blkio: Set must_dispatch only if we decided to not dispatch the request
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18 * tunables
19 */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35 * offset from end of service tree
36 */
37 #define CFQ_IDLE_DELAY (HZ / 5)
38
39 /*
40 * below this threshold, we consider thinktime immediate
41 */
42 #define CFQ_MIN_TT (2)
43
44 /*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48 #define CFQQ_COOP_TOUT (HZ)
49
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69
70 /*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76 struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
80 };
81 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83 /*
84 * Per process-grouping structure
85 */
86 struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
129 unsigned long seeky_start;
130
131 pid_t pid;
132
133 struct cfq_rb_root *service_tree;
134 struct cfq_queue *new_cfqq;
135 };
136
137 /*
138 * First index in the service_trees.
139 * IDLE is handled separately, so it has negative index
140 */
141 enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145 };
146
147 /*
148 * Second index in the service_trees.
149 */
150 enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154 };
155
156
157 /*
158 * Per block device queue structure
159 */
160 struct cfq_data {
161 struct request_queue *queue;
162
163 /*
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
167 struct cfq_rb_root service_trees[2][3];
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
171 */
172 enum wl_prio_t serving_prio;
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
175 bool noidle_tree_requires_idle;
176
177 /*
178 * Each priority tree is sorted by next_request position. These
179 * trees are used when determining if two or more queues are
180 * interleaving requests (see cfq_close_cooperator).
181 */
182 struct rb_root prio_trees[CFQ_PRIO_LISTS];
183
184 unsigned int busy_queues;
185 unsigned int busy_queues_avg[2];
186
187 int rq_in_driver[2];
188 int sync_flight;
189
190 /*
191 * queue-depth detection
192 */
193 int rq_queued;
194 int hw_tag;
195 /*
196 * hw_tag can be
197 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
198 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
199 * 0 => no NCQ
200 */
201 int hw_tag_est_depth;
202 unsigned int hw_tag_samples;
203
204 /*
205 * idle window management
206 */
207 struct timer_list idle_slice_timer;
208 struct work_struct unplug_work;
209
210 struct cfq_queue *active_queue;
211 struct cfq_io_context *active_cic;
212
213 /*
214 * async queue for each priority case
215 */
216 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
217 struct cfq_queue *async_idle_cfqq;
218
219 sector_t last_position;
220
221 /*
222 * tunables, see top of file
223 */
224 unsigned int cfq_quantum;
225 unsigned int cfq_fifo_expire[2];
226 unsigned int cfq_back_penalty;
227 unsigned int cfq_back_max;
228 unsigned int cfq_slice[2];
229 unsigned int cfq_slice_async_rq;
230 unsigned int cfq_slice_idle;
231 unsigned int cfq_latency;
232
233 struct list_head cic_list;
234
235 /*
236 * Fallback dummy cfqq for extreme OOM conditions
237 */
238 struct cfq_queue oom_cfqq;
239
240 unsigned long last_end_sync_rq;
241 };
242
243 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
244 enum wl_type_t type,
245 struct cfq_data *cfqd)
246 {
247 if (prio == IDLE_WORKLOAD)
248 return &cfqd->service_tree_idle;
249
250 return &cfqd->service_trees[prio][type];
251 }
252
253 enum cfqq_state_flags {
254 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
255 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
256 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
257 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
258 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
259 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
260 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
261 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
262 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
263 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
264 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
265 };
266
267 #define CFQ_CFQQ_FNS(name) \
268 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
269 { \
270 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
271 } \
272 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
273 { \
274 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
275 } \
276 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
277 { \
278 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
279 }
280
281 CFQ_CFQQ_FNS(on_rr);
282 CFQ_CFQQ_FNS(wait_request);
283 CFQ_CFQQ_FNS(must_dispatch);
284 CFQ_CFQQ_FNS(must_alloc_slice);
285 CFQ_CFQQ_FNS(fifo_expire);
286 CFQ_CFQQ_FNS(idle_window);
287 CFQ_CFQQ_FNS(prio_changed);
288 CFQ_CFQQ_FNS(slice_new);
289 CFQ_CFQQ_FNS(sync);
290 CFQ_CFQQ_FNS(coop);
291 CFQ_CFQQ_FNS(deep);
292 #undef CFQ_CFQQ_FNS
293
294 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
295 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
296 #define cfq_log(cfqd, fmt, args...) \
297 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
298
299 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
300 {
301 if (cfq_class_idle(cfqq))
302 return IDLE_WORKLOAD;
303 if (cfq_class_rt(cfqq))
304 return RT_WORKLOAD;
305 return BE_WORKLOAD;
306 }
307
308
309 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
310 {
311 if (!cfq_cfqq_sync(cfqq))
312 return ASYNC_WORKLOAD;
313 if (!cfq_cfqq_idle_window(cfqq))
314 return SYNC_NOIDLE_WORKLOAD;
315 return SYNC_WORKLOAD;
316 }
317
318 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
319 {
320 if (wl == IDLE_WORKLOAD)
321 return cfqd->service_tree_idle.count;
322
323 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
324 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
325 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
326 }
327
328 static void cfq_dispatch_insert(struct request_queue *, struct request *);
329 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
330 struct io_context *, gfp_t);
331 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
332 struct io_context *);
333
334 static inline int rq_in_driver(struct cfq_data *cfqd)
335 {
336 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
337 }
338
339 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
340 bool is_sync)
341 {
342 return cic->cfqq[is_sync];
343 }
344
345 static inline void cic_set_cfqq(struct cfq_io_context *cic,
346 struct cfq_queue *cfqq, bool is_sync)
347 {
348 cic->cfqq[is_sync] = cfqq;
349 }
350
351 /*
352 * We regard a request as SYNC, if it's either a read or has the SYNC bit
353 * set (in which case it could also be direct WRITE).
354 */
355 static inline bool cfq_bio_sync(struct bio *bio)
356 {
357 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
358 }
359
360 /*
361 * scheduler run of queue, if there are requests pending and no one in the
362 * driver that will restart queueing
363 */
364 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
365 {
366 if (cfqd->busy_queues) {
367 cfq_log(cfqd, "schedule dispatch");
368 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
369 }
370 }
371
372 static int cfq_queue_empty(struct request_queue *q)
373 {
374 struct cfq_data *cfqd = q->elevator->elevator_data;
375
376 return !cfqd->busy_queues;
377 }
378
379 /*
380 * Scale schedule slice based on io priority. Use the sync time slice only
381 * if a queue is marked sync and has sync io queued. A sync queue with async
382 * io only, should not get full sync slice length.
383 */
384 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
385 unsigned short prio)
386 {
387 const int base_slice = cfqd->cfq_slice[sync];
388
389 WARN_ON(prio >= IOPRIO_BE_NR);
390
391 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
392 }
393
394 static inline int
395 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
396 {
397 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
398 }
399
400 /*
401 * get averaged number of queues of RT/BE priority.
402 * average is updated, with a formula that gives more weight to higher numbers,
403 * to quickly follows sudden increases and decrease slowly
404 */
405
406 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
407 {
408 unsigned min_q, max_q;
409 unsigned mult = cfq_hist_divisor - 1;
410 unsigned round = cfq_hist_divisor / 2;
411 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
412
413 min_q = min(cfqd->busy_queues_avg[rt], busy);
414 max_q = max(cfqd->busy_queues_avg[rt], busy);
415 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
416 cfq_hist_divisor;
417 return cfqd->busy_queues_avg[rt];
418 }
419
420 static inline void
421 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
422 {
423 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
424 if (cfqd->cfq_latency) {
425 /* interested queues (we consider only the ones with the same
426 * priority class) */
427 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
428 unsigned sync_slice = cfqd->cfq_slice[1];
429 unsigned expect_latency = sync_slice * iq;
430 if (expect_latency > cfq_target_latency) {
431 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
432 /* scale low_slice according to IO priority
433 * and sync vs async */
434 unsigned low_slice =
435 min(slice, base_low_slice * slice / sync_slice);
436 /* the adapted slice value is scaled to fit all iqs
437 * into the target latency */
438 slice = max(slice * cfq_target_latency / expect_latency,
439 low_slice);
440 }
441 }
442 cfqq->slice_end = jiffies + slice;
443 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
444 }
445
446 /*
447 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
448 * isn't valid until the first request from the dispatch is activated
449 * and the slice time set.
450 */
451 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
452 {
453 if (cfq_cfqq_slice_new(cfqq))
454 return 0;
455 if (time_before(jiffies, cfqq->slice_end))
456 return 0;
457
458 return 1;
459 }
460
461 /*
462 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
463 * We choose the request that is closest to the head right now. Distance
464 * behind the head is penalized and only allowed to a certain extent.
465 */
466 static struct request *
467 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
468 {
469 sector_t s1, s2, d1 = 0, d2 = 0;
470 unsigned long back_max;
471 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
472 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
473 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
474
475 if (rq1 == NULL || rq1 == rq2)
476 return rq2;
477 if (rq2 == NULL)
478 return rq1;
479
480 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
481 return rq1;
482 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
483 return rq2;
484 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
485 return rq1;
486 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
487 return rq2;
488
489 s1 = blk_rq_pos(rq1);
490 s2 = blk_rq_pos(rq2);
491
492 /*
493 * by definition, 1KiB is 2 sectors
494 */
495 back_max = cfqd->cfq_back_max * 2;
496
497 /*
498 * Strict one way elevator _except_ in the case where we allow
499 * short backward seeks which are biased as twice the cost of a
500 * similar forward seek.
501 */
502 if (s1 >= last)
503 d1 = s1 - last;
504 else if (s1 + back_max >= last)
505 d1 = (last - s1) * cfqd->cfq_back_penalty;
506 else
507 wrap |= CFQ_RQ1_WRAP;
508
509 if (s2 >= last)
510 d2 = s2 - last;
511 else if (s2 + back_max >= last)
512 d2 = (last - s2) * cfqd->cfq_back_penalty;
513 else
514 wrap |= CFQ_RQ2_WRAP;
515
516 /* Found required data */
517
518 /*
519 * By doing switch() on the bit mask "wrap" we avoid having to
520 * check two variables for all permutations: --> faster!
521 */
522 switch (wrap) {
523 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
524 if (d1 < d2)
525 return rq1;
526 else if (d2 < d1)
527 return rq2;
528 else {
529 if (s1 >= s2)
530 return rq1;
531 else
532 return rq2;
533 }
534
535 case CFQ_RQ2_WRAP:
536 return rq1;
537 case CFQ_RQ1_WRAP:
538 return rq2;
539 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
540 default:
541 /*
542 * Since both rqs are wrapped,
543 * start with the one that's further behind head
544 * (--> only *one* back seek required),
545 * since back seek takes more time than forward.
546 */
547 if (s1 <= s2)
548 return rq1;
549 else
550 return rq2;
551 }
552 }
553
554 /*
555 * The below is leftmost cache rbtree addon
556 */
557 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
558 {
559 if (!root->left)
560 root->left = rb_first(&root->rb);
561
562 if (root->left)
563 return rb_entry(root->left, struct cfq_queue, rb_node);
564
565 return NULL;
566 }
567
568 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569 {
570 rb_erase(n, root);
571 RB_CLEAR_NODE(n);
572 }
573
574 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
575 {
576 if (root->left == n)
577 root->left = NULL;
578 rb_erase_init(n, &root->rb);
579 --root->count;
580 }
581
582 /*
583 * would be nice to take fifo expire time into account as well
584 */
585 static struct request *
586 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
587 struct request *last)
588 {
589 struct rb_node *rbnext = rb_next(&last->rb_node);
590 struct rb_node *rbprev = rb_prev(&last->rb_node);
591 struct request *next = NULL, *prev = NULL;
592
593 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
594
595 if (rbprev)
596 prev = rb_entry_rq(rbprev);
597
598 if (rbnext)
599 next = rb_entry_rq(rbnext);
600 else {
601 rbnext = rb_first(&cfqq->sort_list);
602 if (rbnext && rbnext != &last->rb_node)
603 next = rb_entry_rq(rbnext);
604 }
605
606 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
607 }
608
609 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
610 struct cfq_queue *cfqq)
611 {
612 /*
613 * just an approximation, should be ok.
614 */
615 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
616 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
617 }
618
619 /*
620 * The cfqd->service_trees holds all pending cfq_queue's that have
621 * requests waiting to be processed. It is sorted in the order that
622 * we will service the queues.
623 */
624 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
625 bool add_front)
626 {
627 struct rb_node **p, *parent;
628 struct cfq_queue *__cfqq;
629 unsigned long rb_key;
630 struct cfq_rb_root *service_tree;
631 int left;
632
633 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
634 if (cfq_class_idle(cfqq)) {
635 rb_key = CFQ_IDLE_DELAY;
636 parent = rb_last(&service_tree->rb);
637 if (parent && parent != &cfqq->rb_node) {
638 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
639 rb_key += __cfqq->rb_key;
640 } else
641 rb_key += jiffies;
642 } else if (!add_front) {
643 /*
644 * Get our rb key offset. Subtract any residual slice
645 * value carried from last service. A negative resid
646 * count indicates slice overrun, and this should position
647 * the next service time further away in the tree.
648 */
649 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
650 rb_key -= cfqq->slice_resid;
651 cfqq->slice_resid = 0;
652 } else {
653 rb_key = -HZ;
654 __cfqq = cfq_rb_first(service_tree);
655 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
656 }
657
658 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
659 /*
660 * same position, nothing more to do
661 */
662 if (rb_key == cfqq->rb_key &&
663 cfqq->service_tree == service_tree)
664 return;
665
666 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
667 cfqq->service_tree = NULL;
668 }
669
670 left = 1;
671 parent = NULL;
672 cfqq->service_tree = service_tree;
673 p = &service_tree->rb.rb_node;
674 while (*p) {
675 struct rb_node **n;
676
677 parent = *p;
678 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
679
680 /*
681 * sort by key, that represents service time.
682 */
683 if (time_before(rb_key, __cfqq->rb_key))
684 n = &(*p)->rb_left;
685 else {
686 n = &(*p)->rb_right;
687 left = 0;
688 }
689
690 p = n;
691 }
692
693 if (left)
694 service_tree->left = &cfqq->rb_node;
695
696 cfqq->rb_key = rb_key;
697 rb_link_node(&cfqq->rb_node, parent, p);
698 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
699 service_tree->count++;
700 }
701
702 static struct cfq_queue *
703 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
704 sector_t sector, struct rb_node **ret_parent,
705 struct rb_node ***rb_link)
706 {
707 struct rb_node **p, *parent;
708 struct cfq_queue *cfqq = NULL;
709
710 parent = NULL;
711 p = &root->rb_node;
712 while (*p) {
713 struct rb_node **n;
714
715 parent = *p;
716 cfqq = rb_entry(parent, struct cfq_queue, p_node);
717
718 /*
719 * Sort strictly based on sector. Smallest to the left,
720 * largest to the right.
721 */
722 if (sector > blk_rq_pos(cfqq->next_rq))
723 n = &(*p)->rb_right;
724 else if (sector < blk_rq_pos(cfqq->next_rq))
725 n = &(*p)->rb_left;
726 else
727 break;
728 p = n;
729 cfqq = NULL;
730 }
731
732 *ret_parent = parent;
733 if (rb_link)
734 *rb_link = p;
735 return cfqq;
736 }
737
738 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
739 {
740 struct rb_node **p, *parent;
741 struct cfq_queue *__cfqq;
742
743 if (cfqq->p_root) {
744 rb_erase(&cfqq->p_node, cfqq->p_root);
745 cfqq->p_root = NULL;
746 }
747
748 if (cfq_class_idle(cfqq))
749 return;
750 if (!cfqq->next_rq)
751 return;
752
753 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
754 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
755 blk_rq_pos(cfqq->next_rq), &parent, &p);
756 if (!__cfqq) {
757 rb_link_node(&cfqq->p_node, parent, p);
758 rb_insert_color(&cfqq->p_node, cfqq->p_root);
759 } else
760 cfqq->p_root = NULL;
761 }
762
763 /*
764 * Update cfqq's position in the service tree.
765 */
766 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
767 {
768 /*
769 * Resorting requires the cfqq to be on the RR list already.
770 */
771 if (cfq_cfqq_on_rr(cfqq)) {
772 cfq_service_tree_add(cfqd, cfqq, 0);
773 cfq_prio_tree_add(cfqd, cfqq);
774 }
775 }
776
777 /*
778 * add to busy list of queues for service, trying to be fair in ordering
779 * the pending list according to last request service
780 */
781 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
782 {
783 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
784 BUG_ON(cfq_cfqq_on_rr(cfqq));
785 cfq_mark_cfqq_on_rr(cfqq);
786 cfqd->busy_queues++;
787
788 cfq_resort_rr_list(cfqd, cfqq);
789 }
790
791 /*
792 * Called when the cfqq no longer has requests pending, remove it from
793 * the service tree.
794 */
795 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
796 {
797 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
798 BUG_ON(!cfq_cfqq_on_rr(cfqq));
799 cfq_clear_cfqq_on_rr(cfqq);
800
801 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
802 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
803 cfqq->service_tree = NULL;
804 }
805 if (cfqq->p_root) {
806 rb_erase(&cfqq->p_node, cfqq->p_root);
807 cfqq->p_root = NULL;
808 }
809
810 BUG_ON(!cfqd->busy_queues);
811 cfqd->busy_queues--;
812 }
813
814 /*
815 * rb tree support functions
816 */
817 static void cfq_del_rq_rb(struct request *rq)
818 {
819 struct cfq_queue *cfqq = RQ_CFQQ(rq);
820 struct cfq_data *cfqd = cfqq->cfqd;
821 const int sync = rq_is_sync(rq);
822
823 BUG_ON(!cfqq->queued[sync]);
824 cfqq->queued[sync]--;
825
826 elv_rb_del(&cfqq->sort_list, rq);
827
828 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
829 cfq_del_cfqq_rr(cfqd, cfqq);
830 }
831
832 static void cfq_add_rq_rb(struct request *rq)
833 {
834 struct cfq_queue *cfqq = RQ_CFQQ(rq);
835 struct cfq_data *cfqd = cfqq->cfqd;
836 struct request *__alias, *prev;
837
838 cfqq->queued[rq_is_sync(rq)]++;
839
840 /*
841 * looks a little odd, but the first insert might return an alias.
842 * if that happens, put the alias on the dispatch list
843 */
844 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
845 cfq_dispatch_insert(cfqd->queue, __alias);
846
847 if (!cfq_cfqq_on_rr(cfqq))
848 cfq_add_cfqq_rr(cfqd, cfqq);
849
850 /*
851 * check if this request is a better next-serve candidate
852 */
853 prev = cfqq->next_rq;
854 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
855
856 /*
857 * adjust priority tree position, if ->next_rq changes
858 */
859 if (prev != cfqq->next_rq)
860 cfq_prio_tree_add(cfqd, cfqq);
861
862 BUG_ON(!cfqq->next_rq);
863 }
864
865 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
866 {
867 elv_rb_del(&cfqq->sort_list, rq);
868 cfqq->queued[rq_is_sync(rq)]--;
869 cfq_add_rq_rb(rq);
870 }
871
872 static struct request *
873 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
874 {
875 struct task_struct *tsk = current;
876 struct cfq_io_context *cic;
877 struct cfq_queue *cfqq;
878
879 cic = cfq_cic_lookup(cfqd, tsk->io_context);
880 if (!cic)
881 return NULL;
882
883 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
884 if (cfqq) {
885 sector_t sector = bio->bi_sector + bio_sectors(bio);
886
887 return elv_rb_find(&cfqq->sort_list, sector);
888 }
889
890 return NULL;
891 }
892
893 static void cfq_activate_request(struct request_queue *q, struct request *rq)
894 {
895 struct cfq_data *cfqd = q->elevator->elevator_data;
896
897 cfqd->rq_in_driver[rq_is_sync(rq)]++;
898 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
899 rq_in_driver(cfqd));
900
901 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
902 }
903
904 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
905 {
906 struct cfq_data *cfqd = q->elevator->elevator_data;
907 const int sync = rq_is_sync(rq);
908
909 WARN_ON(!cfqd->rq_in_driver[sync]);
910 cfqd->rq_in_driver[sync]--;
911 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
912 rq_in_driver(cfqd));
913 }
914
915 static void cfq_remove_request(struct request *rq)
916 {
917 struct cfq_queue *cfqq = RQ_CFQQ(rq);
918
919 if (cfqq->next_rq == rq)
920 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
921
922 list_del_init(&rq->queuelist);
923 cfq_del_rq_rb(rq);
924
925 cfqq->cfqd->rq_queued--;
926 if (rq_is_meta(rq)) {
927 WARN_ON(!cfqq->meta_pending);
928 cfqq->meta_pending--;
929 }
930 }
931
932 static int cfq_merge(struct request_queue *q, struct request **req,
933 struct bio *bio)
934 {
935 struct cfq_data *cfqd = q->elevator->elevator_data;
936 struct request *__rq;
937
938 __rq = cfq_find_rq_fmerge(cfqd, bio);
939 if (__rq && elv_rq_merge_ok(__rq, bio)) {
940 *req = __rq;
941 return ELEVATOR_FRONT_MERGE;
942 }
943
944 return ELEVATOR_NO_MERGE;
945 }
946
947 static void cfq_merged_request(struct request_queue *q, struct request *req,
948 int type)
949 {
950 if (type == ELEVATOR_FRONT_MERGE) {
951 struct cfq_queue *cfqq = RQ_CFQQ(req);
952
953 cfq_reposition_rq_rb(cfqq, req);
954 }
955 }
956
957 static void
958 cfq_merged_requests(struct request_queue *q, struct request *rq,
959 struct request *next)
960 {
961 struct cfq_queue *cfqq = RQ_CFQQ(rq);
962 /*
963 * reposition in fifo if next is older than rq
964 */
965 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
966 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
967 list_move(&rq->queuelist, &next->queuelist);
968 rq_set_fifo_time(rq, rq_fifo_time(next));
969 }
970
971 if (cfqq->next_rq == next)
972 cfqq->next_rq = rq;
973 cfq_remove_request(next);
974 }
975
976 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
977 struct bio *bio)
978 {
979 struct cfq_data *cfqd = q->elevator->elevator_data;
980 struct cfq_io_context *cic;
981 struct cfq_queue *cfqq;
982
983 /*
984 * Disallow merge of a sync bio into an async request.
985 */
986 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
987 return false;
988
989 /*
990 * Lookup the cfqq that this bio will be queued with. Allow
991 * merge only if rq is queued there.
992 */
993 cic = cfq_cic_lookup(cfqd, current->io_context);
994 if (!cic)
995 return false;
996
997 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
998 return cfqq == RQ_CFQQ(rq);
999 }
1000
1001 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1002 struct cfq_queue *cfqq)
1003 {
1004 if (cfqq) {
1005 cfq_log_cfqq(cfqd, cfqq, "set_active");
1006 cfqq->slice_end = 0;
1007 cfqq->slice_dispatch = 0;
1008
1009 cfq_clear_cfqq_wait_request(cfqq);
1010 cfq_clear_cfqq_must_dispatch(cfqq);
1011 cfq_clear_cfqq_must_alloc_slice(cfqq);
1012 cfq_clear_cfqq_fifo_expire(cfqq);
1013 cfq_mark_cfqq_slice_new(cfqq);
1014
1015 del_timer(&cfqd->idle_slice_timer);
1016 }
1017
1018 cfqd->active_queue = cfqq;
1019 }
1020
1021 /*
1022 * current cfqq expired its slice (or was too idle), select new one
1023 */
1024 static void
1025 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1026 bool timed_out)
1027 {
1028 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1029
1030 if (cfq_cfqq_wait_request(cfqq))
1031 del_timer(&cfqd->idle_slice_timer);
1032
1033 cfq_clear_cfqq_wait_request(cfqq);
1034
1035 /*
1036 * store what was left of this slice, if the queue idled/timed out
1037 */
1038 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1039 cfqq->slice_resid = cfqq->slice_end - jiffies;
1040 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1041 }
1042
1043 cfq_resort_rr_list(cfqd, cfqq);
1044
1045 if (cfqq == cfqd->active_queue)
1046 cfqd->active_queue = NULL;
1047
1048 if (cfqd->active_cic) {
1049 put_io_context(cfqd->active_cic->ioc);
1050 cfqd->active_cic = NULL;
1051 }
1052 }
1053
1054 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1055 {
1056 struct cfq_queue *cfqq = cfqd->active_queue;
1057
1058 if (cfqq)
1059 __cfq_slice_expired(cfqd, cfqq, timed_out);
1060 }
1061
1062 /*
1063 * Get next queue for service. Unless we have a queue preemption,
1064 * we'll simply select the first cfqq in the service tree.
1065 */
1066 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1067 {
1068 struct cfq_rb_root *service_tree =
1069 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1070
1071 if (RB_EMPTY_ROOT(&service_tree->rb))
1072 return NULL;
1073 return cfq_rb_first(service_tree);
1074 }
1075
1076 /*
1077 * Get and set a new active queue for service.
1078 */
1079 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1080 struct cfq_queue *cfqq)
1081 {
1082 if (!cfqq)
1083 cfqq = cfq_get_next_queue(cfqd);
1084
1085 __cfq_set_active_queue(cfqd, cfqq);
1086 return cfqq;
1087 }
1088
1089 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1090 struct request *rq)
1091 {
1092 if (blk_rq_pos(rq) >= cfqd->last_position)
1093 return blk_rq_pos(rq) - cfqd->last_position;
1094 else
1095 return cfqd->last_position - blk_rq_pos(rq);
1096 }
1097
1098 #define CFQQ_SEEK_THR 8 * 1024
1099 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1100
1101 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1102 struct request *rq)
1103 {
1104 sector_t sdist = cfqq->seek_mean;
1105
1106 if (!sample_valid(cfqq->seek_samples))
1107 sdist = CFQQ_SEEK_THR;
1108
1109 return cfq_dist_from_last(cfqd, rq) <= sdist;
1110 }
1111
1112 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1113 struct cfq_queue *cur_cfqq)
1114 {
1115 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1116 struct rb_node *parent, *node;
1117 struct cfq_queue *__cfqq;
1118 sector_t sector = cfqd->last_position;
1119
1120 if (RB_EMPTY_ROOT(root))
1121 return NULL;
1122
1123 /*
1124 * First, if we find a request starting at the end of the last
1125 * request, choose it.
1126 */
1127 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1128 if (__cfqq)
1129 return __cfqq;
1130
1131 /*
1132 * If the exact sector wasn't found, the parent of the NULL leaf
1133 * will contain the closest sector.
1134 */
1135 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1136 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1137 return __cfqq;
1138
1139 if (blk_rq_pos(__cfqq->next_rq) < sector)
1140 node = rb_next(&__cfqq->p_node);
1141 else
1142 node = rb_prev(&__cfqq->p_node);
1143 if (!node)
1144 return NULL;
1145
1146 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1147 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1148 return __cfqq;
1149
1150 return NULL;
1151 }
1152
1153 /*
1154 * cfqd - obvious
1155 * cur_cfqq - passed in so that we don't decide that the current queue is
1156 * closely cooperating with itself.
1157 *
1158 * So, basically we're assuming that that cur_cfqq has dispatched at least
1159 * one request, and that cfqd->last_position reflects a position on the disk
1160 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1161 * assumption.
1162 */
1163 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1164 struct cfq_queue *cur_cfqq)
1165 {
1166 struct cfq_queue *cfqq;
1167
1168 if (!cfq_cfqq_sync(cur_cfqq))
1169 return NULL;
1170 if (CFQQ_SEEKY(cur_cfqq))
1171 return NULL;
1172
1173 /*
1174 * We should notice if some of the queues are cooperating, eg
1175 * working closely on the same area of the disk. In that case,
1176 * we can group them together and don't waste time idling.
1177 */
1178 cfqq = cfqq_close(cfqd, cur_cfqq);
1179 if (!cfqq)
1180 return NULL;
1181
1182 /*
1183 * It only makes sense to merge sync queues.
1184 */
1185 if (!cfq_cfqq_sync(cfqq))
1186 return NULL;
1187 if (CFQQ_SEEKY(cfqq))
1188 return NULL;
1189
1190 /*
1191 * Do not merge queues of different priority classes
1192 */
1193 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1194 return NULL;
1195
1196 return cfqq;
1197 }
1198
1199 /*
1200 * Determine whether we should enforce idle window for this queue.
1201 */
1202
1203 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1204 {
1205 enum wl_prio_t prio = cfqq_prio(cfqq);
1206 struct cfq_rb_root *service_tree = cfqq->service_tree;
1207
1208 /* We never do for idle class queues. */
1209 if (prio == IDLE_WORKLOAD)
1210 return false;
1211
1212 /* We do for queues that were marked with idle window flag. */
1213 if (cfq_cfqq_idle_window(cfqq))
1214 return true;
1215
1216 /*
1217 * Otherwise, we do only if they are the last ones
1218 * in their service tree.
1219 */
1220 if (!service_tree)
1221 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1222
1223 if (service_tree->count == 0)
1224 return true;
1225
1226 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1227 }
1228
1229 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1230 {
1231 struct cfq_queue *cfqq = cfqd->active_queue;
1232 struct cfq_io_context *cic;
1233 unsigned long sl;
1234
1235 /*
1236 * SSD device without seek penalty, disable idling. But only do so
1237 * for devices that support queuing, otherwise we still have a problem
1238 * with sync vs async workloads.
1239 */
1240 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1241 return;
1242
1243 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1244 WARN_ON(cfq_cfqq_slice_new(cfqq));
1245
1246 /*
1247 * idle is disabled, either manually or by past process history
1248 */
1249 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1250 return;
1251
1252 /*
1253 * still active requests from this queue, don't idle
1254 */
1255 if (cfqq->dispatched)
1256 return;
1257
1258 /*
1259 * task has exited, don't wait
1260 */
1261 cic = cfqd->active_cic;
1262 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1263 return;
1264
1265 /*
1266 * If our average think time is larger than the remaining time
1267 * slice, then don't idle. This avoids overrunning the allotted
1268 * time slice.
1269 */
1270 if (sample_valid(cic->ttime_samples) &&
1271 (cfqq->slice_end - jiffies < cic->ttime_mean))
1272 return;
1273
1274 cfq_mark_cfqq_wait_request(cfqq);
1275
1276 sl = cfqd->cfq_slice_idle;
1277
1278 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1279 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1280 }
1281
1282 /*
1283 * Move request from internal lists to the request queue dispatch list.
1284 */
1285 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1286 {
1287 struct cfq_data *cfqd = q->elevator->elevator_data;
1288 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1289
1290 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1291
1292 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1293 cfq_remove_request(rq);
1294 cfqq->dispatched++;
1295 elv_dispatch_sort(q, rq);
1296
1297 if (cfq_cfqq_sync(cfqq))
1298 cfqd->sync_flight++;
1299 }
1300
1301 /*
1302 * return expired entry, or NULL to just start from scratch in rbtree
1303 */
1304 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1305 {
1306 struct request *rq = NULL;
1307
1308 if (cfq_cfqq_fifo_expire(cfqq))
1309 return NULL;
1310
1311 cfq_mark_cfqq_fifo_expire(cfqq);
1312
1313 if (list_empty(&cfqq->fifo))
1314 return NULL;
1315
1316 rq = rq_entry_fifo(cfqq->fifo.next);
1317 if (time_before(jiffies, rq_fifo_time(rq)))
1318 rq = NULL;
1319
1320 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1321 return rq;
1322 }
1323
1324 static inline int
1325 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1326 {
1327 const int base_rq = cfqd->cfq_slice_async_rq;
1328
1329 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1330
1331 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1332 }
1333
1334 /*
1335 * Must be called with the queue_lock held.
1336 */
1337 static int cfqq_process_refs(struct cfq_queue *cfqq)
1338 {
1339 int process_refs, io_refs;
1340
1341 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1342 process_refs = atomic_read(&cfqq->ref) - io_refs;
1343 BUG_ON(process_refs < 0);
1344 return process_refs;
1345 }
1346
1347 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1348 {
1349 int process_refs, new_process_refs;
1350 struct cfq_queue *__cfqq;
1351
1352 /* Avoid a circular list and skip interim queue merges */
1353 while ((__cfqq = new_cfqq->new_cfqq)) {
1354 if (__cfqq == cfqq)
1355 return;
1356 new_cfqq = __cfqq;
1357 }
1358
1359 process_refs = cfqq_process_refs(cfqq);
1360 /*
1361 * If the process for the cfqq has gone away, there is no
1362 * sense in merging the queues.
1363 */
1364 if (process_refs == 0)
1365 return;
1366
1367 /*
1368 * Merge in the direction of the lesser amount of work.
1369 */
1370 new_process_refs = cfqq_process_refs(new_cfqq);
1371 if (new_process_refs >= process_refs) {
1372 cfqq->new_cfqq = new_cfqq;
1373 atomic_add(process_refs, &new_cfqq->ref);
1374 } else {
1375 new_cfqq->new_cfqq = cfqq;
1376 atomic_add(new_process_refs, &cfqq->ref);
1377 }
1378 }
1379
1380 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1381 bool prio_changed)
1382 {
1383 struct cfq_queue *queue;
1384 int i;
1385 bool key_valid = false;
1386 unsigned long lowest_key = 0;
1387 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1388
1389 if (prio_changed) {
1390 /*
1391 * When priorities switched, we prefer starting
1392 * from SYNC_NOIDLE (first choice), or just SYNC
1393 * over ASYNC
1394 */
1395 if (service_tree_for(prio, cur_best, cfqd)->count)
1396 return cur_best;
1397 cur_best = SYNC_WORKLOAD;
1398 if (service_tree_for(prio, cur_best, cfqd)->count)
1399 return cur_best;
1400
1401 return ASYNC_WORKLOAD;
1402 }
1403
1404 for (i = 0; i < 3; ++i) {
1405 /* otherwise, select the one with lowest rb_key */
1406 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1407 if (queue &&
1408 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1409 lowest_key = queue->rb_key;
1410 cur_best = i;
1411 key_valid = true;
1412 }
1413 }
1414
1415 return cur_best;
1416 }
1417
1418 static void choose_service_tree(struct cfq_data *cfqd)
1419 {
1420 enum wl_prio_t previous_prio = cfqd->serving_prio;
1421 bool prio_changed;
1422 unsigned slice;
1423 unsigned count;
1424
1425 /* Choose next priority. RT > BE > IDLE */
1426 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1427 cfqd->serving_prio = RT_WORKLOAD;
1428 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1429 cfqd->serving_prio = BE_WORKLOAD;
1430 else {
1431 cfqd->serving_prio = IDLE_WORKLOAD;
1432 cfqd->workload_expires = jiffies + 1;
1433 return;
1434 }
1435
1436 /*
1437 * For RT and BE, we have to choose also the type
1438 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1439 * expiration time
1440 */
1441 prio_changed = (cfqd->serving_prio != previous_prio);
1442 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1443 ->count;
1444
1445 /*
1446 * If priority didn't change, check workload expiration,
1447 * and that we still have other queues ready
1448 */
1449 if (!prio_changed && count &&
1450 !time_after(jiffies, cfqd->workload_expires))
1451 return;
1452
1453 /* otherwise select new workload type */
1454 cfqd->serving_type =
1455 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1456 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1457 ->count;
1458
1459 /*
1460 * the workload slice is computed as a fraction of target latency
1461 * proportional to the number of queues in that workload, over
1462 * all the queues in the same priority class
1463 */
1464 slice = cfq_target_latency * count /
1465 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1466 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1467
1468 if (cfqd->serving_type == ASYNC_WORKLOAD)
1469 /* async workload slice is scaled down according to
1470 * the sync/async slice ratio. */
1471 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1472 else
1473 /* sync workload slice is at least 2 * cfq_slice_idle */
1474 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1475
1476 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1477 cfqd->workload_expires = jiffies + slice;
1478 cfqd->noidle_tree_requires_idle = false;
1479 }
1480
1481 /*
1482 * Select a queue for service. If we have a current active queue,
1483 * check whether to continue servicing it, or retrieve and set a new one.
1484 */
1485 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1486 {
1487 struct cfq_queue *cfqq, *new_cfqq = NULL;
1488
1489 cfqq = cfqd->active_queue;
1490 if (!cfqq)
1491 goto new_queue;
1492
1493 /*
1494 * The active queue has run out of time, expire it and select new.
1495 */
1496 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1497 goto expire;
1498
1499 /*
1500 * The active queue has requests and isn't expired, allow it to
1501 * dispatch.
1502 */
1503 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1504 goto keep_queue;
1505
1506 /*
1507 * If another queue has a request waiting within our mean seek
1508 * distance, let it run. The expire code will check for close
1509 * cooperators and put the close queue at the front of the service
1510 * tree. If possible, merge the expiring queue with the new cfqq.
1511 */
1512 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1513 if (new_cfqq) {
1514 if (!cfqq->new_cfqq)
1515 cfq_setup_merge(cfqq, new_cfqq);
1516 goto expire;
1517 }
1518
1519 /*
1520 * No requests pending. If the active queue still has requests in
1521 * flight or is idling for a new request, allow either of these
1522 * conditions to happen (or time out) before selecting a new queue.
1523 */
1524 if (timer_pending(&cfqd->idle_slice_timer) ||
1525 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1526 cfqq = NULL;
1527 goto keep_queue;
1528 }
1529
1530 expire:
1531 cfq_slice_expired(cfqd, 0);
1532 new_queue:
1533 /*
1534 * Current queue expired. Check if we have to switch to a new
1535 * service tree
1536 */
1537 if (!new_cfqq)
1538 choose_service_tree(cfqd);
1539
1540 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1541 keep_queue:
1542 return cfqq;
1543 }
1544
1545 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1546 {
1547 int dispatched = 0;
1548
1549 while (cfqq->next_rq) {
1550 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1551 dispatched++;
1552 }
1553
1554 BUG_ON(!list_empty(&cfqq->fifo));
1555 return dispatched;
1556 }
1557
1558 /*
1559 * Drain our current requests. Used for barriers and when switching
1560 * io schedulers on-the-fly.
1561 */
1562 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1563 {
1564 struct cfq_queue *cfqq;
1565 int dispatched = 0;
1566 int i, j;
1567 for (i = 0; i < 2; ++i)
1568 for (j = 0; j < 3; ++j)
1569 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1570 != NULL)
1571 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1572
1573 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1574 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1575
1576 cfq_slice_expired(cfqd, 0);
1577
1578 BUG_ON(cfqd->busy_queues);
1579
1580 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1581 return dispatched;
1582 }
1583
1584 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1585 {
1586 unsigned int max_dispatch;
1587
1588 /*
1589 * Drain async requests before we start sync IO
1590 */
1591 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1592 return false;
1593
1594 /*
1595 * If this is an async queue and we have sync IO in flight, let it wait
1596 */
1597 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1598 return false;
1599
1600 max_dispatch = cfqd->cfq_quantum;
1601 if (cfq_class_idle(cfqq))
1602 max_dispatch = 1;
1603
1604 /*
1605 * Does this cfqq already have too much IO in flight?
1606 */
1607 if (cfqq->dispatched >= max_dispatch) {
1608 /*
1609 * idle queue must always only have a single IO in flight
1610 */
1611 if (cfq_class_idle(cfqq))
1612 return false;
1613
1614 /*
1615 * We have other queues, don't allow more IO from this one
1616 */
1617 if (cfqd->busy_queues > 1)
1618 return false;
1619
1620 /*
1621 * Sole queue user, no limit
1622 */
1623 max_dispatch = -1;
1624 }
1625
1626 /*
1627 * Async queues must wait a bit before being allowed dispatch.
1628 * We also ramp up the dispatch depth gradually for async IO,
1629 * based on the last sync IO we serviced
1630 */
1631 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1632 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1633 unsigned int depth;
1634
1635 depth = last_sync / cfqd->cfq_slice[1];
1636 if (!depth && !cfqq->dispatched)
1637 depth = 1;
1638 if (depth < max_dispatch)
1639 max_dispatch = depth;
1640 }
1641
1642 /*
1643 * If we're below the current max, allow a dispatch
1644 */
1645 return cfqq->dispatched < max_dispatch;
1646 }
1647
1648 /*
1649 * Dispatch a request from cfqq, moving them to the request queue
1650 * dispatch list.
1651 */
1652 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1653 {
1654 struct request *rq;
1655
1656 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1657
1658 if (!cfq_may_dispatch(cfqd, cfqq))
1659 return false;
1660
1661 /*
1662 * follow expired path, else get first next available
1663 */
1664 rq = cfq_check_fifo(cfqq);
1665 if (!rq)
1666 rq = cfqq->next_rq;
1667
1668 /*
1669 * insert request into driver dispatch list
1670 */
1671 cfq_dispatch_insert(cfqd->queue, rq);
1672
1673 if (!cfqd->active_cic) {
1674 struct cfq_io_context *cic = RQ_CIC(rq);
1675
1676 atomic_long_inc(&cic->ioc->refcount);
1677 cfqd->active_cic = cic;
1678 }
1679
1680 return true;
1681 }
1682
1683 /*
1684 * Find the cfqq that we need to service and move a request from that to the
1685 * dispatch list
1686 */
1687 static int cfq_dispatch_requests(struct request_queue *q, int force)
1688 {
1689 struct cfq_data *cfqd = q->elevator->elevator_data;
1690 struct cfq_queue *cfqq;
1691
1692 if (!cfqd->busy_queues)
1693 return 0;
1694
1695 if (unlikely(force))
1696 return cfq_forced_dispatch(cfqd);
1697
1698 cfqq = cfq_select_queue(cfqd);
1699 if (!cfqq)
1700 return 0;
1701
1702 /*
1703 * Dispatch a request from this cfqq, if it is allowed
1704 */
1705 if (!cfq_dispatch_request(cfqd, cfqq))
1706 return 0;
1707
1708 cfqq->slice_dispatch++;
1709 cfq_clear_cfqq_must_dispatch(cfqq);
1710
1711 /*
1712 * expire an async queue immediately if it has used up its slice. idle
1713 * queue always expire after 1 dispatch round.
1714 */
1715 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1716 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1717 cfq_class_idle(cfqq))) {
1718 cfqq->slice_end = jiffies + 1;
1719 cfq_slice_expired(cfqd, 0);
1720 }
1721
1722 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1723 return 1;
1724 }
1725
1726 /*
1727 * task holds one reference to the queue, dropped when task exits. each rq
1728 * in-flight on this queue also holds a reference, dropped when rq is freed.
1729 *
1730 * queue lock must be held here.
1731 */
1732 static void cfq_put_queue(struct cfq_queue *cfqq)
1733 {
1734 struct cfq_data *cfqd = cfqq->cfqd;
1735
1736 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1737
1738 if (!atomic_dec_and_test(&cfqq->ref))
1739 return;
1740
1741 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1742 BUG_ON(rb_first(&cfqq->sort_list));
1743 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1744 BUG_ON(cfq_cfqq_on_rr(cfqq));
1745
1746 if (unlikely(cfqd->active_queue == cfqq)) {
1747 __cfq_slice_expired(cfqd, cfqq, 0);
1748 cfq_schedule_dispatch(cfqd);
1749 }
1750
1751 kmem_cache_free(cfq_pool, cfqq);
1752 }
1753
1754 /*
1755 * Must always be called with the rcu_read_lock() held
1756 */
1757 static void
1758 __call_for_each_cic(struct io_context *ioc,
1759 void (*func)(struct io_context *, struct cfq_io_context *))
1760 {
1761 struct cfq_io_context *cic;
1762 struct hlist_node *n;
1763
1764 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1765 func(ioc, cic);
1766 }
1767
1768 /*
1769 * Call func for each cic attached to this ioc.
1770 */
1771 static void
1772 call_for_each_cic(struct io_context *ioc,
1773 void (*func)(struct io_context *, struct cfq_io_context *))
1774 {
1775 rcu_read_lock();
1776 __call_for_each_cic(ioc, func);
1777 rcu_read_unlock();
1778 }
1779
1780 static void cfq_cic_free_rcu(struct rcu_head *head)
1781 {
1782 struct cfq_io_context *cic;
1783
1784 cic = container_of(head, struct cfq_io_context, rcu_head);
1785
1786 kmem_cache_free(cfq_ioc_pool, cic);
1787 elv_ioc_count_dec(cfq_ioc_count);
1788
1789 if (ioc_gone) {
1790 /*
1791 * CFQ scheduler is exiting, grab exit lock and check
1792 * the pending io context count. If it hits zero,
1793 * complete ioc_gone and set it back to NULL
1794 */
1795 spin_lock(&ioc_gone_lock);
1796 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1797 complete(ioc_gone);
1798 ioc_gone = NULL;
1799 }
1800 spin_unlock(&ioc_gone_lock);
1801 }
1802 }
1803
1804 static void cfq_cic_free(struct cfq_io_context *cic)
1805 {
1806 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1807 }
1808
1809 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1810 {
1811 unsigned long flags;
1812
1813 BUG_ON(!cic->dead_key);
1814
1815 spin_lock_irqsave(&ioc->lock, flags);
1816 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1817 hlist_del_rcu(&cic->cic_list);
1818 spin_unlock_irqrestore(&ioc->lock, flags);
1819
1820 cfq_cic_free(cic);
1821 }
1822
1823 /*
1824 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1825 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1826 * and ->trim() which is called with the task lock held
1827 */
1828 static void cfq_free_io_context(struct io_context *ioc)
1829 {
1830 /*
1831 * ioc->refcount is zero here, or we are called from elv_unregister(),
1832 * so no more cic's are allowed to be linked into this ioc. So it
1833 * should be ok to iterate over the known list, we will see all cic's
1834 * since no new ones are added.
1835 */
1836 __call_for_each_cic(ioc, cic_free_func);
1837 }
1838
1839 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1840 {
1841 struct cfq_queue *__cfqq, *next;
1842
1843 if (unlikely(cfqq == cfqd->active_queue)) {
1844 __cfq_slice_expired(cfqd, cfqq, 0);
1845 cfq_schedule_dispatch(cfqd);
1846 }
1847
1848 /*
1849 * If this queue was scheduled to merge with another queue, be
1850 * sure to drop the reference taken on that queue (and others in
1851 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1852 */
1853 __cfqq = cfqq->new_cfqq;
1854 while (__cfqq) {
1855 if (__cfqq == cfqq) {
1856 WARN(1, "cfqq->new_cfqq loop detected\n");
1857 break;
1858 }
1859 next = __cfqq->new_cfqq;
1860 cfq_put_queue(__cfqq);
1861 __cfqq = next;
1862 }
1863
1864 cfq_put_queue(cfqq);
1865 }
1866
1867 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1868 struct cfq_io_context *cic)
1869 {
1870 struct io_context *ioc = cic->ioc;
1871
1872 list_del_init(&cic->queue_list);
1873
1874 /*
1875 * Make sure key == NULL is seen for dead queues
1876 */
1877 smp_wmb();
1878 cic->dead_key = (unsigned long) cic->key;
1879 cic->key = NULL;
1880
1881 if (ioc->ioc_data == cic)
1882 rcu_assign_pointer(ioc->ioc_data, NULL);
1883
1884 if (cic->cfqq[BLK_RW_ASYNC]) {
1885 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1886 cic->cfqq[BLK_RW_ASYNC] = NULL;
1887 }
1888
1889 if (cic->cfqq[BLK_RW_SYNC]) {
1890 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1891 cic->cfqq[BLK_RW_SYNC] = NULL;
1892 }
1893 }
1894
1895 static void cfq_exit_single_io_context(struct io_context *ioc,
1896 struct cfq_io_context *cic)
1897 {
1898 struct cfq_data *cfqd = cic->key;
1899
1900 if (cfqd) {
1901 struct request_queue *q = cfqd->queue;
1902 unsigned long flags;
1903
1904 spin_lock_irqsave(q->queue_lock, flags);
1905
1906 /*
1907 * Ensure we get a fresh copy of the ->key to prevent
1908 * race between exiting task and queue
1909 */
1910 smp_read_barrier_depends();
1911 if (cic->key)
1912 __cfq_exit_single_io_context(cfqd, cic);
1913
1914 spin_unlock_irqrestore(q->queue_lock, flags);
1915 }
1916 }
1917
1918 /*
1919 * The process that ioc belongs to has exited, we need to clean up
1920 * and put the internal structures we have that belongs to that process.
1921 */
1922 static void cfq_exit_io_context(struct io_context *ioc)
1923 {
1924 call_for_each_cic(ioc, cfq_exit_single_io_context);
1925 }
1926
1927 static struct cfq_io_context *
1928 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1929 {
1930 struct cfq_io_context *cic;
1931
1932 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1933 cfqd->queue->node);
1934 if (cic) {
1935 cic->last_end_request = jiffies;
1936 INIT_LIST_HEAD(&cic->queue_list);
1937 INIT_HLIST_NODE(&cic->cic_list);
1938 cic->dtor = cfq_free_io_context;
1939 cic->exit = cfq_exit_io_context;
1940 elv_ioc_count_inc(cfq_ioc_count);
1941 }
1942
1943 return cic;
1944 }
1945
1946 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1947 {
1948 struct task_struct *tsk = current;
1949 int ioprio_class;
1950
1951 if (!cfq_cfqq_prio_changed(cfqq))
1952 return;
1953
1954 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1955 switch (ioprio_class) {
1956 default:
1957 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1958 case IOPRIO_CLASS_NONE:
1959 /*
1960 * no prio set, inherit CPU scheduling settings
1961 */
1962 cfqq->ioprio = task_nice_ioprio(tsk);
1963 cfqq->ioprio_class = task_nice_ioclass(tsk);
1964 break;
1965 case IOPRIO_CLASS_RT:
1966 cfqq->ioprio = task_ioprio(ioc);
1967 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1968 break;
1969 case IOPRIO_CLASS_BE:
1970 cfqq->ioprio = task_ioprio(ioc);
1971 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1972 break;
1973 case IOPRIO_CLASS_IDLE:
1974 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1975 cfqq->ioprio = 7;
1976 cfq_clear_cfqq_idle_window(cfqq);
1977 break;
1978 }
1979
1980 /*
1981 * keep track of original prio settings in case we have to temporarily
1982 * elevate the priority of this queue
1983 */
1984 cfqq->org_ioprio = cfqq->ioprio;
1985 cfqq->org_ioprio_class = cfqq->ioprio_class;
1986 cfq_clear_cfqq_prio_changed(cfqq);
1987 }
1988
1989 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1990 {
1991 struct cfq_data *cfqd = cic->key;
1992 struct cfq_queue *cfqq;
1993 unsigned long flags;
1994
1995 if (unlikely(!cfqd))
1996 return;
1997
1998 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1999
2000 cfqq = cic->cfqq[BLK_RW_ASYNC];
2001 if (cfqq) {
2002 struct cfq_queue *new_cfqq;
2003 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2004 GFP_ATOMIC);
2005 if (new_cfqq) {
2006 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2007 cfq_put_queue(cfqq);
2008 }
2009 }
2010
2011 cfqq = cic->cfqq[BLK_RW_SYNC];
2012 if (cfqq)
2013 cfq_mark_cfqq_prio_changed(cfqq);
2014
2015 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2016 }
2017
2018 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2019 {
2020 call_for_each_cic(ioc, changed_ioprio);
2021 ioc->ioprio_changed = 0;
2022 }
2023
2024 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2025 pid_t pid, bool is_sync)
2026 {
2027 RB_CLEAR_NODE(&cfqq->rb_node);
2028 RB_CLEAR_NODE(&cfqq->p_node);
2029 INIT_LIST_HEAD(&cfqq->fifo);
2030
2031 atomic_set(&cfqq->ref, 0);
2032 cfqq->cfqd = cfqd;
2033
2034 cfq_mark_cfqq_prio_changed(cfqq);
2035
2036 if (is_sync) {
2037 if (!cfq_class_idle(cfqq))
2038 cfq_mark_cfqq_idle_window(cfqq);
2039 cfq_mark_cfqq_sync(cfqq);
2040 }
2041 cfqq->pid = pid;
2042 }
2043
2044 static struct cfq_queue *
2045 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2046 struct io_context *ioc, gfp_t gfp_mask)
2047 {
2048 struct cfq_queue *cfqq, *new_cfqq = NULL;
2049 struct cfq_io_context *cic;
2050
2051 retry:
2052 cic = cfq_cic_lookup(cfqd, ioc);
2053 /* cic always exists here */
2054 cfqq = cic_to_cfqq(cic, is_sync);
2055
2056 /*
2057 * Always try a new alloc if we fell back to the OOM cfqq
2058 * originally, since it should just be a temporary situation.
2059 */
2060 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2061 cfqq = NULL;
2062 if (new_cfqq) {
2063 cfqq = new_cfqq;
2064 new_cfqq = NULL;
2065 } else if (gfp_mask & __GFP_WAIT) {
2066 spin_unlock_irq(cfqd->queue->queue_lock);
2067 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2068 gfp_mask | __GFP_ZERO,
2069 cfqd->queue->node);
2070 spin_lock_irq(cfqd->queue->queue_lock);
2071 if (new_cfqq)
2072 goto retry;
2073 } else {
2074 cfqq = kmem_cache_alloc_node(cfq_pool,
2075 gfp_mask | __GFP_ZERO,
2076 cfqd->queue->node);
2077 }
2078
2079 if (cfqq) {
2080 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2081 cfq_init_prio_data(cfqq, ioc);
2082 cfq_log_cfqq(cfqd, cfqq, "alloced");
2083 } else
2084 cfqq = &cfqd->oom_cfqq;
2085 }
2086
2087 if (new_cfqq)
2088 kmem_cache_free(cfq_pool, new_cfqq);
2089
2090 return cfqq;
2091 }
2092
2093 static struct cfq_queue **
2094 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2095 {
2096 switch (ioprio_class) {
2097 case IOPRIO_CLASS_RT:
2098 return &cfqd->async_cfqq[0][ioprio];
2099 case IOPRIO_CLASS_BE:
2100 return &cfqd->async_cfqq[1][ioprio];
2101 case IOPRIO_CLASS_IDLE:
2102 return &cfqd->async_idle_cfqq;
2103 default:
2104 BUG();
2105 }
2106 }
2107
2108 static struct cfq_queue *
2109 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2110 gfp_t gfp_mask)
2111 {
2112 const int ioprio = task_ioprio(ioc);
2113 const int ioprio_class = task_ioprio_class(ioc);
2114 struct cfq_queue **async_cfqq = NULL;
2115 struct cfq_queue *cfqq = NULL;
2116
2117 if (!is_sync) {
2118 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2119 cfqq = *async_cfqq;
2120 }
2121
2122 if (!cfqq)
2123 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2124
2125 /*
2126 * pin the queue now that it's allocated, scheduler exit will prune it
2127 */
2128 if (!is_sync && !(*async_cfqq)) {
2129 atomic_inc(&cfqq->ref);
2130 *async_cfqq = cfqq;
2131 }
2132
2133 atomic_inc(&cfqq->ref);
2134 return cfqq;
2135 }
2136
2137 /*
2138 * We drop cfq io contexts lazily, so we may find a dead one.
2139 */
2140 static void
2141 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2142 struct cfq_io_context *cic)
2143 {
2144 unsigned long flags;
2145
2146 WARN_ON(!list_empty(&cic->queue_list));
2147
2148 spin_lock_irqsave(&ioc->lock, flags);
2149
2150 BUG_ON(ioc->ioc_data == cic);
2151
2152 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2153 hlist_del_rcu(&cic->cic_list);
2154 spin_unlock_irqrestore(&ioc->lock, flags);
2155
2156 cfq_cic_free(cic);
2157 }
2158
2159 static struct cfq_io_context *
2160 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2161 {
2162 struct cfq_io_context *cic;
2163 unsigned long flags;
2164 void *k;
2165
2166 if (unlikely(!ioc))
2167 return NULL;
2168
2169 rcu_read_lock();
2170
2171 /*
2172 * we maintain a last-hit cache, to avoid browsing over the tree
2173 */
2174 cic = rcu_dereference(ioc->ioc_data);
2175 if (cic && cic->key == cfqd) {
2176 rcu_read_unlock();
2177 return cic;
2178 }
2179
2180 do {
2181 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2182 rcu_read_unlock();
2183 if (!cic)
2184 break;
2185 /* ->key must be copied to avoid race with cfq_exit_queue() */
2186 k = cic->key;
2187 if (unlikely(!k)) {
2188 cfq_drop_dead_cic(cfqd, ioc, cic);
2189 rcu_read_lock();
2190 continue;
2191 }
2192
2193 spin_lock_irqsave(&ioc->lock, flags);
2194 rcu_assign_pointer(ioc->ioc_data, cic);
2195 spin_unlock_irqrestore(&ioc->lock, flags);
2196 break;
2197 } while (1);
2198
2199 return cic;
2200 }
2201
2202 /*
2203 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2204 * the process specific cfq io context when entered from the block layer.
2205 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2206 */
2207 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2208 struct cfq_io_context *cic, gfp_t gfp_mask)
2209 {
2210 unsigned long flags;
2211 int ret;
2212
2213 ret = radix_tree_preload(gfp_mask);
2214 if (!ret) {
2215 cic->ioc = ioc;
2216 cic->key = cfqd;
2217
2218 spin_lock_irqsave(&ioc->lock, flags);
2219 ret = radix_tree_insert(&ioc->radix_root,
2220 (unsigned long) cfqd, cic);
2221 if (!ret)
2222 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2223 spin_unlock_irqrestore(&ioc->lock, flags);
2224
2225 radix_tree_preload_end();
2226
2227 if (!ret) {
2228 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2229 list_add(&cic->queue_list, &cfqd->cic_list);
2230 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2231 }
2232 }
2233
2234 if (ret)
2235 printk(KERN_ERR "cfq: cic link failed!\n");
2236
2237 return ret;
2238 }
2239
2240 /*
2241 * Setup general io context and cfq io context. There can be several cfq
2242 * io contexts per general io context, if this process is doing io to more
2243 * than one device managed by cfq.
2244 */
2245 static struct cfq_io_context *
2246 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2247 {
2248 struct io_context *ioc = NULL;
2249 struct cfq_io_context *cic;
2250
2251 might_sleep_if(gfp_mask & __GFP_WAIT);
2252
2253 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2254 if (!ioc)
2255 return NULL;
2256
2257 cic = cfq_cic_lookup(cfqd, ioc);
2258 if (cic)
2259 goto out;
2260
2261 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2262 if (cic == NULL)
2263 goto err;
2264
2265 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2266 goto err_free;
2267
2268 out:
2269 smp_read_barrier_depends();
2270 if (unlikely(ioc->ioprio_changed))
2271 cfq_ioc_set_ioprio(ioc);
2272
2273 return cic;
2274 err_free:
2275 cfq_cic_free(cic);
2276 err:
2277 put_io_context(ioc);
2278 return NULL;
2279 }
2280
2281 static void
2282 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2283 {
2284 unsigned long elapsed = jiffies - cic->last_end_request;
2285 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2286
2287 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2288 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2289 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2290 }
2291
2292 static void
2293 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2294 struct request *rq)
2295 {
2296 sector_t sdist;
2297 u64 total;
2298
2299 if (!cfqq->last_request_pos)
2300 sdist = 0;
2301 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2302 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2303 else
2304 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2305
2306 /*
2307 * Don't allow the seek distance to get too large from the
2308 * odd fragment, pagein, etc
2309 */
2310 if (cfqq->seek_samples <= 60) /* second&third seek */
2311 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2312 else
2313 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2314
2315 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2316 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2317 total = cfqq->seek_total + (cfqq->seek_samples/2);
2318 do_div(total, cfqq->seek_samples);
2319 cfqq->seek_mean = (sector_t)total;
2320
2321 /*
2322 * If this cfqq is shared between multiple processes, check to
2323 * make sure that those processes are still issuing I/Os within
2324 * the mean seek distance. If not, it may be time to break the
2325 * queues apart again.
2326 */
2327 if (cfq_cfqq_coop(cfqq)) {
2328 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2329 cfqq->seeky_start = jiffies;
2330 else if (!CFQQ_SEEKY(cfqq))
2331 cfqq->seeky_start = 0;
2332 }
2333 }
2334
2335 /*
2336 * Disable idle window if the process thinks too long or seeks so much that
2337 * it doesn't matter
2338 */
2339 static void
2340 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2341 struct cfq_io_context *cic)
2342 {
2343 int old_idle, enable_idle;
2344
2345 /*
2346 * Don't idle for async or idle io prio class
2347 */
2348 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2349 return;
2350
2351 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2352
2353 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2354 cfq_mark_cfqq_deep(cfqq);
2355
2356 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2357 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2358 && CFQQ_SEEKY(cfqq)))
2359 enable_idle = 0;
2360 else if (sample_valid(cic->ttime_samples)) {
2361 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2362 enable_idle = 0;
2363 else
2364 enable_idle = 1;
2365 }
2366
2367 if (old_idle != enable_idle) {
2368 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2369 if (enable_idle)
2370 cfq_mark_cfqq_idle_window(cfqq);
2371 else
2372 cfq_clear_cfqq_idle_window(cfqq);
2373 }
2374 }
2375
2376 /*
2377 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2378 * no or if we aren't sure, a 1 will cause a preempt.
2379 */
2380 static bool
2381 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2382 struct request *rq)
2383 {
2384 struct cfq_queue *cfqq;
2385
2386 cfqq = cfqd->active_queue;
2387 if (!cfqq)
2388 return false;
2389
2390 if (cfq_slice_used(cfqq))
2391 return true;
2392
2393 if (cfq_class_idle(new_cfqq))
2394 return false;
2395
2396 if (cfq_class_idle(cfqq))
2397 return true;
2398
2399 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2400 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2401 new_cfqq->service_tree->count == 1)
2402 return true;
2403
2404 /*
2405 * if the new request is sync, but the currently running queue is
2406 * not, let the sync request have priority.
2407 */
2408 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2409 return true;
2410
2411 /*
2412 * So both queues are sync. Let the new request get disk time if
2413 * it's a metadata request and the current queue is doing regular IO.
2414 */
2415 if (rq_is_meta(rq) && !cfqq->meta_pending)
2416 return true;
2417
2418 /*
2419 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2420 */
2421 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2422 return true;
2423
2424 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2425 return false;
2426
2427 /*
2428 * if this request is as-good as one we would expect from the
2429 * current cfqq, let it preempt
2430 */
2431 if (cfq_rq_close(cfqd, cfqq, rq))
2432 return true;
2433
2434 return false;
2435 }
2436
2437 /*
2438 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2439 * let it have half of its nominal slice.
2440 */
2441 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2442 {
2443 cfq_log_cfqq(cfqd, cfqq, "preempt");
2444 cfq_slice_expired(cfqd, 1);
2445
2446 /*
2447 * Put the new queue at the front of the of the current list,
2448 * so we know that it will be selected next.
2449 */
2450 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2451
2452 cfq_service_tree_add(cfqd, cfqq, 1);
2453
2454 cfqq->slice_end = 0;
2455 cfq_mark_cfqq_slice_new(cfqq);
2456 }
2457
2458 /*
2459 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2460 * something we should do about it
2461 */
2462 static void
2463 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2464 struct request *rq)
2465 {
2466 struct cfq_io_context *cic = RQ_CIC(rq);
2467
2468 cfqd->rq_queued++;
2469 if (rq_is_meta(rq))
2470 cfqq->meta_pending++;
2471
2472 cfq_update_io_thinktime(cfqd, cic);
2473 cfq_update_io_seektime(cfqd, cfqq, rq);
2474 cfq_update_idle_window(cfqd, cfqq, cic);
2475
2476 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2477
2478 if (cfqq == cfqd->active_queue) {
2479 /*
2480 * Remember that we saw a request from this process, but
2481 * don't start queuing just yet. Otherwise we risk seeing lots
2482 * of tiny requests, because we disrupt the normal plugging
2483 * and merging. If the request is already larger than a single
2484 * page, let it rip immediately. For that case we assume that
2485 * merging is already done. Ditto for a busy system that
2486 * has other work pending, don't risk delaying until the
2487 * idle timer unplug to continue working.
2488 */
2489 if (cfq_cfqq_wait_request(cfqq)) {
2490 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2491 cfqd->busy_queues > 1) {
2492 del_timer(&cfqd->idle_slice_timer);
2493 __blk_run_queue(cfqd->queue);
2494 } else
2495 cfq_mark_cfqq_must_dispatch(cfqq);
2496 }
2497 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2498 /*
2499 * not the active queue - expire current slice if it is
2500 * idle and has expired it's mean thinktime or this new queue
2501 * has some old slice time left and is of higher priority or
2502 * this new queue is RT and the current one is BE
2503 */
2504 cfq_preempt_queue(cfqd, cfqq);
2505 __blk_run_queue(cfqd->queue);
2506 }
2507 }
2508
2509 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2510 {
2511 struct cfq_data *cfqd = q->elevator->elevator_data;
2512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2513
2514 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2515 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2516
2517 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2518 list_add_tail(&rq->queuelist, &cfqq->fifo);
2519 cfq_add_rq_rb(rq);
2520
2521 cfq_rq_enqueued(cfqd, cfqq, rq);
2522 }
2523
2524 /*
2525 * Update hw_tag based on peak queue depth over 50 samples under
2526 * sufficient load.
2527 */
2528 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2529 {
2530 struct cfq_queue *cfqq = cfqd->active_queue;
2531
2532 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2533 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2534
2535 if (cfqd->hw_tag == 1)
2536 return;
2537
2538 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2539 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2540 return;
2541
2542 /*
2543 * If active queue hasn't enough requests and can idle, cfq might not
2544 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2545 * case
2546 */
2547 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2548 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2549 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2550 return;
2551
2552 if (cfqd->hw_tag_samples++ < 50)
2553 return;
2554
2555 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2556 cfqd->hw_tag = 1;
2557 else
2558 cfqd->hw_tag = 0;
2559 }
2560
2561 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2562 {
2563 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2564 struct cfq_data *cfqd = cfqq->cfqd;
2565 const int sync = rq_is_sync(rq);
2566 unsigned long now;
2567
2568 now = jiffies;
2569 cfq_log_cfqq(cfqd, cfqq, "complete");
2570
2571 cfq_update_hw_tag(cfqd);
2572
2573 WARN_ON(!cfqd->rq_in_driver[sync]);
2574 WARN_ON(!cfqq->dispatched);
2575 cfqd->rq_in_driver[sync]--;
2576 cfqq->dispatched--;
2577
2578 if (cfq_cfqq_sync(cfqq))
2579 cfqd->sync_flight--;
2580
2581 if (sync) {
2582 RQ_CIC(rq)->last_end_request = now;
2583 cfqd->last_end_sync_rq = now;
2584 }
2585
2586 /*
2587 * If this is the active queue, check if it needs to be expired,
2588 * or if we want to idle in case it has no pending requests.
2589 */
2590 if (cfqd->active_queue == cfqq) {
2591 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2592
2593 if (cfq_cfqq_slice_new(cfqq)) {
2594 cfq_set_prio_slice(cfqd, cfqq);
2595 cfq_clear_cfqq_slice_new(cfqq);
2596 }
2597 /*
2598 * Idling is not enabled on:
2599 * - expired queues
2600 * - idle-priority queues
2601 * - async queues
2602 * - queues with still some requests queued
2603 * - when there is a close cooperator
2604 */
2605 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2606 cfq_slice_expired(cfqd, 1);
2607 else if (sync && cfqq_empty &&
2608 !cfq_close_cooperator(cfqd, cfqq)) {
2609 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2610 /*
2611 * Idling is enabled for SYNC_WORKLOAD.
2612 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2613 * only if we processed at least one !rq_noidle request
2614 */
2615 if (cfqd->serving_type == SYNC_WORKLOAD
2616 || cfqd->noidle_tree_requires_idle)
2617 cfq_arm_slice_timer(cfqd);
2618 }
2619 }
2620
2621 if (!rq_in_driver(cfqd))
2622 cfq_schedule_dispatch(cfqd);
2623 }
2624
2625 /*
2626 * we temporarily boost lower priority queues if they are holding fs exclusive
2627 * resources. they are boosted to normal prio (CLASS_BE/4)
2628 */
2629 static void cfq_prio_boost(struct cfq_queue *cfqq)
2630 {
2631 if (has_fs_excl()) {
2632 /*
2633 * boost idle prio on transactions that would lock out other
2634 * users of the filesystem
2635 */
2636 if (cfq_class_idle(cfqq))
2637 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2638 if (cfqq->ioprio > IOPRIO_NORM)
2639 cfqq->ioprio = IOPRIO_NORM;
2640 } else {
2641 /*
2642 * unboost the queue (if needed)
2643 */
2644 cfqq->ioprio_class = cfqq->org_ioprio_class;
2645 cfqq->ioprio = cfqq->org_ioprio;
2646 }
2647 }
2648
2649 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2650 {
2651 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2652 cfq_mark_cfqq_must_alloc_slice(cfqq);
2653 return ELV_MQUEUE_MUST;
2654 }
2655
2656 return ELV_MQUEUE_MAY;
2657 }
2658
2659 static int cfq_may_queue(struct request_queue *q, int rw)
2660 {
2661 struct cfq_data *cfqd = q->elevator->elevator_data;
2662 struct task_struct *tsk = current;
2663 struct cfq_io_context *cic;
2664 struct cfq_queue *cfqq;
2665
2666 /*
2667 * don't force setup of a queue from here, as a call to may_queue
2668 * does not necessarily imply that a request actually will be queued.
2669 * so just lookup a possibly existing queue, or return 'may queue'
2670 * if that fails
2671 */
2672 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2673 if (!cic)
2674 return ELV_MQUEUE_MAY;
2675
2676 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2677 if (cfqq) {
2678 cfq_init_prio_data(cfqq, cic->ioc);
2679 cfq_prio_boost(cfqq);
2680
2681 return __cfq_may_queue(cfqq);
2682 }
2683
2684 return ELV_MQUEUE_MAY;
2685 }
2686
2687 /*
2688 * queue lock held here
2689 */
2690 static void cfq_put_request(struct request *rq)
2691 {
2692 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2693
2694 if (cfqq) {
2695 const int rw = rq_data_dir(rq);
2696
2697 BUG_ON(!cfqq->allocated[rw]);
2698 cfqq->allocated[rw]--;
2699
2700 put_io_context(RQ_CIC(rq)->ioc);
2701
2702 rq->elevator_private = NULL;
2703 rq->elevator_private2 = NULL;
2704
2705 cfq_put_queue(cfqq);
2706 }
2707 }
2708
2709 static struct cfq_queue *
2710 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2711 struct cfq_queue *cfqq)
2712 {
2713 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2714 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2715 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2716 cfq_put_queue(cfqq);
2717 return cic_to_cfqq(cic, 1);
2718 }
2719
2720 static int should_split_cfqq(struct cfq_queue *cfqq)
2721 {
2722 if (cfqq->seeky_start &&
2723 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2724 return 1;
2725 return 0;
2726 }
2727
2728 /*
2729 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2730 * was the last process referring to said cfqq.
2731 */
2732 static struct cfq_queue *
2733 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2734 {
2735 if (cfqq_process_refs(cfqq) == 1) {
2736 cfqq->seeky_start = 0;
2737 cfqq->pid = current->pid;
2738 cfq_clear_cfqq_coop(cfqq);
2739 return cfqq;
2740 }
2741
2742 cic_set_cfqq(cic, NULL, 1);
2743 cfq_put_queue(cfqq);
2744 return NULL;
2745 }
2746 /*
2747 * Allocate cfq data structures associated with this request.
2748 */
2749 static int
2750 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2751 {
2752 struct cfq_data *cfqd = q->elevator->elevator_data;
2753 struct cfq_io_context *cic;
2754 const int rw = rq_data_dir(rq);
2755 const bool is_sync = rq_is_sync(rq);
2756 struct cfq_queue *cfqq;
2757 unsigned long flags;
2758
2759 might_sleep_if(gfp_mask & __GFP_WAIT);
2760
2761 cic = cfq_get_io_context(cfqd, gfp_mask);
2762
2763 spin_lock_irqsave(q->queue_lock, flags);
2764
2765 if (!cic)
2766 goto queue_fail;
2767
2768 new_queue:
2769 cfqq = cic_to_cfqq(cic, is_sync);
2770 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2771 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2772 cic_set_cfqq(cic, cfqq, is_sync);
2773 } else {
2774 /*
2775 * If the queue was seeky for too long, break it apart.
2776 */
2777 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2778 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2779 cfqq = split_cfqq(cic, cfqq);
2780 if (!cfqq)
2781 goto new_queue;
2782 }
2783
2784 /*
2785 * Check to see if this queue is scheduled to merge with
2786 * another, closely cooperating queue. The merging of
2787 * queues happens here as it must be done in process context.
2788 * The reference on new_cfqq was taken in merge_cfqqs.
2789 */
2790 if (cfqq->new_cfqq)
2791 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2792 }
2793
2794 cfqq->allocated[rw]++;
2795 atomic_inc(&cfqq->ref);
2796
2797 spin_unlock_irqrestore(q->queue_lock, flags);
2798
2799 rq->elevator_private = cic;
2800 rq->elevator_private2 = cfqq;
2801 return 0;
2802
2803 queue_fail:
2804 if (cic)
2805 put_io_context(cic->ioc);
2806
2807 cfq_schedule_dispatch(cfqd);
2808 spin_unlock_irqrestore(q->queue_lock, flags);
2809 cfq_log(cfqd, "set_request fail");
2810 return 1;
2811 }
2812
2813 static void cfq_kick_queue(struct work_struct *work)
2814 {
2815 struct cfq_data *cfqd =
2816 container_of(work, struct cfq_data, unplug_work);
2817 struct request_queue *q = cfqd->queue;
2818
2819 spin_lock_irq(q->queue_lock);
2820 __blk_run_queue(cfqd->queue);
2821 spin_unlock_irq(q->queue_lock);
2822 }
2823
2824 /*
2825 * Timer running if the active_queue is currently idling inside its time slice
2826 */
2827 static void cfq_idle_slice_timer(unsigned long data)
2828 {
2829 struct cfq_data *cfqd = (struct cfq_data *) data;
2830 struct cfq_queue *cfqq;
2831 unsigned long flags;
2832 int timed_out = 1;
2833
2834 cfq_log(cfqd, "idle timer fired");
2835
2836 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2837
2838 cfqq = cfqd->active_queue;
2839 if (cfqq) {
2840 timed_out = 0;
2841
2842 /*
2843 * We saw a request before the queue expired, let it through
2844 */
2845 if (cfq_cfqq_must_dispatch(cfqq))
2846 goto out_kick;
2847
2848 /*
2849 * expired
2850 */
2851 if (cfq_slice_used(cfqq))
2852 goto expire;
2853
2854 /*
2855 * only expire and reinvoke request handler, if there are
2856 * other queues with pending requests
2857 */
2858 if (!cfqd->busy_queues)
2859 goto out_cont;
2860
2861 /*
2862 * not expired and it has a request pending, let it dispatch
2863 */
2864 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2865 goto out_kick;
2866
2867 /*
2868 * Queue depth flag is reset only when the idle didn't succeed
2869 */
2870 cfq_clear_cfqq_deep(cfqq);
2871 }
2872 expire:
2873 cfq_slice_expired(cfqd, timed_out);
2874 out_kick:
2875 cfq_schedule_dispatch(cfqd);
2876 out_cont:
2877 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2878 }
2879
2880 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2881 {
2882 del_timer_sync(&cfqd->idle_slice_timer);
2883 cancel_work_sync(&cfqd->unplug_work);
2884 }
2885
2886 static void cfq_put_async_queues(struct cfq_data *cfqd)
2887 {
2888 int i;
2889
2890 for (i = 0; i < IOPRIO_BE_NR; i++) {
2891 if (cfqd->async_cfqq[0][i])
2892 cfq_put_queue(cfqd->async_cfqq[0][i]);
2893 if (cfqd->async_cfqq[1][i])
2894 cfq_put_queue(cfqd->async_cfqq[1][i]);
2895 }
2896
2897 if (cfqd->async_idle_cfqq)
2898 cfq_put_queue(cfqd->async_idle_cfqq);
2899 }
2900
2901 static void cfq_exit_queue(struct elevator_queue *e)
2902 {
2903 struct cfq_data *cfqd = e->elevator_data;
2904 struct request_queue *q = cfqd->queue;
2905
2906 cfq_shutdown_timer_wq(cfqd);
2907
2908 spin_lock_irq(q->queue_lock);
2909
2910 if (cfqd->active_queue)
2911 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2912
2913 while (!list_empty(&cfqd->cic_list)) {
2914 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2915 struct cfq_io_context,
2916 queue_list);
2917
2918 __cfq_exit_single_io_context(cfqd, cic);
2919 }
2920
2921 cfq_put_async_queues(cfqd);
2922
2923 spin_unlock_irq(q->queue_lock);
2924
2925 cfq_shutdown_timer_wq(cfqd);
2926
2927 kfree(cfqd);
2928 }
2929
2930 static void *cfq_init_queue(struct request_queue *q)
2931 {
2932 struct cfq_data *cfqd;
2933 int i, j;
2934
2935 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2936 if (!cfqd)
2937 return NULL;
2938
2939 for (i = 0; i < 2; ++i)
2940 for (j = 0; j < 3; ++j)
2941 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2942 cfqd->service_tree_idle = CFQ_RB_ROOT;
2943
2944 /*
2945 * Not strictly needed (since RB_ROOT just clears the node and we
2946 * zeroed cfqd on alloc), but better be safe in case someone decides
2947 * to add magic to the rb code
2948 */
2949 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2950 cfqd->prio_trees[i] = RB_ROOT;
2951
2952 /*
2953 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2954 * Grab a permanent reference to it, so that the normal code flow
2955 * will not attempt to free it.
2956 */
2957 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2958 atomic_inc(&cfqd->oom_cfqq.ref);
2959
2960 INIT_LIST_HEAD(&cfqd->cic_list);
2961
2962 cfqd->queue = q;
2963
2964 init_timer(&cfqd->idle_slice_timer);
2965 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2966 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2967
2968 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2969
2970 cfqd->cfq_quantum = cfq_quantum;
2971 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2972 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2973 cfqd->cfq_back_max = cfq_back_max;
2974 cfqd->cfq_back_penalty = cfq_back_penalty;
2975 cfqd->cfq_slice[0] = cfq_slice_async;
2976 cfqd->cfq_slice[1] = cfq_slice_sync;
2977 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2978 cfqd->cfq_slice_idle = cfq_slice_idle;
2979 cfqd->cfq_latency = 1;
2980 cfqd->hw_tag = -1;
2981 cfqd->last_end_sync_rq = jiffies;
2982 return cfqd;
2983 }
2984
2985 static void cfq_slab_kill(void)
2986 {
2987 /*
2988 * Caller already ensured that pending RCU callbacks are completed,
2989 * so we should have no busy allocations at this point.
2990 */
2991 if (cfq_pool)
2992 kmem_cache_destroy(cfq_pool);
2993 if (cfq_ioc_pool)
2994 kmem_cache_destroy(cfq_ioc_pool);
2995 }
2996
2997 static int __init cfq_slab_setup(void)
2998 {
2999 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3000 if (!cfq_pool)
3001 goto fail;
3002
3003 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3004 if (!cfq_ioc_pool)
3005 goto fail;
3006
3007 return 0;
3008 fail:
3009 cfq_slab_kill();
3010 return -ENOMEM;
3011 }
3012
3013 /*
3014 * sysfs parts below -->
3015 */
3016 static ssize_t
3017 cfq_var_show(unsigned int var, char *page)
3018 {
3019 return sprintf(page, "%d\n", var);
3020 }
3021
3022 static ssize_t
3023 cfq_var_store(unsigned int *var, const char *page, size_t count)
3024 {
3025 char *p = (char *) page;
3026
3027 *var = simple_strtoul(p, &p, 10);
3028 return count;
3029 }
3030
3031 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3032 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3033 { \
3034 struct cfq_data *cfqd = e->elevator_data; \
3035 unsigned int __data = __VAR; \
3036 if (__CONV) \
3037 __data = jiffies_to_msecs(__data); \
3038 return cfq_var_show(__data, (page)); \
3039 }
3040 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3041 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3042 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3043 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3044 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3045 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3046 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3047 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3048 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3049 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3050 #undef SHOW_FUNCTION
3051
3052 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3053 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3054 { \
3055 struct cfq_data *cfqd = e->elevator_data; \
3056 unsigned int __data; \
3057 int ret = cfq_var_store(&__data, (page), count); \
3058 if (__data < (MIN)) \
3059 __data = (MIN); \
3060 else if (__data > (MAX)) \
3061 __data = (MAX); \
3062 if (__CONV) \
3063 *(__PTR) = msecs_to_jiffies(__data); \
3064 else \
3065 *(__PTR) = __data; \
3066 return ret; \
3067 }
3068 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3069 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3070 UINT_MAX, 1);
3071 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3072 UINT_MAX, 1);
3073 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3074 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3075 UINT_MAX, 0);
3076 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3077 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3078 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3079 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3080 UINT_MAX, 0);
3081 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3082 #undef STORE_FUNCTION
3083
3084 #define CFQ_ATTR(name) \
3085 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3086
3087 static struct elv_fs_entry cfq_attrs[] = {
3088 CFQ_ATTR(quantum),
3089 CFQ_ATTR(fifo_expire_sync),
3090 CFQ_ATTR(fifo_expire_async),
3091 CFQ_ATTR(back_seek_max),
3092 CFQ_ATTR(back_seek_penalty),
3093 CFQ_ATTR(slice_sync),
3094 CFQ_ATTR(slice_async),
3095 CFQ_ATTR(slice_async_rq),
3096 CFQ_ATTR(slice_idle),
3097 CFQ_ATTR(low_latency),
3098 __ATTR_NULL
3099 };
3100
3101 static struct elevator_type iosched_cfq = {
3102 .ops = {
3103 .elevator_merge_fn = cfq_merge,
3104 .elevator_merged_fn = cfq_merged_request,
3105 .elevator_merge_req_fn = cfq_merged_requests,
3106 .elevator_allow_merge_fn = cfq_allow_merge,
3107 .elevator_dispatch_fn = cfq_dispatch_requests,
3108 .elevator_add_req_fn = cfq_insert_request,
3109 .elevator_activate_req_fn = cfq_activate_request,
3110 .elevator_deactivate_req_fn = cfq_deactivate_request,
3111 .elevator_queue_empty_fn = cfq_queue_empty,
3112 .elevator_completed_req_fn = cfq_completed_request,
3113 .elevator_former_req_fn = elv_rb_former_request,
3114 .elevator_latter_req_fn = elv_rb_latter_request,
3115 .elevator_set_req_fn = cfq_set_request,
3116 .elevator_put_req_fn = cfq_put_request,
3117 .elevator_may_queue_fn = cfq_may_queue,
3118 .elevator_init_fn = cfq_init_queue,
3119 .elevator_exit_fn = cfq_exit_queue,
3120 .trim = cfq_free_io_context,
3121 },
3122 .elevator_attrs = cfq_attrs,
3123 .elevator_name = "cfq",
3124 .elevator_owner = THIS_MODULE,
3125 };
3126
3127 static int __init cfq_init(void)
3128 {
3129 /*
3130 * could be 0 on HZ < 1000 setups
3131 */
3132 if (!cfq_slice_async)
3133 cfq_slice_async = 1;
3134 if (!cfq_slice_idle)
3135 cfq_slice_idle = 1;
3136
3137 if (cfq_slab_setup())
3138 return -ENOMEM;
3139
3140 elv_register(&iosched_cfq);
3141
3142 return 0;
3143 }
3144
3145 static void __exit cfq_exit(void)
3146 {
3147 DECLARE_COMPLETION_ONSTACK(all_gone);
3148 elv_unregister(&iosched_cfq);
3149 ioc_gone = &all_gone;
3150 /* ioc_gone's update must be visible before reading ioc_count */
3151 smp_wmb();
3152
3153 /*
3154 * this also protects us from entering cfq_slab_kill() with
3155 * pending RCU callbacks
3156 */
3157 if (elv_ioc_count_read(cfq_ioc_count))
3158 wait_for_completion(&all_gone);
3159 cfq_slab_kill();
3160 }
3161
3162 module_init(cfq_init);
3163 module_exit(cfq_exit);
3164
3165 MODULE_AUTHOR("Jens Axboe");
3166 MODULE_LICENSE("GPL");
3167 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.102853 seconds and 6 git commands to generate.