[PATCH] Kill PF_SYNCWRITE flag
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18 * tunables
19 */
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
30
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
33
34 #define CFQ_KEY_ASYNC (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39 * for the hash of cfqq inside the cfqd
40 */
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46 * for the hash of crq inside the cfqq
47 */
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq) (rq)->elevator_private
59
60 /*
61 * rb-tree defines
62 */
63 #define RB_EMPTY(node) ((node)->rb_node == NULL)
64 #define RB_CLEAR(node) do { \
65 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
68 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq) (rq)->sector
70
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
74
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
77
78 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
82
83 #define ASYNC (0)
84 #define SYNC (1)
85
86 #define cfq_cfqq_dispatched(cfqq) \
87 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
88
89 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
90
91 #define cfq_cfqq_sync(cfqq) \
92 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
93
94 #define sample_valid(samples) ((samples) > 80)
95
96 /*
97 * Per block device queue structure
98 */
99 struct cfq_data {
100 request_queue_t *queue;
101
102 /*
103 * rr list of queues with requests and the count of them
104 */
105 struct list_head rr_list[CFQ_PRIO_LISTS];
106 struct list_head busy_rr;
107 struct list_head cur_rr;
108 struct list_head idle_rr;
109 unsigned int busy_queues;
110
111 /*
112 * non-ordered list of empty cfqq's
113 */
114 struct list_head empty_list;
115
116 /*
117 * cfqq lookup hash
118 */
119 struct hlist_head *cfq_hash;
120
121 /*
122 * global crq hash for all queues
123 */
124 struct hlist_head *crq_hash;
125
126 mempool_t *crq_pool;
127
128 int rq_in_driver;
129 int hw_tag;
130
131 /*
132 * schedule slice state info
133 */
134 /*
135 * idle window management
136 */
137 struct timer_list idle_slice_timer;
138 struct work_struct unplug_work;
139
140 struct cfq_queue *active_queue;
141 struct cfq_io_context *active_cic;
142 int cur_prio, cur_end_prio;
143 unsigned int dispatch_slice;
144
145 struct timer_list idle_class_timer;
146
147 sector_t last_sector;
148 unsigned long last_end_request;
149
150 unsigned int rq_starved;
151
152 /*
153 * tunables, see top of file
154 */
155 unsigned int cfq_quantum;
156 unsigned int cfq_queued;
157 unsigned int cfq_fifo_expire[2];
158 unsigned int cfq_back_penalty;
159 unsigned int cfq_back_max;
160 unsigned int cfq_slice[2];
161 unsigned int cfq_slice_async_rq;
162 unsigned int cfq_slice_idle;
163
164 struct list_head cic_list;
165 };
166
167 /*
168 * Per process-grouping structure
169 */
170 struct cfq_queue {
171 /* reference count */
172 atomic_t ref;
173 /* parent cfq_data */
174 struct cfq_data *cfqd;
175 /* cfqq lookup hash */
176 struct hlist_node cfq_hash;
177 /* hash key */
178 unsigned int key;
179 /* on either rr or empty list of cfqd */
180 struct list_head cfq_list;
181 /* sorted list of pending requests */
182 struct rb_root sort_list;
183 /* if fifo isn't expired, next request to serve */
184 struct cfq_rq *next_crq;
185 /* requests queued in sort_list */
186 int queued[2];
187 /* currently allocated requests */
188 int allocated[2];
189 /* fifo list of requests in sort_list */
190 struct list_head fifo;
191
192 unsigned long slice_start;
193 unsigned long slice_end;
194 unsigned long slice_left;
195 unsigned long service_last;
196
197 /* number of requests that are on the dispatch list */
198 int on_dispatch[2];
199
200 /* io prio of this group */
201 unsigned short ioprio, org_ioprio;
202 unsigned short ioprio_class, org_ioprio_class;
203
204 /* various state flags, see below */
205 unsigned int flags;
206 };
207
208 struct cfq_rq {
209 struct rb_node rb_node;
210 sector_t rb_key;
211 struct request *request;
212 struct hlist_node hash;
213
214 struct cfq_queue *cfq_queue;
215 struct cfq_io_context *io_context;
216
217 unsigned int crq_flags;
218 };
219
220 enum cfqq_state_flags {
221 CFQ_CFQQ_FLAG_on_rr = 0,
222 CFQ_CFQQ_FLAG_wait_request,
223 CFQ_CFQQ_FLAG_must_alloc,
224 CFQ_CFQQ_FLAG_must_alloc_slice,
225 CFQ_CFQQ_FLAG_must_dispatch,
226 CFQ_CFQQ_FLAG_fifo_expire,
227 CFQ_CFQQ_FLAG_idle_window,
228 CFQ_CFQQ_FLAG_prio_changed,
229 };
230
231 #define CFQ_CFQQ_FNS(name) \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
233 { \
234 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
235 } \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
237 { \
238 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
239 } \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
241 { \
242 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
243 }
244
245 CFQ_CFQQ_FNS(on_rr);
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
253 #undef CFQ_CFQQ_FNS
254
255 enum cfq_rq_state_flags {
256 CFQ_CRQ_FLAG_is_sync = 0,
257 };
258
259 #define CFQ_CRQ_FNS(name) \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
261 { \
262 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
263 } \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
265 { \
266 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
267 } \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
269 { \
270 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
271 }
272
273 CFQ_CRQ_FNS(is_sync);
274 #undef CFQ_CRQ_FNS
275
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
279
280 /*
281 * lots of deadline iosched dupes, can be abstracted later...
282 */
283 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
284 {
285 hlist_del_init(&crq->hash);
286 }
287
288 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
289 {
290 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
291
292 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
293 }
294
295 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
296 {
297 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
298 struct hlist_node *entry, *next;
299
300 hlist_for_each_safe(entry, next, hash_list) {
301 struct cfq_rq *crq = list_entry_hash(entry);
302 struct request *__rq = crq->request;
303
304 if (!rq_mergeable(__rq)) {
305 cfq_del_crq_hash(crq);
306 continue;
307 }
308
309 if (rq_hash_key(__rq) == offset)
310 return __rq;
311 }
312
313 return NULL;
314 }
315
316 /*
317 * scheduler run of queue, if there are requests pending and no one in the
318 * driver that will restart queueing
319 */
320 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
321 {
322 if (cfqd->busy_queues)
323 kblockd_schedule_work(&cfqd->unplug_work);
324 }
325
326 static int cfq_queue_empty(request_queue_t *q)
327 {
328 struct cfq_data *cfqd = q->elevator->elevator_data;
329
330 return !cfqd->busy_queues;
331 }
332
333 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
334 {
335 if (rw == READ || rw == WRITE_SYNC)
336 return task->pid;
337
338 return CFQ_KEY_ASYNC;
339 }
340
341 /*
342 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
343 * We choose the request that is closest to the head right now. Distance
344 * behind the head is penalized and only allowed to a certain extent.
345 */
346 static struct cfq_rq *
347 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
348 {
349 sector_t last, s1, s2, d1 = 0, d2 = 0;
350 unsigned long back_max;
351 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
352 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
353 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
354
355 if (crq1 == NULL || crq1 == crq2)
356 return crq2;
357 if (crq2 == NULL)
358 return crq1;
359
360 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
361 return crq1;
362 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
363 return crq2;
364
365 s1 = crq1->request->sector;
366 s2 = crq2->request->sector;
367
368 last = cfqd->last_sector;
369
370 /*
371 * by definition, 1KiB is 2 sectors
372 */
373 back_max = cfqd->cfq_back_max * 2;
374
375 /*
376 * Strict one way elevator _except_ in the case where we allow
377 * short backward seeks which are biased as twice the cost of a
378 * similar forward seek.
379 */
380 if (s1 >= last)
381 d1 = s1 - last;
382 else if (s1 + back_max >= last)
383 d1 = (last - s1) * cfqd->cfq_back_penalty;
384 else
385 wrap |= CFQ_RQ1_WRAP;
386
387 if (s2 >= last)
388 d2 = s2 - last;
389 else if (s2 + back_max >= last)
390 d2 = (last - s2) * cfqd->cfq_back_penalty;
391 else
392 wrap |= CFQ_RQ2_WRAP;
393
394 /* Found required data */
395
396 /*
397 * By doing switch() on the bit mask "wrap" we avoid having to
398 * check two variables for all permutations: --> faster!
399 */
400 switch (wrap) {
401 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
402 if (d1 < d2)
403 return crq1;
404 else if (d2 < d1)
405 return crq2;
406 else {
407 if (s1 >= s2)
408 return crq1;
409 else
410 return crq2;
411 }
412
413 case CFQ_RQ2_WRAP:
414 return crq1;
415 case CFQ_RQ1_WRAP:
416 return crq2;
417 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
418 default:
419 /*
420 * Since both rqs are wrapped,
421 * start with the one that's further behind head
422 * (--> only *one* back seek required),
423 * since back seek takes more time than forward.
424 */
425 if (s1 <= s2)
426 return crq1;
427 else
428 return crq2;
429 }
430 }
431
432 /*
433 * would be nice to take fifo expire time into account as well
434 */
435 static struct cfq_rq *
436 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
437 struct cfq_rq *last)
438 {
439 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
440 struct rb_node *rbnext, *rbprev;
441
442 if (!(rbnext = rb_next(&last->rb_node))) {
443 rbnext = rb_first(&cfqq->sort_list);
444 if (rbnext == &last->rb_node)
445 rbnext = NULL;
446 }
447
448 rbprev = rb_prev(&last->rb_node);
449
450 if (rbprev)
451 crq_prev = rb_entry_crq(rbprev);
452 if (rbnext)
453 crq_next = rb_entry_crq(rbnext);
454
455 return cfq_choose_req(cfqd, crq_next, crq_prev);
456 }
457
458 static void cfq_update_next_crq(struct cfq_rq *crq)
459 {
460 struct cfq_queue *cfqq = crq->cfq_queue;
461
462 if (cfqq->next_crq == crq)
463 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
464 }
465
466 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
467 {
468 struct cfq_data *cfqd = cfqq->cfqd;
469 struct list_head *list, *entry;
470
471 BUG_ON(!cfq_cfqq_on_rr(cfqq));
472
473 list_del(&cfqq->cfq_list);
474
475 if (cfq_class_rt(cfqq))
476 list = &cfqd->cur_rr;
477 else if (cfq_class_idle(cfqq))
478 list = &cfqd->idle_rr;
479 else {
480 /*
481 * if cfqq has requests in flight, don't allow it to be
482 * found in cfq_set_active_queue before it has finished them.
483 * this is done to increase fairness between a process that
484 * has lots of io pending vs one that only generates one
485 * sporadically or synchronously
486 */
487 if (cfq_cfqq_dispatched(cfqq))
488 list = &cfqd->busy_rr;
489 else
490 list = &cfqd->rr_list[cfqq->ioprio];
491 }
492
493 /*
494 * if queue was preempted, just add to front to be fair. busy_rr
495 * isn't sorted, but insert at the back for fairness.
496 */
497 if (preempted || list == &cfqd->busy_rr) {
498 if (preempted)
499 list = list->prev;
500
501 list_add_tail(&cfqq->cfq_list, list);
502 return;
503 }
504
505 /*
506 * sort by when queue was last serviced
507 */
508 entry = list;
509 while ((entry = entry->prev) != list) {
510 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
511
512 if (!__cfqq->service_last)
513 break;
514 if (time_before(__cfqq->service_last, cfqq->service_last))
515 break;
516 }
517
518 list_add(&cfqq->cfq_list, entry);
519 }
520
521 /*
522 * add to busy list of queues for service, trying to be fair in ordering
523 * the pending list according to last request service
524 */
525 static inline void
526 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 {
528 BUG_ON(cfq_cfqq_on_rr(cfqq));
529 cfq_mark_cfqq_on_rr(cfqq);
530 cfqd->busy_queues++;
531
532 cfq_resort_rr_list(cfqq, 0);
533 }
534
535 static inline void
536 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
537 {
538 BUG_ON(!cfq_cfqq_on_rr(cfqq));
539 cfq_clear_cfqq_on_rr(cfqq);
540 list_move(&cfqq->cfq_list, &cfqd->empty_list);
541
542 BUG_ON(!cfqd->busy_queues);
543 cfqd->busy_queues--;
544 }
545
546 /*
547 * rb tree support functions
548 */
549 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
550 {
551 struct cfq_queue *cfqq = crq->cfq_queue;
552 struct cfq_data *cfqd = cfqq->cfqd;
553 const int sync = cfq_crq_is_sync(crq);
554
555 BUG_ON(!cfqq->queued[sync]);
556 cfqq->queued[sync]--;
557
558 cfq_update_next_crq(crq);
559
560 rb_erase(&crq->rb_node, &cfqq->sort_list);
561
562 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
563 cfq_del_cfqq_rr(cfqd, cfqq);
564 }
565
566 static struct cfq_rq *
567 __cfq_add_crq_rb(struct cfq_rq *crq)
568 {
569 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
570 struct rb_node *parent = NULL;
571 struct cfq_rq *__crq;
572
573 while (*p) {
574 parent = *p;
575 __crq = rb_entry_crq(parent);
576
577 if (crq->rb_key < __crq->rb_key)
578 p = &(*p)->rb_left;
579 else if (crq->rb_key > __crq->rb_key)
580 p = &(*p)->rb_right;
581 else
582 return __crq;
583 }
584
585 rb_link_node(&crq->rb_node, parent, p);
586 return NULL;
587 }
588
589 static void cfq_add_crq_rb(struct cfq_rq *crq)
590 {
591 struct cfq_queue *cfqq = crq->cfq_queue;
592 struct cfq_data *cfqd = cfqq->cfqd;
593 struct request *rq = crq->request;
594 struct cfq_rq *__alias;
595
596 crq->rb_key = rq_rb_key(rq);
597 cfqq->queued[cfq_crq_is_sync(crq)]++;
598
599 /*
600 * looks a little odd, but the first insert might return an alias.
601 * if that happens, put the alias on the dispatch list
602 */
603 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
604 cfq_dispatch_insert(cfqd->queue, __alias);
605
606 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
607
608 if (!cfq_cfqq_on_rr(cfqq))
609 cfq_add_cfqq_rr(cfqd, cfqq);
610
611 /*
612 * check if this request is a better next-serve candidate
613 */
614 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
615 }
616
617 static inline void
618 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
619 {
620 rb_erase(&crq->rb_node, &cfqq->sort_list);
621 cfqq->queued[cfq_crq_is_sync(crq)]--;
622
623 cfq_add_crq_rb(crq);
624 }
625
626 static struct request *
627 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
628 {
629 struct task_struct *tsk = current;
630 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
631 struct cfq_queue *cfqq;
632 struct rb_node *n;
633 sector_t sector;
634
635 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
636 if (!cfqq)
637 goto out;
638
639 sector = bio->bi_sector + bio_sectors(bio);
640 n = cfqq->sort_list.rb_node;
641 while (n) {
642 struct cfq_rq *crq = rb_entry_crq(n);
643
644 if (sector < crq->rb_key)
645 n = n->rb_left;
646 else if (sector > crq->rb_key)
647 n = n->rb_right;
648 else
649 return crq->request;
650 }
651
652 out:
653 return NULL;
654 }
655
656 static void cfq_activate_request(request_queue_t *q, struct request *rq)
657 {
658 struct cfq_data *cfqd = q->elevator->elevator_data;
659
660 cfqd->rq_in_driver++;
661
662 /*
663 * If the depth is larger 1, it really could be queueing. But lets
664 * make the mark a little higher - idling could still be good for
665 * low queueing, and a low queueing number could also just indicate
666 * a SCSI mid layer like behaviour where limit+1 is often seen.
667 */
668 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
669 cfqd->hw_tag = 1;
670 }
671
672 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
673 {
674 struct cfq_data *cfqd = q->elevator->elevator_data;
675
676 WARN_ON(!cfqd->rq_in_driver);
677 cfqd->rq_in_driver--;
678 }
679
680 static void cfq_remove_request(struct request *rq)
681 {
682 struct cfq_rq *crq = RQ_DATA(rq);
683
684 list_del_init(&rq->queuelist);
685 cfq_del_crq_rb(crq);
686 cfq_del_crq_hash(crq);
687 }
688
689 static int
690 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
691 {
692 struct cfq_data *cfqd = q->elevator->elevator_data;
693 struct request *__rq;
694 int ret;
695
696 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
697 if (__rq && elv_rq_merge_ok(__rq, bio)) {
698 ret = ELEVATOR_BACK_MERGE;
699 goto out;
700 }
701
702 __rq = cfq_find_rq_fmerge(cfqd, bio);
703 if (__rq && elv_rq_merge_ok(__rq, bio)) {
704 ret = ELEVATOR_FRONT_MERGE;
705 goto out;
706 }
707
708 return ELEVATOR_NO_MERGE;
709 out:
710 *req = __rq;
711 return ret;
712 }
713
714 static void cfq_merged_request(request_queue_t *q, struct request *req)
715 {
716 struct cfq_data *cfqd = q->elevator->elevator_data;
717 struct cfq_rq *crq = RQ_DATA(req);
718
719 cfq_del_crq_hash(crq);
720 cfq_add_crq_hash(cfqd, crq);
721
722 if (rq_rb_key(req) != crq->rb_key) {
723 struct cfq_queue *cfqq = crq->cfq_queue;
724
725 cfq_update_next_crq(crq);
726 cfq_reposition_crq_rb(cfqq, crq);
727 }
728 }
729
730 static void
731 cfq_merged_requests(request_queue_t *q, struct request *rq,
732 struct request *next)
733 {
734 cfq_merged_request(q, rq);
735
736 /*
737 * reposition in fifo if next is older than rq
738 */
739 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
740 time_before(next->start_time, rq->start_time))
741 list_move(&rq->queuelist, &next->queuelist);
742
743 cfq_remove_request(next);
744 }
745
746 static inline void
747 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
748 {
749 if (cfqq) {
750 /*
751 * stop potential idle class queues waiting service
752 */
753 del_timer(&cfqd->idle_class_timer);
754
755 cfqq->slice_start = jiffies;
756 cfqq->slice_end = 0;
757 cfqq->slice_left = 0;
758 cfq_clear_cfqq_must_alloc_slice(cfqq);
759 cfq_clear_cfqq_fifo_expire(cfqq);
760 }
761
762 cfqd->active_queue = cfqq;
763 }
764
765 /*
766 * current cfqq expired its slice (or was too idle), select new one
767 */
768 static void
769 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
770 int preempted)
771 {
772 unsigned long now = jiffies;
773
774 if (cfq_cfqq_wait_request(cfqq))
775 del_timer(&cfqd->idle_slice_timer);
776
777 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
778 cfqq->service_last = now;
779 cfq_schedule_dispatch(cfqd);
780 }
781
782 cfq_clear_cfqq_must_dispatch(cfqq);
783 cfq_clear_cfqq_wait_request(cfqq);
784
785 /*
786 * store what was left of this slice, if the queue idled out
787 * or was preempted
788 */
789 if (time_after(cfqq->slice_end, now))
790 cfqq->slice_left = cfqq->slice_end - now;
791 else
792 cfqq->slice_left = 0;
793
794 if (cfq_cfqq_on_rr(cfqq))
795 cfq_resort_rr_list(cfqq, preempted);
796
797 if (cfqq == cfqd->active_queue)
798 cfqd->active_queue = NULL;
799
800 if (cfqd->active_cic) {
801 put_io_context(cfqd->active_cic->ioc);
802 cfqd->active_cic = NULL;
803 }
804
805 cfqd->dispatch_slice = 0;
806 }
807
808 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
809 {
810 struct cfq_queue *cfqq = cfqd->active_queue;
811
812 if (cfqq)
813 __cfq_slice_expired(cfqd, cfqq, preempted);
814 }
815
816 /*
817 * 0
818 * 0,1
819 * 0,1,2
820 * 0,1,2,3
821 * 0,1,2,3,4
822 * 0,1,2,3,4,5
823 * 0,1,2,3,4,5,6
824 * 0,1,2,3,4,5,6,7
825 */
826 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
827 {
828 int prio, wrap;
829
830 prio = -1;
831 wrap = 0;
832 do {
833 int p;
834
835 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
836 if (!list_empty(&cfqd->rr_list[p])) {
837 prio = p;
838 break;
839 }
840 }
841
842 if (prio != -1)
843 break;
844 cfqd->cur_prio = 0;
845 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
846 cfqd->cur_end_prio = 0;
847 if (wrap)
848 break;
849 wrap = 1;
850 }
851 } while (1);
852
853 if (unlikely(prio == -1))
854 return -1;
855
856 BUG_ON(prio >= CFQ_PRIO_LISTS);
857
858 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
859
860 cfqd->cur_prio = prio + 1;
861 if (cfqd->cur_prio > cfqd->cur_end_prio) {
862 cfqd->cur_end_prio = cfqd->cur_prio;
863 cfqd->cur_prio = 0;
864 }
865 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
866 cfqd->cur_prio = 0;
867 cfqd->cur_end_prio = 0;
868 }
869
870 return prio;
871 }
872
873 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
874 {
875 struct cfq_queue *cfqq = NULL;
876
877 /*
878 * if current list is non-empty, grab first entry. if it is empty,
879 * get next prio level and grab first entry then if any are spliced
880 */
881 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
882 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
883
884 /*
885 * If no new queues are available, check if the busy list has some
886 * before falling back to idle io.
887 */
888 if (!cfqq && !list_empty(&cfqd->busy_rr))
889 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
890
891 /*
892 * if we have idle queues and no rt or be queues had pending
893 * requests, either allow immediate service if the grace period
894 * has passed or arm the idle grace timer
895 */
896 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
897 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
898
899 if (time_after_eq(jiffies, end))
900 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
901 else
902 mod_timer(&cfqd->idle_class_timer, end);
903 }
904
905 __cfq_set_active_queue(cfqd, cfqq);
906 return cfqq;
907 }
908
909 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
910
911 {
912 struct cfq_io_context *cic;
913 unsigned long sl;
914
915 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
916 WARN_ON(cfqq != cfqd->active_queue);
917
918 /*
919 * idle is disabled, either manually or by past process history
920 */
921 if (!cfqd->cfq_slice_idle)
922 return 0;
923 if (!cfq_cfqq_idle_window(cfqq))
924 return 0;
925 /*
926 * task has exited, don't wait
927 */
928 cic = cfqd->active_cic;
929 if (!cic || !cic->ioc->task)
930 return 0;
931
932 cfq_mark_cfqq_must_dispatch(cfqq);
933 cfq_mark_cfqq_wait_request(cfqq);
934
935 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
936
937 /*
938 * we don't want to idle for seeks, but we do want to allow
939 * fair distribution of slice time for a process doing back-to-back
940 * seeks. so allow a little bit of time for him to submit a new rq
941 */
942 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
943 sl = 2;
944
945 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
946 return 1;
947 }
948
949 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
950 {
951 struct cfq_data *cfqd = q->elevator->elevator_data;
952 struct cfq_queue *cfqq = crq->cfq_queue;
953
954 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
955 cfq_remove_request(crq->request);
956 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
957 elv_dispatch_sort(q, crq->request);
958 }
959
960 /*
961 * return expired entry, or NULL to just start from scratch in rbtree
962 */
963 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
964 {
965 struct cfq_data *cfqd = cfqq->cfqd;
966 struct request *rq;
967 struct cfq_rq *crq;
968
969 if (cfq_cfqq_fifo_expire(cfqq))
970 return NULL;
971
972 if (!list_empty(&cfqq->fifo)) {
973 int fifo = cfq_cfqq_class_sync(cfqq);
974
975 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
976 rq = crq->request;
977 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
978 cfq_mark_cfqq_fifo_expire(cfqq);
979 return crq;
980 }
981 }
982
983 return NULL;
984 }
985
986 /*
987 * Scale schedule slice based on io priority. Use the sync time slice only
988 * if a queue is marked sync and has sync io queued. A sync queue with async
989 * io only, should not get full sync slice length.
990 */
991 static inline int
992 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
993 {
994 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
995
996 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
997
998 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
999 }
1000
1001 static inline void
1002 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1003 {
1004 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1005 }
1006
1007 static inline int
1008 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1009 {
1010 const int base_rq = cfqd->cfq_slice_async_rq;
1011
1012 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1013
1014 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1015 }
1016
1017 /*
1018 * get next queue for service
1019 */
1020 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1021 {
1022 unsigned long now = jiffies;
1023 struct cfq_queue *cfqq;
1024
1025 cfqq = cfqd->active_queue;
1026 if (!cfqq)
1027 goto new_queue;
1028
1029 /*
1030 * slice has expired
1031 */
1032 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1033 goto expire;
1034
1035 /*
1036 * if queue has requests, dispatch one. if not, check if
1037 * enough slice is left to wait for one
1038 */
1039 if (!RB_EMPTY(&cfqq->sort_list))
1040 goto keep_queue;
1041 else if (cfq_cfqq_class_sync(cfqq) &&
1042 time_before(now, cfqq->slice_end)) {
1043 if (cfq_arm_slice_timer(cfqd, cfqq))
1044 return NULL;
1045 }
1046
1047 expire:
1048 cfq_slice_expired(cfqd, 0);
1049 new_queue:
1050 cfqq = cfq_set_active_queue(cfqd);
1051 keep_queue:
1052 return cfqq;
1053 }
1054
1055 static int
1056 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1057 int max_dispatch)
1058 {
1059 int dispatched = 0;
1060
1061 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1062
1063 do {
1064 struct cfq_rq *crq;
1065
1066 /*
1067 * follow expired path, else get first next available
1068 */
1069 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1070 crq = cfqq->next_crq;
1071
1072 /*
1073 * finally, insert request into driver dispatch list
1074 */
1075 cfq_dispatch_insert(cfqd->queue, crq);
1076
1077 cfqd->dispatch_slice++;
1078 dispatched++;
1079
1080 if (!cfqd->active_cic) {
1081 atomic_inc(&crq->io_context->ioc->refcount);
1082 cfqd->active_cic = crq->io_context;
1083 }
1084
1085 if (RB_EMPTY(&cfqq->sort_list))
1086 break;
1087
1088 } while (dispatched < max_dispatch);
1089
1090 /*
1091 * if slice end isn't set yet, set it. if at least one request was
1092 * sync, use the sync time slice value
1093 */
1094 if (!cfqq->slice_end)
1095 cfq_set_prio_slice(cfqd, cfqq);
1096
1097 /*
1098 * expire an async queue immediately if it has used up its slice. idle
1099 * queue always expire after 1 dispatch round.
1100 */
1101 if ((!cfq_cfqq_sync(cfqq) &&
1102 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1103 cfq_class_idle(cfqq))
1104 cfq_slice_expired(cfqd, 0);
1105
1106 return dispatched;
1107 }
1108
1109 static int
1110 cfq_forced_dispatch_cfqqs(struct list_head *list)
1111 {
1112 int dispatched = 0;
1113 struct cfq_queue *cfqq, *next;
1114 struct cfq_rq *crq;
1115
1116 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1117 while ((crq = cfqq->next_crq)) {
1118 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1119 dispatched++;
1120 }
1121 BUG_ON(!list_empty(&cfqq->fifo));
1122 }
1123 return dispatched;
1124 }
1125
1126 static int
1127 cfq_forced_dispatch(struct cfq_data *cfqd)
1128 {
1129 int i, dispatched = 0;
1130
1131 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1132 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1133
1134 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1135 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1136 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1137
1138 cfq_slice_expired(cfqd, 0);
1139
1140 BUG_ON(cfqd->busy_queues);
1141
1142 return dispatched;
1143 }
1144
1145 static int
1146 cfq_dispatch_requests(request_queue_t *q, int force)
1147 {
1148 struct cfq_data *cfqd = q->elevator->elevator_data;
1149 struct cfq_queue *cfqq;
1150
1151 if (!cfqd->busy_queues)
1152 return 0;
1153
1154 if (unlikely(force))
1155 return cfq_forced_dispatch(cfqd);
1156
1157 cfqq = cfq_select_queue(cfqd);
1158 if (cfqq) {
1159 int max_dispatch;
1160
1161 cfq_clear_cfqq_must_dispatch(cfqq);
1162 cfq_clear_cfqq_wait_request(cfqq);
1163 del_timer(&cfqd->idle_slice_timer);
1164
1165 max_dispatch = cfqd->cfq_quantum;
1166 if (cfq_class_idle(cfqq))
1167 max_dispatch = 1;
1168
1169 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1170 }
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * task holds one reference to the queue, dropped when task exits. each crq
1177 * in-flight on this queue also holds a reference, dropped when crq is freed.
1178 *
1179 * queue lock must be held here.
1180 */
1181 static void cfq_put_queue(struct cfq_queue *cfqq)
1182 {
1183 struct cfq_data *cfqd = cfqq->cfqd;
1184
1185 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1186
1187 if (!atomic_dec_and_test(&cfqq->ref))
1188 return;
1189
1190 BUG_ON(rb_first(&cfqq->sort_list));
1191 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1192 BUG_ON(cfq_cfqq_on_rr(cfqq));
1193
1194 if (unlikely(cfqd->active_queue == cfqq))
1195 __cfq_slice_expired(cfqd, cfqq, 0);
1196
1197 /*
1198 * it's on the empty list and still hashed
1199 */
1200 list_del(&cfqq->cfq_list);
1201 hlist_del(&cfqq->cfq_hash);
1202 kmem_cache_free(cfq_pool, cfqq);
1203 }
1204
1205 static inline struct cfq_queue *
1206 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1207 const int hashval)
1208 {
1209 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1210 struct hlist_node *entry;
1211 struct cfq_queue *__cfqq;
1212
1213 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1214 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1215
1216 if (__cfqq->key == key && (__p == prio || !prio))
1217 return __cfqq;
1218 }
1219
1220 return NULL;
1221 }
1222
1223 static struct cfq_queue *
1224 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1225 {
1226 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1227 }
1228
1229 static void cfq_free_io_context(struct io_context *ioc)
1230 {
1231 struct cfq_io_context *__cic;
1232 struct rb_node *n;
1233 int freed = 0;
1234
1235 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1236 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1237 rb_erase(&__cic->rb_node, &ioc->cic_root);
1238 kmem_cache_free(cfq_ioc_pool, __cic);
1239 freed++;
1240 }
1241
1242 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1243 complete(ioc_gone);
1244 }
1245
1246 static void cfq_trim(struct io_context *ioc)
1247 {
1248 ioc->set_ioprio = NULL;
1249 cfq_free_io_context(ioc);
1250 }
1251
1252 /*
1253 * Called with interrupts disabled
1254 */
1255 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1256 {
1257 struct cfq_data *cfqd = cic->key;
1258 request_queue_t *q;
1259
1260 if (!cfqd)
1261 return;
1262
1263 q = cfqd->queue;
1264
1265 WARN_ON(!irqs_disabled());
1266
1267 spin_lock(q->queue_lock);
1268
1269 if (cic->cfqq[ASYNC]) {
1270 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1271 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1272 cfq_put_queue(cic->cfqq[ASYNC]);
1273 cic->cfqq[ASYNC] = NULL;
1274 }
1275
1276 if (cic->cfqq[SYNC]) {
1277 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1278 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1279 cfq_put_queue(cic->cfqq[SYNC]);
1280 cic->cfqq[SYNC] = NULL;
1281 }
1282
1283 cic->key = NULL;
1284 list_del_init(&cic->queue_list);
1285 spin_unlock(q->queue_lock);
1286 }
1287
1288 static void cfq_exit_io_context(struct io_context *ioc)
1289 {
1290 struct cfq_io_context *__cic;
1291 unsigned long flags;
1292 struct rb_node *n;
1293
1294 /*
1295 * put the reference this task is holding to the various queues
1296 */
1297 spin_lock_irqsave(&cfq_exit_lock, flags);
1298
1299 n = rb_first(&ioc->cic_root);
1300 while (n != NULL) {
1301 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1302
1303 cfq_exit_single_io_context(__cic);
1304 n = rb_next(n);
1305 }
1306
1307 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1308 }
1309
1310 static struct cfq_io_context *
1311 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1312 {
1313 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1314
1315 if (cic) {
1316 memset(cic, 0, sizeof(*cic));
1317 cic->last_end_request = jiffies;
1318 INIT_LIST_HEAD(&cic->queue_list);
1319 cic->dtor = cfq_free_io_context;
1320 cic->exit = cfq_exit_io_context;
1321 atomic_inc(&ioc_count);
1322 }
1323
1324 return cic;
1325 }
1326
1327 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1328 {
1329 struct task_struct *tsk = current;
1330 int ioprio_class;
1331
1332 if (!cfq_cfqq_prio_changed(cfqq))
1333 return;
1334
1335 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1336 switch (ioprio_class) {
1337 default:
1338 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1339 case IOPRIO_CLASS_NONE:
1340 /*
1341 * no prio set, place us in the middle of the BE classes
1342 */
1343 cfqq->ioprio = task_nice_ioprio(tsk);
1344 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1345 break;
1346 case IOPRIO_CLASS_RT:
1347 cfqq->ioprio = task_ioprio(tsk);
1348 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1349 break;
1350 case IOPRIO_CLASS_BE:
1351 cfqq->ioprio = task_ioprio(tsk);
1352 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1353 break;
1354 case IOPRIO_CLASS_IDLE:
1355 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1356 cfqq->ioprio = 7;
1357 cfq_clear_cfqq_idle_window(cfqq);
1358 break;
1359 }
1360
1361 /*
1362 * keep track of original prio settings in case we have to temporarily
1363 * elevate the priority of this queue
1364 */
1365 cfqq->org_ioprio = cfqq->ioprio;
1366 cfqq->org_ioprio_class = cfqq->ioprio_class;
1367
1368 if (cfq_cfqq_on_rr(cfqq))
1369 cfq_resort_rr_list(cfqq, 0);
1370
1371 cfq_clear_cfqq_prio_changed(cfqq);
1372 }
1373
1374 static inline void changed_ioprio(struct cfq_io_context *cic)
1375 {
1376 struct cfq_data *cfqd = cic->key;
1377 struct cfq_queue *cfqq;
1378 if (cfqd) {
1379 spin_lock(cfqd->queue->queue_lock);
1380 cfqq = cic->cfqq[ASYNC];
1381 if (cfqq) {
1382 struct cfq_queue *new_cfqq;
1383 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1384 cic->ioc->task, GFP_ATOMIC);
1385 if (new_cfqq) {
1386 cic->cfqq[ASYNC] = new_cfqq;
1387 cfq_put_queue(cfqq);
1388 }
1389 }
1390 cfqq = cic->cfqq[SYNC];
1391 if (cfqq) {
1392 cfq_mark_cfqq_prio_changed(cfqq);
1393 cfq_init_prio_data(cfqq);
1394 }
1395 spin_unlock(cfqd->queue->queue_lock);
1396 }
1397 }
1398
1399 /*
1400 * callback from sys_ioprio_set, irqs are disabled
1401 */
1402 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1403 {
1404 struct cfq_io_context *cic;
1405 struct rb_node *n;
1406
1407 spin_lock(&cfq_exit_lock);
1408
1409 n = rb_first(&ioc->cic_root);
1410 while (n != NULL) {
1411 cic = rb_entry(n, struct cfq_io_context, rb_node);
1412
1413 changed_ioprio(cic);
1414 n = rb_next(n);
1415 }
1416
1417 spin_unlock(&cfq_exit_lock);
1418
1419 return 0;
1420 }
1421
1422 static struct cfq_queue *
1423 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1424 gfp_t gfp_mask)
1425 {
1426 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1427 struct cfq_queue *cfqq, *new_cfqq = NULL;
1428 unsigned short ioprio;
1429
1430 retry:
1431 ioprio = tsk->ioprio;
1432 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1433
1434 if (!cfqq) {
1435 if (new_cfqq) {
1436 cfqq = new_cfqq;
1437 new_cfqq = NULL;
1438 } else if (gfp_mask & __GFP_WAIT) {
1439 spin_unlock_irq(cfqd->queue->queue_lock);
1440 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1441 spin_lock_irq(cfqd->queue->queue_lock);
1442 goto retry;
1443 } else {
1444 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1445 if (!cfqq)
1446 goto out;
1447 }
1448
1449 memset(cfqq, 0, sizeof(*cfqq));
1450
1451 INIT_HLIST_NODE(&cfqq->cfq_hash);
1452 INIT_LIST_HEAD(&cfqq->cfq_list);
1453 RB_CLEAR_ROOT(&cfqq->sort_list);
1454 INIT_LIST_HEAD(&cfqq->fifo);
1455
1456 cfqq->key = key;
1457 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1458 atomic_set(&cfqq->ref, 0);
1459 cfqq->cfqd = cfqd;
1460 cfqq->service_last = 0;
1461 /*
1462 * set ->slice_left to allow preemption for a new process
1463 */
1464 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1465 if (!cfqd->hw_tag)
1466 cfq_mark_cfqq_idle_window(cfqq);
1467 cfq_mark_cfqq_prio_changed(cfqq);
1468 cfq_init_prio_data(cfqq);
1469 }
1470
1471 if (new_cfqq)
1472 kmem_cache_free(cfq_pool, new_cfqq);
1473
1474 atomic_inc(&cfqq->ref);
1475 out:
1476 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1477 return cfqq;
1478 }
1479
1480 static void
1481 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1482 {
1483 spin_lock(&cfq_exit_lock);
1484 rb_erase(&cic->rb_node, &ioc->cic_root);
1485 list_del_init(&cic->queue_list);
1486 spin_unlock(&cfq_exit_lock);
1487 kmem_cache_free(cfq_ioc_pool, cic);
1488 atomic_dec(&ioc_count);
1489 }
1490
1491 static struct cfq_io_context *
1492 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1493 {
1494 struct rb_node *n;
1495 struct cfq_io_context *cic;
1496 void *k, *key = cfqd;
1497
1498 restart:
1499 n = ioc->cic_root.rb_node;
1500 while (n) {
1501 cic = rb_entry(n, struct cfq_io_context, rb_node);
1502 /* ->key must be copied to avoid race with cfq_exit_queue() */
1503 k = cic->key;
1504 if (unlikely(!k)) {
1505 cfq_drop_dead_cic(ioc, cic);
1506 goto restart;
1507 }
1508
1509 if (key < k)
1510 n = n->rb_left;
1511 else if (key > k)
1512 n = n->rb_right;
1513 else
1514 return cic;
1515 }
1516
1517 return NULL;
1518 }
1519
1520 static inline void
1521 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1522 struct cfq_io_context *cic)
1523 {
1524 struct rb_node **p;
1525 struct rb_node *parent;
1526 struct cfq_io_context *__cic;
1527 void *k;
1528
1529 cic->ioc = ioc;
1530 cic->key = cfqd;
1531
1532 ioc->set_ioprio = cfq_ioc_set_ioprio;
1533 restart:
1534 parent = NULL;
1535 p = &ioc->cic_root.rb_node;
1536 while (*p) {
1537 parent = *p;
1538 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1539 /* ->key must be copied to avoid race with cfq_exit_queue() */
1540 k = __cic->key;
1541 if (unlikely(!k)) {
1542 cfq_drop_dead_cic(ioc, cic);
1543 goto restart;
1544 }
1545
1546 if (cic->key < k)
1547 p = &(*p)->rb_left;
1548 else if (cic->key > k)
1549 p = &(*p)->rb_right;
1550 else
1551 BUG();
1552 }
1553
1554 spin_lock(&cfq_exit_lock);
1555 rb_link_node(&cic->rb_node, parent, p);
1556 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1557 list_add(&cic->queue_list, &cfqd->cic_list);
1558 spin_unlock(&cfq_exit_lock);
1559 }
1560
1561 /*
1562 * Setup general io context and cfq io context. There can be several cfq
1563 * io contexts per general io context, if this process is doing io to more
1564 * than one device managed by cfq.
1565 */
1566 static struct cfq_io_context *
1567 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1568 {
1569 struct io_context *ioc = NULL;
1570 struct cfq_io_context *cic;
1571
1572 might_sleep_if(gfp_mask & __GFP_WAIT);
1573
1574 ioc = get_io_context(gfp_mask);
1575 if (!ioc)
1576 return NULL;
1577
1578 cic = cfq_cic_rb_lookup(cfqd, ioc);
1579 if (cic)
1580 goto out;
1581
1582 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1583 if (cic == NULL)
1584 goto err;
1585
1586 cfq_cic_link(cfqd, ioc, cic);
1587 out:
1588 return cic;
1589 err:
1590 put_io_context(ioc);
1591 return NULL;
1592 }
1593
1594 static void
1595 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1596 {
1597 unsigned long elapsed, ttime;
1598
1599 /*
1600 * if this context already has stuff queued, thinktime is from
1601 * last queue not last end
1602 */
1603 #if 0
1604 if (time_after(cic->last_end_request, cic->last_queue))
1605 elapsed = jiffies - cic->last_end_request;
1606 else
1607 elapsed = jiffies - cic->last_queue;
1608 #else
1609 elapsed = jiffies - cic->last_end_request;
1610 #endif
1611
1612 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1613
1614 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1615 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1616 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1617 }
1618
1619 static void
1620 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1621 struct cfq_rq *crq)
1622 {
1623 sector_t sdist;
1624 u64 total;
1625
1626 if (cic->last_request_pos < crq->request->sector)
1627 sdist = crq->request->sector - cic->last_request_pos;
1628 else
1629 sdist = cic->last_request_pos - crq->request->sector;
1630
1631 /*
1632 * Don't allow the seek distance to get too large from the
1633 * odd fragment, pagein, etc
1634 */
1635 if (cic->seek_samples <= 60) /* second&third seek */
1636 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1637 else
1638 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1639
1640 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1641 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1642 total = cic->seek_total + (cic->seek_samples/2);
1643 do_div(total, cic->seek_samples);
1644 cic->seek_mean = (sector_t)total;
1645 }
1646
1647 /*
1648 * Disable idle window if the process thinks too long or seeks so much that
1649 * it doesn't matter
1650 */
1651 static void
1652 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1653 struct cfq_io_context *cic)
1654 {
1655 int enable_idle = cfq_cfqq_idle_window(cfqq);
1656
1657 if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1658 enable_idle = 0;
1659 else if (sample_valid(cic->ttime_samples)) {
1660 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1661 enable_idle = 0;
1662 else
1663 enable_idle = 1;
1664 }
1665
1666 if (enable_idle)
1667 cfq_mark_cfqq_idle_window(cfqq);
1668 else
1669 cfq_clear_cfqq_idle_window(cfqq);
1670 }
1671
1672
1673 /*
1674 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1675 * no or if we aren't sure, a 1 will cause a preempt.
1676 */
1677 static int
1678 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1679 struct cfq_rq *crq)
1680 {
1681 struct cfq_queue *cfqq = cfqd->active_queue;
1682
1683 if (cfq_class_idle(new_cfqq))
1684 return 0;
1685
1686 if (!cfqq)
1687 return 1;
1688
1689 if (cfq_class_idle(cfqq))
1690 return 1;
1691 if (!cfq_cfqq_wait_request(new_cfqq))
1692 return 0;
1693 /*
1694 * if it doesn't have slice left, forget it
1695 */
1696 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1697 return 0;
1698 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1699 return 1;
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1706 * let it have half of its nominal slice.
1707 */
1708 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1709 {
1710 struct cfq_queue *__cfqq, *next;
1711
1712 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1713 cfq_resort_rr_list(__cfqq, 1);
1714
1715 if (!cfqq->slice_left)
1716 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1717
1718 cfqq->slice_end = cfqq->slice_left + jiffies;
1719 __cfq_slice_expired(cfqd, cfqq, 1);
1720 __cfq_set_active_queue(cfqd, cfqq);
1721 }
1722
1723 /*
1724 * should really be a ll_rw_blk.c helper
1725 */
1726 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1727 {
1728 request_queue_t *q = cfqd->queue;
1729
1730 if (!blk_queue_plugged(q))
1731 q->request_fn(q);
1732 else
1733 __generic_unplug_device(q);
1734 }
1735
1736 /*
1737 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1738 * something we should do about it
1739 */
1740 static void
1741 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1742 struct cfq_rq *crq)
1743 {
1744 struct cfq_io_context *cic;
1745
1746 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1747
1748 cic = crq->io_context;
1749
1750 /*
1751 * we never wait for an async request and we don't allow preemption
1752 * of an async request. so just return early
1753 */
1754 if (!cfq_crq_is_sync(crq)) {
1755 /*
1756 * sync process issued an async request, if it's waiting
1757 * then expire it and kick rq handling.
1758 */
1759 if (cic == cfqd->active_cic &&
1760 del_timer(&cfqd->idle_slice_timer)) {
1761 cfq_slice_expired(cfqd, 0);
1762 cfq_start_queueing(cfqd, cfqq);
1763 }
1764 return;
1765 }
1766
1767 cfq_update_io_thinktime(cfqd, cic);
1768 cfq_update_io_seektime(cfqd, cic, crq);
1769 cfq_update_idle_window(cfqd, cfqq, cic);
1770
1771 cic->last_queue = jiffies;
1772 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1773
1774 if (cfqq == cfqd->active_queue) {
1775 /*
1776 * if we are waiting for a request for this queue, let it rip
1777 * immediately and flag that we must not expire this queue
1778 * just now
1779 */
1780 if (cfq_cfqq_wait_request(cfqq)) {
1781 cfq_mark_cfqq_must_dispatch(cfqq);
1782 del_timer(&cfqd->idle_slice_timer);
1783 cfq_start_queueing(cfqd, cfqq);
1784 }
1785 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1786 /*
1787 * not the active queue - expire current slice if it is
1788 * idle and has expired it's mean thinktime or this new queue
1789 * has some old slice time left and is of higher priority
1790 */
1791 cfq_preempt_queue(cfqd, cfqq);
1792 cfq_mark_cfqq_must_dispatch(cfqq);
1793 cfq_start_queueing(cfqd, cfqq);
1794 }
1795 }
1796
1797 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1798 {
1799 struct cfq_data *cfqd = q->elevator->elevator_data;
1800 struct cfq_rq *crq = RQ_DATA(rq);
1801 struct cfq_queue *cfqq = crq->cfq_queue;
1802
1803 cfq_init_prio_data(cfqq);
1804
1805 cfq_add_crq_rb(crq);
1806
1807 list_add_tail(&rq->queuelist, &cfqq->fifo);
1808
1809 if (rq_mergeable(rq))
1810 cfq_add_crq_hash(cfqd, crq);
1811
1812 cfq_crq_enqueued(cfqd, cfqq, crq);
1813 }
1814
1815 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1816 {
1817 struct cfq_rq *crq = RQ_DATA(rq);
1818 struct cfq_queue *cfqq = crq->cfq_queue;
1819 struct cfq_data *cfqd = cfqq->cfqd;
1820 const int sync = cfq_crq_is_sync(crq);
1821 unsigned long now;
1822
1823 now = jiffies;
1824
1825 WARN_ON(!cfqd->rq_in_driver);
1826 WARN_ON(!cfqq->on_dispatch[sync]);
1827 cfqd->rq_in_driver--;
1828 cfqq->on_dispatch[sync]--;
1829
1830 if (!cfq_class_idle(cfqq))
1831 cfqd->last_end_request = now;
1832
1833 if (!cfq_cfqq_dispatched(cfqq)) {
1834 if (cfq_cfqq_on_rr(cfqq)) {
1835 cfqq->service_last = now;
1836 cfq_resort_rr_list(cfqq, 0);
1837 }
1838 cfq_schedule_dispatch(cfqd);
1839 }
1840
1841 if (cfq_crq_is_sync(crq))
1842 crq->io_context->last_end_request = now;
1843 }
1844
1845 static struct request *
1846 cfq_former_request(request_queue_t *q, struct request *rq)
1847 {
1848 struct cfq_rq *crq = RQ_DATA(rq);
1849 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1850
1851 if (rbprev)
1852 return rb_entry_crq(rbprev)->request;
1853
1854 return NULL;
1855 }
1856
1857 static struct request *
1858 cfq_latter_request(request_queue_t *q, struct request *rq)
1859 {
1860 struct cfq_rq *crq = RQ_DATA(rq);
1861 struct rb_node *rbnext = rb_next(&crq->rb_node);
1862
1863 if (rbnext)
1864 return rb_entry_crq(rbnext)->request;
1865
1866 return NULL;
1867 }
1868
1869 /*
1870 * we temporarily boost lower priority queues if they are holding fs exclusive
1871 * resources. they are boosted to normal prio (CLASS_BE/4)
1872 */
1873 static void cfq_prio_boost(struct cfq_queue *cfqq)
1874 {
1875 const int ioprio_class = cfqq->ioprio_class;
1876 const int ioprio = cfqq->ioprio;
1877
1878 if (has_fs_excl()) {
1879 /*
1880 * boost idle prio on transactions that would lock out other
1881 * users of the filesystem
1882 */
1883 if (cfq_class_idle(cfqq))
1884 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1885 if (cfqq->ioprio > IOPRIO_NORM)
1886 cfqq->ioprio = IOPRIO_NORM;
1887 } else {
1888 /*
1889 * check if we need to unboost the queue
1890 */
1891 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1892 cfqq->ioprio_class = cfqq->org_ioprio_class;
1893 if (cfqq->ioprio != cfqq->org_ioprio)
1894 cfqq->ioprio = cfqq->org_ioprio;
1895 }
1896
1897 /*
1898 * refile between round-robin lists if we moved the priority class
1899 */
1900 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1901 cfq_cfqq_on_rr(cfqq))
1902 cfq_resort_rr_list(cfqq, 0);
1903 }
1904
1905 static inline int
1906 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1907 struct task_struct *task, int rw)
1908 {
1909 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1910 !cfq_cfqq_must_alloc_slice(cfqq)) {
1911 cfq_mark_cfqq_must_alloc_slice(cfqq);
1912 return ELV_MQUEUE_MUST;
1913 }
1914
1915 return ELV_MQUEUE_MAY;
1916 }
1917
1918 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1919 {
1920 struct cfq_data *cfqd = q->elevator->elevator_data;
1921 struct task_struct *tsk = current;
1922 struct cfq_queue *cfqq;
1923
1924 /*
1925 * don't force setup of a queue from here, as a call to may_queue
1926 * does not necessarily imply that a request actually will be queued.
1927 * so just lookup a possibly existing queue, or return 'may queue'
1928 * if that fails
1929 */
1930 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1931 if (cfqq) {
1932 cfq_init_prio_data(cfqq);
1933 cfq_prio_boost(cfqq);
1934
1935 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1936 }
1937
1938 return ELV_MQUEUE_MAY;
1939 }
1940
1941 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1942 {
1943 struct cfq_data *cfqd = q->elevator->elevator_data;
1944
1945 if (unlikely(cfqd->rq_starved)) {
1946 struct request_list *rl = &q->rq;
1947
1948 smp_mb();
1949 if (waitqueue_active(&rl->wait[READ]))
1950 wake_up(&rl->wait[READ]);
1951 if (waitqueue_active(&rl->wait[WRITE]))
1952 wake_up(&rl->wait[WRITE]);
1953 }
1954 }
1955
1956 /*
1957 * queue lock held here
1958 */
1959 static void cfq_put_request(request_queue_t *q, struct request *rq)
1960 {
1961 struct cfq_data *cfqd = q->elevator->elevator_data;
1962 struct cfq_rq *crq = RQ_DATA(rq);
1963
1964 if (crq) {
1965 struct cfq_queue *cfqq = crq->cfq_queue;
1966 const int rw = rq_data_dir(rq);
1967
1968 BUG_ON(!cfqq->allocated[rw]);
1969 cfqq->allocated[rw]--;
1970
1971 put_io_context(crq->io_context->ioc);
1972
1973 mempool_free(crq, cfqd->crq_pool);
1974 rq->elevator_private = NULL;
1975
1976 cfq_check_waiters(q, cfqq);
1977 cfq_put_queue(cfqq);
1978 }
1979 }
1980
1981 /*
1982 * Allocate cfq data structures associated with this request.
1983 */
1984 static int
1985 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1986 gfp_t gfp_mask)
1987 {
1988 struct cfq_data *cfqd = q->elevator->elevator_data;
1989 struct task_struct *tsk = current;
1990 struct cfq_io_context *cic;
1991 const int rw = rq_data_dir(rq);
1992 pid_t key = cfq_queue_pid(tsk, rw);
1993 struct cfq_queue *cfqq;
1994 struct cfq_rq *crq;
1995 unsigned long flags;
1996 int is_sync = key != CFQ_KEY_ASYNC;
1997
1998 might_sleep_if(gfp_mask & __GFP_WAIT);
1999
2000 cic = cfq_get_io_context(cfqd, gfp_mask);
2001
2002 spin_lock_irqsave(q->queue_lock, flags);
2003
2004 if (!cic)
2005 goto queue_fail;
2006
2007 if (!cic->cfqq[is_sync]) {
2008 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2009 if (!cfqq)
2010 goto queue_fail;
2011
2012 cic->cfqq[is_sync] = cfqq;
2013 } else
2014 cfqq = cic->cfqq[is_sync];
2015
2016 cfqq->allocated[rw]++;
2017 cfq_clear_cfqq_must_alloc(cfqq);
2018 cfqd->rq_starved = 0;
2019 atomic_inc(&cfqq->ref);
2020 spin_unlock_irqrestore(q->queue_lock, flags);
2021
2022 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2023 if (crq) {
2024 RB_CLEAR(&crq->rb_node);
2025 crq->rb_key = 0;
2026 crq->request = rq;
2027 INIT_HLIST_NODE(&crq->hash);
2028 crq->cfq_queue = cfqq;
2029 crq->io_context = cic;
2030
2031 if (is_sync)
2032 cfq_mark_crq_is_sync(crq);
2033 else
2034 cfq_clear_crq_is_sync(crq);
2035
2036 rq->elevator_private = crq;
2037 return 0;
2038 }
2039
2040 spin_lock_irqsave(q->queue_lock, flags);
2041 cfqq->allocated[rw]--;
2042 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2043 cfq_mark_cfqq_must_alloc(cfqq);
2044 cfq_put_queue(cfqq);
2045 queue_fail:
2046 if (cic)
2047 put_io_context(cic->ioc);
2048 /*
2049 * mark us rq allocation starved. we need to kickstart the process
2050 * ourselves if there are no pending requests that can do it for us.
2051 * that would be an extremely rare OOM situation
2052 */
2053 cfqd->rq_starved = 1;
2054 cfq_schedule_dispatch(cfqd);
2055 spin_unlock_irqrestore(q->queue_lock, flags);
2056 return 1;
2057 }
2058
2059 static void cfq_kick_queue(void *data)
2060 {
2061 request_queue_t *q = data;
2062 struct cfq_data *cfqd = q->elevator->elevator_data;
2063 unsigned long flags;
2064
2065 spin_lock_irqsave(q->queue_lock, flags);
2066
2067 if (cfqd->rq_starved) {
2068 struct request_list *rl = &q->rq;
2069
2070 /*
2071 * we aren't guaranteed to get a request after this, but we
2072 * have to be opportunistic
2073 */
2074 smp_mb();
2075 if (waitqueue_active(&rl->wait[READ]))
2076 wake_up(&rl->wait[READ]);
2077 if (waitqueue_active(&rl->wait[WRITE]))
2078 wake_up(&rl->wait[WRITE]);
2079 }
2080
2081 blk_remove_plug(q);
2082 q->request_fn(q);
2083 spin_unlock_irqrestore(q->queue_lock, flags);
2084 }
2085
2086 /*
2087 * Timer running if the active_queue is currently idling inside its time slice
2088 */
2089 static void cfq_idle_slice_timer(unsigned long data)
2090 {
2091 struct cfq_data *cfqd = (struct cfq_data *) data;
2092 struct cfq_queue *cfqq;
2093 unsigned long flags;
2094
2095 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2096
2097 if ((cfqq = cfqd->active_queue) != NULL) {
2098 unsigned long now = jiffies;
2099
2100 /*
2101 * expired
2102 */
2103 if (time_after(now, cfqq->slice_end))
2104 goto expire;
2105
2106 /*
2107 * only expire and reinvoke request handler, if there are
2108 * other queues with pending requests
2109 */
2110 if (!cfqd->busy_queues) {
2111 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2112 add_timer(&cfqd->idle_slice_timer);
2113 goto out_cont;
2114 }
2115
2116 /*
2117 * not expired and it has a request pending, let it dispatch
2118 */
2119 if (!RB_EMPTY(&cfqq->sort_list)) {
2120 cfq_mark_cfqq_must_dispatch(cfqq);
2121 goto out_kick;
2122 }
2123 }
2124 expire:
2125 cfq_slice_expired(cfqd, 0);
2126 out_kick:
2127 cfq_schedule_dispatch(cfqd);
2128 out_cont:
2129 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2130 }
2131
2132 /*
2133 * Timer running if an idle class queue is waiting for service
2134 */
2135 static void cfq_idle_class_timer(unsigned long data)
2136 {
2137 struct cfq_data *cfqd = (struct cfq_data *) data;
2138 unsigned long flags, end;
2139
2140 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2141
2142 /*
2143 * race with a non-idle queue, reset timer
2144 */
2145 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2146 if (!time_after_eq(jiffies, end))
2147 mod_timer(&cfqd->idle_class_timer, end);
2148 else
2149 cfq_schedule_dispatch(cfqd);
2150
2151 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2152 }
2153
2154 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2155 {
2156 del_timer_sync(&cfqd->idle_slice_timer);
2157 del_timer_sync(&cfqd->idle_class_timer);
2158 blk_sync_queue(cfqd->queue);
2159 }
2160
2161 static void cfq_exit_queue(elevator_t *e)
2162 {
2163 struct cfq_data *cfqd = e->elevator_data;
2164 request_queue_t *q = cfqd->queue;
2165
2166 cfq_shutdown_timer_wq(cfqd);
2167
2168 spin_lock(&cfq_exit_lock);
2169 spin_lock_irq(q->queue_lock);
2170
2171 if (cfqd->active_queue)
2172 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2173
2174 while (!list_empty(&cfqd->cic_list)) {
2175 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2176 struct cfq_io_context,
2177 queue_list);
2178 if (cic->cfqq[ASYNC]) {
2179 cfq_put_queue(cic->cfqq[ASYNC]);
2180 cic->cfqq[ASYNC] = NULL;
2181 }
2182 if (cic->cfqq[SYNC]) {
2183 cfq_put_queue(cic->cfqq[SYNC]);
2184 cic->cfqq[SYNC] = NULL;
2185 }
2186 cic->key = NULL;
2187 list_del_init(&cic->queue_list);
2188 }
2189
2190 spin_unlock_irq(q->queue_lock);
2191 spin_unlock(&cfq_exit_lock);
2192
2193 cfq_shutdown_timer_wq(cfqd);
2194
2195 mempool_destroy(cfqd->crq_pool);
2196 kfree(cfqd->crq_hash);
2197 kfree(cfqd->cfq_hash);
2198 kfree(cfqd);
2199 }
2200
2201 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2202 {
2203 struct cfq_data *cfqd;
2204 int i;
2205
2206 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2207 if (!cfqd)
2208 return NULL;
2209
2210 memset(cfqd, 0, sizeof(*cfqd));
2211
2212 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2213 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2214
2215 INIT_LIST_HEAD(&cfqd->busy_rr);
2216 INIT_LIST_HEAD(&cfqd->cur_rr);
2217 INIT_LIST_HEAD(&cfqd->idle_rr);
2218 INIT_LIST_HEAD(&cfqd->empty_list);
2219 INIT_LIST_HEAD(&cfqd->cic_list);
2220
2221 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2222 if (!cfqd->crq_hash)
2223 goto out_crqhash;
2224
2225 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2226 if (!cfqd->cfq_hash)
2227 goto out_cfqhash;
2228
2229 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2230 if (!cfqd->crq_pool)
2231 goto out_crqpool;
2232
2233 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2234 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2235 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2236 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2237
2238 cfqd->queue = q;
2239
2240 init_timer(&cfqd->idle_slice_timer);
2241 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2242 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2243
2244 init_timer(&cfqd->idle_class_timer);
2245 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2246 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2247
2248 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2249
2250 cfqd->cfq_queued = cfq_queued;
2251 cfqd->cfq_quantum = cfq_quantum;
2252 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2253 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2254 cfqd->cfq_back_max = cfq_back_max;
2255 cfqd->cfq_back_penalty = cfq_back_penalty;
2256 cfqd->cfq_slice[0] = cfq_slice_async;
2257 cfqd->cfq_slice[1] = cfq_slice_sync;
2258 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2259 cfqd->cfq_slice_idle = cfq_slice_idle;
2260
2261 return cfqd;
2262 out_crqpool:
2263 kfree(cfqd->cfq_hash);
2264 out_cfqhash:
2265 kfree(cfqd->crq_hash);
2266 out_crqhash:
2267 kfree(cfqd);
2268 return NULL;
2269 }
2270
2271 static void cfq_slab_kill(void)
2272 {
2273 if (crq_pool)
2274 kmem_cache_destroy(crq_pool);
2275 if (cfq_pool)
2276 kmem_cache_destroy(cfq_pool);
2277 if (cfq_ioc_pool)
2278 kmem_cache_destroy(cfq_ioc_pool);
2279 }
2280
2281 static int __init cfq_slab_setup(void)
2282 {
2283 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2284 NULL, NULL);
2285 if (!crq_pool)
2286 goto fail;
2287
2288 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2289 NULL, NULL);
2290 if (!cfq_pool)
2291 goto fail;
2292
2293 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2294 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2295 if (!cfq_ioc_pool)
2296 goto fail;
2297
2298 return 0;
2299 fail:
2300 cfq_slab_kill();
2301 return -ENOMEM;
2302 }
2303
2304 /*
2305 * sysfs parts below -->
2306 */
2307
2308 static ssize_t
2309 cfq_var_show(unsigned int var, char *page)
2310 {
2311 return sprintf(page, "%d\n", var);
2312 }
2313
2314 static ssize_t
2315 cfq_var_store(unsigned int *var, const char *page, size_t count)
2316 {
2317 char *p = (char *) page;
2318
2319 *var = simple_strtoul(p, &p, 10);
2320 return count;
2321 }
2322
2323 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2324 static ssize_t __FUNC(elevator_t *e, char *page) \
2325 { \
2326 struct cfq_data *cfqd = e->elevator_data; \
2327 unsigned int __data = __VAR; \
2328 if (__CONV) \
2329 __data = jiffies_to_msecs(__data); \
2330 return cfq_var_show(__data, (page)); \
2331 }
2332 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2333 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2334 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2335 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2336 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2337 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2338 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2339 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2340 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2341 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2342 #undef SHOW_FUNCTION
2343
2344 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2345 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2346 { \
2347 struct cfq_data *cfqd = e->elevator_data; \
2348 unsigned int __data; \
2349 int ret = cfq_var_store(&__data, (page), count); \
2350 if (__data < (MIN)) \
2351 __data = (MIN); \
2352 else if (__data > (MAX)) \
2353 __data = (MAX); \
2354 if (__CONV) \
2355 *(__PTR) = msecs_to_jiffies(__data); \
2356 else \
2357 *(__PTR) = __data; \
2358 return ret; \
2359 }
2360 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2361 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2362 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2363 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2364 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2365 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2366 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2367 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2368 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2369 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2370 #undef STORE_FUNCTION
2371
2372 #define CFQ_ATTR(name) \
2373 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2374
2375 static struct elv_fs_entry cfq_attrs[] = {
2376 CFQ_ATTR(quantum),
2377 CFQ_ATTR(queued),
2378 CFQ_ATTR(fifo_expire_sync),
2379 CFQ_ATTR(fifo_expire_async),
2380 CFQ_ATTR(back_seek_max),
2381 CFQ_ATTR(back_seek_penalty),
2382 CFQ_ATTR(slice_sync),
2383 CFQ_ATTR(slice_async),
2384 CFQ_ATTR(slice_async_rq),
2385 CFQ_ATTR(slice_idle),
2386 __ATTR_NULL
2387 };
2388
2389 static struct elevator_type iosched_cfq = {
2390 .ops = {
2391 .elevator_merge_fn = cfq_merge,
2392 .elevator_merged_fn = cfq_merged_request,
2393 .elevator_merge_req_fn = cfq_merged_requests,
2394 .elevator_dispatch_fn = cfq_dispatch_requests,
2395 .elevator_add_req_fn = cfq_insert_request,
2396 .elevator_activate_req_fn = cfq_activate_request,
2397 .elevator_deactivate_req_fn = cfq_deactivate_request,
2398 .elevator_queue_empty_fn = cfq_queue_empty,
2399 .elevator_completed_req_fn = cfq_completed_request,
2400 .elevator_former_req_fn = cfq_former_request,
2401 .elevator_latter_req_fn = cfq_latter_request,
2402 .elevator_set_req_fn = cfq_set_request,
2403 .elevator_put_req_fn = cfq_put_request,
2404 .elevator_may_queue_fn = cfq_may_queue,
2405 .elevator_init_fn = cfq_init_queue,
2406 .elevator_exit_fn = cfq_exit_queue,
2407 .trim = cfq_trim,
2408 },
2409 .elevator_attrs = cfq_attrs,
2410 .elevator_name = "cfq",
2411 .elevator_owner = THIS_MODULE,
2412 };
2413
2414 static int __init cfq_init(void)
2415 {
2416 int ret;
2417
2418 /*
2419 * could be 0 on HZ < 1000 setups
2420 */
2421 if (!cfq_slice_async)
2422 cfq_slice_async = 1;
2423 if (!cfq_slice_idle)
2424 cfq_slice_idle = 1;
2425
2426 if (cfq_slab_setup())
2427 return -ENOMEM;
2428
2429 ret = elv_register(&iosched_cfq);
2430 if (ret)
2431 cfq_slab_kill();
2432
2433 return ret;
2434 }
2435
2436 static void __exit cfq_exit(void)
2437 {
2438 DECLARE_COMPLETION(all_gone);
2439 elv_unregister(&iosched_cfq);
2440 ioc_gone = &all_gone;
2441 /* ioc_gone's update must be visible before reading ioc_count */
2442 smp_wmb();
2443 if (atomic_read(&ioc_count))
2444 wait_for_completion(ioc_gone);
2445 synchronize_rcu();
2446 cfq_slab_kill();
2447 }
2448
2449 module_init(cfq_init);
2450 module_exit(cfq_exit);
2451
2452 MODULE_AUTHOR("Jens Axboe");
2453 MODULE_LICENSE("GPL");
2454 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.077514 seconds and 6 git commands to generate.