_update_io_thinktime(cfqd, cic);
1841 cfq_update_io_seektime(cfqd, cic, rq);
1842 cfq_update_idle_window(cfqd, cfqq, cic);
1843
1844 cic->last_request_pos = rq->sector + rq->nr_sectors;
1845
1846 if (cfqq == cfqd->active_queue) {
1847 /*
1848 * if we are waiting for a request for this queue, let it rip
1849 * immediately and flag that we must not expire this queue
1850 * just now
1851 */
1852 if (cfq_cfqq_wait_request(cfqq)) {
1853 cfq_mark_cfqq_must_dispatch(cfqq);
1854 del_timer(&cfqd->idle_slice_timer);
1855 blk_start_queueing(cfqd->queue);
1856 }
1857 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1858 /*
1859 * not the active queue - expire current slice if it is
1860 * idle and has expired it's mean thinktime or this new queue
1861 * has some old slice time left and is of higher priority
1862 */
1863 cfq_preempt_queue(cfqd, cfqq);
1864 cfq_mark_cfqq_must_dispatch(cfqq);
1865 blk_start_queueing(cfqd->queue);
1866 }
1867 }
1868
1869 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1870 {
1871 struct cfq_data *cfqd = q->elevator->elevator_data;
1872 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873
1874 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1875 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1876
1877 cfq_add_rq_rb(rq);
1878
1879 list_add_tail(&rq->queuelist, &cfqq->fifo);
1880
1881 cfq_rq_enqueued(cfqd, cfqq, rq);
1882 }
1883
1884 /*
1885 * Update hw_tag based on peak queue depth over 50 samples under
1886 * sufficient load.
1887 */
1888 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1889 {
1890 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1891 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1892
1893 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1894 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1895 return;
1896
1897 if (cfqd->hw_tag_samples++ < 50)
1898 return;
1899
1900 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1901 cfqd->hw_tag = 1;
1902 else
1903 cfqd->hw_tag = 0;
1904
1905 cfqd->hw_tag_samples = 0;
1906 cfqd->rq_in_driver_peak = 0;
1907 }
1908
1909 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1910 {
1911 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1912 struct cfq_data *cfqd = cfqq->cfqd;
1913 const int sync = rq_is_sync(rq);
1914 unsigned long now;
1915
1916 now = jiffies;
1917 cfq_log_cfqq(cfqd, cfqq, "complete");
1918
1919 cfq_update_hw_tag(cfqd);
1920
1921 WARN_ON(!cfqd->rq_in_driver);
1922 WARN_ON(!cfqq->dispatched);
1923 cfqd->rq_in_driver--;
1924 cfqq->dispatched--;
1925
1926 if (cfq_cfqq_sync(cfqq))
1927 cfqd->sync_flight--;
1928
1929 if (!cfq_class_idle(cfqq))
1930 cfqd->last_end_request = now;
1931
1932 if (sync)
1933 RQ_CIC(rq)->last_end_request = now;
1934
1935 /*
1936 * If this is the active queue, check if it needs to be expired,
1937 * or if we want to idle in case it has no pending requests.
1938 */
1939 if (cfqd->active_queue == cfqq) {
1940 if (cfq_cfqq_slice_new(cfqq)) {
1941 cfq_set_prio_slice(cfqd, cfqq);
1942 cfq_clear_cfqq_slice_new(cfqq);
1943 }
1944 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1945 cfq_slice_expired(cfqd, 1);
1946 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1947 cfq_arm_slice_timer(cfqd);
1948 }
1949
1950 if (!cfqd->rq_in_driver)
1951 cfq_schedule_dispatch(cfqd);
1952 }
1953
1954 /*
1955 * we temporarily boost lower priority queues if they are holding fs exclusive
1956 * resources. they are boosted to normal prio (CLASS_BE/4)
1957 */
1958 static void cfq_prio_boost(struct cfq_queue *cfqq)
1959 {
1960 if (has_fs_excl()) {
1961 /*
1962 * boost idle prio on transactions that would lock out other
1963 * users of the filesystem
1964 */
1965 if (cfq_class_idle(cfqq))
1966 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1967 if (cfqq->ioprio > IOPRIO_NORM)
1968 cfqq->ioprio = IOPRIO_NORM;
1969 } else {
1970 /*
1971 * check if we need to unboost the queue
1972 */
1973 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1974 cfqq->ioprio_class = cfqq->org_ioprio_class;
1975 if (cfqq->ioprio != cfqq->org_ioprio)
1976 cfqq->ioprio = cfqq->org_ioprio;
1977 }
1978 }
1979
1980 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1981 {
1982 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1983 !cfq_cfqq_must_alloc_slice(cfqq)) {
1984 cfq_mark_cfqq_must_alloc_slice(cfqq);
1985 return ELV_MQUEUE_MUST;
1986 }
1987
1988 return ELV_MQUEUE_MAY;
1989 }
1990
1991 static int cfq_may_queue(struct request_queue *q, int rw)
1992 {
1993 struct cfq_data *cfqd = q->elevator->elevator_data;
1994 struct task_struct *tsk = current;
1995 struct cfq_io_context *cic;
1996 struct cfq_queue *cfqq;
1997
1998 /*
1999 * don't force setup of a queue from here, as a call to may_queue
2000 * does not necessarily imply that a request actually will be queued.
2001 * so just lookup a possibly existing queue, or return 'may queue'
2002 * if that fails
2003 */
2004 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2005 if (!cic)
2006 return ELV_MQUEUE_MAY;
2007
2008 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2009 if (cfqq) {
2010 cfq_init_prio_data(cfqq, cic->ioc);
2011 cfq_prio_boost(cfqq);
2012
2013 return __cfq_may_queue(cfqq);
2014 }
2015
2016 return ELV_MQUEUE_MAY;
2017 }
2018
2019 /*
2020 * queue lock held here
2021 */
2022 static void cfq_put_request(struct request *rq)
2023 {
2024 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2025
2026 if (cfqq) {
2027 const int rw = rq_data_dir(rq);
2028
2029 BUG_ON(!cfqq->allocated[rw]);
2030 cfqq->allocated[rw]--;
2031
2032 put_io_context(RQ_CIC(rq)->ioc);
2033
2034 rq->elevator_private = NULL;
2035 rq->elevator_private2 = NULL;
2036
2037 cfq_put_queue(cfqq);
2038 }
2039 }
2040
2041 /*
2042 * Allocate cfq data structures associated with this request.
2043 */
2044 static int
2045 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2046 {
2047 struct cfq_data *cfqd = q->elevator->elevator_data;
2048 struct cfq_io_context *cic;
2049 const int rw = rq_data_dir(rq);
2050 const int is_sync = rq_is_sync(rq);
2051 struct cfq_queue *cfqq;
2052 unsigned long flags;
2053
2054 might_sleep_if(gfp_mask & __GFP_WAIT);
2055
2056 cic = cfq_get_io_context(cfqd, gfp_mask);
2057
2058 spin_lock_irqsave(q->queue_lock, flags);
2059
2060 if (!cic)
2061 goto queue_fail;
2062
2063 cfqq = cic_to_cfqq(cic, is_sync);
2064 if (!cfqq) {
2065 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2066
2067 if (!cfqq)
2068 goto queue_fail;
2069
2070 cic_set_cfqq(cic, cfqq, is_sync);
2071 }
2072
2073 cfqq->allocated[rw]++;
2074 cfq_clear_cfqq_must_alloc(cfqq);
2075 atomic_inc(&cfqq->ref);
2076
2077 spin_unlock_irqrestore(q->queue_lock, flags);
2078
2079 rq->elevator_private = cic;
2080 rq->elevator_private2 = cfqq;
2081 return 0;
2082
2083 queue_fail:
2084 if (cic)
2085 put_io_context(cic->ioc);
2086
2087 cfq_schedule_dispatch(cfqd);
2088 spin_unlock_irqrestore(q->queue_lock, flags);
2089 cfq_log(cfqd, "set_request fail");
2090 return 1;
2091 }
2092
2093 static void cfq_kick_queue(struct work_struct *work)
2094 {
2095 struct cfq_data *cfqd =
2096 container_of(work, struct cfq_data, unplug_work);
2097 struct request_queue *q = cfqd->queue;
2098 unsigned long flags;
2099
2100 spin_lock_irqsave(q->queue_lock, flags);
2101 blk_start_queueing(q);
2102 spin_unlock_irqrestore(q->queue_lock, flags);
2103 }
2104
2105 /*
2106 * Timer running if the active_queue is currently idling inside its time slice
2107 */
2108 static void cfq_idle_slice_timer(unsigned long data)
2109 {
2110 struct cfq_data *cfqd = (struct cfq_data *) data;
2111 struct cfq_queue *cfqq;
2112 unsigned long flags;
2113 int timed_out = 1;
2114
2115 cfq_log(cfqd, "idle timer fired");
2116
2117 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2118
2119 cfqq = cfqd->active_queue;
2120 if (cfqq) {
2121 timed_out = 0;
2122
2123 /*
2124 * expired
2125 */
2126 if (cfq_slice_used(cfqq))
2127 goto expire;
2128
2129 /*
2130 * only expire and reinvoke request handler, if there are
2131 * other queues with pending requests
2132 */
2133 if (!cfqd->busy_queues)
2134 goto out_cont;
2135
2136 /*
2137 * not expired and it has a request pending, let it dispatch
2138 */
2139 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2140 cfq_mark_cfqq_must_dispatch(cfqq);
2141 goto out_kick;
2142 }
2143 }
2144 expire:
2145 cfq_slice_expired(cfqd, timed_out);
2146 out_kick:
2147 cfq_schedule_dispatch(cfqd);
2148 out_cont:
2149 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2150 }
2151
2152 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2153 {
2154 del_timer_sync(&cfqd->idle_slice_timer);
2155 kblockd_flush_work(&cfqd->unplug_work);
2156 }
2157
2158 static void cfq_put_async_queues(struct cfq_data *cfqd)
2159 {
2160 int i;
2161
2162 for (i = 0; i < IOPRIO_BE_NR; i++) {
2163 if (cfqd->async_cfqq[0][i])
2164 cfq_put_queue(cfqd->async_cfqq[0][i]);
2165 if (cfqd->async_cfqq[1][i])
2166 cfq_put_queue(cfqd->async_cfqq[1][i]);
2167 }
2168
2169 if (cfqd->async_idle_cfqq)
2170 cfq_put_queue(cfqd->async_idle_cfqq);
2171 }
2172
2173 static void cfq_exit_queue(elevator_t *e)
2174 {
2175 struct cfq_data *cfqd = e->elevator_data;
2176 struct request_queue *q = cfqd->queue;
2177
2178 cfq_shutdown_timer_wq(cfqd);
2179
2180 spin_lock_irq(q->queue_lock);
2181
2182 if (cfqd->active_queue)
2183 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2184
2185 while (!list_empty(&cfqd->cic_list)) {
2186 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2187 struct cfq_io_context,
2188 queue_list);
2189
2190 __cfq_exit_single_io_context(cfqd, cic);
2191 }
2192
2193 cfq_put_async_queues(cfqd);
2194
2195 spin_unlock_irq(q->queue_lock);
2196
2197 cfq_shutdown_timer_wq(cfqd);
2198
2199 kfree(cfqd);
2200 }
2201
2202 static void *cfq_init_queue(struct request_queue *q)
2203 {
2204 struct cfq_data *cfqd;
2205
2206 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2207 if (!cfqd)
2208 return NULL;
2209
2210 cfqd->service_tree = CFQ_RB_ROOT;
2211 INIT_LIST_HEAD(&cfqd->cic_list);
2212
2213 cfqd->queue = q;
2214
2215 init_timer(&cfqd->idle_slice_timer);
2216 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2217 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2218
2219 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2220
2221 cfqd->last_end_request = jiffies;
2222 cfqd->cfq_quantum = cfq_quantum;
2223 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2224 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2225 cfqd->cfq_back_max = cfq_back_max;
2226 cfqd->cfq_back_penalty = cfq_back_penalty;
2227 cfqd->cfq_slice[0] = cfq_slice_async;
2228 cfqd->cfq_slice[1] = cfq_slice_sync;
2229 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2230 cfqd->cfq_slice_idle = cfq_slice_idle;
2231 cfqd->hw_tag = 1;
2232
2233 return cfqd;
2234 }
2235
2236 static void cfq_slab_kill(void)
2237 {
2238 /*
2239 * Caller already ensured that pending RCU callbacks are completed,
2240 * so we should have no busy allocations at this point.
2241 */
2242 if (cfq_pool)
2243 kmem_cache_destroy(cfq_pool);
2244 if (cfq_ioc_pool)
2245 kmem_cache_destroy(cfq_ioc_pool);
2246 }
2247
2248 static int __init cfq_slab_setup(void)
2249 {
2250 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2251 if (!cfq_pool)
2252 goto fail;
2253
2254 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2255 if (!cfq_ioc_pool)
2256 goto fail;
2257
2258 return 0;
2259 fail:
2260 cfq_slab_kill();
2261 return -ENOMEM;
2262 }
2263
2264 /*
2265 * sysfs parts below -->
2266 */
2267 static ssize_t
2268 cfq_var_show(unsigned int var, char *page)
2269 {
2270 return sprintf(page, "%d\n", var);
2271 }
2272
2273 static ssize_t
2274 cfq_var_store(unsigned int *var, const char *page, size_t count)
2275 {
2276 char *p = (char *) page;
2277
2278 *var = simple_strtoul(p, &p, 10);
2279 return count;
2280 }
2281
2282 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2283 static ssize_t __FUNC(elevator_t *e, char *page) \
2284 { \
2285 struct cfq_data *cfqd = e->elevator_data; \
2286 unsigned int __data = __VAR; \
2287 if (__CONV) \
2288 __data = jiffies_to_msecs(__data); \
2289 return cfq_var_show(__data, (page)); \
2290 }
2291 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2292 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2293 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2294 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2295 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2296 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2297 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2298 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2299 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2300 #undef SHOW_FUNCTION
2301
2302 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2303 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2304 { \
2305 struct cfq_data *cfqd = e->elevator_data; \
2306 unsigned int __data; \
2307 int ret = cfq_var_store(&__data, (page), count); \
2308 if (__data < (MIN)) \
2309 __data = (MIN); \
2310 else if (__data > (MAX)) \
2311 __data = (MAX); \
2312 if (__CONV) \
2313 *(__PTR) = msecs_to_jiffies(__data); \
2314 else \
2315 *(__PTR) = __data; \
2316 return ret; \
2317 }
2318 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2319 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2320 UINT_MAX, 1);
2321 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2322 UINT_MAX, 1);
2323 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2324 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2325 UINT_MAX, 0);
2326 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2327 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2328 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2329 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2330 UINT_MAX, 0);
2331 #undef STORE_FUNCTION
2332
2333 #define CFQ_ATTR(name) \
2334 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2335
2336 static struct elv_fs_entry cfq_attrs[] = {
2337 CFQ_ATTR(quantum),
2338 CFQ_ATTR(fifo_expire_sync),
2339 CFQ_ATTR(fifo_expire_async),
2340 CFQ_ATTR(back_seek_max),
2341 CFQ_ATTR(back_seek_penalty),
2342 CFQ_ATTR(slice_sync),
2343 CFQ_ATTR(slice_async),
2344 CFQ_ATTR(slice_async_rq),
2345 CFQ_ATTR(slice_idle),
2346 __ATTR_NULL
2347 };
2348
2349 static struct elevator_type iosched_cfq = {
2350 .ops = {
2351 .elevator_merge_fn = cfq_merge,
2352 .elevator_merged_fn = cfq_merged_request,
2353 .elevator_merge_req_fn = cfq_merged_requests,
2354 .elevator_allow_merge_fn = cfq_allow_merge,
2355 .elevator_dispatch_fn = cfq_dispatch_requests,
2356 .elevator_add_req_fn = cfq_insert_request,
2357 .elevator_activate_req_fn = cfq_activate_request,
2358 .elevator_deactivate_req_fn = cfq_deactivate_request,
2359 .elevator_queue_empty_fn = cfq_queue_empty,
2360 .elevator_completed_req_fn = cfq_completed_request,
2361 .elevator_former_req_fn = elv_rb_former_request,
2362 .elevator_latter_req_fn = elv_rb_latter_request,
2363 .elevator_set_req_fn = cfq_set_request,
2364 .elevator_put_req_fn = cfq_put_request,
2365 .elevator_may_queue_fn = cfq_may_queue,
2366 .elevator_init_fn = cfq_init_queue,
2367 .elevator_exit_fn = cfq_exit_queue,
2368 .trim = cfq_free_io_context,
2369 },
2370 .elevator_attrs = cfq_attrs,
2371 .elevator_name = "cfq",
2372 .elevator_owner = THIS_MODULE,
2373 };
2374
2375 static int __init cfq_init(void)
2376 {
2377 /*
2378 * could be 0 on HZ < 1000 setups
2379 */
2380 if (!cfq_slice_async)
2381 cfq_slice_async = 1;
2382 if (!cfq_slice_idle)
2383 cfq_slice_idle = 1;
2384
2385 if (cfq_slab_setup())
2386 return -ENOMEM;
2387
2388 elv_register(&iosched_cfq);
2389
2390 return 0;
2391 }
2392
2393 static void __exit cfq_exit(void)
2394 {
2395 DECLARE_COMPLETION_ONSTACK(all_gone);
2396 elv_unregister(&iosched_cfq);
2397 ioc_gone = &all_gone;
2398 /* ioc_gone's update must be visible before reading ioc_count */
2399 smp_wmb();
2400
2401 /*
2402 * this also protects us from entering cfq_slab_kill() with
2403 * pending RCU callbacks
2404 */
2405 if (elv_ioc_count_read(ioc_count))
2406 wait_for_completion(&all_gone);
2407 cfq_slab_kill();
2408 }
2409
2410 module_init(cfq_init);
2411 module_exit(cfq_exit);
2412
2413 MODULE_AUTHOR("Jens Axboe");
2414 MODULE_LICENSE("GPL");
2415 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.079334 seconds and 6 git commands to generate.