cfq-iosched: Reduce linked group count upon group destruction
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38 * offset from end of service tree
39 */
40 #define CFQ_IDLE_DELAY (HZ / 5)
41
42 /*
43 * below this threshold, we consider thinktime immediate
44 */
45 #define CFQ_MIN_TT (2)
46
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
50
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95 /*
96 * Per process-grouping structure
97 */
98 struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* number of requests that are on the dispatch list or inside driver */
134 int dispatched;
135
136 /* io prio of this group */
137 unsigned short ioprio, org_ioprio;
138 unsigned short ioprio_class;
139
140 pid_t pid;
141
142 u32 seek_history;
143 sector_t last_request_pos;
144
145 struct cfq_rb_root *service_tree;
146 struct cfq_queue *new_cfqq;
147 struct cfq_group *cfqg;
148 /* Number of sectors dispatched from queue in single dispatch round */
149 unsigned long nr_sectors;
150 };
151
152 /*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 CFQ_PRIO_NR,
161 };
162
163 /*
164 * Second index in the service_trees.
165 */
166 enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170 };
171
172 /* This is per cgroup per device grouping structure */
173 struct cfq_group {
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
179 unsigned int weight;
180 unsigned int new_weight;
181 bool needs_update;
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
186 /*
187 * Per group busy queues average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
207 struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
210 int ref;
211 #endif
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214 struct cfq_ttime ttime;
215 };
216
217 /*
218 * Per block device queue structure
219 */
220 struct cfq_data {
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
225
226 /*
227 * The priority currently being served
228 */
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
243
244 int rq_in_driver;
245 int rq_in_flight[2];
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
251 int hw_tag;
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
260
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
266
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
269
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
275
276 sector_t last_position;
277
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
290
291 unsigned int cic_index;
292 struct list_head cic_list;
293
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
298
299 unsigned long last_delayed_sync;
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
306 };
307
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
312 enum wl_type_t type)
313 {
314 if (!cfqg)
315 return NULL;
316
317 if (prio == IDLE_WORKLOAD)
318 return &cfqg->service_tree_idle;
319
320 return &cfqg->service_trees[prio][type];
321 }
322
323 enum cfqq_state_flags {
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
337 };
338
339 #define CFQ_CFQQ_FNS(name) \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341 { \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
343 } \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345 { \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
347 } \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349 { \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
351 }
352
353 CFQ_CFQQ_FNS(on_rr);
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
361 CFQ_CFQQ_FNS(sync);
362 CFQ_CFQQ_FNS(coop);
363 CFQ_CFQQ_FNS(split_coop);
364 CFQ_CFQQ_FNS(deep);
365 CFQ_CFQQ_FNS(wait_busy);
366 #undef CFQ_CFQQ_FNS
367
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args)
373
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args) \
377
378 #else
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
382 #endif
383 #define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
396 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
397 struct cfq_ttime *ttime, bool group_idle)
398 {
399 unsigned long slice;
400 if (!sample_valid(ttime->ttime_samples))
401 return false;
402 if (group_idle)
403 slice = cfqd->cfq_group_idle;
404 else
405 slice = cfqd->cfq_slice_idle;
406 return ttime->ttime_mean > slice;
407 }
408
409 static inline bool iops_mode(struct cfq_data *cfqd)
410 {
411 /*
412 * If we are not idling on queues and it is a NCQ drive, parallel
413 * execution of requests is on and measuring time is not possible
414 * in most of the cases until and unless we drive shallower queue
415 * depths and that becomes a performance bottleneck. In such cases
416 * switch to start providing fairness in terms of number of IOs.
417 */
418 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
419 return true;
420 else
421 return false;
422 }
423
424 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
425 {
426 if (cfq_class_idle(cfqq))
427 return IDLE_WORKLOAD;
428 if (cfq_class_rt(cfqq))
429 return RT_WORKLOAD;
430 return BE_WORKLOAD;
431 }
432
433
434 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
435 {
436 if (!cfq_cfqq_sync(cfqq))
437 return ASYNC_WORKLOAD;
438 if (!cfq_cfqq_idle_window(cfqq))
439 return SYNC_NOIDLE_WORKLOAD;
440 return SYNC_WORKLOAD;
441 }
442
443 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
444 struct cfq_data *cfqd,
445 struct cfq_group *cfqg)
446 {
447 if (wl == IDLE_WORKLOAD)
448 return cfqg->service_tree_idle.count;
449
450 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
451 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
452 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
453 }
454
455 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
456 struct cfq_group *cfqg)
457 {
458 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
459 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
460 }
461
462 static void cfq_dispatch_insert(struct request_queue *, struct request *);
463 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
464 struct io_context *, gfp_t);
465 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
466 struct io_context *);
467
468 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
469 bool is_sync)
470 {
471 return cic->cfqq[is_sync];
472 }
473
474 static inline void cic_set_cfqq(struct cfq_io_context *cic,
475 struct cfq_queue *cfqq, bool is_sync)
476 {
477 cic->cfqq[is_sync] = cfqq;
478 }
479
480 #define CIC_DEAD_KEY 1ul
481 #define CIC_DEAD_INDEX_SHIFT 1
482
483 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
484 {
485 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
486 }
487
488 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
489 {
490 struct cfq_data *cfqd = cic->key;
491
492 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
493 return NULL;
494
495 return cfqd;
496 }
497
498 /*
499 * We regard a request as SYNC, if it's either a read or has the SYNC bit
500 * set (in which case it could also be direct WRITE).
501 */
502 static inline bool cfq_bio_sync(struct bio *bio)
503 {
504 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
505 }
506
507 /*
508 * scheduler run of queue, if there are requests pending and no one in the
509 * driver that will restart queueing
510 */
511 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
512 {
513 if (cfqd->busy_queues) {
514 cfq_log(cfqd, "schedule dispatch");
515 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
516 }
517 }
518
519 /*
520 * Scale schedule slice based on io priority. Use the sync time slice only
521 * if a queue is marked sync and has sync io queued. A sync queue with async
522 * io only, should not get full sync slice length.
523 */
524 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
525 unsigned short prio)
526 {
527 const int base_slice = cfqd->cfq_slice[sync];
528
529 WARN_ON(prio >= IOPRIO_BE_NR);
530
531 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
532 }
533
534 static inline int
535 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
536 {
537 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
538 }
539
540 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
541 {
542 u64 d = delta << CFQ_SERVICE_SHIFT;
543
544 d = d * BLKIO_WEIGHT_DEFAULT;
545 do_div(d, cfqg->weight);
546 return d;
547 }
548
549 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
550 {
551 s64 delta = (s64)(vdisktime - min_vdisktime);
552 if (delta > 0)
553 min_vdisktime = vdisktime;
554
555 return min_vdisktime;
556 }
557
558 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
559 {
560 s64 delta = (s64)(vdisktime - min_vdisktime);
561 if (delta < 0)
562 min_vdisktime = vdisktime;
563
564 return min_vdisktime;
565 }
566
567 static void update_min_vdisktime(struct cfq_rb_root *st)
568 {
569 struct cfq_group *cfqg;
570
571 if (st->left) {
572 cfqg = rb_entry_cfqg(st->left);
573 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
574 cfqg->vdisktime);
575 }
576 }
577
578 /*
579 * get averaged number of queues of RT/BE priority.
580 * average is updated, with a formula that gives more weight to higher numbers,
581 * to quickly follows sudden increases and decrease slowly
582 */
583
584 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
585 struct cfq_group *cfqg, bool rt)
586 {
587 unsigned min_q, max_q;
588 unsigned mult = cfq_hist_divisor - 1;
589 unsigned round = cfq_hist_divisor / 2;
590 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
591
592 min_q = min(cfqg->busy_queues_avg[rt], busy);
593 max_q = max(cfqg->busy_queues_avg[rt], busy);
594 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
595 cfq_hist_divisor;
596 return cfqg->busy_queues_avg[rt];
597 }
598
599 static inline unsigned
600 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
601 {
602 struct cfq_rb_root *st = &cfqd->grp_service_tree;
603
604 return cfq_target_latency * cfqg->weight / st->total_weight;
605 }
606
607 static inline unsigned
608 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
609 {
610 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
611 if (cfqd->cfq_latency) {
612 /*
613 * interested queues (we consider only the ones with the same
614 * priority class in the cfq group)
615 */
616 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
617 cfq_class_rt(cfqq));
618 unsigned sync_slice = cfqd->cfq_slice[1];
619 unsigned expect_latency = sync_slice * iq;
620 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
621
622 if (expect_latency > group_slice) {
623 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
624 /* scale low_slice according to IO priority
625 * and sync vs async */
626 unsigned low_slice =
627 min(slice, base_low_slice * slice / sync_slice);
628 /* the adapted slice value is scaled to fit all iqs
629 * into the target latency */
630 slice = max(slice * group_slice / expect_latency,
631 low_slice);
632 }
633 }
634 return slice;
635 }
636
637 static inline void
638 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
639 {
640 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
641
642 cfqq->slice_start = jiffies;
643 cfqq->slice_end = jiffies + slice;
644 cfqq->allocated_slice = slice;
645 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
646 }
647
648 /*
649 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
650 * isn't valid until the first request from the dispatch is activated
651 * and the slice time set.
652 */
653 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
654 {
655 if (cfq_cfqq_slice_new(cfqq))
656 return false;
657 if (time_before(jiffies, cfqq->slice_end))
658 return false;
659
660 return true;
661 }
662
663 /*
664 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
665 * We choose the request that is closest to the head right now. Distance
666 * behind the head is penalized and only allowed to a certain extent.
667 */
668 static struct request *
669 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
670 {
671 sector_t s1, s2, d1 = 0, d2 = 0;
672 unsigned long back_max;
673 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
674 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
675 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
676
677 if (rq1 == NULL || rq1 == rq2)
678 return rq2;
679 if (rq2 == NULL)
680 return rq1;
681
682 if (rq_is_sync(rq1) != rq_is_sync(rq2))
683 return rq_is_sync(rq1) ? rq1 : rq2;
684
685 s1 = blk_rq_pos(rq1);
686 s2 = blk_rq_pos(rq2);
687
688 /*
689 * by definition, 1KiB is 2 sectors
690 */
691 back_max = cfqd->cfq_back_max * 2;
692
693 /*
694 * Strict one way elevator _except_ in the case where we allow
695 * short backward seeks which are biased as twice the cost of a
696 * similar forward seek.
697 */
698 if (s1 >= last)
699 d1 = s1 - last;
700 else if (s1 + back_max >= last)
701 d1 = (last - s1) * cfqd->cfq_back_penalty;
702 else
703 wrap |= CFQ_RQ1_WRAP;
704
705 if (s2 >= last)
706 d2 = s2 - last;
707 else if (s2 + back_max >= last)
708 d2 = (last - s2) * cfqd->cfq_back_penalty;
709 else
710 wrap |= CFQ_RQ2_WRAP;
711
712 /* Found required data */
713
714 /*
715 * By doing switch() on the bit mask "wrap" we avoid having to
716 * check two variables for all permutations: --> faster!
717 */
718 switch (wrap) {
719 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
720 if (d1 < d2)
721 return rq1;
722 else if (d2 < d1)
723 return rq2;
724 else {
725 if (s1 >= s2)
726 return rq1;
727 else
728 return rq2;
729 }
730
731 case CFQ_RQ2_WRAP:
732 return rq1;
733 case CFQ_RQ1_WRAP:
734 return rq2;
735 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
736 default:
737 /*
738 * Since both rqs are wrapped,
739 * start with the one that's further behind head
740 * (--> only *one* back seek required),
741 * since back seek takes more time than forward.
742 */
743 if (s1 <= s2)
744 return rq1;
745 else
746 return rq2;
747 }
748 }
749
750 /*
751 * The below is leftmost cache rbtree addon
752 */
753 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
754 {
755 /* Service tree is empty */
756 if (!root->count)
757 return NULL;
758
759 if (!root->left)
760 root->left = rb_first(&root->rb);
761
762 if (root->left)
763 return rb_entry(root->left, struct cfq_queue, rb_node);
764
765 return NULL;
766 }
767
768 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
769 {
770 if (!root->left)
771 root->left = rb_first(&root->rb);
772
773 if (root->left)
774 return rb_entry_cfqg(root->left);
775
776 return NULL;
777 }
778
779 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780 {
781 rb_erase(n, root);
782 RB_CLEAR_NODE(n);
783 }
784
785 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
786 {
787 if (root->left == n)
788 root->left = NULL;
789 rb_erase_init(n, &root->rb);
790 --root->count;
791 }
792
793 /*
794 * would be nice to take fifo expire time into account as well
795 */
796 static struct request *
797 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798 struct request *last)
799 {
800 struct rb_node *rbnext = rb_next(&last->rb_node);
801 struct rb_node *rbprev = rb_prev(&last->rb_node);
802 struct request *next = NULL, *prev = NULL;
803
804 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
805
806 if (rbprev)
807 prev = rb_entry_rq(rbprev);
808
809 if (rbnext)
810 next = rb_entry_rq(rbnext);
811 else {
812 rbnext = rb_first(&cfqq->sort_list);
813 if (rbnext && rbnext != &last->rb_node)
814 next = rb_entry_rq(rbnext);
815 }
816
817 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
818 }
819
820 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
821 struct cfq_queue *cfqq)
822 {
823 /*
824 * just an approximation, should be ok.
825 */
826 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
827 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
828 }
829
830 static inline s64
831 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
832 {
833 return cfqg->vdisktime - st->min_vdisktime;
834 }
835
836 static void
837 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
838 {
839 struct rb_node **node = &st->rb.rb_node;
840 struct rb_node *parent = NULL;
841 struct cfq_group *__cfqg;
842 s64 key = cfqg_key(st, cfqg);
843 int left = 1;
844
845 while (*node != NULL) {
846 parent = *node;
847 __cfqg = rb_entry_cfqg(parent);
848
849 if (key < cfqg_key(st, __cfqg))
850 node = &parent->rb_left;
851 else {
852 node = &parent->rb_right;
853 left = 0;
854 }
855 }
856
857 if (left)
858 st->left = &cfqg->rb_node;
859
860 rb_link_node(&cfqg->rb_node, parent, node);
861 rb_insert_color(&cfqg->rb_node, &st->rb);
862 }
863
864 static void
865 cfq_update_group_weight(struct cfq_group *cfqg)
866 {
867 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
868 if (cfqg->needs_update) {
869 cfqg->weight = cfqg->new_weight;
870 cfqg->needs_update = false;
871 }
872 }
873
874 static void
875 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
876 {
877 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
878
879 cfq_update_group_weight(cfqg);
880 __cfq_group_service_tree_add(st, cfqg);
881 st->total_weight += cfqg->weight;
882 }
883
884 static void
885 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 {
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888 struct cfq_group *__cfqg;
889 struct rb_node *n;
890
891 cfqg->nr_cfqq++;
892 if (!RB_EMPTY_NODE(&cfqg->rb_node))
893 return;
894
895 /*
896 * Currently put the group at the end. Later implement something
897 * so that groups get lesser vtime based on their weights, so that
898 * if group does not loose all if it was not continuously backlogged.
899 */
900 n = rb_last(&st->rb);
901 if (n) {
902 __cfqg = rb_entry_cfqg(n);
903 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
904 } else
905 cfqg->vdisktime = st->min_vdisktime;
906 cfq_group_service_tree_add(st, cfqg);
907 }
908
909 static void
910 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
911 {
912 st->total_weight -= cfqg->weight;
913 if (!RB_EMPTY_NODE(&cfqg->rb_node))
914 cfq_rb_erase(&cfqg->rb_node, st);
915 }
916
917 static void
918 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
919 {
920 struct cfq_rb_root *st = &cfqd->grp_service_tree;
921
922 BUG_ON(cfqg->nr_cfqq < 1);
923 cfqg->nr_cfqq--;
924
925 /* If there are other cfq queues under this group, don't delete it */
926 if (cfqg->nr_cfqq)
927 return;
928
929 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
930 cfq_group_service_tree_del(st, cfqg);
931 cfqg->saved_workload_slice = 0;
932 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
933 }
934
935 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
936 unsigned int *unaccounted_time)
937 {
938 unsigned int slice_used;
939
940 /*
941 * Queue got expired before even a single request completed or
942 * got expired immediately after first request completion.
943 */
944 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
945 /*
946 * Also charge the seek time incurred to the group, otherwise
947 * if there are mutiple queues in the group, each can dispatch
948 * a single request on seeky media and cause lots of seek time
949 * and group will never know it.
950 */
951 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
952 1);
953 } else {
954 slice_used = jiffies - cfqq->slice_start;
955 if (slice_used > cfqq->allocated_slice) {
956 *unaccounted_time = slice_used - cfqq->allocated_slice;
957 slice_used = cfqq->allocated_slice;
958 }
959 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
960 *unaccounted_time += cfqq->slice_start -
961 cfqq->dispatch_start;
962 }
963
964 return slice_used;
965 }
966
967 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
968 struct cfq_queue *cfqq)
969 {
970 struct cfq_rb_root *st = &cfqd->grp_service_tree;
971 unsigned int used_sl, charge, unaccounted_sl = 0;
972 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
973 - cfqg->service_tree_idle.count;
974
975 BUG_ON(nr_sync < 0);
976 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
977
978 if (iops_mode(cfqd))
979 charge = cfqq->slice_dispatch;
980 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
981 charge = cfqq->allocated_slice;
982
983 /* Can't update vdisktime while group is on service tree */
984 cfq_group_service_tree_del(st, cfqg);
985 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
986 /* If a new weight was requested, update now, off tree */
987 cfq_group_service_tree_add(st, cfqg);
988
989 /* This group is being expired. Save the context */
990 if (time_after(cfqd->workload_expires, jiffies)) {
991 cfqg->saved_workload_slice = cfqd->workload_expires
992 - jiffies;
993 cfqg->saved_workload = cfqd->serving_type;
994 cfqg->saved_serving_prio = cfqd->serving_prio;
995 } else
996 cfqg->saved_workload_slice = 0;
997
998 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
999 st->min_vdisktime);
1000 cfq_log_cfqq(cfqq->cfqd, cfqq,
1001 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1002 used_sl, cfqq->slice_dispatch, charge,
1003 iops_mode(cfqd), cfqq->nr_sectors);
1004 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1005 unaccounted_sl);
1006 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1007 }
1008
1009 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1010 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1011 {
1012 if (blkg)
1013 return container_of(blkg, struct cfq_group, blkg);
1014 return NULL;
1015 }
1016
1017 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1018 unsigned int weight)
1019 {
1020 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1021 cfqg->new_weight = weight;
1022 cfqg->needs_update = true;
1023 }
1024
1025 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1026 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1027 {
1028 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1029 unsigned int major, minor;
1030
1031 /*
1032 * Add group onto cgroup list. It might happen that bdi->dev is
1033 * not initialized yet. Initialize this new group without major
1034 * and minor info and this info will be filled in once a new thread
1035 * comes for IO.
1036 */
1037 if (bdi->dev) {
1038 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1039 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1040 (void *)cfqd, MKDEV(major, minor));
1041 } else
1042 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1043 (void *)cfqd, 0);
1044
1045 cfqd->nr_blkcg_linked_grps++;
1046 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1047
1048 /* Add group on cfqd list */
1049 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1050 }
1051
1052 /*
1053 * Should be called from sleepable context. No request queue lock as per
1054 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1055 * from sleepable context.
1056 */
1057 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1058 {
1059 struct cfq_group *cfqg = NULL;
1060 int i, j, ret;
1061 struct cfq_rb_root *st;
1062
1063 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1064 if (!cfqg)
1065 return NULL;
1066
1067 for_each_cfqg_st(cfqg, i, j, st)
1068 *st = CFQ_RB_ROOT;
1069 RB_CLEAR_NODE(&cfqg->rb_node);
1070
1071 cfqg->ttime.last_end_request = jiffies;
1072
1073 /*
1074 * Take the initial reference that will be released on destroy
1075 * This can be thought of a joint reference by cgroup and
1076 * elevator which will be dropped by either elevator exit
1077 * or cgroup deletion path depending on who is exiting first.
1078 */
1079 cfqg->ref = 1;
1080
1081 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1082 if (ret) {
1083 kfree(cfqg);
1084 return NULL;
1085 }
1086
1087 return cfqg;
1088 }
1089
1090 static struct cfq_group *
1091 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1092 {
1093 struct cfq_group *cfqg = NULL;
1094 void *key = cfqd;
1095 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1096 unsigned int major, minor;
1097
1098 /*
1099 * This is the common case when there are no blkio cgroups.
1100 * Avoid lookup in this case
1101 */
1102 if (blkcg == &blkio_root_cgroup)
1103 cfqg = &cfqd->root_group;
1104 else
1105 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1106
1107 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1108 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1109 cfqg->blkg.dev = MKDEV(major, minor);
1110 }
1111
1112 return cfqg;
1113 }
1114
1115 /*
1116 * Search for the cfq group current task belongs to. request_queue lock must
1117 * be held.
1118 */
1119 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1120 {
1121 struct blkio_cgroup *blkcg;
1122 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1123 struct request_queue *q = cfqd->queue;
1124
1125 rcu_read_lock();
1126 blkcg = task_blkio_cgroup(current);
1127 cfqg = cfq_find_cfqg(cfqd, blkcg);
1128 if (cfqg) {
1129 rcu_read_unlock();
1130 return cfqg;
1131 }
1132
1133 /*
1134 * Need to allocate a group. Allocation of group also needs allocation
1135 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1136 * we need to drop rcu lock and queue_lock before we call alloc.
1137 *
1138 * Not taking any queue reference here and assuming that queue is
1139 * around by the time we return. CFQ queue allocation code does
1140 * the same. It might be racy though.
1141 */
1142
1143 rcu_read_unlock();
1144 spin_unlock_irq(q->queue_lock);
1145
1146 cfqg = cfq_alloc_cfqg(cfqd);
1147
1148 spin_lock_irq(q->queue_lock);
1149
1150 rcu_read_lock();
1151 blkcg = task_blkio_cgroup(current);
1152
1153 /*
1154 * If some other thread already allocated the group while we were
1155 * not holding queue lock, free up the group
1156 */
1157 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1158
1159 if (__cfqg) {
1160 kfree(cfqg);
1161 rcu_read_unlock();
1162 return __cfqg;
1163 }
1164
1165 if (!cfqg)
1166 cfqg = &cfqd->root_group;
1167
1168 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1169 rcu_read_unlock();
1170 return cfqg;
1171 }
1172
1173 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1174 {
1175 cfqg->ref++;
1176 return cfqg;
1177 }
1178
1179 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1180 {
1181 /* Currently, all async queues are mapped to root group */
1182 if (!cfq_cfqq_sync(cfqq))
1183 cfqg = &cfqq->cfqd->root_group;
1184
1185 cfqq->cfqg = cfqg;
1186 /* cfqq reference on cfqg */
1187 cfqq->cfqg->ref++;
1188 }
1189
1190 static void cfq_put_cfqg(struct cfq_group *cfqg)
1191 {
1192 struct cfq_rb_root *st;
1193 int i, j;
1194
1195 BUG_ON(cfqg->ref <= 0);
1196 cfqg->ref--;
1197 if (cfqg->ref)
1198 return;
1199 for_each_cfqg_st(cfqg, i, j, st)
1200 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1201 free_percpu(cfqg->blkg.stats_cpu);
1202 kfree(cfqg);
1203 }
1204
1205 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1206 {
1207 /* Something wrong if we are trying to remove same group twice */
1208 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1209
1210 hlist_del_init(&cfqg->cfqd_node);
1211
1212 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1213 cfqd->nr_blkcg_linked_grps--;
1214
1215 /*
1216 * Put the reference taken at the time of creation so that when all
1217 * queues are gone, group can be destroyed.
1218 */
1219 cfq_put_cfqg(cfqg);
1220 }
1221
1222 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1223 {
1224 struct hlist_node *pos, *n;
1225 struct cfq_group *cfqg;
1226
1227 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1228 /*
1229 * If cgroup removal path got to blk_group first and removed
1230 * it from cgroup list, then it will take care of destroying
1231 * cfqg also.
1232 */
1233 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1234 cfq_destroy_cfqg(cfqd, cfqg);
1235 }
1236 }
1237
1238 /*
1239 * Blk cgroup controller notification saying that blkio_group object is being
1240 * delinked as associated cgroup object is going away. That also means that
1241 * no new IO will come in this group. So get rid of this group as soon as
1242 * any pending IO in the group is finished.
1243 *
1244 * This function is called under rcu_read_lock(). key is the rcu protected
1245 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1246 * read lock.
1247 *
1248 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1249 * it should not be NULL as even if elevator was exiting, cgroup deltion
1250 * path got to it first.
1251 */
1252 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1253 {
1254 unsigned long flags;
1255 struct cfq_data *cfqd = key;
1256
1257 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1258 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1259 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1260 }
1261
1262 #else /* GROUP_IOSCHED */
1263 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1264 {
1265 return &cfqd->root_group;
1266 }
1267
1268 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1269 {
1270 return cfqg;
1271 }
1272
1273 static inline void
1274 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1275 cfqq->cfqg = cfqg;
1276 }
1277
1278 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1279 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1280
1281 #endif /* GROUP_IOSCHED */
1282
1283 /*
1284 * The cfqd->service_trees holds all pending cfq_queue's that have
1285 * requests waiting to be processed. It is sorted in the order that
1286 * we will service the queues.
1287 */
1288 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1289 bool add_front)
1290 {
1291 struct rb_node **p, *parent;
1292 struct cfq_queue *__cfqq;
1293 unsigned long rb_key;
1294 struct cfq_rb_root *service_tree;
1295 int left;
1296 int new_cfqq = 1;
1297
1298 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1299 cfqq_type(cfqq));
1300 if (cfq_class_idle(cfqq)) {
1301 rb_key = CFQ_IDLE_DELAY;
1302 parent = rb_last(&service_tree->rb);
1303 if (parent && parent != &cfqq->rb_node) {
1304 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1305 rb_key += __cfqq->rb_key;
1306 } else
1307 rb_key += jiffies;
1308 } else if (!add_front) {
1309 /*
1310 * Get our rb key offset. Subtract any residual slice
1311 * value carried from last service. A negative resid
1312 * count indicates slice overrun, and this should position
1313 * the next service time further away in the tree.
1314 */
1315 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1316 rb_key -= cfqq->slice_resid;
1317 cfqq->slice_resid = 0;
1318 } else {
1319 rb_key = -HZ;
1320 __cfqq = cfq_rb_first(service_tree);
1321 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1322 }
1323
1324 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1325 new_cfqq = 0;
1326 /*
1327 * same position, nothing more to do
1328 */
1329 if (rb_key == cfqq->rb_key &&
1330 cfqq->service_tree == service_tree)
1331 return;
1332
1333 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1334 cfqq->service_tree = NULL;
1335 }
1336
1337 left = 1;
1338 parent = NULL;
1339 cfqq->service_tree = service_tree;
1340 p = &service_tree->rb.rb_node;
1341 while (*p) {
1342 struct rb_node **n;
1343
1344 parent = *p;
1345 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1346
1347 /*
1348 * sort by key, that represents service time.
1349 */
1350 if (time_before(rb_key, __cfqq->rb_key))
1351 n = &(*p)->rb_left;
1352 else {
1353 n = &(*p)->rb_right;
1354 left = 0;
1355 }
1356
1357 p = n;
1358 }
1359
1360 if (left)
1361 service_tree->left = &cfqq->rb_node;
1362
1363 cfqq->rb_key = rb_key;
1364 rb_link_node(&cfqq->rb_node, parent, p);
1365 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1366 service_tree->count++;
1367 if (add_front || !new_cfqq)
1368 return;
1369 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1370 }
1371
1372 static struct cfq_queue *
1373 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1374 sector_t sector, struct rb_node **ret_parent,
1375 struct rb_node ***rb_link)
1376 {
1377 struct rb_node **p, *parent;
1378 struct cfq_queue *cfqq = NULL;
1379
1380 parent = NULL;
1381 p = &root->rb_node;
1382 while (*p) {
1383 struct rb_node **n;
1384
1385 parent = *p;
1386 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1387
1388 /*
1389 * Sort strictly based on sector. Smallest to the left,
1390 * largest to the right.
1391 */
1392 if (sector > blk_rq_pos(cfqq->next_rq))
1393 n = &(*p)->rb_right;
1394 else if (sector < blk_rq_pos(cfqq->next_rq))
1395 n = &(*p)->rb_left;
1396 else
1397 break;
1398 p = n;
1399 cfqq = NULL;
1400 }
1401
1402 *ret_parent = parent;
1403 if (rb_link)
1404 *rb_link = p;
1405 return cfqq;
1406 }
1407
1408 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1409 {
1410 struct rb_node **p, *parent;
1411 struct cfq_queue *__cfqq;
1412
1413 if (cfqq->p_root) {
1414 rb_erase(&cfqq->p_node, cfqq->p_root);
1415 cfqq->p_root = NULL;
1416 }
1417
1418 if (cfq_class_idle(cfqq))
1419 return;
1420 if (!cfqq->next_rq)
1421 return;
1422
1423 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1424 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1425 blk_rq_pos(cfqq->next_rq), &parent, &p);
1426 if (!__cfqq) {
1427 rb_link_node(&cfqq->p_node, parent, p);
1428 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1429 } else
1430 cfqq->p_root = NULL;
1431 }
1432
1433 /*
1434 * Update cfqq's position in the service tree.
1435 */
1436 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437 {
1438 /*
1439 * Resorting requires the cfqq to be on the RR list already.
1440 */
1441 if (cfq_cfqq_on_rr(cfqq)) {
1442 cfq_service_tree_add(cfqd, cfqq, 0);
1443 cfq_prio_tree_add(cfqd, cfqq);
1444 }
1445 }
1446
1447 /*
1448 * add to busy list of queues for service, trying to be fair in ordering
1449 * the pending list according to last request service
1450 */
1451 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1452 {
1453 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1454 BUG_ON(cfq_cfqq_on_rr(cfqq));
1455 cfq_mark_cfqq_on_rr(cfqq);
1456 cfqd->busy_queues++;
1457 if (cfq_cfqq_sync(cfqq))
1458 cfqd->busy_sync_queues++;
1459
1460 cfq_resort_rr_list(cfqd, cfqq);
1461 }
1462
1463 /*
1464 * Called when the cfqq no longer has requests pending, remove it from
1465 * the service tree.
1466 */
1467 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1468 {
1469 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1470 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1471 cfq_clear_cfqq_on_rr(cfqq);
1472
1473 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1474 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1475 cfqq->service_tree = NULL;
1476 }
1477 if (cfqq->p_root) {
1478 rb_erase(&cfqq->p_node, cfqq->p_root);
1479 cfqq->p_root = NULL;
1480 }
1481
1482 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1483 BUG_ON(!cfqd->busy_queues);
1484 cfqd->busy_queues--;
1485 if (cfq_cfqq_sync(cfqq))
1486 cfqd->busy_sync_queues--;
1487 }
1488
1489 /*
1490 * rb tree support functions
1491 */
1492 static void cfq_del_rq_rb(struct request *rq)
1493 {
1494 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495 const int sync = rq_is_sync(rq);
1496
1497 BUG_ON(!cfqq->queued[sync]);
1498 cfqq->queued[sync]--;
1499
1500 elv_rb_del(&cfqq->sort_list, rq);
1501
1502 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1503 /*
1504 * Queue will be deleted from service tree when we actually
1505 * expire it later. Right now just remove it from prio tree
1506 * as it is empty.
1507 */
1508 if (cfqq->p_root) {
1509 rb_erase(&cfqq->p_node, cfqq->p_root);
1510 cfqq->p_root = NULL;
1511 }
1512 }
1513 }
1514
1515 static void cfq_add_rq_rb(struct request *rq)
1516 {
1517 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1518 struct cfq_data *cfqd = cfqq->cfqd;
1519 struct request *prev;
1520
1521 cfqq->queued[rq_is_sync(rq)]++;
1522
1523 elv_rb_add(&cfqq->sort_list, rq);
1524
1525 if (!cfq_cfqq_on_rr(cfqq))
1526 cfq_add_cfqq_rr(cfqd, cfqq);
1527
1528 /*
1529 * check if this request is a better next-serve candidate
1530 */
1531 prev = cfqq->next_rq;
1532 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1533
1534 /*
1535 * adjust priority tree position, if ->next_rq changes
1536 */
1537 if (prev != cfqq->next_rq)
1538 cfq_prio_tree_add(cfqd, cfqq);
1539
1540 BUG_ON(!cfqq->next_rq);
1541 }
1542
1543 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1544 {
1545 elv_rb_del(&cfqq->sort_list, rq);
1546 cfqq->queued[rq_is_sync(rq)]--;
1547 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1548 rq_data_dir(rq), rq_is_sync(rq));
1549 cfq_add_rq_rb(rq);
1550 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1551 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1552 rq_is_sync(rq));
1553 }
1554
1555 static struct request *
1556 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1557 {
1558 struct task_struct *tsk = current;
1559 struct cfq_io_context *cic;
1560 struct cfq_queue *cfqq;
1561
1562 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1563 if (!cic)
1564 return NULL;
1565
1566 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1567 if (cfqq) {
1568 sector_t sector = bio->bi_sector + bio_sectors(bio);
1569
1570 return elv_rb_find(&cfqq->sort_list, sector);
1571 }
1572
1573 return NULL;
1574 }
1575
1576 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1577 {
1578 struct cfq_data *cfqd = q->elevator->elevator_data;
1579
1580 cfqd->rq_in_driver++;
1581 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1582 cfqd->rq_in_driver);
1583
1584 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1585 }
1586
1587 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1588 {
1589 struct cfq_data *cfqd = q->elevator->elevator_data;
1590
1591 WARN_ON(!cfqd->rq_in_driver);
1592 cfqd->rq_in_driver--;
1593 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1594 cfqd->rq_in_driver);
1595 }
1596
1597 static void cfq_remove_request(struct request *rq)
1598 {
1599 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1600
1601 if (cfqq->next_rq == rq)
1602 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1603
1604 list_del_init(&rq->queuelist);
1605 cfq_del_rq_rb(rq);
1606
1607 cfqq->cfqd->rq_queued--;
1608 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1609 rq_data_dir(rq), rq_is_sync(rq));
1610 }
1611
1612 static int cfq_merge(struct request_queue *q, struct request **req,
1613 struct bio *bio)
1614 {
1615 struct cfq_data *cfqd = q->elevator->elevator_data;
1616 struct request *__rq;
1617
1618 __rq = cfq_find_rq_fmerge(cfqd, bio);
1619 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1620 *req = __rq;
1621 return ELEVATOR_FRONT_MERGE;
1622 }
1623
1624 return ELEVATOR_NO_MERGE;
1625 }
1626
1627 static void cfq_merged_request(struct request_queue *q, struct request *req,
1628 int type)
1629 {
1630 if (type == ELEVATOR_FRONT_MERGE) {
1631 struct cfq_queue *cfqq = RQ_CFQQ(req);
1632
1633 cfq_reposition_rq_rb(cfqq, req);
1634 }
1635 }
1636
1637 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1638 struct bio *bio)
1639 {
1640 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1641 bio_data_dir(bio), cfq_bio_sync(bio));
1642 }
1643
1644 static void
1645 cfq_merged_requests(struct request_queue *q, struct request *rq,
1646 struct request *next)
1647 {
1648 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1649 /*
1650 * reposition in fifo if next is older than rq
1651 */
1652 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1653 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1654 list_move(&rq->queuelist, &next->queuelist);
1655 rq_set_fifo_time(rq, rq_fifo_time(next));
1656 }
1657
1658 if (cfqq->next_rq == next)
1659 cfqq->next_rq = rq;
1660 cfq_remove_request(next);
1661 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1662 rq_data_dir(next), rq_is_sync(next));
1663 }
1664
1665 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1666 struct bio *bio)
1667 {
1668 struct cfq_data *cfqd = q->elevator->elevator_data;
1669 struct cfq_io_context *cic;
1670 struct cfq_queue *cfqq;
1671
1672 /*
1673 * Disallow merge of a sync bio into an async request.
1674 */
1675 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1676 return false;
1677
1678 /*
1679 * Lookup the cfqq that this bio will be queued with. Allow
1680 * merge only if rq is queued there.
1681 */
1682 cic = cfq_cic_lookup(cfqd, current->io_context);
1683 if (!cic)
1684 return false;
1685
1686 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1687 return cfqq == RQ_CFQQ(rq);
1688 }
1689
1690 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1691 {
1692 del_timer(&cfqd->idle_slice_timer);
1693 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1694 }
1695
1696 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1697 struct cfq_queue *cfqq)
1698 {
1699 if (cfqq) {
1700 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1701 cfqd->serving_prio, cfqd->serving_type);
1702 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1703 cfqq->slice_start = 0;
1704 cfqq->dispatch_start = jiffies;
1705 cfqq->allocated_slice = 0;
1706 cfqq->slice_end = 0;
1707 cfqq->slice_dispatch = 0;
1708 cfqq->nr_sectors = 0;
1709
1710 cfq_clear_cfqq_wait_request(cfqq);
1711 cfq_clear_cfqq_must_dispatch(cfqq);
1712 cfq_clear_cfqq_must_alloc_slice(cfqq);
1713 cfq_clear_cfqq_fifo_expire(cfqq);
1714 cfq_mark_cfqq_slice_new(cfqq);
1715
1716 cfq_del_timer(cfqd, cfqq);
1717 }
1718
1719 cfqd->active_queue = cfqq;
1720 }
1721
1722 /*
1723 * current cfqq expired its slice (or was too idle), select new one
1724 */
1725 static void
1726 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1727 bool timed_out)
1728 {
1729 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1730
1731 if (cfq_cfqq_wait_request(cfqq))
1732 cfq_del_timer(cfqd, cfqq);
1733
1734 cfq_clear_cfqq_wait_request(cfqq);
1735 cfq_clear_cfqq_wait_busy(cfqq);
1736
1737 /*
1738 * If this cfqq is shared between multiple processes, check to
1739 * make sure that those processes are still issuing I/Os within
1740 * the mean seek distance. If not, it may be time to break the
1741 * queues apart again.
1742 */
1743 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1744 cfq_mark_cfqq_split_coop(cfqq);
1745
1746 /*
1747 * store what was left of this slice, if the queue idled/timed out
1748 */
1749 if (timed_out) {
1750 if (cfq_cfqq_slice_new(cfqq))
1751 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1752 else
1753 cfqq->slice_resid = cfqq->slice_end - jiffies;
1754 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1755 }
1756
1757 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1758
1759 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1760 cfq_del_cfqq_rr(cfqd, cfqq);
1761
1762 cfq_resort_rr_list(cfqd, cfqq);
1763
1764 if (cfqq == cfqd->active_queue)
1765 cfqd->active_queue = NULL;
1766
1767 if (cfqd->active_cic) {
1768 put_io_context(cfqd->active_cic->ioc);
1769 cfqd->active_cic = NULL;
1770 }
1771 }
1772
1773 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1774 {
1775 struct cfq_queue *cfqq = cfqd->active_queue;
1776
1777 if (cfqq)
1778 __cfq_slice_expired(cfqd, cfqq, timed_out);
1779 }
1780
1781 /*
1782 * Get next queue for service. Unless we have a queue preemption,
1783 * we'll simply select the first cfqq in the service tree.
1784 */
1785 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1786 {
1787 struct cfq_rb_root *service_tree =
1788 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1789 cfqd->serving_type);
1790
1791 if (!cfqd->rq_queued)
1792 return NULL;
1793
1794 /* There is nothing to dispatch */
1795 if (!service_tree)
1796 return NULL;
1797 if (RB_EMPTY_ROOT(&service_tree->rb))
1798 return NULL;
1799 return cfq_rb_first(service_tree);
1800 }
1801
1802 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1803 {
1804 struct cfq_group *cfqg;
1805 struct cfq_queue *cfqq;
1806 int i, j;
1807 struct cfq_rb_root *st;
1808
1809 if (!cfqd->rq_queued)
1810 return NULL;
1811
1812 cfqg = cfq_get_next_cfqg(cfqd);
1813 if (!cfqg)
1814 return NULL;
1815
1816 for_each_cfqg_st(cfqg, i, j, st)
1817 if ((cfqq = cfq_rb_first(st)) != NULL)
1818 return cfqq;
1819 return NULL;
1820 }
1821
1822 /*
1823 * Get and set a new active queue for service.
1824 */
1825 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1826 struct cfq_queue *cfqq)
1827 {
1828 if (!cfqq)
1829 cfqq = cfq_get_next_queue(cfqd);
1830
1831 __cfq_set_active_queue(cfqd, cfqq);
1832 return cfqq;
1833 }
1834
1835 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1836 struct request *rq)
1837 {
1838 if (blk_rq_pos(rq) >= cfqd->last_position)
1839 return blk_rq_pos(rq) - cfqd->last_position;
1840 else
1841 return cfqd->last_position - blk_rq_pos(rq);
1842 }
1843
1844 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1845 struct request *rq)
1846 {
1847 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1848 }
1849
1850 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1851 struct cfq_queue *cur_cfqq)
1852 {
1853 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1854 struct rb_node *parent, *node;
1855 struct cfq_queue *__cfqq;
1856 sector_t sector = cfqd->last_position;
1857
1858 if (RB_EMPTY_ROOT(root))
1859 return NULL;
1860
1861 /*
1862 * First, if we find a request starting at the end of the last
1863 * request, choose it.
1864 */
1865 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1866 if (__cfqq)
1867 return __cfqq;
1868
1869 /*
1870 * If the exact sector wasn't found, the parent of the NULL leaf
1871 * will contain the closest sector.
1872 */
1873 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1874 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1875 return __cfqq;
1876
1877 if (blk_rq_pos(__cfqq->next_rq) < sector)
1878 node = rb_next(&__cfqq->p_node);
1879 else
1880 node = rb_prev(&__cfqq->p_node);
1881 if (!node)
1882 return NULL;
1883
1884 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1885 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1886 return __cfqq;
1887
1888 return NULL;
1889 }
1890
1891 /*
1892 * cfqd - obvious
1893 * cur_cfqq - passed in so that we don't decide that the current queue is
1894 * closely cooperating with itself.
1895 *
1896 * So, basically we're assuming that that cur_cfqq has dispatched at least
1897 * one request, and that cfqd->last_position reflects a position on the disk
1898 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1899 * assumption.
1900 */
1901 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1902 struct cfq_queue *cur_cfqq)
1903 {
1904 struct cfq_queue *cfqq;
1905
1906 if (cfq_class_idle(cur_cfqq))
1907 return NULL;
1908 if (!cfq_cfqq_sync(cur_cfqq))
1909 return NULL;
1910 if (CFQQ_SEEKY(cur_cfqq))
1911 return NULL;
1912
1913 /*
1914 * Don't search priority tree if it's the only queue in the group.
1915 */
1916 if (cur_cfqq->cfqg->nr_cfqq == 1)
1917 return NULL;
1918
1919 /*
1920 * We should notice if some of the queues are cooperating, eg
1921 * working closely on the same area of the disk. In that case,
1922 * we can group them together and don't waste time idling.
1923 */
1924 cfqq = cfqq_close(cfqd, cur_cfqq);
1925 if (!cfqq)
1926 return NULL;
1927
1928 /* If new queue belongs to different cfq_group, don't choose it */
1929 if (cur_cfqq->cfqg != cfqq->cfqg)
1930 return NULL;
1931
1932 /*
1933 * It only makes sense to merge sync queues.
1934 */
1935 if (!cfq_cfqq_sync(cfqq))
1936 return NULL;
1937 if (CFQQ_SEEKY(cfqq))
1938 return NULL;
1939
1940 /*
1941 * Do not merge queues of different priority classes
1942 */
1943 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1944 return NULL;
1945
1946 return cfqq;
1947 }
1948
1949 /*
1950 * Determine whether we should enforce idle window for this queue.
1951 */
1952
1953 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1954 {
1955 enum wl_prio_t prio = cfqq_prio(cfqq);
1956 struct cfq_rb_root *service_tree = cfqq->service_tree;
1957
1958 BUG_ON(!service_tree);
1959 BUG_ON(!service_tree->count);
1960
1961 if (!cfqd->cfq_slice_idle)
1962 return false;
1963
1964 /* We never do for idle class queues. */
1965 if (prio == IDLE_WORKLOAD)
1966 return false;
1967
1968 /* We do for queues that were marked with idle window flag. */
1969 if (cfq_cfqq_idle_window(cfqq) &&
1970 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1971 return true;
1972
1973 /*
1974 * Otherwise, we do only if they are the last ones
1975 * in their service tree.
1976 */
1977 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1978 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1979 return true;
1980 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1981 service_tree->count);
1982 return false;
1983 }
1984
1985 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1986 {
1987 struct cfq_queue *cfqq = cfqd->active_queue;
1988 struct cfq_io_context *cic;
1989 unsigned long sl, group_idle = 0;
1990
1991 /*
1992 * SSD device without seek penalty, disable idling. But only do so
1993 * for devices that support queuing, otherwise we still have a problem
1994 * with sync vs async workloads.
1995 */
1996 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1997 return;
1998
1999 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2000 WARN_ON(cfq_cfqq_slice_new(cfqq));
2001
2002 /*
2003 * idle is disabled, either manually or by past process history
2004 */
2005 if (!cfq_should_idle(cfqd, cfqq)) {
2006 /* no queue idling. Check for group idling */
2007 if (cfqd->cfq_group_idle)
2008 group_idle = cfqd->cfq_group_idle;
2009 else
2010 return;
2011 }
2012
2013 /*
2014 * still active requests from this queue, don't idle
2015 */
2016 if (cfqq->dispatched)
2017 return;
2018
2019 /*
2020 * task has exited, don't wait
2021 */
2022 cic = cfqd->active_cic;
2023 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2024 return;
2025
2026 /*
2027 * If our average think time is larger than the remaining time
2028 * slice, then don't idle. This avoids overrunning the allotted
2029 * time slice.
2030 */
2031 if (sample_valid(cic->ttime.ttime_samples) &&
2032 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2033 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2034 cic->ttime.ttime_mean);
2035 return;
2036 }
2037
2038 /* There are other queues in the group, don't do group idle */
2039 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2040 return;
2041
2042 cfq_mark_cfqq_wait_request(cfqq);
2043
2044 if (group_idle)
2045 sl = cfqd->cfq_group_idle;
2046 else
2047 sl = cfqd->cfq_slice_idle;
2048
2049 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2050 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2051 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2052 group_idle ? 1 : 0);
2053 }
2054
2055 /*
2056 * Move request from internal lists to the request queue dispatch list.
2057 */
2058 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2059 {
2060 struct cfq_data *cfqd = q->elevator->elevator_data;
2061 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2062
2063 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2064
2065 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2066 cfq_remove_request(rq);
2067 cfqq->dispatched++;
2068 (RQ_CFQG(rq))->dispatched++;
2069 elv_dispatch_sort(q, rq);
2070
2071 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2072 cfqq->nr_sectors += blk_rq_sectors(rq);
2073 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2074 rq_data_dir(rq), rq_is_sync(rq));
2075 }
2076
2077 /*
2078 * return expired entry, or NULL to just start from scratch in rbtree
2079 */
2080 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2081 {
2082 struct request *rq = NULL;
2083
2084 if (cfq_cfqq_fifo_expire(cfqq))
2085 return NULL;
2086
2087 cfq_mark_cfqq_fifo_expire(cfqq);
2088
2089 if (list_empty(&cfqq->fifo))
2090 return NULL;
2091
2092 rq = rq_entry_fifo(cfqq->fifo.next);
2093 if (time_before(jiffies, rq_fifo_time(rq)))
2094 rq = NULL;
2095
2096 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2097 return rq;
2098 }
2099
2100 static inline int
2101 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2102 {
2103 const int base_rq = cfqd->cfq_slice_async_rq;
2104
2105 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2106
2107 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2108 }
2109
2110 /*
2111 * Must be called with the queue_lock held.
2112 */
2113 static int cfqq_process_refs(struct cfq_queue *cfqq)
2114 {
2115 int process_refs, io_refs;
2116
2117 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2118 process_refs = cfqq->ref - io_refs;
2119 BUG_ON(process_refs < 0);
2120 return process_refs;
2121 }
2122
2123 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2124 {
2125 int process_refs, new_process_refs;
2126 struct cfq_queue *__cfqq;
2127
2128 /*
2129 * If there are no process references on the new_cfqq, then it is
2130 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2131 * chain may have dropped their last reference (not just their
2132 * last process reference).
2133 */
2134 if (!cfqq_process_refs(new_cfqq))
2135 return;
2136
2137 /* Avoid a circular list and skip interim queue merges */
2138 while ((__cfqq = new_cfqq->new_cfqq)) {
2139 if (__cfqq == cfqq)
2140 return;
2141 new_cfqq = __cfqq;
2142 }
2143
2144 process_refs = cfqq_process_refs(cfqq);
2145 new_process_refs = cfqq_process_refs(new_cfqq);
2146 /*
2147 * If the process for the cfqq has gone away, there is no
2148 * sense in merging the queues.
2149 */
2150 if (process_refs == 0 || new_process_refs == 0)
2151 return;
2152
2153 /*
2154 * Merge in the direction of the lesser amount of work.
2155 */
2156 if (new_process_refs >= process_refs) {
2157 cfqq->new_cfqq = new_cfqq;
2158 new_cfqq->ref += process_refs;
2159 } else {
2160 new_cfqq->new_cfqq = cfqq;
2161 cfqq->ref += new_process_refs;
2162 }
2163 }
2164
2165 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2166 struct cfq_group *cfqg, enum wl_prio_t prio)
2167 {
2168 struct cfq_queue *queue;
2169 int i;
2170 bool key_valid = false;
2171 unsigned long lowest_key = 0;
2172 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2173
2174 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2175 /* select the one with lowest rb_key */
2176 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2177 if (queue &&
2178 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2179 lowest_key = queue->rb_key;
2180 cur_best = i;
2181 key_valid = true;
2182 }
2183 }
2184
2185 return cur_best;
2186 }
2187
2188 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2189 {
2190 unsigned slice;
2191 unsigned count;
2192 struct cfq_rb_root *st;
2193 unsigned group_slice;
2194 enum wl_prio_t original_prio = cfqd->serving_prio;
2195
2196 /* Choose next priority. RT > BE > IDLE */
2197 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2198 cfqd->serving_prio = RT_WORKLOAD;
2199 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2200 cfqd->serving_prio = BE_WORKLOAD;
2201 else {
2202 cfqd->serving_prio = IDLE_WORKLOAD;
2203 cfqd->workload_expires = jiffies + 1;
2204 return;
2205 }
2206
2207 if (original_prio != cfqd->serving_prio)
2208 goto new_workload;
2209
2210 /*
2211 * For RT and BE, we have to choose also the type
2212 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2213 * expiration time
2214 */
2215 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2216 count = st->count;
2217
2218 /*
2219 * check workload expiration, and that we still have other queues ready
2220 */
2221 if (count && !time_after(jiffies, cfqd->workload_expires))
2222 return;
2223
2224 new_workload:
2225 /* otherwise select new workload type */
2226 cfqd->serving_type =
2227 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2228 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2229 count = st->count;
2230
2231 /*
2232 * the workload slice is computed as a fraction of target latency
2233 * proportional to the number of queues in that workload, over
2234 * all the queues in the same priority class
2235 */
2236 group_slice = cfq_group_slice(cfqd, cfqg);
2237
2238 slice = group_slice * count /
2239 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2240 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2241
2242 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2243 unsigned int tmp;
2244
2245 /*
2246 * Async queues are currently system wide. Just taking
2247 * proportion of queues with-in same group will lead to higher
2248 * async ratio system wide as generally root group is going
2249 * to have higher weight. A more accurate thing would be to
2250 * calculate system wide asnc/sync ratio.
2251 */
2252 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2253 tmp = tmp/cfqd->busy_queues;
2254 slice = min_t(unsigned, slice, tmp);
2255
2256 /* async workload slice is scaled down according to
2257 * the sync/async slice ratio. */
2258 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2259 } else
2260 /* sync workload slice is at least 2 * cfq_slice_idle */
2261 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2262
2263 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2264 cfq_log(cfqd, "workload slice:%d", slice);
2265 cfqd->workload_expires = jiffies + slice;
2266 }
2267
2268 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2269 {
2270 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2271 struct cfq_group *cfqg;
2272
2273 if (RB_EMPTY_ROOT(&st->rb))
2274 return NULL;
2275 cfqg = cfq_rb_first_group(st);
2276 update_min_vdisktime(st);
2277 return cfqg;
2278 }
2279
2280 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2281 {
2282 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2283
2284 cfqd->serving_group = cfqg;
2285
2286 /* Restore the workload type data */
2287 if (cfqg->saved_workload_slice) {
2288 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2289 cfqd->serving_type = cfqg->saved_workload;
2290 cfqd->serving_prio = cfqg->saved_serving_prio;
2291 } else
2292 cfqd->workload_expires = jiffies - 1;
2293
2294 choose_service_tree(cfqd, cfqg);
2295 }
2296
2297 /*
2298 * Select a queue for service. If we have a current active queue,
2299 * check whether to continue servicing it, or retrieve and set a new one.
2300 */
2301 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2302 {
2303 struct cfq_queue *cfqq, *new_cfqq = NULL;
2304
2305 cfqq = cfqd->active_queue;
2306 if (!cfqq)
2307 goto new_queue;
2308
2309 if (!cfqd->rq_queued)
2310 return NULL;
2311
2312 /*
2313 * We were waiting for group to get backlogged. Expire the queue
2314 */
2315 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2316 goto expire;
2317
2318 /*
2319 * The active queue has run out of time, expire it and select new.
2320 */
2321 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2322 /*
2323 * If slice had not expired at the completion of last request
2324 * we might not have turned on wait_busy flag. Don't expire
2325 * the queue yet. Allow the group to get backlogged.
2326 *
2327 * The very fact that we have used the slice, that means we
2328 * have been idling all along on this queue and it should be
2329 * ok to wait for this request to complete.
2330 */
2331 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2332 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2333 cfqq = NULL;
2334 goto keep_queue;
2335 } else
2336 goto check_group_idle;
2337 }
2338
2339 /*
2340 * The active queue has requests and isn't expired, allow it to
2341 * dispatch.
2342 */
2343 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2344 goto keep_queue;
2345
2346 /*
2347 * If another queue has a request waiting within our mean seek
2348 * distance, let it run. The expire code will check for close
2349 * cooperators and put the close queue at the front of the service
2350 * tree. If possible, merge the expiring queue with the new cfqq.
2351 */
2352 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2353 if (new_cfqq) {
2354 if (!cfqq->new_cfqq)
2355 cfq_setup_merge(cfqq, new_cfqq);
2356 goto expire;
2357 }
2358
2359 /*
2360 * No requests pending. If the active queue still has requests in
2361 * flight or is idling for a new request, allow either of these
2362 * conditions to happen (or time out) before selecting a new queue.
2363 */
2364 if (timer_pending(&cfqd->idle_slice_timer)) {
2365 cfqq = NULL;
2366 goto keep_queue;
2367 }
2368
2369 /*
2370 * This is a deep seek queue, but the device is much faster than
2371 * the queue can deliver, don't idle
2372 **/
2373 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2374 (cfq_cfqq_slice_new(cfqq) ||
2375 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2376 cfq_clear_cfqq_deep(cfqq);
2377 cfq_clear_cfqq_idle_window(cfqq);
2378 }
2379
2380 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2381 cfqq = NULL;
2382 goto keep_queue;
2383 }
2384
2385 /*
2386 * If group idle is enabled and there are requests dispatched from
2387 * this group, wait for requests to complete.
2388 */
2389 check_group_idle:
2390 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2391 cfqq->cfqg->dispatched &&
2392 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2393 cfqq = NULL;
2394 goto keep_queue;
2395 }
2396
2397 expire:
2398 cfq_slice_expired(cfqd, 0);
2399 new_queue:
2400 /*
2401 * Current queue expired. Check if we have to switch to a new
2402 * service tree
2403 */
2404 if (!new_cfqq)
2405 cfq_choose_cfqg(cfqd);
2406
2407 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2408 keep_queue:
2409 return cfqq;
2410 }
2411
2412 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2413 {
2414 int dispatched = 0;
2415
2416 while (cfqq->next_rq) {
2417 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2418 dispatched++;
2419 }
2420
2421 BUG_ON(!list_empty(&cfqq->fifo));
2422
2423 /* By default cfqq is not expired if it is empty. Do it explicitly */
2424 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2425 return dispatched;
2426 }
2427
2428 /*
2429 * Drain our current requests. Used for barriers and when switching
2430 * io schedulers on-the-fly.
2431 */
2432 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2433 {
2434 struct cfq_queue *cfqq;
2435 int dispatched = 0;
2436
2437 /* Expire the timeslice of the current active queue first */
2438 cfq_slice_expired(cfqd, 0);
2439 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2440 __cfq_set_active_queue(cfqd, cfqq);
2441 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2442 }
2443
2444 BUG_ON(cfqd->busy_queues);
2445
2446 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2447 return dispatched;
2448 }
2449
2450 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2451 struct cfq_queue *cfqq)
2452 {
2453 /* the queue hasn't finished any request, can't estimate */
2454 if (cfq_cfqq_slice_new(cfqq))
2455 return true;
2456 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2457 cfqq->slice_end))
2458 return true;
2459
2460 return false;
2461 }
2462
2463 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2464 {
2465 unsigned int max_dispatch;
2466
2467 /*
2468 * Drain async requests before we start sync IO
2469 */
2470 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2471 return false;
2472
2473 /*
2474 * If this is an async queue and we have sync IO in flight, let it wait
2475 */
2476 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2477 return false;
2478
2479 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2480 if (cfq_class_idle(cfqq))
2481 max_dispatch = 1;
2482
2483 /*
2484 * Does this cfqq already have too much IO in flight?
2485 */
2486 if (cfqq->dispatched >= max_dispatch) {
2487 bool promote_sync = false;
2488 /*
2489 * idle queue must always only have a single IO in flight
2490 */
2491 if (cfq_class_idle(cfqq))
2492 return false;
2493
2494 /*
2495 * If there is only one sync queue
2496 * we can ignore async queue here and give the sync
2497 * queue no dispatch limit. The reason is a sync queue can
2498 * preempt async queue, limiting the sync queue doesn't make
2499 * sense. This is useful for aiostress test.
2500 */
2501 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2502 promote_sync = true;
2503
2504 /*
2505 * We have other queues, don't allow more IO from this one
2506 */
2507 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2508 !promote_sync)
2509 return false;
2510
2511 /*
2512 * Sole queue user, no limit
2513 */
2514 if (cfqd->busy_queues == 1 || promote_sync)
2515 max_dispatch = -1;
2516 else
2517 /*
2518 * Normally we start throttling cfqq when cfq_quantum/2
2519 * requests have been dispatched. But we can drive
2520 * deeper queue depths at the beginning of slice
2521 * subjected to upper limit of cfq_quantum.
2522 * */
2523 max_dispatch = cfqd->cfq_quantum;
2524 }
2525
2526 /*
2527 * Async queues must wait a bit before being allowed dispatch.
2528 * We also ramp up the dispatch depth gradually for async IO,
2529 * based on the last sync IO we serviced
2530 */
2531 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2532 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2533 unsigned int depth;
2534
2535 depth = last_sync / cfqd->cfq_slice[1];
2536 if (!depth && !cfqq->dispatched)
2537 depth = 1;
2538 if (depth < max_dispatch)
2539 max_dispatch = depth;
2540 }
2541
2542 /*
2543 * If we're below the current max, allow a dispatch
2544 */
2545 return cfqq->dispatched < max_dispatch;
2546 }
2547
2548 /*
2549 * Dispatch a request from cfqq, moving them to the request queue
2550 * dispatch list.
2551 */
2552 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2553 {
2554 struct request *rq;
2555
2556 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2557
2558 if (!cfq_may_dispatch(cfqd, cfqq))
2559 return false;
2560
2561 /*
2562 * follow expired path, else get first next available
2563 */
2564 rq = cfq_check_fifo(cfqq);
2565 if (!rq)
2566 rq = cfqq->next_rq;
2567
2568 /*
2569 * insert request into driver dispatch list
2570 */
2571 cfq_dispatch_insert(cfqd->queue, rq);
2572
2573 if (!cfqd->active_cic) {
2574 struct cfq_io_context *cic = RQ_CIC(rq);
2575
2576 atomic_long_inc(&cic->ioc->refcount);
2577 cfqd->active_cic = cic;
2578 }
2579
2580 return true;
2581 }
2582
2583 /*
2584 * Find the cfqq that we need to service and move a request from that to the
2585 * dispatch list
2586 */
2587 static int cfq_dispatch_requests(struct request_queue *q, int force)
2588 {
2589 struct cfq_data *cfqd = q->elevator->elevator_data;
2590 struct cfq_queue *cfqq;
2591
2592 if (!cfqd->busy_queues)
2593 return 0;
2594
2595 if (unlikely(force))
2596 return cfq_forced_dispatch(cfqd);
2597
2598 cfqq = cfq_select_queue(cfqd);
2599 if (!cfqq)
2600 return 0;
2601
2602 /*
2603 * Dispatch a request from this cfqq, if it is allowed
2604 */
2605 if (!cfq_dispatch_request(cfqd, cfqq))
2606 return 0;
2607
2608 cfqq->slice_dispatch++;
2609 cfq_clear_cfqq_must_dispatch(cfqq);
2610
2611 /*
2612 * expire an async queue immediately if it has used up its slice. idle
2613 * queue always expire after 1 dispatch round.
2614 */
2615 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2616 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2617 cfq_class_idle(cfqq))) {
2618 cfqq->slice_end = jiffies + 1;
2619 cfq_slice_expired(cfqd, 0);
2620 }
2621
2622 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2623 return 1;
2624 }
2625
2626 /*
2627 * task holds one reference to the queue, dropped when task exits. each rq
2628 * in-flight on this queue also holds a reference, dropped when rq is freed.
2629 *
2630 * Each cfq queue took a reference on the parent group. Drop it now.
2631 * queue lock must be held here.
2632 */
2633 static void cfq_put_queue(struct cfq_queue *cfqq)
2634 {
2635 struct cfq_data *cfqd = cfqq->cfqd;
2636 struct cfq_group *cfqg;
2637
2638 BUG_ON(cfqq->ref <= 0);
2639
2640 cfqq->ref--;
2641 if (cfqq->ref)
2642 return;
2643
2644 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2645 BUG_ON(rb_first(&cfqq->sort_list));
2646 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2647 cfqg = cfqq->cfqg;
2648
2649 if (unlikely(cfqd->active_queue == cfqq)) {
2650 __cfq_slice_expired(cfqd, cfqq, 0);
2651 cfq_schedule_dispatch(cfqd);
2652 }
2653
2654 BUG_ON(cfq_cfqq_on_rr(cfqq));
2655 kmem_cache_free(cfq_pool, cfqq);
2656 cfq_put_cfqg(cfqg);
2657 }
2658
2659 /*
2660 * Call func for each cic attached to this ioc.
2661 */
2662 static void
2663 call_for_each_cic(struct io_context *ioc,
2664 void (*func)(struct io_context *, struct cfq_io_context *))
2665 {
2666 struct cfq_io_context *cic;
2667 struct hlist_node *n;
2668
2669 rcu_read_lock();
2670
2671 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2672 func(ioc, cic);
2673
2674 rcu_read_unlock();
2675 }
2676
2677 static void cfq_cic_free_rcu(struct rcu_head *head)
2678 {
2679 struct cfq_io_context *cic;
2680
2681 cic = container_of(head, struct cfq_io_context, rcu_head);
2682
2683 kmem_cache_free(cfq_ioc_pool, cic);
2684 elv_ioc_count_dec(cfq_ioc_count);
2685
2686 if (ioc_gone) {
2687 /*
2688 * CFQ scheduler is exiting, grab exit lock and check
2689 * the pending io context count. If it hits zero,
2690 * complete ioc_gone and set it back to NULL
2691 */
2692 spin_lock(&ioc_gone_lock);
2693 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2694 complete(ioc_gone);
2695 ioc_gone = NULL;
2696 }
2697 spin_unlock(&ioc_gone_lock);
2698 }
2699 }
2700
2701 static void cfq_cic_free(struct cfq_io_context *cic)
2702 {
2703 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2704 }
2705
2706 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2707 {
2708 unsigned long flags;
2709 unsigned long dead_key = (unsigned long) cic->key;
2710
2711 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2712
2713 spin_lock_irqsave(&ioc->lock, flags);
2714 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2715 hlist_del_rcu(&cic->cic_list);
2716 spin_unlock_irqrestore(&ioc->lock, flags);
2717
2718 cfq_cic_free(cic);
2719 }
2720
2721 /*
2722 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2723 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2724 * and ->trim() which is called with the task lock held
2725 */
2726 static void cfq_free_io_context(struct io_context *ioc)
2727 {
2728 /*
2729 * ioc->refcount is zero here, or we are called from elv_unregister(),
2730 * so no more cic's are allowed to be linked into this ioc. So it
2731 * should be ok to iterate over the known list, we will see all cic's
2732 * since no new ones are added.
2733 */
2734 call_for_each_cic(ioc, cic_free_func);
2735 }
2736
2737 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2738 {
2739 struct cfq_queue *__cfqq, *next;
2740
2741 /*
2742 * If this queue was scheduled to merge with another queue, be
2743 * sure to drop the reference taken on that queue (and others in
2744 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2745 */
2746 __cfqq = cfqq->new_cfqq;
2747 while (__cfqq) {
2748 if (__cfqq == cfqq) {
2749 WARN(1, "cfqq->new_cfqq loop detected\n");
2750 break;
2751 }
2752 next = __cfqq->new_cfqq;
2753 cfq_put_queue(__cfqq);
2754 __cfqq = next;
2755 }
2756 }
2757
2758 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2759 {
2760 if (unlikely(cfqq == cfqd->active_queue)) {
2761 __cfq_slice_expired(cfqd, cfqq, 0);
2762 cfq_schedule_dispatch(cfqd);
2763 }
2764
2765 cfq_put_cooperator(cfqq);
2766
2767 cfq_put_queue(cfqq);
2768 }
2769
2770 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2771 struct cfq_io_context *cic)
2772 {
2773 struct io_context *ioc = cic->ioc;
2774
2775 list_del_init(&cic->queue_list);
2776
2777 /*
2778 * Make sure dead mark is seen for dead queues
2779 */
2780 smp_wmb();
2781 cic->key = cfqd_dead_key(cfqd);
2782
2783 rcu_read_lock();
2784 if (rcu_dereference(ioc->ioc_data) == cic) {
2785 rcu_read_unlock();
2786 spin_lock(&ioc->lock);
2787 rcu_assign_pointer(ioc->ioc_data, NULL);
2788 spin_unlock(&ioc->lock);
2789 } else
2790 rcu_read_unlock();
2791
2792 if (cic->cfqq[BLK_RW_ASYNC]) {
2793 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2794 cic->cfqq[BLK_RW_ASYNC] = NULL;
2795 }
2796
2797 if (cic->cfqq[BLK_RW_SYNC]) {
2798 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2799 cic->cfqq[BLK_RW_SYNC] = NULL;
2800 }
2801 }
2802
2803 static void cfq_exit_single_io_context(struct io_context *ioc,
2804 struct cfq_io_context *cic)
2805 {
2806 struct cfq_data *cfqd = cic_to_cfqd(cic);
2807
2808 if (cfqd) {
2809 struct request_queue *q = cfqd->queue;
2810 unsigned long flags;
2811
2812 spin_lock_irqsave(q->queue_lock, flags);
2813
2814 /*
2815 * Ensure we get a fresh copy of the ->key to prevent
2816 * race between exiting task and queue
2817 */
2818 smp_read_barrier_depends();
2819 if (cic->key == cfqd)
2820 __cfq_exit_single_io_context(cfqd, cic);
2821
2822 spin_unlock_irqrestore(q->queue_lock, flags);
2823 }
2824 }
2825
2826 /*
2827 * The process that ioc belongs to has exited, we need to clean up
2828 * and put the internal structures we have that belongs to that process.
2829 */
2830 static void cfq_exit_io_context(struct io_context *ioc)
2831 {
2832 call_for_each_cic(ioc, cfq_exit_single_io_context);
2833 }
2834
2835 static struct cfq_io_context *
2836 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2837 {
2838 struct cfq_io_context *cic;
2839
2840 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2841 cfqd->queue->node);
2842 if (cic) {
2843 cic->ttime.last_end_request = jiffies;
2844 INIT_LIST_HEAD(&cic->queue_list);
2845 INIT_HLIST_NODE(&cic->cic_list);
2846 cic->dtor = cfq_free_io_context;
2847 cic->exit = cfq_exit_io_context;
2848 elv_ioc_count_inc(cfq_ioc_count);
2849 }
2850
2851 return cic;
2852 }
2853
2854 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2855 {
2856 struct task_struct *tsk = current;
2857 int ioprio_class;
2858
2859 if (!cfq_cfqq_prio_changed(cfqq))
2860 return;
2861
2862 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2863 switch (ioprio_class) {
2864 default:
2865 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2866 case IOPRIO_CLASS_NONE:
2867 /*
2868 * no prio set, inherit CPU scheduling settings
2869 */
2870 cfqq->ioprio = task_nice_ioprio(tsk);
2871 cfqq->ioprio_class = task_nice_ioclass(tsk);
2872 break;
2873 case IOPRIO_CLASS_RT:
2874 cfqq->ioprio = task_ioprio(ioc);
2875 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2876 break;
2877 case IOPRIO_CLASS_BE:
2878 cfqq->ioprio = task_ioprio(ioc);
2879 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2880 break;
2881 case IOPRIO_CLASS_IDLE:
2882 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2883 cfqq->ioprio = 7;
2884 cfq_clear_cfqq_idle_window(cfqq);
2885 break;
2886 }
2887
2888 /*
2889 * keep track of original prio settings in case we have to temporarily
2890 * elevate the priority of this queue
2891 */
2892 cfqq->org_ioprio = cfqq->ioprio;
2893 cfq_clear_cfqq_prio_changed(cfqq);
2894 }
2895
2896 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2897 {
2898 struct cfq_data *cfqd = cic_to_cfqd(cic);
2899 struct cfq_queue *cfqq;
2900 unsigned long flags;
2901
2902 if (unlikely(!cfqd))
2903 return;
2904
2905 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2906
2907 cfqq = cic->cfqq[BLK_RW_ASYNC];
2908 if (cfqq) {
2909 struct cfq_queue *new_cfqq;
2910 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2911 GFP_ATOMIC);
2912 if (new_cfqq) {
2913 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2914 cfq_put_queue(cfqq);
2915 }
2916 }
2917
2918 cfqq = cic->cfqq[BLK_RW_SYNC];
2919 if (cfqq)
2920 cfq_mark_cfqq_prio_changed(cfqq);
2921
2922 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2923 }
2924
2925 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2926 {
2927 call_for_each_cic(ioc, changed_ioprio);
2928 ioc->ioprio_changed = 0;
2929 }
2930
2931 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2932 pid_t pid, bool is_sync)
2933 {
2934 RB_CLEAR_NODE(&cfqq->rb_node);
2935 RB_CLEAR_NODE(&cfqq->p_node);
2936 INIT_LIST_HEAD(&cfqq->fifo);
2937
2938 cfqq->ref = 0;
2939 cfqq->cfqd = cfqd;
2940
2941 cfq_mark_cfqq_prio_changed(cfqq);
2942
2943 if (is_sync) {
2944 if (!cfq_class_idle(cfqq))
2945 cfq_mark_cfqq_idle_window(cfqq);
2946 cfq_mark_cfqq_sync(cfqq);
2947 }
2948 cfqq->pid = pid;
2949 }
2950
2951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2952 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2953 {
2954 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2955 struct cfq_data *cfqd = cic_to_cfqd(cic);
2956 unsigned long flags;
2957 struct request_queue *q;
2958
2959 if (unlikely(!cfqd))
2960 return;
2961
2962 q = cfqd->queue;
2963
2964 spin_lock_irqsave(q->queue_lock, flags);
2965
2966 if (sync_cfqq) {
2967 /*
2968 * Drop reference to sync queue. A new sync queue will be
2969 * assigned in new group upon arrival of a fresh request.
2970 */
2971 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2972 cic_set_cfqq(cic, NULL, 1);
2973 cfq_put_queue(sync_cfqq);
2974 }
2975
2976 spin_unlock_irqrestore(q->queue_lock, flags);
2977 }
2978
2979 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2980 {
2981 call_for_each_cic(ioc, changed_cgroup);
2982 ioc->cgroup_changed = 0;
2983 }
2984 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2985
2986 static struct cfq_queue *
2987 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2988 struct io_context *ioc, gfp_t gfp_mask)
2989 {
2990 struct cfq_queue *cfqq, *new_cfqq = NULL;
2991 struct cfq_io_context *cic;
2992 struct cfq_group *cfqg;
2993
2994 retry:
2995 cfqg = cfq_get_cfqg(cfqd);
2996 cic = cfq_cic_lookup(cfqd, ioc);
2997 /* cic always exists here */
2998 cfqq = cic_to_cfqq(cic, is_sync);
2999
3000 /*
3001 * Always try a new alloc if we fell back to the OOM cfqq
3002 * originally, since it should just be a temporary situation.
3003 */
3004 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3005 cfqq = NULL;
3006 if (new_cfqq) {
3007 cfqq = new_cfqq;
3008 new_cfqq = NULL;
3009 } else if (gfp_mask & __GFP_WAIT) {
3010 spin_unlock_irq(cfqd->queue->queue_lock);
3011 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3012 gfp_mask | __GFP_ZERO,
3013 cfqd->queue->node);
3014 spin_lock_irq(cfqd->queue->queue_lock);
3015 if (new_cfqq)
3016 goto retry;
3017 } else {
3018 cfqq = kmem_cache_alloc_node(cfq_pool,
3019 gfp_mask | __GFP_ZERO,
3020 cfqd->queue->node);
3021 }
3022
3023 if (cfqq) {
3024 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3025 cfq_init_prio_data(cfqq, ioc);
3026 cfq_link_cfqq_cfqg(cfqq, cfqg);
3027 cfq_log_cfqq(cfqd, cfqq, "alloced");
3028 } else
3029 cfqq = &cfqd->oom_cfqq;
3030 }
3031
3032 if (new_cfqq)
3033 kmem_cache_free(cfq_pool, new_cfqq);
3034
3035 return cfqq;
3036 }
3037
3038 static struct cfq_queue **
3039 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3040 {
3041 switch (ioprio_class) {
3042 case IOPRIO_CLASS_RT:
3043 return &cfqd->async_cfqq[0][ioprio];
3044 case IOPRIO_CLASS_BE:
3045 return &cfqd->async_cfqq[1][ioprio];
3046 case IOPRIO_CLASS_IDLE:
3047 return &cfqd->async_idle_cfqq;
3048 default:
3049 BUG();
3050 }
3051 }
3052
3053 static struct cfq_queue *
3054 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3055 gfp_t gfp_mask)
3056 {
3057 const int ioprio = task_ioprio(ioc);
3058 const int ioprio_class = task_ioprio_class(ioc);
3059 struct cfq_queue **async_cfqq = NULL;
3060 struct cfq_queue *cfqq = NULL;
3061
3062 if (!is_sync) {
3063 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3064 cfqq = *async_cfqq;
3065 }
3066
3067 if (!cfqq)
3068 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3069
3070 /*
3071 * pin the queue now that it's allocated, scheduler exit will prune it
3072 */
3073 if (!is_sync && !(*async_cfqq)) {
3074 cfqq->ref++;
3075 *async_cfqq = cfqq;
3076 }
3077
3078 cfqq->ref++;
3079 return cfqq;
3080 }
3081
3082 /*
3083 * We drop cfq io contexts lazily, so we may find a dead one.
3084 */
3085 static void
3086 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3087 struct cfq_io_context *cic)
3088 {
3089 unsigned long flags;
3090
3091 WARN_ON(!list_empty(&cic->queue_list));
3092 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3093
3094 spin_lock_irqsave(&ioc->lock, flags);
3095
3096 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3097 lockdep_is_held(&ioc->lock)) == cic);
3098
3099 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3100 hlist_del_rcu(&cic->cic_list);
3101 spin_unlock_irqrestore(&ioc->lock, flags);
3102
3103 cfq_cic_free(cic);
3104 }
3105
3106 static struct cfq_io_context *
3107 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3108 {
3109 struct cfq_io_context *cic;
3110 unsigned long flags;
3111
3112 if (unlikely(!ioc))
3113 return NULL;
3114
3115 rcu_read_lock();
3116
3117 /*
3118 * we maintain a last-hit cache, to avoid browsing over the tree
3119 */
3120 cic = rcu_dereference(ioc->ioc_data);
3121 if (cic && cic->key == cfqd) {
3122 rcu_read_unlock();
3123 return cic;
3124 }
3125
3126 do {
3127 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3128 rcu_read_unlock();
3129 if (!cic)
3130 break;
3131 if (unlikely(cic->key != cfqd)) {
3132 cfq_drop_dead_cic(cfqd, ioc, cic);
3133 rcu_read_lock();
3134 continue;
3135 }
3136
3137 spin_lock_irqsave(&ioc->lock, flags);
3138 rcu_assign_pointer(ioc->ioc_data, cic);
3139 spin_unlock_irqrestore(&ioc->lock, flags);
3140 break;
3141 } while (1);
3142
3143 return cic;
3144 }
3145
3146 /*
3147 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3148 * the process specific cfq io context when entered from the block layer.
3149 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3150 */
3151 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3152 struct cfq_io_context *cic, gfp_t gfp_mask)
3153 {
3154 unsigned long flags;
3155 int ret;
3156
3157 ret = radix_tree_preload(gfp_mask);
3158 if (!ret) {
3159 cic->ioc = ioc;
3160 cic->key = cfqd;
3161
3162 spin_lock_irqsave(&ioc->lock, flags);
3163 ret = radix_tree_insert(&ioc->radix_root,
3164 cfqd->cic_index, cic);
3165 if (!ret)
3166 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3167 spin_unlock_irqrestore(&ioc->lock, flags);
3168
3169 radix_tree_preload_end();
3170
3171 if (!ret) {
3172 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3173 list_add(&cic->queue_list, &cfqd->cic_list);
3174 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3175 }
3176 }
3177
3178 if (ret)
3179 printk(KERN_ERR "cfq: cic link failed!\n");
3180
3181 return ret;
3182 }
3183
3184 /*
3185 * Setup general io context and cfq io context. There can be several cfq
3186 * io contexts per general io context, if this process is doing io to more
3187 * than one device managed by cfq.
3188 */
3189 static struct cfq_io_context *
3190 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3191 {
3192 struct io_context *ioc = NULL;
3193 struct cfq_io_context *cic;
3194
3195 might_sleep_if(gfp_mask & __GFP_WAIT);
3196
3197 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3198 if (!ioc)
3199 return NULL;
3200
3201 cic = cfq_cic_lookup(cfqd, ioc);
3202 if (cic)
3203 goto out;
3204
3205 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3206 if (cic == NULL)
3207 goto err;
3208
3209 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3210 goto err_free;
3211
3212 out:
3213 smp_read_barrier_depends();
3214 if (unlikely(ioc->ioprio_changed))
3215 cfq_ioc_set_ioprio(ioc);
3216
3217 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3218 if (unlikely(ioc->cgroup_changed))
3219 cfq_ioc_set_cgroup(ioc);
3220 #endif
3221 return cic;
3222 err_free:
3223 cfq_cic_free(cic);
3224 err:
3225 put_io_context(ioc);
3226 return NULL;
3227 }
3228
3229 static void
3230 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3231 {
3232 unsigned long elapsed = jiffies - ttime->last_end_request;
3233 elapsed = min(elapsed, 2UL * slice_idle);
3234
3235 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3236 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3237 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3238 }
3239
3240 static void
3241 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3242 struct cfq_io_context *cic)
3243 {
3244 if (cfq_cfqq_sync(cfqq)) {
3245 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3246 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3247 cfqd->cfq_slice_idle);
3248 }
3249 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3250 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3251 #endif
3252 }
3253
3254 static void
3255 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3256 struct request *rq)
3257 {
3258 sector_t sdist = 0;
3259 sector_t n_sec = blk_rq_sectors(rq);
3260 if (cfqq->last_request_pos) {
3261 if (cfqq->last_request_pos < blk_rq_pos(rq))
3262 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3263 else
3264 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3265 }
3266
3267 cfqq->seek_history <<= 1;
3268 if (blk_queue_nonrot(cfqd->queue))
3269 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3270 else
3271 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3272 }
3273
3274 /*
3275 * Disable idle window if the process thinks too long or seeks so much that
3276 * it doesn't matter
3277 */
3278 static void
3279 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3280 struct cfq_io_context *cic)
3281 {
3282 int old_idle, enable_idle;
3283
3284 /*
3285 * Don't idle for async or idle io prio class
3286 */
3287 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3288 return;
3289
3290 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3291
3292 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3293 cfq_mark_cfqq_deep(cfqq);
3294
3295 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3296 enable_idle = 0;
3297 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3298 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3299 enable_idle = 0;
3300 else if (sample_valid(cic->ttime.ttime_samples)) {
3301 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3302 enable_idle = 0;
3303 else
3304 enable_idle = 1;
3305 }
3306
3307 if (old_idle != enable_idle) {
3308 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3309 if (enable_idle)
3310 cfq_mark_cfqq_idle_window(cfqq);
3311 else
3312 cfq_clear_cfqq_idle_window(cfqq);
3313 }
3314 }
3315
3316 /*
3317 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3318 * no or if we aren't sure, a 1 will cause a preempt.
3319 */
3320 static bool
3321 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3322 struct request *rq)
3323 {
3324 struct cfq_queue *cfqq;
3325
3326 cfqq = cfqd->active_queue;
3327 if (!cfqq)
3328 return false;
3329
3330 if (cfq_class_idle(new_cfqq))
3331 return false;
3332
3333 if (cfq_class_idle(cfqq))
3334 return true;
3335
3336 /*
3337 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3338 */
3339 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3340 return false;
3341
3342 /*
3343 * if the new request is sync, but the currently running queue is
3344 * not, let the sync request have priority.
3345 */
3346 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3347 return true;
3348
3349 if (new_cfqq->cfqg != cfqq->cfqg)
3350 return false;
3351
3352 if (cfq_slice_used(cfqq))
3353 return true;
3354
3355 /* Allow preemption only if we are idling on sync-noidle tree */
3356 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3357 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3358 new_cfqq->service_tree->count == 2 &&
3359 RB_EMPTY_ROOT(&cfqq->sort_list))
3360 return true;
3361
3362 /*
3363 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3364 */
3365 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3366 return true;
3367
3368 /* An idle queue should not be idle now for some reason */
3369 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3370 return true;
3371
3372 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3373 return false;
3374
3375 /*
3376 * if this request is as-good as one we would expect from the
3377 * current cfqq, let it preempt
3378 */
3379 if (cfq_rq_close(cfqd, cfqq, rq))
3380 return true;
3381
3382 return false;
3383 }
3384
3385 /*
3386 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3387 * let it have half of its nominal slice.
3388 */
3389 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3390 {
3391 struct cfq_queue *old_cfqq = cfqd->active_queue;
3392
3393 cfq_log_cfqq(cfqd, cfqq, "preempt");
3394 cfq_slice_expired(cfqd, 1);
3395
3396 /*
3397 * workload type is changed, don't save slice, otherwise preempt
3398 * doesn't happen
3399 */
3400 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3401 cfqq->cfqg->saved_workload_slice = 0;
3402
3403 /*
3404 * Put the new queue at the front of the of the current list,
3405 * so we know that it will be selected next.
3406 */
3407 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3408
3409 cfq_service_tree_add(cfqd, cfqq, 1);
3410
3411 cfqq->slice_end = 0;
3412 cfq_mark_cfqq_slice_new(cfqq);
3413 }
3414
3415 /*
3416 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3417 * something we should do about it
3418 */
3419 static void
3420 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3421 struct request *rq)
3422 {
3423 struct cfq_io_context *cic = RQ_CIC(rq);
3424
3425 cfqd->rq_queued++;
3426
3427 cfq_update_io_thinktime(cfqd, cfqq, cic);
3428 cfq_update_io_seektime(cfqd, cfqq, rq);
3429 cfq_update_idle_window(cfqd, cfqq, cic);
3430
3431 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3432
3433 if (cfqq == cfqd->active_queue) {
3434 /*
3435 * Remember that we saw a request from this process, but
3436 * don't start queuing just yet. Otherwise we risk seeing lots
3437 * of tiny requests, because we disrupt the normal plugging
3438 * and merging. If the request is already larger than a single
3439 * page, let it rip immediately. For that case we assume that
3440 * merging is already done. Ditto for a busy system that
3441 * has other work pending, don't risk delaying until the
3442 * idle timer unplug to continue working.
3443 */
3444 if (cfq_cfqq_wait_request(cfqq)) {
3445 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3446 cfqd->busy_queues > 1) {
3447 cfq_del_timer(cfqd, cfqq);
3448 cfq_clear_cfqq_wait_request(cfqq);
3449 __blk_run_queue(cfqd->queue);
3450 } else {
3451 cfq_blkiocg_update_idle_time_stats(
3452 &cfqq->cfqg->blkg);
3453 cfq_mark_cfqq_must_dispatch(cfqq);
3454 }
3455 }
3456 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3457 /*
3458 * not the active queue - expire current slice if it is
3459 * idle and has expired it's mean thinktime or this new queue
3460 * has some old slice time left and is of higher priority or
3461 * this new queue is RT and the current one is BE
3462 */
3463 cfq_preempt_queue(cfqd, cfqq);
3464 __blk_run_queue(cfqd->queue);
3465 }
3466 }
3467
3468 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3469 {
3470 struct cfq_data *cfqd = q->elevator->elevator_data;
3471 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3472
3473 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3474 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3475
3476 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3477 list_add_tail(&rq->queuelist, &cfqq->fifo);
3478 cfq_add_rq_rb(rq);
3479 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3480 &cfqd->serving_group->blkg, rq_data_dir(rq),
3481 rq_is_sync(rq));
3482 cfq_rq_enqueued(cfqd, cfqq, rq);
3483 }
3484
3485 /*
3486 * Update hw_tag based on peak queue depth over 50 samples under
3487 * sufficient load.
3488 */
3489 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3490 {
3491 struct cfq_queue *cfqq = cfqd->active_queue;
3492
3493 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3494 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3495
3496 if (cfqd->hw_tag == 1)
3497 return;
3498
3499 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3500 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3501 return;
3502
3503 /*
3504 * If active queue hasn't enough requests and can idle, cfq might not
3505 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3506 * case
3507 */
3508 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3509 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3510 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3511 return;
3512
3513 if (cfqd->hw_tag_samples++ < 50)
3514 return;
3515
3516 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3517 cfqd->hw_tag = 1;
3518 else
3519 cfqd->hw_tag = 0;
3520 }
3521
3522 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3523 {
3524 struct cfq_io_context *cic = cfqd->active_cic;
3525
3526 /* If the queue already has requests, don't wait */
3527 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3528 return false;
3529
3530 /* If there are other queues in the group, don't wait */
3531 if (cfqq->cfqg->nr_cfqq > 1)
3532 return false;
3533
3534 /* the only queue in the group, but think time is big */
3535 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3536 return false;
3537
3538 if (cfq_slice_used(cfqq))
3539 return true;
3540
3541 /* if slice left is less than think time, wait busy */
3542 if (cic && sample_valid(cic->ttime.ttime_samples)
3543 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3544 return true;
3545
3546 /*
3547 * If think times is less than a jiffy than ttime_mean=0 and above
3548 * will not be true. It might happen that slice has not expired yet
3549 * but will expire soon (4-5 ns) during select_queue(). To cover the
3550 * case where think time is less than a jiffy, mark the queue wait
3551 * busy if only 1 jiffy is left in the slice.
3552 */
3553 if (cfqq->slice_end - jiffies == 1)
3554 return true;
3555
3556 return false;
3557 }
3558
3559 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3560 {
3561 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3562 struct cfq_data *cfqd = cfqq->cfqd;
3563 const int sync = rq_is_sync(rq);
3564 unsigned long now;
3565
3566 now = jiffies;
3567 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3568 !!(rq->cmd_flags & REQ_NOIDLE));
3569
3570 cfq_update_hw_tag(cfqd);
3571
3572 WARN_ON(!cfqd->rq_in_driver);
3573 WARN_ON(!cfqq->dispatched);
3574 cfqd->rq_in_driver--;
3575 cfqq->dispatched--;
3576 (RQ_CFQG(rq))->dispatched--;
3577 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3578 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3579 rq_data_dir(rq), rq_is_sync(rq));
3580
3581 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3582
3583 if (sync) {
3584 struct cfq_rb_root *service_tree;
3585
3586 RQ_CIC(rq)->ttime.last_end_request = now;
3587
3588 if (cfq_cfqq_on_rr(cfqq))
3589 service_tree = cfqq->service_tree;
3590 else
3591 service_tree = service_tree_for(cfqq->cfqg,
3592 cfqq_prio(cfqq), cfqq_type(cfqq));
3593 service_tree->ttime.last_end_request = now;
3594 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3595 cfqd->last_delayed_sync = now;
3596 }
3597
3598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3599 cfqq->cfqg->ttime.last_end_request = now;
3600 #endif
3601
3602 /*
3603 * If this is the active queue, check if it needs to be expired,
3604 * or if we want to idle in case it has no pending requests.
3605 */
3606 if (cfqd->active_queue == cfqq) {
3607 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3608
3609 if (cfq_cfqq_slice_new(cfqq)) {
3610 cfq_set_prio_slice(cfqd, cfqq);
3611 cfq_clear_cfqq_slice_new(cfqq);
3612 }
3613
3614 /*
3615 * Should we wait for next request to come in before we expire
3616 * the queue.
3617 */
3618 if (cfq_should_wait_busy(cfqd, cfqq)) {
3619 unsigned long extend_sl = cfqd->cfq_slice_idle;
3620 if (!cfqd->cfq_slice_idle)
3621 extend_sl = cfqd->cfq_group_idle;
3622 cfqq->slice_end = jiffies + extend_sl;
3623 cfq_mark_cfqq_wait_busy(cfqq);
3624 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3625 }
3626
3627 /*
3628 * Idling is not enabled on:
3629 * - expired queues
3630 * - idle-priority queues
3631 * - async queues
3632 * - queues with still some requests queued
3633 * - when there is a close cooperator
3634 */
3635 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3636 cfq_slice_expired(cfqd, 1);
3637 else if (sync && cfqq_empty &&
3638 !cfq_close_cooperator(cfqd, cfqq)) {
3639 cfq_arm_slice_timer(cfqd);
3640 }
3641 }
3642
3643 if (!cfqd->rq_in_driver)
3644 cfq_schedule_dispatch(cfqd);
3645 }
3646
3647 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3648 {
3649 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3650 cfq_mark_cfqq_must_alloc_slice(cfqq);
3651 return ELV_MQUEUE_MUST;
3652 }
3653
3654 return ELV_MQUEUE_MAY;
3655 }
3656
3657 static int cfq_may_queue(struct request_queue *q, int rw)
3658 {
3659 struct cfq_data *cfqd = q->elevator->elevator_data;
3660 struct task_struct *tsk = current;
3661 struct cfq_io_context *cic;
3662 struct cfq_queue *cfqq;
3663
3664 /*
3665 * don't force setup of a queue from here, as a call to may_queue
3666 * does not necessarily imply that a request actually will be queued.
3667 * so just lookup a possibly existing queue, or return 'may queue'
3668 * if that fails
3669 */
3670 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3671 if (!cic)
3672 return ELV_MQUEUE_MAY;
3673
3674 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3675 if (cfqq) {
3676 cfq_init_prio_data(cfqq, cic->ioc);
3677
3678 return __cfq_may_queue(cfqq);
3679 }
3680
3681 return ELV_MQUEUE_MAY;
3682 }
3683
3684 /*
3685 * queue lock held here
3686 */
3687 static void cfq_put_request(struct request *rq)
3688 {
3689 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3690
3691 if (cfqq) {
3692 const int rw = rq_data_dir(rq);
3693
3694 BUG_ON(!cfqq->allocated[rw]);
3695 cfqq->allocated[rw]--;
3696
3697 put_io_context(RQ_CIC(rq)->ioc);
3698
3699 rq->elevator_private[0] = NULL;
3700 rq->elevator_private[1] = NULL;
3701
3702 /* Put down rq reference on cfqg */
3703 cfq_put_cfqg(RQ_CFQG(rq));
3704 rq->elevator_private[2] = NULL;
3705
3706 cfq_put_queue(cfqq);
3707 }
3708 }
3709
3710 static struct cfq_queue *
3711 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3712 struct cfq_queue *cfqq)
3713 {
3714 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3715 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3716 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3717 cfq_put_queue(cfqq);
3718 return cic_to_cfqq(cic, 1);
3719 }
3720
3721 /*
3722 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3723 * was the last process referring to said cfqq.
3724 */
3725 static struct cfq_queue *
3726 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3727 {
3728 if (cfqq_process_refs(cfqq) == 1) {
3729 cfqq->pid = current->pid;
3730 cfq_clear_cfqq_coop(cfqq);
3731 cfq_clear_cfqq_split_coop(cfqq);
3732 return cfqq;
3733 }
3734
3735 cic_set_cfqq(cic, NULL, 1);
3736
3737 cfq_put_cooperator(cfqq);
3738
3739 cfq_put_queue(cfqq);
3740 return NULL;
3741 }
3742 /*
3743 * Allocate cfq data structures associated with this request.
3744 */
3745 static int
3746 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3747 {
3748 struct cfq_data *cfqd = q->elevator->elevator_data;
3749 struct cfq_io_context *cic;
3750 const int rw = rq_data_dir(rq);
3751 const bool is_sync = rq_is_sync(rq);
3752 struct cfq_queue *cfqq;
3753 unsigned long flags;
3754
3755 might_sleep_if(gfp_mask & __GFP_WAIT);
3756
3757 cic = cfq_get_io_context(cfqd, gfp_mask);
3758
3759 spin_lock_irqsave(q->queue_lock, flags);
3760
3761 if (!cic)
3762 goto queue_fail;
3763
3764 new_queue:
3765 cfqq = cic_to_cfqq(cic, is_sync);
3766 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3767 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3768 cic_set_cfqq(cic, cfqq, is_sync);
3769 } else {
3770 /*
3771 * If the queue was seeky for too long, break it apart.
3772 */
3773 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3774 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3775 cfqq = split_cfqq(cic, cfqq);
3776 if (!cfqq)
3777 goto new_queue;
3778 }
3779
3780 /*
3781 * Check to see if this queue is scheduled to merge with
3782 * another, closely cooperating queue. The merging of
3783 * queues happens here as it must be done in process context.
3784 * The reference on new_cfqq was taken in merge_cfqqs.
3785 */
3786 if (cfqq->new_cfqq)
3787 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3788 }
3789
3790 cfqq->allocated[rw]++;
3791
3792 cfqq->ref++;
3793 rq->elevator_private[0] = cic;
3794 rq->elevator_private[1] = cfqq;
3795 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3796 spin_unlock_irqrestore(q->queue_lock, flags);
3797 return 0;
3798
3799 queue_fail:
3800 cfq_schedule_dispatch(cfqd);
3801 spin_unlock_irqrestore(q->queue_lock, flags);
3802 cfq_log(cfqd, "set_request fail");
3803 return 1;
3804 }
3805
3806 static void cfq_kick_queue(struct work_struct *work)
3807 {
3808 struct cfq_data *cfqd =
3809 container_of(work, struct cfq_data, unplug_work);
3810 struct request_queue *q = cfqd->queue;
3811
3812 spin_lock_irq(q->queue_lock);
3813 __blk_run_queue(cfqd->queue);
3814 spin_unlock_irq(q->queue_lock);
3815 }
3816
3817 /*
3818 * Timer running if the active_queue is currently idling inside its time slice
3819 */
3820 static void cfq_idle_slice_timer(unsigned long data)
3821 {
3822 struct cfq_data *cfqd = (struct cfq_data *) data;
3823 struct cfq_queue *cfqq;
3824 unsigned long flags;
3825 int timed_out = 1;
3826
3827 cfq_log(cfqd, "idle timer fired");
3828
3829 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3830
3831 cfqq = cfqd->active_queue;
3832 if (cfqq) {
3833 timed_out = 0;
3834
3835 /*
3836 * We saw a request before the queue expired, let it through
3837 */
3838 if (cfq_cfqq_must_dispatch(cfqq))
3839 goto out_kick;
3840
3841 /*
3842 * expired
3843 */
3844 if (cfq_slice_used(cfqq))
3845 goto expire;
3846
3847 /*
3848 * only expire and reinvoke request handler, if there are
3849 * other queues with pending requests
3850 */
3851 if (!cfqd->busy_queues)
3852 goto out_cont;
3853
3854 /*
3855 * not expired and it has a request pending, let it dispatch
3856 */
3857 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3858 goto out_kick;
3859
3860 /*
3861 * Queue depth flag is reset only when the idle didn't succeed
3862 */
3863 cfq_clear_cfqq_deep(cfqq);
3864 }
3865 expire:
3866 cfq_slice_expired(cfqd, timed_out);
3867 out_kick:
3868 cfq_schedule_dispatch(cfqd);
3869 out_cont:
3870 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3871 }
3872
3873 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3874 {
3875 del_timer_sync(&cfqd->idle_slice_timer);
3876 cancel_work_sync(&cfqd->unplug_work);
3877 }
3878
3879 static void cfq_put_async_queues(struct cfq_data *cfqd)
3880 {
3881 int i;
3882
3883 for (i = 0; i < IOPRIO_BE_NR; i++) {
3884 if (cfqd->async_cfqq[0][i])
3885 cfq_put_queue(cfqd->async_cfqq[0][i]);
3886 if (cfqd->async_cfqq[1][i])
3887 cfq_put_queue(cfqd->async_cfqq[1][i]);
3888 }
3889
3890 if (cfqd->async_idle_cfqq)
3891 cfq_put_queue(cfqd->async_idle_cfqq);
3892 }
3893
3894 static void cfq_exit_queue(struct elevator_queue *e)
3895 {
3896 struct cfq_data *cfqd = e->elevator_data;
3897 struct request_queue *q = cfqd->queue;
3898 bool wait = false;
3899
3900 cfq_shutdown_timer_wq(cfqd);
3901
3902 spin_lock_irq(q->queue_lock);
3903
3904 if (cfqd->active_queue)
3905 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3906
3907 while (!list_empty(&cfqd->cic_list)) {
3908 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3909 struct cfq_io_context,
3910 queue_list);
3911
3912 __cfq_exit_single_io_context(cfqd, cic);
3913 }
3914
3915 cfq_put_async_queues(cfqd);
3916 cfq_release_cfq_groups(cfqd);
3917
3918 /*
3919 * If there are groups which we could not unlink from blkcg list,
3920 * wait for a rcu period for them to be freed.
3921 */
3922 if (cfqd->nr_blkcg_linked_grps)
3923 wait = true;
3924
3925 spin_unlock_irq(q->queue_lock);
3926
3927 cfq_shutdown_timer_wq(cfqd);
3928
3929 spin_lock(&cic_index_lock);
3930 ida_remove(&cic_index_ida, cfqd->cic_index);
3931 spin_unlock(&cic_index_lock);
3932
3933 /*
3934 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3935 * Do this wait only if there are other unlinked groups out
3936 * there. This can happen if cgroup deletion path claimed the
3937 * responsibility of cleaning up a group before queue cleanup code
3938 * get to the group.
3939 *
3940 * Do not call synchronize_rcu() unconditionally as there are drivers
3941 * which create/delete request queue hundreds of times during scan/boot
3942 * and synchronize_rcu() can take significant time and slow down boot.
3943 */
3944 if (wait)
3945 synchronize_rcu();
3946
3947 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3948 /* Free up per cpu stats for root group */
3949 free_percpu(cfqd->root_group.blkg.stats_cpu);
3950 #endif
3951 kfree(cfqd);
3952 }
3953
3954 static int cfq_alloc_cic_index(void)
3955 {
3956 int index, error;
3957
3958 do {
3959 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3960 return -ENOMEM;
3961
3962 spin_lock(&cic_index_lock);
3963 error = ida_get_new(&cic_index_ida, &index);
3964 spin_unlock(&cic_index_lock);
3965 if (error && error != -EAGAIN)
3966 return error;
3967 } while (error);
3968
3969 return index;
3970 }
3971
3972 static void *cfq_init_queue(struct request_queue *q)
3973 {
3974 struct cfq_data *cfqd;
3975 int i, j;
3976 struct cfq_group *cfqg;
3977 struct cfq_rb_root *st;
3978
3979 i = cfq_alloc_cic_index();
3980 if (i < 0)
3981 return NULL;
3982
3983 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3984 if (!cfqd) {
3985 spin_lock(&cic_index_lock);
3986 ida_remove(&cic_index_ida, i);
3987 spin_unlock(&cic_index_lock);
3988 return NULL;
3989 }
3990
3991 /*
3992 * Don't need take queue_lock in the routine, since we are
3993 * initializing the ioscheduler, and nobody is using cfqd
3994 */
3995 cfqd->cic_index = i;
3996
3997 /* Init root service tree */
3998 cfqd->grp_service_tree = CFQ_RB_ROOT;
3999
4000 /* Init root group */
4001 cfqg = &cfqd->root_group;
4002 for_each_cfqg_st(cfqg, i, j, st)
4003 *st = CFQ_RB_ROOT;
4004 RB_CLEAR_NODE(&cfqg->rb_node);
4005
4006 /* Give preference to root group over other groups */
4007 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4008
4009 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4010 /*
4011 * Set root group reference to 2. One reference will be dropped when
4012 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4013 * Other reference will remain there as we don't want to delete this
4014 * group as it is statically allocated and gets destroyed when
4015 * throtl_data goes away.
4016 */
4017 cfqg->ref = 2;
4018
4019 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4020 kfree(cfqg);
4021 kfree(cfqd);
4022 return NULL;
4023 }
4024
4025 rcu_read_lock();
4026
4027 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4028 (void *)cfqd, 0);
4029 rcu_read_unlock();
4030 cfqd->nr_blkcg_linked_grps++;
4031
4032 /* Add group on cfqd->cfqg_list */
4033 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4034 #endif
4035 /*
4036 * Not strictly needed (since RB_ROOT just clears the node and we
4037 * zeroed cfqd on alloc), but better be safe in case someone decides
4038 * to add magic to the rb code
4039 */
4040 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4041 cfqd->prio_trees[i] = RB_ROOT;
4042
4043 /*
4044 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4045 * Grab a permanent reference to it, so that the normal code flow
4046 * will not attempt to free it.
4047 */
4048 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4049 cfqd->oom_cfqq.ref++;
4050 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4051
4052 INIT_LIST_HEAD(&cfqd->cic_list);
4053
4054 cfqd->queue = q;
4055
4056 init_timer(&cfqd->idle_slice_timer);
4057 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4058 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4059
4060 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4061
4062 cfqd->cfq_quantum = cfq_quantum;
4063 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4064 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4065 cfqd->cfq_back_max = cfq_back_max;
4066 cfqd->cfq_back_penalty = cfq_back_penalty;
4067 cfqd->cfq_slice[0] = cfq_slice_async;
4068 cfqd->cfq_slice[1] = cfq_slice_sync;
4069 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4070 cfqd->cfq_slice_idle = cfq_slice_idle;
4071 cfqd->cfq_group_idle = cfq_group_idle;
4072 cfqd->cfq_latency = 1;
4073 cfqd->hw_tag = -1;
4074 /*
4075 * we optimistically start assuming sync ops weren't delayed in last
4076 * second, in order to have larger depth for async operations.
4077 */
4078 cfqd->last_delayed_sync = jiffies - HZ;
4079 return cfqd;
4080 }
4081
4082 static void cfq_slab_kill(void)
4083 {
4084 /*
4085 * Caller already ensured that pending RCU callbacks are completed,
4086 * so we should have no busy allocations at this point.
4087 */
4088 if (cfq_pool)
4089 kmem_cache_destroy(cfq_pool);
4090 if (cfq_ioc_pool)
4091 kmem_cache_destroy(cfq_ioc_pool);
4092 }
4093
4094 static int __init cfq_slab_setup(void)
4095 {
4096 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4097 if (!cfq_pool)
4098 goto fail;
4099
4100 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4101 if (!cfq_ioc_pool)
4102 goto fail;
4103
4104 return 0;
4105 fail:
4106 cfq_slab_kill();
4107 return -ENOMEM;
4108 }
4109
4110 /*
4111 * sysfs parts below -->
4112 */
4113 static ssize_t
4114 cfq_var_show(unsigned int var, char *page)
4115 {
4116 return sprintf(page, "%d\n", var);
4117 }
4118
4119 static ssize_t
4120 cfq_var_store(unsigned int *var, const char *page, size_t count)
4121 {
4122 char *p = (char *) page;
4123
4124 *var = simple_strtoul(p, &p, 10);
4125 return count;
4126 }
4127
4128 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4129 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4130 { \
4131 struct cfq_data *cfqd = e->elevator_data; \
4132 unsigned int __data = __VAR; \
4133 if (__CONV) \
4134 __data = jiffies_to_msecs(__data); \
4135 return cfq_var_show(__data, (page)); \
4136 }
4137 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4138 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4139 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4140 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4141 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4142 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4143 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4144 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4145 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4146 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4147 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4148 #undef SHOW_FUNCTION
4149
4150 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4151 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4152 { \
4153 struct cfq_data *cfqd = e->elevator_data; \
4154 unsigned int __data; \
4155 int ret = cfq_var_store(&__data, (page), count); \
4156 if (__data < (MIN)) \
4157 __data = (MIN); \
4158 else if (__data > (MAX)) \
4159 __data = (MAX); \
4160 if (__CONV) \
4161 *(__PTR) = msecs_to_jiffies(__data); \
4162 else \
4163 *(__PTR) = __data; \
4164 return ret; \
4165 }
4166 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4167 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4168 UINT_MAX, 1);
4169 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4170 UINT_MAX, 1);
4171 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4172 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4173 UINT_MAX, 0);
4174 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4175 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4176 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4177 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4178 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4179 UINT_MAX, 0);
4180 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4181 #undef STORE_FUNCTION
4182
4183 #define CFQ_ATTR(name) \
4184 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4185
4186 static struct elv_fs_entry cfq_attrs[] = {
4187 CFQ_ATTR(quantum),
4188 CFQ_ATTR(fifo_expire_sync),
4189 CFQ_ATTR(fifo_expire_async),
4190 CFQ_ATTR(back_seek_max),
4191 CFQ_ATTR(back_seek_penalty),
4192 CFQ_ATTR(slice_sync),
4193 CFQ_ATTR(slice_async),
4194 CFQ_ATTR(slice_async_rq),
4195 CFQ_ATTR(slice_idle),
4196 CFQ_ATTR(group_idle),
4197 CFQ_ATTR(low_latency),
4198 __ATTR_NULL
4199 };
4200
4201 static struct elevator_type iosched_cfq = {
4202 .ops = {
4203 .elevator_merge_fn = cfq_merge,
4204 .elevator_merged_fn = cfq_merged_request,
4205 .elevator_merge_req_fn = cfq_merged_requests,
4206 .elevator_allow_merge_fn = cfq_allow_merge,
4207 .elevator_bio_merged_fn = cfq_bio_merged,
4208 .elevator_dispatch_fn = cfq_dispatch_requests,
4209 .elevator_add_req_fn = cfq_insert_request,
4210 .elevator_activate_req_fn = cfq_activate_request,
4211 .elevator_deactivate_req_fn = cfq_deactivate_request,
4212 .elevator_completed_req_fn = cfq_completed_request,
4213 .elevator_former_req_fn = elv_rb_former_request,
4214 .elevator_latter_req_fn = elv_rb_latter_request,
4215 .elevator_set_req_fn = cfq_set_request,
4216 .elevator_put_req_fn = cfq_put_request,
4217 .elevator_may_queue_fn = cfq_may_queue,
4218 .elevator_init_fn = cfq_init_queue,
4219 .elevator_exit_fn = cfq_exit_queue,
4220 .trim = cfq_free_io_context,
4221 },
4222 .elevator_attrs = cfq_attrs,
4223 .elevator_name = "cfq",
4224 .elevator_owner = THIS_MODULE,
4225 };
4226
4227 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4228 static struct blkio_policy_type blkio_policy_cfq = {
4229 .ops = {
4230 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4231 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4232 },
4233 .plid = BLKIO_POLICY_PROP,
4234 };
4235 #else
4236 static struct blkio_policy_type blkio_policy_cfq;
4237 #endif
4238
4239 static int __init cfq_init(void)
4240 {
4241 /*
4242 * could be 0 on HZ < 1000 setups
4243 */
4244 if (!cfq_slice_async)
4245 cfq_slice_async = 1;
4246 if (!cfq_slice_idle)
4247 cfq_slice_idle = 1;
4248
4249 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4250 if (!cfq_group_idle)
4251 cfq_group_idle = 1;
4252 #else
4253 cfq_group_idle = 0;
4254 #endif
4255 if (cfq_slab_setup())
4256 return -ENOMEM;
4257
4258 elv_register(&iosched_cfq);
4259 blkio_policy_register(&blkio_policy_cfq);
4260
4261 return 0;
4262 }
4263
4264 static void __exit cfq_exit(void)
4265 {
4266 DECLARE_COMPLETION_ONSTACK(all_gone);
4267 blkio_policy_unregister(&blkio_policy_cfq);
4268 elv_unregister(&iosched_cfq);
4269 ioc_gone = &all_gone;
4270 /* ioc_gone's update must be visible before reading ioc_count */
4271 smp_wmb();
4272
4273 /*
4274 * this also protects us from entering cfq_slab_kill() with
4275 * pending RCU callbacks
4276 */
4277 if (elv_ioc_count_read(cfq_ioc_count))
4278 wait_for_completion(&all_gone);
4279 ida_destroy(&cic_index_ida);
4280 cfq_slab_kill();
4281 }
4282
4283 module_init(cfq_init);
4284 module_exit(cfq_exit);
4285
4286 MODULE_AUTHOR("Jens Axboe");
4287 MODULE_LICENSE("GPL");
4288 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.186673 seconds and 6 git commands to generate.