cfq-iosched: quantum check tweak
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
51 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
52
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70
71 /*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77 struct cfq_rb_root {
78 struct rb_root rb;
79 struct rb_node *left;
80 unsigned count;
81 u64 min_vdisktime;
82 struct rb_node *active;
83 unsigned total_weight;
84 };
85 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
86
87 /*
88 * Per process-grouping structure
89 */
90 struct cfq_queue {
91 /* reference count */
92 atomic_t ref;
93 /* various state flags, see below */
94 unsigned int flags;
95 /* parent cfq_data */
96 struct cfq_data *cfqd;
97 /* service_tree member */
98 struct rb_node rb_node;
99 /* service_tree key */
100 unsigned long rb_key;
101 /* prio tree member */
102 struct rb_node p_node;
103 /* prio tree root we belong to, if any */
104 struct rb_root *p_root;
105 /* sorted list of pending requests */
106 struct rb_root sort_list;
107 /* if fifo isn't expired, next request to serve */
108 struct request *next_rq;
109 /* requests queued in sort_list */
110 int queued[2];
111 /* currently allocated requests */
112 int allocated[2];
113 /* fifo list of requests in sort_list */
114 struct list_head fifo;
115
116 /* time when queue got scheduled in to dispatch first request. */
117 unsigned long dispatch_start;
118 unsigned int allocated_slice;
119 unsigned int slice_dispatch;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
122 unsigned long slice_end;
123 long slice_resid;
124
125 /* pending metadata requests */
126 int meta_pending;
127 /* number of requests that are on the dispatch list or inside driver */
128 int dispatched;
129
130 /* io prio of this group */
131 unsigned short ioprio, org_ioprio;
132 unsigned short ioprio_class, org_ioprio_class;
133
134 pid_t pid;
135
136 u32 seek_history;
137 sector_t last_request_pos;
138
139 struct cfq_rb_root *service_tree;
140 struct cfq_queue *new_cfqq;
141 struct cfq_group *cfqg;
142 struct cfq_group *orig_cfqg;
143 /* Sectors dispatched in current dispatch round */
144 unsigned long nr_sectors;
145 };
146
147 /*
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
150 */
151 enum wl_prio_t {
152 BE_WORKLOAD = 0,
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
155 };
156
157 /*
158 * Second index in the service_trees.
159 */
160 enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164 };
165
166 /* This is per cgroup per device grouping structure */
167 struct cfq_group {
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
173 unsigned int weight;
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
191 struct blkio_group blkg;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
194 atomic_t ref;
195 #endif
196 };
197
198 /*
199 * Per block device queue structure
200 */
201 struct cfq_data {
202 struct request_queue *queue;
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
205 struct cfq_group root_group;
206
207 /*
208 * The priority currently being served
209 */
210 enum wl_prio_t serving_prio;
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
213 struct cfq_group *serving_group;
214 bool noidle_tree_requires_idle;
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
223 unsigned int busy_queues;
224
225 int rq_in_driver;
226 int rq_in_flight[2];
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
232 int hw_tag;
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
241
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
246 struct work_struct unplug_work;
247
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
250
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
256
257 sector_t last_position;
258
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
263 unsigned int cfq_fifo_expire[2];
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
269 unsigned int cfq_latency;
270 unsigned int cfq_group_isolation;
271
272 struct list_head cic_list;
273
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
278
279 unsigned long last_delayed_sync;
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
283 struct rcu_head rcu;
284 };
285
286 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
288 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
290 enum wl_type_t type)
291 {
292 if (!cfqg)
293 return NULL;
294
295 if (prio == IDLE_WORKLOAD)
296 return &cfqg->service_tree_idle;
297
298 return &cfqg->service_trees[prio][type];
299 }
300
301 enum cfqq_state_flags {
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
315 };
316
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319 { \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
321 } \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323 { \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
325 } \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327 { \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
329 }
330
331 CFQ_CFQQ_FNS(on_rr);
332 CFQ_CFQQ_FNS(wait_request);
333 CFQ_CFQQ_FNS(must_dispatch);
334 CFQ_CFQQ_FNS(must_alloc_slice);
335 CFQ_CFQQ_FNS(fifo_expire);
336 CFQ_CFQQ_FNS(idle_window);
337 CFQ_CFQQ_FNS(prio_changed);
338 CFQ_CFQQ_FNS(slice_new);
339 CFQ_CFQQ_FNS(sync);
340 CFQ_CFQQ_FNS(coop);
341 CFQ_CFQQ_FNS(split_coop);
342 CFQ_CFQQ_FNS(deep);
343 CFQ_CFQQ_FNS(wait_busy);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
397 {
398 if (wl == IDLE_WORKLOAD)
399 return cfqg->service_tree_idle.count;
400
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408 {
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411 }
412
413 static void cfq_dispatch_insert(struct request_queue *, struct request *);
414 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415 struct io_context *, gfp_t);
416 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417 struct io_context *);
418
419 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
420 bool is_sync)
421 {
422 return cic->cfqq[is_sync];
423 }
424
425 static inline void cic_set_cfqq(struct cfq_io_context *cic,
426 struct cfq_queue *cfqq, bool is_sync)
427 {
428 cic->cfqq[is_sync] = cfqq;
429 }
430
431 /*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
435 static inline bool cfq_bio_sync(struct bio *bio)
436 {
437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
438 }
439
440 /*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
444 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
445 {
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
449 }
450 }
451
452 static int cfq_queue_empty(struct request_queue *q)
453 {
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
456 return !cfqd->rq_queued;
457 }
458
459 /*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
464 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
465 unsigned short prio)
466 {
467 const int base_slice = cfqd->cfq_slice[sync];
468
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472 }
473
474 static inline int
475 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476 {
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
478 }
479
480 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481 {
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487 }
488
489 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490 {
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496 }
497
498 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499 {
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505 }
506
507 static void update_min_vdisktime(struct cfq_rb_root *st)
508 {
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523 }
524
525 /*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
531 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
533 {
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
538
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
542 cfq_hist_divisor;
543 return cfqg->busy_queues_avg[rt];
544 }
545
546 static inline unsigned
547 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548 {
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
552 }
553
554 static inline void
555 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556 {
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
577 slice = max(slice * group_slice / expect_latency,
578 low_slice);
579 }
580 }
581 cfqq->slice_start = jiffies;
582 cfqq->slice_end = jiffies + slice;
583 cfqq->allocated_slice = slice;
584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
585 }
586
587 /*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
592 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
593 {
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600 }
601
602 /*
603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
604 * We choose the request that is closest to the head right now. Distance
605 * behind the head is penalized and only allowed to a certain extent.
606 */
607 static struct request *
608 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
609 {
610 sector_t s1, s2, d1 = 0, d2 = 0;
611 unsigned long back_max;
612 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
615
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
620
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
629
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
632
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
648 wrap |= CFQ_RQ1_WRAP;
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
655 wrap |= CFQ_RQ2_WRAP;
656
657 /* Found required data */
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
665 if (d1 < d2)
666 return rq1;
667 else if (d2 < d1)
668 return rq2;
669 else {
670 if (s1 >= s2)
671 return rq1;
672 else
673 return rq2;
674 }
675
676 case CFQ_RQ2_WRAP:
677 return rq1;
678 case CFQ_RQ1_WRAP:
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
689 return rq1;
690 else
691 return rq2;
692 }
693 }
694
695 /*
696 * The below is leftmost cache rbtree addon
697 */
698 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
699 {
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
711 }
712
713 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714 {
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722 }
723
724 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725 {
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728 }
729
730 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731 {
732 if (root->left == n)
733 root->left = NULL;
734 rb_erase_init(n, &root->rb);
735 --root->count;
736 }
737
738 /*
739 * would be nice to take fifo expire time into account as well
740 */
741 static struct request *
742 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
744 {
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
747 struct request *next = NULL, *prev = NULL;
748
749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
750
751 if (rbprev)
752 prev = rb_entry_rq(rbprev);
753
754 if (rbnext)
755 next = rb_entry_rq(rbnext);
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
759 next = rb_entry_rq(rbnext);
760 }
761
762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
763 }
764
765 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
767 {
768 /*
769 * just an approximation, should be ok.
770 */
771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
773 }
774
775 static inline s64
776 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777 {
778 return cfqg->vdisktime - st->min_vdisktime;
779 }
780
781 static void
782 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807 }
808
809 static void
810 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811 {
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
834 st->total_weight += cfqg->weight;
835 }
836
837 static void
838 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839 {
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
847
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
853 cfqg->on_st = false;
854 st->total_weight -= cfqg->weight;
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
857 cfqg->saved_workload_slice = 0;
858 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
859 }
860
861 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862 {
863 unsigned int slice_used;
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
882 }
883
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
886 return slice_used;
887 }
888
889 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891 {
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 unsigned int used_sl, charge_sl;
894 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
895 - cfqg->service_tree_idle.count;
896
897 BUG_ON(nr_sync < 0);
898 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
899
900 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
901 charge_sl = cfqq->allocated_slice;
902
903 /* Can't update vdisktime while group is on service tree */
904 cfq_rb_erase(&cfqg->rb_node, st);
905 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
906 __cfq_group_service_tree_add(st, cfqg);
907
908 /* This group is being expired. Save the context */
909 if (time_after(cfqd->workload_expires, jiffies)) {
910 cfqg->saved_workload_slice = cfqd->workload_expires
911 - jiffies;
912 cfqg->saved_workload = cfqd->serving_type;
913 cfqg->saved_serving_prio = cfqd->serving_prio;
914 } else
915 cfqg->saved_workload_slice = 0;
916
917 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
918 st->min_vdisktime);
919 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
920 cfqq->nr_sectors);
921 }
922
923 #ifdef CONFIG_CFQ_GROUP_IOSCHED
924 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
925 {
926 if (blkg)
927 return container_of(blkg, struct cfq_group, blkg);
928 return NULL;
929 }
930
931 void
932 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
933 {
934 cfqg_of_blkg(blkg)->weight = weight;
935 }
936
937 static struct cfq_group *
938 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
939 {
940 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
941 struct cfq_group *cfqg = NULL;
942 void *key = cfqd;
943 int i, j;
944 struct cfq_rb_root *st;
945 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
946 unsigned int major, minor;
947
948 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
949 if (cfqg || !create)
950 goto done;
951
952 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
953 if (!cfqg)
954 goto done;
955
956 cfqg->weight = blkcg->weight;
957 for_each_cfqg_st(cfqg, i, j, st)
958 *st = CFQ_RB_ROOT;
959 RB_CLEAR_NODE(&cfqg->rb_node);
960
961 /*
962 * Take the initial reference that will be released on destroy
963 * This can be thought of a joint reference by cgroup and
964 * elevator which will be dropped by either elevator exit
965 * or cgroup deletion path depending on who is exiting first.
966 */
967 atomic_set(&cfqg->ref, 1);
968
969 /* Add group onto cgroup list */
970 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
971 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
972 MKDEV(major, minor));
973
974 /* Add group on cfqd list */
975 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
976
977 done:
978 return cfqg;
979 }
980
981 /*
982 * Search for the cfq group current task belongs to. If create = 1, then also
983 * create the cfq group if it does not exist. request_queue lock must be held.
984 */
985 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
986 {
987 struct cgroup *cgroup;
988 struct cfq_group *cfqg = NULL;
989
990 rcu_read_lock();
991 cgroup = task_cgroup(current, blkio_subsys_id);
992 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
993 if (!cfqg && create)
994 cfqg = &cfqd->root_group;
995 rcu_read_unlock();
996 return cfqg;
997 }
998
999 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1000 {
1001 /* Currently, all async queues are mapped to root group */
1002 if (!cfq_cfqq_sync(cfqq))
1003 cfqg = &cfqq->cfqd->root_group;
1004
1005 cfqq->cfqg = cfqg;
1006 /* cfqq reference on cfqg */
1007 atomic_inc(&cfqq->cfqg->ref);
1008 }
1009
1010 static void cfq_put_cfqg(struct cfq_group *cfqg)
1011 {
1012 struct cfq_rb_root *st;
1013 int i, j;
1014
1015 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1016 if (!atomic_dec_and_test(&cfqg->ref))
1017 return;
1018 for_each_cfqg_st(cfqg, i, j, st)
1019 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1020 kfree(cfqg);
1021 }
1022
1023 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1024 {
1025 /* Something wrong if we are trying to remove same group twice */
1026 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1027
1028 hlist_del_init(&cfqg->cfqd_node);
1029
1030 /*
1031 * Put the reference taken at the time of creation so that when all
1032 * queues are gone, group can be destroyed.
1033 */
1034 cfq_put_cfqg(cfqg);
1035 }
1036
1037 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1038 {
1039 struct hlist_node *pos, *n;
1040 struct cfq_group *cfqg;
1041
1042 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1043 /*
1044 * If cgroup removal path got to blk_group first and removed
1045 * it from cgroup list, then it will take care of destroying
1046 * cfqg also.
1047 */
1048 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1049 cfq_destroy_cfqg(cfqd, cfqg);
1050 }
1051 }
1052
1053 /*
1054 * Blk cgroup controller notification saying that blkio_group object is being
1055 * delinked as associated cgroup object is going away. That also means that
1056 * no new IO will come in this group. So get rid of this group as soon as
1057 * any pending IO in the group is finished.
1058 *
1059 * This function is called under rcu_read_lock(). key is the rcu protected
1060 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1061 * read lock.
1062 *
1063 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1064 * it should not be NULL as even if elevator was exiting, cgroup deltion
1065 * path got to it first.
1066 */
1067 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1068 {
1069 unsigned long flags;
1070 struct cfq_data *cfqd = key;
1071
1072 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1073 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1074 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1075 }
1076
1077 #else /* GROUP_IOSCHED */
1078 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1079 {
1080 return &cfqd->root_group;
1081 }
1082 static inline void
1083 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1084 cfqq->cfqg = cfqg;
1085 }
1086
1087 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1088 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1089
1090 #endif /* GROUP_IOSCHED */
1091
1092 /*
1093 * The cfqd->service_trees holds all pending cfq_queue's that have
1094 * requests waiting to be processed. It is sorted in the order that
1095 * we will service the queues.
1096 */
1097 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1098 bool add_front)
1099 {
1100 struct rb_node **p, *parent;
1101 struct cfq_queue *__cfqq;
1102 unsigned long rb_key;
1103 struct cfq_rb_root *service_tree;
1104 int left;
1105 int new_cfqq = 1;
1106 int group_changed = 0;
1107
1108 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1109 if (!cfqd->cfq_group_isolation
1110 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1111 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1112 /* Move this cfq to root group */
1113 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1114 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1115 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1116 cfqq->orig_cfqg = cfqq->cfqg;
1117 cfqq->cfqg = &cfqd->root_group;
1118 atomic_inc(&cfqd->root_group.ref);
1119 group_changed = 1;
1120 } else if (!cfqd->cfq_group_isolation
1121 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1122 /* cfqq is sequential now needs to go to its original group */
1123 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1124 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1125 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1126 cfq_put_cfqg(cfqq->cfqg);
1127 cfqq->cfqg = cfqq->orig_cfqg;
1128 cfqq->orig_cfqg = NULL;
1129 group_changed = 1;
1130 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1131 }
1132 #endif
1133
1134 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1135 cfqq_type(cfqq));
1136 if (cfq_class_idle(cfqq)) {
1137 rb_key = CFQ_IDLE_DELAY;
1138 parent = rb_last(&service_tree->rb);
1139 if (parent && parent != &cfqq->rb_node) {
1140 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1141 rb_key += __cfqq->rb_key;
1142 } else
1143 rb_key += jiffies;
1144 } else if (!add_front) {
1145 /*
1146 * Get our rb key offset. Subtract any residual slice
1147 * value carried from last service. A negative resid
1148 * count indicates slice overrun, and this should position
1149 * the next service time further away in the tree.
1150 */
1151 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1152 rb_key -= cfqq->slice_resid;
1153 cfqq->slice_resid = 0;
1154 } else {
1155 rb_key = -HZ;
1156 __cfqq = cfq_rb_first(service_tree);
1157 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1158 }
1159
1160 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1161 new_cfqq = 0;
1162 /*
1163 * same position, nothing more to do
1164 */
1165 if (rb_key == cfqq->rb_key &&
1166 cfqq->service_tree == service_tree)
1167 return;
1168
1169 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1170 cfqq->service_tree = NULL;
1171 }
1172
1173 left = 1;
1174 parent = NULL;
1175 cfqq->service_tree = service_tree;
1176 p = &service_tree->rb.rb_node;
1177 while (*p) {
1178 struct rb_node **n;
1179
1180 parent = *p;
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182
1183 /*
1184 * sort by key, that represents service time.
1185 */
1186 if (time_before(rb_key, __cfqq->rb_key))
1187 n = &(*p)->rb_left;
1188 else {
1189 n = &(*p)->rb_right;
1190 left = 0;
1191 }
1192
1193 p = n;
1194 }
1195
1196 if (left)
1197 service_tree->left = &cfqq->rb_node;
1198
1199 cfqq->rb_key = rb_key;
1200 rb_link_node(&cfqq->rb_node, parent, p);
1201 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1202 service_tree->count++;
1203 if ((add_front || !new_cfqq) && !group_changed)
1204 return;
1205 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1206 }
1207
1208 static struct cfq_queue *
1209 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1210 sector_t sector, struct rb_node **ret_parent,
1211 struct rb_node ***rb_link)
1212 {
1213 struct rb_node **p, *parent;
1214 struct cfq_queue *cfqq = NULL;
1215
1216 parent = NULL;
1217 p = &root->rb_node;
1218 while (*p) {
1219 struct rb_node **n;
1220
1221 parent = *p;
1222 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1223
1224 /*
1225 * Sort strictly based on sector. Smallest to the left,
1226 * largest to the right.
1227 */
1228 if (sector > blk_rq_pos(cfqq->next_rq))
1229 n = &(*p)->rb_right;
1230 else if (sector < blk_rq_pos(cfqq->next_rq))
1231 n = &(*p)->rb_left;
1232 else
1233 break;
1234 p = n;
1235 cfqq = NULL;
1236 }
1237
1238 *ret_parent = parent;
1239 if (rb_link)
1240 *rb_link = p;
1241 return cfqq;
1242 }
1243
1244 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245 {
1246 struct rb_node **p, *parent;
1247 struct cfq_queue *__cfqq;
1248
1249 if (cfqq->p_root) {
1250 rb_erase(&cfqq->p_node, cfqq->p_root);
1251 cfqq->p_root = NULL;
1252 }
1253
1254 if (cfq_class_idle(cfqq))
1255 return;
1256 if (!cfqq->next_rq)
1257 return;
1258
1259 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1260 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1261 blk_rq_pos(cfqq->next_rq), &parent, &p);
1262 if (!__cfqq) {
1263 rb_link_node(&cfqq->p_node, parent, p);
1264 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1265 } else
1266 cfqq->p_root = NULL;
1267 }
1268
1269 /*
1270 * Update cfqq's position in the service tree.
1271 */
1272 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1273 {
1274 /*
1275 * Resorting requires the cfqq to be on the RR list already.
1276 */
1277 if (cfq_cfqq_on_rr(cfqq)) {
1278 cfq_service_tree_add(cfqd, cfqq, 0);
1279 cfq_prio_tree_add(cfqd, cfqq);
1280 }
1281 }
1282
1283 /*
1284 * add to busy list of queues for service, trying to be fair in ordering
1285 * the pending list according to last request service
1286 */
1287 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1288 {
1289 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1290 BUG_ON(cfq_cfqq_on_rr(cfqq));
1291 cfq_mark_cfqq_on_rr(cfqq);
1292 cfqd->busy_queues++;
1293
1294 cfq_resort_rr_list(cfqd, cfqq);
1295 }
1296
1297 /*
1298 * Called when the cfqq no longer has requests pending, remove it from
1299 * the service tree.
1300 */
1301 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1302 {
1303 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1304 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1305 cfq_clear_cfqq_on_rr(cfqq);
1306
1307 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1308 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1309 cfqq->service_tree = NULL;
1310 }
1311 if (cfqq->p_root) {
1312 rb_erase(&cfqq->p_node, cfqq->p_root);
1313 cfqq->p_root = NULL;
1314 }
1315
1316 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1317 BUG_ON(!cfqd->busy_queues);
1318 cfqd->busy_queues--;
1319 }
1320
1321 /*
1322 * rb tree support functions
1323 */
1324 static void cfq_del_rq_rb(struct request *rq)
1325 {
1326 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1327 const int sync = rq_is_sync(rq);
1328
1329 BUG_ON(!cfqq->queued[sync]);
1330 cfqq->queued[sync]--;
1331
1332 elv_rb_del(&cfqq->sort_list, rq);
1333
1334 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1335 /*
1336 * Queue will be deleted from service tree when we actually
1337 * expire it later. Right now just remove it from prio tree
1338 * as it is empty.
1339 */
1340 if (cfqq->p_root) {
1341 rb_erase(&cfqq->p_node, cfqq->p_root);
1342 cfqq->p_root = NULL;
1343 }
1344 }
1345 }
1346
1347 static void cfq_add_rq_rb(struct request *rq)
1348 {
1349 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1350 struct cfq_data *cfqd = cfqq->cfqd;
1351 struct request *__alias, *prev;
1352
1353 cfqq->queued[rq_is_sync(rq)]++;
1354
1355 /*
1356 * looks a little odd, but the first insert might return an alias.
1357 * if that happens, put the alias on the dispatch list
1358 */
1359 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1360 cfq_dispatch_insert(cfqd->queue, __alias);
1361
1362 if (!cfq_cfqq_on_rr(cfqq))
1363 cfq_add_cfqq_rr(cfqd, cfqq);
1364
1365 /*
1366 * check if this request is a better next-serve candidate
1367 */
1368 prev = cfqq->next_rq;
1369 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1370
1371 /*
1372 * adjust priority tree position, if ->next_rq changes
1373 */
1374 if (prev != cfqq->next_rq)
1375 cfq_prio_tree_add(cfqd, cfqq);
1376
1377 BUG_ON(!cfqq->next_rq);
1378 }
1379
1380 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1381 {
1382 elv_rb_del(&cfqq->sort_list, rq);
1383 cfqq->queued[rq_is_sync(rq)]--;
1384 cfq_add_rq_rb(rq);
1385 }
1386
1387 static struct request *
1388 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1389 {
1390 struct task_struct *tsk = current;
1391 struct cfq_io_context *cic;
1392 struct cfq_queue *cfqq;
1393
1394 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1395 if (!cic)
1396 return NULL;
1397
1398 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1399 if (cfqq) {
1400 sector_t sector = bio->bi_sector + bio_sectors(bio);
1401
1402 return elv_rb_find(&cfqq->sort_list, sector);
1403 }
1404
1405 return NULL;
1406 }
1407
1408 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1409 {
1410 struct cfq_data *cfqd = q->elevator->elevator_data;
1411
1412 cfqd->rq_in_driver++;
1413 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1414 cfqd->rq_in_driver);
1415
1416 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1417 }
1418
1419 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1420 {
1421 struct cfq_data *cfqd = q->elevator->elevator_data;
1422
1423 WARN_ON(!cfqd->rq_in_driver);
1424 cfqd->rq_in_driver--;
1425 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1426 cfqd->rq_in_driver);
1427 }
1428
1429 static void cfq_remove_request(struct request *rq)
1430 {
1431 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1432
1433 if (cfqq->next_rq == rq)
1434 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1435
1436 list_del_init(&rq->queuelist);
1437 cfq_del_rq_rb(rq);
1438
1439 cfqq->cfqd->rq_queued--;
1440 if (rq_is_meta(rq)) {
1441 WARN_ON(!cfqq->meta_pending);
1442 cfqq->meta_pending--;
1443 }
1444 }
1445
1446 static int cfq_merge(struct request_queue *q, struct request **req,
1447 struct bio *bio)
1448 {
1449 struct cfq_data *cfqd = q->elevator->elevator_data;
1450 struct request *__rq;
1451
1452 __rq = cfq_find_rq_fmerge(cfqd, bio);
1453 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1454 *req = __rq;
1455 return ELEVATOR_FRONT_MERGE;
1456 }
1457
1458 return ELEVATOR_NO_MERGE;
1459 }
1460
1461 static void cfq_merged_request(struct request_queue *q, struct request *req,
1462 int type)
1463 {
1464 if (type == ELEVATOR_FRONT_MERGE) {
1465 struct cfq_queue *cfqq = RQ_CFQQ(req);
1466
1467 cfq_reposition_rq_rb(cfqq, req);
1468 }
1469 }
1470
1471 static void
1472 cfq_merged_requests(struct request_queue *q, struct request *rq,
1473 struct request *next)
1474 {
1475 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1476 /*
1477 * reposition in fifo if next is older than rq
1478 */
1479 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1480 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1481 list_move(&rq->queuelist, &next->queuelist);
1482 rq_set_fifo_time(rq, rq_fifo_time(next));
1483 }
1484
1485 if (cfqq->next_rq == next)
1486 cfqq->next_rq = rq;
1487 cfq_remove_request(next);
1488 }
1489
1490 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1491 struct bio *bio)
1492 {
1493 struct cfq_data *cfqd = q->elevator->elevator_data;
1494 struct cfq_io_context *cic;
1495 struct cfq_queue *cfqq;
1496
1497 /*
1498 * Disallow merge of a sync bio into an async request.
1499 */
1500 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1501 return false;
1502
1503 /*
1504 * Lookup the cfqq that this bio will be queued with. Allow
1505 * merge only if rq is queued there.
1506 */
1507 cic = cfq_cic_lookup(cfqd, current->io_context);
1508 if (!cic)
1509 return false;
1510
1511 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1512 return cfqq == RQ_CFQQ(rq);
1513 }
1514
1515 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1516 struct cfq_queue *cfqq)
1517 {
1518 if (cfqq) {
1519 cfq_log_cfqq(cfqd, cfqq, "set_active");
1520 cfqq->slice_start = 0;
1521 cfqq->dispatch_start = jiffies;
1522 cfqq->allocated_slice = 0;
1523 cfqq->slice_end = 0;
1524 cfqq->slice_dispatch = 0;
1525 cfqq->nr_sectors = 0;
1526
1527 cfq_clear_cfqq_wait_request(cfqq);
1528 cfq_clear_cfqq_must_dispatch(cfqq);
1529 cfq_clear_cfqq_must_alloc_slice(cfqq);
1530 cfq_clear_cfqq_fifo_expire(cfqq);
1531 cfq_mark_cfqq_slice_new(cfqq);
1532
1533 del_timer(&cfqd->idle_slice_timer);
1534 }
1535
1536 cfqd->active_queue = cfqq;
1537 }
1538
1539 /*
1540 * current cfqq expired its slice (or was too idle), select new one
1541 */
1542 static void
1543 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1544 bool timed_out)
1545 {
1546 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1547
1548 if (cfq_cfqq_wait_request(cfqq))
1549 del_timer(&cfqd->idle_slice_timer);
1550
1551 cfq_clear_cfqq_wait_request(cfqq);
1552 cfq_clear_cfqq_wait_busy(cfqq);
1553
1554 /*
1555 * If this cfqq is shared between multiple processes, check to
1556 * make sure that those processes are still issuing I/Os within
1557 * the mean seek distance. If not, it may be time to break the
1558 * queues apart again.
1559 */
1560 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1561 cfq_mark_cfqq_split_coop(cfqq);
1562
1563 /*
1564 * store what was left of this slice, if the queue idled/timed out
1565 */
1566 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1567 cfqq->slice_resid = cfqq->slice_end - jiffies;
1568 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1569 }
1570
1571 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1572
1573 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1574 cfq_del_cfqq_rr(cfqd, cfqq);
1575
1576 cfq_resort_rr_list(cfqd, cfqq);
1577
1578 if (cfqq == cfqd->active_queue)
1579 cfqd->active_queue = NULL;
1580
1581 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1582 cfqd->grp_service_tree.active = NULL;
1583
1584 if (cfqd->active_cic) {
1585 put_io_context(cfqd->active_cic->ioc);
1586 cfqd->active_cic = NULL;
1587 }
1588 }
1589
1590 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1591 {
1592 struct cfq_queue *cfqq = cfqd->active_queue;
1593
1594 if (cfqq)
1595 __cfq_slice_expired(cfqd, cfqq, timed_out);
1596 }
1597
1598 /*
1599 * Get next queue for service. Unless we have a queue preemption,
1600 * we'll simply select the first cfqq in the service tree.
1601 */
1602 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1603 {
1604 struct cfq_rb_root *service_tree =
1605 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1606 cfqd->serving_type);
1607
1608 if (!cfqd->rq_queued)
1609 return NULL;
1610
1611 /* There is nothing to dispatch */
1612 if (!service_tree)
1613 return NULL;
1614 if (RB_EMPTY_ROOT(&service_tree->rb))
1615 return NULL;
1616 return cfq_rb_first(service_tree);
1617 }
1618
1619 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1620 {
1621 struct cfq_group *cfqg;
1622 struct cfq_queue *cfqq;
1623 int i, j;
1624 struct cfq_rb_root *st;
1625
1626 if (!cfqd->rq_queued)
1627 return NULL;
1628
1629 cfqg = cfq_get_next_cfqg(cfqd);
1630 if (!cfqg)
1631 return NULL;
1632
1633 for_each_cfqg_st(cfqg, i, j, st)
1634 if ((cfqq = cfq_rb_first(st)) != NULL)
1635 return cfqq;
1636 return NULL;
1637 }
1638
1639 /*
1640 * Get and set a new active queue for service.
1641 */
1642 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1643 struct cfq_queue *cfqq)
1644 {
1645 if (!cfqq)
1646 cfqq = cfq_get_next_queue(cfqd);
1647
1648 __cfq_set_active_queue(cfqd, cfqq);
1649 return cfqq;
1650 }
1651
1652 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1653 struct request *rq)
1654 {
1655 if (blk_rq_pos(rq) >= cfqd->last_position)
1656 return blk_rq_pos(rq) - cfqd->last_position;
1657 else
1658 return cfqd->last_position - blk_rq_pos(rq);
1659 }
1660
1661 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1662 struct request *rq, bool for_preempt)
1663 {
1664 return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1665 }
1666
1667 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1668 struct cfq_queue *cur_cfqq)
1669 {
1670 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1671 struct rb_node *parent, *node;
1672 struct cfq_queue *__cfqq;
1673 sector_t sector = cfqd->last_position;
1674
1675 if (RB_EMPTY_ROOT(root))
1676 return NULL;
1677
1678 /*
1679 * First, if we find a request starting at the end of the last
1680 * request, choose it.
1681 */
1682 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1683 if (__cfqq)
1684 return __cfqq;
1685
1686 /*
1687 * If the exact sector wasn't found, the parent of the NULL leaf
1688 * will contain the closest sector.
1689 */
1690 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1691 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1692 return __cfqq;
1693
1694 if (blk_rq_pos(__cfqq->next_rq) < sector)
1695 node = rb_next(&__cfqq->p_node);
1696 else
1697 node = rb_prev(&__cfqq->p_node);
1698 if (!node)
1699 return NULL;
1700
1701 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1702 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1703 return __cfqq;
1704
1705 return NULL;
1706 }
1707
1708 /*
1709 * cfqd - obvious
1710 * cur_cfqq - passed in so that we don't decide that the current queue is
1711 * closely cooperating with itself.
1712 *
1713 * So, basically we're assuming that that cur_cfqq has dispatched at least
1714 * one request, and that cfqd->last_position reflects a position on the disk
1715 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1716 * assumption.
1717 */
1718 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1719 struct cfq_queue *cur_cfqq)
1720 {
1721 struct cfq_queue *cfqq;
1722
1723 if (!cfq_cfqq_sync(cur_cfqq))
1724 return NULL;
1725 if (CFQQ_SEEKY(cur_cfqq))
1726 return NULL;
1727
1728 /*
1729 * Don't search priority tree if it's the only queue in the group.
1730 */
1731 if (cur_cfqq->cfqg->nr_cfqq == 1)
1732 return NULL;
1733
1734 /*
1735 * We should notice if some of the queues are cooperating, eg
1736 * working closely on the same area of the disk. In that case,
1737 * we can group them together and don't waste time idling.
1738 */
1739 cfqq = cfqq_close(cfqd, cur_cfqq);
1740 if (!cfqq)
1741 return NULL;
1742
1743 /* If new queue belongs to different cfq_group, don't choose it */
1744 if (cur_cfqq->cfqg != cfqq->cfqg)
1745 return NULL;
1746
1747 /*
1748 * It only makes sense to merge sync queues.
1749 */
1750 if (!cfq_cfqq_sync(cfqq))
1751 return NULL;
1752 if (CFQQ_SEEKY(cfqq))
1753 return NULL;
1754
1755 /*
1756 * Do not merge queues of different priority classes
1757 */
1758 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1759 return NULL;
1760
1761 return cfqq;
1762 }
1763
1764 /*
1765 * Determine whether we should enforce idle window for this queue.
1766 */
1767
1768 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1769 {
1770 enum wl_prio_t prio = cfqq_prio(cfqq);
1771 struct cfq_rb_root *service_tree = cfqq->service_tree;
1772
1773 BUG_ON(!service_tree);
1774 BUG_ON(!service_tree->count);
1775
1776 /* We never do for idle class queues. */
1777 if (prio == IDLE_WORKLOAD)
1778 return false;
1779
1780 /* We do for queues that were marked with idle window flag. */
1781 if (cfq_cfqq_idle_window(cfqq) &&
1782 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1783 return true;
1784
1785 /*
1786 * Otherwise, we do only if they are the last ones
1787 * in their service tree.
1788 */
1789 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1790 }
1791
1792 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1793 {
1794 struct cfq_queue *cfqq = cfqd->active_queue;
1795 struct cfq_io_context *cic;
1796 unsigned long sl;
1797
1798 /*
1799 * SSD device without seek penalty, disable idling. But only do so
1800 * for devices that support queuing, otherwise we still have a problem
1801 * with sync vs async workloads.
1802 */
1803 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1804 return;
1805
1806 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1807 WARN_ON(cfq_cfqq_slice_new(cfqq));
1808
1809 /*
1810 * idle is disabled, either manually or by past process history
1811 */
1812 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1813 return;
1814
1815 /*
1816 * still active requests from this queue, don't idle
1817 */
1818 if (cfqq->dispatched)
1819 return;
1820
1821 /*
1822 * task has exited, don't wait
1823 */
1824 cic = cfqd->active_cic;
1825 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1826 return;
1827
1828 /*
1829 * If our average think time is larger than the remaining time
1830 * slice, then don't idle. This avoids overrunning the allotted
1831 * time slice.
1832 */
1833 if (sample_valid(cic->ttime_samples) &&
1834 (cfqq->slice_end - jiffies < cic->ttime_mean))
1835 return;
1836
1837 cfq_mark_cfqq_wait_request(cfqq);
1838
1839 sl = cfqd->cfq_slice_idle;
1840
1841 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1842 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1843 }
1844
1845 /*
1846 * Move request from internal lists to the request queue dispatch list.
1847 */
1848 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1849 {
1850 struct cfq_data *cfqd = q->elevator->elevator_data;
1851 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1852
1853 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1854
1855 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1856 cfq_remove_request(rq);
1857 cfqq->dispatched++;
1858 elv_dispatch_sort(q, rq);
1859
1860 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1861 cfqq->nr_sectors += blk_rq_sectors(rq);
1862 }
1863
1864 /*
1865 * return expired entry, or NULL to just start from scratch in rbtree
1866 */
1867 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1868 {
1869 struct request *rq = NULL;
1870
1871 if (cfq_cfqq_fifo_expire(cfqq))
1872 return NULL;
1873
1874 cfq_mark_cfqq_fifo_expire(cfqq);
1875
1876 if (list_empty(&cfqq->fifo))
1877 return NULL;
1878
1879 rq = rq_entry_fifo(cfqq->fifo.next);
1880 if (time_before(jiffies, rq_fifo_time(rq)))
1881 rq = NULL;
1882
1883 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1884 return rq;
1885 }
1886
1887 static inline int
1888 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1889 {
1890 const int base_rq = cfqd->cfq_slice_async_rq;
1891
1892 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1893
1894 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1895 }
1896
1897 /*
1898 * Must be called with the queue_lock held.
1899 */
1900 static int cfqq_process_refs(struct cfq_queue *cfqq)
1901 {
1902 int process_refs, io_refs;
1903
1904 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1905 process_refs = atomic_read(&cfqq->ref) - io_refs;
1906 BUG_ON(process_refs < 0);
1907 return process_refs;
1908 }
1909
1910 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1911 {
1912 int process_refs, new_process_refs;
1913 struct cfq_queue *__cfqq;
1914
1915 /* Avoid a circular list and skip interim queue merges */
1916 while ((__cfqq = new_cfqq->new_cfqq)) {
1917 if (__cfqq == cfqq)
1918 return;
1919 new_cfqq = __cfqq;
1920 }
1921
1922 process_refs = cfqq_process_refs(cfqq);
1923 /*
1924 * If the process for the cfqq has gone away, there is no
1925 * sense in merging the queues.
1926 */
1927 if (process_refs == 0)
1928 return;
1929
1930 /*
1931 * Merge in the direction of the lesser amount of work.
1932 */
1933 new_process_refs = cfqq_process_refs(new_cfqq);
1934 if (new_process_refs >= process_refs) {
1935 cfqq->new_cfqq = new_cfqq;
1936 atomic_add(process_refs, &new_cfqq->ref);
1937 } else {
1938 new_cfqq->new_cfqq = cfqq;
1939 atomic_add(new_process_refs, &cfqq->ref);
1940 }
1941 }
1942
1943 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1944 struct cfq_group *cfqg, enum wl_prio_t prio)
1945 {
1946 struct cfq_queue *queue;
1947 int i;
1948 bool key_valid = false;
1949 unsigned long lowest_key = 0;
1950 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1951
1952 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1953 /* select the one with lowest rb_key */
1954 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1955 if (queue &&
1956 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1957 lowest_key = queue->rb_key;
1958 cur_best = i;
1959 key_valid = true;
1960 }
1961 }
1962
1963 return cur_best;
1964 }
1965
1966 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1967 {
1968 unsigned slice;
1969 unsigned count;
1970 struct cfq_rb_root *st;
1971 unsigned group_slice;
1972
1973 if (!cfqg) {
1974 cfqd->serving_prio = IDLE_WORKLOAD;
1975 cfqd->workload_expires = jiffies + 1;
1976 return;
1977 }
1978
1979 /* Choose next priority. RT > BE > IDLE */
1980 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1981 cfqd->serving_prio = RT_WORKLOAD;
1982 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1983 cfqd->serving_prio = BE_WORKLOAD;
1984 else {
1985 cfqd->serving_prio = IDLE_WORKLOAD;
1986 cfqd->workload_expires = jiffies + 1;
1987 return;
1988 }
1989
1990 /*
1991 * For RT and BE, we have to choose also the type
1992 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1993 * expiration time
1994 */
1995 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
1996 count = st->count;
1997
1998 /*
1999 * check workload expiration, and that we still have other queues ready
2000 */
2001 if (count && !time_after(jiffies, cfqd->workload_expires))
2002 return;
2003
2004 /* otherwise select new workload type */
2005 cfqd->serving_type =
2006 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2007 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2008 count = st->count;
2009
2010 /*
2011 * the workload slice is computed as a fraction of target latency
2012 * proportional to the number of queues in that workload, over
2013 * all the queues in the same priority class
2014 */
2015 group_slice = cfq_group_slice(cfqd, cfqg);
2016
2017 slice = group_slice * count /
2018 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2019 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2020
2021 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2022 unsigned int tmp;
2023
2024 /*
2025 * Async queues are currently system wide. Just taking
2026 * proportion of queues with-in same group will lead to higher
2027 * async ratio system wide as generally root group is going
2028 * to have higher weight. A more accurate thing would be to
2029 * calculate system wide asnc/sync ratio.
2030 */
2031 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2032 tmp = tmp/cfqd->busy_queues;
2033 slice = min_t(unsigned, slice, tmp);
2034
2035 /* async workload slice is scaled down according to
2036 * the sync/async slice ratio. */
2037 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2038 } else
2039 /* sync workload slice is at least 2 * cfq_slice_idle */
2040 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2041
2042 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2043 cfqd->workload_expires = jiffies + slice;
2044 cfqd->noidle_tree_requires_idle = false;
2045 }
2046
2047 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2048 {
2049 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2050 struct cfq_group *cfqg;
2051
2052 if (RB_EMPTY_ROOT(&st->rb))
2053 return NULL;
2054 cfqg = cfq_rb_first_group(st);
2055 st->active = &cfqg->rb_node;
2056 update_min_vdisktime(st);
2057 return cfqg;
2058 }
2059
2060 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2061 {
2062 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2063
2064 cfqd->serving_group = cfqg;
2065
2066 /* Restore the workload type data */
2067 if (cfqg->saved_workload_slice) {
2068 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2069 cfqd->serving_type = cfqg->saved_workload;
2070 cfqd->serving_prio = cfqg->saved_serving_prio;
2071 } else
2072 cfqd->workload_expires = jiffies - 1;
2073
2074 choose_service_tree(cfqd, cfqg);
2075 }
2076
2077 /*
2078 * Select a queue for service. If we have a current active queue,
2079 * check whether to continue servicing it, or retrieve and set a new one.
2080 */
2081 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2082 {
2083 struct cfq_queue *cfqq, *new_cfqq = NULL;
2084
2085 cfqq = cfqd->active_queue;
2086 if (!cfqq)
2087 goto new_queue;
2088
2089 if (!cfqd->rq_queued)
2090 return NULL;
2091
2092 /*
2093 * We were waiting for group to get backlogged. Expire the queue
2094 */
2095 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2096 goto expire;
2097
2098 /*
2099 * The active queue has run out of time, expire it and select new.
2100 */
2101 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2102 /*
2103 * If slice had not expired at the completion of last request
2104 * we might not have turned on wait_busy flag. Don't expire
2105 * the queue yet. Allow the group to get backlogged.
2106 *
2107 * The very fact that we have used the slice, that means we
2108 * have been idling all along on this queue and it should be
2109 * ok to wait for this request to complete.
2110 */
2111 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2112 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2113 cfqq = NULL;
2114 goto keep_queue;
2115 } else
2116 goto expire;
2117 }
2118
2119 /*
2120 * The active queue has requests and isn't expired, allow it to
2121 * dispatch.
2122 */
2123 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2124 goto keep_queue;
2125
2126 /*
2127 * If another queue has a request waiting within our mean seek
2128 * distance, let it run. The expire code will check for close
2129 * cooperators and put the close queue at the front of the service
2130 * tree. If possible, merge the expiring queue with the new cfqq.
2131 */
2132 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2133 if (new_cfqq) {
2134 if (!cfqq->new_cfqq)
2135 cfq_setup_merge(cfqq, new_cfqq);
2136 goto expire;
2137 }
2138
2139 /*
2140 * No requests pending. If the active queue still has requests in
2141 * flight or is idling for a new request, allow either of these
2142 * conditions to happen (or time out) before selecting a new queue.
2143 */
2144 if (timer_pending(&cfqd->idle_slice_timer) ||
2145 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2146 cfqq = NULL;
2147 goto keep_queue;
2148 }
2149
2150 expire:
2151 cfq_slice_expired(cfqd, 0);
2152 new_queue:
2153 /*
2154 * Current queue expired. Check if we have to switch to a new
2155 * service tree
2156 */
2157 if (!new_cfqq)
2158 cfq_choose_cfqg(cfqd);
2159
2160 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2161 keep_queue:
2162 return cfqq;
2163 }
2164
2165 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2166 {
2167 int dispatched = 0;
2168
2169 while (cfqq->next_rq) {
2170 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2171 dispatched++;
2172 }
2173
2174 BUG_ON(!list_empty(&cfqq->fifo));
2175
2176 /* By default cfqq is not expired if it is empty. Do it explicitly */
2177 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2178 return dispatched;
2179 }
2180
2181 /*
2182 * Drain our current requests. Used for barriers and when switching
2183 * io schedulers on-the-fly.
2184 */
2185 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2186 {
2187 struct cfq_queue *cfqq;
2188 int dispatched = 0;
2189
2190 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2191 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2192
2193 cfq_slice_expired(cfqd, 0);
2194 BUG_ON(cfqd->busy_queues);
2195
2196 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2197 return dispatched;
2198 }
2199
2200 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2201 struct cfq_queue *cfqq)
2202 {
2203 /* the queue hasn't finished any request, can't estimate */
2204 if (cfq_cfqq_slice_new(cfqq))
2205 return 1;
2206 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2207 cfqq->slice_end))
2208 return 1;
2209
2210 return 0;
2211 }
2212
2213 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2214 {
2215 unsigned int max_dispatch;
2216
2217 /*
2218 * Drain async requests before we start sync IO
2219 */
2220 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2221 return false;
2222
2223 /*
2224 * If this is an async queue and we have sync IO in flight, let it wait
2225 */
2226 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2227 return false;
2228
2229 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2230 if (cfq_class_idle(cfqq))
2231 max_dispatch = 1;
2232
2233 /*
2234 * Does this cfqq already have too much IO in flight?
2235 */
2236 if (cfqq->dispatched >= max_dispatch) {
2237 /*
2238 * idle queue must always only have a single IO in flight
2239 */
2240 if (cfq_class_idle(cfqq))
2241 return false;
2242
2243 /*
2244 * We have other queues, don't allow more IO from this one
2245 */
2246 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2247 return false;
2248
2249 /*
2250 * Sole queue user, no limit
2251 */
2252 if (cfqd->busy_queues == 1)
2253 max_dispatch = -1;
2254 else
2255 /*
2256 * Normally we start throttling cfqq when cfq_quantum/2
2257 * requests have been dispatched. But we can drive
2258 * deeper queue depths at the beginning of slice
2259 * subjected to upper limit of cfq_quantum.
2260 * */
2261 max_dispatch = cfqd->cfq_quantum;
2262 }
2263
2264 /*
2265 * Async queues must wait a bit before being allowed dispatch.
2266 * We also ramp up the dispatch depth gradually for async IO,
2267 * based on the last sync IO we serviced
2268 */
2269 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2270 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2271 unsigned int depth;
2272
2273 depth = last_sync / cfqd->cfq_slice[1];
2274 if (!depth && !cfqq->dispatched)
2275 depth = 1;
2276 if (depth < max_dispatch)
2277 max_dispatch = depth;
2278 }
2279
2280 /*
2281 * If we're below the current max, allow a dispatch
2282 */
2283 return cfqq->dispatched < max_dispatch;
2284 }
2285
2286 /*
2287 * Dispatch a request from cfqq, moving them to the request queue
2288 * dispatch list.
2289 */
2290 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2291 {
2292 struct request *rq;
2293
2294 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2295
2296 if (!cfq_may_dispatch(cfqd, cfqq))
2297 return false;
2298
2299 /*
2300 * follow expired path, else get first next available
2301 */
2302 rq = cfq_check_fifo(cfqq);
2303 if (!rq)
2304 rq = cfqq->next_rq;
2305
2306 /*
2307 * insert request into driver dispatch list
2308 */
2309 cfq_dispatch_insert(cfqd->queue, rq);
2310
2311 if (!cfqd->active_cic) {
2312 struct cfq_io_context *cic = RQ_CIC(rq);
2313
2314 atomic_long_inc(&cic->ioc->refcount);
2315 cfqd->active_cic = cic;
2316 }
2317
2318 return true;
2319 }
2320
2321 /*
2322 * Find the cfqq that we need to service and move a request from that to the
2323 * dispatch list
2324 */
2325 static int cfq_dispatch_requests(struct request_queue *q, int force)
2326 {
2327 struct cfq_data *cfqd = q->elevator->elevator_data;
2328 struct cfq_queue *cfqq;
2329
2330 if (!cfqd->busy_queues)
2331 return 0;
2332
2333 if (unlikely(force))
2334 return cfq_forced_dispatch(cfqd);
2335
2336 cfqq = cfq_select_queue(cfqd);
2337 if (!cfqq)
2338 return 0;
2339
2340 /*
2341 * Dispatch a request from this cfqq, if it is allowed
2342 */
2343 if (!cfq_dispatch_request(cfqd, cfqq))
2344 return 0;
2345
2346 cfqq->slice_dispatch++;
2347 cfq_clear_cfqq_must_dispatch(cfqq);
2348
2349 /*
2350 * expire an async queue immediately if it has used up its slice. idle
2351 * queue always expire after 1 dispatch round.
2352 */
2353 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2354 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2355 cfq_class_idle(cfqq))) {
2356 cfqq->slice_end = jiffies + 1;
2357 cfq_slice_expired(cfqd, 0);
2358 }
2359
2360 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2361 return 1;
2362 }
2363
2364 /*
2365 * task holds one reference to the queue, dropped when task exits. each rq
2366 * in-flight on this queue also holds a reference, dropped when rq is freed.
2367 *
2368 * Each cfq queue took a reference on the parent group. Drop it now.
2369 * queue lock must be held here.
2370 */
2371 static void cfq_put_queue(struct cfq_queue *cfqq)
2372 {
2373 struct cfq_data *cfqd = cfqq->cfqd;
2374 struct cfq_group *cfqg, *orig_cfqg;
2375
2376 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2377
2378 if (!atomic_dec_and_test(&cfqq->ref))
2379 return;
2380
2381 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2382 BUG_ON(rb_first(&cfqq->sort_list));
2383 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2384 cfqg = cfqq->cfqg;
2385 orig_cfqg = cfqq->orig_cfqg;
2386
2387 if (unlikely(cfqd->active_queue == cfqq)) {
2388 __cfq_slice_expired(cfqd, cfqq, 0);
2389 cfq_schedule_dispatch(cfqd);
2390 }
2391
2392 BUG_ON(cfq_cfqq_on_rr(cfqq));
2393 kmem_cache_free(cfq_pool, cfqq);
2394 cfq_put_cfqg(cfqg);
2395 if (orig_cfqg)
2396 cfq_put_cfqg(orig_cfqg);
2397 }
2398
2399 /*
2400 * Must always be called with the rcu_read_lock() held
2401 */
2402 static void
2403 __call_for_each_cic(struct io_context *ioc,
2404 void (*func)(struct io_context *, struct cfq_io_context *))
2405 {
2406 struct cfq_io_context *cic;
2407 struct hlist_node *n;
2408
2409 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2410 func(ioc, cic);
2411 }
2412
2413 /*
2414 * Call func for each cic attached to this ioc.
2415 */
2416 static void
2417 call_for_each_cic(struct io_context *ioc,
2418 void (*func)(struct io_context *, struct cfq_io_context *))
2419 {
2420 rcu_read_lock();
2421 __call_for_each_cic(ioc, func);
2422 rcu_read_unlock();
2423 }
2424
2425 static void cfq_cic_free_rcu(struct rcu_head *head)
2426 {
2427 struct cfq_io_context *cic;
2428
2429 cic = container_of(head, struct cfq_io_context, rcu_head);
2430
2431 kmem_cache_free(cfq_ioc_pool, cic);
2432 elv_ioc_count_dec(cfq_ioc_count);
2433
2434 if (ioc_gone) {
2435 /*
2436 * CFQ scheduler is exiting, grab exit lock and check
2437 * the pending io context count. If it hits zero,
2438 * complete ioc_gone and set it back to NULL
2439 */
2440 spin_lock(&ioc_gone_lock);
2441 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2442 complete(ioc_gone);
2443 ioc_gone = NULL;
2444 }
2445 spin_unlock(&ioc_gone_lock);
2446 }
2447 }
2448
2449 static void cfq_cic_free(struct cfq_io_context *cic)
2450 {
2451 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2452 }
2453
2454 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2455 {
2456 unsigned long flags;
2457
2458 BUG_ON(!cic->dead_key);
2459
2460 spin_lock_irqsave(&ioc->lock, flags);
2461 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2462 hlist_del_rcu(&cic->cic_list);
2463 spin_unlock_irqrestore(&ioc->lock, flags);
2464
2465 cfq_cic_free(cic);
2466 }
2467
2468 /*
2469 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2470 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2471 * and ->trim() which is called with the task lock held
2472 */
2473 static void cfq_free_io_context(struct io_context *ioc)
2474 {
2475 /*
2476 * ioc->refcount is zero here, or we are called from elv_unregister(),
2477 * so no more cic's are allowed to be linked into this ioc. So it
2478 * should be ok to iterate over the known list, we will see all cic's
2479 * since no new ones are added.
2480 */
2481 __call_for_each_cic(ioc, cic_free_func);
2482 }
2483
2484 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2485 {
2486 struct cfq_queue *__cfqq, *next;
2487
2488 if (unlikely(cfqq == cfqd->active_queue)) {
2489 __cfq_slice_expired(cfqd, cfqq, 0);
2490 cfq_schedule_dispatch(cfqd);
2491 }
2492
2493 /*
2494 * If this queue was scheduled to merge with another queue, be
2495 * sure to drop the reference taken on that queue (and others in
2496 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2497 */
2498 __cfqq = cfqq->new_cfqq;
2499 while (__cfqq) {
2500 if (__cfqq == cfqq) {
2501 WARN(1, "cfqq->new_cfqq loop detected\n");
2502 break;
2503 }
2504 next = __cfqq->new_cfqq;
2505 cfq_put_queue(__cfqq);
2506 __cfqq = next;
2507 }
2508
2509 cfq_put_queue(cfqq);
2510 }
2511
2512 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2513 struct cfq_io_context *cic)
2514 {
2515 struct io_context *ioc = cic->ioc;
2516
2517 list_del_init(&cic->queue_list);
2518
2519 /*
2520 * Make sure key == NULL is seen for dead queues
2521 */
2522 smp_wmb();
2523 cic->dead_key = (unsigned long) cic->key;
2524 cic->key = NULL;
2525
2526 if (ioc->ioc_data == cic)
2527 rcu_assign_pointer(ioc->ioc_data, NULL);
2528
2529 if (cic->cfqq[BLK_RW_ASYNC]) {
2530 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2531 cic->cfqq[BLK_RW_ASYNC] = NULL;
2532 }
2533
2534 if (cic->cfqq[BLK_RW_SYNC]) {
2535 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2536 cic->cfqq[BLK_RW_SYNC] = NULL;
2537 }
2538 }
2539
2540 static void cfq_exit_single_io_context(struct io_context *ioc,
2541 struct cfq_io_context *cic)
2542 {
2543 struct cfq_data *cfqd = cic->key;
2544
2545 if (cfqd) {
2546 struct request_queue *q = cfqd->queue;
2547 unsigned long flags;
2548
2549 spin_lock_irqsave(q->queue_lock, flags);
2550
2551 /*
2552 * Ensure we get a fresh copy of the ->key to prevent
2553 * race between exiting task and queue
2554 */
2555 smp_read_barrier_depends();
2556 if (cic->key)
2557 __cfq_exit_single_io_context(cfqd, cic);
2558
2559 spin_unlock_irqrestore(q->queue_lock, flags);
2560 }
2561 }
2562
2563 /*
2564 * The process that ioc belongs to has exited, we need to clean up
2565 * and put the internal structures we have that belongs to that process.
2566 */
2567 static void cfq_exit_io_context(struct io_context *ioc)
2568 {
2569 call_for_each_cic(ioc, cfq_exit_single_io_context);
2570 }
2571
2572 static struct cfq_io_context *
2573 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2574 {
2575 struct cfq_io_context *cic;
2576
2577 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2578 cfqd->queue->node);
2579 if (cic) {
2580 cic->last_end_request = jiffies;
2581 INIT_LIST_HEAD(&cic->queue_list);
2582 INIT_HLIST_NODE(&cic->cic_list);
2583 cic->dtor = cfq_free_io_context;
2584 cic->exit = cfq_exit_io_context;
2585 elv_ioc_count_inc(cfq_ioc_count);
2586 }
2587
2588 return cic;
2589 }
2590
2591 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2592 {
2593 struct task_struct *tsk = current;
2594 int ioprio_class;
2595
2596 if (!cfq_cfqq_prio_changed(cfqq))
2597 return;
2598
2599 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2600 switch (ioprio_class) {
2601 default:
2602 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2603 case IOPRIO_CLASS_NONE:
2604 /*
2605 * no prio set, inherit CPU scheduling settings
2606 */
2607 cfqq->ioprio = task_nice_ioprio(tsk);
2608 cfqq->ioprio_class = task_nice_ioclass(tsk);
2609 break;
2610 case IOPRIO_CLASS_RT:
2611 cfqq->ioprio = task_ioprio(ioc);
2612 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2613 break;
2614 case IOPRIO_CLASS_BE:
2615 cfqq->ioprio = task_ioprio(ioc);
2616 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2617 break;
2618 case IOPRIO_CLASS_IDLE:
2619 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2620 cfqq->ioprio = 7;
2621 cfq_clear_cfqq_idle_window(cfqq);
2622 break;
2623 }
2624
2625 /*
2626 * keep track of original prio settings in case we have to temporarily
2627 * elevate the priority of this queue
2628 */
2629 cfqq->org_ioprio = cfqq->ioprio;
2630 cfqq->org_ioprio_class = cfqq->ioprio_class;
2631 cfq_clear_cfqq_prio_changed(cfqq);
2632 }
2633
2634 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2635 {
2636 struct cfq_data *cfqd = cic->key;
2637 struct cfq_queue *cfqq;
2638 unsigned long flags;
2639
2640 if (unlikely(!cfqd))
2641 return;
2642
2643 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2644
2645 cfqq = cic->cfqq[BLK_RW_ASYNC];
2646 if (cfqq) {
2647 struct cfq_queue *new_cfqq;
2648 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2649 GFP_ATOMIC);
2650 if (new_cfqq) {
2651 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2652 cfq_put_queue(cfqq);
2653 }
2654 }
2655
2656 cfqq = cic->cfqq[BLK_RW_SYNC];
2657 if (cfqq)
2658 cfq_mark_cfqq_prio_changed(cfqq);
2659
2660 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2661 }
2662
2663 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2664 {
2665 call_for_each_cic(ioc, changed_ioprio);
2666 ioc->ioprio_changed = 0;
2667 }
2668
2669 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2670 pid_t pid, bool is_sync)
2671 {
2672 RB_CLEAR_NODE(&cfqq->rb_node);
2673 RB_CLEAR_NODE(&cfqq->p_node);
2674 INIT_LIST_HEAD(&cfqq->fifo);
2675
2676 atomic_set(&cfqq->ref, 0);
2677 cfqq->cfqd = cfqd;
2678
2679 cfq_mark_cfqq_prio_changed(cfqq);
2680
2681 if (is_sync) {
2682 if (!cfq_class_idle(cfqq))
2683 cfq_mark_cfqq_idle_window(cfqq);
2684 cfq_mark_cfqq_sync(cfqq);
2685 }
2686 cfqq->pid = pid;
2687 }
2688
2689 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2690 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2691 {
2692 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2693 struct cfq_data *cfqd = cic->key;
2694 unsigned long flags;
2695 struct request_queue *q;
2696
2697 if (unlikely(!cfqd))
2698 return;
2699
2700 q = cfqd->queue;
2701
2702 spin_lock_irqsave(q->queue_lock, flags);
2703
2704 if (sync_cfqq) {
2705 /*
2706 * Drop reference to sync queue. A new sync queue will be
2707 * assigned in new group upon arrival of a fresh request.
2708 */
2709 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2710 cic_set_cfqq(cic, NULL, 1);
2711 cfq_put_queue(sync_cfqq);
2712 }
2713
2714 spin_unlock_irqrestore(q->queue_lock, flags);
2715 }
2716
2717 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2718 {
2719 call_for_each_cic(ioc, changed_cgroup);
2720 ioc->cgroup_changed = 0;
2721 }
2722 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2723
2724 static struct cfq_queue *
2725 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2726 struct io_context *ioc, gfp_t gfp_mask)
2727 {
2728 struct cfq_queue *cfqq, *new_cfqq = NULL;
2729 struct cfq_io_context *cic;
2730 struct cfq_group *cfqg;
2731
2732 retry:
2733 cfqg = cfq_get_cfqg(cfqd, 1);
2734 cic = cfq_cic_lookup(cfqd, ioc);
2735 /* cic always exists here */
2736 cfqq = cic_to_cfqq(cic, is_sync);
2737
2738 /*
2739 * Always try a new alloc if we fell back to the OOM cfqq
2740 * originally, since it should just be a temporary situation.
2741 */
2742 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2743 cfqq = NULL;
2744 if (new_cfqq) {
2745 cfqq = new_cfqq;
2746 new_cfqq = NULL;
2747 } else if (gfp_mask & __GFP_WAIT) {
2748 spin_unlock_irq(cfqd->queue->queue_lock);
2749 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2750 gfp_mask | __GFP_ZERO,
2751 cfqd->queue->node);
2752 spin_lock_irq(cfqd->queue->queue_lock);
2753 if (new_cfqq)
2754 goto retry;
2755 } else {
2756 cfqq = kmem_cache_alloc_node(cfq_pool,
2757 gfp_mask | __GFP_ZERO,
2758 cfqd->queue->node);
2759 }
2760
2761 if (cfqq) {
2762 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2763 cfq_init_prio_data(cfqq, ioc);
2764 cfq_link_cfqq_cfqg(cfqq, cfqg);
2765 cfq_log_cfqq(cfqd, cfqq, "alloced");
2766 } else
2767 cfqq = &cfqd->oom_cfqq;
2768 }
2769
2770 if (new_cfqq)
2771 kmem_cache_free(cfq_pool, new_cfqq);
2772
2773 return cfqq;
2774 }
2775
2776 static struct cfq_queue **
2777 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2778 {
2779 switch (ioprio_class) {
2780 case IOPRIO_CLASS_RT:
2781 return &cfqd->async_cfqq[0][ioprio];
2782 case IOPRIO_CLASS_BE:
2783 return &cfqd->async_cfqq[1][ioprio];
2784 case IOPRIO_CLASS_IDLE:
2785 return &cfqd->async_idle_cfqq;
2786 default:
2787 BUG();
2788 }
2789 }
2790
2791 static struct cfq_queue *
2792 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2793 gfp_t gfp_mask)
2794 {
2795 const int ioprio = task_ioprio(ioc);
2796 const int ioprio_class = task_ioprio_class(ioc);
2797 struct cfq_queue **async_cfqq = NULL;
2798 struct cfq_queue *cfqq = NULL;
2799
2800 if (!is_sync) {
2801 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2802 cfqq = *async_cfqq;
2803 }
2804
2805 if (!cfqq)
2806 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2807
2808 /*
2809 * pin the queue now that it's allocated, scheduler exit will prune it
2810 */
2811 if (!is_sync && !(*async_cfqq)) {
2812 atomic_inc(&cfqq->ref);
2813 *async_cfqq = cfqq;
2814 }
2815
2816 atomic_inc(&cfqq->ref);
2817 return cfqq;
2818 }
2819
2820 /*
2821 * We drop cfq io contexts lazily, so we may find a dead one.
2822 */
2823 static void
2824 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2825 struct cfq_io_context *cic)
2826 {
2827 unsigned long flags;
2828
2829 WARN_ON(!list_empty(&cic->queue_list));
2830
2831 spin_lock_irqsave(&ioc->lock, flags);
2832
2833 BUG_ON(ioc->ioc_data == cic);
2834
2835 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2836 hlist_del_rcu(&cic->cic_list);
2837 spin_unlock_irqrestore(&ioc->lock, flags);
2838
2839 cfq_cic_free(cic);
2840 }
2841
2842 static struct cfq_io_context *
2843 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2844 {
2845 struct cfq_io_context *cic;
2846 unsigned long flags;
2847 void *k;
2848
2849 if (unlikely(!ioc))
2850 return NULL;
2851
2852 rcu_read_lock();
2853
2854 /*
2855 * we maintain a last-hit cache, to avoid browsing over the tree
2856 */
2857 cic = rcu_dereference(ioc->ioc_data);
2858 if (cic && cic->key == cfqd) {
2859 rcu_read_unlock();
2860 return cic;
2861 }
2862
2863 do {
2864 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2865 rcu_read_unlock();
2866 if (!cic)
2867 break;
2868 /* ->key must be copied to avoid race with cfq_exit_queue() */
2869 k = cic->key;
2870 if (unlikely(!k)) {
2871 cfq_drop_dead_cic(cfqd, ioc, cic);
2872 rcu_read_lock();
2873 continue;
2874 }
2875
2876 spin_lock_irqsave(&ioc->lock, flags);
2877 rcu_assign_pointer(ioc->ioc_data, cic);
2878 spin_unlock_irqrestore(&ioc->lock, flags);
2879 break;
2880 } while (1);
2881
2882 return cic;
2883 }
2884
2885 /*
2886 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2887 * the process specific cfq io context when entered from the block layer.
2888 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2889 */
2890 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2891 struct cfq_io_context *cic, gfp_t gfp_mask)
2892 {
2893 unsigned long flags;
2894 int ret;
2895
2896 ret = radix_tree_preload(gfp_mask);
2897 if (!ret) {
2898 cic->ioc = ioc;
2899 cic->key = cfqd;
2900
2901 spin_lock_irqsave(&ioc->lock, flags);
2902 ret = radix_tree_insert(&ioc->radix_root,
2903 (unsigned long) cfqd, cic);
2904 if (!ret)
2905 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2906 spin_unlock_irqrestore(&ioc->lock, flags);
2907
2908 radix_tree_preload_end();
2909
2910 if (!ret) {
2911 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2912 list_add(&cic->queue_list, &cfqd->cic_list);
2913 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2914 }
2915 }
2916
2917 if (ret)
2918 printk(KERN_ERR "cfq: cic link failed!\n");
2919
2920 return ret;
2921 }
2922
2923 /*
2924 * Setup general io context and cfq io context. There can be several cfq
2925 * io contexts per general io context, if this process is doing io to more
2926 * than one device managed by cfq.
2927 */
2928 static struct cfq_io_context *
2929 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2930 {
2931 struct io_context *ioc = NULL;
2932 struct cfq_io_context *cic;
2933
2934 might_sleep_if(gfp_mask & __GFP_WAIT);
2935
2936 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2937 if (!ioc)
2938 return NULL;
2939
2940 cic = cfq_cic_lookup(cfqd, ioc);
2941 if (cic)
2942 goto out;
2943
2944 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2945 if (cic == NULL)
2946 goto err;
2947
2948 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2949 goto err_free;
2950
2951 out:
2952 smp_read_barrier_depends();
2953 if (unlikely(ioc->ioprio_changed))
2954 cfq_ioc_set_ioprio(ioc);
2955
2956 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2957 if (unlikely(ioc->cgroup_changed))
2958 cfq_ioc_set_cgroup(ioc);
2959 #endif
2960 return cic;
2961 err_free:
2962 cfq_cic_free(cic);
2963 err:
2964 put_io_context(ioc);
2965 return NULL;
2966 }
2967
2968 static void
2969 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2970 {
2971 unsigned long elapsed = jiffies - cic->last_end_request;
2972 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2973
2974 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2975 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2976 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2977 }
2978
2979 static void
2980 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2981 struct request *rq)
2982 {
2983 sector_t sdist = 0;
2984 sector_t n_sec = blk_rq_sectors(rq);
2985 if (cfqq->last_request_pos) {
2986 if (cfqq->last_request_pos < blk_rq_pos(rq))
2987 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2988 else
2989 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2990 }
2991
2992 cfqq->seek_history <<= 1;
2993 if (blk_queue_nonrot(cfqd->queue))
2994 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2995 else
2996 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2997 }
2998
2999 /*
3000 * Disable idle window if the process thinks too long or seeks so much that
3001 * it doesn't matter
3002 */
3003 static void
3004 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3005 struct cfq_io_context *cic)
3006 {
3007 int old_idle, enable_idle;
3008
3009 /*
3010 * Don't idle for async or idle io prio class
3011 */
3012 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3013 return;
3014
3015 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3016
3017 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3018 cfq_mark_cfqq_deep(cfqq);
3019
3020 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3021 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3022 enable_idle = 0;
3023 else if (sample_valid(cic->ttime_samples)) {
3024 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3025 enable_idle = 0;
3026 else
3027 enable_idle = 1;
3028 }
3029
3030 if (old_idle != enable_idle) {
3031 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3032 if (enable_idle)
3033 cfq_mark_cfqq_idle_window(cfqq);
3034 else
3035 cfq_clear_cfqq_idle_window(cfqq);
3036 }
3037 }
3038
3039 /*
3040 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3041 * no or if we aren't sure, a 1 will cause a preempt.
3042 */
3043 static bool
3044 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3045 struct request *rq)
3046 {
3047 struct cfq_queue *cfqq;
3048
3049 cfqq = cfqd->active_queue;
3050 if (!cfqq)
3051 return false;
3052
3053 if (cfq_class_idle(new_cfqq))
3054 return false;
3055
3056 if (cfq_class_idle(cfqq))
3057 return true;
3058
3059 /*
3060 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3061 */
3062 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3063 return false;
3064
3065 /*
3066 * if the new request is sync, but the currently running queue is
3067 * not, let the sync request have priority.
3068 */
3069 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3070 return true;
3071
3072 if (new_cfqq->cfqg != cfqq->cfqg)
3073 return false;
3074
3075 if (cfq_slice_used(cfqq))
3076 return true;
3077
3078 /* Allow preemption only if we are idling on sync-noidle tree */
3079 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3080 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3081 new_cfqq->service_tree->count == 2 &&
3082 RB_EMPTY_ROOT(&cfqq->sort_list))
3083 return true;
3084
3085 /*
3086 * So both queues are sync. Let the new request get disk time if
3087 * it's a metadata request and the current queue is doing regular IO.
3088 */
3089 if (rq_is_meta(rq) && !cfqq->meta_pending)
3090 return true;
3091
3092 /*
3093 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3094 */
3095 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3096 return true;
3097
3098 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3099 return false;
3100
3101 /*
3102 * if this request is as-good as one we would expect from the
3103 * current cfqq, let it preempt
3104 */
3105 if (cfq_rq_close(cfqd, cfqq, rq, true))
3106 return true;
3107
3108 return false;
3109 }
3110
3111 /*
3112 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3113 * let it have half of its nominal slice.
3114 */
3115 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3116 {
3117 cfq_log_cfqq(cfqd, cfqq, "preempt");
3118 cfq_slice_expired(cfqd, 1);
3119
3120 /*
3121 * Put the new queue at the front of the of the current list,
3122 * so we know that it will be selected next.
3123 */
3124 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3125
3126 cfq_service_tree_add(cfqd, cfqq, 1);
3127
3128 cfqq->slice_end = 0;
3129 cfq_mark_cfqq_slice_new(cfqq);
3130 }
3131
3132 /*
3133 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3134 * something we should do about it
3135 */
3136 static void
3137 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3138 struct request *rq)
3139 {
3140 struct cfq_io_context *cic = RQ_CIC(rq);
3141
3142 cfqd->rq_queued++;
3143 if (rq_is_meta(rq))
3144 cfqq->meta_pending++;
3145
3146 cfq_update_io_thinktime(cfqd, cic);
3147 cfq_update_io_seektime(cfqd, cfqq, rq);
3148 cfq_update_idle_window(cfqd, cfqq, cic);
3149
3150 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3151
3152 if (cfqq == cfqd->active_queue) {
3153 /*
3154 * Remember that we saw a request from this process, but
3155 * don't start queuing just yet. Otherwise we risk seeing lots
3156 * of tiny requests, because we disrupt the normal plugging
3157 * and merging. If the request is already larger than a single
3158 * page, let it rip immediately. For that case we assume that
3159 * merging is already done. Ditto for a busy system that
3160 * has other work pending, don't risk delaying until the
3161 * idle timer unplug to continue working.
3162 */
3163 if (cfq_cfqq_wait_request(cfqq)) {
3164 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3165 cfqd->busy_queues > 1) {
3166 del_timer(&cfqd->idle_slice_timer);
3167 cfq_clear_cfqq_wait_request(cfqq);
3168 __blk_run_queue(cfqd->queue);
3169 } else
3170 cfq_mark_cfqq_must_dispatch(cfqq);
3171 }
3172 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3173 /*
3174 * not the active queue - expire current slice if it is
3175 * idle and has expired it's mean thinktime or this new queue
3176 * has some old slice time left and is of higher priority or
3177 * this new queue is RT and the current one is BE
3178 */
3179 cfq_preempt_queue(cfqd, cfqq);
3180 __blk_run_queue(cfqd->queue);
3181 }
3182 }
3183
3184 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3185 {
3186 struct cfq_data *cfqd = q->elevator->elevator_data;
3187 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3188
3189 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3190 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3191
3192 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3193 list_add_tail(&rq->queuelist, &cfqq->fifo);
3194 cfq_add_rq_rb(rq);
3195
3196 cfq_rq_enqueued(cfqd, cfqq, rq);
3197 }
3198
3199 /*
3200 * Update hw_tag based on peak queue depth over 50 samples under
3201 * sufficient load.
3202 */
3203 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3204 {
3205 struct cfq_queue *cfqq = cfqd->active_queue;
3206
3207 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3208 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3209
3210 if (cfqd->hw_tag == 1)
3211 return;
3212
3213 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3214 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3215 return;
3216
3217 /*
3218 * If active queue hasn't enough requests and can idle, cfq might not
3219 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3220 * case
3221 */
3222 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3223 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3224 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3225 return;
3226
3227 if (cfqd->hw_tag_samples++ < 50)
3228 return;
3229
3230 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3231 cfqd->hw_tag = 1;
3232 else
3233 cfqd->hw_tag = 0;
3234 }
3235
3236 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3237 {
3238 struct cfq_io_context *cic = cfqd->active_cic;
3239
3240 /* If there are other queues in the group, don't wait */
3241 if (cfqq->cfqg->nr_cfqq > 1)
3242 return false;
3243
3244 if (cfq_slice_used(cfqq))
3245 return true;
3246
3247 /* if slice left is less than think time, wait busy */
3248 if (cic && sample_valid(cic->ttime_samples)
3249 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3250 return true;
3251
3252 /*
3253 * If think times is less than a jiffy than ttime_mean=0 and above
3254 * will not be true. It might happen that slice has not expired yet
3255 * but will expire soon (4-5 ns) during select_queue(). To cover the
3256 * case where think time is less than a jiffy, mark the queue wait
3257 * busy if only 1 jiffy is left in the slice.
3258 */
3259 if (cfqq->slice_end - jiffies == 1)
3260 return true;
3261
3262 return false;
3263 }
3264
3265 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3266 {
3267 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3268 struct cfq_data *cfqd = cfqq->cfqd;
3269 const int sync = rq_is_sync(rq);
3270 unsigned long now;
3271
3272 now = jiffies;
3273 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3274
3275 cfq_update_hw_tag(cfqd);
3276
3277 WARN_ON(!cfqd->rq_in_driver);
3278 WARN_ON(!cfqq->dispatched);
3279 cfqd->rq_in_driver--;
3280 cfqq->dispatched--;
3281
3282 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3283
3284 if (sync) {
3285 RQ_CIC(rq)->last_end_request = now;
3286 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3287 cfqd->last_delayed_sync = now;
3288 }
3289
3290 /*
3291 * If this is the active queue, check if it needs to be expired,
3292 * or if we want to idle in case it has no pending requests.
3293 */
3294 if (cfqd->active_queue == cfqq) {
3295 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3296
3297 if (cfq_cfqq_slice_new(cfqq)) {
3298 cfq_set_prio_slice(cfqd, cfqq);
3299 cfq_clear_cfqq_slice_new(cfqq);
3300 }
3301
3302 /*
3303 * Should we wait for next request to come in before we expire
3304 * the queue.
3305 */
3306 if (cfq_should_wait_busy(cfqd, cfqq)) {
3307 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3308 cfq_mark_cfqq_wait_busy(cfqq);
3309 }
3310
3311 /*
3312 * Idling is not enabled on:
3313 * - expired queues
3314 * - idle-priority queues
3315 * - async queues
3316 * - queues with still some requests queued
3317 * - when there is a close cooperator
3318 */
3319 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3320 cfq_slice_expired(cfqd, 1);
3321 else if (sync && cfqq_empty &&
3322 !cfq_close_cooperator(cfqd, cfqq)) {
3323 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3324 /*
3325 * Idling is enabled for SYNC_WORKLOAD.
3326 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3327 * only if we processed at least one !rq_noidle request
3328 */
3329 if (cfqd->serving_type == SYNC_WORKLOAD
3330 || cfqd->noidle_tree_requires_idle
3331 || cfqq->cfqg->nr_cfqq == 1)
3332 cfq_arm_slice_timer(cfqd);
3333 }
3334 }
3335
3336 if (!cfqd->rq_in_driver)
3337 cfq_schedule_dispatch(cfqd);
3338 }
3339
3340 /*
3341 * we temporarily boost lower priority queues if they are holding fs exclusive
3342 * resources. they are boosted to normal prio (CLASS_BE/4)
3343 */
3344 static void cfq_prio_boost(struct cfq_queue *cfqq)
3345 {
3346 if (has_fs_excl()) {
3347 /*
3348 * boost idle prio on transactions that would lock out other
3349 * users of the filesystem
3350 */
3351 if (cfq_class_idle(cfqq))
3352 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3353 if (cfqq->ioprio > IOPRIO_NORM)
3354 cfqq->ioprio = IOPRIO_NORM;
3355 } else {
3356 /*
3357 * unboost the queue (if needed)
3358 */
3359 cfqq->ioprio_class = cfqq->org_ioprio_class;
3360 cfqq->ioprio = cfqq->org_ioprio;
3361 }
3362 }
3363
3364 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3365 {
3366 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3367 cfq_mark_cfqq_must_alloc_slice(cfqq);
3368 return ELV_MQUEUE_MUST;
3369 }
3370
3371 return ELV_MQUEUE_MAY;
3372 }
3373
3374 static int cfq_may_queue(struct request_queue *q, int rw)
3375 {
3376 struct cfq_data *cfqd = q->elevator->elevator_data;
3377 struct task_struct *tsk = current;
3378 struct cfq_io_context *cic;
3379 struct cfq_queue *cfqq;
3380
3381 /*
3382 * don't force setup of a queue from here, as a call to may_queue
3383 * does not necessarily imply that a request actually will be queued.
3384 * so just lookup a possibly existing queue, or return 'may queue'
3385 * if that fails
3386 */
3387 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3388 if (!cic)
3389 return ELV_MQUEUE_MAY;
3390
3391 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3392 if (cfqq) {
3393 cfq_init_prio_data(cfqq, cic->ioc);
3394 cfq_prio_boost(cfqq);
3395
3396 return __cfq_may_queue(cfqq);
3397 }
3398
3399 return ELV_MQUEUE_MAY;
3400 }
3401
3402 /*
3403 * queue lock held here
3404 */
3405 static void cfq_put_request(struct request *rq)
3406 {
3407 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3408
3409 if (cfqq) {
3410 const int rw = rq_data_dir(rq);
3411
3412 BUG_ON(!cfqq->allocated[rw]);
3413 cfqq->allocated[rw]--;
3414
3415 put_io_context(RQ_CIC(rq)->ioc);
3416
3417 rq->elevator_private = NULL;
3418 rq->elevator_private2 = NULL;
3419
3420 cfq_put_queue(cfqq);
3421 }
3422 }
3423
3424 static struct cfq_queue *
3425 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3426 struct cfq_queue *cfqq)
3427 {
3428 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3429 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3430 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3431 cfq_put_queue(cfqq);
3432 return cic_to_cfqq(cic, 1);
3433 }
3434
3435 /*
3436 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3437 * was the last process referring to said cfqq.
3438 */
3439 static struct cfq_queue *
3440 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3441 {
3442 if (cfqq_process_refs(cfqq) == 1) {
3443 cfqq->pid = current->pid;
3444 cfq_clear_cfqq_coop(cfqq);
3445 cfq_clear_cfqq_split_coop(cfqq);
3446 return cfqq;
3447 }
3448
3449 cic_set_cfqq(cic, NULL, 1);
3450 cfq_put_queue(cfqq);
3451 return NULL;
3452 }
3453 /*
3454 * Allocate cfq data structures associated with this request.
3455 */
3456 static int
3457 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3458 {
3459 struct cfq_data *cfqd = q->elevator->elevator_data;
3460 struct cfq_io_context *cic;
3461 const int rw = rq_data_dir(rq);
3462 const bool is_sync = rq_is_sync(rq);
3463 struct cfq_queue *cfqq;
3464 unsigned long flags;
3465
3466 might_sleep_if(gfp_mask & __GFP_WAIT);
3467
3468 cic = cfq_get_io_context(cfqd, gfp_mask);
3469
3470 spin_lock_irqsave(q->queue_lock, flags);
3471
3472 if (!cic)
3473 goto queue_fail;
3474
3475 new_queue:
3476 cfqq = cic_to_cfqq(cic, is_sync);
3477 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3478 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3479 cic_set_cfqq(cic, cfqq, is_sync);
3480 } else {
3481 /*
3482 * If the queue was seeky for too long, break it apart.
3483 */
3484 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3485 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3486 cfqq = split_cfqq(cic, cfqq);
3487 if (!cfqq)
3488 goto new_queue;
3489 }
3490
3491 /*
3492 * Check to see if this queue is scheduled to merge with
3493 * another, closely cooperating queue. The merging of
3494 * queues happens here as it must be done in process context.
3495 * The reference on new_cfqq was taken in merge_cfqqs.
3496 */
3497 if (cfqq->new_cfqq)
3498 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3499 }
3500
3501 cfqq->allocated[rw]++;
3502 atomic_inc(&cfqq->ref);
3503
3504 spin_unlock_irqrestore(q->queue_lock, flags);
3505
3506 rq->elevator_private = cic;
3507 rq->elevator_private2 = cfqq;
3508 return 0;
3509
3510 queue_fail:
3511 if (cic)
3512 put_io_context(cic->ioc);
3513
3514 cfq_schedule_dispatch(cfqd);
3515 spin_unlock_irqrestore(q->queue_lock, flags);
3516 cfq_log(cfqd, "set_request fail");
3517 return 1;
3518 }
3519
3520 static void cfq_kick_queue(struct work_struct *work)
3521 {
3522 struct cfq_data *cfqd =
3523 container_of(work, struct cfq_data, unplug_work);
3524 struct request_queue *q = cfqd->queue;
3525
3526 spin_lock_irq(q->queue_lock);
3527 __blk_run_queue(cfqd->queue);
3528 spin_unlock_irq(q->queue_lock);
3529 }
3530
3531 /*
3532 * Timer running if the active_queue is currently idling inside its time slice
3533 */
3534 static void cfq_idle_slice_timer(unsigned long data)
3535 {
3536 struct cfq_data *cfqd = (struct cfq_data *) data;
3537 struct cfq_queue *cfqq;
3538 unsigned long flags;
3539 int timed_out = 1;
3540
3541 cfq_log(cfqd, "idle timer fired");
3542
3543 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3544
3545 cfqq = cfqd->active_queue;
3546 if (cfqq) {
3547 timed_out = 0;
3548
3549 /*
3550 * We saw a request before the queue expired, let it through
3551 */
3552 if (cfq_cfqq_must_dispatch(cfqq))
3553 goto out_kick;
3554
3555 /*
3556 * expired
3557 */
3558 if (cfq_slice_used(cfqq))
3559 goto expire;
3560
3561 /*
3562 * only expire and reinvoke request handler, if there are
3563 * other queues with pending requests
3564 */
3565 if (!cfqd->busy_queues)
3566 goto out_cont;
3567
3568 /*
3569 * not expired and it has a request pending, let it dispatch
3570 */
3571 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3572 goto out_kick;
3573
3574 /*
3575 * Queue depth flag is reset only when the idle didn't succeed
3576 */
3577 cfq_clear_cfqq_deep(cfqq);
3578 }
3579 expire:
3580 cfq_slice_expired(cfqd, timed_out);
3581 out_kick:
3582 cfq_schedule_dispatch(cfqd);
3583 out_cont:
3584 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3585 }
3586
3587 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3588 {
3589 del_timer_sync(&cfqd->idle_slice_timer);
3590 cancel_work_sync(&cfqd->unplug_work);
3591 }
3592
3593 static void cfq_put_async_queues(struct cfq_data *cfqd)
3594 {
3595 int i;
3596
3597 for (i = 0; i < IOPRIO_BE_NR; i++) {
3598 if (cfqd->async_cfqq[0][i])
3599 cfq_put_queue(cfqd->async_cfqq[0][i]);
3600 if (cfqd->async_cfqq[1][i])
3601 cfq_put_queue(cfqd->async_cfqq[1][i]);
3602 }
3603
3604 if (cfqd->async_idle_cfqq)
3605 cfq_put_queue(cfqd->async_idle_cfqq);
3606 }
3607
3608 static void cfq_cfqd_free(struct rcu_head *head)
3609 {
3610 kfree(container_of(head, struct cfq_data, rcu));
3611 }
3612
3613 static void cfq_exit_queue(struct elevator_queue *e)
3614 {
3615 struct cfq_data *cfqd = e->elevator_data;
3616 struct request_queue *q = cfqd->queue;
3617
3618 cfq_shutdown_timer_wq(cfqd);
3619
3620 spin_lock_irq(q->queue_lock);
3621
3622 if (cfqd->active_queue)
3623 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3624
3625 while (!list_empty(&cfqd->cic_list)) {
3626 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3627 struct cfq_io_context,
3628 queue_list);
3629
3630 __cfq_exit_single_io_context(cfqd, cic);
3631 }
3632
3633 cfq_put_async_queues(cfqd);
3634 cfq_release_cfq_groups(cfqd);
3635 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3636
3637 spin_unlock_irq(q->queue_lock);
3638
3639 cfq_shutdown_timer_wq(cfqd);
3640
3641 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3642 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3643 }
3644
3645 static void *cfq_init_queue(struct request_queue *q)
3646 {
3647 struct cfq_data *cfqd;
3648 int i, j;
3649 struct cfq_group *cfqg;
3650 struct cfq_rb_root *st;
3651
3652 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3653 if (!cfqd)
3654 return NULL;
3655
3656 /* Init root service tree */
3657 cfqd->grp_service_tree = CFQ_RB_ROOT;
3658
3659 /* Init root group */
3660 cfqg = &cfqd->root_group;
3661 for_each_cfqg_st(cfqg, i, j, st)
3662 *st = CFQ_RB_ROOT;
3663 RB_CLEAR_NODE(&cfqg->rb_node);
3664
3665 /* Give preference to root group over other groups */
3666 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3667
3668 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3669 /*
3670 * Take a reference to root group which we never drop. This is just
3671 * to make sure that cfq_put_cfqg() does not try to kfree root group
3672 */
3673 atomic_set(&cfqg->ref, 1);
3674 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3675 0);
3676 #endif
3677 /*
3678 * Not strictly needed (since RB_ROOT just clears the node and we
3679 * zeroed cfqd on alloc), but better be safe in case someone decides
3680 * to add magic to the rb code
3681 */
3682 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3683 cfqd->prio_trees[i] = RB_ROOT;
3684
3685 /*
3686 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3687 * Grab a permanent reference to it, so that the normal code flow
3688 * will not attempt to free it.
3689 */
3690 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3691 atomic_inc(&cfqd->oom_cfqq.ref);
3692 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3693
3694 INIT_LIST_HEAD(&cfqd->cic_list);
3695
3696 cfqd->queue = q;
3697
3698 init_timer(&cfqd->idle_slice_timer);
3699 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3700 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3701
3702 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3703
3704 cfqd->cfq_quantum = cfq_quantum;
3705 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3706 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3707 cfqd->cfq_back_max = cfq_back_max;
3708 cfqd->cfq_back_penalty = cfq_back_penalty;
3709 cfqd->cfq_slice[0] = cfq_slice_async;
3710 cfqd->cfq_slice[1] = cfq_slice_sync;
3711 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3712 cfqd->cfq_slice_idle = cfq_slice_idle;
3713 cfqd->cfq_latency = 1;
3714 cfqd->cfq_group_isolation = 0;
3715 cfqd->hw_tag = -1;
3716 /*
3717 * we optimistically start assuming sync ops weren't delayed in last
3718 * second, in order to have larger depth for async operations.
3719 */
3720 cfqd->last_delayed_sync = jiffies - HZ;
3721 INIT_RCU_HEAD(&cfqd->rcu);
3722 return cfqd;
3723 }
3724
3725 static void cfq_slab_kill(void)
3726 {
3727 /*
3728 * Caller already ensured that pending RCU callbacks are completed,
3729 * so we should have no busy allocations at this point.
3730 */
3731 if (cfq_pool)
3732 kmem_cache_destroy(cfq_pool);
3733 if (cfq_ioc_pool)
3734 kmem_cache_destroy(cfq_ioc_pool);
3735 }
3736
3737 static int __init cfq_slab_setup(void)
3738 {
3739 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3740 if (!cfq_pool)
3741 goto fail;
3742
3743 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3744 if (!cfq_ioc_pool)
3745 goto fail;
3746
3747 return 0;
3748 fail:
3749 cfq_slab_kill();
3750 return -ENOMEM;
3751 }
3752
3753 /*
3754 * sysfs parts below -->
3755 */
3756 static ssize_t
3757 cfq_var_show(unsigned int var, char *page)
3758 {
3759 return sprintf(page, "%d\n", var);
3760 }
3761
3762 static ssize_t
3763 cfq_var_store(unsigned int *var, const char *page, size_t count)
3764 {
3765 char *p = (char *) page;
3766
3767 *var = simple_strtoul(p, &p, 10);
3768 return count;
3769 }
3770
3771 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3772 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3773 { \
3774 struct cfq_data *cfqd = e->elevator_data; \
3775 unsigned int __data = __VAR; \
3776 if (__CONV) \
3777 __data = jiffies_to_msecs(__data); \
3778 return cfq_var_show(__data, (page)); \
3779 }
3780 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3781 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3782 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3783 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3784 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3785 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3786 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3787 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3788 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3789 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3790 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3791 #undef SHOW_FUNCTION
3792
3793 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3794 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3795 { \
3796 struct cfq_data *cfqd = e->elevator_data; \
3797 unsigned int __data; \
3798 int ret = cfq_var_store(&__data, (page), count); \
3799 if (__data < (MIN)) \
3800 __data = (MIN); \
3801 else if (__data > (MAX)) \
3802 __data = (MAX); \
3803 if (__CONV) \
3804 *(__PTR) = msecs_to_jiffies(__data); \
3805 else \
3806 *(__PTR) = __data; \
3807 return ret; \
3808 }
3809 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3810 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3811 UINT_MAX, 1);
3812 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3813 UINT_MAX, 1);
3814 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3815 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3816 UINT_MAX, 0);
3817 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3818 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3819 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3820 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3821 UINT_MAX, 0);
3822 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3823 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3824 #undef STORE_FUNCTION
3825
3826 #define CFQ_ATTR(name) \
3827 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3828
3829 static struct elv_fs_entry cfq_attrs[] = {
3830 CFQ_ATTR(quantum),
3831 CFQ_ATTR(fifo_expire_sync),
3832 CFQ_ATTR(fifo_expire_async),
3833 CFQ_ATTR(back_seek_max),
3834 CFQ_ATTR(back_seek_penalty),
3835 CFQ_ATTR(slice_sync),
3836 CFQ_ATTR(slice_async),
3837 CFQ_ATTR(slice_async_rq),
3838 CFQ_ATTR(slice_idle),
3839 CFQ_ATTR(low_latency),
3840 CFQ_ATTR(group_isolation),
3841 __ATTR_NULL
3842 };
3843
3844 static struct elevator_type iosched_cfq = {
3845 .ops = {
3846 .elevator_merge_fn = cfq_merge,
3847 .elevator_merged_fn = cfq_merged_request,
3848 .elevator_merge_req_fn = cfq_merged_requests,
3849 .elevator_allow_merge_fn = cfq_allow_merge,
3850 .elevator_dispatch_fn = cfq_dispatch_requests,
3851 .elevator_add_req_fn = cfq_insert_request,
3852 .elevator_activate_req_fn = cfq_activate_request,
3853 .elevator_deactivate_req_fn = cfq_deactivate_request,
3854 .elevator_queue_empty_fn = cfq_queue_empty,
3855 .elevator_completed_req_fn = cfq_completed_request,
3856 .elevator_former_req_fn = elv_rb_former_request,
3857 .elevator_latter_req_fn = elv_rb_latter_request,
3858 .elevator_set_req_fn = cfq_set_request,
3859 .elevator_put_req_fn = cfq_put_request,
3860 .elevator_may_queue_fn = cfq_may_queue,
3861 .elevator_init_fn = cfq_init_queue,
3862 .elevator_exit_fn = cfq_exit_queue,
3863 .trim = cfq_free_io_context,
3864 },
3865 .elevator_attrs = cfq_attrs,
3866 .elevator_name = "cfq",
3867 .elevator_owner = THIS_MODULE,
3868 };
3869
3870 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3871 static struct blkio_policy_type blkio_policy_cfq = {
3872 .ops = {
3873 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3874 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3875 },
3876 };
3877 #else
3878 static struct blkio_policy_type blkio_policy_cfq;
3879 #endif
3880
3881 static int __init cfq_init(void)
3882 {
3883 /*
3884 * could be 0 on HZ < 1000 setups
3885 */
3886 if (!cfq_slice_async)
3887 cfq_slice_async = 1;
3888 if (!cfq_slice_idle)
3889 cfq_slice_idle = 1;
3890
3891 if (cfq_slab_setup())
3892 return -ENOMEM;
3893
3894 elv_register(&iosched_cfq);
3895 blkio_policy_register(&blkio_policy_cfq);
3896
3897 return 0;
3898 }
3899
3900 static void __exit cfq_exit(void)
3901 {
3902 DECLARE_COMPLETION_ONSTACK(all_gone);
3903 blkio_policy_unregister(&blkio_policy_cfq);
3904 elv_unregister(&iosched_cfq);
3905 ioc_gone = &all_gone;
3906 /* ioc_gone's update must be visible before reading ioc_count */
3907 smp_wmb();
3908
3909 /*
3910 * this also protects us from entering cfq_slab_kill() with
3911 * pending RCU callbacks
3912 */
3913 if (elv_ioc_count_read(cfq_ioc_count))
3914 wait_for_completion(&all_gone);
3915 cfq_slab_kill();
3916 }
3917
3918 module_init(cfq_init);
3919 module_exit(cfq_exit);
3920
3921 MODULE_AUTHOR("Jens Axboe");
3922 MODULE_LICENSE("GPL");
3923 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.169399 seconds and 6 git commands to generate.