cfq-iosched: Fix wrong children_weight calculation
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
294 };
295
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
304 };
305
306 /*
307 * Per block device queue structure
308 */
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387 };
388
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394 {
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402 }
403
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418 };
419
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422 { \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424 } \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426 { \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428 } \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430 { \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432 }
433
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 return pd_to_blkg(&cfqg->pd);
457 }
458
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466 };
467
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 { \
471 stats->flags |= (1 << CFQG_stats_##name); \
472 } \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476 } \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 { \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 } \
481
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500 }
501
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505 {
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514 }
515
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529 }
530
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_total(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553 }
554
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567 }
568
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577 }
578
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587 }
588
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603 static struct blkcg_policy blkcg_policy_cfq;
604
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616
617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 return blkg_get(cfqg_to_blkg(cfqg));
620 }
621
622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 return blkg_put(cfqg_to_blkg(cfqg));
625 }
626
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
629 \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
636
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
639 \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
643
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
646 {
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
654 {
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
673 {
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
684
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
690 }
691
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733
734 /*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 struct cfq_group *parent = cfqg_parent(cfqg);
742
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745 if (unlikely(!parent))
746 return;
747
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
752 }
753
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
755
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
792
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
795 {
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
804 }
805
806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 /*
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
814 */
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
819 }
820
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
828 }
829
830
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
838 }
839
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
843 {
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
846
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
854 {
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
863
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
868 }
869
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
872 {
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
876 }
877
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 return cic->cfqq[is_sync];
881 }
882
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
885 {
886 cic->cfqq[is_sync] = cfqq;
887 }
888
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 return cic->icq.q->elevator->elevator_data;
892 }
893
894 /*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902
903 /*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(&cfqd->unplug_work);
912 }
913 }
914
915 /*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
922 {
923 const int base_slice = cfqd->cfq_slice[sync];
924
925 WARN_ON(prio >= IOPRIO_BE_NR);
926
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935
936 /**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
950 {
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
957 }
958
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
964
965 return min_vdisktime;
966 }
967
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
973
974 return min_vdisktime;
975 }
976
977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 struct cfq_group *cfqg;
980
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
985 }
986 }
987
988 /*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
996 {
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1007 }
1008
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1020 /*
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1023 */
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1040 }
1041 }
1042 return slice;
1043 }
1044
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055
1056 /*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1089
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1098
1099 /*
1100 * by definition, 1KiB is 2 sectors
1101 */
1102 back_max = cfqd->cfq_back_max * 2;
1103
1104 /*
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1108 */
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1115
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1122
1123 /* Found required data */
1124
1125 /*
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1128 */
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1140 }
1141
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1148 /*
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1153 */
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1158 }
1159 }
1160
1161 /*
1162 * The below is leftmost cache rbtree addon
1163 */
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1169
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1172
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176 return NULL;
1177 }
1178
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1183
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1186
1187 return NULL;
1188 }
1189
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1194 }
1195
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1202 }
1203
1204 /*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1210 {
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1214
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1219
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1226 }
1227
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1233 {
1234 /*
1235 * just an approximation, should be ok.
1236 */
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1255
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1259
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1265 }
1266 }
1267
1268 if (left)
1269 st->left = &cfqg->rb_node;
1270
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1277 {
1278 if (cfqg->new_weight) {
1279 cfqg->weight = cfqg->new_weight;
1280 cfqg->new_weight = 0;
1281 }
1282 }
1283
1284 static void
1285 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1286 {
1287 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1288
1289 if (cfqg->new_leaf_weight) {
1290 cfqg->leaf_weight = cfqg->new_leaf_weight;
1291 cfqg->new_leaf_weight = 0;
1292 }
1293 }
1294
1295 static void
1296 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1297 {
1298 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1299 struct cfq_group *pos = cfqg;
1300 struct cfq_group *parent;
1301 bool propagate;
1302
1303 /* add to the service tree */
1304 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1305
1306 cfq_update_group_leaf_weight(cfqg);
1307 __cfq_group_service_tree_add(st, cfqg);
1308
1309 /*
1310 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1311 * entitled to. vfraction is calculated by walking the tree
1312 * towards the root calculating the fraction it has at each level.
1313 * The compounded ratio is how much vfraction @cfqg owns.
1314 *
1315 * Start with the proportion tasks in this cfqg has against active
1316 * children cfqgs - its leaf_weight against children_weight.
1317 */
1318 propagate = !pos->nr_active++;
1319 pos->children_weight += pos->leaf_weight;
1320 vfr = vfr * pos->leaf_weight / pos->children_weight;
1321
1322 /*
1323 * Compound ->weight walking up the tree. Both activation and
1324 * vfraction calculation are done in the same loop. Propagation
1325 * stops once an already activated node is met. vfraction
1326 * calculation should always continue to the root.
1327 */
1328 while ((parent = cfqg_parent(pos))) {
1329 if (propagate) {
1330 cfq_update_group_weight(pos);
1331 propagate = !parent->nr_active++;
1332 parent->children_weight += pos->weight;
1333 }
1334 vfr = vfr * pos->weight / parent->children_weight;
1335 pos = parent;
1336 }
1337
1338 cfqg->vfraction = max_t(unsigned, vfr, 1);
1339 }
1340
1341 static void
1342 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1343 {
1344 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1345 struct cfq_group *__cfqg;
1346 struct rb_node *n;
1347
1348 cfqg->nr_cfqq++;
1349 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1350 return;
1351
1352 /*
1353 * Currently put the group at the end. Later implement something
1354 * so that groups get lesser vtime based on their weights, so that
1355 * if group does not loose all if it was not continuously backlogged.
1356 */
1357 n = rb_last(&st->rb);
1358 if (n) {
1359 __cfqg = rb_entry_cfqg(n);
1360 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1361 } else
1362 cfqg->vdisktime = st->min_vdisktime;
1363 cfq_group_service_tree_add(st, cfqg);
1364 }
1365
1366 static void
1367 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1368 {
1369 struct cfq_group *pos = cfqg;
1370 bool propagate;
1371
1372 /*
1373 * Undo activation from cfq_group_service_tree_add(). Deactivate
1374 * @cfqg and propagate deactivation upwards.
1375 */
1376 propagate = !--pos->nr_active;
1377 pos->children_weight -= pos->leaf_weight;
1378
1379 while (propagate) {
1380 struct cfq_group *parent = cfqg_parent(pos);
1381
1382 /* @pos has 0 nr_active at this point */
1383 WARN_ON_ONCE(pos->children_weight);
1384 pos->vfraction = 0;
1385
1386 if (!parent)
1387 break;
1388
1389 propagate = !--parent->nr_active;
1390 parent->children_weight -= pos->weight;
1391 pos = parent;
1392 }
1393
1394 /* remove from the service tree */
1395 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1396 cfq_rb_erase(&cfqg->rb_node, st);
1397 }
1398
1399 static void
1400 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1401 {
1402 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1403
1404 BUG_ON(cfqg->nr_cfqq < 1);
1405 cfqg->nr_cfqq--;
1406
1407 /* If there are other cfq queues under this group, don't delete it */
1408 if (cfqg->nr_cfqq)
1409 return;
1410
1411 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1412 cfq_group_service_tree_del(st, cfqg);
1413 cfqg->saved_wl_slice = 0;
1414 cfqg_stats_update_dequeue(cfqg);
1415 }
1416
1417 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1418 unsigned int *unaccounted_time)
1419 {
1420 unsigned int slice_used;
1421
1422 /*
1423 * Queue got expired before even a single request completed or
1424 * got expired immediately after first request completion.
1425 */
1426 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1427 /*
1428 * Also charge the seek time incurred to the group, otherwise
1429 * if there are mutiple queues in the group, each can dispatch
1430 * a single request on seeky media and cause lots of seek time
1431 * and group will never know it.
1432 */
1433 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1434 1);
1435 } else {
1436 slice_used = jiffies - cfqq->slice_start;
1437 if (slice_used > cfqq->allocated_slice) {
1438 *unaccounted_time = slice_used - cfqq->allocated_slice;
1439 slice_used = cfqq->allocated_slice;
1440 }
1441 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1442 *unaccounted_time += cfqq->slice_start -
1443 cfqq->dispatch_start;
1444 }
1445
1446 return slice_used;
1447 }
1448
1449 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1450 struct cfq_queue *cfqq)
1451 {
1452 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1453 unsigned int used_sl, charge, unaccounted_sl = 0;
1454 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1455 - cfqg->service_tree_idle.count;
1456 unsigned int vfr;
1457
1458 BUG_ON(nr_sync < 0);
1459 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1460
1461 if (iops_mode(cfqd))
1462 charge = cfqq->slice_dispatch;
1463 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1464 charge = cfqq->allocated_slice;
1465
1466 /*
1467 * Can't update vdisktime while on service tree and cfqg->vfraction
1468 * is valid only while on it. Cache vfr, leave the service tree,
1469 * update vdisktime and go back on. The re-addition to the tree
1470 * will also update the weights as necessary.
1471 */
1472 vfr = cfqg->vfraction;
1473 cfq_group_service_tree_del(st, cfqg);
1474 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1475 cfq_group_service_tree_add(st, cfqg);
1476
1477 /* This group is being expired. Save the context */
1478 if (time_after(cfqd->workload_expires, jiffies)) {
1479 cfqg->saved_wl_slice = cfqd->workload_expires
1480 - jiffies;
1481 cfqg->saved_wl_type = cfqd->serving_wl_type;
1482 cfqg->saved_wl_class = cfqd->serving_wl_class;
1483 } else
1484 cfqg->saved_wl_slice = 0;
1485
1486 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1487 st->min_vdisktime);
1488 cfq_log_cfqq(cfqq->cfqd, cfqq,
1489 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1490 used_sl, cfqq->slice_dispatch, charge,
1491 iops_mode(cfqd), cfqq->nr_sectors);
1492 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1493 cfqg_stats_set_start_empty_time(cfqg);
1494 }
1495
1496 /**
1497 * cfq_init_cfqg_base - initialize base part of a cfq_group
1498 * @cfqg: cfq_group to initialize
1499 *
1500 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1501 * is enabled or not.
1502 */
1503 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1504 {
1505 struct cfq_rb_root *st;
1506 int i, j;
1507
1508 for_each_cfqg_st(cfqg, i, j, st)
1509 *st = CFQ_RB_ROOT;
1510 RB_CLEAR_NODE(&cfqg->rb_node);
1511
1512 cfqg->ttime.last_end_request = jiffies;
1513 }
1514
1515 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1516 static void cfqg_stats_init(struct cfqg_stats *stats)
1517 {
1518 blkg_rwstat_init(&stats->service_bytes);
1519 blkg_rwstat_init(&stats->serviced);
1520 blkg_rwstat_init(&stats->merged);
1521 blkg_rwstat_init(&stats->service_time);
1522 blkg_rwstat_init(&stats->wait_time);
1523 blkg_rwstat_init(&stats->queued);
1524
1525 blkg_stat_init(&stats->sectors);
1526 blkg_stat_init(&stats->time);
1527
1528 #ifdef CONFIG_DEBUG_BLK_CGROUP
1529 blkg_stat_init(&stats->unaccounted_time);
1530 blkg_stat_init(&stats->avg_queue_size_sum);
1531 blkg_stat_init(&stats->avg_queue_size_samples);
1532 blkg_stat_init(&stats->dequeue);
1533 blkg_stat_init(&stats->group_wait_time);
1534 blkg_stat_init(&stats->idle_time);
1535 blkg_stat_init(&stats->empty_time);
1536 #endif
1537 }
1538
1539 static void cfq_pd_init(struct blkcg_gq *blkg)
1540 {
1541 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1542
1543 cfq_init_cfqg_base(cfqg);
1544 cfqg->weight = blkg->blkcg->cfq_weight;
1545 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1546 cfqg_stats_init(&cfqg->stats);
1547 cfqg_stats_init(&cfqg->dead_stats);
1548 }
1549
1550 static void cfq_pd_offline(struct blkcg_gq *blkg)
1551 {
1552 /*
1553 * @blkg is going offline and will be ignored by
1554 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1555 * that they don't get lost. If IOs complete after this point, the
1556 * stats for them will be lost. Oh well...
1557 */
1558 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1559 }
1560
1561 /* offset delta from cfqg->stats to cfqg->dead_stats */
1562 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1563 offsetof(struct cfq_group, stats);
1564
1565 /* to be used by recursive prfill, sums live and dead stats recursively */
1566 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1567 {
1568 u64 sum = 0;
1569
1570 sum += blkg_stat_recursive_sum(pd, off);
1571 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1572 return sum;
1573 }
1574
1575 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1576 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1577 int off)
1578 {
1579 struct blkg_rwstat a, b;
1580
1581 a = blkg_rwstat_recursive_sum(pd, off);
1582 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1583 blkg_rwstat_merge(&a, &b);
1584 return a;
1585 }
1586
1587 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1588 {
1589 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1590
1591 cfqg_stats_reset(&cfqg->stats);
1592 cfqg_stats_reset(&cfqg->dead_stats);
1593 }
1594
1595 /*
1596 * Search for the cfq group current task belongs to. request_queue lock must
1597 * be held.
1598 */
1599 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1600 struct blkcg *blkcg)
1601 {
1602 struct request_queue *q = cfqd->queue;
1603 struct cfq_group *cfqg = NULL;
1604
1605 /* avoid lookup for the common case where there's no blkcg */
1606 if (blkcg == &blkcg_root) {
1607 cfqg = cfqd->root_group;
1608 } else {
1609 struct blkcg_gq *blkg;
1610
1611 blkg = blkg_lookup_create(blkcg, q);
1612 if (!IS_ERR(blkg))
1613 cfqg = blkg_to_cfqg(blkg);
1614 }
1615
1616 return cfqg;
1617 }
1618
1619 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1620 {
1621 /* Currently, all async queues are mapped to root group */
1622 if (!cfq_cfqq_sync(cfqq))
1623 cfqg = cfqq->cfqd->root_group;
1624
1625 cfqq->cfqg = cfqg;
1626 /* cfqq reference on cfqg */
1627 cfqg_get(cfqg);
1628 }
1629
1630 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1631 struct blkg_policy_data *pd, int off)
1632 {
1633 struct cfq_group *cfqg = pd_to_cfqg(pd);
1634
1635 if (!cfqg->dev_weight)
1636 return 0;
1637 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1638 }
1639
1640 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1641 {
1642 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1643 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1644 0, false);
1645 return 0;
1646 }
1647
1648 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1649 struct blkg_policy_data *pd, int off)
1650 {
1651 struct cfq_group *cfqg = pd_to_cfqg(pd);
1652
1653 if (!cfqg->dev_leaf_weight)
1654 return 0;
1655 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1656 }
1657
1658 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1659 {
1660 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1661 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1662 0, false);
1663 return 0;
1664 }
1665
1666 static int cfq_print_weight(struct seq_file *sf, void *v)
1667 {
1668 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1669 return 0;
1670 }
1671
1672 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1673 {
1674 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1675 return 0;
1676 }
1677
1678 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1679 char *buf, size_t nbytes, loff_t off,
1680 bool is_leaf_weight)
1681 {
1682 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1683 struct blkg_conf_ctx ctx;
1684 struct cfq_group *cfqg;
1685 int ret;
1686
1687 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1688 if (ret)
1689 return ret;
1690
1691 ret = -EINVAL;
1692 cfqg = blkg_to_cfqg(ctx.blkg);
1693 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1694 if (!is_leaf_weight) {
1695 cfqg->dev_weight = ctx.v;
1696 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1697 } else {
1698 cfqg->dev_leaf_weight = ctx.v;
1699 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1700 }
1701 ret = 0;
1702 }
1703
1704 blkg_conf_finish(&ctx);
1705 return ret ?: nbytes;
1706 }
1707
1708 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1709 char *buf, size_t nbytes, loff_t off)
1710 {
1711 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1712 }
1713
1714 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1715 char *buf, size_t nbytes, loff_t off)
1716 {
1717 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1718 }
1719
1720 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1721 u64 val, bool is_leaf_weight)
1722 {
1723 struct blkcg *blkcg = css_to_blkcg(css);
1724 struct blkcg_gq *blkg;
1725
1726 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1727 return -EINVAL;
1728
1729 spin_lock_irq(&blkcg->lock);
1730
1731 if (!is_leaf_weight)
1732 blkcg->cfq_weight = val;
1733 else
1734 blkcg->cfq_leaf_weight = val;
1735
1736 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1737 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1738
1739 if (!cfqg)
1740 continue;
1741
1742 if (!is_leaf_weight) {
1743 if (!cfqg->dev_weight)
1744 cfqg->new_weight = blkcg->cfq_weight;
1745 } else {
1746 if (!cfqg->dev_leaf_weight)
1747 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1748 }
1749 }
1750
1751 spin_unlock_irq(&blkcg->lock);
1752 return 0;
1753 }
1754
1755 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1756 u64 val)
1757 {
1758 return __cfq_set_weight(css, cft, val, false);
1759 }
1760
1761 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1762 struct cftype *cft, u64 val)
1763 {
1764 return __cfq_set_weight(css, cft, val, true);
1765 }
1766
1767 static int cfqg_print_stat(struct seq_file *sf, void *v)
1768 {
1769 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1770 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1771 return 0;
1772 }
1773
1774 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1775 {
1776 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1777 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1778 return 0;
1779 }
1780
1781 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1782 struct blkg_policy_data *pd, int off)
1783 {
1784 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1785
1786 return __blkg_prfill_u64(sf, pd, sum);
1787 }
1788
1789 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1790 struct blkg_policy_data *pd, int off)
1791 {
1792 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1793
1794 return __blkg_prfill_rwstat(sf, pd, &sum);
1795 }
1796
1797 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1798 {
1799 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1800 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1801 seq_cft(sf)->private, false);
1802 return 0;
1803 }
1804
1805 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1806 {
1807 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1808 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1809 seq_cft(sf)->private, true);
1810 return 0;
1811 }
1812
1813 #ifdef CONFIG_DEBUG_BLK_CGROUP
1814 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1815 struct blkg_policy_data *pd, int off)
1816 {
1817 struct cfq_group *cfqg = pd_to_cfqg(pd);
1818 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1819 u64 v = 0;
1820
1821 if (samples) {
1822 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1823 v = div64_u64(v, samples);
1824 }
1825 __blkg_prfill_u64(sf, pd, v);
1826 return 0;
1827 }
1828
1829 /* print avg_queue_size */
1830 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1831 {
1832 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1833 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1834 0, false);
1835 return 0;
1836 }
1837 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1838
1839 static struct cftype cfq_blkcg_files[] = {
1840 /* on root, weight is mapped to leaf_weight */
1841 {
1842 .name = "weight_device",
1843 .flags = CFTYPE_ONLY_ON_ROOT,
1844 .seq_show = cfqg_print_leaf_weight_device,
1845 .write = cfqg_set_leaf_weight_device,
1846 },
1847 {
1848 .name = "weight",
1849 .flags = CFTYPE_ONLY_ON_ROOT,
1850 .seq_show = cfq_print_leaf_weight,
1851 .write_u64 = cfq_set_leaf_weight,
1852 },
1853
1854 /* no such mapping necessary for !roots */
1855 {
1856 .name = "weight_device",
1857 .flags = CFTYPE_NOT_ON_ROOT,
1858 .seq_show = cfqg_print_weight_device,
1859 .write = cfqg_set_weight_device,
1860 },
1861 {
1862 .name = "weight",
1863 .flags = CFTYPE_NOT_ON_ROOT,
1864 .seq_show = cfq_print_weight,
1865 .write_u64 = cfq_set_weight,
1866 },
1867
1868 {
1869 .name = "leaf_weight_device",
1870 .seq_show = cfqg_print_leaf_weight_device,
1871 .write = cfqg_set_leaf_weight_device,
1872 },
1873 {
1874 .name = "leaf_weight",
1875 .seq_show = cfq_print_leaf_weight,
1876 .write_u64 = cfq_set_leaf_weight,
1877 },
1878
1879 /* statistics, covers only the tasks in the cfqg */
1880 {
1881 .name = "time",
1882 .private = offsetof(struct cfq_group, stats.time),
1883 .seq_show = cfqg_print_stat,
1884 },
1885 {
1886 .name = "sectors",
1887 .private = offsetof(struct cfq_group, stats.sectors),
1888 .seq_show = cfqg_print_stat,
1889 },
1890 {
1891 .name = "io_service_bytes",
1892 .private = offsetof(struct cfq_group, stats.service_bytes),
1893 .seq_show = cfqg_print_rwstat,
1894 },
1895 {
1896 .name = "io_serviced",
1897 .private = offsetof(struct cfq_group, stats.serviced),
1898 .seq_show = cfqg_print_rwstat,
1899 },
1900 {
1901 .name = "io_service_time",
1902 .private = offsetof(struct cfq_group, stats.service_time),
1903 .seq_show = cfqg_print_rwstat,
1904 },
1905 {
1906 .name = "io_wait_time",
1907 .private = offsetof(struct cfq_group, stats.wait_time),
1908 .seq_show = cfqg_print_rwstat,
1909 },
1910 {
1911 .name = "io_merged",
1912 .private = offsetof(struct cfq_group, stats.merged),
1913 .seq_show = cfqg_print_rwstat,
1914 },
1915 {
1916 .name = "io_queued",
1917 .private = offsetof(struct cfq_group, stats.queued),
1918 .seq_show = cfqg_print_rwstat,
1919 },
1920
1921 /* the same statictics which cover the cfqg and its descendants */
1922 {
1923 .name = "time_recursive",
1924 .private = offsetof(struct cfq_group, stats.time),
1925 .seq_show = cfqg_print_stat_recursive,
1926 },
1927 {
1928 .name = "sectors_recursive",
1929 .private = offsetof(struct cfq_group, stats.sectors),
1930 .seq_show = cfqg_print_stat_recursive,
1931 },
1932 {
1933 .name = "io_service_bytes_recursive",
1934 .private = offsetof(struct cfq_group, stats.service_bytes),
1935 .seq_show = cfqg_print_rwstat_recursive,
1936 },
1937 {
1938 .name = "io_serviced_recursive",
1939 .private = offsetof(struct cfq_group, stats.serviced),
1940 .seq_show = cfqg_print_rwstat_recursive,
1941 },
1942 {
1943 .name = "io_service_time_recursive",
1944 .private = offsetof(struct cfq_group, stats.service_time),
1945 .seq_show = cfqg_print_rwstat_recursive,
1946 },
1947 {
1948 .name = "io_wait_time_recursive",
1949 .private = offsetof(struct cfq_group, stats.wait_time),
1950 .seq_show = cfqg_print_rwstat_recursive,
1951 },
1952 {
1953 .name = "io_merged_recursive",
1954 .private = offsetof(struct cfq_group, stats.merged),
1955 .seq_show = cfqg_print_rwstat_recursive,
1956 },
1957 {
1958 .name = "io_queued_recursive",
1959 .private = offsetof(struct cfq_group, stats.queued),
1960 .seq_show = cfqg_print_rwstat_recursive,
1961 },
1962 #ifdef CONFIG_DEBUG_BLK_CGROUP
1963 {
1964 .name = "avg_queue_size",
1965 .seq_show = cfqg_print_avg_queue_size,
1966 },
1967 {
1968 .name = "group_wait_time",
1969 .private = offsetof(struct cfq_group, stats.group_wait_time),
1970 .seq_show = cfqg_print_stat,
1971 },
1972 {
1973 .name = "idle_time",
1974 .private = offsetof(struct cfq_group, stats.idle_time),
1975 .seq_show = cfqg_print_stat,
1976 },
1977 {
1978 .name = "empty_time",
1979 .private = offsetof(struct cfq_group, stats.empty_time),
1980 .seq_show = cfqg_print_stat,
1981 },
1982 {
1983 .name = "dequeue",
1984 .private = offsetof(struct cfq_group, stats.dequeue),
1985 .seq_show = cfqg_print_stat,
1986 },
1987 {
1988 .name = "unaccounted_time",
1989 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1990 .seq_show = cfqg_print_stat,
1991 },
1992 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1993 { } /* terminate */
1994 };
1995 #else /* GROUP_IOSCHED */
1996 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1997 struct blkcg *blkcg)
1998 {
1999 return cfqd->root_group;
2000 }
2001
2002 static inline void
2003 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2004 cfqq->cfqg = cfqg;
2005 }
2006
2007 #endif /* GROUP_IOSCHED */
2008
2009 /*
2010 * The cfqd->service_trees holds all pending cfq_queue's that have
2011 * requests waiting to be processed. It is sorted in the order that
2012 * we will service the queues.
2013 */
2014 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2015 bool add_front)
2016 {
2017 struct rb_node **p, *parent;
2018 struct cfq_queue *__cfqq;
2019 unsigned long rb_key;
2020 struct cfq_rb_root *st;
2021 int left;
2022 int new_cfqq = 1;
2023
2024 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2025 if (cfq_class_idle(cfqq)) {
2026 rb_key = CFQ_IDLE_DELAY;
2027 parent = rb_last(&st->rb);
2028 if (parent && parent != &cfqq->rb_node) {
2029 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2030 rb_key += __cfqq->rb_key;
2031 } else
2032 rb_key += jiffies;
2033 } else if (!add_front) {
2034 /*
2035 * Get our rb key offset. Subtract any residual slice
2036 * value carried from last service. A negative resid
2037 * count indicates slice overrun, and this should position
2038 * the next service time further away in the tree.
2039 */
2040 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2041 rb_key -= cfqq->slice_resid;
2042 cfqq->slice_resid = 0;
2043 } else {
2044 rb_key = -HZ;
2045 __cfqq = cfq_rb_first(st);
2046 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2047 }
2048
2049 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2050 new_cfqq = 0;
2051 /*
2052 * same position, nothing more to do
2053 */
2054 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2055 return;
2056
2057 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2058 cfqq->service_tree = NULL;
2059 }
2060
2061 left = 1;
2062 parent = NULL;
2063 cfqq->service_tree = st;
2064 p = &st->rb.rb_node;
2065 while (*p) {
2066 parent = *p;
2067 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2068
2069 /*
2070 * sort by key, that represents service time.
2071 */
2072 if (time_before(rb_key, __cfqq->rb_key))
2073 p = &parent->rb_left;
2074 else {
2075 p = &parent->rb_right;
2076 left = 0;
2077 }
2078 }
2079
2080 if (left)
2081 st->left = &cfqq->rb_node;
2082
2083 cfqq->rb_key = rb_key;
2084 rb_link_node(&cfqq->rb_node, parent, p);
2085 rb_insert_color(&cfqq->rb_node, &st->rb);
2086 st->count++;
2087 if (add_front || !new_cfqq)
2088 return;
2089 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2090 }
2091
2092 static struct cfq_queue *
2093 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2094 sector_t sector, struct rb_node **ret_parent,
2095 struct rb_node ***rb_link)
2096 {
2097 struct rb_node **p, *parent;
2098 struct cfq_queue *cfqq = NULL;
2099
2100 parent = NULL;
2101 p = &root->rb_node;
2102 while (*p) {
2103 struct rb_node **n;
2104
2105 parent = *p;
2106 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2107
2108 /*
2109 * Sort strictly based on sector. Smallest to the left,
2110 * largest to the right.
2111 */
2112 if (sector > blk_rq_pos(cfqq->next_rq))
2113 n = &(*p)->rb_right;
2114 else if (sector < blk_rq_pos(cfqq->next_rq))
2115 n = &(*p)->rb_left;
2116 else
2117 break;
2118 p = n;
2119 cfqq = NULL;
2120 }
2121
2122 *ret_parent = parent;
2123 if (rb_link)
2124 *rb_link = p;
2125 return cfqq;
2126 }
2127
2128 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2129 {
2130 struct rb_node **p, *parent;
2131 struct cfq_queue *__cfqq;
2132
2133 if (cfqq->p_root) {
2134 rb_erase(&cfqq->p_node, cfqq->p_root);
2135 cfqq->p_root = NULL;
2136 }
2137
2138 if (cfq_class_idle(cfqq))
2139 return;
2140 if (!cfqq->next_rq)
2141 return;
2142
2143 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2144 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2145 blk_rq_pos(cfqq->next_rq), &parent, &p);
2146 if (!__cfqq) {
2147 rb_link_node(&cfqq->p_node, parent, p);
2148 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2149 } else
2150 cfqq->p_root = NULL;
2151 }
2152
2153 /*
2154 * Update cfqq's position in the service tree.
2155 */
2156 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2157 {
2158 /*
2159 * Resorting requires the cfqq to be on the RR list already.
2160 */
2161 if (cfq_cfqq_on_rr(cfqq)) {
2162 cfq_service_tree_add(cfqd, cfqq, 0);
2163 cfq_prio_tree_add(cfqd, cfqq);
2164 }
2165 }
2166
2167 /*
2168 * add to busy list of queues for service, trying to be fair in ordering
2169 * the pending list according to last request service
2170 */
2171 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2172 {
2173 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2174 BUG_ON(cfq_cfqq_on_rr(cfqq));
2175 cfq_mark_cfqq_on_rr(cfqq);
2176 cfqd->busy_queues++;
2177 if (cfq_cfqq_sync(cfqq))
2178 cfqd->busy_sync_queues++;
2179
2180 cfq_resort_rr_list(cfqd, cfqq);
2181 }
2182
2183 /*
2184 * Called when the cfqq no longer has requests pending, remove it from
2185 * the service tree.
2186 */
2187 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2188 {
2189 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2190 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2191 cfq_clear_cfqq_on_rr(cfqq);
2192
2193 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2194 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2195 cfqq->service_tree = NULL;
2196 }
2197 if (cfqq->p_root) {
2198 rb_erase(&cfqq->p_node, cfqq->p_root);
2199 cfqq->p_root = NULL;
2200 }
2201
2202 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2203 BUG_ON(!cfqd->busy_queues);
2204 cfqd->busy_queues--;
2205 if (cfq_cfqq_sync(cfqq))
2206 cfqd->busy_sync_queues--;
2207 }
2208
2209 /*
2210 * rb tree support functions
2211 */
2212 static void cfq_del_rq_rb(struct request *rq)
2213 {
2214 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2215 const int sync = rq_is_sync(rq);
2216
2217 BUG_ON(!cfqq->queued[sync]);
2218 cfqq->queued[sync]--;
2219
2220 elv_rb_del(&cfqq->sort_list, rq);
2221
2222 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2223 /*
2224 * Queue will be deleted from service tree when we actually
2225 * expire it later. Right now just remove it from prio tree
2226 * as it is empty.
2227 */
2228 if (cfqq->p_root) {
2229 rb_erase(&cfqq->p_node, cfqq->p_root);
2230 cfqq->p_root = NULL;
2231 }
2232 }
2233 }
2234
2235 static void cfq_add_rq_rb(struct request *rq)
2236 {
2237 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2238 struct cfq_data *cfqd = cfqq->cfqd;
2239 struct request *prev;
2240
2241 cfqq->queued[rq_is_sync(rq)]++;
2242
2243 elv_rb_add(&cfqq->sort_list, rq);
2244
2245 if (!cfq_cfqq_on_rr(cfqq))
2246 cfq_add_cfqq_rr(cfqd, cfqq);
2247
2248 /*
2249 * check if this request is a better next-serve candidate
2250 */
2251 prev = cfqq->next_rq;
2252 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2253
2254 /*
2255 * adjust priority tree position, if ->next_rq changes
2256 */
2257 if (prev != cfqq->next_rq)
2258 cfq_prio_tree_add(cfqd, cfqq);
2259
2260 BUG_ON(!cfqq->next_rq);
2261 }
2262
2263 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2264 {
2265 elv_rb_del(&cfqq->sort_list, rq);
2266 cfqq->queued[rq_is_sync(rq)]--;
2267 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2268 cfq_add_rq_rb(rq);
2269 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2270 rq->cmd_flags);
2271 }
2272
2273 static struct request *
2274 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2275 {
2276 struct task_struct *tsk = current;
2277 struct cfq_io_cq *cic;
2278 struct cfq_queue *cfqq;
2279
2280 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2281 if (!cic)
2282 return NULL;
2283
2284 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2285 if (cfqq)
2286 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2287
2288 return NULL;
2289 }
2290
2291 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2292 {
2293 struct cfq_data *cfqd = q->elevator->elevator_data;
2294
2295 cfqd->rq_in_driver++;
2296 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2297 cfqd->rq_in_driver);
2298
2299 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2300 }
2301
2302 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2303 {
2304 struct cfq_data *cfqd = q->elevator->elevator_data;
2305
2306 WARN_ON(!cfqd->rq_in_driver);
2307 cfqd->rq_in_driver--;
2308 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2309 cfqd->rq_in_driver);
2310 }
2311
2312 static void cfq_remove_request(struct request *rq)
2313 {
2314 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2315
2316 if (cfqq->next_rq == rq)
2317 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2318
2319 list_del_init(&rq->queuelist);
2320 cfq_del_rq_rb(rq);
2321
2322 cfqq->cfqd->rq_queued--;
2323 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2324 if (rq->cmd_flags & REQ_PRIO) {
2325 WARN_ON(!cfqq->prio_pending);
2326 cfqq->prio_pending--;
2327 }
2328 }
2329
2330 static int cfq_merge(struct request_queue *q, struct request **req,
2331 struct bio *bio)
2332 {
2333 struct cfq_data *cfqd = q->elevator->elevator_data;
2334 struct request *__rq;
2335
2336 __rq = cfq_find_rq_fmerge(cfqd, bio);
2337 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2338 *req = __rq;
2339 return ELEVATOR_FRONT_MERGE;
2340 }
2341
2342 return ELEVATOR_NO_MERGE;
2343 }
2344
2345 static void cfq_merged_request(struct request_queue *q, struct request *req,
2346 int type)
2347 {
2348 if (type == ELEVATOR_FRONT_MERGE) {
2349 struct cfq_queue *cfqq = RQ_CFQQ(req);
2350
2351 cfq_reposition_rq_rb(cfqq, req);
2352 }
2353 }
2354
2355 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2356 struct bio *bio)
2357 {
2358 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2359 }
2360
2361 static void
2362 cfq_merged_requests(struct request_queue *q, struct request *rq,
2363 struct request *next)
2364 {
2365 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2366 struct cfq_data *cfqd = q->elevator->elevator_data;
2367
2368 /*
2369 * reposition in fifo if next is older than rq
2370 */
2371 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2372 time_before(next->fifo_time, rq->fifo_time) &&
2373 cfqq == RQ_CFQQ(next)) {
2374 list_move(&rq->queuelist, &next->queuelist);
2375 rq->fifo_time = next->fifo_time;
2376 }
2377
2378 if (cfqq->next_rq == next)
2379 cfqq->next_rq = rq;
2380 cfq_remove_request(next);
2381 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2382
2383 cfqq = RQ_CFQQ(next);
2384 /*
2385 * all requests of this queue are merged to other queues, delete it
2386 * from the service tree. If it's the active_queue,
2387 * cfq_dispatch_requests() will choose to expire it or do idle
2388 */
2389 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2390 cfqq != cfqd->active_queue)
2391 cfq_del_cfqq_rr(cfqd, cfqq);
2392 }
2393
2394 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2395 struct bio *bio)
2396 {
2397 struct cfq_data *cfqd = q->elevator->elevator_data;
2398 struct cfq_io_cq *cic;
2399 struct cfq_queue *cfqq;
2400
2401 /*
2402 * Disallow merge of a sync bio into an async request.
2403 */
2404 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2405 return false;
2406
2407 /*
2408 * Lookup the cfqq that this bio will be queued with and allow
2409 * merge only if rq is queued there.
2410 */
2411 cic = cfq_cic_lookup(cfqd, current->io_context);
2412 if (!cic)
2413 return false;
2414
2415 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2416 return cfqq == RQ_CFQQ(rq);
2417 }
2418
2419 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2420 {
2421 del_timer(&cfqd->idle_slice_timer);
2422 cfqg_stats_update_idle_time(cfqq->cfqg);
2423 }
2424
2425 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2426 struct cfq_queue *cfqq)
2427 {
2428 if (cfqq) {
2429 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2430 cfqd->serving_wl_class, cfqd->serving_wl_type);
2431 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2432 cfqq->slice_start = 0;
2433 cfqq->dispatch_start = jiffies;
2434 cfqq->allocated_slice = 0;
2435 cfqq->slice_end = 0;
2436 cfqq->slice_dispatch = 0;
2437 cfqq->nr_sectors = 0;
2438
2439 cfq_clear_cfqq_wait_request(cfqq);
2440 cfq_clear_cfqq_must_dispatch(cfqq);
2441 cfq_clear_cfqq_must_alloc_slice(cfqq);
2442 cfq_clear_cfqq_fifo_expire(cfqq);
2443 cfq_mark_cfqq_slice_new(cfqq);
2444
2445 cfq_del_timer(cfqd, cfqq);
2446 }
2447
2448 cfqd->active_queue = cfqq;
2449 }
2450
2451 /*
2452 * current cfqq expired its slice (or was too idle), select new one
2453 */
2454 static void
2455 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2456 bool timed_out)
2457 {
2458 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2459
2460 if (cfq_cfqq_wait_request(cfqq))
2461 cfq_del_timer(cfqd, cfqq);
2462
2463 cfq_clear_cfqq_wait_request(cfqq);
2464 cfq_clear_cfqq_wait_busy(cfqq);
2465
2466 /*
2467 * If this cfqq is shared between multiple processes, check to
2468 * make sure that those processes are still issuing I/Os within
2469 * the mean seek distance. If not, it may be time to break the
2470 * queues apart again.
2471 */
2472 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2473 cfq_mark_cfqq_split_coop(cfqq);
2474
2475 /*
2476 * store what was left of this slice, if the queue idled/timed out
2477 */
2478 if (timed_out) {
2479 if (cfq_cfqq_slice_new(cfqq))
2480 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2481 else
2482 cfqq->slice_resid = cfqq->slice_end - jiffies;
2483 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2484 }
2485
2486 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2487
2488 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2489 cfq_del_cfqq_rr(cfqd, cfqq);
2490
2491 cfq_resort_rr_list(cfqd, cfqq);
2492
2493 if (cfqq == cfqd->active_queue)
2494 cfqd->active_queue = NULL;
2495
2496 if (cfqd->active_cic) {
2497 put_io_context(cfqd->active_cic->icq.ioc);
2498 cfqd->active_cic = NULL;
2499 }
2500 }
2501
2502 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2503 {
2504 struct cfq_queue *cfqq = cfqd->active_queue;
2505
2506 if (cfqq)
2507 __cfq_slice_expired(cfqd, cfqq, timed_out);
2508 }
2509
2510 /*
2511 * Get next queue for service. Unless we have a queue preemption,
2512 * we'll simply select the first cfqq in the service tree.
2513 */
2514 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2515 {
2516 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2517 cfqd->serving_wl_class, cfqd->serving_wl_type);
2518
2519 if (!cfqd->rq_queued)
2520 return NULL;
2521
2522 /* There is nothing to dispatch */
2523 if (!st)
2524 return NULL;
2525 if (RB_EMPTY_ROOT(&st->rb))
2526 return NULL;
2527 return cfq_rb_first(st);
2528 }
2529
2530 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2531 {
2532 struct cfq_group *cfqg;
2533 struct cfq_queue *cfqq;
2534 int i, j;
2535 struct cfq_rb_root *st;
2536
2537 if (!cfqd->rq_queued)
2538 return NULL;
2539
2540 cfqg = cfq_get_next_cfqg(cfqd);
2541 if (!cfqg)
2542 return NULL;
2543
2544 for_each_cfqg_st(cfqg, i, j, st)
2545 if ((cfqq = cfq_rb_first(st)) != NULL)
2546 return cfqq;
2547 return NULL;
2548 }
2549
2550 /*
2551 * Get and set a new active queue for service.
2552 */
2553 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2554 struct cfq_queue *cfqq)
2555 {
2556 if (!cfqq)
2557 cfqq = cfq_get_next_queue(cfqd);
2558
2559 __cfq_set_active_queue(cfqd, cfqq);
2560 return cfqq;
2561 }
2562
2563 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2564 struct request *rq)
2565 {
2566 if (blk_rq_pos(rq) >= cfqd->last_position)
2567 return blk_rq_pos(rq) - cfqd->last_position;
2568 else
2569 return cfqd->last_position - blk_rq_pos(rq);
2570 }
2571
2572 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2573 struct request *rq)
2574 {
2575 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2576 }
2577
2578 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2579 struct cfq_queue *cur_cfqq)
2580 {
2581 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2582 struct rb_node *parent, *node;
2583 struct cfq_queue *__cfqq;
2584 sector_t sector = cfqd->last_position;
2585
2586 if (RB_EMPTY_ROOT(root))
2587 return NULL;
2588
2589 /*
2590 * First, if we find a request starting at the end of the last
2591 * request, choose it.
2592 */
2593 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2594 if (__cfqq)
2595 return __cfqq;
2596
2597 /*
2598 * If the exact sector wasn't found, the parent of the NULL leaf
2599 * will contain the closest sector.
2600 */
2601 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2602 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2603 return __cfqq;
2604
2605 if (blk_rq_pos(__cfqq->next_rq) < sector)
2606 node = rb_next(&__cfqq->p_node);
2607 else
2608 node = rb_prev(&__cfqq->p_node);
2609 if (!node)
2610 return NULL;
2611
2612 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2613 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2614 return __cfqq;
2615
2616 return NULL;
2617 }
2618
2619 /*
2620 * cfqd - obvious
2621 * cur_cfqq - passed in so that we don't decide that the current queue is
2622 * closely cooperating with itself.
2623 *
2624 * So, basically we're assuming that that cur_cfqq has dispatched at least
2625 * one request, and that cfqd->last_position reflects a position on the disk
2626 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2627 * assumption.
2628 */
2629 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2630 struct cfq_queue *cur_cfqq)
2631 {
2632 struct cfq_queue *cfqq;
2633
2634 if (cfq_class_idle(cur_cfqq))
2635 return NULL;
2636 if (!cfq_cfqq_sync(cur_cfqq))
2637 return NULL;
2638 if (CFQQ_SEEKY(cur_cfqq))
2639 return NULL;
2640
2641 /*
2642 * Don't search priority tree if it's the only queue in the group.
2643 */
2644 if (cur_cfqq->cfqg->nr_cfqq == 1)
2645 return NULL;
2646
2647 /*
2648 * We should notice if some of the queues are cooperating, eg
2649 * working closely on the same area of the disk. In that case,
2650 * we can group them together and don't waste time idling.
2651 */
2652 cfqq = cfqq_close(cfqd, cur_cfqq);
2653 if (!cfqq)
2654 return NULL;
2655
2656 /* If new queue belongs to different cfq_group, don't choose it */
2657 if (cur_cfqq->cfqg != cfqq->cfqg)
2658 return NULL;
2659
2660 /*
2661 * It only makes sense to merge sync queues.
2662 */
2663 if (!cfq_cfqq_sync(cfqq))
2664 return NULL;
2665 if (CFQQ_SEEKY(cfqq))
2666 return NULL;
2667
2668 /*
2669 * Do not merge queues of different priority classes
2670 */
2671 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2672 return NULL;
2673
2674 return cfqq;
2675 }
2676
2677 /*
2678 * Determine whether we should enforce idle window for this queue.
2679 */
2680
2681 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2682 {
2683 enum wl_class_t wl_class = cfqq_class(cfqq);
2684 struct cfq_rb_root *st = cfqq->service_tree;
2685
2686 BUG_ON(!st);
2687 BUG_ON(!st->count);
2688
2689 if (!cfqd->cfq_slice_idle)
2690 return false;
2691
2692 /* We never do for idle class queues. */
2693 if (wl_class == IDLE_WORKLOAD)
2694 return false;
2695
2696 /* We do for queues that were marked with idle window flag. */
2697 if (cfq_cfqq_idle_window(cfqq) &&
2698 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2699 return true;
2700
2701 /*
2702 * Otherwise, we do only if they are the last ones
2703 * in their service tree.
2704 */
2705 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2706 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2707 return true;
2708 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2709 return false;
2710 }
2711
2712 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2713 {
2714 struct cfq_queue *cfqq = cfqd->active_queue;
2715 struct cfq_io_cq *cic;
2716 unsigned long sl, group_idle = 0;
2717
2718 /*
2719 * SSD device without seek penalty, disable idling. But only do so
2720 * for devices that support queuing, otherwise we still have a problem
2721 * with sync vs async workloads.
2722 */
2723 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2724 return;
2725
2726 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2727 WARN_ON(cfq_cfqq_slice_new(cfqq));
2728
2729 /*
2730 * idle is disabled, either manually or by past process history
2731 */
2732 if (!cfq_should_idle(cfqd, cfqq)) {
2733 /* no queue idling. Check for group idling */
2734 if (cfqd->cfq_group_idle)
2735 group_idle = cfqd->cfq_group_idle;
2736 else
2737 return;
2738 }
2739
2740 /*
2741 * still active requests from this queue, don't idle
2742 */
2743 if (cfqq->dispatched)
2744 return;
2745
2746 /*
2747 * task has exited, don't wait
2748 */
2749 cic = cfqd->active_cic;
2750 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2751 return;
2752
2753 /*
2754 * If our average think time is larger than the remaining time
2755 * slice, then don't idle. This avoids overrunning the allotted
2756 * time slice.
2757 */
2758 if (sample_valid(cic->ttime.ttime_samples) &&
2759 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2760 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2761 cic->ttime.ttime_mean);
2762 return;
2763 }
2764
2765 /* There are other queues in the group, don't do group idle */
2766 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2767 return;
2768
2769 cfq_mark_cfqq_wait_request(cfqq);
2770
2771 if (group_idle)
2772 sl = cfqd->cfq_group_idle;
2773 else
2774 sl = cfqd->cfq_slice_idle;
2775
2776 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2777 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2778 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2779 group_idle ? 1 : 0);
2780 }
2781
2782 /*
2783 * Move request from internal lists to the request queue dispatch list.
2784 */
2785 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2786 {
2787 struct cfq_data *cfqd = q->elevator->elevator_data;
2788 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2789
2790 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2791
2792 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2793 cfq_remove_request(rq);
2794 cfqq->dispatched++;
2795 (RQ_CFQG(rq))->dispatched++;
2796 elv_dispatch_sort(q, rq);
2797
2798 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2799 cfqq->nr_sectors += blk_rq_sectors(rq);
2800 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2801 }
2802
2803 /*
2804 * return expired entry, or NULL to just start from scratch in rbtree
2805 */
2806 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2807 {
2808 struct request *rq = NULL;
2809
2810 if (cfq_cfqq_fifo_expire(cfqq))
2811 return NULL;
2812
2813 cfq_mark_cfqq_fifo_expire(cfqq);
2814
2815 if (list_empty(&cfqq->fifo))
2816 return NULL;
2817
2818 rq = rq_entry_fifo(cfqq->fifo.next);
2819 if (time_before(jiffies, rq->fifo_time))
2820 rq = NULL;
2821
2822 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2823 return rq;
2824 }
2825
2826 static inline int
2827 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2828 {
2829 const int base_rq = cfqd->cfq_slice_async_rq;
2830
2831 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2832
2833 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2834 }
2835
2836 /*
2837 * Must be called with the queue_lock held.
2838 */
2839 static int cfqq_process_refs(struct cfq_queue *cfqq)
2840 {
2841 int process_refs, io_refs;
2842
2843 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2844 process_refs = cfqq->ref - io_refs;
2845 BUG_ON(process_refs < 0);
2846 return process_refs;
2847 }
2848
2849 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2850 {
2851 int process_refs, new_process_refs;
2852 struct cfq_queue *__cfqq;
2853
2854 /*
2855 * If there are no process references on the new_cfqq, then it is
2856 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2857 * chain may have dropped their last reference (not just their
2858 * last process reference).
2859 */
2860 if (!cfqq_process_refs(new_cfqq))
2861 return;
2862
2863 /* Avoid a circular list and skip interim queue merges */
2864 while ((__cfqq = new_cfqq->new_cfqq)) {
2865 if (__cfqq == cfqq)
2866 return;
2867 new_cfqq = __cfqq;
2868 }
2869
2870 process_refs = cfqq_process_refs(cfqq);
2871 new_process_refs = cfqq_process_refs(new_cfqq);
2872 /*
2873 * If the process for the cfqq has gone away, there is no
2874 * sense in merging the queues.
2875 */
2876 if (process_refs == 0 || new_process_refs == 0)
2877 return;
2878
2879 /*
2880 * Merge in the direction of the lesser amount of work.
2881 */
2882 if (new_process_refs >= process_refs) {
2883 cfqq->new_cfqq = new_cfqq;
2884 new_cfqq->ref += process_refs;
2885 } else {
2886 new_cfqq->new_cfqq = cfqq;
2887 cfqq->ref += new_process_refs;
2888 }
2889 }
2890
2891 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2892 struct cfq_group *cfqg, enum wl_class_t wl_class)
2893 {
2894 struct cfq_queue *queue;
2895 int i;
2896 bool key_valid = false;
2897 unsigned long lowest_key = 0;
2898 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2899
2900 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2901 /* select the one with lowest rb_key */
2902 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2903 if (queue &&
2904 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2905 lowest_key = queue->rb_key;
2906 cur_best = i;
2907 key_valid = true;
2908 }
2909 }
2910
2911 return cur_best;
2912 }
2913
2914 static void
2915 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2916 {
2917 unsigned slice;
2918 unsigned count;
2919 struct cfq_rb_root *st;
2920 unsigned group_slice;
2921 enum wl_class_t original_class = cfqd->serving_wl_class;
2922
2923 /* Choose next priority. RT > BE > IDLE */
2924 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2925 cfqd->serving_wl_class = RT_WORKLOAD;
2926 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2927 cfqd->serving_wl_class = BE_WORKLOAD;
2928 else {
2929 cfqd->serving_wl_class = IDLE_WORKLOAD;
2930 cfqd->workload_expires = jiffies + 1;
2931 return;
2932 }
2933
2934 if (original_class != cfqd->serving_wl_class)
2935 goto new_workload;
2936
2937 /*
2938 * For RT and BE, we have to choose also the type
2939 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2940 * expiration time
2941 */
2942 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2943 count = st->count;
2944
2945 /*
2946 * check workload expiration, and that we still have other queues ready
2947 */
2948 if (count && !time_after(jiffies, cfqd->workload_expires))
2949 return;
2950
2951 new_workload:
2952 /* otherwise select new workload type */
2953 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2954 cfqd->serving_wl_class);
2955 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2956 count = st->count;
2957
2958 /*
2959 * the workload slice is computed as a fraction of target latency
2960 * proportional to the number of queues in that workload, over
2961 * all the queues in the same priority class
2962 */
2963 group_slice = cfq_group_slice(cfqd, cfqg);
2964
2965 slice = group_slice * count /
2966 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2967 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2968 cfqg));
2969
2970 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2971 unsigned int tmp;
2972
2973 /*
2974 * Async queues are currently system wide. Just taking
2975 * proportion of queues with-in same group will lead to higher
2976 * async ratio system wide as generally root group is going
2977 * to have higher weight. A more accurate thing would be to
2978 * calculate system wide asnc/sync ratio.
2979 */
2980 tmp = cfqd->cfq_target_latency *
2981 cfqg_busy_async_queues(cfqd, cfqg);
2982 tmp = tmp/cfqd->busy_queues;
2983 slice = min_t(unsigned, slice, tmp);
2984
2985 /* async workload slice is scaled down according to
2986 * the sync/async slice ratio. */
2987 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2988 } else
2989 /* sync workload slice is at least 2 * cfq_slice_idle */
2990 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2991
2992 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2993 cfq_log(cfqd, "workload slice:%d", slice);
2994 cfqd->workload_expires = jiffies + slice;
2995 }
2996
2997 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2998 {
2999 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3000 struct cfq_group *cfqg;
3001
3002 if (RB_EMPTY_ROOT(&st->rb))
3003 return NULL;
3004 cfqg = cfq_rb_first_group(st);
3005 update_min_vdisktime(st);
3006 return cfqg;
3007 }
3008
3009 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3010 {
3011 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3012
3013 cfqd->serving_group = cfqg;
3014
3015 /* Restore the workload type data */
3016 if (cfqg->saved_wl_slice) {
3017 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3018 cfqd->serving_wl_type = cfqg->saved_wl_type;
3019 cfqd->serving_wl_class = cfqg->saved_wl_class;
3020 } else
3021 cfqd->workload_expires = jiffies - 1;
3022
3023 choose_wl_class_and_type(cfqd, cfqg);
3024 }
3025
3026 /*
3027 * Select a queue for service. If we have a current active queue,
3028 * check whether to continue servicing it, or retrieve and set a new one.
3029 */
3030 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3031 {
3032 struct cfq_queue *cfqq, *new_cfqq = NULL;
3033
3034 cfqq = cfqd->active_queue;
3035 if (!cfqq)
3036 goto new_queue;
3037
3038 if (!cfqd->rq_queued)
3039 return NULL;
3040
3041 /*
3042 * We were waiting for group to get backlogged. Expire the queue
3043 */
3044 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3045 goto expire;
3046
3047 /*
3048 * The active queue has run out of time, expire it and select new.
3049 */
3050 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3051 /*
3052 * If slice had not expired at the completion of last request
3053 * we might not have turned on wait_busy flag. Don't expire
3054 * the queue yet. Allow the group to get backlogged.
3055 *
3056 * The very fact that we have used the slice, that means we
3057 * have been idling all along on this queue and it should be
3058 * ok to wait for this request to complete.
3059 */
3060 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3061 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3062 cfqq = NULL;
3063 goto keep_queue;
3064 } else
3065 goto check_group_idle;
3066 }
3067
3068 /*
3069 * The active queue has requests and isn't expired, allow it to
3070 * dispatch.
3071 */
3072 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3073 goto keep_queue;
3074
3075 /*
3076 * If another queue has a request waiting within our mean seek
3077 * distance, let it run. The expire code will check for close
3078 * cooperators and put the close queue at the front of the service
3079 * tree. If possible, merge the expiring queue with the new cfqq.
3080 */
3081 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3082 if (new_cfqq) {
3083 if (!cfqq->new_cfqq)
3084 cfq_setup_merge(cfqq, new_cfqq);
3085 goto expire;
3086 }
3087
3088 /*
3089 * No requests pending. If the active queue still has requests in
3090 * flight or is idling for a new request, allow either of these
3091 * conditions to happen (or time out) before selecting a new queue.
3092 */
3093 if (timer_pending(&cfqd->idle_slice_timer)) {
3094 cfqq = NULL;
3095 goto keep_queue;
3096 }
3097
3098 /*
3099 * This is a deep seek queue, but the device is much faster than
3100 * the queue can deliver, don't idle
3101 **/
3102 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3103 (cfq_cfqq_slice_new(cfqq) ||
3104 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3105 cfq_clear_cfqq_deep(cfqq);
3106 cfq_clear_cfqq_idle_window(cfqq);
3107 }
3108
3109 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3110 cfqq = NULL;
3111 goto keep_queue;
3112 }
3113
3114 /*
3115 * If group idle is enabled and there are requests dispatched from
3116 * this group, wait for requests to complete.
3117 */
3118 check_group_idle:
3119 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3120 cfqq->cfqg->dispatched &&
3121 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3122 cfqq = NULL;
3123 goto keep_queue;
3124 }
3125
3126 expire:
3127 cfq_slice_expired(cfqd, 0);
3128 new_queue:
3129 /*
3130 * Current queue expired. Check if we have to switch to a new
3131 * service tree
3132 */
3133 if (!new_cfqq)
3134 cfq_choose_cfqg(cfqd);
3135
3136 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3137 keep_queue:
3138 return cfqq;
3139 }
3140
3141 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3142 {
3143 int dispatched = 0;
3144
3145 while (cfqq->next_rq) {
3146 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3147 dispatched++;
3148 }
3149
3150 BUG_ON(!list_empty(&cfqq->fifo));
3151
3152 /* By default cfqq is not expired if it is empty. Do it explicitly */
3153 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3154 return dispatched;
3155 }
3156
3157 /*
3158 * Drain our current requests. Used for barriers and when switching
3159 * io schedulers on-the-fly.
3160 */
3161 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3162 {
3163 struct cfq_queue *cfqq;
3164 int dispatched = 0;
3165
3166 /* Expire the timeslice of the current active queue first */
3167 cfq_slice_expired(cfqd, 0);
3168 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3169 __cfq_set_active_queue(cfqd, cfqq);
3170 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3171 }
3172
3173 BUG_ON(cfqd->busy_queues);
3174
3175 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3176 return dispatched;
3177 }
3178
3179 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3180 struct cfq_queue *cfqq)
3181 {
3182 /* the queue hasn't finished any request, can't estimate */
3183 if (cfq_cfqq_slice_new(cfqq))
3184 return true;
3185 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3186 cfqq->slice_end))
3187 return true;
3188
3189 return false;
3190 }
3191
3192 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3193 {
3194 unsigned int max_dispatch;
3195
3196 /*
3197 * Drain async requests before we start sync IO
3198 */
3199 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3200 return false;
3201
3202 /*
3203 * If this is an async queue and we have sync IO in flight, let it wait
3204 */
3205 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3206 return false;
3207
3208 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3209 if (cfq_class_idle(cfqq))
3210 max_dispatch = 1;
3211
3212 /*
3213 * Does this cfqq already have too much IO in flight?
3214 */
3215 if (cfqq->dispatched >= max_dispatch) {
3216 bool promote_sync = false;
3217 /*
3218 * idle queue must always only have a single IO in flight
3219 */
3220 if (cfq_class_idle(cfqq))
3221 return false;
3222
3223 /*
3224 * If there is only one sync queue
3225 * we can ignore async queue here and give the sync
3226 * queue no dispatch limit. The reason is a sync queue can
3227 * preempt async queue, limiting the sync queue doesn't make
3228 * sense. This is useful for aiostress test.
3229 */
3230 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3231 promote_sync = true;
3232
3233 /*
3234 * We have other queues, don't allow more IO from this one
3235 */
3236 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3237 !promote_sync)
3238 return false;
3239
3240 /*
3241 * Sole queue user, no limit
3242 */
3243 if (cfqd->busy_queues == 1 || promote_sync)
3244 max_dispatch = -1;
3245 else
3246 /*
3247 * Normally we start throttling cfqq when cfq_quantum/2
3248 * requests have been dispatched. But we can drive
3249 * deeper queue depths at the beginning of slice
3250 * subjected to upper limit of cfq_quantum.
3251 * */
3252 max_dispatch = cfqd->cfq_quantum;
3253 }
3254
3255 /*
3256 * Async queues must wait a bit before being allowed dispatch.
3257 * We also ramp up the dispatch depth gradually for async IO,
3258 * based on the last sync IO we serviced
3259 */
3260 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3261 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3262 unsigned int depth;
3263
3264 depth = last_sync / cfqd->cfq_slice[1];
3265 if (!depth && !cfqq->dispatched)
3266 depth = 1;
3267 if (depth < max_dispatch)
3268 max_dispatch = depth;
3269 }
3270
3271 /*
3272 * If we're below the current max, allow a dispatch
3273 */
3274 return cfqq->dispatched < max_dispatch;
3275 }
3276
3277 /*
3278 * Dispatch a request from cfqq, moving them to the request queue
3279 * dispatch list.
3280 */
3281 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3282 {
3283 struct request *rq;
3284
3285 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3286
3287 if (!cfq_may_dispatch(cfqd, cfqq))
3288 return false;
3289
3290 /*
3291 * follow expired path, else get first next available
3292 */
3293 rq = cfq_check_fifo(cfqq);
3294 if (!rq)
3295 rq = cfqq->next_rq;
3296
3297 /*
3298 * insert request into driver dispatch list
3299 */
3300 cfq_dispatch_insert(cfqd->queue, rq);
3301
3302 if (!cfqd->active_cic) {
3303 struct cfq_io_cq *cic = RQ_CIC(rq);
3304
3305 atomic_long_inc(&cic->icq.ioc->refcount);
3306 cfqd->active_cic = cic;
3307 }
3308
3309 return true;
3310 }
3311
3312 /*
3313 * Find the cfqq that we need to service and move a request from that to the
3314 * dispatch list
3315 */
3316 static int cfq_dispatch_requests(struct request_queue *q, int force)
3317 {
3318 struct cfq_data *cfqd = q->elevator->elevator_data;
3319 struct cfq_queue *cfqq;
3320
3321 if (!cfqd->busy_queues)
3322 return 0;
3323
3324 if (unlikely(force))
3325 return cfq_forced_dispatch(cfqd);
3326
3327 cfqq = cfq_select_queue(cfqd);
3328 if (!cfqq)
3329 return 0;
3330
3331 /*
3332 * Dispatch a request from this cfqq, if it is allowed
3333 */
3334 if (!cfq_dispatch_request(cfqd, cfqq))
3335 return 0;
3336
3337 cfqq->slice_dispatch++;
3338 cfq_clear_cfqq_must_dispatch(cfqq);
3339
3340 /*
3341 * expire an async queue immediately if it has used up its slice. idle
3342 * queue always expire after 1 dispatch round.
3343 */
3344 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3345 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3346 cfq_class_idle(cfqq))) {
3347 cfqq->slice_end = jiffies + 1;
3348 cfq_slice_expired(cfqd, 0);
3349 }
3350
3351 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3352 return 1;
3353 }
3354
3355 /*
3356 * task holds one reference to the queue, dropped when task exits. each rq
3357 * in-flight on this queue also holds a reference, dropped when rq is freed.
3358 *
3359 * Each cfq queue took a reference on the parent group. Drop it now.
3360 * queue lock must be held here.
3361 */
3362 static void cfq_put_queue(struct cfq_queue *cfqq)
3363 {
3364 struct cfq_data *cfqd = cfqq->cfqd;
3365 struct cfq_group *cfqg;
3366
3367 BUG_ON(cfqq->ref <= 0);
3368
3369 cfqq->ref--;
3370 if (cfqq->ref)
3371 return;
3372
3373 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3374 BUG_ON(rb_first(&cfqq->sort_list));
3375 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3376 cfqg = cfqq->cfqg;
3377
3378 if (unlikely(cfqd->active_queue == cfqq)) {
3379 __cfq_slice_expired(cfqd, cfqq, 0);
3380 cfq_schedule_dispatch(cfqd);
3381 }
3382
3383 BUG_ON(cfq_cfqq_on_rr(cfqq));
3384 kmem_cache_free(cfq_pool, cfqq);
3385 cfqg_put(cfqg);
3386 }
3387
3388 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3389 {
3390 struct cfq_queue *__cfqq, *next;
3391
3392 /*
3393 * If this queue was scheduled to merge with another queue, be
3394 * sure to drop the reference taken on that queue (and others in
3395 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3396 */
3397 __cfqq = cfqq->new_cfqq;
3398 while (__cfqq) {
3399 if (__cfqq == cfqq) {
3400 WARN(1, "cfqq->new_cfqq loop detected\n");
3401 break;
3402 }
3403 next = __cfqq->new_cfqq;
3404 cfq_put_queue(__cfqq);
3405 __cfqq = next;
3406 }
3407 }
3408
3409 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3410 {
3411 if (unlikely(cfqq == cfqd->active_queue)) {
3412 __cfq_slice_expired(cfqd, cfqq, 0);
3413 cfq_schedule_dispatch(cfqd);
3414 }
3415
3416 cfq_put_cooperator(cfqq);
3417
3418 cfq_put_queue(cfqq);
3419 }
3420
3421 static void cfq_init_icq(struct io_cq *icq)
3422 {
3423 struct cfq_io_cq *cic = icq_to_cic(icq);
3424
3425 cic->ttime.last_end_request = jiffies;
3426 }
3427
3428 static void cfq_exit_icq(struct io_cq *icq)
3429 {
3430 struct cfq_io_cq *cic = icq_to_cic(icq);
3431 struct cfq_data *cfqd = cic_to_cfqd(cic);
3432
3433 if (cic->cfqq[BLK_RW_ASYNC]) {
3434 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3435 cic->cfqq[BLK_RW_ASYNC] = NULL;
3436 }
3437
3438 if (cic->cfqq[BLK_RW_SYNC]) {
3439 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3440 cic->cfqq[BLK_RW_SYNC] = NULL;
3441 }
3442 }
3443
3444 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3445 {
3446 struct task_struct *tsk = current;
3447 int ioprio_class;
3448
3449 if (!cfq_cfqq_prio_changed(cfqq))
3450 return;
3451
3452 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3453 switch (ioprio_class) {
3454 default:
3455 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3456 case IOPRIO_CLASS_NONE:
3457 /*
3458 * no prio set, inherit CPU scheduling settings
3459 */
3460 cfqq->ioprio = task_nice_ioprio(tsk);
3461 cfqq->ioprio_class = task_nice_ioclass(tsk);
3462 break;
3463 case IOPRIO_CLASS_RT:
3464 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3465 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3466 break;
3467 case IOPRIO_CLASS_BE:
3468 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3469 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3470 break;
3471 case IOPRIO_CLASS_IDLE:
3472 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3473 cfqq->ioprio = 7;
3474 cfq_clear_cfqq_idle_window(cfqq);
3475 break;
3476 }
3477
3478 /*
3479 * keep track of original prio settings in case we have to temporarily
3480 * elevate the priority of this queue
3481 */
3482 cfqq->org_ioprio = cfqq->ioprio;
3483 cfq_clear_cfqq_prio_changed(cfqq);
3484 }
3485
3486 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3487 {
3488 int ioprio = cic->icq.ioc->ioprio;
3489 struct cfq_data *cfqd = cic_to_cfqd(cic);
3490 struct cfq_queue *cfqq;
3491
3492 /*
3493 * Check whether ioprio has changed. The condition may trigger
3494 * spuriously on a newly created cic but there's no harm.
3495 */
3496 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3497 return;
3498
3499 cfqq = cic->cfqq[BLK_RW_ASYNC];
3500 if (cfqq) {
3501 struct cfq_queue *new_cfqq;
3502 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3503 GFP_ATOMIC);
3504 if (new_cfqq) {
3505 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3506 cfq_put_queue(cfqq);
3507 }
3508 }
3509
3510 cfqq = cic->cfqq[BLK_RW_SYNC];
3511 if (cfqq)
3512 cfq_mark_cfqq_prio_changed(cfqq);
3513
3514 cic->ioprio = ioprio;
3515 }
3516
3517 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3518 pid_t pid, bool is_sync)
3519 {
3520 RB_CLEAR_NODE(&cfqq->rb_node);
3521 RB_CLEAR_NODE(&cfqq->p_node);
3522 INIT_LIST_HEAD(&cfqq->fifo);
3523
3524 cfqq->ref = 0;
3525 cfqq->cfqd = cfqd;
3526
3527 cfq_mark_cfqq_prio_changed(cfqq);
3528
3529 if (is_sync) {
3530 if (!cfq_class_idle(cfqq))
3531 cfq_mark_cfqq_idle_window(cfqq);
3532 cfq_mark_cfqq_sync(cfqq);
3533 }
3534 cfqq->pid = pid;
3535 }
3536
3537 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3538 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3539 {
3540 struct cfq_data *cfqd = cic_to_cfqd(cic);
3541 struct cfq_queue *sync_cfqq;
3542 uint64_t id;
3543
3544 rcu_read_lock();
3545 id = bio_blkcg(bio)->id;
3546 rcu_read_unlock();
3547
3548 /*
3549 * Check whether blkcg has changed. The condition may trigger
3550 * spuriously on a newly created cic but there's no harm.
3551 */
3552 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3553 return;
3554
3555 sync_cfqq = cic_to_cfqq(cic, 1);
3556 if (sync_cfqq) {
3557 /*
3558 * Drop reference to sync queue. A new sync queue will be
3559 * assigned in new group upon arrival of a fresh request.
3560 */
3561 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3562 cic_set_cfqq(cic, NULL, 1);
3563 cfq_put_queue(sync_cfqq);
3564 }
3565
3566 cic->blkcg_id = id;
3567 }
3568 #else
3569 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3570 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3571
3572 static struct cfq_queue *
3573 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3574 struct bio *bio, gfp_t gfp_mask)
3575 {
3576 struct blkcg *blkcg;
3577 struct cfq_queue *cfqq, *new_cfqq = NULL;
3578 struct cfq_group *cfqg;
3579
3580 retry:
3581 rcu_read_lock();
3582
3583 blkcg = bio_blkcg(bio);
3584 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3585 cfqq = cic_to_cfqq(cic, is_sync);
3586
3587 /*
3588 * Always try a new alloc if we fell back to the OOM cfqq
3589 * originally, since it should just be a temporary situation.
3590 */
3591 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3592 cfqq = NULL;
3593 if (new_cfqq) {
3594 cfqq = new_cfqq;
3595 new_cfqq = NULL;
3596 } else if (gfp_mask & __GFP_WAIT) {
3597 rcu_read_unlock();
3598 spin_unlock_irq(cfqd->queue->queue_lock);
3599 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3600 gfp_mask | __GFP_ZERO,
3601 cfqd->queue->node);
3602 spin_lock_irq(cfqd->queue->queue_lock);
3603 if (new_cfqq)
3604 goto retry;
3605 else
3606 return &cfqd->oom_cfqq;
3607 } else {
3608 cfqq = kmem_cache_alloc_node(cfq_pool,
3609 gfp_mask | __GFP_ZERO,
3610 cfqd->queue->node);
3611 }
3612
3613 if (cfqq) {
3614 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3615 cfq_init_prio_data(cfqq, cic);
3616 cfq_link_cfqq_cfqg(cfqq, cfqg);
3617 cfq_log_cfqq(cfqd, cfqq, "alloced");
3618 } else
3619 cfqq = &cfqd->oom_cfqq;
3620 }
3621
3622 if (new_cfqq)
3623 kmem_cache_free(cfq_pool, new_cfqq);
3624
3625 rcu_read_unlock();
3626 return cfqq;
3627 }
3628
3629 static struct cfq_queue **
3630 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3631 {
3632 switch (ioprio_class) {
3633 case IOPRIO_CLASS_RT:
3634 return &cfqd->async_cfqq[0][ioprio];
3635 case IOPRIO_CLASS_NONE:
3636 ioprio = IOPRIO_NORM;
3637 /* fall through */
3638 case IOPRIO_CLASS_BE:
3639 return &cfqd->async_cfqq[1][ioprio];
3640 case IOPRIO_CLASS_IDLE:
3641 return &cfqd->async_idle_cfqq;
3642 default:
3643 BUG();
3644 }
3645 }
3646
3647 static struct cfq_queue *
3648 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3649 struct bio *bio, gfp_t gfp_mask)
3650 {
3651 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3652 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3653 struct cfq_queue **async_cfqq = NULL;
3654 struct cfq_queue *cfqq = NULL;
3655
3656 if (!is_sync) {
3657 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3658 cfqq = *async_cfqq;
3659 }
3660
3661 if (!cfqq)
3662 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3663
3664 /*
3665 * pin the queue now that it's allocated, scheduler exit will prune it
3666 */
3667 if (!is_sync && !(*async_cfqq)) {
3668 cfqq->ref++;
3669 *async_cfqq = cfqq;
3670 }
3671
3672 cfqq->ref++;
3673 return cfqq;
3674 }
3675
3676 static void
3677 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3678 {
3679 unsigned long elapsed = jiffies - ttime->last_end_request;
3680 elapsed = min(elapsed, 2UL * slice_idle);
3681
3682 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3683 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3684 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3685 }
3686
3687 static void
3688 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3689 struct cfq_io_cq *cic)
3690 {
3691 if (cfq_cfqq_sync(cfqq)) {
3692 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3693 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3694 cfqd->cfq_slice_idle);
3695 }
3696 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3697 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3698 #endif
3699 }
3700
3701 static void
3702 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3703 struct request *rq)
3704 {
3705 sector_t sdist = 0;
3706 sector_t n_sec = blk_rq_sectors(rq);
3707 if (cfqq->last_request_pos) {
3708 if (cfqq->last_request_pos < blk_rq_pos(rq))
3709 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3710 else
3711 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3712 }
3713
3714 cfqq->seek_history <<= 1;
3715 if (blk_queue_nonrot(cfqd->queue))
3716 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3717 else
3718 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3719 }
3720
3721 /*
3722 * Disable idle window if the process thinks too long or seeks so much that
3723 * it doesn't matter
3724 */
3725 static void
3726 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3727 struct cfq_io_cq *cic)
3728 {
3729 int old_idle, enable_idle;
3730
3731 /*
3732 * Don't idle for async or idle io prio class
3733 */
3734 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3735 return;
3736
3737 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3738
3739 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3740 cfq_mark_cfqq_deep(cfqq);
3741
3742 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3743 enable_idle = 0;
3744 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3745 !cfqd->cfq_slice_idle ||
3746 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3747 enable_idle = 0;
3748 else if (sample_valid(cic->ttime.ttime_samples)) {
3749 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3750 enable_idle = 0;
3751 else
3752 enable_idle = 1;
3753 }
3754
3755 if (old_idle != enable_idle) {
3756 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3757 if (enable_idle)
3758 cfq_mark_cfqq_idle_window(cfqq);
3759 else
3760 cfq_clear_cfqq_idle_window(cfqq);
3761 }
3762 }
3763
3764 /*
3765 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3766 * no or if we aren't sure, a 1 will cause a preempt.
3767 */
3768 static bool
3769 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3770 struct request *rq)
3771 {
3772 struct cfq_queue *cfqq;
3773
3774 cfqq = cfqd->active_queue;
3775 if (!cfqq)
3776 return false;
3777
3778 if (cfq_class_idle(new_cfqq))
3779 return false;
3780
3781 if (cfq_class_idle(cfqq))
3782 return true;
3783
3784 /*
3785 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3786 */
3787 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3788 return false;
3789
3790 /*
3791 * if the new request is sync, but the currently running queue is
3792 * not, let the sync request have priority.
3793 */
3794 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3795 return true;
3796
3797 if (new_cfqq->cfqg != cfqq->cfqg)
3798 return false;
3799
3800 if (cfq_slice_used(cfqq))
3801 return true;
3802
3803 /* Allow preemption only if we are idling on sync-noidle tree */
3804 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3805 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3806 new_cfqq->service_tree->count == 2 &&
3807 RB_EMPTY_ROOT(&cfqq->sort_list))
3808 return true;
3809
3810 /*
3811 * So both queues are sync. Let the new request get disk time if
3812 * it's a metadata request and the current queue is doing regular IO.
3813 */
3814 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3815 return true;
3816
3817 /*
3818 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3819 */
3820 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3821 return true;
3822
3823 /* An idle queue should not be idle now for some reason */
3824 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3825 return true;
3826
3827 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3828 return false;
3829
3830 /*
3831 * if this request is as-good as one we would expect from the
3832 * current cfqq, let it preempt
3833 */
3834 if (cfq_rq_close(cfqd, cfqq, rq))
3835 return true;
3836
3837 return false;
3838 }
3839
3840 /*
3841 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3842 * let it have half of its nominal slice.
3843 */
3844 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3845 {
3846 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3847
3848 cfq_log_cfqq(cfqd, cfqq, "preempt");
3849 cfq_slice_expired(cfqd, 1);
3850
3851 /*
3852 * workload type is changed, don't save slice, otherwise preempt
3853 * doesn't happen
3854 */
3855 if (old_type != cfqq_type(cfqq))
3856 cfqq->cfqg->saved_wl_slice = 0;
3857
3858 /*
3859 * Put the new queue at the front of the of the current list,
3860 * so we know that it will be selected next.
3861 */
3862 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3863
3864 cfq_service_tree_add(cfqd, cfqq, 1);
3865
3866 cfqq->slice_end = 0;
3867 cfq_mark_cfqq_slice_new(cfqq);
3868 }
3869
3870 /*
3871 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3872 * something we should do about it
3873 */
3874 static void
3875 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3876 struct request *rq)
3877 {
3878 struct cfq_io_cq *cic = RQ_CIC(rq);
3879
3880 cfqd->rq_queued++;
3881 if (rq->cmd_flags & REQ_PRIO)
3882 cfqq->prio_pending++;
3883
3884 cfq_update_io_thinktime(cfqd, cfqq, cic);
3885 cfq_update_io_seektime(cfqd, cfqq, rq);
3886 cfq_update_idle_window(cfqd, cfqq, cic);
3887
3888 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3889
3890 if (cfqq == cfqd->active_queue) {
3891 /*
3892 * Remember that we saw a request from this process, but
3893 * don't start queuing just yet. Otherwise we risk seeing lots
3894 * of tiny requests, because we disrupt the normal plugging
3895 * and merging. If the request is already larger than a single
3896 * page, let it rip immediately. For that case we assume that
3897 * merging is already done. Ditto for a busy system that
3898 * has other work pending, don't risk delaying until the
3899 * idle timer unplug to continue working.
3900 */
3901 if (cfq_cfqq_wait_request(cfqq)) {
3902 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3903 cfqd->busy_queues > 1) {
3904 cfq_del_timer(cfqd, cfqq);
3905 cfq_clear_cfqq_wait_request(cfqq);
3906 __blk_run_queue(cfqd->queue);
3907 } else {
3908 cfqg_stats_update_idle_time(cfqq->cfqg);
3909 cfq_mark_cfqq_must_dispatch(cfqq);
3910 }
3911 }
3912 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3913 /*
3914 * not the active queue - expire current slice if it is
3915 * idle and has expired it's mean thinktime or this new queue
3916 * has some old slice time left and is of higher priority or
3917 * this new queue is RT and the current one is BE
3918 */
3919 cfq_preempt_queue(cfqd, cfqq);
3920 __blk_run_queue(cfqd->queue);
3921 }
3922 }
3923
3924 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3925 {
3926 struct cfq_data *cfqd = q->elevator->elevator_data;
3927 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3928
3929 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3930 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3931
3932 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3933 list_add_tail(&rq->queuelist, &cfqq->fifo);
3934 cfq_add_rq_rb(rq);
3935 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3936 rq->cmd_flags);
3937 cfq_rq_enqueued(cfqd, cfqq, rq);
3938 }
3939
3940 /*
3941 * Update hw_tag based on peak queue depth over 50 samples under
3942 * sufficient load.
3943 */
3944 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3945 {
3946 struct cfq_queue *cfqq = cfqd->active_queue;
3947
3948 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3949 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3950
3951 if (cfqd->hw_tag == 1)
3952 return;
3953
3954 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3955 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3956 return;
3957
3958 /*
3959 * If active queue hasn't enough requests and can idle, cfq might not
3960 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3961 * case
3962 */
3963 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3964 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3965 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3966 return;
3967
3968 if (cfqd->hw_tag_samples++ < 50)
3969 return;
3970
3971 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3972 cfqd->hw_tag = 1;
3973 else
3974 cfqd->hw_tag = 0;
3975 }
3976
3977 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3978 {
3979 struct cfq_io_cq *cic = cfqd->active_cic;
3980
3981 /* If the queue already has requests, don't wait */
3982 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3983 return false;
3984
3985 /* If there are other queues in the group, don't wait */
3986 if (cfqq->cfqg->nr_cfqq > 1)
3987 return false;
3988
3989 /* the only queue in the group, but think time is big */
3990 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3991 return false;
3992
3993 if (cfq_slice_used(cfqq))
3994 return true;
3995
3996 /* if slice left is less than think time, wait busy */
3997 if (cic && sample_valid(cic->ttime.ttime_samples)
3998 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3999 return true;
4000
4001 /*
4002 * If think times is less than a jiffy than ttime_mean=0 and above
4003 * will not be true. It might happen that slice has not expired yet
4004 * but will expire soon (4-5 ns) during select_queue(). To cover the
4005 * case where think time is less than a jiffy, mark the queue wait
4006 * busy if only 1 jiffy is left in the slice.
4007 */
4008 if (cfqq->slice_end - jiffies == 1)
4009 return true;
4010
4011 return false;
4012 }
4013
4014 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4015 {
4016 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4017 struct cfq_data *cfqd = cfqq->cfqd;
4018 const int sync = rq_is_sync(rq);
4019 unsigned long now;
4020
4021 now = jiffies;
4022 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4023 !!(rq->cmd_flags & REQ_NOIDLE));
4024
4025 cfq_update_hw_tag(cfqd);
4026
4027 WARN_ON(!cfqd->rq_in_driver);
4028 WARN_ON(!cfqq->dispatched);
4029 cfqd->rq_in_driver--;
4030 cfqq->dispatched--;
4031 (RQ_CFQG(rq))->dispatched--;
4032 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4033 rq_io_start_time_ns(rq), rq->cmd_flags);
4034
4035 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4036
4037 if (sync) {
4038 struct cfq_rb_root *st;
4039
4040 RQ_CIC(rq)->ttime.last_end_request = now;
4041
4042 if (cfq_cfqq_on_rr(cfqq))
4043 st = cfqq->service_tree;
4044 else
4045 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4046 cfqq_type(cfqq));
4047
4048 st->ttime.last_end_request = now;
4049 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4050 cfqd->last_delayed_sync = now;
4051 }
4052
4053 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4054 cfqq->cfqg->ttime.last_end_request = now;
4055 #endif
4056
4057 /*
4058 * If this is the active queue, check if it needs to be expired,
4059 * or if we want to idle in case it has no pending requests.
4060 */
4061 if (cfqd->active_queue == cfqq) {
4062 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4063
4064 if (cfq_cfqq_slice_new(cfqq)) {
4065 cfq_set_prio_slice(cfqd, cfqq);
4066 cfq_clear_cfqq_slice_new(cfqq);
4067 }
4068
4069 /*
4070 * Should we wait for next request to come in before we expire
4071 * the queue.
4072 */
4073 if (cfq_should_wait_busy(cfqd, cfqq)) {
4074 unsigned long extend_sl = cfqd->cfq_slice_idle;
4075 if (!cfqd->cfq_slice_idle)
4076 extend_sl = cfqd->cfq_group_idle;
4077 cfqq->slice_end = jiffies + extend_sl;
4078 cfq_mark_cfqq_wait_busy(cfqq);
4079 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4080 }
4081
4082 /*
4083 * Idling is not enabled on:
4084 * - expired queues
4085 * - idle-priority queues
4086 * - async queues
4087 * - queues with still some requests queued
4088 * - when there is a close cooperator
4089 */
4090 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4091 cfq_slice_expired(cfqd, 1);
4092 else if (sync && cfqq_empty &&
4093 !cfq_close_cooperator(cfqd, cfqq)) {
4094 cfq_arm_slice_timer(cfqd);
4095 }
4096 }
4097
4098 if (!cfqd->rq_in_driver)
4099 cfq_schedule_dispatch(cfqd);
4100 }
4101
4102 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4103 {
4104 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4105 cfq_mark_cfqq_must_alloc_slice(cfqq);
4106 return ELV_MQUEUE_MUST;
4107 }
4108
4109 return ELV_MQUEUE_MAY;
4110 }
4111
4112 static int cfq_may_queue(struct request_queue *q, int rw)
4113 {
4114 struct cfq_data *cfqd = q->elevator->elevator_data;
4115 struct task_struct *tsk = current;
4116 struct cfq_io_cq *cic;
4117 struct cfq_queue *cfqq;
4118
4119 /*
4120 * don't force setup of a queue from here, as a call to may_queue
4121 * does not necessarily imply that a request actually will be queued.
4122 * so just lookup a possibly existing queue, or return 'may queue'
4123 * if that fails
4124 */
4125 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4126 if (!cic)
4127 return ELV_MQUEUE_MAY;
4128
4129 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4130 if (cfqq) {
4131 cfq_init_prio_data(cfqq, cic);
4132
4133 return __cfq_may_queue(cfqq);
4134 }
4135
4136 return ELV_MQUEUE_MAY;
4137 }
4138
4139 /*
4140 * queue lock held here
4141 */
4142 static void cfq_put_request(struct request *rq)
4143 {
4144 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4145
4146 if (cfqq) {
4147 const int rw = rq_data_dir(rq);
4148
4149 BUG_ON(!cfqq->allocated[rw]);
4150 cfqq->allocated[rw]--;
4151
4152 /* Put down rq reference on cfqg */
4153 cfqg_put(RQ_CFQG(rq));
4154 rq->elv.priv[0] = NULL;
4155 rq->elv.priv[1] = NULL;
4156
4157 cfq_put_queue(cfqq);
4158 }
4159 }
4160
4161 static struct cfq_queue *
4162 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4163 struct cfq_queue *cfqq)
4164 {
4165 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4166 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4167 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4168 cfq_put_queue(cfqq);
4169 return cic_to_cfqq(cic, 1);
4170 }
4171
4172 /*
4173 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4174 * was the last process referring to said cfqq.
4175 */
4176 static struct cfq_queue *
4177 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4178 {
4179 if (cfqq_process_refs(cfqq) == 1) {
4180 cfqq->pid = current->pid;
4181 cfq_clear_cfqq_coop(cfqq);
4182 cfq_clear_cfqq_split_coop(cfqq);
4183 return cfqq;
4184 }
4185
4186 cic_set_cfqq(cic, NULL, 1);
4187
4188 cfq_put_cooperator(cfqq);
4189
4190 cfq_put_queue(cfqq);
4191 return NULL;
4192 }
4193 /*
4194 * Allocate cfq data structures associated with this request.
4195 */
4196 static int
4197 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4198 gfp_t gfp_mask)
4199 {
4200 struct cfq_data *cfqd = q->elevator->elevator_data;
4201 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4202 const int rw = rq_data_dir(rq);
4203 const bool is_sync = rq_is_sync(rq);
4204 struct cfq_queue *cfqq;
4205
4206 might_sleep_if(gfp_mask & __GFP_WAIT);
4207
4208 spin_lock_irq(q->queue_lock);
4209
4210 check_ioprio_changed(cic, bio);
4211 check_blkcg_changed(cic, bio);
4212 new_queue:
4213 cfqq = cic_to_cfqq(cic, is_sync);
4214 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4215 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4216 cic_set_cfqq(cic, cfqq, is_sync);
4217 } else {
4218 /*
4219 * If the queue was seeky for too long, break it apart.
4220 */
4221 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4222 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4223 cfqq = split_cfqq(cic, cfqq);
4224 if (!cfqq)
4225 goto new_queue;
4226 }
4227
4228 /*
4229 * Check to see if this queue is scheduled to merge with
4230 * another, closely cooperating queue. The merging of
4231 * queues happens here as it must be done in process context.
4232 * The reference on new_cfqq was taken in merge_cfqqs.
4233 */
4234 if (cfqq->new_cfqq)
4235 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4236 }
4237
4238 cfqq->allocated[rw]++;
4239
4240 cfqq->ref++;
4241 cfqg_get(cfqq->cfqg);
4242 rq->elv.priv[0] = cfqq;
4243 rq->elv.priv[1] = cfqq->cfqg;
4244 spin_unlock_irq(q->queue_lock);
4245 return 0;
4246 }
4247
4248 static void cfq_kick_queue(struct work_struct *work)
4249 {
4250 struct cfq_data *cfqd =
4251 container_of(work, struct cfq_data, unplug_work);
4252 struct request_queue *q = cfqd->queue;
4253
4254 spin_lock_irq(q->queue_lock);
4255 __blk_run_queue(cfqd->queue);
4256 spin_unlock_irq(q->queue_lock);
4257 }
4258
4259 /*
4260 * Timer running if the active_queue is currently idling inside its time slice
4261 */
4262 static void cfq_idle_slice_timer(unsigned long data)
4263 {
4264 struct cfq_data *cfqd = (struct cfq_data *) data;
4265 struct cfq_queue *cfqq;
4266 unsigned long flags;
4267 int timed_out = 1;
4268
4269 cfq_log(cfqd, "idle timer fired");
4270
4271 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4272
4273 cfqq = cfqd->active_queue;
4274 if (cfqq) {
4275 timed_out = 0;
4276
4277 /*
4278 * We saw a request before the queue expired, let it through
4279 */
4280 if (cfq_cfqq_must_dispatch(cfqq))
4281 goto out_kick;
4282
4283 /*
4284 * expired
4285 */
4286 if (cfq_slice_used(cfqq))
4287 goto expire;
4288
4289 /*
4290 * only expire and reinvoke request handler, if there are
4291 * other queues with pending requests
4292 */
4293 if (!cfqd->busy_queues)
4294 goto out_cont;
4295
4296 /*
4297 * not expired and it has a request pending, let it dispatch
4298 */
4299 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4300 goto out_kick;
4301
4302 /*
4303 * Queue depth flag is reset only when the idle didn't succeed
4304 */
4305 cfq_clear_cfqq_deep(cfqq);
4306 }
4307 expire:
4308 cfq_slice_expired(cfqd, timed_out);
4309 out_kick:
4310 cfq_schedule_dispatch(cfqd);
4311 out_cont:
4312 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4313 }
4314
4315 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4316 {
4317 del_timer_sync(&cfqd->idle_slice_timer);
4318 cancel_work_sync(&cfqd->unplug_work);
4319 }
4320
4321 static void cfq_put_async_queues(struct cfq_data *cfqd)
4322 {
4323 int i;
4324
4325 for (i = 0; i < IOPRIO_BE_NR; i++) {
4326 if (cfqd->async_cfqq[0][i])
4327 cfq_put_queue(cfqd->async_cfqq[0][i]);
4328 if (cfqd->async_cfqq[1][i])
4329 cfq_put_queue(cfqd->async_cfqq[1][i]);
4330 }
4331
4332 if (cfqd->async_idle_cfqq)
4333 cfq_put_queue(cfqd->async_idle_cfqq);
4334 }
4335
4336 static void cfq_exit_queue(struct elevator_queue *e)
4337 {
4338 struct cfq_data *cfqd = e->elevator_data;
4339 struct request_queue *q = cfqd->queue;
4340
4341 cfq_shutdown_timer_wq(cfqd);
4342
4343 spin_lock_irq(q->queue_lock);
4344
4345 if (cfqd->active_queue)
4346 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4347
4348 cfq_put_async_queues(cfqd);
4349
4350 spin_unlock_irq(q->queue_lock);
4351
4352 cfq_shutdown_timer_wq(cfqd);
4353
4354 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4355 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4356 #else
4357 kfree(cfqd->root_group);
4358 #endif
4359 kfree(cfqd);
4360 }
4361
4362 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4363 {
4364 struct cfq_data *cfqd;
4365 struct blkcg_gq *blkg __maybe_unused;
4366 int i, ret;
4367 struct elevator_queue *eq;
4368
4369 eq = elevator_alloc(q, e);
4370 if (!eq)
4371 return -ENOMEM;
4372
4373 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4374 if (!cfqd) {
4375 kobject_put(&eq->kobj);
4376 return -ENOMEM;
4377 }
4378 eq->elevator_data = cfqd;
4379
4380 cfqd->queue = q;
4381 spin_lock_irq(q->queue_lock);
4382 q->elevator = eq;
4383 spin_unlock_irq(q->queue_lock);
4384
4385 /* Init root service tree */
4386 cfqd->grp_service_tree = CFQ_RB_ROOT;
4387
4388 /* Init root group and prefer root group over other groups by default */
4389 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4390 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4391 if (ret)
4392 goto out_free;
4393
4394 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4395 #else
4396 ret = -ENOMEM;
4397 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4398 GFP_KERNEL, cfqd->queue->node);
4399 if (!cfqd->root_group)
4400 goto out_free;
4401
4402 cfq_init_cfqg_base(cfqd->root_group);
4403 #endif
4404 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4405 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4406
4407 /*
4408 * Not strictly needed (since RB_ROOT just clears the node and we
4409 * zeroed cfqd on alloc), but better be safe in case someone decides
4410 * to add magic to the rb code
4411 */
4412 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4413 cfqd->prio_trees[i] = RB_ROOT;
4414
4415 /*
4416 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4417 * Grab a permanent reference to it, so that the normal code flow
4418 * will not attempt to free it. oom_cfqq is linked to root_group
4419 * but shouldn't hold a reference as it'll never be unlinked. Lose
4420 * the reference from linking right away.
4421 */
4422 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4423 cfqd->oom_cfqq.ref++;
4424
4425 spin_lock_irq(q->queue_lock);
4426 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4427 cfqg_put(cfqd->root_group);
4428 spin_unlock_irq(q->queue_lock);
4429
4430 init_timer(&cfqd->idle_slice_timer);
4431 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4432 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4433
4434 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4435
4436 cfqd->cfq_quantum = cfq_quantum;
4437 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4438 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4439 cfqd->cfq_back_max = cfq_back_max;
4440 cfqd->cfq_back_penalty = cfq_back_penalty;
4441 cfqd->cfq_slice[0] = cfq_slice_async;
4442 cfqd->cfq_slice[1] = cfq_slice_sync;
4443 cfqd->cfq_target_latency = cfq_target_latency;
4444 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4445 cfqd->cfq_slice_idle = cfq_slice_idle;
4446 cfqd->cfq_group_idle = cfq_group_idle;
4447 cfqd->cfq_latency = 1;
4448 cfqd->hw_tag = -1;
4449 /*
4450 * we optimistically start assuming sync ops weren't delayed in last
4451 * second, in order to have larger depth for async operations.
4452 */
4453 cfqd->last_delayed_sync = jiffies - HZ;
4454 return 0;
4455
4456 out_free:
4457 kfree(cfqd);
4458 kobject_put(&eq->kobj);
4459 return ret;
4460 }
4461
4462 /*
4463 * sysfs parts below -->
4464 */
4465 static ssize_t
4466 cfq_var_show(unsigned int var, char *page)
4467 {
4468 return sprintf(page, "%u\n", var);
4469 }
4470
4471 static ssize_t
4472 cfq_var_store(unsigned int *var, const char *page, size_t count)
4473 {
4474 char *p = (char *) page;
4475
4476 *var = simple_strtoul(p, &p, 10);
4477 return count;
4478 }
4479
4480 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4481 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4482 { \
4483 struct cfq_data *cfqd = e->elevator_data; \
4484 unsigned int __data = __VAR; \
4485 if (__CONV) \
4486 __data = jiffies_to_msecs(__data); \
4487 return cfq_var_show(__data, (page)); \
4488 }
4489 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4490 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4491 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4492 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4493 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4494 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4495 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4496 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4497 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4498 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4499 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4500 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4501 #undef SHOW_FUNCTION
4502
4503 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4504 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4505 { \
4506 struct cfq_data *cfqd = e->elevator_data; \
4507 unsigned int __data; \
4508 int ret = cfq_var_store(&__data, (page), count); \
4509 if (__data < (MIN)) \
4510 __data = (MIN); \
4511 else if (__data > (MAX)) \
4512 __data = (MAX); \
4513 if (__CONV) \
4514 *(__PTR) = msecs_to_jiffies(__data); \
4515 else \
4516 *(__PTR) = __data; \
4517 return ret; \
4518 }
4519 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4520 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4521 UINT_MAX, 1);
4522 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4523 UINT_MAX, 1);
4524 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4525 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4526 UINT_MAX, 0);
4527 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4528 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4529 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4530 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4531 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4532 UINT_MAX, 0);
4533 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4534 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4535 #undef STORE_FUNCTION
4536
4537 #define CFQ_ATTR(name) \
4538 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4539
4540 static struct elv_fs_entry cfq_attrs[] = {
4541 CFQ_ATTR(quantum),
4542 CFQ_ATTR(fifo_expire_sync),
4543 CFQ_ATTR(fifo_expire_async),
4544 CFQ_ATTR(back_seek_max),
4545 CFQ_ATTR(back_seek_penalty),
4546 CFQ_ATTR(slice_sync),
4547 CFQ_ATTR(slice_async),
4548 CFQ_ATTR(slice_async_rq),
4549 CFQ_ATTR(slice_idle),
4550 CFQ_ATTR(group_idle),
4551 CFQ_ATTR(low_latency),
4552 CFQ_ATTR(target_latency),
4553 __ATTR_NULL
4554 };
4555
4556 static struct elevator_type iosched_cfq = {
4557 .ops = {
4558 .elevator_merge_fn = cfq_merge,
4559 .elevator_merged_fn = cfq_merged_request,
4560 .elevator_merge_req_fn = cfq_merged_requests,
4561 .elevator_allow_merge_fn = cfq_allow_merge,
4562 .elevator_bio_merged_fn = cfq_bio_merged,
4563 .elevator_dispatch_fn = cfq_dispatch_requests,
4564 .elevator_add_req_fn = cfq_insert_request,
4565 .elevator_activate_req_fn = cfq_activate_request,
4566 .elevator_deactivate_req_fn = cfq_deactivate_request,
4567 .elevator_completed_req_fn = cfq_completed_request,
4568 .elevator_former_req_fn = elv_rb_former_request,
4569 .elevator_latter_req_fn = elv_rb_latter_request,
4570 .elevator_init_icq_fn = cfq_init_icq,
4571 .elevator_exit_icq_fn = cfq_exit_icq,
4572 .elevator_set_req_fn = cfq_set_request,
4573 .elevator_put_req_fn = cfq_put_request,
4574 .elevator_may_queue_fn = cfq_may_queue,
4575 .elevator_init_fn = cfq_init_queue,
4576 .elevator_exit_fn = cfq_exit_queue,
4577 },
4578 .icq_size = sizeof(struct cfq_io_cq),
4579 .icq_align = __alignof__(struct cfq_io_cq),
4580 .elevator_attrs = cfq_attrs,
4581 .elevator_name = "cfq",
4582 .elevator_owner = THIS_MODULE,
4583 };
4584
4585 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4586 static struct blkcg_policy blkcg_policy_cfq = {
4587 .pd_size = sizeof(struct cfq_group),
4588 .cftypes = cfq_blkcg_files,
4589
4590 .pd_init_fn = cfq_pd_init,
4591 .pd_offline_fn = cfq_pd_offline,
4592 .pd_reset_stats_fn = cfq_pd_reset_stats,
4593 };
4594 #endif
4595
4596 static int __init cfq_init(void)
4597 {
4598 int ret;
4599
4600 /*
4601 * could be 0 on HZ < 1000 setups
4602 */
4603 if (!cfq_slice_async)
4604 cfq_slice_async = 1;
4605 if (!cfq_slice_idle)
4606 cfq_slice_idle = 1;
4607
4608 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4609 if (!cfq_group_idle)
4610 cfq_group_idle = 1;
4611
4612 ret = blkcg_policy_register(&blkcg_policy_cfq);
4613 if (ret)
4614 return ret;
4615 #else
4616 cfq_group_idle = 0;
4617 #endif
4618
4619 ret = -ENOMEM;
4620 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4621 if (!cfq_pool)
4622 goto err_pol_unreg;
4623
4624 ret = elv_register(&iosched_cfq);
4625 if (ret)
4626 goto err_free_pool;
4627
4628 return 0;
4629
4630 err_free_pool:
4631 kmem_cache_destroy(cfq_pool);
4632 err_pol_unreg:
4633 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4634 blkcg_policy_unregister(&blkcg_policy_cfq);
4635 #endif
4636 return ret;
4637 }
4638
4639 static void __exit cfq_exit(void)
4640 {
4641 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4642 blkcg_policy_unregister(&blkcg_policy_cfq);
4643 #endif
4644 elv_unregister(&iosched_cfq);
4645 kmem_cache_destroy(cfq_pool);
4646 }
4647
4648 module_init(cfq_init);
4649 module_exit(cfq_exit);
4650
4651 MODULE_AUTHOR("Jens Axboe");
4652 MODULE_LICENSE("GPL");
4653 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.137559 seconds and 6 git commands to generate.