Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37 * offset from end of service tree
38 */
39 #define CFQ_IDLE_DELAY (HZ / 5)
40
41 /*
42 * below this threshold, we consider thinktime immediate
43 */
44 #define CFQ_MIN_TT (2)
45
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
49
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
59
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
62
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
66
67 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71 #define sample_valid(samples) ((samples) > 80)
72 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73
74 /*
75 * Most of our rbtree usage is for sorting with min extraction, so
76 * if we cache the leftmost node we don't have to walk down the tree
77 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78 * move this into the elevator for the rq sorting as well.
79 */
80 struct cfq_rb_root {
81 struct rb_root rb;
82 struct rb_node *left;
83 unsigned count;
84 unsigned total_weight;
85 u64 min_vdisktime;
86 struct rb_node *active;
87 };
88 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
89 .count = 0, .min_vdisktime = 0, }
90
91 /*
92 * Per process-grouping structure
93 */
94 struct cfq_queue {
95 /* reference count */
96 atomic_t ref;
97 /* various state flags, see below */
98 unsigned int flags;
99 /* parent cfq_data */
100 struct cfq_data *cfqd;
101 /* service_tree member */
102 struct rb_node rb_node;
103 /* service_tree key */
104 unsigned long rb_key;
105 /* prio tree member */
106 struct rb_node p_node;
107 /* prio tree root we belong to, if any */
108 struct rb_root *p_root;
109 /* sorted list of pending requests */
110 struct rb_root sort_list;
111 /* if fifo isn't expired, next request to serve */
112 struct request *next_rq;
113 /* requests queued in sort_list */
114 int queued[2];
115 /* currently allocated requests */
116 int allocated[2];
117 /* fifo list of requests in sort_list */
118 struct list_head fifo;
119
120 /* time when queue got scheduled in to dispatch first request. */
121 unsigned long dispatch_start;
122 unsigned int allocated_slice;
123 unsigned int slice_dispatch;
124 /* time when first request from queue completed and slice started. */
125 unsigned long slice_start;
126 unsigned long slice_end;
127 long slice_resid;
128
129 /* pending metadata requests */
130 int meta_pending;
131 /* number of requests that are on the dispatch list or inside driver */
132 int dispatched;
133
134 /* io prio of this group */
135 unsigned short ioprio, org_ioprio;
136 unsigned short ioprio_class, org_ioprio_class;
137
138 pid_t pid;
139
140 u32 seek_history;
141 sector_t last_request_pos;
142
143 struct cfq_rb_root *service_tree;
144 struct cfq_queue *new_cfqq;
145 struct cfq_group *cfqg;
146 struct cfq_group *orig_cfqg;
147 };
148
149 /*
150 * First index in the service_trees.
151 * IDLE is handled separately, so it has negative index
152 */
153 enum wl_prio_t {
154 BE_WORKLOAD = 0,
155 RT_WORKLOAD = 1,
156 IDLE_WORKLOAD = 2,
157 };
158
159 /*
160 * Second index in the service_trees.
161 */
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 bool on_st;
177
178 /* number of cfqq currently on this group */
179 int nr_cfqq;
180
181 /* Per group busy queus average. Useful for workload slice calc. */
182 unsigned int busy_queues_avg[2];
183 /*
184 * rr lists of queues with requests, onle rr for each priority class.
185 * Counts are embedded in the cfq_rb_root
186 */
187 struct cfq_rb_root service_trees[2][3];
188 struct cfq_rb_root service_tree_idle;
189
190 unsigned long saved_workload_slice;
191 enum wl_type_t saved_workload;
192 enum wl_prio_t saved_serving_prio;
193 struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195 struct hlist_node cfqd_node;
196 atomic_t ref;
197 #endif
198 };
199
200 /*
201 * Per block device queue structure
202 */
203 struct cfq_data {
204 struct request_queue *queue;
205 /* Root service tree for cfq_groups */
206 struct cfq_rb_root grp_service_tree;
207 struct cfq_group root_group;
208
209 /*
210 * The priority currently being served
211 */
212 enum wl_prio_t serving_prio;
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
215 struct cfq_group *serving_group;
216 bool noidle_tree_requires_idle;
217
218 /*
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
222 */
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225 unsigned int busy_queues;
226
227 int rq_in_driver;
228 int rq_in_flight[2];
229
230 /*
231 * queue-depth detection
232 */
233 int rq_queued;
234 int hw_tag;
235 /*
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
240 */
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
243
244 /*
245 * idle window management
246 */
247 struct timer_list idle_slice_timer;
248 struct work_struct unplug_work;
249
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
252
253 /*
254 * async queue for each priority case
255 */
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
258
259 sector_t last_position;
260
261 /*
262 * tunables, see top of file
263 */
264 unsigned int cfq_quantum;
265 unsigned int cfq_fifo_expire[2];
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
271 unsigned int cfq_latency;
272 unsigned int cfq_group_isolation;
273
274 struct list_head cic_list;
275
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
280
281 unsigned long last_delayed_sync;
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285 struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291 enum wl_prio_t prio,
292 enum wl_type_t type)
293 {
294 if (!cfqg)
295 return NULL;
296
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
299
300 return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
315 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
316 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name) \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 { \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 } \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 { \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 } \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 { \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_CFQ_GROUP_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
350 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
356 blkg_path(&(cfqg)->blkg), ##args); \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368 for (i = 0; i <= IDLE_WORKLOAD; i++) \
369 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370 : &cfqg->service_tree_idle; \
371 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372 (i == IDLE_WORKLOAD && j == 0); \
373 j++, st = i < IDLE_WORKLOAD ? \
374 &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379 if (cfq_class_idle(cfqq))
380 return IDLE_WORKLOAD;
381 if (cfq_class_rt(cfqq))
382 return RT_WORKLOAD;
383 return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389 if (!cfq_cfqq_sync(cfqq))
390 return ASYNC_WORKLOAD;
391 if (!cfq_cfqq_idle_window(cfqq))
392 return SYNC_NOIDLE_WORKLOAD;
393 return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397 struct cfq_data *cfqd,
398 struct cfq_group *cfqg)
399 {
400 if (wl == IDLE_WORKLOAD)
401 return cfqg->service_tree_idle.count;
402
403 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409 struct cfq_group *cfqg)
410 {
411 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417 struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422 bool is_sync)
423 {
424 return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428 struct cfq_queue *cfqq, bool is_sync)
429 {
430 cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
436 */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
445 */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448 if (cfqd->busy_queues) {
449 cfq_log(cfqd, "schedule dispatch");
450 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451 }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456 struct cfq_data *cfqd = q->elevator->elevator_data;
457
458 return !cfqd->rq_queued;
459 }
460
461 /*
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
465 */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467 unsigned short prio)
468 {
469 const int base_slice = cfqd->cfq_slice[sync];
470
471 WARN_ON(prio >= IOPRIO_BE_NR);
472
473 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484 u64 d = delta << CFQ_SERVICE_SHIFT;
485
486 d = d * BLKIO_WEIGHT_DEFAULT;
487 do_div(d, cfqg->weight);
488 return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493 s64 delta = (s64)(vdisktime - min_vdisktime);
494 if (delta > 0)
495 min_vdisktime = vdisktime;
496
497 return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta < 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511 u64 vdisktime = st->min_vdisktime;
512 struct cfq_group *cfqg;
513
514 if (st->active) {
515 cfqg = rb_entry_cfqg(st->active);
516 vdisktime = cfqg->vdisktime;
517 }
518
519 if (st->left) {
520 cfqg = rb_entry_cfqg(st->left);
521 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522 }
523
524 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
531 */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534 struct cfq_group *cfqg, bool rt)
535 {
536 unsigned min_q, max_q;
537 unsigned mult = cfq_hist_divisor - 1;
538 unsigned round = cfq_hist_divisor / 2;
539 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541 min_q = min(cfqg->busy_queues_avg[rt], busy);
542 max_q = max(cfqg->busy_queues_avg[rt], busy);
543 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544 cfq_hist_divisor;
545 return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551 struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553 return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560 if (cfqd->cfq_latency) {
561 /*
562 * interested queues (we consider only the ones with the same
563 * priority class in the cfq group)
564 */
565 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566 cfq_class_rt(cfqq));
567 unsigned sync_slice = cfqd->cfq_slice[1];
568 unsigned expect_latency = sync_slice * iq;
569 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571 if (expect_latency > group_slice) {
572 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573 /* scale low_slice according to IO priority
574 * and sync vs async */
575 unsigned low_slice =
576 min(slice, base_low_slice * slice / sync_slice);
577 /* the adapted slice value is scaled to fit all iqs
578 * into the target latency */
579 slice = max(slice * group_slice / expect_latency,
580 low_slice);
581 }
582 }
583 cfqq->slice_start = jiffies;
584 cfqq->slice_end = jiffies + slice;
585 cfqq->allocated_slice = slice;
586 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
593 */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596 if (cfq_cfqq_slice_new(cfqq))
597 return 0;
598 if (time_before(jiffies, cfqq->slice_end))
599 return 0;
600
601 return 1;
602 }
603
604 /*
605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606 * We choose the request that is closest to the head right now. Distance
607 * behind the head is penalized and only allowed to a certain extent.
608 */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612 sector_t s1, s2, d1 = 0, d2 = 0;
613 unsigned long back_max;
614 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
616 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618 if (rq1 == NULL || rq1 == rq2)
619 return rq2;
620 if (rq2 == NULL)
621 return rq1;
622
623 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624 return rq1;
625 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626 return rq2;
627 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628 return rq1;
629 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630 return rq2;
631
632 s1 = blk_rq_pos(rq1);
633 s2 = blk_rq_pos(rq2);
634
635 /*
636 * by definition, 1KiB is 2 sectors
637 */
638 back_max = cfqd->cfq_back_max * 2;
639
640 /*
641 * Strict one way elevator _except_ in the case where we allow
642 * short backward seeks which are biased as twice the cost of a
643 * similar forward seek.
644 */
645 if (s1 >= last)
646 d1 = s1 - last;
647 else if (s1 + back_max >= last)
648 d1 = (last - s1) * cfqd->cfq_back_penalty;
649 else
650 wrap |= CFQ_RQ1_WRAP;
651
652 if (s2 >= last)
653 d2 = s2 - last;
654 else if (s2 + back_max >= last)
655 d2 = (last - s2) * cfqd->cfq_back_penalty;
656 else
657 wrap |= CFQ_RQ2_WRAP;
658
659 /* Found required data */
660
661 /*
662 * By doing switch() on the bit mask "wrap" we avoid having to
663 * check two variables for all permutations: --> faster!
664 */
665 switch (wrap) {
666 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667 if (d1 < d2)
668 return rq1;
669 else if (d2 < d1)
670 return rq2;
671 else {
672 if (s1 >= s2)
673 return rq1;
674 else
675 return rq2;
676 }
677
678 case CFQ_RQ2_WRAP:
679 return rq1;
680 case CFQ_RQ1_WRAP:
681 return rq2;
682 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683 default:
684 /*
685 * Since both rqs are wrapped,
686 * start with the one that's further behind head
687 * (--> only *one* back seek required),
688 * since back seek takes more time than forward.
689 */
690 if (s1 <= s2)
691 return rq1;
692 else
693 return rq2;
694 }
695 }
696
697 /*
698 * The below is leftmost cache rbtree addon
699 */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702 /* Service tree is empty */
703 if (!root->count)
704 return NULL;
705
706 if (!root->left)
707 root->left = rb_first(&root->rb);
708
709 if (root->left)
710 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712 return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
720 if (root->left)
721 return rb_entry_cfqg(root->left);
722
723 return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728 rb_erase(n, root);
729 RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734 if (root->left == n)
735 root->left = NULL;
736 rb_erase_init(n, &root->rb);
737 --root->count;
738 }
739
740 /*
741 * would be nice to take fifo expire time into account as well
742 */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745 struct request *last)
746 {
747 struct rb_node *rbnext = rb_next(&last->rb_node);
748 struct rb_node *rbprev = rb_prev(&last->rb_node);
749 struct request *next = NULL, *prev = NULL;
750
751 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753 if (rbprev)
754 prev = rb_entry_rq(rbprev);
755
756 if (rbnext)
757 next = rb_entry_rq(rbnext);
758 else {
759 rbnext = rb_first(&cfqq->sort_list);
760 if (rbnext && rbnext != &last->rb_node)
761 next = rb_entry_rq(rbnext);
762 }
763
764 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768 struct cfq_queue *cfqq)
769 {
770 /*
771 * just an approximation, should be ok.
772 */
773 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780 return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786 struct rb_node **node = &st->rb.rb_node;
787 struct rb_node *parent = NULL;
788 struct cfq_group *__cfqg;
789 s64 key = cfqg_key(st, cfqg);
790 int left = 1;
791
792 while (*node != NULL) {
793 parent = *node;
794 __cfqg = rb_entry_cfqg(parent);
795
796 if (key < cfqg_key(st, __cfqg))
797 node = &parent->rb_left;
798 else {
799 node = &parent->rb_right;
800 left = 0;
801 }
802 }
803
804 if (left)
805 st->left = &cfqg->rb_node;
806
807 rb_link_node(&cfqg->rb_node, parent, node);
808 rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814 struct cfq_rb_root *st = &cfqd->grp_service_tree;
815 struct cfq_group *__cfqg;
816 struct rb_node *n;
817
818 cfqg->nr_cfqq++;
819 if (cfqg->on_st)
820 return;
821
822 /*
823 * Currently put the group at the end. Later implement something
824 * so that groups get lesser vtime based on their weights, so that
825 * if group does not loose all if it was not continously backlogged.
826 */
827 n = rb_last(&st->rb);
828 if (n) {
829 __cfqg = rb_entry_cfqg(n);
830 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831 } else
832 cfqg->vdisktime = st->min_vdisktime;
833
834 __cfq_group_service_tree_add(st, cfqg);
835 cfqg->on_st = true;
836 st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842 struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844 if (st->active == &cfqg->rb_node)
845 st->active = NULL;
846
847 BUG_ON(cfqg->nr_cfqq < 1);
848 cfqg->nr_cfqq--;
849
850 /* If there are other cfq queues under this group, don't delete it */
851 if (cfqg->nr_cfqq)
852 return;
853
854 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855 cfqg->on_st = false;
856 st->total_weight -= cfqg->weight;
857 if (!RB_EMPTY_NODE(&cfqg->rb_node))
858 cfq_rb_erase(&cfqg->rb_node, st);
859 cfqg->saved_workload_slice = 0;
860 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865 unsigned int slice_used;
866
867 /*
868 * Queue got expired before even a single request completed or
869 * got expired immediately after first request completion.
870 */
871 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872 /*
873 * Also charge the seek time incurred to the group, otherwise
874 * if there are mutiple queues in the group, each can dispatch
875 * a single request on seeky media and cause lots of seek time
876 * and group will never know it.
877 */
878 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879 1);
880 } else {
881 slice_used = jiffies - cfqq->slice_start;
882 if (slice_used > cfqq->allocated_slice)
883 slice_used = cfqq->allocated_slice;
884 }
885
886 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
887 return slice_used;
888 }
889
890 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
891 struct cfq_queue *cfqq)
892 {
893 struct cfq_rb_root *st = &cfqd->grp_service_tree;
894 unsigned int used_sl, charge_sl;
895 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
896 - cfqg->service_tree_idle.count;
897
898 BUG_ON(nr_sync < 0);
899 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
900
901 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
902 charge_sl = cfqq->allocated_slice;
903
904 /* Can't update vdisktime while group is on service tree */
905 cfq_rb_erase(&cfqg->rb_node, st);
906 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
907 __cfq_group_service_tree_add(st, cfqg);
908
909 /* This group is being expired. Save the context */
910 if (time_after(cfqd->workload_expires, jiffies)) {
911 cfqg->saved_workload_slice = cfqd->workload_expires
912 - jiffies;
913 cfqg->saved_workload = cfqd->serving_type;
914 cfqg->saved_serving_prio = cfqd->serving_prio;
915 } else
916 cfqg->saved_workload_slice = 0;
917
918 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
919 st->min_vdisktime);
920 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
921 blkiocg_set_start_empty_time(&cfqg->blkg);
922 }
923
924 #ifdef CONFIG_CFQ_GROUP_IOSCHED
925 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
926 {
927 if (blkg)
928 return container_of(blkg, struct cfq_group, blkg);
929 return NULL;
930 }
931
932 void
933 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
934 {
935 cfqg_of_blkg(blkg)->weight = weight;
936 }
937
938 static struct cfq_group *
939 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
940 {
941 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
942 struct cfq_group *cfqg = NULL;
943 void *key = cfqd;
944 int i, j;
945 struct cfq_rb_root *st;
946 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
947 unsigned int major, minor;
948
949 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
950 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
951 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
952 cfqg->blkg.dev = MKDEV(major, minor);
953 goto done;
954 }
955 if (cfqg || !create)
956 goto done;
957
958 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
959 if (!cfqg)
960 goto done;
961
962 for_each_cfqg_st(cfqg, i, j, st)
963 *st = CFQ_RB_ROOT;
964 RB_CLEAR_NODE(&cfqg->rb_node);
965
966 /*
967 * Take the initial reference that will be released on destroy
968 * This can be thought of a joint reference by cgroup and
969 * elevator which will be dropped by either elevator exit
970 * or cgroup deletion path depending on who is exiting first.
971 */
972 atomic_set(&cfqg->ref, 1);
973
974 /* Add group onto cgroup list */
975 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
976 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
977 MKDEV(major, minor));
978 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
979
980 /* Add group on cfqd list */
981 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
982
983 done:
984 return cfqg;
985 }
986
987 /*
988 * Search for the cfq group current task belongs to. If create = 1, then also
989 * create the cfq group if it does not exist. request_queue lock must be held.
990 */
991 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
992 {
993 struct cgroup *cgroup;
994 struct cfq_group *cfqg = NULL;
995
996 rcu_read_lock();
997 cgroup = task_cgroup(current, blkio_subsys_id);
998 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
999 if (!cfqg && create)
1000 cfqg = &cfqd->root_group;
1001 rcu_read_unlock();
1002 return cfqg;
1003 }
1004
1005 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1006 {
1007 atomic_inc(&cfqg->ref);
1008 return cfqg;
1009 }
1010
1011 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1012 {
1013 /* Currently, all async queues are mapped to root group */
1014 if (!cfq_cfqq_sync(cfqq))
1015 cfqg = &cfqq->cfqd->root_group;
1016
1017 cfqq->cfqg = cfqg;
1018 /* cfqq reference on cfqg */
1019 atomic_inc(&cfqq->cfqg->ref);
1020 }
1021
1022 static void cfq_put_cfqg(struct cfq_group *cfqg)
1023 {
1024 struct cfq_rb_root *st;
1025 int i, j;
1026
1027 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1028 if (!atomic_dec_and_test(&cfqg->ref))
1029 return;
1030 for_each_cfqg_st(cfqg, i, j, st)
1031 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1032 kfree(cfqg);
1033 }
1034
1035 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1036 {
1037 /* Something wrong if we are trying to remove same group twice */
1038 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1039
1040 hlist_del_init(&cfqg->cfqd_node);
1041
1042 /*
1043 * Put the reference taken at the time of creation so that when all
1044 * queues are gone, group can be destroyed.
1045 */
1046 cfq_put_cfqg(cfqg);
1047 }
1048
1049 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1050 {
1051 struct hlist_node *pos, *n;
1052 struct cfq_group *cfqg;
1053
1054 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1055 /*
1056 * If cgroup removal path got to blk_group first and removed
1057 * it from cgroup list, then it will take care of destroying
1058 * cfqg also.
1059 */
1060 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1061 cfq_destroy_cfqg(cfqd, cfqg);
1062 }
1063 }
1064
1065 /*
1066 * Blk cgroup controller notification saying that blkio_group object is being
1067 * delinked as associated cgroup object is going away. That also means that
1068 * no new IO will come in this group. So get rid of this group as soon as
1069 * any pending IO in the group is finished.
1070 *
1071 * This function is called under rcu_read_lock(). key is the rcu protected
1072 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1073 * read lock.
1074 *
1075 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1076 * it should not be NULL as even if elevator was exiting, cgroup deltion
1077 * path got to it first.
1078 */
1079 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1080 {
1081 unsigned long flags;
1082 struct cfq_data *cfqd = key;
1083
1084 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1085 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1086 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1087 }
1088
1089 #else /* GROUP_IOSCHED */
1090 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1091 {
1092 return &cfqd->root_group;
1093 }
1094
1095 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1096 {
1097 return cfqg;
1098 }
1099
1100 static inline void
1101 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1102 cfqq->cfqg = cfqg;
1103 }
1104
1105 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1106 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1107
1108 #endif /* GROUP_IOSCHED */
1109
1110 /*
1111 * The cfqd->service_trees holds all pending cfq_queue's that have
1112 * requests waiting to be processed. It is sorted in the order that
1113 * we will service the queues.
1114 */
1115 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116 bool add_front)
1117 {
1118 struct rb_node **p, *parent;
1119 struct cfq_queue *__cfqq;
1120 unsigned long rb_key;
1121 struct cfq_rb_root *service_tree;
1122 int left;
1123 int new_cfqq = 1;
1124 int group_changed = 0;
1125
1126 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1127 if (!cfqd->cfq_group_isolation
1128 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1129 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1130 /* Move this cfq to root group */
1131 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfqq->orig_cfqg = cfqq->cfqg;
1135 cfqq->cfqg = &cfqd->root_group;
1136 atomic_inc(&cfqd->root_group.ref);
1137 group_changed = 1;
1138 } else if (!cfqd->cfq_group_isolation
1139 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1140 /* cfqq is sequential now needs to go to its original group */
1141 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1142 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1143 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1144 cfq_put_cfqg(cfqq->cfqg);
1145 cfqq->cfqg = cfqq->orig_cfqg;
1146 cfqq->orig_cfqg = NULL;
1147 group_changed = 1;
1148 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1149 }
1150 #endif
1151
1152 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1153 cfqq_type(cfqq));
1154 if (cfq_class_idle(cfqq)) {
1155 rb_key = CFQ_IDLE_DELAY;
1156 parent = rb_last(&service_tree->rb);
1157 if (parent && parent != &cfqq->rb_node) {
1158 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159 rb_key += __cfqq->rb_key;
1160 } else
1161 rb_key += jiffies;
1162 } else if (!add_front) {
1163 /*
1164 * Get our rb key offset. Subtract any residual slice
1165 * value carried from last service. A negative resid
1166 * count indicates slice overrun, and this should position
1167 * the next service time further away in the tree.
1168 */
1169 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170 rb_key -= cfqq->slice_resid;
1171 cfqq->slice_resid = 0;
1172 } else {
1173 rb_key = -HZ;
1174 __cfqq = cfq_rb_first(service_tree);
1175 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1176 }
1177
1178 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179 new_cfqq = 0;
1180 /*
1181 * same position, nothing more to do
1182 */
1183 if (rb_key == cfqq->rb_key &&
1184 cfqq->service_tree == service_tree)
1185 return;
1186
1187 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1188 cfqq->service_tree = NULL;
1189 }
1190
1191 left = 1;
1192 parent = NULL;
1193 cfqq->service_tree = service_tree;
1194 p = &service_tree->rb.rb_node;
1195 while (*p) {
1196 struct rb_node **n;
1197
1198 parent = *p;
1199 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1200
1201 /*
1202 * sort by key, that represents service time.
1203 */
1204 if (time_before(rb_key, __cfqq->rb_key))
1205 n = &(*p)->rb_left;
1206 else {
1207 n = &(*p)->rb_right;
1208 left = 0;
1209 }
1210
1211 p = n;
1212 }
1213
1214 if (left)
1215 service_tree->left = &cfqq->rb_node;
1216
1217 cfqq->rb_key = rb_key;
1218 rb_link_node(&cfqq->rb_node, parent, p);
1219 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1220 service_tree->count++;
1221 if ((add_front || !new_cfqq) && !group_changed)
1222 return;
1223 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1224 }
1225
1226 static struct cfq_queue *
1227 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1228 sector_t sector, struct rb_node **ret_parent,
1229 struct rb_node ***rb_link)
1230 {
1231 struct rb_node **p, *parent;
1232 struct cfq_queue *cfqq = NULL;
1233
1234 parent = NULL;
1235 p = &root->rb_node;
1236 while (*p) {
1237 struct rb_node **n;
1238
1239 parent = *p;
1240 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1241
1242 /*
1243 * Sort strictly based on sector. Smallest to the left,
1244 * largest to the right.
1245 */
1246 if (sector > blk_rq_pos(cfqq->next_rq))
1247 n = &(*p)->rb_right;
1248 else if (sector < blk_rq_pos(cfqq->next_rq))
1249 n = &(*p)->rb_left;
1250 else
1251 break;
1252 p = n;
1253 cfqq = NULL;
1254 }
1255
1256 *ret_parent = parent;
1257 if (rb_link)
1258 *rb_link = p;
1259 return cfqq;
1260 }
1261
1262 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263 {
1264 struct rb_node **p, *parent;
1265 struct cfq_queue *__cfqq;
1266
1267 if (cfqq->p_root) {
1268 rb_erase(&cfqq->p_node, cfqq->p_root);
1269 cfqq->p_root = NULL;
1270 }
1271
1272 if (cfq_class_idle(cfqq))
1273 return;
1274 if (!cfqq->next_rq)
1275 return;
1276
1277 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1279 blk_rq_pos(cfqq->next_rq), &parent, &p);
1280 if (!__cfqq) {
1281 rb_link_node(&cfqq->p_node, parent, p);
1282 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1283 } else
1284 cfqq->p_root = NULL;
1285 }
1286
1287 /*
1288 * Update cfqq's position in the service tree.
1289 */
1290 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 {
1292 /*
1293 * Resorting requires the cfqq to be on the RR list already.
1294 */
1295 if (cfq_cfqq_on_rr(cfqq)) {
1296 cfq_service_tree_add(cfqd, cfqq, 0);
1297 cfq_prio_tree_add(cfqd, cfqq);
1298 }
1299 }
1300
1301 /*
1302 * add to busy list of queues for service, trying to be fair in ordering
1303 * the pending list according to last request service
1304 */
1305 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1308 BUG_ON(cfq_cfqq_on_rr(cfqq));
1309 cfq_mark_cfqq_on_rr(cfqq);
1310 cfqd->busy_queues++;
1311
1312 cfq_resort_rr_list(cfqd, cfqq);
1313 }
1314
1315 /*
1316 * Called when the cfqq no longer has requests pending, remove it from
1317 * the service tree.
1318 */
1319 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320 {
1321 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1322 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1323 cfq_clear_cfqq_on_rr(cfqq);
1324
1325 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1326 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1327 cfqq->service_tree = NULL;
1328 }
1329 if (cfqq->p_root) {
1330 rb_erase(&cfqq->p_node, cfqq->p_root);
1331 cfqq->p_root = NULL;
1332 }
1333
1334 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1335 BUG_ON(!cfqd->busy_queues);
1336 cfqd->busy_queues--;
1337 }
1338
1339 /*
1340 * rb tree support functions
1341 */
1342 static void cfq_del_rq_rb(struct request *rq)
1343 {
1344 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1345 const int sync = rq_is_sync(rq);
1346
1347 BUG_ON(!cfqq->queued[sync]);
1348 cfqq->queued[sync]--;
1349
1350 elv_rb_del(&cfqq->sort_list, rq);
1351
1352 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1353 /*
1354 * Queue will be deleted from service tree when we actually
1355 * expire it later. Right now just remove it from prio tree
1356 * as it is empty.
1357 */
1358 if (cfqq->p_root) {
1359 rb_erase(&cfqq->p_node, cfqq->p_root);
1360 cfqq->p_root = NULL;
1361 }
1362 }
1363 }
1364
1365 static void cfq_add_rq_rb(struct request *rq)
1366 {
1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1368 struct cfq_data *cfqd = cfqq->cfqd;
1369 struct request *__alias, *prev;
1370
1371 cfqq->queued[rq_is_sync(rq)]++;
1372
1373 /*
1374 * looks a little odd, but the first insert might return an alias.
1375 * if that happens, put the alias on the dispatch list
1376 */
1377 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1378 cfq_dispatch_insert(cfqd->queue, __alias);
1379
1380 if (!cfq_cfqq_on_rr(cfqq))
1381 cfq_add_cfqq_rr(cfqd, cfqq);
1382
1383 /*
1384 * check if this request is a better next-serve candidate
1385 */
1386 prev = cfqq->next_rq;
1387 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388
1389 /*
1390 * adjust priority tree position, if ->next_rq changes
1391 */
1392 if (prev != cfqq->next_rq)
1393 cfq_prio_tree_add(cfqd, cfqq);
1394
1395 BUG_ON(!cfqq->next_rq);
1396 }
1397
1398 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1399 {
1400 elv_rb_del(&cfqq->sort_list, rq);
1401 cfqq->queued[rq_is_sync(rq)]--;
1402 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1403 rq_is_sync(rq));
1404 cfq_add_rq_rb(rq);
1405 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1406 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1407 rq_is_sync(rq));
1408 }
1409
1410 static struct request *
1411 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1412 {
1413 struct task_struct *tsk = current;
1414 struct cfq_io_context *cic;
1415 struct cfq_queue *cfqq;
1416
1417 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1418 if (!cic)
1419 return NULL;
1420
1421 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1422 if (cfqq) {
1423 sector_t sector = bio->bi_sector + bio_sectors(bio);
1424
1425 return elv_rb_find(&cfqq->sort_list, sector);
1426 }
1427
1428 return NULL;
1429 }
1430
1431 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1432 {
1433 struct cfq_data *cfqd = q->elevator->elevator_data;
1434
1435 cfqd->rq_in_driver++;
1436 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1437 cfqd->rq_in_driver);
1438
1439 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1440 }
1441
1442 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1443 {
1444 struct cfq_data *cfqd = q->elevator->elevator_data;
1445
1446 WARN_ON(!cfqd->rq_in_driver);
1447 cfqd->rq_in_driver--;
1448 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1449 cfqd->rq_in_driver);
1450 }
1451
1452 static void cfq_remove_request(struct request *rq)
1453 {
1454 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1455
1456 if (cfqq->next_rq == rq)
1457 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1458
1459 list_del_init(&rq->queuelist);
1460 cfq_del_rq_rb(rq);
1461
1462 cfqq->cfqd->rq_queued--;
1463 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
1464 rq_is_sync(rq));
1465 if (rq_is_meta(rq)) {
1466 WARN_ON(!cfqq->meta_pending);
1467 cfqq->meta_pending--;
1468 }
1469 }
1470
1471 static int cfq_merge(struct request_queue *q, struct request **req,
1472 struct bio *bio)
1473 {
1474 struct cfq_data *cfqd = q->elevator->elevator_data;
1475 struct request *__rq;
1476
1477 __rq = cfq_find_rq_fmerge(cfqd, bio);
1478 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1479 *req = __rq;
1480 return ELEVATOR_FRONT_MERGE;
1481 }
1482
1483 return ELEVATOR_NO_MERGE;
1484 }
1485
1486 static void cfq_merged_request(struct request_queue *q, struct request *req,
1487 int type)
1488 {
1489 if (type == ELEVATOR_FRONT_MERGE) {
1490 struct cfq_queue *cfqq = RQ_CFQQ(req);
1491
1492 cfq_reposition_rq_rb(cfqq, req);
1493 }
1494 }
1495
1496 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1497 struct bio *bio)
1498 {
1499 blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
1500 cfq_bio_sync(bio));
1501 }
1502
1503 static void
1504 cfq_merged_requests(struct request_queue *q, struct request *rq,
1505 struct request *next)
1506 {
1507 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1508 /*
1509 * reposition in fifo if next is older than rq
1510 */
1511 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1512 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1513 list_move(&rq->queuelist, &next->queuelist);
1514 rq_set_fifo_time(rq, rq_fifo_time(next));
1515 }
1516
1517 if (cfqq->next_rq == next)
1518 cfqq->next_rq = rq;
1519 cfq_remove_request(next);
1520 blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
1521 rq_is_sync(next));
1522 }
1523
1524 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1525 struct bio *bio)
1526 {
1527 struct cfq_data *cfqd = q->elevator->elevator_data;
1528 struct cfq_io_context *cic;
1529 struct cfq_queue *cfqq;
1530
1531 /*
1532 * Disallow merge of a sync bio into an async request.
1533 */
1534 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1535 return false;
1536
1537 /*
1538 * Lookup the cfqq that this bio will be queued with. Allow
1539 * merge only if rq is queued there.
1540 */
1541 cic = cfq_cic_lookup(cfqd, current->io_context);
1542 if (!cic)
1543 return false;
1544
1545 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1546 return cfqq == RQ_CFQQ(rq);
1547 }
1548
1549 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1550 {
1551 del_timer(&cfqd->idle_slice_timer);
1552 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1553 }
1554
1555 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1556 struct cfq_queue *cfqq)
1557 {
1558 if (cfqq) {
1559 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1560 cfqd->serving_prio, cfqd->serving_type);
1561 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1562 cfqq->slice_start = 0;
1563 cfqq->dispatch_start = jiffies;
1564 cfqq->allocated_slice = 0;
1565 cfqq->slice_end = 0;
1566 cfqq->slice_dispatch = 0;
1567
1568 cfq_clear_cfqq_wait_request(cfqq);
1569 cfq_clear_cfqq_must_dispatch(cfqq);
1570 cfq_clear_cfqq_must_alloc_slice(cfqq);
1571 cfq_clear_cfqq_fifo_expire(cfqq);
1572 cfq_mark_cfqq_slice_new(cfqq);
1573
1574 cfq_del_timer(cfqd, cfqq);
1575 }
1576
1577 cfqd->active_queue = cfqq;
1578 }
1579
1580 /*
1581 * current cfqq expired its slice (or was too idle), select new one
1582 */
1583 static void
1584 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1585 bool timed_out)
1586 {
1587 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1588
1589 if (cfq_cfqq_wait_request(cfqq))
1590 cfq_del_timer(cfqd, cfqq);
1591
1592 cfq_clear_cfqq_wait_request(cfqq);
1593 cfq_clear_cfqq_wait_busy(cfqq);
1594
1595 /*
1596 * If this cfqq is shared between multiple processes, check to
1597 * make sure that those processes are still issuing I/Os within
1598 * the mean seek distance. If not, it may be time to break the
1599 * queues apart again.
1600 */
1601 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1602 cfq_mark_cfqq_split_coop(cfqq);
1603
1604 /*
1605 * store what was left of this slice, if the queue idled/timed out
1606 */
1607 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1608 cfqq->slice_resid = cfqq->slice_end - jiffies;
1609 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1610 }
1611
1612 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1613
1614 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1615 cfq_del_cfqq_rr(cfqd, cfqq);
1616
1617 cfq_resort_rr_list(cfqd, cfqq);
1618
1619 if (cfqq == cfqd->active_queue)
1620 cfqd->active_queue = NULL;
1621
1622 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1623 cfqd->grp_service_tree.active = NULL;
1624
1625 if (cfqd->active_cic) {
1626 put_io_context(cfqd->active_cic->ioc);
1627 cfqd->active_cic = NULL;
1628 }
1629 }
1630
1631 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1632 {
1633 struct cfq_queue *cfqq = cfqd->active_queue;
1634
1635 if (cfqq)
1636 __cfq_slice_expired(cfqd, cfqq, timed_out);
1637 }
1638
1639 /*
1640 * Get next queue for service. Unless we have a queue preemption,
1641 * we'll simply select the first cfqq in the service tree.
1642 */
1643 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1644 {
1645 struct cfq_rb_root *service_tree =
1646 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1647 cfqd->serving_type);
1648
1649 if (!cfqd->rq_queued)
1650 return NULL;
1651
1652 /* There is nothing to dispatch */
1653 if (!service_tree)
1654 return NULL;
1655 if (RB_EMPTY_ROOT(&service_tree->rb))
1656 return NULL;
1657 return cfq_rb_first(service_tree);
1658 }
1659
1660 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1661 {
1662 struct cfq_group *cfqg;
1663 struct cfq_queue *cfqq;
1664 int i, j;
1665 struct cfq_rb_root *st;
1666
1667 if (!cfqd->rq_queued)
1668 return NULL;
1669
1670 cfqg = cfq_get_next_cfqg(cfqd);
1671 if (!cfqg)
1672 return NULL;
1673
1674 for_each_cfqg_st(cfqg, i, j, st)
1675 if ((cfqq = cfq_rb_first(st)) != NULL)
1676 return cfqq;
1677 return NULL;
1678 }
1679
1680 /*
1681 * Get and set a new active queue for service.
1682 */
1683 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1684 struct cfq_queue *cfqq)
1685 {
1686 if (!cfqq)
1687 cfqq = cfq_get_next_queue(cfqd);
1688
1689 __cfq_set_active_queue(cfqd, cfqq);
1690 return cfqq;
1691 }
1692
1693 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1694 struct request *rq)
1695 {
1696 if (blk_rq_pos(rq) >= cfqd->last_position)
1697 return blk_rq_pos(rq) - cfqd->last_position;
1698 else
1699 return cfqd->last_position - blk_rq_pos(rq);
1700 }
1701
1702 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1703 struct request *rq)
1704 {
1705 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1706 }
1707
1708 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1709 struct cfq_queue *cur_cfqq)
1710 {
1711 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1712 struct rb_node *parent, *node;
1713 struct cfq_queue *__cfqq;
1714 sector_t sector = cfqd->last_position;
1715
1716 if (RB_EMPTY_ROOT(root))
1717 return NULL;
1718
1719 /*
1720 * First, if we find a request starting at the end of the last
1721 * request, choose it.
1722 */
1723 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1724 if (__cfqq)
1725 return __cfqq;
1726
1727 /*
1728 * If the exact sector wasn't found, the parent of the NULL leaf
1729 * will contain the closest sector.
1730 */
1731 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1732 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1733 return __cfqq;
1734
1735 if (blk_rq_pos(__cfqq->next_rq) < sector)
1736 node = rb_next(&__cfqq->p_node);
1737 else
1738 node = rb_prev(&__cfqq->p_node);
1739 if (!node)
1740 return NULL;
1741
1742 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1743 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1744 return __cfqq;
1745
1746 return NULL;
1747 }
1748
1749 /*
1750 * cfqd - obvious
1751 * cur_cfqq - passed in so that we don't decide that the current queue is
1752 * closely cooperating with itself.
1753 *
1754 * So, basically we're assuming that that cur_cfqq has dispatched at least
1755 * one request, and that cfqd->last_position reflects a position on the disk
1756 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1757 * assumption.
1758 */
1759 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1760 struct cfq_queue *cur_cfqq)
1761 {
1762 struct cfq_queue *cfqq;
1763
1764 if (cfq_class_idle(cur_cfqq))
1765 return NULL;
1766 if (!cfq_cfqq_sync(cur_cfqq))
1767 return NULL;
1768 if (CFQQ_SEEKY(cur_cfqq))
1769 return NULL;
1770
1771 /*
1772 * Don't search priority tree if it's the only queue in the group.
1773 */
1774 if (cur_cfqq->cfqg->nr_cfqq == 1)
1775 return NULL;
1776
1777 /*
1778 * We should notice if some of the queues are cooperating, eg
1779 * working closely on the same area of the disk. In that case,
1780 * we can group them together and don't waste time idling.
1781 */
1782 cfqq = cfqq_close(cfqd, cur_cfqq);
1783 if (!cfqq)
1784 return NULL;
1785
1786 /* If new queue belongs to different cfq_group, don't choose it */
1787 if (cur_cfqq->cfqg != cfqq->cfqg)
1788 return NULL;
1789
1790 /*
1791 * It only makes sense to merge sync queues.
1792 */
1793 if (!cfq_cfqq_sync(cfqq))
1794 return NULL;
1795 if (CFQQ_SEEKY(cfqq))
1796 return NULL;
1797
1798 /*
1799 * Do not merge queues of different priority classes
1800 */
1801 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1802 return NULL;
1803
1804 return cfqq;
1805 }
1806
1807 /*
1808 * Determine whether we should enforce idle window for this queue.
1809 */
1810
1811 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1812 {
1813 enum wl_prio_t prio = cfqq_prio(cfqq);
1814 struct cfq_rb_root *service_tree = cfqq->service_tree;
1815
1816 BUG_ON(!service_tree);
1817 BUG_ON(!service_tree->count);
1818
1819 /* We never do for idle class queues. */
1820 if (prio == IDLE_WORKLOAD)
1821 return false;
1822
1823 /* We do for queues that were marked with idle window flag. */
1824 if (cfq_cfqq_idle_window(cfqq) &&
1825 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1826 return true;
1827
1828 /*
1829 * Otherwise, we do only if they are the last ones
1830 * in their service tree.
1831 */
1832 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1833 return 1;
1834 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1835 service_tree->count);
1836 return 0;
1837 }
1838
1839 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1840 {
1841 struct cfq_queue *cfqq = cfqd->active_queue;
1842 struct cfq_io_context *cic;
1843 unsigned long sl;
1844
1845 /*
1846 * SSD device without seek penalty, disable idling. But only do so
1847 * for devices that support queuing, otherwise we still have a problem
1848 * with sync vs async workloads.
1849 */
1850 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1851 return;
1852
1853 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1854 WARN_ON(cfq_cfqq_slice_new(cfqq));
1855
1856 /*
1857 * idle is disabled, either manually or by past process history
1858 */
1859 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1860 return;
1861
1862 /*
1863 * still active requests from this queue, don't idle
1864 */
1865 if (cfqq->dispatched)
1866 return;
1867
1868 /*
1869 * task has exited, don't wait
1870 */
1871 cic = cfqd->active_cic;
1872 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1873 return;
1874
1875 /*
1876 * If our average think time is larger than the remaining time
1877 * slice, then don't idle. This avoids overrunning the allotted
1878 * time slice.
1879 */
1880 if (sample_valid(cic->ttime_samples) &&
1881 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1882 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1883 cic->ttime_mean);
1884 return;
1885 }
1886
1887 cfq_mark_cfqq_wait_request(cfqq);
1888
1889 sl = cfqd->cfq_slice_idle;
1890
1891 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1892 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1893 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1894 }
1895
1896 /*
1897 * Move request from internal lists to the request queue dispatch list.
1898 */
1899 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1900 {
1901 struct cfq_data *cfqd = q->elevator->elevator_data;
1902 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1903
1904 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1905
1906 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1907 cfq_remove_request(rq);
1908 cfqq->dispatched++;
1909 elv_dispatch_sort(q, rq);
1910
1911 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1912 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1913 rq_data_dir(rq), rq_is_sync(rq));
1914 }
1915
1916 /*
1917 * return expired entry, or NULL to just start from scratch in rbtree
1918 */
1919 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1920 {
1921 struct request *rq = NULL;
1922
1923 if (cfq_cfqq_fifo_expire(cfqq))
1924 return NULL;
1925
1926 cfq_mark_cfqq_fifo_expire(cfqq);
1927
1928 if (list_empty(&cfqq->fifo))
1929 return NULL;
1930
1931 rq = rq_entry_fifo(cfqq->fifo.next);
1932 if (time_before(jiffies, rq_fifo_time(rq)))
1933 rq = NULL;
1934
1935 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1936 return rq;
1937 }
1938
1939 static inline int
1940 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1941 {
1942 const int base_rq = cfqd->cfq_slice_async_rq;
1943
1944 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1945
1946 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1947 }
1948
1949 /*
1950 * Must be called with the queue_lock held.
1951 */
1952 static int cfqq_process_refs(struct cfq_queue *cfqq)
1953 {
1954 int process_refs, io_refs;
1955
1956 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1957 process_refs = atomic_read(&cfqq->ref) - io_refs;
1958 BUG_ON(process_refs < 0);
1959 return process_refs;
1960 }
1961
1962 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1963 {
1964 int process_refs, new_process_refs;
1965 struct cfq_queue *__cfqq;
1966
1967 /* Avoid a circular list and skip interim queue merges */
1968 while ((__cfqq = new_cfqq->new_cfqq)) {
1969 if (__cfqq == cfqq)
1970 return;
1971 new_cfqq = __cfqq;
1972 }
1973
1974 process_refs = cfqq_process_refs(cfqq);
1975 /*
1976 * If the process for the cfqq has gone away, there is no
1977 * sense in merging the queues.
1978 */
1979 if (process_refs == 0)
1980 return;
1981
1982 /*
1983 * Merge in the direction of the lesser amount of work.
1984 */
1985 new_process_refs = cfqq_process_refs(new_cfqq);
1986 if (new_process_refs >= process_refs) {
1987 cfqq->new_cfqq = new_cfqq;
1988 atomic_add(process_refs, &new_cfqq->ref);
1989 } else {
1990 new_cfqq->new_cfqq = cfqq;
1991 atomic_add(new_process_refs, &cfqq->ref);
1992 }
1993 }
1994
1995 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1996 struct cfq_group *cfqg, enum wl_prio_t prio)
1997 {
1998 struct cfq_queue *queue;
1999 int i;
2000 bool key_valid = false;
2001 unsigned long lowest_key = 0;
2002 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2003
2004 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2005 /* select the one with lowest rb_key */
2006 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2007 if (queue &&
2008 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2009 lowest_key = queue->rb_key;
2010 cur_best = i;
2011 key_valid = true;
2012 }
2013 }
2014
2015 return cur_best;
2016 }
2017
2018 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2019 {
2020 unsigned slice;
2021 unsigned count;
2022 struct cfq_rb_root *st;
2023 unsigned group_slice;
2024
2025 if (!cfqg) {
2026 cfqd->serving_prio = IDLE_WORKLOAD;
2027 cfqd->workload_expires = jiffies + 1;
2028 return;
2029 }
2030
2031 /* Choose next priority. RT > BE > IDLE */
2032 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2033 cfqd->serving_prio = RT_WORKLOAD;
2034 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2035 cfqd->serving_prio = BE_WORKLOAD;
2036 else {
2037 cfqd->serving_prio = IDLE_WORKLOAD;
2038 cfqd->workload_expires = jiffies + 1;
2039 return;
2040 }
2041
2042 /*
2043 * For RT and BE, we have to choose also the type
2044 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2045 * expiration time
2046 */
2047 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2048 count = st->count;
2049
2050 /*
2051 * check workload expiration, and that we still have other queues ready
2052 */
2053 if (count && !time_after(jiffies, cfqd->workload_expires))
2054 return;
2055
2056 /* otherwise select new workload type */
2057 cfqd->serving_type =
2058 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2059 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2060 count = st->count;
2061
2062 /*
2063 * the workload slice is computed as a fraction of target latency
2064 * proportional to the number of queues in that workload, over
2065 * all the queues in the same priority class
2066 */
2067 group_slice = cfq_group_slice(cfqd, cfqg);
2068
2069 slice = group_slice * count /
2070 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2071 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2072
2073 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2074 unsigned int tmp;
2075
2076 /*
2077 * Async queues are currently system wide. Just taking
2078 * proportion of queues with-in same group will lead to higher
2079 * async ratio system wide as generally root group is going
2080 * to have higher weight. A more accurate thing would be to
2081 * calculate system wide asnc/sync ratio.
2082 */
2083 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2084 tmp = tmp/cfqd->busy_queues;
2085 slice = min_t(unsigned, slice, tmp);
2086
2087 /* async workload slice is scaled down according to
2088 * the sync/async slice ratio. */
2089 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2090 } else
2091 /* sync workload slice is at least 2 * cfq_slice_idle */
2092 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2093
2094 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2095 cfq_log(cfqd, "workload slice:%d", slice);
2096 cfqd->workload_expires = jiffies + slice;
2097 cfqd->noidle_tree_requires_idle = false;
2098 }
2099
2100 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2101 {
2102 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2103 struct cfq_group *cfqg;
2104
2105 if (RB_EMPTY_ROOT(&st->rb))
2106 return NULL;
2107 cfqg = cfq_rb_first_group(st);
2108 st->active = &cfqg->rb_node;
2109 update_min_vdisktime(st);
2110 return cfqg;
2111 }
2112
2113 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2114 {
2115 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2116
2117 cfqd->serving_group = cfqg;
2118
2119 /* Restore the workload type data */
2120 if (cfqg->saved_workload_slice) {
2121 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2122 cfqd->serving_type = cfqg->saved_workload;
2123 cfqd->serving_prio = cfqg->saved_serving_prio;
2124 } else
2125 cfqd->workload_expires = jiffies - 1;
2126
2127 choose_service_tree(cfqd, cfqg);
2128 }
2129
2130 /*
2131 * Select a queue for service. If we have a current active queue,
2132 * check whether to continue servicing it, or retrieve and set a new one.
2133 */
2134 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2135 {
2136 struct cfq_queue *cfqq, *new_cfqq = NULL;
2137
2138 cfqq = cfqd->active_queue;
2139 if (!cfqq)
2140 goto new_queue;
2141
2142 if (!cfqd->rq_queued)
2143 return NULL;
2144
2145 /*
2146 * We were waiting for group to get backlogged. Expire the queue
2147 */
2148 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2149 goto expire;
2150
2151 /*
2152 * The active queue has run out of time, expire it and select new.
2153 */
2154 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2155 /*
2156 * If slice had not expired at the completion of last request
2157 * we might not have turned on wait_busy flag. Don't expire
2158 * the queue yet. Allow the group to get backlogged.
2159 *
2160 * The very fact that we have used the slice, that means we
2161 * have been idling all along on this queue and it should be
2162 * ok to wait for this request to complete.
2163 */
2164 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2165 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2166 cfqq = NULL;
2167 goto keep_queue;
2168 } else
2169 goto expire;
2170 }
2171
2172 /*
2173 * The active queue has requests and isn't expired, allow it to
2174 * dispatch.
2175 */
2176 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2177 goto keep_queue;
2178
2179 /*
2180 * If another queue has a request waiting within our mean seek
2181 * distance, let it run. The expire code will check for close
2182 * cooperators and put the close queue at the front of the service
2183 * tree. If possible, merge the expiring queue with the new cfqq.
2184 */
2185 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2186 if (new_cfqq) {
2187 if (!cfqq->new_cfqq)
2188 cfq_setup_merge(cfqq, new_cfqq);
2189 goto expire;
2190 }
2191
2192 /*
2193 * No requests pending. If the active queue still has requests in
2194 * flight or is idling for a new request, allow either of these
2195 * conditions to happen (or time out) before selecting a new queue.
2196 */
2197 if (timer_pending(&cfqd->idle_slice_timer) ||
2198 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2199 cfqq = NULL;
2200 goto keep_queue;
2201 }
2202
2203 expire:
2204 cfq_slice_expired(cfqd, 0);
2205 new_queue:
2206 /*
2207 * Current queue expired. Check if we have to switch to a new
2208 * service tree
2209 */
2210 if (!new_cfqq)
2211 cfq_choose_cfqg(cfqd);
2212
2213 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2214 keep_queue:
2215 return cfqq;
2216 }
2217
2218 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2219 {
2220 int dispatched = 0;
2221
2222 while (cfqq->next_rq) {
2223 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2224 dispatched++;
2225 }
2226
2227 BUG_ON(!list_empty(&cfqq->fifo));
2228
2229 /* By default cfqq is not expired if it is empty. Do it explicitly */
2230 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2231 return dispatched;
2232 }
2233
2234 /*
2235 * Drain our current requests. Used for barriers and when switching
2236 * io schedulers on-the-fly.
2237 */
2238 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2239 {
2240 struct cfq_queue *cfqq;
2241 int dispatched = 0;
2242
2243 /* Expire the timeslice of the current active queue first */
2244 cfq_slice_expired(cfqd, 0);
2245 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2246 __cfq_set_active_queue(cfqd, cfqq);
2247 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2248 }
2249
2250 BUG_ON(cfqd->busy_queues);
2251
2252 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2253 return dispatched;
2254 }
2255
2256 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2257 struct cfq_queue *cfqq)
2258 {
2259 /* the queue hasn't finished any request, can't estimate */
2260 if (cfq_cfqq_slice_new(cfqq))
2261 return 1;
2262 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2263 cfqq->slice_end))
2264 return 1;
2265
2266 return 0;
2267 }
2268
2269 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2270 {
2271 unsigned int max_dispatch;
2272
2273 /*
2274 * Drain async requests before we start sync IO
2275 */
2276 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2277 return false;
2278
2279 /*
2280 * If this is an async queue and we have sync IO in flight, let it wait
2281 */
2282 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2283 return false;
2284
2285 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2286 if (cfq_class_idle(cfqq))
2287 max_dispatch = 1;
2288
2289 /*
2290 * Does this cfqq already have too much IO in flight?
2291 */
2292 if (cfqq->dispatched >= max_dispatch) {
2293 /*
2294 * idle queue must always only have a single IO in flight
2295 */
2296 if (cfq_class_idle(cfqq))
2297 return false;
2298
2299 /*
2300 * We have other queues, don't allow more IO from this one
2301 */
2302 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2303 return false;
2304
2305 /*
2306 * Sole queue user, no limit
2307 */
2308 if (cfqd->busy_queues == 1)
2309 max_dispatch = -1;
2310 else
2311 /*
2312 * Normally we start throttling cfqq when cfq_quantum/2
2313 * requests have been dispatched. But we can drive
2314 * deeper queue depths at the beginning of slice
2315 * subjected to upper limit of cfq_quantum.
2316 * */
2317 max_dispatch = cfqd->cfq_quantum;
2318 }
2319
2320 /*
2321 * Async queues must wait a bit before being allowed dispatch.
2322 * We also ramp up the dispatch depth gradually for async IO,
2323 * based on the last sync IO we serviced
2324 */
2325 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2326 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2327 unsigned int depth;
2328
2329 depth = last_sync / cfqd->cfq_slice[1];
2330 if (!depth && !cfqq->dispatched)
2331 depth = 1;
2332 if (depth < max_dispatch)
2333 max_dispatch = depth;
2334 }
2335
2336 /*
2337 * If we're below the current max, allow a dispatch
2338 */
2339 return cfqq->dispatched < max_dispatch;
2340 }
2341
2342 /*
2343 * Dispatch a request from cfqq, moving them to the request queue
2344 * dispatch list.
2345 */
2346 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2347 {
2348 struct request *rq;
2349
2350 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2351
2352 if (!cfq_may_dispatch(cfqd, cfqq))
2353 return false;
2354
2355 /*
2356 * follow expired path, else get first next available
2357 */
2358 rq = cfq_check_fifo(cfqq);
2359 if (!rq)
2360 rq = cfqq->next_rq;
2361
2362 /*
2363 * insert request into driver dispatch list
2364 */
2365 cfq_dispatch_insert(cfqd->queue, rq);
2366
2367 if (!cfqd->active_cic) {
2368 struct cfq_io_context *cic = RQ_CIC(rq);
2369
2370 atomic_long_inc(&cic->ioc->refcount);
2371 cfqd->active_cic = cic;
2372 }
2373
2374 return true;
2375 }
2376
2377 /*
2378 * Find the cfqq that we need to service and move a request from that to the
2379 * dispatch list
2380 */
2381 static int cfq_dispatch_requests(struct request_queue *q, int force)
2382 {
2383 struct cfq_data *cfqd = q->elevator->elevator_data;
2384 struct cfq_queue *cfqq;
2385
2386 if (!cfqd->busy_queues)
2387 return 0;
2388
2389 if (unlikely(force))
2390 return cfq_forced_dispatch(cfqd);
2391
2392 cfqq = cfq_select_queue(cfqd);
2393 if (!cfqq)
2394 return 0;
2395
2396 /*
2397 * Dispatch a request from this cfqq, if it is allowed
2398 */
2399 if (!cfq_dispatch_request(cfqd, cfqq))
2400 return 0;
2401
2402 cfqq->slice_dispatch++;
2403 cfq_clear_cfqq_must_dispatch(cfqq);
2404
2405 /*
2406 * expire an async queue immediately if it has used up its slice. idle
2407 * queue always expire after 1 dispatch round.
2408 */
2409 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2410 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2411 cfq_class_idle(cfqq))) {
2412 cfqq->slice_end = jiffies + 1;
2413 cfq_slice_expired(cfqd, 0);
2414 }
2415
2416 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2417 return 1;
2418 }
2419
2420 /*
2421 * task holds one reference to the queue, dropped when task exits. each rq
2422 * in-flight on this queue also holds a reference, dropped when rq is freed.
2423 *
2424 * Each cfq queue took a reference on the parent group. Drop it now.
2425 * queue lock must be held here.
2426 */
2427 static void cfq_put_queue(struct cfq_queue *cfqq)
2428 {
2429 struct cfq_data *cfqd = cfqq->cfqd;
2430 struct cfq_group *cfqg, *orig_cfqg;
2431
2432 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2433
2434 if (!atomic_dec_and_test(&cfqq->ref))
2435 return;
2436
2437 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2438 BUG_ON(rb_first(&cfqq->sort_list));
2439 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2440 cfqg = cfqq->cfqg;
2441 orig_cfqg = cfqq->orig_cfqg;
2442
2443 if (unlikely(cfqd->active_queue == cfqq)) {
2444 __cfq_slice_expired(cfqd, cfqq, 0);
2445 cfq_schedule_dispatch(cfqd);
2446 }
2447
2448 BUG_ON(cfq_cfqq_on_rr(cfqq));
2449 kmem_cache_free(cfq_pool, cfqq);
2450 cfq_put_cfqg(cfqg);
2451 if (orig_cfqg)
2452 cfq_put_cfqg(orig_cfqg);
2453 }
2454
2455 /*
2456 * Must always be called with the rcu_read_lock() held
2457 */
2458 static void
2459 __call_for_each_cic(struct io_context *ioc,
2460 void (*func)(struct io_context *, struct cfq_io_context *))
2461 {
2462 struct cfq_io_context *cic;
2463 struct hlist_node *n;
2464
2465 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2466 func(ioc, cic);
2467 }
2468
2469 /*
2470 * Call func for each cic attached to this ioc.
2471 */
2472 static void
2473 call_for_each_cic(struct io_context *ioc,
2474 void (*func)(struct io_context *, struct cfq_io_context *))
2475 {
2476 rcu_read_lock();
2477 __call_for_each_cic(ioc, func);
2478 rcu_read_unlock();
2479 }
2480
2481 static void cfq_cic_free_rcu(struct rcu_head *head)
2482 {
2483 struct cfq_io_context *cic;
2484
2485 cic = container_of(head, struct cfq_io_context, rcu_head);
2486
2487 kmem_cache_free(cfq_ioc_pool, cic);
2488 elv_ioc_count_dec(cfq_ioc_count);
2489
2490 if (ioc_gone) {
2491 /*
2492 * CFQ scheduler is exiting, grab exit lock and check
2493 * the pending io context count. If it hits zero,
2494 * complete ioc_gone and set it back to NULL
2495 */
2496 spin_lock(&ioc_gone_lock);
2497 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2498 complete(ioc_gone);
2499 ioc_gone = NULL;
2500 }
2501 spin_unlock(&ioc_gone_lock);
2502 }
2503 }
2504
2505 static void cfq_cic_free(struct cfq_io_context *cic)
2506 {
2507 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2508 }
2509
2510 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2511 {
2512 unsigned long flags;
2513
2514 BUG_ON(!cic->dead_key);
2515
2516 spin_lock_irqsave(&ioc->lock, flags);
2517 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2518 hlist_del_rcu(&cic->cic_list);
2519 spin_unlock_irqrestore(&ioc->lock, flags);
2520
2521 cfq_cic_free(cic);
2522 }
2523
2524 /*
2525 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2526 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2527 * and ->trim() which is called with the task lock held
2528 */
2529 static void cfq_free_io_context(struct io_context *ioc)
2530 {
2531 /*
2532 * ioc->refcount is zero here, or we are called from elv_unregister(),
2533 * so no more cic's are allowed to be linked into this ioc. So it
2534 * should be ok to iterate over the known list, we will see all cic's
2535 * since no new ones are added.
2536 */
2537 __call_for_each_cic(ioc, cic_free_func);
2538 }
2539
2540 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2541 {
2542 struct cfq_queue *__cfqq, *next;
2543
2544 if (unlikely(cfqq == cfqd->active_queue)) {
2545 __cfq_slice_expired(cfqd, cfqq, 0);
2546 cfq_schedule_dispatch(cfqd);
2547 }
2548
2549 /*
2550 * If this queue was scheduled to merge with another queue, be
2551 * sure to drop the reference taken on that queue (and others in
2552 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2553 */
2554 __cfqq = cfqq->new_cfqq;
2555 while (__cfqq) {
2556 if (__cfqq == cfqq) {
2557 WARN(1, "cfqq->new_cfqq loop detected\n");
2558 break;
2559 }
2560 next = __cfqq->new_cfqq;
2561 cfq_put_queue(__cfqq);
2562 __cfqq = next;
2563 }
2564
2565 cfq_put_queue(cfqq);
2566 }
2567
2568 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2569 struct cfq_io_context *cic)
2570 {
2571 struct io_context *ioc = cic->ioc;
2572
2573 list_del_init(&cic->queue_list);
2574
2575 /*
2576 * Make sure key == NULL is seen for dead queues
2577 */
2578 smp_wmb();
2579 cic->dead_key = (unsigned long) cic->key;
2580 cic->key = NULL;
2581
2582 if (ioc->ioc_data == cic)
2583 rcu_assign_pointer(ioc->ioc_data, NULL);
2584
2585 if (cic->cfqq[BLK_RW_ASYNC]) {
2586 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2587 cic->cfqq[BLK_RW_ASYNC] = NULL;
2588 }
2589
2590 if (cic->cfqq[BLK_RW_SYNC]) {
2591 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2592 cic->cfqq[BLK_RW_SYNC] = NULL;
2593 }
2594 }
2595
2596 static void cfq_exit_single_io_context(struct io_context *ioc,
2597 struct cfq_io_context *cic)
2598 {
2599 struct cfq_data *cfqd = cic->key;
2600
2601 if (cfqd) {
2602 struct request_queue *q = cfqd->queue;
2603 unsigned long flags;
2604
2605 spin_lock_irqsave(q->queue_lock, flags);
2606
2607 /*
2608 * Ensure we get a fresh copy of the ->key to prevent
2609 * race between exiting task and queue
2610 */
2611 smp_read_barrier_depends();
2612 if (cic->key)
2613 __cfq_exit_single_io_context(cfqd, cic);
2614
2615 spin_unlock_irqrestore(q->queue_lock, flags);
2616 }
2617 }
2618
2619 /*
2620 * The process that ioc belongs to has exited, we need to clean up
2621 * and put the internal structures we have that belongs to that process.
2622 */
2623 static void cfq_exit_io_context(struct io_context *ioc)
2624 {
2625 call_for_each_cic(ioc, cfq_exit_single_io_context);
2626 }
2627
2628 static struct cfq_io_context *
2629 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2630 {
2631 struct cfq_io_context *cic;
2632
2633 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2634 cfqd->queue->node);
2635 if (cic) {
2636 cic->last_end_request = jiffies;
2637 INIT_LIST_HEAD(&cic->queue_list);
2638 INIT_HLIST_NODE(&cic->cic_list);
2639 cic->dtor = cfq_free_io_context;
2640 cic->exit = cfq_exit_io_context;
2641 elv_ioc_count_inc(cfq_ioc_count);
2642 }
2643
2644 return cic;
2645 }
2646
2647 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2648 {
2649 struct task_struct *tsk = current;
2650 int ioprio_class;
2651
2652 if (!cfq_cfqq_prio_changed(cfqq))
2653 return;
2654
2655 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2656 switch (ioprio_class) {
2657 default:
2658 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2659 case IOPRIO_CLASS_NONE:
2660 /*
2661 * no prio set, inherit CPU scheduling settings
2662 */
2663 cfqq->ioprio = task_nice_ioprio(tsk);
2664 cfqq->ioprio_class = task_nice_ioclass(tsk);
2665 break;
2666 case IOPRIO_CLASS_RT:
2667 cfqq->ioprio = task_ioprio(ioc);
2668 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2669 break;
2670 case IOPRIO_CLASS_BE:
2671 cfqq->ioprio = task_ioprio(ioc);
2672 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2673 break;
2674 case IOPRIO_CLASS_IDLE:
2675 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2676 cfqq->ioprio = 7;
2677 cfq_clear_cfqq_idle_window(cfqq);
2678 break;
2679 }
2680
2681 /*
2682 * keep track of original prio settings in case we have to temporarily
2683 * elevate the priority of this queue
2684 */
2685 cfqq->org_ioprio = cfqq->ioprio;
2686 cfqq->org_ioprio_class = cfqq->ioprio_class;
2687 cfq_clear_cfqq_prio_changed(cfqq);
2688 }
2689
2690 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2691 {
2692 struct cfq_data *cfqd = cic->key;
2693 struct cfq_queue *cfqq;
2694 unsigned long flags;
2695
2696 if (unlikely(!cfqd))
2697 return;
2698
2699 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2700
2701 cfqq = cic->cfqq[BLK_RW_ASYNC];
2702 if (cfqq) {
2703 struct cfq_queue *new_cfqq;
2704 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2705 GFP_ATOMIC);
2706 if (new_cfqq) {
2707 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2708 cfq_put_queue(cfqq);
2709 }
2710 }
2711
2712 cfqq = cic->cfqq[BLK_RW_SYNC];
2713 if (cfqq)
2714 cfq_mark_cfqq_prio_changed(cfqq);
2715
2716 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2717 }
2718
2719 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2720 {
2721 call_for_each_cic(ioc, changed_ioprio);
2722 ioc->ioprio_changed = 0;
2723 }
2724
2725 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2726 pid_t pid, bool is_sync)
2727 {
2728 RB_CLEAR_NODE(&cfqq->rb_node);
2729 RB_CLEAR_NODE(&cfqq->p_node);
2730 INIT_LIST_HEAD(&cfqq->fifo);
2731
2732 atomic_set(&cfqq->ref, 0);
2733 cfqq->cfqd = cfqd;
2734
2735 cfq_mark_cfqq_prio_changed(cfqq);
2736
2737 if (is_sync) {
2738 if (!cfq_class_idle(cfqq))
2739 cfq_mark_cfqq_idle_window(cfqq);
2740 cfq_mark_cfqq_sync(cfqq);
2741 }
2742 cfqq->pid = pid;
2743 }
2744
2745 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2746 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2747 {
2748 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2749 struct cfq_data *cfqd = cic->key;
2750 unsigned long flags;
2751 struct request_queue *q;
2752
2753 if (unlikely(!cfqd))
2754 return;
2755
2756 q = cfqd->queue;
2757
2758 spin_lock_irqsave(q->queue_lock, flags);
2759
2760 if (sync_cfqq) {
2761 /*
2762 * Drop reference to sync queue. A new sync queue will be
2763 * assigned in new group upon arrival of a fresh request.
2764 */
2765 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2766 cic_set_cfqq(cic, NULL, 1);
2767 cfq_put_queue(sync_cfqq);
2768 }
2769
2770 spin_unlock_irqrestore(q->queue_lock, flags);
2771 }
2772
2773 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2774 {
2775 call_for_each_cic(ioc, changed_cgroup);
2776 ioc->cgroup_changed = 0;
2777 }
2778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2779
2780 static struct cfq_queue *
2781 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2782 struct io_context *ioc, gfp_t gfp_mask)
2783 {
2784 struct cfq_queue *cfqq, *new_cfqq = NULL;
2785 struct cfq_io_context *cic;
2786 struct cfq_group *cfqg;
2787
2788 retry:
2789 cfqg = cfq_get_cfqg(cfqd, 1);
2790 cic = cfq_cic_lookup(cfqd, ioc);
2791 /* cic always exists here */
2792 cfqq = cic_to_cfqq(cic, is_sync);
2793
2794 /*
2795 * Always try a new alloc if we fell back to the OOM cfqq
2796 * originally, since it should just be a temporary situation.
2797 */
2798 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2799 cfqq = NULL;
2800 if (new_cfqq) {
2801 cfqq = new_cfqq;
2802 new_cfqq = NULL;
2803 } else if (gfp_mask & __GFP_WAIT) {
2804 spin_unlock_irq(cfqd->queue->queue_lock);
2805 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2806 gfp_mask | __GFP_ZERO,
2807 cfqd->queue->node);
2808 spin_lock_irq(cfqd->queue->queue_lock);
2809 if (new_cfqq)
2810 goto retry;
2811 } else {
2812 cfqq = kmem_cache_alloc_node(cfq_pool,
2813 gfp_mask | __GFP_ZERO,
2814 cfqd->queue->node);
2815 }
2816
2817 if (cfqq) {
2818 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2819 cfq_init_prio_data(cfqq, ioc);
2820 cfq_link_cfqq_cfqg(cfqq, cfqg);
2821 cfq_log_cfqq(cfqd, cfqq, "alloced");
2822 } else
2823 cfqq = &cfqd->oom_cfqq;
2824 }
2825
2826 if (new_cfqq)
2827 kmem_cache_free(cfq_pool, new_cfqq);
2828
2829 return cfqq;
2830 }
2831
2832 static struct cfq_queue **
2833 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2834 {
2835 switch (ioprio_class) {
2836 case IOPRIO_CLASS_RT:
2837 return &cfqd->async_cfqq[0][ioprio];
2838 case IOPRIO_CLASS_BE:
2839 return &cfqd->async_cfqq[1][ioprio];
2840 case IOPRIO_CLASS_IDLE:
2841 return &cfqd->async_idle_cfqq;
2842 default:
2843 BUG();
2844 }
2845 }
2846
2847 static struct cfq_queue *
2848 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2849 gfp_t gfp_mask)
2850 {
2851 const int ioprio = task_ioprio(ioc);
2852 const int ioprio_class = task_ioprio_class(ioc);
2853 struct cfq_queue **async_cfqq = NULL;
2854 struct cfq_queue *cfqq = NULL;
2855
2856 if (!is_sync) {
2857 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2858 cfqq = *async_cfqq;
2859 }
2860
2861 if (!cfqq)
2862 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2863
2864 /*
2865 * pin the queue now that it's allocated, scheduler exit will prune it
2866 */
2867 if (!is_sync && !(*async_cfqq)) {
2868 atomic_inc(&cfqq->ref);
2869 *async_cfqq = cfqq;
2870 }
2871
2872 atomic_inc(&cfqq->ref);
2873 return cfqq;
2874 }
2875
2876 /*
2877 * We drop cfq io contexts lazily, so we may find a dead one.
2878 */
2879 static void
2880 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2881 struct cfq_io_context *cic)
2882 {
2883 unsigned long flags;
2884
2885 WARN_ON(!list_empty(&cic->queue_list));
2886
2887 spin_lock_irqsave(&ioc->lock, flags);
2888
2889 BUG_ON(ioc->ioc_data == cic);
2890
2891 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2892 hlist_del_rcu(&cic->cic_list);
2893 spin_unlock_irqrestore(&ioc->lock, flags);
2894
2895 cfq_cic_free(cic);
2896 }
2897
2898 static struct cfq_io_context *
2899 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2900 {
2901 struct cfq_io_context *cic;
2902 unsigned long flags;
2903 void *k;
2904
2905 if (unlikely(!ioc))
2906 return NULL;
2907
2908 rcu_read_lock();
2909
2910 /*
2911 * we maintain a last-hit cache, to avoid browsing over the tree
2912 */
2913 cic = rcu_dereference(ioc->ioc_data);
2914 if (cic && cic->key == cfqd) {
2915 rcu_read_unlock();
2916 return cic;
2917 }
2918
2919 do {
2920 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2921 rcu_read_unlock();
2922 if (!cic)
2923 break;
2924 /* ->key must be copied to avoid race with cfq_exit_queue() */
2925 k = cic->key;
2926 if (unlikely(!k)) {
2927 cfq_drop_dead_cic(cfqd, ioc, cic);
2928 rcu_read_lock();
2929 continue;
2930 }
2931
2932 spin_lock_irqsave(&ioc->lock, flags);
2933 rcu_assign_pointer(ioc->ioc_data, cic);
2934 spin_unlock_irqrestore(&ioc->lock, flags);
2935 break;
2936 } while (1);
2937
2938 return cic;
2939 }
2940
2941 /*
2942 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2943 * the process specific cfq io context when entered from the block layer.
2944 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2945 */
2946 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2947 struct cfq_io_context *cic, gfp_t gfp_mask)
2948 {
2949 unsigned long flags;
2950 int ret;
2951
2952 ret = radix_tree_preload(gfp_mask);
2953 if (!ret) {
2954 cic->ioc = ioc;
2955 cic->key = cfqd;
2956
2957 spin_lock_irqsave(&ioc->lock, flags);
2958 ret = radix_tree_insert(&ioc->radix_root,
2959 (unsigned long) cfqd, cic);
2960 if (!ret)
2961 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2962 spin_unlock_irqrestore(&ioc->lock, flags);
2963
2964 radix_tree_preload_end();
2965
2966 if (!ret) {
2967 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2968 list_add(&cic->queue_list, &cfqd->cic_list);
2969 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2970 }
2971 }
2972
2973 if (ret)
2974 printk(KERN_ERR "cfq: cic link failed!\n");
2975
2976 return ret;
2977 }
2978
2979 /*
2980 * Setup general io context and cfq io context. There can be several cfq
2981 * io contexts per general io context, if this process is doing io to more
2982 * than one device managed by cfq.
2983 */
2984 static struct cfq_io_context *
2985 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2986 {
2987 struct io_context *ioc = NULL;
2988 struct cfq_io_context *cic;
2989
2990 might_sleep_if(gfp_mask & __GFP_WAIT);
2991
2992 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2993 if (!ioc)
2994 return NULL;
2995
2996 cic = cfq_cic_lookup(cfqd, ioc);
2997 if (cic)
2998 goto out;
2999
3000 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3001 if (cic == NULL)
3002 goto err;
3003
3004 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3005 goto err_free;
3006
3007 out:
3008 smp_read_barrier_depends();
3009 if (unlikely(ioc->ioprio_changed))
3010 cfq_ioc_set_ioprio(ioc);
3011
3012 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3013 if (unlikely(ioc->cgroup_changed))
3014 cfq_ioc_set_cgroup(ioc);
3015 #endif
3016 return cic;
3017 err_free:
3018 cfq_cic_free(cic);
3019 err:
3020 put_io_context(ioc);
3021 return NULL;
3022 }
3023
3024 static void
3025 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3026 {
3027 unsigned long elapsed = jiffies - cic->last_end_request;
3028 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3029
3030 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3031 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3032 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3033 }
3034
3035 static void
3036 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3037 struct request *rq)
3038 {
3039 sector_t sdist = 0;
3040 sector_t n_sec = blk_rq_sectors(rq);
3041 if (cfqq->last_request_pos) {
3042 if (cfqq->last_request_pos < blk_rq_pos(rq))
3043 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3044 else
3045 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3046 }
3047
3048 cfqq->seek_history <<= 1;
3049 if (blk_queue_nonrot(cfqd->queue))
3050 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3051 else
3052 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3053 }
3054
3055 /*
3056 * Disable idle window if the process thinks too long or seeks so much that
3057 * it doesn't matter
3058 */
3059 static void
3060 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3061 struct cfq_io_context *cic)
3062 {
3063 int old_idle, enable_idle;
3064
3065 /*
3066 * Don't idle for async or idle io prio class
3067 */
3068 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3069 return;
3070
3071 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3072
3073 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3074 cfq_mark_cfqq_deep(cfqq);
3075
3076 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3077 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3078 enable_idle = 0;
3079 else if (sample_valid(cic->ttime_samples)) {
3080 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3081 enable_idle = 0;
3082 else
3083 enable_idle = 1;
3084 }
3085
3086 if (old_idle != enable_idle) {
3087 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3088 if (enable_idle)
3089 cfq_mark_cfqq_idle_window(cfqq);
3090 else
3091 cfq_clear_cfqq_idle_window(cfqq);
3092 }
3093 }
3094
3095 /*
3096 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3097 * no or if we aren't sure, a 1 will cause a preempt.
3098 */
3099 static bool
3100 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3101 struct request *rq)
3102 {
3103 struct cfq_queue *cfqq;
3104
3105 cfqq = cfqd->active_queue;
3106 if (!cfqq)
3107 return false;
3108
3109 if (cfq_class_idle(new_cfqq))
3110 return false;
3111
3112 if (cfq_class_idle(cfqq))
3113 return true;
3114
3115 /*
3116 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3117 */
3118 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3119 return false;
3120
3121 /*
3122 * if the new request is sync, but the currently running queue is
3123 * not, let the sync request have priority.
3124 */
3125 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3126 return true;
3127
3128 if (new_cfqq->cfqg != cfqq->cfqg)
3129 return false;
3130
3131 if (cfq_slice_used(cfqq))
3132 return true;
3133
3134 /* Allow preemption only if we are idling on sync-noidle tree */
3135 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3136 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3137 new_cfqq->service_tree->count == 2 &&
3138 RB_EMPTY_ROOT(&cfqq->sort_list))
3139 return true;
3140
3141 /*
3142 * So both queues are sync. Let the new request get disk time if
3143 * it's a metadata request and the current queue is doing regular IO.
3144 */
3145 if (rq_is_meta(rq) && !cfqq->meta_pending)
3146 return true;
3147
3148 /*
3149 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3150 */
3151 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3152 return true;
3153
3154 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3155 return false;
3156
3157 /*
3158 * if this request is as-good as one we would expect from the
3159 * current cfqq, let it preempt
3160 */
3161 if (cfq_rq_close(cfqd, cfqq, rq))
3162 return true;
3163
3164 return false;
3165 }
3166
3167 /*
3168 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3169 * let it have half of its nominal slice.
3170 */
3171 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3172 {
3173 cfq_log_cfqq(cfqd, cfqq, "preempt");
3174 cfq_slice_expired(cfqd, 1);
3175
3176 /*
3177 * Put the new queue at the front of the of the current list,
3178 * so we know that it will be selected next.
3179 */
3180 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3181
3182 cfq_service_tree_add(cfqd, cfqq, 1);
3183
3184 cfqq->slice_end = 0;
3185 cfq_mark_cfqq_slice_new(cfqq);
3186 }
3187
3188 /*
3189 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3190 * something we should do about it
3191 */
3192 static void
3193 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3194 struct request *rq)
3195 {
3196 struct cfq_io_context *cic = RQ_CIC(rq);
3197
3198 cfqd->rq_queued++;
3199 if (rq_is_meta(rq))
3200 cfqq->meta_pending++;
3201
3202 cfq_update_io_thinktime(cfqd, cic);
3203 cfq_update_io_seektime(cfqd, cfqq, rq);
3204 cfq_update_idle_window(cfqd, cfqq, cic);
3205
3206 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3207
3208 if (cfqq == cfqd->active_queue) {
3209 /*
3210 * Remember that we saw a request from this process, but
3211 * don't start queuing just yet. Otherwise we risk seeing lots
3212 * of tiny requests, because we disrupt the normal plugging
3213 * and merging. If the request is already larger than a single
3214 * page, let it rip immediately. For that case we assume that
3215 * merging is already done. Ditto for a busy system that
3216 * has other work pending, don't risk delaying until the
3217 * idle timer unplug to continue working.
3218 */
3219 if (cfq_cfqq_wait_request(cfqq)) {
3220 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3221 cfqd->busy_queues > 1) {
3222 cfq_del_timer(cfqd, cfqq);
3223 cfq_clear_cfqq_wait_request(cfqq);
3224 __blk_run_queue(cfqd->queue);
3225 } else {
3226 blkiocg_update_idle_time_stats(
3227 &cfqq->cfqg->blkg);
3228 cfq_mark_cfqq_must_dispatch(cfqq);
3229 }
3230 }
3231 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3232 /*
3233 * not the active queue - expire current slice if it is
3234 * idle and has expired it's mean thinktime or this new queue
3235 * has some old slice time left and is of higher priority or
3236 * this new queue is RT and the current one is BE
3237 */
3238 cfq_preempt_queue(cfqd, cfqq);
3239 __blk_run_queue(cfqd->queue);
3240 }
3241 }
3242
3243 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3244 {
3245 struct cfq_data *cfqd = q->elevator->elevator_data;
3246 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3247
3248 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3249 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3250
3251 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3252 list_add_tail(&rq->queuelist, &cfqq->fifo);
3253 cfq_add_rq_rb(rq);
3254 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3255 &cfqd->serving_group->blkg, rq_data_dir(rq),
3256 rq_is_sync(rq));
3257 cfq_rq_enqueued(cfqd, cfqq, rq);
3258 }
3259
3260 /*
3261 * Update hw_tag based on peak queue depth over 50 samples under
3262 * sufficient load.
3263 */
3264 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3265 {
3266 struct cfq_queue *cfqq = cfqd->active_queue;
3267
3268 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3269 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3270
3271 if (cfqd->hw_tag == 1)
3272 return;
3273
3274 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3275 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3276 return;
3277
3278 /*
3279 * If active queue hasn't enough requests and can idle, cfq might not
3280 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3281 * case
3282 */
3283 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3284 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3285 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3286 return;
3287
3288 if (cfqd->hw_tag_samples++ < 50)
3289 return;
3290
3291 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3292 cfqd->hw_tag = 1;
3293 else
3294 cfqd->hw_tag = 0;
3295 }
3296
3297 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3298 {
3299 struct cfq_io_context *cic = cfqd->active_cic;
3300
3301 /* If there are other queues in the group, don't wait */
3302 if (cfqq->cfqg->nr_cfqq > 1)
3303 return false;
3304
3305 if (cfq_slice_used(cfqq))
3306 return true;
3307
3308 /* if slice left is less than think time, wait busy */
3309 if (cic && sample_valid(cic->ttime_samples)
3310 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3311 return true;
3312
3313 /*
3314 * If think times is less than a jiffy than ttime_mean=0 and above
3315 * will not be true. It might happen that slice has not expired yet
3316 * but will expire soon (4-5 ns) during select_queue(). To cover the
3317 * case where think time is less than a jiffy, mark the queue wait
3318 * busy if only 1 jiffy is left in the slice.
3319 */
3320 if (cfqq->slice_end - jiffies == 1)
3321 return true;
3322
3323 return false;
3324 }
3325
3326 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3327 {
3328 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3329 struct cfq_data *cfqd = cfqq->cfqd;
3330 const int sync = rq_is_sync(rq);
3331 unsigned long now;
3332
3333 now = jiffies;
3334 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3335
3336 cfq_update_hw_tag(cfqd);
3337
3338 WARN_ON(!cfqd->rq_in_driver);
3339 WARN_ON(!cfqq->dispatched);
3340 cfqd->rq_in_driver--;
3341 cfqq->dispatched--;
3342 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3343 rq_io_start_time_ns(rq), rq_data_dir(rq),
3344 rq_is_sync(rq));
3345
3346 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3347
3348 if (sync) {
3349 RQ_CIC(rq)->last_end_request = now;
3350 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3351 cfqd->last_delayed_sync = now;
3352 }
3353
3354 /*
3355 * If this is the active queue, check if it needs to be expired,
3356 * or if we want to idle in case it has no pending requests.
3357 */
3358 if (cfqd->active_queue == cfqq) {
3359 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3360
3361 if (cfq_cfqq_slice_new(cfqq)) {
3362 cfq_set_prio_slice(cfqd, cfqq);
3363 cfq_clear_cfqq_slice_new(cfqq);
3364 }
3365
3366 /*
3367 * Should we wait for next request to come in before we expire
3368 * the queue.
3369 */
3370 if (cfq_should_wait_busy(cfqd, cfqq)) {
3371 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3372 cfq_mark_cfqq_wait_busy(cfqq);
3373 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3374 }
3375
3376 /*
3377 * Idling is not enabled on:
3378 * - expired queues
3379 * - idle-priority queues
3380 * - async queues
3381 * - queues with still some requests queued
3382 * - when there is a close cooperator
3383 */
3384 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3385 cfq_slice_expired(cfqd, 1);
3386 else if (sync && cfqq_empty &&
3387 !cfq_close_cooperator(cfqd, cfqq)) {
3388 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3389 /*
3390 * Idling is enabled for SYNC_WORKLOAD.
3391 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3392 * only if we processed at least one !rq_noidle request
3393 */
3394 if (cfqd->serving_type == SYNC_WORKLOAD
3395 || cfqd->noidle_tree_requires_idle
3396 || cfqq->cfqg->nr_cfqq == 1)
3397 cfq_arm_slice_timer(cfqd);
3398 }
3399 }
3400
3401 if (!cfqd->rq_in_driver)
3402 cfq_schedule_dispatch(cfqd);
3403 }
3404
3405 /*
3406 * we temporarily boost lower priority queues if they are holding fs exclusive
3407 * resources. they are boosted to normal prio (CLASS_BE/4)
3408 */
3409 static void cfq_prio_boost(struct cfq_queue *cfqq)
3410 {
3411 if (has_fs_excl()) {
3412 /*
3413 * boost idle prio on transactions that would lock out other
3414 * users of the filesystem
3415 */
3416 if (cfq_class_idle(cfqq))
3417 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3418 if (cfqq->ioprio > IOPRIO_NORM)
3419 cfqq->ioprio = IOPRIO_NORM;
3420 } else {
3421 /*
3422 * unboost the queue (if needed)
3423 */
3424 cfqq->ioprio_class = cfqq->org_ioprio_class;
3425 cfqq->ioprio = cfqq->org_ioprio;
3426 }
3427 }
3428
3429 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3430 {
3431 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3432 cfq_mark_cfqq_must_alloc_slice(cfqq);
3433 return ELV_MQUEUE_MUST;
3434 }
3435
3436 return ELV_MQUEUE_MAY;
3437 }
3438
3439 static int cfq_may_queue(struct request_queue *q, int rw)
3440 {
3441 struct cfq_data *cfqd = q->elevator->elevator_data;
3442 struct task_struct *tsk = current;
3443 struct cfq_io_context *cic;
3444 struct cfq_queue *cfqq;
3445
3446 /*
3447 * don't force setup of a queue from here, as a call to may_queue
3448 * does not necessarily imply that a request actually will be queued.
3449 * so just lookup a possibly existing queue, or return 'may queue'
3450 * if that fails
3451 */
3452 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3453 if (!cic)
3454 return ELV_MQUEUE_MAY;
3455
3456 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3457 if (cfqq) {
3458 cfq_init_prio_data(cfqq, cic->ioc);
3459 cfq_prio_boost(cfqq);
3460
3461 return __cfq_may_queue(cfqq);
3462 }
3463
3464 return ELV_MQUEUE_MAY;
3465 }
3466
3467 /*
3468 * queue lock held here
3469 */
3470 static void cfq_put_request(struct request *rq)
3471 {
3472 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3473
3474 if (cfqq) {
3475 const int rw = rq_data_dir(rq);
3476
3477 BUG_ON(!cfqq->allocated[rw]);
3478 cfqq->allocated[rw]--;
3479
3480 put_io_context(RQ_CIC(rq)->ioc);
3481
3482 rq->elevator_private = NULL;
3483 rq->elevator_private2 = NULL;
3484
3485 /* Put down rq reference on cfqg */
3486 cfq_put_cfqg(RQ_CFQG(rq));
3487 rq->elevator_private3 = NULL;
3488
3489 cfq_put_queue(cfqq);
3490 }
3491 }
3492
3493 static struct cfq_queue *
3494 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3495 struct cfq_queue *cfqq)
3496 {
3497 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3498 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3499 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3500 cfq_put_queue(cfqq);
3501 return cic_to_cfqq(cic, 1);
3502 }
3503
3504 /*
3505 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3506 * was the last process referring to said cfqq.
3507 */
3508 static struct cfq_queue *
3509 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3510 {
3511 if (cfqq_process_refs(cfqq) == 1) {
3512 cfqq->pid = current->pid;
3513 cfq_clear_cfqq_coop(cfqq);
3514 cfq_clear_cfqq_split_coop(cfqq);
3515 return cfqq;
3516 }
3517
3518 cic_set_cfqq(cic, NULL, 1);
3519 cfq_put_queue(cfqq);
3520 return NULL;
3521 }
3522 /*
3523 * Allocate cfq data structures associated with this request.
3524 */
3525 static int
3526 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3527 {
3528 struct cfq_data *cfqd = q->elevator->elevator_data;
3529 struct cfq_io_context *cic;
3530 const int rw = rq_data_dir(rq);
3531 const bool is_sync = rq_is_sync(rq);
3532 struct cfq_queue *cfqq;
3533 unsigned long flags;
3534
3535 might_sleep_if(gfp_mask & __GFP_WAIT);
3536
3537 cic = cfq_get_io_context(cfqd, gfp_mask);
3538
3539 spin_lock_irqsave(q->queue_lock, flags);
3540
3541 if (!cic)
3542 goto queue_fail;
3543
3544 new_queue:
3545 cfqq = cic_to_cfqq(cic, is_sync);
3546 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3547 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3548 cic_set_cfqq(cic, cfqq, is_sync);
3549 } else {
3550 /*
3551 * If the queue was seeky for too long, break it apart.
3552 */
3553 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3554 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3555 cfqq = split_cfqq(cic, cfqq);
3556 if (!cfqq)
3557 goto new_queue;
3558 }
3559
3560 /*
3561 * Check to see if this queue is scheduled to merge with
3562 * another, closely cooperating queue. The merging of
3563 * queues happens here as it must be done in process context.
3564 * The reference on new_cfqq was taken in merge_cfqqs.
3565 */
3566 if (cfqq->new_cfqq)
3567 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3568 }
3569
3570 cfqq->allocated[rw]++;
3571 atomic_inc(&cfqq->ref);
3572
3573 spin_unlock_irqrestore(q->queue_lock, flags);
3574
3575 rq->elevator_private = cic;
3576 rq->elevator_private2 = cfqq;
3577 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3578 return 0;
3579
3580 queue_fail:
3581 if (cic)
3582 put_io_context(cic->ioc);
3583
3584 cfq_schedule_dispatch(cfqd);
3585 spin_unlock_irqrestore(q->queue_lock, flags);
3586 cfq_log(cfqd, "set_request fail");
3587 return 1;
3588 }
3589
3590 static void cfq_kick_queue(struct work_struct *work)
3591 {
3592 struct cfq_data *cfqd =
3593 container_of(work, struct cfq_data, unplug_work);
3594 struct request_queue *q = cfqd->queue;
3595
3596 spin_lock_irq(q->queue_lock);
3597 __blk_run_queue(cfqd->queue);
3598 spin_unlock_irq(q->queue_lock);
3599 }
3600
3601 /*
3602 * Timer running if the active_queue is currently idling inside its time slice
3603 */
3604 static void cfq_idle_slice_timer(unsigned long data)
3605 {
3606 struct cfq_data *cfqd = (struct cfq_data *) data;
3607 struct cfq_queue *cfqq;
3608 unsigned long flags;
3609 int timed_out = 1;
3610
3611 cfq_log(cfqd, "idle timer fired");
3612
3613 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3614
3615 cfqq = cfqd->active_queue;
3616 if (cfqq) {
3617 timed_out = 0;
3618
3619 /*
3620 * We saw a request before the queue expired, let it through
3621 */
3622 if (cfq_cfqq_must_dispatch(cfqq))
3623 goto out_kick;
3624
3625 /*
3626 * expired
3627 */
3628 if (cfq_slice_used(cfqq))
3629 goto expire;
3630
3631 /*
3632 * only expire and reinvoke request handler, if there are
3633 * other queues with pending requests
3634 */
3635 if (!cfqd->busy_queues)
3636 goto out_cont;
3637
3638 /*
3639 * not expired and it has a request pending, let it dispatch
3640 */
3641 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3642 goto out_kick;
3643
3644 /*
3645 * Queue depth flag is reset only when the idle didn't succeed
3646 */
3647 cfq_clear_cfqq_deep(cfqq);
3648 }
3649 expire:
3650 cfq_slice_expired(cfqd, timed_out);
3651 out_kick:
3652 cfq_schedule_dispatch(cfqd);
3653 out_cont:
3654 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3655 }
3656
3657 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3658 {
3659 del_timer_sync(&cfqd->idle_slice_timer);
3660 cancel_work_sync(&cfqd->unplug_work);
3661 }
3662
3663 static void cfq_put_async_queues(struct cfq_data *cfqd)
3664 {
3665 int i;
3666
3667 for (i = 0; i < IOPRIO_BE_NR; i++) {
3668 if (cfqd->async_cfqq[0][i])
3669 cfq_put_queue(cfqd->async_cfqq[0][i]);
3670 if (cfqd->async_cfqq[1][i])
3671 cfq_put_queue(cfqd->async_cfqq[1][i]);
3672 }
3673
3674 if (cfqd->async_idle_cfqq)
3675 cfq_put_queue(cfqd->async_idle_cfqq);
3676 }
3677
3678 static void cfq_cfqd_free(struct rcu_head *head)
3679 {
3680 kfree(container_of(head, struct cfq_data, rcu));
3681 }
3682
3683 static void cfq_exit_queue(struct elevator_queue *e)
3684 {
3685 struct cfq_data *cfqd = e->elevator_data;
3686 struct request_queue *q = cfqd->queue;
3687
3688 cfq_shutdown_timer_wq(cfqd);
3689
3690 spin_lock_irq(q->queue_lock);
3691
3692 if (cfqd->active_queue)
3693 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3694
3695 while (!list_empty(&cfqd->cic_list)) {
3696 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3697 struct cfq_io_context,
3698 queue_list);
3699
3700 __cfq_exit_single_io_context(cfqd, cic);
3701 }
3702
3703 cfq_put_async_queues(cfqd);
3704 cfq_release_cfq_groups(cfqd);
3705 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3706
3707 spin_unlock_irq(q->queue_lock);
3708
3709 cfq_shutdown_timer_wq(cfqd);
3710
3711 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3712 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3713 }
3714
3715 static void *cfq_init_queue(struct request_queue *q)
3716 {
3717 struct cfq_data *cfqd;
3718 int i, j;
3719 struct cfq_group *cfqg;
3720 struct cfq_rb_root *st;
3721
3722 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3723 if (!cfqd)
3724 return NULL;
3725
3726 /* Init root service tree */
3727 cfqd->grp_service_tree = CFQ_RB_ROOT;
3728
3729 /* Init root group */
3730 cfqg = &cfqd->root_group;
3731 for_each_cfqg_st(cfqg, i, j, st)
3732 *st = CFQ_RB_ROOT;
3733 RB_CLEAR_NODE(&cfqg->rb_node);
3734
3735 /* Give preference to root group over other groups */
3736 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3737
3738 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3739 /*
3740 * Take a reference to root group which we never drop. This is just
3741 * to make sure that cfq_put_cfqg() does not try to kfree root group
3742 */
3743 atomic_set(&cfqg->ref, 1);
3744 rcu_read_lock();
3745 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3746 0);
3747 rcu_read_unlock();
3748 #endif
3749 /*
3750 * Not strictly needed (since RB_ROOT just clears the node and we
3751 * zeroed cfqd on alloc), but better be safe in case someone decides
3752 * to add magic to the rb code
3753 */
3754 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3755 cfqd->prio_trees[i] = RB_ROOT;
3756
3757 /*
3758 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3759 * Grab a permanent reference to it, so that the normal code flow
3760 * will not attempt to free it.
3761 */
3762 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3763 atomic_inc(&cfqd->oom_cfqq.ref);
3764 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3765
3766 INIT_LIST_HEAD(&cfqd->cic_list);
3767
3768 cfqd->queue = q;
3769
3770 init_timer(&cfqd->idle_slice_timer);
3771 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3772 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3773
3774 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3775
3776 cfqd->cfq_quantum = cfq_quantum;
3777 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3778 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3779 cfqd->cfq_back_max = cfq_back_max;
3780 cfqd->cfq_back_penalty = cfq_back_penalty;
3781 cfqd->cfq_slice[0] = cfq_slice_async;
3782 cfqd->cfq_slice[1] = cfq_slice_sync;
3783 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3784 cfqd->cfq_slice_idle = cfq_slice_idle;
3785 cfqd->cfq_latency = 1;
3786 cfqd->cfq_group_isolation = 0;
3787 cfqd->hw_tag = -1;
3788 /*
3789 * we optimistically start assuming sync ops weren't delayed in last
3790 * second, in order to have larger depth for async operations.
3791 */
3792 cfqd->last_delayed_sync = jiffies - HZ;
3793 return cfqd;
3794 }
3795
3796 static void cfq_slab_kill(void)
3797 {
3798 /*
3799 * Caller already ensured that pending RCU callbacks are completed,
3800 * so we should have no busy allocations at this point.
3801 */
3802 if (cfq_pool)
3803 kmem_cache_destroy(cfq_pool);
3804 if (cfq_ioc_pool)
3805 kmem_cache_destroy(cfq_ioc_pool);
3806 }
3807
3808 static int __init cfq_slab_setup(void)
3809 {
3810 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3811 if (!cfq_pool)
3812 goto fail;
3813
3814 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3815 if (!cfq_ioc_pool)
3816 goto fail;
3817
3818 return 0;
3819 fail:
3820 cfq_slab_kill();
3821 return -ENOMEM;
3822 }
3823
3824 /*
3825 * sysfs parts below -->
3826 */
3827 static ssize_t
3828 cfq_var_show(unsigned int var, char *page)
3829 {
3830 return sprintf(page, "%d\n", var);
3831 }
3832
3833 static ssize_t
3834 cfq_var_store(unsigned int *var, const char *page, size_t count)
3835 {
3836 char *p = (char *) page;
3837
3838 *var = simple_strtoul(p, &p, 10);
3839 return count;
3840 }
3841
3842 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3843 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3844 { \
3845 struct cfq_data *cfqd = e->elevator_data; \
3846 unsigned int __data = __VAR; \
3847 if (__CONV) \
3848 __data = jiffies_to_msecs(__data); \
3849 return cfq_var_show(__data, (page)); \
3850 }
3851 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3852 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3853 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3854 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3855 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3856 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3857 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3858 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3859 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3860 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3861 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3862 #undef SHOW_FUNCTION
3863
3864 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3865 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3866 { \
3867 struct cfq_data *cfqd = e->elevator_data; \
3868 unsigned int __data; \
3869 int ret = cfq_var_store(&__data, (page), count); \
3870 if (__data < (MIN)) \
3871 __data = (MIN); \
3872 else if (__data > (MAX)) \
3873 __data = (MAX); \
3874 if (__CONV) \
3875 *(__PTR) = msecs_to_jiffies(__data); \
3876 else \
3877 *(__PTR) = __data; \
3878 return ret; \
3879 }
3880 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3881 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3882 UINT_MAX, 1);
3883 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3884 UINT_MAX, 1);
3885 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3886 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3887 UINT_MAX, 0);
3888 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3889 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3890 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3891 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3892 UINT_MAX, 0);
3893 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3894 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3895 #undef STORE_FUNCTION
3896
3897 #define CFQ_ATTR(name) \
3898 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3899
3900 static struct elv_fs_entry cfq_attrs[] = {
3901 CFQ_ATTR(quantum),
3902 CFQ_ATTR(fifo_expire_sync),
3903 CFQ_ATTR(fifo_expire_async),
3904 CFQ_ATTR(back_seek_max),
3905 CFQ_ATTR(back_seek_penalty),
3906 CFQ_ATTR(slice_sync),
3907 CFQ_ATTR(slice_async),
3908 CFQ_ATTR(slice_async_rq),
3909 CFQ_ATTR(slice_idle),
3910 CFQ_ATTR(low_latency),
3911 CFQ_ATTR(group_isolation),
3912 __ATTR_NULL
3913 };
3914
3915 static struct elevator_type iosched_cfq = {
3916 .ops = {
3917 .elevator_merge_fn = cfq_merge,
3918 .elevator_merged_fn = cfq_merged_request,
3919 .elevator_merge_req_fn = cfq_merged_requests,
3920 .elevator_allow_merge_fn = cfq_allow_merge,
3921 .elevator_bio_merged_fn = cfq_bio_merged,
3922 .elevator_dispatch_fn = cfq_dispatch_requests,
3923 .elevator_add_req_fn = cfq_insert_request,
3924 .elevator_activate_req_fn = cfq_activate_request,
3925 .elevator_deactivate_req_fn = cfq_deactivate_request,
3926 .elevator_queue_empty_fn = cfq_queue_empty,
3927 .elevator_completed_req_fn = cfq_completed_request,
3928 .elevator_former_req_fn = elv_rb_former_request,
3929 .elevator_latter_req_fn = elv_rb_latter_request,
3930 .elevator_set_req_fn = cfq_set_request,
3931 .elevator_put_req_fn = cfq_put_request,
3932 .elevator_may_queue_fn = cfq_may_queue,
3933 .elevator_init_fn = cfq_init_queue,
3934 .elevator_exit_fn = cfq_exit_queue,
3935 .trim = cfq_free_io_context,
3936 },
3937 .elevator_attrs = cfq_attrs,
3938 .elevator_name = "cfq",
3939 .elevator_owner = THIS_MODULE,
3940 };
3941
3942 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3943 static struct blkio_policy_type blkio_policy_cfq = {
3944 .ops = {
3945 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3946 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3947 },
3948 };
3949 #else
3950 static struct blkio_policy_type blkio_policy_cfq;
3951 #endif
3952
3953 static int __init cfq_init(void)
3954 {
3955 /*
3956 * could be 0 on HZ < 1000 setups
3957 */
3958 if (!cfq_slice_async)
3959 cfq_slice_async = 1;
3960 if (!cfq_slice_idle)
3961 cfq_slice_idle = 1;
3962
3963 if (cfq_slab_setup())
3964 return -ENOMEM;
3965
3966 elv_register(&iosched_cfq);
3967 blkio_policy_register(&blkio_policy_cfq);
3968
3969 return 0;
3970 }
3971
3972 static void __exit cfq_exit(void)
3973 {
3974 DECLARE_COMPLETION_ONSTACK(all_gone);
3975 blkio_policy_unregister(&blkio_policy_cfq);
3976 elv_unregister(&iosched_cfq);
3977 ioc_gone = &all_gone;
3978 /* ioc_gone's update must be visible before reading ioc_count */
3979 smp_wmb();
3980
3981 /*
3982 * this also protects us from entering cfq_slab_kill() with
3983 * pending RCU callbacks
3984 */
3985 if (elv_ioc_count_read(cfq_ioc_count))
3986 wait_for_completion(&all_gone);
3987 cfq_slab_kill();
3988 }
3989
3990 module_init(cfq_init);
3991 module_exit(cfq_exit);
3992
3993 MODULE_AUTHOR("Jens Axboe");
3994 MODULE_LICENSE("GPL");
3995 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.108169 seconds and 6 git commands to generate.