Fix up CFQ scheduler for recent rbtree node shrinkage
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18 * tunables
19 */
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
30
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
33
34 #define CFQ_KEY_ASYNC (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39 * for the hash of cfqq inside the cfqd
40 */
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46 * for the hash of crq inside the cfqq
47 */
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq) (rq)->elevator_private
59
60 /*
61 * rb-tree defines
62 */
63 #define RB_EMPTY(node) ((node)->rb_node == NULL)
64 #define RB_CLEAR(node) do { \
65 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
68 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq) (rq)->sector
70
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
74
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
77
78 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
82
83 #define ASYNC (0)
84 #define SYNC (1)
85
86 #define cfq_cfqq_dispatched(cfqq) \
87 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
88
89 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
90
91 #define cfq_cfqq_sync(cfqq) \
92 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
93
94 #define sample_valid(samples) ((samples) > 80)
95
96 /*
97 * Per block device queue structure
98 */
99 struct cfq_data {
100 request_queue_t *queue;
101
102 /*
103 * rr list of queues with requests and the count of them
104 */
105 struct list_head rr_list[CFQ_PRIO_LISTS];
106 struct list_head busy_rr;
107 struct list_head cur_rr;
108 struct list_head idle_rr;
109 unsigned int busy_queues;
110
111 /*
112 * non-ordered list of empty cfqq's
113 */
114 struct list_head empty_list;
115
116 /*
117 * cfqq lookup hash
118 */
119 struct hlist_head *cfq_hash;
120
121 /*
122 * global crq hash for all queues
123 */
124 struct hlist_head *crq_hash;
125
126 unsigned int max_queued;
127
128 mempool_t *crq_pool;
129
130 int rq_in_driver;
131 int hw_tag;
132
133 /*
134 * schedule slice state info
135 */
136 /*
137 * idle window management
138 */
139 struct timer_list idle_slice_timer;
140 struct work_struct unplug_work;
141
142 struct cfq_queue *active_queue;
143 struct cfq_io_context *active_cic;
144 int cur_prio, cur_end_prio;
145 unsigned int dispatch_slice;
146
147 struct timer_list idle_class_timer;
148
149 sector_t last_sector;
150 unsigned long last_end_request;
151
152 unsigned int rq_starved;
153
154 /*
155 * tunables, see top of file
156 */
157 unsigned int cfq_quantum;
158 unsigned int cfq_queued;
159 unsigned int cfq_fifo_expire[2];
160 unsigned int cfq_back_penalty;
161 unsigned int cfq_back_max;
162 unsigned int cfq_slice[2];
163 unsigned int cfq_slice_async_rq;
164 unsigned int cfq_slice_idle;
165
166 struct list_head cic_list;
167 };
168
169 /*
170 * Per process-grouping structure
171 */
172 struct cfq_queue {
173 /* reference count */
174 atomic_t ref;
175 /* parent cfq_data */
176 struct cfq_data *cfqd;
177 /* cfqq lookup hash */
178 struct hlist_node cfq_hash;
179 /* hash key */
180 unsigned int key;
181 /* on either rr or empty list of cfqd */
182 struct list_head cfq_list;
183 /* sorted list of pending requests */
184 struct rb_root sort_list;
185 /* if fifo isn't expired, next request to serve */
186 struct cfq_rq *next_crq;
187 /* requests queued in sort_list */
188 int queued[2];
189 /* currently allocated requests */
190 int allocated[2];
191 /* fifo list of requests in sort_list */
192 struct list_head fifo;
193
194 unsigned long slice_start;
195 unsigned long slice_end;
196 unsigned long slice_left;
197 unsigned long service_last;
198
199 /* number of requests that are on the dispatch list */
200 int on_dispatch[2];
201
202 /* io prio of this group */
203 unsigned short ioprio, org_ioprio;
204 unsigned short ioprio_class, org_ioprio_class;
205
206 /* various state flags, see below */
207 unsigned int flags;
208 };
209
210 struct cfq_rq {
211 struct rb_node rb_node;
212 sector_t rb_key;
213 struct request *request;
214 struct hlist_node hash;
215
216 struct cfq_queue *cfq_queue;
217 struct cfq_io_context *io_context;
218
219 unsigned int crq_flags;
220 };
221
222 enum cfqq_state_flags {
223 CFQ_CFQQ_FLAG_on_rr = 0,
224 CFQ_CFQQ_FLAG_wait_request,
225 CFQ_CFQQ_FLAG_must_alloc,
226 CFQ_CFQQ_FLAG_must_alloc_slice,
227 CFQ_CFQQ_FLAG_must_dispatch,
228 CFQ_CFQQ_FLAG_fifo_expire,
229 CFQ_CFQQ_FLAG_idle_window,
230 CFQ_CFQQ_FLAG_prio_changed,
231 };
232
233 #define CFQ_CFQQ_FNS(name) \
234 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
235 { \
236 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
237 } \
238 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
239 { \
240 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
241 } \
242 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
243 { \
244 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
245 }
246
247 CFQ_CFQQ_FNS(on_rr);
248 CFQ_CFQQ_FNS(wait_request);
249 CFQ_CFQQ_FNS(must_alloc);
250 CFQ_CFQQ_FNS(must_alloc_slice);
251 CFQ_CFQQ_FNS(must_dispatch);
252 CFQ_CFQQ_FNS(fifo_expire);
253 CFQ_CFQQ_FNS(idle_window);
254 CFQ_CFQQ_FNS(prio_changed);
255 #undef CFQ_CFQQ_FNS
256
257 enum cfq_rq_state_flags {
258 CFQ_CRQ_FLAG_is_sync = 0,
259 };
260
261 #define CFQ_CRQ_FNS(name) \
262 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
263 { \
264 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
265 } \
266 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
267 { \
268 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
269 } \
270 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
271 { \
272 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
273 }
274
275 CFQ_CRQ_FNS(is_sync);
276 #undef CFQ_CRQ_FNS
277
278 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
279 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
280 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
281
282 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
283
284 /*
285 * lots of deadline iosched dupes, can be abstracted later...
286 */
287 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
288 {
289 hlist_del_init(&crq->hash);
290 }
291
292 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
293 {
294 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
295
296 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
297 }
298
299 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
300 {
301 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
302 struct hlist_node *entry, *next;
303
304 hlist_for_each_safe(entry, next, hash_list) {
305 struct cfq_rq *crq = list_entry_hash(entry);
306 struct request *__rq = crq->request;
307
308 if (!rq_mergeable(__rq)) {
309 cfq_del_crq_hash(crq);
310 continue;
311 }
312
313 if (rq_hash_key(__rq) == offset)
314 return __rq;
315 }
316
317 return NULL;
318 }
319
320 /*
321 * scheduler run of queue, if there are requests pending and no one in the
322 * driver that will restart queueing
323 */
324 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
325 {
326 if (cfqd->busy_queues)
327 kblockd_schedule_work(&cfqd->unplug_work);
328 }
329
330 static int cfq_queue_empty(request_queue_t *q)
331 {
332 struct cfq_data *cfqd = q->elevator->elevator_data;
333
334 return !cfqd->busy_queues;
335 }
336
337 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
338 {
339 if (rw == READ || process_sync(task))
340 return task->pid;
341
342 return CFQ_KEY_ASYNC;
343 }
344
345 /*
346 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
347 * We choose the request that is closest to the head right now. Distance
348 * behind the head is penalized and only allowed to a certain extent.
349 */
350 static struct cfq_rq *
351 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
352 {
353 sector_t last, s1, s2, d1 = 0, d2 = 0;
354 unsigned long back_max;
355 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
356 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
357 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
358
359 if (crq1 == NULL || crq1 == crq2)
360 return crq2;
361 if (crq2 == NULL)
362 return crq1;
363
364 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
365 return crq1;
366 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
367 return crq2;
368
369 s1 = crq1->request->sector;
370 s2 = crq2->request->sector;
371
372 last = cfqd->last_sector;
373
374 /*
375 * by definition, 1KiB is 2 sectors
376 */
377 back_max = cfqd->cfq_back_max * 2;
378
379 /*
380 * Strict one way elevator _except_ in the case where we allow
381 * short backward seeks which are biased as twice the cost of a
382 * similar forward seek.
383 */
384 if (s1 >= last)
385 d1 = s1 - last;
386 else if (s1 + back_max >= last)
387 d1 = (last - s1) * cfqd->cfq_back_penalty;
388 else
389 wrap |= CFQ_RQ1_WRAP;
390
391 if (s2 >= last)
392 d2 = s2 - last;
393 else if (s2 + back_max >= last)
394 d2 = (last - s2) * cfqd->cfq_back_penalty;
395 else
396 wrap |= CFQ_RQ2_WRAP;
397
398 /* Found required data */
399
400 /*
401 * By doing switch() on the bit mask "wrap" we avoid having to
402 * check two variables for all permutations: --> faster!
403 */
404 switch (wrap) {
405 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
406 if (d1 < d2)
407 return crq1;
408 else if (d2 < d1)
409 return crq2;
410 else {
411 if (s1 >= s2)
412 return crq1;
413 else
414 return crq2;
415 }
416
417 case CFQ_RQ2_WRAP:
418 return crq1;
419 case CFQ_RQ1_WRAP:
420 return crq2;
421 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
422 default:
423 /*
424 * Since both rqs are wrapped,
425 * start with the one that's further behind head
426 * (--> only *one* back seek required),
427 * since back seek takes more time than forward.
428 */
429 if (s1 <= s2)
430 return crq1;
431 else
432 return crq2;
433 }
434 }
435
436 /*
437 * would be nice to take fifo expire time into account as well
438 */
439 static struct cfq_rq *
440 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
441 struct cfq_rq *last)
442 {
443 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
444 struct rb_node *rbnext, *rbprev;
445
446 if (!(rbnext = rb_next(&last->rb_node))) {
447 rbnext = rb_first(&cfqq->sort_list);
448 if (rbnext == &last->rb_node)
449 rbnext = NULL;
450 }
451
452 rbprev = rb_prev(&last->rb_node);
453
454 if (rbprev)
455 crq_prev = rb_entry_crq(rbprev);
456 if (rbnext)
457 crq_next = rb_entry_crq(rbnext);
458
459 return cfq_choose_req(cfqd, crq_next, crq_prev);
460 }
461
462 static void cfq_update_next_crq(struct cfq_rq *crq)
463 {
464 struct cfq_queue *cfqq = crq->cfq_queue;
465
466 if (cfqq->next_crq == crq)
467 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
468 }
469
470 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
471 {
472 struct cfq_data *cfqd = cfqq->cfqd;
473 struct list_head *list, *entry;
474
475 BUG_ON(!cfq_cfqq_on_rr(cfqq));
476
477 list_del(&cfqq->cfq_list);
478
479 if (cfq_class_rt(cfqq))
480 list = &cfqd->cur_rr;
481 else if (cfq_class_idle(cfqq))
482 list = &cfqd->idle_rr;
483 else {
484 /*
485 * if cfqq has requests in flight, don't allow it to be
486 * found in cfq_set_active_queue before it has finished them.
487 * this is done to increase fairness between a process that
488 * has lots of io pending vs one that only generates one
489 * sporadically or synchronously
490 */
491 if (cfq_cfqq_dispatched(cfqq))
492 list = &cfqd->busy_rr;
493 else
494 list = &cfqd->rr_list[cfqq->ioprio];
495 }
496
497 /*
498 * if queue was preempted, just add to front to be fair. busy_rr
499 * isn't sorted, but insert at the back for fairness.
500 */
501 if (preempted || list == &cfqd->busy_rr) {
502 if (preempted)
503 list = list->prev;
504
505 list_add_tail(&cfqq->cfq_list, list);
506 return;
507 }
508
509 /*
510 * sort by when queue was last serviced
511 */
512 entry = list;
513 while ((entry = entry->prev) != list) {
514 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
515
516 if (!__cfqq->service_last)
517 break;
518 if (time_before(__cfqq->service_last, cfqq->service_last))
519 break;
520 }
521
522 list_add(&cfqq->cfq_list, entry);
523 }
524
525 /*
526 * add to busy list of queues for service, trying to be fair in ordering
527 * the pending list according to last request service
528 */
529 static inline void
530 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531 {
532 BUG_ON(cfq_cfqq_on_rr(cfqq));
533 cfq_mark_cfqq_on_rr(cfqq);
534 cfqd->busy_queues++;
535
536 cfq_resort_rr_list(cfqq, 0);
537 }
538
539 static inline void
540 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
541 {
542 BUG_ON(!cfq_cfqq_on_rr(cfqq));
543 cfq_clear_cfqq_on_rr(cfqq);
544 list_move(&cfqq->cfq_list, &cfqd->empty_list);
545
546 BUG_ON(!cfqd->busy_queues);
547 cfqd->busy_queues--;
548 }
549
550 /*
551 * rb tree support functions
552 */
553 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
554 {
555 struct cfq_queue *cfqq = crq->cfq_queue;
556 struct cfq_data *cfqd = cfqq->cfqd;
557 const int sync = cfq_crq_is_sync(crq);
558
559 BUG_ON(!cfqq->queued[sync]);
560 cfqq->queued[sync]--;
561
562 cfq_update_next_crq(crq);
563
564 rb_erase(&crq->rb_node, &cfqq->sort_list);
565
566 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
567 cfq_del_cfqq_rr(cfqd, cfqq);
568 }
569
570 static struct cfq_rq *
571 __cfq_add_crq_rb(struct cfq_rq *crq)
572 {
573 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
574 struct rb_node *parent = NULL;
575 struct cfq_rq *__crq;
576
577 while (*p) {
578 parent = *p;
579 __crq = rb_entry_crq(parent);
580
581 if (crq->rb_key < __crq->rb_key)
582 p = &(*p)->rb_left;
583 else if (crq->rb_key > __crq->rb_key)
584 p = &(*p)->rb_right;
585 else
586 return __crq;
587 }
588
589 rb_link_node(&crq->rb_node, parent, p);
590 return NULL;
591 }
592
593 static void cfq_add_crq_rb(struct cfq_rq *crq)
594 {
595 struct cfq_queue *cfqq = crq->cfq_queue;
596 struct cfq_data *cfqd = cfqq->cfqd;
597 struct request *rq = crq->request;
598 struct cfq_rq *__alias;
599
600 crq->rb_key = rq_rb_key(rq);
601 cfqq->queued[cfq_crq_is_sync(crq)]++;
602
603 /*
604 * looks a little odd, but the first insert might return an alias.
605 * if that happens, put the alias on the dispatch list
606 */
607 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
608 cfq_dispatch_insert(cfqd->queue, __alias);
609
610 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
611
612 if (!cfq_cfqq_on_rr(cfqq))
613 cfq_add_cfqq_rr(cfqd, cfqq);
614
615 /*
616 * check if this request is a better next-serve candidate
617 */
618 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
619 }
620
621 static inline void
622 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
623 {
624 rb_erase(&crq->rb_node, &cfqq->sort_list);
625 cfqq->queued[cfq_crq_is_sync(crq)]--;
626
627 cfq_add_crq_rb(crq);
628 }
629
630 static struct request *
631 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
632 {
633 struct task_struct *tsk = current;
634 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
635 struct cfq_queue *cfqq;
636 struct rb_node *n;
637 sector_t sector;
638
639 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
640 if (!cfqq)
641 goto out;
642
643 sector = bio->bi_sector + bio_sectors(bio);
644 n = cfqq->sort_list.rb_node;
645 while (n) {
646 struct cfq_rq *crq = rb_entry_crq(n);
647
648 if (sector < crq->rb_key)
649 n = n->rb_left;
650 else if (sector > crq->rb_key)
651 n = n->rb_right;
652 else
653 return crq->request;
654 }
655
656 out:
657 return NULL;
658 }
659
660 static void cfq_activate_request(request_queue_t *q, struct request *rq)
661 {
662 struct cfq_data *cfqd = q->elevator->elevator_data;
663
664 cfqd->rq_in_driver++;
665
666 /*
667 * If the depth is larger 1, it really could be queueing. But lets
668 * make the mark a little higher - idling could still be good for
669 * low queueing, and a low queueing number could also just indicate
670 * a SCSI mid layer like behaviour where limit+1 is often seen.
671 */
672 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
673 cfqd->hw_tag = 1;
674 }
675
676 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
677 {
678 struct cfq_data *cfqd = q->elevator->elevator_data;
679
680 WARN_ON(!cfqd->rq_in_driver);
681 cfqd->rq_in_driver--;
682 }
683
684 static void cfq_remove_request(struct request *rq)
685 {
686 struct cfq_rq *crq = RQ_DATA(rq);
687
688 list_del_init(&rq->queuelist);
689 cfq_del_crq_rb(crq);
690 cfq_del_crq_hash(crq);
691 }
692
693 static int
694 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
695 {
696 struct cfq_data *cfqd = q->elevator->elevator_data;
697 struct request *__rq;
698 int ret;
699
700 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
701 if (__rq && elv_rq_merge_ok(__rq, bio)) {
702 ret = ELEVATOR_BACK_MERGE;
703 goto out;
704 }
705
706 __rq = cfq_find_rq_fmerge(cfqd, bio);
707 if (__rq && elv_rq_merge_ok(__rq, bio)) {
708 ret = ELEVATOR_FRONT_MERGE;
709 goto out;
710 }
711
712 return ELEVATOR_NO_MERGE;
713 out:
714 *req = __rq;
715 return ret;
716 }
717
718 static void cfq_merged_request(request_queue_t *q, struct request *req)
719 {
720 struct cfq_data *cfqd = q->elevator->elevator_data;
721 struct cfq_rq *crq = RQ_DATA(req);
722
723 cfq_del_crq_hash(crq);
724 cfq_add_crq_hash(cfqd, crq);
725
726 if (rq_rb_key(req) != crq->rb_key) {
727 struct cfq_queue *cfqq = crq->cfq_queue;
728
729 cfq_update_next_crq(crq);
730 cfq_reposition_crq_rb(cfqq, crq);
731 }
732 }
733
734 static void
735 cfq_merged_requests(request_queue_t *q, struct request *rq,
736 struct request *next)
737 {
738 cfq_merged_request(q, rq);
739
740 /*
741 * reposition in fifo if next is older than rq
742 */
743 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
744 time_before(next->start_time, rq->start_time))
745 list_move(&rq->queuelist, &next->queuelist);
746
747 cfq_remove_request(next);
748 }
749
750 static inline void
751 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
752 {
753 if (cfqq) {
754 /*
755 * stop potential idle class queues waiting service
756 */
757 del_timer(&cfqd->idle_class_timer);
758
759 cfqq->slice_start = jiffies;
760 cfqq->slice_end = 0;
761 cfqq->slice_left = 0;
762 cfq_clear_cfqq_must_alloc_slice(cfqq);
763 cfq_clear_cfqq_fifo_expire(cfqq);
764 }
765
766 cfqd->active_queue = cfqq;
767 }
768
769 /*
770 * current cfqq expired its slice (or was too idle), select new one
771 */
772 static void
773 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
774 int preempted)
775 {
776 unsigned long now = jiffies;
777
778 if (cfq_cfqq_wait_request(cfqq))
779 del_timer(&cfqd->idle_slice_timer);
780
781 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
782 cfqq->service_last = now;
783 cfq_schedule_dispatch(cfqd);
784 }
785
786 cfq_clear_cfqq_must_dispatch(cfqq);
787 cfq_clear_cfqq_wait_request(cfqq);
788
789 /*
790 * store what was left of this slice, if the queue idled out
791 * or was preempted
792 */
793 if (time_after(cfqq->slice_end, now))
794 cfqq->slice_left = cfqq->slice_end - now;
795 else
796 cfqq->slice_left = 0;
797
798 if (cfq_cfqq_on_rr(cfqq))
799 cfq_resort_rr_list(cfqq, preempted);
800
801 if (cfqq == cfqd->active_queue)
802 cfqd->active_queue = NULL;
803
804 if (cfqd->active_cic) {
805 put_io_context(cfqd->active_cic->ioc);
806 cfqd->active_cic = NULL;
807 }
808
809 cfqd->dispatch_slice = 0;
810 }
811
812 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
813 {
814 struct cfq_queue *cfqq = cfqd->active_queue;
815
816 if (cfqq)
817 __cfq_slice_expired(cfqd, cfqq, preempted);
818 }
819
820 /*
821 * 0
822 * 0,1
823 * 0,1,2
824 * 0,1,2,3
825 * 0,1,2,3,4
826 * 0,1,2,3,4,5
827 * 0,1,2,3,4,5,6
828 * 0,1,2,3,4,5,6,7
829 */
830 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
831 {
832 int prio, wrap;
833
834 prio = -1;
835 wrap = 0;
836 do {
837 int p;
838
839 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
840 if (!list_empty(&cfqd->rr_list[p])) {
841 prio = p;
842 break;
843 }
844 }
845
846 if (prio != -1)
847 break;
848 cfqd->cur_prio = 0;
849 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
850 cfqd->cur_end_prio = 0;
851 if (wrap)
852 break;
853 wrap = 1;
854 }
855 } while (1);
856
857 if (unlikely(prio == -1))
858 return -1;
859
860 BUG_ON(prio >= CFQ_PRIO_LISTS);
861
862 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
863
864 cfqd->cur_prio = prio + 1;
865 if (cfqd->cur_prio > cfqd->cur_end_prio) {
866 cfqd->cur_end_prio = cfqd->cur_prio;
867 cfqd->cur_prio = 0;
868 }
869 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
870 cfqd->cur_prio = 0;
871 cfqd->cur_end_prio = 0;
872 }
873
874 return prio;
875 }
876
877 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
878 {
879 struct cfq_queue *cfqq = NULL;
880
881 /*
882 * if current list is non-empty, grab first entry. if it is empty,
883 * get next prio level and grab first entry then if any are spliced
884 */
885 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
886 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
887
888 /*
889 * If no new queues are available, check if the busy list has some
890 * before falling back to idle io.
891 */
892 if (!cfqq && !list_empty(&cfqd->busy_rr))
893 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
894
895 /*
896 * if we have idle queues and no rt or be queues had pending
897 * requests, either allow immediate service if the grace period
898 * has passed or arm the idle grace timer
899 */
900 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
901 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
902
903 if (time_after_eq(jiffies, end))
904 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
905 else
906 mod_timer(&cfqd->idle_class_timer, end);
907 }
908
909 __cfq_set_active_queue(cfqd, cfqq);
910 return cfqq;
911 }
912
913 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
914
915 {
916 struct cfq_io_context *cic;
917 unsigned long sl;
918
919 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
920 WARN_ON(cfqq != cfqd->active_queue);
921
922 /*
923 * idle is disabled, either manually or by past process history
924 */
925 if (!cfqd->cfq_slice_idle)
926 return 0;
927 if (!cfq_cfqq_idle_window(cfqq))
928 return 0;
929 /*
930 * task has exited, don't wait
931 */
932 cic = cfqd->active_cic;
933 if (!cic || !cic->ioc->task)
934 return 0;
935
936 cfq_mark_cfqq_must_dispatch(cfqq);
937 cfq_mark_cfqq_wait_request(cfqq);
938
939 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
940
941 /*
942 * we don't want to idle for seeks, but we do want to allow
943 * fair distribution of slice time for a process doing back-to-back
944 * seeks. so allow a little bit of time for him to submit a new rq
945 */
946 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
947 sl = 2;
948
949 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
950 return 1;
951 }
952
953 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
954 {
955 struct cfq_data *cfqd = q->elevator->elevator_data;
956 struct cfq_queue *cfqq = crq->cfq_queue;
957
958 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
959 cfq_remove_request(crq->request);
960 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
961 elv_dispatch_sort(q, crq->request);
962 }
963
964 /*
965 * return expired entry, or NULL to just start from scratch in rbtree
966 */
967 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
968 {
969 struct cfq_data *cfqd = cfqq->cfqd;
970 struct request *rq;
971 struct cfq_rq *crq;
972
973 if (cfq_cfqq_fifo_expire(cfqq))
974 return NULL;
975
976 if (!list_empty(&cfqq->fifo)) {
977 int fifo = cfq_cfqq_class_sync(cfqq);
978
979 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
980 rq = crq->request;
981 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
982 cfq_mark_cfqq_fifo_expire(cfqq);
983 return crq;
984 }
985 }
986
987 return NULL;
988 }
989
990 /*
991 * Scale schedule slice based on io priority. Use the sync time slice only
992 * if a queue is marked sync and has sync io queued. A sync queue with async
993 * io only, should not get full sync slice length.
994 */
995 static inline int
996 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
997 {
998 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
999
1000 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1001
1002 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1003 }
1004
1005 static inline void
1006 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1007 {
1008 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1009 }
1010
1011 static inline int
1012 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1013 {
1014 const int base_rq = cfqd->cfq_slice_async_rq;
1015
1016 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1017
1018 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1019 }
1020
1021 /*
1022 * get next queue for service
1023 */
1024 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1025 {
1026 unsigned long now = jiffies;
1027 struct cfq_queue *cfqq;
1028
1029 cfqq = cfqd->active_queue;
1030 if (!cfqq)
1031 goto new_queue;
1032
1033 /*
1034 * slice has expired
1035 */
1036 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1037 goto expire;
1038
1039 /*
1040 * if queue has requests, dispatch one. if not, check if
1041 * enough slice is left to wait for one
1042 */
1043 if (!RB_EMPTY(&cfqq->sort_list))
1044 goto keep_queue;
1045 else if (cfq_cfqq_class_sync(cfqq) &&
1046 time_before(now, cfqq->slice_end)) {
1047 if (cfq_arm_slice_timer(cfqd, cfqq))
1048 return NULL;
1049 }
1050
1051 expire:
1052 cfq_slice_expired(cfqd, 0);
1053 new_queue:
1054 cfqq = cfq_set_active_queue(cfqd);
1055 keep_queue:
1056 return cfqq;
1057 }
1058
1059 static int
1060 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1061 int max_dispatch)
1062 {
1063 int dispatched = 0;
1064
1065 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1066
1067 do {
1068 struct cfq_rq *crq;
1069
1070 /*
1071 * follow expired path, else get first next available
1072 */
1073 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1074 crq = cfqq->next_crq;
1075
1076 /*
1077 * finally, insert request into driver dispatch list
1078 */
1079 cfq_dispatch_insert(cfqd->queue, crq);
1080
1081 cfqd->dispatch_slice++;
1082 dispatched++;
1083
1084 if (!cfqd->active_cic) {
1085 atomic_inc(&crq->io_context->ioc->refcount);
1086 cfqd->active_cic = crq->io_context;
1087 }
1088
1089 if (RB_EMPTY(&cfqq->sort_list))
1090 break;
1091
1092 } while (dispatched < max_dispatch);
1093
1094 /*
1095 * if slice end isn't set yet, set it. if at least one request was
1096 * sync, use the sync time slice value
1097 */
1098 if (!cfqq->slice_end)
1099 cfq_set_prio_slice(cfqd, cfqq);
1100
1101 /*
1102 * expire an async queue immediately if it has used up its slice. idle
1103 * queue always expire after 1 dispatch round.
1104 */
1105 if ((!cfq_cfqq_sync(cfqq) &&
1106 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1107 cfq_class_idle(cfqq))
1108 cfq_slice_expired(cfqd, 0);
1109
1110 return dispatched;
1111 }
1112
1113 static int
1114 cfq_forced_dispatch_cfqqs(struct list_head *list)
1115 {
1116 int dispatched = 0;
1117 struct cfq_queue *cfqq, *next;
1118 struct cfq_rq *crq;
1119
1120 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1121 while ((crq = cfqq->next_crq)) {
1122 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1123 dispatched++;
1124 }
1125 BUG_ON(!list_empty(&cfqq->fifo));
1126 }
1127 return dispatched;
1128 }
1129
1130 static int
1131 cfq_forced_dispatch(struct cfq_data *cfqd)
1132 {
1133 int i, dispatched = 0;
1134
1135 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1136 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1137
1138 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1139 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1140 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1141
1142 cfq_slice_expired(cfqd, 0);
1143
1144 BUG_ON(cfqd->busy_queues);
1145
1146 return dispatched;
1147 }
1148
1149 static int
1150 cfq_dispatch_requests(request_queue_t *q, int force)
1151 {
1152 struct cfq_data *cfqd = q->elevator->elevator_data;
1153 struct cfq_queue *cfqq;
1154
1155 if (!cfqd->busy_queues)
1156 return 0;
1157
1158 if (unlikely(force))
1159 return cfq_forced_dispatch(cfqd);
1160
1161 cfqq = cfq_select_queue(cfqd);
1162 if (cfqq) {
1163 int max_dispatch;
1164
1165 cfq_clear_cfqq_must_dispatch(cfqq);
1166 cfq_clear_cfqq_wait_request(cfqq);
1167 del_timer(&cfqd->idle_slice_timer);
1168
1169 max_dispatch = cfqd->cfq_quantum;
1170 if (cfq_class_idle(cfqq))
1171 max_dispatch = 1;
1172
1173 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1174 }
1175
1176 return 0;
1177 }
1178
1179 /*
1180 * task holds one reference to the queue, dropped when task exits. each crq
1181 * in-flight on this queue also holds a reference, dropped when crq is freed.
1182 *
1183 * queue lock must be held here.
1184 */
1185 static void cfq_put_queue(struct cfq_queue *cfqq)
1186 {
1187 struct cfq_data *cfqd = cfqq->cfqd;
1188
1189 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1190
1191 if (!atomic_dec_and_test(&cfqq->ref))
1192 return;
1193
1194 BUG_ON(rb_first(&cfqq->sort_list));
1195 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1196 BUG_ON(cfq_cfqq_on_rr(cfqq));
1197
1198 if (unlikely(cfqd->active_queue == cfqq))
1199 __cfq_slice_expired(cfqd, cfqq, 0);
1200
1201 /*
1202 * it's on the empty list and still hashed
1203 */
1204 list_del(&cfqq->cfq_list);
1205 hlist_del(&cfqq->cfq_hash);
1206 kmem_cache_free(cfq_pool, cfqq);
1207 }
1208
1209 static inline struct cfq_queue *
1210 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1211 const int hashval)
1212 {
1213 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1214 struct hlist_node *entry;
1215 struct cfq_queue *__cfqq;
1216
1217 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1218 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1219
1220 if (__cfqq->key == key && (__p == prio || !prio))
1221 return __cfqq;
1222 }
1223
1224 return NULL;
1225 }
1226
1227 static struct cfq_queue *
1228 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1229 {
1230 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1231 }
1232
1233 static void cfq_free_io_context(struct io_context *ioc)
1234 {
1235 struct cfq_io_context *__cic;
1236 struct rb_node *n;
1237 int freed = 0;
1238
1239 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1240 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1241 rb_erase(&__cic->rb_node, &ioc->cic_root);
1242 kmem_cache_free(cfq_ioc_pool, __cic);
1243 freed++;
1244 }
1245
1246 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1247 complete(ioc_gone);
1248 }
1249
1250 static void cfq_trim(struct io_context *ioc)
1251 {
1252 ioc->set_ioprio = NULL;
1253 cfq_free_io_context(ioc);
1254 }
1255
1256 /*
1257 * Called with interrupts disabled
1258 */
1259 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1260 {
1261 struct cfq_data *cfqd = cic->key;
1262 request_queue_t *q;
1263
1264 if (!cfqd)
1265 return;
1266
1267 q = cfqd->queue;
1268
1269 WARN_ON(!irqs_disabled());
1270
1271 spin_lock(q->queue_lock);
1272
1273 if (cic->cfqq[ASYNC]) {
1274 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1275 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1276 cfq_put_queue(cic->cfqq[ASYNC]);
1277 cic->cfqq[ASYNC] = NULL;
1278 }
1279
1280 if (cic->cfqq[SYNC]) {
1281 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1282 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1283 cfq_put_queue(cic->cfqq[SYNC]);
1284 cic->cfqq[SYNC] = NULL;
1285 }
1286
1287 cic->key = NULL;
1288 list_del_init(&cic->queue_list);
1289 spin_unlock(q->queue_lock);
1290 }
1291
1292 static void cfq_exit_io_context(struct io_context *ioc)
1293 {
1294 struct cfq_io_context *__cic;
1295 unsigned long flags;
1296 struct rb_node *n;
1297
1298 /*
1299 * put the reference this task is holding to the various queues
1300 */
1301 spin_lock_irqsave(&cfq_exit_lock, flags);
1302
1303 n = rb_first(&ioc->cic_root);
1304 while (n != NULL) {
1305 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1306
1307 cfq_exit_single_io_context(__cic);
1308 n = rb_next(n);
1309 }
1310
1311 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1312 }
1313
1314 static struct cfq_io_context *
1315 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1316 {
1317 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1318
1319 if (cic) {
1320 memset(cic, 0, sizeof(*cic));
1321 cic->last_end_request = jiffies;
1322 INIT_LIST_HEAD(&cic->queue_list);
1323 cic->dtor = cfq_free_io_context;
1324 cic->exit = cfq_exit_io_context;
1325 atomic_inc(&ioc_count);
1326 }
1327
1328 return cic;
1329 }
1330
1331 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1332 {
1333 struct task_struct *tsk = current;
1334 int ioprio_class;
1335
1336 if (!cfq_cfqq_prio_changed(cfqq))
1337 return;
1338
1339 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1340 switch (ioprio_class) {
1341 default:
1342 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1343 case IOPRIO_CLASS_NONE:
1344 /*
1345 * no prio set, place us in the middle of the BE classes
1346 */
1347 cfqq->ioprio = task_nice_ioprio(tsk);
1348 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1349 break;
1350 case IOPRIO_CLASS_RT:
1351 cfqq->ioprio = task_ioprio(tsk);
1352 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1353 break;
1354 case IOPRIO_CLASS_BE:
1355 cfqq->ioprio = task_ioprio(tsk);
1356 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1357 break;
1358 case IOPRIO_CLASS_IDLE:
1359 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1360 cfqq->ioprio = 7;
1361 cfq_clear_cfqq_idle_window(cfqq);
1362 break;
1363 }
1364
1365 /*
1366 * keep track of original prio settings in case we have to temporarily
1367 * elevate the priority of this queue
1368 */
1369 cfqq->org_ioprio = cfqq->ioprio;
1370 cfqq->org_ioprio_class = cfqq->ioprio_class;
1371
1372 if (cfq_cfqq_on_rr(cfqq))
1373 cfq_resort_rr_list(cfqq, 0);
1374
1375 cfq_clear_cfqq_prio_changed(cfqq);
1376 }
1377
1378 static inline void changed_ioprio(struct cfq_io_context *cic)
1379 {
1380 struct cfq_data *cfqd = cic->key;
1381 struct cfq_queue *cfqq;
1382 if (cfqd) {
1383 spin_lock(cfqd->queue->queue_lock);
1384 cfqq = cic->cfqq[ASYNC];
1385 if (cfqq) {
1386 struct cfq_queue *new_cfqq;
1387 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1388 cic->ioc->task, GFP_ATOMIC);
1389 if (new_cfqq) {
1390 cic->cfqq[ASYNC] = new_cfqq;
1391 cfq_put_queue(cfqq);
1392 }
1393 }
1394 cfqq = cic->cfqq[SYNC];
1395 if (cfqq) {
1396 cfq_mark_cfqq_prio_changed(cfqq);
1397 cfq_init_prio_data(cfqq);
1398 }
1399 spin_unlock(cfqd->queue->queue_lock);
1400 }
1401 }
1402
1403 /*
1404 * callback from sys_ioprio_set, irqs are disabled
1405 */
1406 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1407 {
1408 struct cfq_io_context *cic;
1409 struct rb_node *n;
1410
1411 spin_lock(&cfq_exit_lock);
1412
1413 n = rb_first(&ioc->cic_root);
1414 while (n != NULL) {
1415 cic = rb_entry(n, struct cfq_io_context, rb_node);
1416
1417 changed_ioprio(cic);
1418 n = rb_next(n);
1419 }
1420
1421 spin_unlock(&cfq_exit_lock);
1422
1423 return 0;
1424 }
1425
1426 static struct cfq_queue *
1427 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1428 gfp_t gfp_mask)
1429 {
1430 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1431 struct cfq_queue *cfqq, *new_cfqq = NULL;
1432 unsigned short ioprio;
1433
1434 retry:
1435 ioprio = tsk->ioprio;
1436 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1437
1438 if (!cfqq) {
1439 if (new_cfqq) {
1440 cfqq = new_cfqq;
1441 new_cfqq = NULL;
1442 } else if (gfp_mask & __GFP_WAIT) {
1443 spin_unlock_irq(cfqd->queue->queue_lock);
1444 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1445 spin_lock_irq(cfqd->queue->queue_lock);
1446 goto retry;
1447 } else {
1448 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1449 if (!cfqq)
1450 goto out;
1451 }
1452
1453 memset(cfqq, 0, sizeof(*cfqq));
1454
1455 INIT_HLIST_NODE(&cfqq->cfq_hash);
1456 INIT_LIST_HEAD(&cfqq->cfq_list);
1457 RB_CLEAR_ROOT(&cfqq->sort_list);
1458 INIT_LIST_HEAD(&cfqq->fifo);
1459
1460 cfqq->key = key;
1461 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1462 atomic_set(&cfqq->ref, 0);
1463 cfqq->cfqd = cfqd;
1464 cfqq->service_last = 0;
1465 /*
1466 * set ->slice_left to allow preemption for a new process
1467 */
1468 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1469 if (!cfqd->hw_tag)
1470 cfq_mark_cfqq_idle_window(cfqq);
1471 cfq_mark_cfqq_prio_changed(cfqq);
1472 cfq_init_prio_data(cfqq);
1473 }
1474
1475 if (new_cfqq)
1476 kmem_cache_free(cfq_pool, new_cfqq);
1477
1478 atomic_inc(&cfqq->ref);
1479 out:
1480 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1481 return cfqq;
1482 }
1483
1484 static void
1485 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1486 {
1487 spin_lock(&cfq_exit_lock);
1488 rb_erase(&cic->rb_node, &ioc->cic_root);
1489 list_del_init(&cic->queue_list);
1490 spin_unlock(&cfq_exit_lock);
1491 kmem_cache_free(cfq_ioc_pool, cic);
1492 atomic_dec(&ioc_count);
1493 }
1494
1495 static struct cfq_io_context *
1496 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1497 {
1498 struct rb_node *n;
1499 struct cfq_io_context *cic;
1500 void *k, *key = cfqd;
1501
1502 restart:
1503 n = ioc->cic_root.rb_node;
1504 while (n) {
1505 cic = rb_entry(n, struct cfq_io_context, rb_node);
1506 /* ->key must be copied to avoid race with cfq_exit_queue() */
1507 k = cic->key;
1508 if (unlikely(!k)) {
1509 cfq_drop_dead_cic(ioc, cic);
1510 goto restart;
1511 }
1512
1513 if (key < k)
1514 n = n->rb_left;
1515 else if (key > k)
1516 n = n->rb_right;
1517 else
1518 return cic;
1519 }
1520
1521 return NULL;
1522 }
1523
1524 static inline void
1525 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1526 struct cfq_io_context *cic)
1527 {
1528 struct rb_node **p;
1529 struct rb_node *parent;
1530 struct cfq_io_context *__cic;
1531 void *k;
1532
1533 cic->ioc = ioc;
1534 cic->key = cfqd;
1535
1536 ioc->set_ioprio = cfq_ioc_set_ioprio;
1537 restart:
1538 parent = NULL;
1539 p = &ioc->cic_root.rb_node;
1540 while (*p) {
1541 parent = *p;
1542 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1543 /* ->key must be copied to avoid race with cfq_exit_queue() */
1544 k = __cic->key;
1545 if (unlikely(!k)) {
1546 cfq_drop_dead_cic(ioc, cic);
1547 goto restart;
1548 }
1549
1550 if (cic->key < k)
1551 p = &(*p)->rb_left;
1552 else if (cic->key > k)
1553 p = &(*p)->rb_right;
1554 else
1555 BUG();
1556 }
1557
1558 spin_lock(&cfq_exit_lock);
1559 rb_link_node(&cic->rb_node, parent, p);
1560 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1561 list_add(&cic->queue_list, &cfqd->cic_list);
1562 spin_unlock(&cfq_exit_lock);
1563 }
1564
1565 /*
1566 * Setup general io context and cfq io context. There can be several cfq
1567 * io contexts per general io context, if this process is doing io to more
1568 * than one device managed by cfq.
1569 */
1570 static struct cfq_io_context *
1571 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1572 {
1573 struct io_context *ioc = NULL;
1574 struct cfq_io_context *cic;
1575
1576 might_sleep_if(gfp_mask & __GFP_WAIT);
1577
1578 ioc = get_io_context(gfp_mask);
1579 if (!ioc)
1580 return NULL;
1581
1582 cic = cfq_cic_rb_lookup(cfqd, ioc);
1583 if (cic)
1584 goto out;
1585
1586 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1587 if (cic == NULL)
1588 goto err;
1589
1590 cfq_cic_link(cfqd, ioc, cic);
1591 out:
1592 return cic;
1593 err:
1594 put_io_context(ioc);
1595 return NULL;
1596 }
1597
1598 static void
1599 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1600 {
1601 unsigned long elapsed, ttime;
1602
1603 /*
1604 * if this context already has stuff queued, thinktime is from
1605 * last queue not last end
1606 */
1607 #if 0
1608 if (time_after(cic->last_end_request, cic->last_queue))
1609 elapsed = jiffies - cic->last_end_request;
1610 else
1611 elapsed = jiffies - cic->last_queue;
1612 #else
1613 elapsed = jiffies - cic->last_end_request;
1614 #endif
1615
1616 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1617
1618 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1619 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1620 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1621 }
1622
1623 static void
1624 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1625 struct cfq_rq *crq)
1626 {
1627 sector_t sdist;
1628 u64 total;
1629
1630 if (cic->last_request_pos < crq->request->sector)
1631 sdist = crq->request->sector - cic->last_request_pos;
1632 else
1633 sdist = cic->last_request_pos - crq->request->sector;
1634
1635 /*
1636 * Don't allow the seek distance to get too large from the
1637 * odd fragment, pagein, etc
1638 */
1639 if (cic->seek_samples <= 60) /* second&third seek */
1640 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1641 else
1642 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1643
1644 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1645 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1646 total = cic->seek_total + (cic->seek_samples/2);
1647 do_div(total, cic->seek_samples);
1648 cic->seek_mean = (sector_t)total;
1649 }
1650
1651 /*
1652 * Disable idle window if the process thinks too long or seeks so much that
1653 * it doesn't matter
1654 */
1655 static void
1656 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1657 struct cfq_io_context *cic)
1658 {
1659 int enable_idle = cfq_cfqq_idle_window(cfqq);
1660
1661 if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1662 enable_idle = 0;
1663 else if (sample_valid(cic->ttime_samples)) {
1664 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1665 enable_idle = 0;
1666 else
1667 enable_idle = 1;
1668 }
1669
1670 if (enable_idle)
1671 cfq_mark_cfqq_idle_window(cfqq);
1672 else
1673 cfq_clear_cfqq_idle_window(cfqq);
1674 }
1675
1676
1677 /*
1678 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1679 * no or if we aren't sure, a 1 will cause a preempt.
1680 */
1681 static int
1682 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1683 struct cfq_rq *crq)
1684 {
1685 struct cfq_queue *cfqq = cfqd->active_queue;
1686
1687 if (cfq_class_idle(new_cfqq))
1688 return 0;
1689
1690 if (!cfqq)
1691 return 1;
1692
1693 if (cfq_class_idle(cfqq))
1694 return 1;
1695 if (!cfq_cfqq_wait_request(new_cfqq))
1696 return 0;
1697 /*
1698 * if it doesn't have slice left, forget it
1699 */
1700 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1701 return 0;
1702 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1703 return 1;
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1710 * let it have half of its nominal slice.
1711 */
1712 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1713 {
1714 struct cfq_queue *__cfqq, *next;
1715
1716 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1717 cfq_resort_rr_list(__cfqq, 1);
1718
1719 if (!cfqq->slice_left)
1720 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1721
1722 cfqq->slice_end = cfqq->slice_left + jiffies;
1723 __cfq_slice_expired(cfqd, cfqq, 1);
1724 __cfq_set_active_queue(cfqd, cfqq);
1725 }
1726
1727 /*
1728 * should really be a ll_rw_blk.c helper
1729 */
1730 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1731 {
1732 request_queue_t *q = cfqd->queue;
1733
1734 if (!blk_queue_plugged(q))
1735 q->request_fn(q);
1736 else
1737 __generic_unplug_device(q);
1738 }
1739
1740 /*
1741 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1742 * something we should do about it
1743 */
1744 static void
1745 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1746 struct cfq_rq *crq)
1747 {
1748 struct cfq_io_context *cic;
1749
1750 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1751
1752 cic = crq->io_context;
1753
1754 /*
1755 * we never wait for an async request and we don't allow preemption
1756 * of an async request. so just return early
1757 */
1758 if (!cfq_crq_is_sync(crq)) {
1759 /*
1760 * sync process issued an async request, if it's waiting
1761 * then expire it and kick rq handling.
1762 */
1763 if (cic == cfqd->active_cic &&
1764 del_timer(&cfqd->idle_slice_timer)) {
1765 cfq_slice_expired(cfqd, 0);
1766 cfq_start_queueing(cfqd, cfqq);
1767 }
1768 return;
1769 }
1770
1771 cfq_update_io_thinktime(cfqd, cic);
1772 cfq_update_io_seektime(cfqd, cic, crq);
1773 cfq_update_idle_window(cfqd, cfqq, cic);
1774
1775 cic->last_queue = jiffies;
1776 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1777
1778 if (cfqq == cfqd->active_queue) {
1779 /*
1780 * if we are waiting for a request for this queue, let it rip
1781 * immediately and flag that we must not expire this queue
1782 * just now
1783 */
1784 if (cfq_cfqq_wait_request(cfqq)) {
1785 cfq_mark_cfqq_must_dispatch(cfqq);
1786 del_timer(&cfqd->idle_slice_timer);
1787 cfq_start_queueing(cfqd, cfqq);
1788 }
1789 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1790 /*
1791 * not the active queue - expire current slice if it is
1792 * idle and has expired it's mean thinktime or this new queue
1793 * has some old slice time left and is of higher priority
1794 */
1795 cfq_preempt_queue(cfqd, cfqq);
1796 cfq_mark_cfqq_must_dispatch(cfqq);
1797 cfq_start_queueing(cfqd, cfqq);
1798 }
1799 }
1800
1801 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1802 {
1803 struct cfq_data *cfqd = q->elevator->elevator_data;
1804 struct cfq_rq *crq = RQ_DATA(rq);
1805 struct cfq_queue *cfqq = crq->cfq_queue;
1806
1807 cfq_init_prio_data(cfqq);
1808
1809 cfq_add_crq_rb(crq);
1810
1811 list_add_tail(&rq->queuelist, &cfqq->fifo);
1812
1813 if (rq_mergeable(rq))
1814 cfq_add_crq_hash(cfqd, crq);
1815
1816 cfq_crq_enqueued(cfqd, cfqq, crq);
1817 }
1818
1819 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1820 {
1821 struct cfq_rq *crq = RQ_DATA(rq);
1822 struct cfq_queue *cfqq = crq->cfq_queue;
1823 struct cfq_data *cfqd = cfqq->cfqd;
1824 const int sync = cfq_crq_is_sync(crq);
1825 unsigned long now;
1826
1827 now = jiffies;
1828
1829 WARN_ON(!cfqd->rq_in_driver);
1830 WARN_ON(!cfqq->on_dispatch[sync]);
1831 cfqd->rq_in_driver--;
1832 cfqq->on_dispatch[sync]--;
1833
1834 if (!cfq_class_idle(cfqq))
1835 cfqd->last_end_request = now;
1836
1837 if (!cfq_cfqq_dispatched(cfqq)) {
1838 if (cfq_cfqq_on_rr(cfqq)) {
1839 cfqq->service_last = now;
1840 cfq_resort_rr_list(cfqq, 0);
1841 }
1842 cfq_schedule_dispatch(cfqd);
1843 }
1844
1845 if (cfq_crq_is_sync(crq))
1846 crq->io_context->last_end_request = now;
1847 }
1848
1849 static struct request *
1850 cfq_former_request(request_queue_t *q, struct request *rq)
1851 {
1852 struct cfq_rq *crq = RQ_DATA(rq);
1853 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1854
1855 if (rbprev)
1856 return rb_entry_crq(rbprev)->request;
1857
1858 return NULL;
1859 }
1860
1861 static struct request *
1862 cfq_latter_request(request_queue_t *q, struct request *rq)
1863 {
1864 struct cfq_rq *crq = RQ_DATA(rq);
1865 struct rb_node *rbnext = rb_next(&crq->rb_node);
1866
1867 if (rbnext)
1868 return rb_entry_crq(rbnext)->request;
1869
1870 return NULL;
1871 }
1872
1873 /*
1874 * we temporarily boost lower priority queues if they are holding fs exclusive
1875 * resources. they are boosted to normal prio (CLASS_BE/4)
1876 */
1877 static void cfq_prio_boost(struct cfq_queue *cfqq)
1878 {
1879 const int ioprio_class = cfqq->ioprio_class;
1880 const int ioprio = cfqq->ioprio;
1881
1882 if (has_fs_excl()) {
1883 /*
1884 * boost idle prio on transactions that would lock out other
1885 * users of the filesystem
1886 */
1887 if (cfq_class_idle(cfqq))
1888 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1889 if (cfqq->ioprio > IOPRIO_NORM)
1890 cfqq->ioprio = IOPRIO_NORM;
1891 } else {
1892 /*
1893 * check if we need to unboost the queue
1894 */
1895 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1896 cfqq->ioprio_class = cfqq->org_ioprio_class;
1897 if (cfqq->ioprio != cfqq->org_ioprio)
1898 cfqq->ioprio = cfqq->org_ioprio;
1899 }
1900
1901 /*
1902 * refile between round-robin lists if we moved the priority class
1903 */
1904 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1905 cfq_cfqq_on_rr(cfqq))
1906 cfq_resort_rr_list(cfqq, 0);
1907 }
1908
1909 static inline int
1910 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1911 struct task_struct *task, int rw)
1912 {
1913 #if 1
1914 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1915 !cfq_cfqq_must_alloc_slice(cfqq)) {
1916 cfq_mark_cfqq_must_alloc_slice(cfqq);
1917 return ELV_MQUEUE_MUST;
1918 }
1919
1920 return ELV_MQUEUE_MAY;
1921 #else
1922 if (!cfqq || task->flags & PF_MEMALLOC)
1923 return ELV_MQUEUE_MAY;
1924 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1925 if (cfq_cfqq_wait_request(cfqq))
1926 return ELV_MQUEUE_MUST;
1927
1928 /*
1929 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1930 * can quickly flood the queue with writes from a single task
1931 */
1932 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1933 cfq_mark_cfqq_must_alloc_slice(cfqq);
1934 return ELV_MQUEUE_MUST;
1935 }
1936
1937 return ELV_MQUEUE_MAY;
1938 }
1939 if (cfq_class_idle(cfqq))
1940 return ELV_MQUEUE_NO;
1941 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1942 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1943 int ret = ELV_MQUEUE_NO;
1944
1945 if (ioc && ioc->nr_batch_requests)
1946 ret = ELV_MQUEUE_MAY;
1947
1948 put_io_context(ioc);
1949 return ret;
1950 }
1951
1952 return ELV_MQUEUE_MAY;
1953 #endif
1954 }
1955
1956 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1957 {
1958 struct cfq_data *cfqd = q->elevator->elevator_data;
1959 struct task_struct *tsk = current;
1960 struct cfq_queue *cfqq;
1961
1962 /*
1963 * don't force setup of a queue from here, as a call to may_queue
1964 * does not necessarily imply that a request actually will be queued.
1965 * so just lookup a possibly existing queue, or return 'may queue'
1966 * if that fails
1967 */
1968 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1969 if (cfqq) {
1970 cfq_init_prio_data(cfqq);
1971 cfq_prio_boost(cfqq);
1972
1973 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1974 }
1975
1976 return ELV_MQUEUE_MAY;
1977 }
1978
1979 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1980 {
1981 struct cfq_data *cfqd = q->elevator->elevator_data;
1982 struct request_list *rl = &q->rq;
1983
1984 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1985 smp_mb();
1986 if (waitqueue_active(&rl->wait[READ]))
1987 wake_up(&rl->wait[READ]);
1988 }
1989
1990 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1991 smp_mb();
1992 if (waitqueue_active(&rl->wait[WRITE]))
1993 wake_up(&rl->wait[WRITE]);
1994 }
1995 }
1996
1997 /*
1998 * queue lock held here
1999 */
2000 static void cfq_put_request(request_queue_t *q, struct request *rq)
2001 {
2002 struct cfq_data *cfqd = q->elevator->elevator_data;
2003 struct cfq_rq *crq = RQ_DATA(rq);
2004
2005 if (crq) {
2006 struct cfq_queue *cfqq = crq->cfq_queue;
2007 const int rw = rq_data_dir(rq);
2008
2009 BUG_ON(!cfqq->allocated[rw]);
2010 cfqq->allocated[rw]--;
2011
2012 put_io_context(crq->io_context->ioc);
2013
2014 mempool_free(crq, cfqd->crq_pool);
2015 rq->elevator_private = NULL;
2016
2017 cfq_check_waiters(q, cfqq);
2018 cfq_put_queue(cfqq);
2019 }
2020 }
2021
2022 /*
2023 * Allocate cfq data structures associated with this request.
2024 */
2025 static int
2026 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2027 gfp_t gfp_mask)
2028 {
2029 struct cfq_data *cfqd = q->elevator->elevator_data;
2030 struct task_struct *tsk = current;
2031 struct cfq_io_context *cic;
2032 const int rw = rq_data_dir(rq);
2033 pid_t key = cfq_queue_pid(tsk, rw);
2034 struct cfq_queue *cfqq;
2035 struct cfq_rq *crq;
2036 unsigned long flags;
2037 int is_sync = key != CFQ_KEY_ASYNC;
2038
2039 might_sleep_if(gfp_mask & __GFP_WAIT);
2040
2041 cic = cfq_get_io_context(cfqd, gfp_mask);
2042
2043 spin_lock_irqsave(q->queue_lock, flags);
2044
2045 if (!cic)
2046 goto queue_fail;
2047
2048 if (!cic->cfqq[is_sync]) {
2049 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2050 if (!cfqq)
2051 goto queue_fail;
2052
2053 cic->cfqq[is_sync] = cfqq;
2054 } else
2055 cfqq = cic->cfqq[is_sync];
2056
2057 cfqq->allocated[rw]++;
2058 cfq_clear_cfqq_must_alloc(cfqq);
2059 cfqd->rq_starved = 0;
2060 atomic_inc(&cfqq->ref);
2061 spin_unlock_irqrestore(q->queue_lock, flags);
2062
2063 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2064 if (crq) {
2065 RB_CLEAR(&crq->rb_node);
2066 crq->rb_key = 0;
2067 crq->request = rq;
2068 INIT_HLIST_NODE(&crq->hash);
2069 crq->cfq_queue = cfqq;
2070 crq->io_context = cic;
2071
2072 if (is_sync)
2073 cfq_mark_crq_is_sync(crq);
2074 else
2075 cfq_clear_crq_is_sync(crq);
2076
2077 rq->elevator_private = crq;
2078 return 0;
2079 }
2080
2081 spin_lock_irqsave(q->queue_lock, flags);
2082 cfqq->allocated[rw]--;
2083 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2084 cfq_mark_cfqq_must_alloc(cfqq);
2085 cfq_put_queue(cfqq);
2086 queue_fail:
2087 if (cic)
2088 put_io_context(cic->ioc);
2089 /*
2090 * mark us rq allocation starved. we need to kickstart the process
2091 * ourselves if there are no pending requests that can do it for us.
2092 * that would be an extremely rare OOM situation
2093 */
2094 cfqd->rq_starved = 1;
2095 cfq_schedule_dispatch(cfqd);
2096 spin_unlock_irqrestore(q->queue_lock, flags);
2097 return 1;
2098 }
2099
2100 static void cfq_kick_queue(void *data)
2101 {
2102 request_queue_t *q = data;
2103 struct cfq_data *cfqd = q->elevator->elevator_data;
2104 unsigned long flags;
2105
2106 spin_lock_irqsave(q->queue_lock, flags);
2107
2108 if (cfqd->rq_starved) {
2109 struct request_list *rl = &q->rq;
2110
2111 /*
2112 * we aren't guaranteed to get a request after this, but we
2113 * have to be opportunistic
2114 */
2115 smp_mb();
2116 if (waitqueue_active(&rl->wait[READ]))
2117 wake_up(&rl->wait[READ]);
2118 if (waitqueue_active(&rl->wait[WRITE]))
2119 wake_up(&rl->wait[WRITE]);
2120 }
2121
2122 blk_remove_plug(q);
2123 q->request_fn(q);
2124 spin_unlock_irqrestore(q->queue_lock, flags);
2125 }
2126
2127 /*
2128 * Timer running if the active_queue is currently idling inside its time slice
2129 */
2130 static void cfq_idle_slice_timer(unsigned long data)
2131 {
2132 struct cfq_data *cfqd = (struct cfq_data *) data;
2133 struct cfq_queue *cfqq;
2134 unsigned long flags;
2135
2136 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2137
2138 if ((cfqq = cfqd->active_queue) != NULL) {
2139 unsigned long now = jiffies;
2140
2141 /*
2142 * expired
2143 */
2144 if (time_after(now, cfqq->slice_end))
2145 goto expire;
2146
2147 /*
2148 * only expire and reinvoke request handler, if there are
2149 * other queues with pending requests
2150 */
2151 if (!cfqd->busy_queues) {
2152 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2153 add_timer(&cfqd->idle_slice_timer);
2154 goto out_cont;
2155 }
2156
2157 /*
2158 * not expired and it has a request pending, let it dispatch
2159 */
2160 if (!RB_EMPTY(&cfqq->sort_list)) {
2161 cfq_mark_cfqq_must_dispatch(cfqq);
2162 goto out_kick;
2163 }
2164 }
2165 expire:
2166 cfq_slice_expired(cfqd, 0);
2167 out_kick:
2168 cfq_schedule_dispatch(cfqd);
2169 out_cont:
2170 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2171 }
2172
2173 /*
2174 * Timer running if an idle class queue is waiting for service
2175 */
2176 static void cfq_idle_class_timer(unsigned long data)
2177 {
2178 struct cfq_data *cfqd = (struct cfq_data *) data;
2179 unsigned long flags, end;
2180
2181 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2182
2183 /*
2184 * race with a non-idle queue, reset timer
2185 */
2186 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2187 if (!time_after_eq(jiffies, end))
2188 mod_timer(&cfqd->idle_class_timer, end);
2189 else
2190 cfq_schedule_dispatch(cfqd);
2191
2192 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2193 }
2194
2195 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2196 {
2197 del_timer_sync(&cfqd->idle_slice_timer);
2198 del_timer_sync(&cfqd->idle_class_timer);
2199 blk_sync_queue(cfqd->queue);
2200 }
2201
2202 static void cfq_exit_queue(elevator_t *e)
2203 {
2204 struct cfq_data *cfqd = e->elevator_data;
2205 request_queue_t *q = cfqd->queue;
2206
2207 cfq_shutdown_timer_wq(cfqd);
2208
2209 spin_lock(&cfq_exit_lock);
2210 spin_lock_irq(q->queue_lock);
2211
2212 if (cfqd->active_queue)
2213 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2214
2215 while (!list_empty(&cfqd->cic_list)) {
2216 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2217 struct cfq_io_context,
2218 queue_list);
2219 if (cic->cfqq[ASYNC]) {
2220 cfq_put_queue(cic->cfqq[ASYNC]);
2221 cic->cfqq[ASYNC] = NULL;
2222 }
2223 if (cic->cfqq[SYNC]) {
2224 cfq_put_queue(cic->cfqq[SYNC]);
2225 cic->cfqq[SYNC] = NULL;
2226 }
2227 cic->key = NULL;
2228 list_del_init(&cic->queue_list);
2229 }
2230
2231 spin_unlock_irq(q->queue_lock);
2232 spin_unlock(&cfq_exit_lock);
2233
2234 cfq_shutdown_timer_wq(cfqd);
2235
2236 mempool_destroy(cfqd->crq_pool);
2237 kfree(cfqd->crq_hash);
2238 kfree(cfqd->cfq_hash);
2239 kfree(cfqd);
2240 }
2241
2242 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2243 {
2244 struct cfq_data *cfqd;
2245 int i;
2246
2247 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2248 if (!cfqd)
2249 return NULL;
2250
2251 memset(cfqd, 0, sizeof(*cfqd));
2252
2253 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2254 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2255
2256 INIT_LIST_HEAD(&cfqd->busy_rr);
2257 INIT_LIST_HEAD(&cfqd->cur_rr);
2258 INIT_LIST_HEAD(&cfqd->idle_rr);
2259 INIT_LIST_HEAD(&cfqd->empty_list);
2260 INIT_LIST_HEAD(&cfqd->cic_list);
2261
2262 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2263 if (!cfqd->crq_hash)
2264 goto out_crqhash;
2265
2266 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2267 if (!cfqd->cfq_hash)
2268 goto out_cfqhash;
2269
2270 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2271 if (!cfqd->crq_pool)
2272 goto out_crqpool;
2273
2274 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2275 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2276 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2277 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2278
2279 cfqd->queue = q;
2280
2281 cfqd->max_queued = q->nr_requests / 4;
2282 q->nr_batching = cfq_queued;
2283
2284 init_timer(&cfqd->idle_slice_timer);
2285 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2286 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2287
2288 init_timer(&cfqd->idle_class_timer);
2289 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2290 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2291
2292 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2293
2294 cfqd->cfq_queued = cfq_queued;
2295 cfqd->cfq_quantum = cfq_quantum;
2296 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2297 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2298 cfqd->cfq_back_max = cfq_back_max;
2299 cfqd->cfq_back_penalty = cfq_back_penalty;
2300 cfqd->cfq_slice[0] = cfq_slice_async;
2301 cfqd->cfq_slice[1] = cfq_slice_sync;
2302 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2303 cfqd->cfq_slice_idle = cfq_slice_idle;
2304
2305 return cfqd;
2306 out_crqpool:
2307 kfree(cfqd->cfq_hash);
2308 out_cfqhash:
2309 kfree(cfqd->crq_hash);
2310 out_crqhash:
2311 kfree(cfqd);
2312 return NULL;
2313 }
2314
2315 static void cfq_slab_kill(void)
2316 {
2317 if (crq_pool)
2318 kmem_cache_destroy(crq_pool);
2319 if (cfq_pool)
2320 kmem_cache_destroy(cfq_pool);
2321 if (cfq_ioc_pool)
2322 kmem_cache_destroy(cfq_ioc_pool);
2323 }
2324
2325 static int __init cfq_slab_setup(void)
2326 {
2327 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2328 NULL, NULL);
2329 if (!crq_pool)
2330 goto fail;
2331
2332 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2333 NULL, NULL);
2334 if (!cfq_pool)
2335 goto fail;
2336
2337 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2338 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2339 if (!cfq_ioc_pool)
2340 goto fail;
2341
2342 return 0;
2343 fail:
2344 cfq_slab_kill();
2345 return -ENOMEM;
2346 }
2347
2348 /*
2349 * sysfs parts below -->
2350 */
2351
2352 static ssize_t
2353 cfq_var_show(unsigned int var, char *page)
2354 {
2355 return sprintf(page, "%d\n", var);
2356 }
2357
2358 static ssize_t
2359 cfq_var_store(unsigned int *var, const char *page, size_t count)
2360 {
2361 char *p = (char *) page;
2362
2363 *var = simple_strtoul(p, &p, 10);
2364 return count;
2365 }
2366
2367 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2368 static ssize_t __FUNC(elevator_t *e, char *page) \
2369 { \
2370 struct cfq_data *cfqd = e->elevator_data; \
2371 unsigned int __data = __VAR; \
2372 if (__CONV) \
2373 __data = jiffies_to_msecs(__data); \
2374 return cfq_var_show(__data, (page)); \
2375 }
2376 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2377 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2378 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2379 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2380 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2381 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2382 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2383 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2384 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2385 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2386 #undef SHOW_FUNCTION
2387
2388 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2389 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2390 { \
2391 struct cfq_data *cfqd = e->elevator_data; \
2392 unsigned int __data; \
2393 int ret = cfq_var_store(&__data, (page), count); \
2394 if (__data < (MIN)) \
2395 __data = (MIN); \
2396 else if (__data > (MAX)) \
2397 __data = (MAX); \
2398 if (__CONV) \
2399 *(__PTR) = msecs_to_jiffies(__data); \
2400 else \
2401 *(__PTR) = __data; \
2402 return ret; \
2403 }
2404 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2405 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2406 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2407 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2408 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2409 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2410 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2411 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2412 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2413 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2414 #undef STORE_FUNCTION
2415
2416 #define CFQ_ATTR(name) \
2417 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2418
2419 static struct elv_fs_entry cfq_attrs[] = {
2420 CFQ_ATTR(quantum),
2421 CFQ_ATTR(queued),
2422 CFQ_ATTR(fifo_expire_sync),
2423 CFQ_ATTR(fifo_expire_async),
2424 CFQ_ATTR(back_seek_max),
2425 CFQ_ATTR(back_seek_penalty),
2426 CFQ_ATTR(slice_sync),
2427 CFQ_ATTR(slice_async),
2428 CFQ_ATTR(slice_async_rq),
2429 CFQ_ATTR(slice_idle),
2430 __ATTR_NULL
2431 };
2432
2433 static struct elevator_type iosched_cfq = {
2434 .ops = {
2435 .elevator_merge_fn = cfq_merge,
2436 .elevator_merged_fn = cfq_merged_request,
2437 .elevator_merge_req_fn = cfq_merged_requests,
2438 .elevator_dispatch_fn = cfq_dispatch_requests,
2439 .elevator_add_req_fn = cfq_insert_request,
2440 .elevator_activate_req_fn = cfq_activate_request,
2441 .elevator_deactivate_req_fn = cfq_deactivate_request,
2442 .elevator_queue_empty_fn = cfq_queue_empty,
2443 .elevator_completed_req_fn = cfq_completed_request,
2444 .elevator_former_req_fn = cfq_former_request,
2445 .elevator_latter_req_fn = cfq_latter_request,
2446 .elevator_set_req_fn = cfq_set_request,
2447 .elevator_put_req_fn = cfq_put_request,
2448 .elevator_may_queue_fn = cfq_may_queue,
2449 .elevator_init_fn = cfq_init_queue,
2450 .elevator_exit_fn = cfq_exit_queue,
2451 .trim = cfq_trim,
2452 },
2453 .elevator_attrs = cfq_attrs,
2454 .elevator_name = "cfq",
2455 .elevator_owner = THIS_MODULE,
2456 };
2457
2458 static int __init cfq_init(void)
2459 {
2460 int ret;
2461
2462 /*
2463 * could be 0 on HZ < 1000 setups
2464 */
2465 if (!cfq_slice_async)
2466 cfq_slice_async = 1;
2467 if (!cfq_slice_idle)
2468 cfq_slice_idle = 1;
2469
2470 if (cfq_slab_setup())
2471 return -ENOMEM;
2472
2473 ret = elv_register(&iosched_cfq);
2474 if (ret)
2475 cfq_slab_kill();
2476
2477 return ret;
2478 }
2479
2480 static void __exit cfq_exit(void)
2481 {
2482 DECLARE_COMPLETION(all_gone);
2483 elv_unregister(&iosched_cfq);
2484 ioc_gone = &all_gone;
2485 /* ioc_gone's update must be visible before reading ioc_count */
2486 smp_wmb();
2487 if (atomic_read(&ioc_count))
2488 wait_for_completion(ioc_gone);
2489 synchronize_rcu();
2490 cfq_slab_kill();
2491 }
2492
2493 module_init(cfq_init);
2494 module_exit(cfq_exit);
2495
2496 MODULE_AUTHOR("Jens Axboe");
2497 MODULE_LICENSE("GPL");
2498 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.077889 seconds and 6 git commands to generate.