Merge branch 'perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37 * offset from end of service tree
38 */
39 #define CFQ_IDLE_DELAY (HZ / 5)
40
41 /*
42 * below this threshold, we consider thinktime immediate
43 */
44 #define CFQ_MIN_TT (2)
45
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
49
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 unsigned total_weight;
84 u64 min_vdisktime;
85 struct rb_node *active;
86 };
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
88 .count = 0, .min_vdisktime = 0, }
89
90 /*
91 * Per process-grouping structure
92 */
93 struct cfq_queue {
94 /* reference count */
95 atomic_t ref;
96 /* various state flags, see below */
97 unsigned int flags;
98 /* parent cfq_data */
99 struct cfq_data *cfqd;
100 /* service_tree member */
101 struct rb_node rb_node;
102 /* service_tree key */
103 unsigned long rb_key;
104 /* prio tree member */
105 struct rb_node p_node;
106 /* prio tree root we belong to, if any */
107 struct rb_root *p_root;
108 /* sorted list of pending requests */
109 struct rb_root sort_list;
110 /* if fifo isn't expired, next request to serve */
111 struct request *next_rq;
112 /* requests queued in sort_list */
113 int queued[2];
114 /* currently allocated requests */
115 int allocated[2];
116 /* fifo list of requests in sort_list */
117 struct list_head fifo;
118
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start;
121 unsigned int allocated_slice;
122 unsigned int slice_dispatch;
123 /* time when first request from queue completed and slice started. */
124 unsigned long slice_start;
125 unsigned long slice_end;
126 long slice_resid;
127
128 /* pending metadata requests */
129 int meta_pending;
130 /* number of requests that are on the dispatch list or inside driver */
131 int dispatched;
132
133 /* io prio of this group */
134 unsigned short ioprio, org_ioprio;
135 unsigned short ioprio_class, org_ioprio_class;
136
137 pid_t pid;
138
139 u32 seek_history;
140 sector_t last_request_pos;
141
142 struct cfq_rb_root *service_tree;
143 struct cfq_queue *new_cfqq;
144 struct cfq_group *cfqg;
145 struct cfq_group *orig_cfqg;
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
148 };
149
150 /*
151 * First index in the service_trees.
152 * IDLE is handled separately, so it has negative index
153 */
154 enum wl_prio_t {
155 BE_WORKLOAD = 0,
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
158 };
159
160 /*
161 * Second index in the service_trees.
162 */
163 enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167 };
168
169 /* This is per cgroup per device grouping structure */
170 struct cfq_group {
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
176 unsigned int weight;
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
194 struct blkio_group blkg;
195 #ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
197 atomic_t ref;
198 #endif
199 };
200
201 /*
202 * Per block device queue structure
203 */
204 struct cfq_data {
205 struct request_queue *queue;
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
208 struct cfq_group root_group;
209
210 /*
211 * The priority currently being served
212 */
213 enum wl_prio_t serving_prio;
214 enum wl_type_t serving_type;
215 unsigned long workload_expires;
216 struct cfq_group *serving_group;
217 bool noidle_tree_requires_idle;
218
219 /*
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
223 */
224 struct rb_root prio_trees[CFQ_PRIO_LISTS];
225
226 unsigned int busy_queues;
227
228 int rq_in_driver;
229 int rq_in_flight[2];
230
231 /*
232 * queue-depth detection
233 */
234 int rq_queued;
235 int hw_tag;
236 /*
237 * hw_tag can be
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 * 0 => no NCQ
241 */
242 int hw_tag_est_depth;
243 unsigned int hw_tag_samples;
244
245 /*
246 * idle window management
247 */
248 struct timer_list idle_slice_timer;
249 struct work_struct unplug_work;
250
251 struct cfq_queue *active_queue;
252 struct cfq_io_context *active_cic;
253
254 /*
255 * async queue for each priority case
256 */
257 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
258 struct cfq_queue *async_idle_cfqq;
259
260 sector_t last_position;
261
262 /*
263 * tunables, see top of file
264 */
265 unsigned int cfq_quantum;
266 unsigned int cfq_fifo_expire[2];
267 unsigned int cfq_back_penalty;
268 unsigned int cfq_back_max;
269 unsigned int cfq_slice[2];
270 unsigned int cfq_slice_async_rq;
271 unsigned int cfq_slice_idle;
272 unsigned int cfq_latency;
273 unsigned int cfq_group_isolation;
274
275 struct list_head cic_list;
276
277 /*
278 * Fallback dummy cfqq for extreme OOM conditions
279 */
280 struct cfq_queue oom_cfqq;
281
282 unsigned long last_delayed_sync;
283
284 /* List of cfq groups being managed on this device*/
285 struct hlist_head cfqg_list;
286 struct rcu_head rcu;
287 };
288
289 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
291 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
293 enum wl_type_t type)
294 {
295 if (!cfqg)
296 return NULL;
297
298 if (prio == IDLE_WORKLOAD)
299 return &cfqg->service_tree_idle;
300
301 return &cfqg->service_trees[prio][type];
302 }
303
304 enum cfqq_state_flags {
305 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
306 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
307 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
308 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
309 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
310 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
311 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
312 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
313 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
314 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
315 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
317 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
318 };
319
320 #define CFQ_CFQQ_FNS(name) \
321 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
322 { \
323 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
324 } \
325 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
326 { \
327 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
328 } \
329 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
330 { \
331 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
332 }
333
334 CFQ_CFQQ_FNS(on_rr);
335 CFQ_CFQQ_FNS(wait_request);
336 CFQ_CFQQ_FNS(must_dispatch);
337 CFQ_CFQQ_FNS(must_alloc_slice);
338 CFQ_CFQQ_FNS(fifo_expire);
339 CFQ_CFQQ_FNS(idle_window);
340 CFQ_CFQQ_FNS(prio_changed);
341 CFQ_CFQQ_FNS(slice_new);
342 CFQ_CFQQ_FNS(sync);
343 CFQ_CFQQ_FNS(coop);
344 CFQ_CFQQ_FNS(split_coop);
345 CFQ_CFQQ_FNS(deep);
346 CFQ_CFQQ_FNS(wait_busy);
347 #undef CFQ_CFQQ_FNS
348
349 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
350 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
352 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
353 blkg_path(&(cfqq)->cfqg->blkg), ##args);
354
355 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
357 blkg_path(&(cfqg)->blkg), ##args); \
358
359 #else
360 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
362 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
363 #endif
364 #define cfq_log(cfqd, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
366
367 /* Traverses through cfq group service trees */
368 #define for_each_cfqg_st(cfqg, i, j, st) \
369 for (i = 0; i <= IDLE_WORKLOAD; i++) \
370 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
371 : &cfqg->service_tree_idle; \
372 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
373 (i == IDLE_WORKLOAD && j == 0); \
374 j++, st = i < IDLE_WORKLOAD ? \
375 &cfqg->service_trees[i][j]: NULL) \
376
377
378 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
379 {
380 if (cfq_class_idle(cfqq))
381 return IDLE_WORKLOAD;
382 if (cfq_class_rt(cfqq))
383 return RT_WORKLOAD;
384 return BE_WORKLOAD;
385 }
386
387
388 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
389 {
390 if (!cfq_cfqq_sync(cfqq))
391 return ASYNC_WORKLOAD;
392 if (!cfq_cfqq_idle_window(cfqq))
393 return SYNC_NOIDLE_WORKLOAD;
394 return SYNC_WORKLOAD;
395 }
396
397 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
398 struct cfq_data *cfqd,
399 struct cfq_group *cfqg)
400 {
401 if (wl == IDLE_WORKLOAD)
402 return cfqg->service_tree_idle.count;
403
404 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
406 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
407 }
408
409 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
410 struct cfq_group *cfqg)
411 {
412 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
413 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
414 }
415
416 static void cfq_dispatch_insert(struct request_queue *, struct request *);
417 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
418 struct io_context *, gfp_t);
419 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
420 struct io_context *);
421
422 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
423 bool is_sync)
424 {
425 return cic->cfqq[is_sync];
426 }
427
428 static inline void cic_set_cfqq(struct cfq_io_context *cic,
429 struct cfq_queue *cfqq, bool is_sync)
430 {
431 cic->cfqq[is_sync] = cfqq;
432 }
433
434 /*
435 * We regard a request as SYNC, if it's either a read or has the SYNC bit
436 * set (in which case it could also be direct WRITE).
437 */
438 static inline bool cfq_bio_sync(struct bio *bio)
439 {
440 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
441 }
442
443 /*
444 * scheduler run of queue, if there are requests pending and no one in the
445 * driver that will restart queueing
446 */
447 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
448 {
449 if (cfqd->busy_queues) {
450 cfq_log(cfqd, "schedule dispatch");
451 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
452 }
453 }
454
455 static int cfq_queue_empty(struct request_queue *q)
456 {
457 struct cfq_data *cfqd = q->elevator->elevator_data;
458
459 return !cfqd->rq_queued;
460 }
461
462 /*
463 * Scale schedule slice based on io priority. Use the sync time slice only
464 * if a queue is marked sync and has sync io queued. A sync queue with async
465 * io only, should not get full sync slice length.
466 */
467 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
468 unsigned short prio)
469 {
470 const int base_slice = cfqd->cfq_slice[sync];
471
472 WARN_ON(prio >= IOPRIO_BE_NR);
473
474 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
475 }
476
477 static inline int
478 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
479 {
480 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
481 }
482
483 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
484 {
485 u64 d = delta << CFQ_SERVICE_SHIFT;
486
487 d = d * BLKIO_WEIGHT_DEFAULT;
488 do_div(d, cfqg->weight);
489 return d;
490 }
491
492 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
493 {
494 s64 delta = (s64)(vdisktime - min_vdisktime);
495 if (delta > 0)
496 min_vdisktime = vdisktime;
497
498 return min_vdisktime;
499 }
500
501 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
502 {
503 s64 delta = (s64)(vdisktime - min_vdisktime);
504 if (delta < 0)
505 min_vdisktime = vdisktime;
506
507 return min_vdisktime;
508 }
509
510 static void update_min_vdisktime(struct cfq_rb_root *st)
511 {
512 u64 vdisktime = st->min_vdisktime;
513 struct cfq_group *cfqg;
514
515 if (st->active) {
516 cfqg = rb_entry_cfqg(st->active);
517 vdisktime = cfqg->vdisktime;
518 }
519
520 if (st->left) {
521 cfqg = rb_entry_cfqg(st->left);
522 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
523 }
524
525 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
526 }
527
528 /*
529 * get averaged number of queues of RT/BE priority.
530 * average is updated, with a formula that gives more weight to higher numbers,
531 * to quickly follows sudden increases and decrease slowly
532 */
533
534 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
535 struct cfq_group *cfqg, bool rt)
536 {
537 unsigned min_q, max_q;
538 unsigned mult = cfq_hist_divisor - 1;
539 unsigned round = cfq_hist_divisor / 2;
540 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
541
542 min_q = min(cfqg->busy_queues_avg[rt], busy);
543 max_q = max(cfqg->busy_queues_avg[rt], busy);
544 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
545 cfq_hist_divisor;
546 return cfqg->busy_queues_avg[rt];
547 }
548
549 static inline unsigned
550 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
551 {
552 struct cfq_rb_root *st = &cfqd->grp_service_tree;
553
554 return cfq_target_latency * cfqg->weight / st->total_weight;
555 }
556
557 static inline void
558 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
559 {
560 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
561 if (cfqd->cfq_latency) {
562 /*
563 * interested queues (we consider only the ones with the same
564 * priority class in the cfq group)
565 */
566 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
567 cfq_class_rt(cfqq));
568 unsigned sync_slice = cfqd->cfq_slice[1];
569 unsigned expect_latency = sync_slice * iq;
570 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
571
572 if (expect_latency > group_slice) {
573 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
574 /* scale low_slice according to IO priority
575 * and sync vs async */
576 unsigned low_slice =
577 min(slice, base_low_slice * slice / sync_slice);
578 /* the adapted slice value is scaled to fit all iqs
579 * into the target latency */
580 slice = max(slice * group_slice / expect_latency,
581 low_slice);
582 }
583 }
584 cfqq->slice_start = jiffies;
585 cfqq->slice_end = jiffies + slice;
586 cfqq->allocated_slice = slice;
587 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
588 }
589
590 /*
591 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
592 * isn't valid until the first request from the dispatch is activated
593 * and the slice time set.
594 */
595 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
596 {
597 if (cfq_cfqq_slice_new(cfqq))
598 return 0;
599 if (time_before(jiffies, cfqq->slice_end))
600 return 0;
601
602 return 1;
603 }
604
605 /*
606 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
607 * We choose the request that is closest to the head right now. Distance
608 * behind the head is penalized and only allowed to a certain extent.
609 */
610 static struct request *
611 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
612 {
613 sector_t s1, s2, d1 = 0, d2 = 0;
614 unsigned long back_max;
615 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
616 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
617 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
618
619 if (rq1 == NULL || rq1 == rq2)
620 return rq2;
621 if (rq2 == NULL)
622 return rq1;
623
624 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
625 return rq1;
626 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
627 return rq2;
628 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
629 return rq1;
630 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
631 return rq2;
632
633 s1 = blk_rq_pos(rq1);
634 s2 = blk_rq_pos(rq2);
635
636 /*
637 * by definition, 1KiB is 2 sectors
638 */
639 back_max = cfqd->cfq_back_max * 2;
640
641 /*
642 * Strict one way elevator _except_ in the case where we allow
643 * short backward seeks which are biased as twice the cost of a
644 * similar forward seek.
645 */
646 if (s1 >= last)
647 d1 = s1 - last;
648 else if (s1 + back_max >= last)
649 d1 = (last - s1) * cfqd->cfq_back_penalty;
650 else
651 wrap |= CFQ_RQ1_WRAP;
652
653 if (s2 >= last)
654 d2 = s2 - last;
655 else if (s2 + back_max >= last)
656 d2 = (last - s2) * cfqd->cfq_back_penalty;
657 else
658 wrap |= CFQ_RQ2_WRAP;
659
660 /* Found required data */
661
662 /*
663 * By doing switch() on the bit mask "wrap" we avoid having to
664 * check two variables for all permutations: --> faster!
665 */
666 switch (wrap) {
667 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
668 if (d1 < d2)
669 return rq1;
670 else if (d2 < d1)
671 return rq2;
672 else {
673 if (s1 >= s2)
674 return rq1;
675 else
676 return rq2;
677 }
678
679 case CFQ_RQ2_WRAP:
680 return rq1;
681 case CFQ_RQ1_WRAP:
682 return rq2;
683 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
684 default:
685 /*
686 * Since both rqs are wrapped,
687 * start with the one that's further behind head
688 * (--> only *one* back seek required),
689 * since back seek takes more time than forward.
690 */
691 if (s1 <= s2)
692 return rq1;
693 else
694 return rq2;
695 }
696 }
697
698 /*
699 * The below is leftmost cache rbtree addon
700 */
701 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
702 {
703 /* Service tree is empty */
704 if (!root->count)
705 return NULL;
706
707 if (!root->left)
708 root->left = rb_first(&root->rb);
709
710 if (root->left)
711 return rb_entry(root->left, struct cfq_queue, rb_node);
712
713 return NULL;
714 }
715
716 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
717 {
718 if (!root->left)
719 root->left = rb_first(&root->rb);
720
721 if (root->left)
722 return rb_entry_cfqg(root->left);
723
724 return NULL;
725 }
726
727 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
728 {
729 rb_erase(n, root);
730 RB_CLEAR_NODE(n);
731 }
732
733 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
734 {
735 if (root->left == n)
736 root->left = NULL;
737 rb_erase_init(n, &root->rb);
738 --root->count;
739 }
740
741 /*
742 * would be nice to take fifo expire time into account as well
743 */
744 static struct request *
745 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
746 struct request *last)
747 {
748 struct rb_node *rbnext = rb_next(&last->rb_node);
749 struct rb_node *rbprev = rb_prev(&last->rb_node);
750 struct request *next = NULL, *prev = NULL;
751
752 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
753
754 if (rbprev)
755 prev = rb_entry_rq(rbprev);
756
757 if (rbnext)
758 next = rb_entry_rq(rbnext);
759 else {
760 rbnext = rb_first(&cfqq->sort_list);
761 if (rbnext && rbnext != &last->rb_node)
762 next = rb_entry_rq(rbnext);
763 }
764
765 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
766 }
767
768 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
769 struct cfq_queue *cfqq)
770 {
771 /*
772 * just an approximation, should be ok.
773 */
774 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
775 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
776 }
777
778 static inline s64
779 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
780 {
781 return cfqg->vdisktime - st->min_vdisktime;
782 }
783
784 static void
785 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
786 {
787 struct rb_node **node = &st->rb.rb_node;
788 struct rb_node *parent = NULL;
789 struct cfq_group *__cfqg;
790 s64 key = cfqg_key(st, cfqg);
791 int left = 1;
792
793 while (*node != NULL) {
794 parent = *node;
795 __cfqg = rb_entry_cfqg(parent);
796
797 if (key < cfqg_key(st, __cfqg))
798 node = &parent->rb_left;
799 else {
800 node = &parent->rb_right;
801 left = 0;
802 }
803 }
804
805 if (left)
806 st->left = &cfqg->rb_node;
807
808 rb_link_node(&cfqg->rb_node, parent, node);
809 rb_insert_color(&cfqg->rb_node, &st->rb);
810 }
811
812 static void
813 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
814 {
815 struct cfq_rb_root *st = &cfqd->grp_service_tree;
816 struct cfq_group *__cfqg;
817 struct rb_node *n;
818
819 cfqg->nr_cfqq++;
820 if (cfqg->on_st)
821 return;
822
823 /*
824 * Currently put the group at the end. Later implement something
825 * so that groups get lesser vtime based on their weights, so that
826 * if group does not loose all if it was not continously backlogged.
827 */
828 n = rb_last(&st->rb);
829 if (n) {
830 __cfqg = rb_entry_cfqg(n);
831 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
832 } else
833 cfqg->vdisktime = st->min_vdisktime;
834
835 __cfq_group_service_tree_add(st, cfqg);
836 cfqg->on_st = true;
837 st->total_weight += cfqg->weight;
838 }
839
840 static void
841 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
842 {
843 struct cfq_rb_root *st = &cfqd->grp_service_tree;
844
845 if (st->active == &cfqg->rb_node)
846 st->active = NULL;
847
848 BUG_ON(cfqg->nr_cfqq < 1);
849 cfqg->nr_cfqq--;
850
851 /* If there are other cfq queues under this group, don't delete it */
852 if (cfqg->nr_cfqq)
853 return;
854
855 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
856 cfqg->on_st = false;
857 st->total_weight -= cfqg->weight;
858 if (!RB_EMPTY_NODE(&cfqg->rb_node))
859 cfq_rb_erase(&cfqg->rb_node, st);
860 cfqg->saved_workload_slice = 0;
861 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
862 }
863
864 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
865 {
866 unsigned int slice_used;
867
868 /*
869 * Queue got expired before even a single request completed or
870 * got expired immediately after first request completion.
871 */
872 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
873 /*
874 * Also charge the seek time incurred to the group, otherwise
875 * if there are mutiple queues in the group, each can dispatch
876 * a single request on seeky media and cause lots of seek time
877 * and group will never know it.
878 */
879 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
880 1);
881 } else {
882 slice_used = jiffies - cfqq->slice_start;
883 if (slice_used > cfqq->allocated_slice)
884 slice_used = cfqq->allocated_slice;
885 }
886
887 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
888 cfqq->nr_sectors);
889 return slice_used;
890 }
891
892 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
893 struct cfq_queue *cfqq)
894 {
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
896 unsigned int used_sl, charge_sl;
897 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
898 - cfqg->service_tree_idle.count;
899
900 BUG_ON(nr_sync < 0);
901 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
902
903 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
904 charge_sl = cfqq->allocated_slice;
905
906 /* Can't update vdisktime while group is on service tree */
907 cfq_rb_erase(&cfqg->rb_node, st);
908 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
909 __cfq_group_service_tree_add(st, cfqg);
910
911 /* This group is being expired. Save the context */
912 if (time_after(cfqd->workload_expires, jiffies)) {
913 cfqg->saved_workload_slice = cfqd->workload_expires
914 - jiffies;
915 cfqg->saved_workload = cfqd->serving_type;
916 cfqg->saved_serving_prio = cfqd->serving_prio;
917 } else
918 cfqg->saved_workload_slice = 0;
919
920 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
921 st->min_vdisktime);
922 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
923 cfqq->nr_sectors);
924 }
925
926 #ifdef CONFIG_CFQ_GROUP_IOSCHED
927 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
928 {
929 if (blkg)
930 return container_of(blkg, struct cfq_group, blkg);
931 return NULL;
932 }
933
934 void
935 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
936 {
937 cfqg_of_blkg(blkg)->weight = weight;
938 }
939
940 static struct cfq_group *
941 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
942 {
943 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
944 struct cfq_group *cfqg = NULL;
945 void *key = cfqd;
946 int i, j;
947 struct cfq_rb_root *st;
948 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
949 unsigned int major, minor;
950
951 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
952 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
953 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
954 cfqg->blkg.dev = MKDEV(major, minor);
955 goto done;
956 }
957 if (cfqg || !create)
958 goto done;
959
960 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
961 if (!cfqg)
962 goto done;
963
964 cfqg->weight = blkcg->weight;
965 for_each_cfqg_st(cfqg, i, j, st)
966 *st = CFQ_RB_ROOT;
967 RB_CLEAR_NODE(&cfqg->rb_node);
968
969 /*
970 * Take the initial reference that will be released on destroy
971 * This can be thought of a joint reference by cgroup and
972 * elevator which will be dropped by either elevator exit
973 * or cgroup deletion path depending on who is exiting first.
974 */
975 atomic_set(&cfqg->ref, 1);
976
977 /* Add group onto cgroup list */
978 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
979 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
980 MKDEV(major, minor));
981
982 /* Add group on cfqd list */
983 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
984
985 done:
986 return cfqg;
987 }
988
989 /*
990 * Search for the cfq group current task belongs to. If create = 1, then also
991 * create the cfq group if it does not exist. request_queue lock must be held.
992 */
993 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
994 {
995 struct cgroup *cgroup;
996 struct cfq_group *cfqg = NULL;
997
998 rcu_read_lock();
999 cgroup = task_cgroup(current, blkio_subsys_id);
1000 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1001 if (!cfqg && create)
1002 cfqg = &cfqd->root_group;
1003 rcu_read_unlock();
1004 return cfqg;
1005 }
1006
1007 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1008 {
1009 /* Currently, all async queues are mapped to root group */
1010 if (!cfq_cfqq_sync(cfqq))
1011 cfqg = &cfqq->cfqd->root_group;
1012
1013 cfqq->cfqg = cfqg;
1014 /* cfqq reference on cfqg */
1015 atomic_inc(&cfqq->cfqg->ref);
1016 }
1017
1018 static void cfq_put_cfqg(struct cfq_group *cfqg)
1019 {
1020 struct cfq_rb_root *st;
1021 int i, j;
1022
1023 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1024 if (!atomic_dec_and_test(&cfqg->ref))
1025 return;
1026 for_each_cfqg_st(cfqg, i, j, st)
1027 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1028 kfree(cfqg);
1029 }
1030
1031 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032 {
1033 /* Something wrong if we are trying to remove same group twice */
1034 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1035
1036 hlist_del_init(&cfqg->cfqd_node);
1037
1038 /*
1039 * Put the reference taken at the time of creation so that when all
1040 * queues are gone, group can be destroyed.
1041 */
1042 cfq_put_cfqg(cfqg);
1043 }
1044
1045 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1046 {
1047 struct hlist_node *pos, *n;
1048 struct cfq_group *cfqg;
1049
1050 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1051 /*
1052 * If cgroup removal path got to blk_group first and removed
1053 * it from cgroup list, then it will take care of destroying
1054 * cfqg also.
1055 */
1056 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1057 cfq_destroy_cfqg(cfqd, cfqg);
1058 }
1059 }
1060
1061 /*
1062 * Blk cgroup controller notification saying that blkio_group object is being
1063 * delinked as associated cgroup object is going away. That also means that
1064 * no new IO will come in this group. So get rid of this group as soon as
1065 * any pending IO in the group is finished.
1066 *
1067 * This function is called under rcu_read_lock(). key is the rcu protected
1068 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1069 * read lock.
1070 *
1071 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1072 * it should not be NULL as even if elevator was exiting, cgroup deltion
1073 * path got to it first.
1074 */
1075 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1076 {
1077 unsigned long flags;
1078 struct cfq_data *cfqd = key;
1079
1080 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1081 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1082 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1083 }
1084
1085 #else /* GROUP_IOSCHED */
1086 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1087 {
1088 return &cfqd->root_group;
1089 }
1090 static inline void
1091 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1092 cfqq->cfqg = cfqg;
1093 }
1094
1095 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1096 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1097
1098 #endif /* GROUP_IOSCHED */
1099
1100 /*
1101 * The cfqd->service_trees holds all pending cfq_queue's that have
1102 * requests waiting to be processed. It is sorted in the order that
1103 * we will service the queues.
1104 */
1105 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1106 bool add_front)
1107 {
1108 struct rb_node **p, *parent;
1109 struct cfq_queue *__cfqq;
1110 unsigned long rb_key;
1111 struct cfq_rb_root *service_tree;
1112 int left;
1113 int new_cfqq = 1;
1114 int group_changed = 0;
1115
1116 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1117 if (!cfqd->cfq_group_isolation
1118 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1119 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1120 /* Move this cfq to root group */
1121 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1122 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124 cfqq->orig_cfqg = cfqq->cfqg;
1125 cfqq->cfqg = &cfqd->root_group;
1126 atomic_inc(&cfqd->root_group.ref);
1127 group_changed = 1;
1128 } else if (!cfqd->cfq_group_isolation
1129 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1130 /* cfqq is sequential now needs to go to its original group */
1131 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfq_put_cfqg(cfqq->cfqg);
1135 cfqq->cfqg = cfqq->orig_cfqg;
1136 cfqq->orig_cfqg = NULL;
1137 group_changed = 1;
1138 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1139 }
1140 #endif
1141
1142 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1143 cfqq_type(cfqq));
1144 if (cfq_class_idle(cfqq)) {
1145 rb_key = CFQ_IDLE_DELAY;
1146 parent = rb_last(&service_tree->rb);
1147 if (parent && parent != &cfqq->rb_node) {
1148 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1149 rb_key += __cfqq->rb_key;
1150 } else
1151 rb_key += jiffies;
1152 } else if (!add_front) {
1153 /*
1154 * Get our rb key offset. Subtract any residual slice
1155 * value carried from last service. A negative resid
1156 * count indicates slice overrun, and this should position
1157 * the next service time further away in the tree.
1158 */
1159 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1160 rb_key -= cfqq->slice_resid;
1161 cfqq->slice_resid = 0;
1162 } else {
1163 rb_key = -HZ;
1164 __cfqq = cfq_rb_first(service_tree);
1165 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1166 }
1167
1168 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1169 new_cfqq = 0;
1170 /*
1171 * same position, nothing more to do
1172 */
1173 if (rb_key == cfqq->rb_key &&
1174 cfqq->service_tree == service_tree)
1175 return;
1176
1177 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1178 cfqq->service_tree = NULL;
1179 }
1180
1181 left = 1;
1182 parent = NULL;
1183 cfqq->service_tree = service_tree;
1184 p = &service_tree->rb.rb_node;
1185 while (*p) {
1186 struct rb_node **n;
1187
1188 parent = *p;
1189 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1190
1191 /*
1192 * sort by key, that represents service time.
1193 */
1194 if (time_before(rb_key, __cfqq->rb_key))
1195 n = &(*p)->rb_left;
1196 else {
1197 n = &(*p)->rb_right;
1198 left = 0;
1199 }
1200
1201 p = n;
1202 }
1203
1204 if (left)
1205 service_tree->left = &cfqq->rb_node;
1206
1207 cfqq->rb_key = rb_key;
1208 rb_link_node(&cfqq->rb_node, parent, p);
1209 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1210 service_tree->count++;
1211 if ((add_front || !new_cfqq) && !group_changed)
1212 return;
1213 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1214 }
1215
1216 static struct cfq_queue *
1217 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1218 sector_t sector, struct rb_node **ret_parent,
1219 struct rb_node ***rb_link)
1220 {
1221 struct rb_node **p, *parent;
1222 struct cfq_queue *cfqq = NULL;
1223
1224 parent = NULL;
1225 p = &root->rb_node;
1226 while (*p) {
1227 struct rb_node **n;
1228
1229 parent = *p;
1230 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1231
1232 /*
1233 * Sort strictly based on sector. Smallest to the left,
1234 * largest to the right.
1235 */
1236 if (sector > blk_rq_pos(cfqq->next_rq))
1237 n = &(*p)->rb_right;
1238 else if (sector < blk_rq_pos(cfqq->next_rq))
1239 n = &(*p)->rb_left;
1240 else
1241 break;
1242 p = n;
1243 cfqq = NULL;
1244 }
1245
1246 *ret_parent = parent;
1247 if (rb_link)
1248 *rb_link = p;
1249 return cfqq;
1250 }
1251
1252 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1253 {
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *__cfqq;
1256
1257 if (cfqq->p_root) {
1258 rb_erase(&cfqq->p_node, cfqq->p_root);
1259 cfqq->p_root = NULL;
1260 }
1261
1262 if (cfq_class_idle(cfqq))
1263 return;
1264 if (!cfqq->next_rq)
1265 return;
1266
1267 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1268 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1269 blk_rq_pos(cfqq->next_rq), &parent, &p);
1270 if (!__cfqq) {
1271 rb_link_node(&cfqq->p_node, parent, p);
1272 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1273 } else
1274 cfqq->p_root = NULL;
1275 }
1276
1277 /*
1278 * Update cfqq's position in the service tree.
1279 */
1280 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1281 {
1282 /*
1283 * Resorting requires the cfqq to be on the RR list already.
1284 */
1285 if (cfq_cfqq_on_rr(cfqq)) {
1286 cfq_service_tree_add(cfqd, cfqq, 0);
1287 cfq_prio_tree_add(cfqd, cfqq);
1288 }
1289 }
1290
1291 /*
1292 * add to busy list of queues for service, trying to be fair in ordering
1293 * the pending list according to last request service
1294 */
1295 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1296 {
1297 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1298 BUG_ON(cfq_cfqq_on_rr(cfqq));
1299 cfq_mark_cfqq_on_rr(cfqq);
1300 cfqd->busy_queues++;
1301
1302 cfq_resort_rr_list(cfqd, cfqq);
1303 }
1304
1305 /*
1306 * Called when the cfqq no longer has requests pending, remove it from
1307 * the service tree.
1308 */
1309 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1310 {
1311 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1312 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1313 cfq_clear_cfqq_on_rr(cfqq);
1314
1315 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1316 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1317 cfqq->service_tree = NULL;
1318 }
1319 if (cfqq->p_root) {
1320 rb_erase(&cfqq->p_node, cfqq->p_root);
1321 cfqq->p_root = NULL;
1322 }
1323
1324 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1325 BUG_ON(!cfqd->busy_queues);
1326 cfqd->busy_queues--;
1327 }
1328
1329 /*
1330 * rb tree support functions
1331 */
1332 static void cfq_del_rq_rb(struct request *rq)
1333 {
1334 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1335 const int sync = rq_is_sync(rq);
1336
1337 BUG_ON(!cfqq->queued[sync]);
1338 cfqq->queued[sync]--;
1339
1340 elv_rb_del(&cfqq->sort_list, rq);
1341
1342 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1343 /*
1344 * Queue will be deleted from service tree when we actually
1345 * expire it later. Right now just remove it from prio tree
1346 * as it is empty.
1347 */
1348 if (cfqq->p_root) {
1349 rb_erase(&cfqq->p_node, cfqq->p_root);
1350 cfqq->p_root = NULL;
1351 }
1352 }
1353 }
1354
1355 static void cfq_add_rq_rb(struct request *rq)
1356 {
1357 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1358 struct cfq_data *cfqd = cfqq->cfqd;
1359 struct request *__alias, *prev;
1360
1361 cfqq->queued[rq_is_sync(rq)]++;
1362
1363 /*
1364 * looks a little odd, but the first insert might return an alias.
1365 * if that happens, put the alias on the dispatch list
1366 */
1367 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1368 cfq_dispatch_insert(cfqd->queue, __alias);
1369
1370 if (!cfq_cfqq_on_rr(cfqq))
1371 cfq_add_cfqq_rr(cfqd, cfqq);
1372
1373 /*
1374 * check if this request is a better next-serve candidate
1375 */
1376 prev = cfqq->next_rq;
1377 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1378
1379 /*
1380 * adjust priority tree position, if ->next_rq changes
1381 */
1382 if (prev != cfqq->next_rq)
1383 cfq_prio_tree_add(cfqd, cfqq);
1384
1385 BUG_ON(!cfqq->next_rq);
1386 }
1387
1388 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1389 {
1390 elv_rb_del(&cfqq->sort_list, rq);
1391 cfqq->queued[rq_is_sync(rq)]--;
1392 cfq_add_rq_rb(rq);
1393 }
1394
1395 static struct request *
1396 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1397 {
1398 struct task_struct *tsk = current;
1399 struct cfq_io_context *cic;
1400 struct cfq_queue *cfqq;
1401
1402 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1403 if (!cic)
1404 return NULL;
1405
1406 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1407 if (cfqq) {
1408 sector_t sector = bio->bi_sector + bio_sectors(bio);
1409
1410 return elv_rb_find(&cfqq->sort_list, sector);
1411 }
1412
1413 return NULL;
1414 }
1415
1416 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1417 {
1418 struct cfq_data *cfqd = q->elevator->elevator_data;
1419
1420 cfqd->rq_in_driver++;
1421 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1422 cfqd->rq_in_driver);
1423
1424 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1425 }
1426
1427 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1428 {
1429 struct cfq_data *cfqd = q->elevator->elevator_data;
1430
1431 WARN_ON(!cfqd->rq_in_driver);
1432 cfqd->rq_in_driver--;
1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1434 cfqd->rq_in_driver);
1435 }
1436
1437 static void cfq_remove_request(struct request *rq)
1438 {
1439 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1440
1441 if (cfqq->next_rq == rq)
1442 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1443
1444 list_del_init(&rq->queuelist);
1445 cfq_del_rq_rb(rq);
1446
1447 cfqq->cfqd->rq_queued--;
1448 if (rq_is_meta(rq)) {
1449 WARN_ON(!cfqq->meta_pending);
1450 cfqq->meta_pending--;
1451 }
1452 }
1453
1454 static int cfq_merge(struct request_queue *q, struct request **req,
1455 struct bio *bio)
1456 {
1457 struct cfq_data *cfqd = q->elevator->elevator_data;
1458 struct request *__rq;
1459
1460 __rq = cfq_find_rq_fmerge(cfqd, bio);
1461 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1462 *req = __rq;
1463 return ELEVATOR_FRONT_MERGE;
1464 }
1465
1466 return ELEVATOR_NO_MERGE;
1467 }
1468
1469 static void cfq_merged_request(struct request_queue *q, struct request *req,
1470 int type)
1471 {
1472 if (type == ELEVATOR_FRONT_MERGE) {
1473 struct cfq_queue *cfqq = RQ_CFQQ(req);
1474
1475 cfq_reposition_rq_rb(cfqq, req);
1476 }
1477 }
1478
1479 static void
1480 cfq_merged_requests(struct request_queue *q, struct request *rq,
1481 struct request *next)
1482 {
1483 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1484 /*
1485 * reposition in fifo if next is older than rq
1486 */
1487 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1488 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1489 list_move(&rq->queuelist, &next->queuelist);
1490 rq_set_fifo_time(rq, rq_fifo_time(next));
1491 }
1492
1493 if (cfqq->next_rq == next)
1494 cfqq->next_rq = rq;
1495 cfq_remove_request(next);
1496 }
1497
1498 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1499 struct bio *bio)
1500 {
1501 struct cfq_data *cfqd = q->elevator->elevator_data;
1502 struct cfq_io_context *cic;
1503 struct cfq_queue *cfqq;
1504
1505 /*
1506 * Disallow merge of a sync bio into an async request.
1507 */
1508 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1509 return false;
1510
1511 /*
1512 * Lookup the cfqq that this bio will be queued with. Allow
1513 * merge only if rq is queued there.
1514 */
1515 cic = cfq_cic_lookup(cfqd, current->io_context);
1516 if (!cic)
1517 return false;
1518
1519 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1520 return cfqq == RQ_CFQQ(rq);
1521 }
1522
1523 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1524 struct cfq_queue *cfqq)
1525 {
1526 if (cfqq) {
1527 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1528 cfqd->serving_prio, cfqd->serving_type);
1529 cfqq->slice_start = 0;
1530 cfqq->dispatch_start = jiffies;
1531 cfqq->allocated_slice = 0;
1532 cfqq->slice_end = 0;
1533 cfqq->slice_dispatch = 0;
1534 cfqq->nr_sectors = 0;
1535
1536 cfq_clear_cfqq_wait_request(cfqq);
1537 cfq_clear_cfqq_must_dispatch(cfqq);
1538 cfq_clear_cfqq_must_alloc_slice(cfqq);
1539 cfq_clear_cfqq_fifo_expire(cfqq);
1540 cfq_mark_cfqq_slice_new(cfqq);
1541
1542 del_timer(&cfqd->idle_slice_timer);
1543 }
1544
1545 cfqd->active_queue = cfqq;
1546 }
1547
1548 /*
1549 * current cfqq expired its slice (or was too idle), select new one
1550 */
1551 static void
1552 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1553 bool timed_out)
1554 {
1555 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1556
1557 if (cfq_cfqq_wait_request(cfqq))
1558 del_timer(&cfqd->idle_slice_timer);
1559
1560 cfq_clear_cfqq_wait_request(cfqq);
1561 cfq_clear_cfqq_wait_busy(cfqq);
1562
1563 /*
1564 * If this cfqq is shared between multiple processes, check to
1565 * make sure that those processes are still issuing I/Os within
1566 * the mean seek distance. If not, it may be time to break the
1567 * queues apart again.
1568 */
1569 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1570 cfq_mark_cfqq_split_coop(cfqq);
1571
1572 /*
1573 * store what was left of this slice, if the queue idled/timed out
1574 */
1575 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1576 cfqq->slice_resid = cfqq->slice_end - jiffies;
1577 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1578 }
1579
1580 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1581
1582 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1583 cfq_del_cfqq_rr(cfqd, cfqq);
1584
1585 cfq_resort_rr_list(cfqd, cfqq);
1586
1587 if (cfqq == cfqd->active_queue)
1588 cfqd->active_queue = NULL;
1589
1590 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1591 cfqd->grp_service_tree.active = NULL;
1592
1593 if (cfqd->active_cic) {
1594 put_io_context(cfqd->active_cic->ioc);
1595 cfqd->active_cic = NULL;
1596 }
1597 }
1598
1599 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1600 {
1601 struct cfq_queue *cfqq = cfqd->active_queue;
1602
1603 if (cfqq)
1604 __cfq_slice_expired(cfqd, cfqq, timed_out);
1605 }
1606
1607 /*
1608 * Get next queue for service. Unless we have a queue preemption,
1609 * we'll simply select the first cfqq in the service tree.
1610 */
1611 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1612 {
1613 struct cfq_rb_root *service_tree =
1614 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1615 cfqd->serving_type);
1616
1617 if (!cfqd->rq_queued)
1618 return NULL;
1619
1620 /* There is nothing to dispatch */
1621 if (!service_tree)
1622 return NULL;
1623 if (RB_EMPTY_ROOT(&service_tree->rb))
1624 return NULL;
1625 return cfq_rb_first(service_tree);
1626 }
1627
1628 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1629 {
1630 struct cfq_group *cfqg;
1631 struct cfq_queue *cfqq;
1632 int i, j;
1633 struct cfq_rb_root *st;
1634
1635 if (!cfqd->rq_queued)
1636 return NULL;
1637
1638 cfqg = cfq_get_next_cfqg(cfqd);
1639 if (!cfqg)
1640 return NULL;
1641
1642 for_each_cfqg_st(cfqg, i, j, st)
1643 if ((cfqq = cfq_rb_first(st)) != NULL)
1644 return cfqq;
1645 return NULL;
1646 }
1647
1648 /*
1649 * Get and set a new active queue for service.
1650 */
1651 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1652 struct cfq_queue *cfqq)
1653 {
1654 if (!cfqq)
1655 cfqq = cfq_get_next_queue(cfqd);
1656
1657 __cfq_set_active_queue(cfqd, cfqq);
1658 return cfqq;
1659 }
1660
1661 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1662 struct request *rq)
1663 {
1664 if (blk_rq_pos(rq) >= cfqd->last_position)
1665 return blk_rq_pos(rq) - cfqd->last_position;
1666 else
1667 return cfqd->last_position - blk_rq_pos(rq);
1668 }
1669
1670 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1671 struct request *rq)
1672 {
1673 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1674 }
1675
1676 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1677 struct cfq_queue *cur_cfqq)
1678 {
1679 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1680 struct rb_node *parent, *node;
1681 struct cfq_queue *__cfqq;
1682 sector_t sector = cfqd->last_position;
1683
1684 if (RB_EMPTY_ROOT(root))
1685 return NULL;
1686
1687 /*
1688 * First, if we find a request starting at the end of the last
1689 * request, choose it.
1690 */
1691 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1692 if (__cfqq)
1693 return __cfqq;
1694
1695 /*
1696 * If the exact sector wasn't found, the parent of the NULL leaf
1697 * will contain the closest sector.
1698 */
1699 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1701 return __cfqq;
1702
1703 if (blk_rq_pos(__cfqq->next_rq) < sector)
1704 node = rb_next(&__cfqq->p_node);
1705 else
1706 node = rb_prev(&__cfqq->p_node);
1707 if (!node)
1708 return NULL;
1709
1710 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1711 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1712 return __cfqq;
1713
1714 return NULL;
1715 }
1716
1717 /*
1718 * cfqd - obvious
1719 * cur_cfqq - passed in so that we don't decide that the current queue is
1720 * closely cooperating with itself.
1721 *
1722 * So, basically we're assuming that that cur_cfqq has dispatched at least
1723 * one request, and that cfqd->last_position reflects a position on the disk
1724 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1725 * assumption.
1726 */
1727 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1728 struct cfq_queue *cur_cfqq)
1729 {
1730 struct cfq_queue *cfqq;
1731
1732 if (cfq_class_idle(cur_cfqq))
1733 return NULL;
1734 if (!cfq_cfqq_sync(cur_cfqq))
1735 return NULL;
1736 if (CFQQ_SEEKY(cur_cfqq))
1737 return NULL;
1738
1739 /*
1740 * Don't search priority tree if it's the only queue in the group.
1741 */
1742 if (cur_cfqq->cfqg->nr_cfqq == 1)
1743 return NULL;
1744
1745 /*
1746 * We should notice if some of the queues are cooperating, eg
1747 * working closely on the same area of the disk. In that case,
1748 * we can group them together and don't waste time idling.
1749 */
1750 cfqq = cfqq_close(cfqd, cur_cfqq);
1751 if (!cfqq)
1752 return NULL;
1753
1754 /* If new queue belongs to different cfq_group, don't choose it */
1755 if (cur_cfqq->cfqg != cfqq->cfqg)
1756 return NULL;
1757
1758 /*
1759 * It only makes sense to merge sync queues.
1760 */
1761 if (!cfq_cfqq_sync(cfqq))
1762 return NULL;
1763 if (CFQQ_SEEKY(cfqq))
1764 return NULL;
1765
1766 /*
1767 * Do not merge queues of different priority classes
1768 */
1769 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1770 return NULL;
1771
1772 return cfqq;
1773 }
1774
1775 /*
1776 * Determine whether we should enforce idle window for this queue.
1777 */
1778
1779 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1780 {
1781 enum wl_prio_t prio = cfqq_prio(cfqq);
1782 struct cfq_rb_root *service_tree = cfqq->service_tree;
1783
1784 BUG_ON(!service_tree);
1785 BUG_ON(!service_tree->count);
1786
1787 /* We never do for idle class queues. */
1788 if (prio == IDLE_WORKLOAD)
1789 return false;
1790
1791 /* We do for queues that were marked with idle window flag. */
1792 if (cfq_cfqq_idle_window(cfqq) &&
1793 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1794 return true;
1795
1796 /*
1797 * Otherwise, we do only if they are the last ones
1798 * in their service tree.
1799 */
1800 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1801 return 1;
1802 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1803 service_tree->count);
1804 return 0;
1805 }
1806
1807 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1808 {
1809 struct cfq_queue *cfqq = cfqd->active_queue;
1810 struct cfq_io_context *cic;
1811 unsigned long sl;
1812
1813 /*
1814 * SSD device without seek penalty, disable idling. But only do so
1815 * for devices that support queuing, otherwise we still have a problem
1816 * with sync vs async workloads.
1817 */
1818 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1819 return;
1820
1821 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1822 WARN_ON(cfq_cfqq_slice_new(cfqq));
1823
1824 /*
1825 * idle is disabled, either manually or by past process history
1826 */
1827 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1828 return;
1829
1830 /*
1831 * still active requests from this queue, don't idle
1832 */
1833 if (cfqq->dispatched)
1834 return;
1835
1836 /*
1837 * task has exited, don't wait
1838 */
1839 cic = cfqd->active_cic;
1840 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1841 return;
1842
1843 /*
1844 * If our average think time is larger than the remaining time
1845 * slice, then don't idle. This avoids overrunning the allotted
1846 * time slice.
1847 */
1848 if (sample_valid(cic->ttime_samples) &&
1849 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1850 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1851 cic->ttime_mean);
1852 return;
1853 }
1854
1855 cfq_mark_cfqq_wait_request(cfqq);
1856
1857 sl = cfqd->cfq_slice_idle;
1858
1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1861 }
1862
1863 /*
1864 * Move request from internal lists to the request queue dispatch list.
1865 */
1866 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1867 {
1868 struct cfq_data *cfqd = q->elevator->elevator_data;
1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1870
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1874 cfq_remove_request(rq);
1875 cfqq->dispatched++;
1876 elv_dispatch_sort(q, rq);
1877
1878 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1879 cfqq->nr_sectors += blk_rq_sectors(rq);
1880 }
1881
1882 /*
1883 * return expired entry, or NULL to just start from scratch in rbtree
1884 */
1885 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1886 {
1887 struct request *rq = NULL;
1888
1889 if (cfq_cfqq_fifo_expire(cfqq))
1890 return NULL;
1891
1892 cfq_mark_cfqq_fifo_expire(cfqq);
1893
1894 if (list_empty(&cfqq->fifo))
1895 return NULL;
1896
1897 rq = rq_entry_fifo(cfqq->fifo.next);
1898 if (time_before(jiffies, rq_fifo_time(rq)))
1899 rq = NULL;
1900
1901 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1902 return rq;
1903 }
1904
1905 static inline int
1906 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1907 {
1908 const int base_rq = cfqd->cfq_slice_async_rq;
1909
1910 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1911
1912 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1913 }
1914
1915 /*
1916 * Must be called with the queue_lock held.
1917 */
1918 static int cfqq_process_refs(struct cfq_queue *cfqq)
1919 {
1920 int process_refs, io_refs;
1921
1922 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923 process_refs = atomic_read(&cfqq->ref) - io_refs;
1924 BUG_ON(process_refs < 0);
1925 return process_refs;
1926 }
1927
1928 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1929 {
1930 int process_refs, new_process_refs;
1931 struct cfq_queue *__cfqq;
1932
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq = new_cfqq->new_cfqq)) {
1935 if (__cfqq == cfqq)
1936 return;
1937 new_cfqq = __cfqq;
1938 }
1939
1940 process_refs = cfqq_process_refs(cfqq);
1941 /*
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1944 */
1945 if (process_refs == 0)
1946 return;
1947
1948 /*
1949 * Merge in the direction of the lesser amount of work.
1950 */
1951 new_process_refs = cfqq_process_refs(new_cfqq);
1952 if (new_process_refs >= process_refs) {
1953 cfqq->new_cfqq = new_cfqq;
1954 atomic_add(process_refs, &new_cfqq->ref);
1955 } else {
1956 new_cfqq->new_cfqq = cfqq;
1957 atomic_add(new_process_refs, &cfqq->ref);
1958 }
1959 }
1960
1961 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1962 struct cfq_group *cfqg, enum wl_prio_t prio)
1963 {
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
1970 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1971 /* select the one with lowest rb_key */
1972 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1973 if (queue &&
1974 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1975 lowest_key = queue->rb_key;
1976 cur_best = i;
1977 key_valid = true;
1978 }
1979 }
1980
1981 return cur_best;
1982 }
1983
1984 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1985 {
1986 unsigned slice;
1987 unsigned count;
1988 struct cfq_rb_root *st;
1989 unsigned group_slice;
1990
1991 if (!cfqg) {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1995 }
1996
1997 /* Choose next priority. RT > BE > IDLE */
1998 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1999 cfqd->serving_prio = RT_WORKLOAD;
2000 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2001 cfqd->serving_prio = BE_WORKLOAD;
2002 else {
2003 cfqd->serving_prio = IDLE_WORKLOAD;
2004 cfqd->workload_expires = jiffies + 1;
2005 return;
2006 }
2007
2008 /*
2009 * For RT and BE, we have to choose also the type
2010 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2011 * expiration time
2012 */
2013 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2014 count = st->count;
2015
2016 /*
2017 * check workload expiration, and that we still have other queues ready
2018 */
2019 if (count && !time_after(jiffies, cfqd->workload_expires))
2020 return;
2021
2022 /* otherwise select new workload type */
2023 cfqd->serving_type =
2024 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2025 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2026 count = st->count;
2027
2028 /*
2029 * the workload slice is computed as a fraction of target latency
2030 * proportional to the number of queues in that workload, over
2031 * all the queues in the same priority class
2032 */
2033 group_slice = cfq_group_slice(cfqd, cfqg);
2034
2035 slice = group_slice * count /
2036 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2037 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2038
2039 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2040 unsigned int tmp;
2041
2042 /*
2043 * Async queues are currently system wide. Just taking
2044 * proportion of queues with-in same group will lead to higher
2045 * async ratio system wide as generally root group is going
2046 * to have higher weight. A more accurate thing would be to
2047 * calculate system wide asnc/sync ratio.
2048 */
2049 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2050 tmp = tmp/cfqd->busy_queues;
2051 slice = min_t(unsigned, slice, tmp);
2052
2053 /* async workload slice is scaled down according to
2054 * the sync/async slice ratio. */
2055 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2056 } else
2057 /* sync workload slice is at least 2 * cfq_slice_idle */
2058 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2059
2060 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2061 cfq_log(cfqd, "workload slice:%d", slice);
2062 cfqd->workload_expires = jiffies + slice;
2063 cfqd->noidle_tree_requires_idle = false;
2064 }
2065
2066 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2067 {
2068 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2069 struct cfq_group *cfqg;
2070
2071 if (RB_EMPTY_ROOT(&st->rb))
2072 return NULL;
2073 cfqg = cfq_rb_first_group(st);
2074 st->active = &cfqg->rb_node;
2075 update_min_vdisktime(st);
2076 return cfqg;
2077 }
2078
2079 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2080 {
2081 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2082
2083 cfqd->serving_group = cfqg;
2084
2085 /* Restore the workload type data */
2086 if (cfqg->saved_workload_slice) {
2087 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2088 cfqd->serving_type = cfqg->saved_workload;
2089 cfqd->serving_prio = cfqg->saved_serving_prio;
2090 } else
2091 cfqd->workload_expires = jiffies - 1;
2092
2093 choose_service_tree(cfqd, cfqg);
2094 }
2095
2096 /*
2097 * Select a queue for service. If we have a current active queue,
2098 * check whether to continue servicing it, or retrieve and set a new one.
2099 */
2100 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2101 {
2102 struct cfq_queue *cfqq, *new_cfqq = NULL;
2103
2104 cfqq = cfqd->active_queue;
2105 if (!cfqq)
2106 goto new_queue;
2107
2108 if (!cfqd->rq_queued)
2109 return NULL;
2110
2111 /*
2112 * We were waiting for group to get backlogged. Expire the queue
2113 */
2114 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2115 goto expire;
2116
2117 /*
2118 * The active queue has run out of time, expire it and select new.
2119 */
2120 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2121 /*
2122 * If slice had not expired at the completion of last request
2123 * we might not have turned on wait_busy flag. Don't expire
2124 * the queue yet. Allow the group to get backlogged.
2125 *
2126 * The very fact that we have used the slice, that means we
2127 * have been idling all along on this queue and it should be
2128 * ok to wait for this request to complete.
2129 */
2130 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2131 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2132 cfqq = NULL;
2133 goto keep_queue;
2134 } else
2135 goto expire;
2136 }
2137
2138 /*
2139 * The active queue has requests and isn't expired, allow it to
2140 * dispatch.
2141 */
2142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2143 goto keep_queue;
2144
2145 /*
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
2149 * tree. If possible, merge the expiring queue with the new cfqq.
2150 */
2151 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2152 if (new_cfqq) {
2153 if (!cfqq->new_cfqq)
2154 cfq_setup_merge(cfqq, new_cfqq);
2155 goto expire;
2156 }
2157
2158 /*
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2162 */
2163 if (timer_pending(&cfqd->idle_slice_timer) ||
2164 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2165 cfqq = NULL;
2166 goto keep_queue;
2167 }
2168
2169 expire:
2170 cfq_slice_expired(cfqd, 0);
2171 new_queue:
2172 /*
2173 * Current queue expired. Check if we have to switch to a new
2174 * service tree
2175 */
2176 if (!new_cfqq)
2177 cfq_choose_cfqg(cfqd);
2178
2179 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2180 keep_queue:
2181 return cfqq;
2182 }
2183
2184 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2185 {
2186 int dispatched = 0;
2187
2188 while (cfqq->next_rq) {
2189 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190 dispatched++;
2191 }
2192
2193 BUG_ON(!list_empty(&cfqq->fifo));
2194
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2197 return dispatched;
2198 }
2199
2200 /*
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2203 */
2204 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2205 {
2206 struct cfq_queue *cfqq;
2207 int dispatched = 0;
2208
2209 /* Expire the timeslice of the current active queue first */
2210 cfq_slice_expired(cfqd, 0);
2211 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2212 __cfq_set_active_queue(cfqd, cfqq);
2213 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2214 }
2215
2216 BUG_ON(cfqd->busy_queues);
2217
2218 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2219 return dispatched;
2220 }
2221
2222 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2223 struct cfq_queue *cfqq)
2224 {
2225 /* the queue hasn't finished any request, can't estimate */
2226 if (cfq_cfqq_slice_new(cfqq))
2227 return 1;
2228 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2229 cfqq->slice_end))
2230 return 1;
2231
2232 return 0;
2233 }
2234
2235 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2236 {
2237 unsigned int max_dispatch;
2238
2239 /*
2240 * Drain async requests before we start sync IO
2241 */
2242 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2243 return false;
2244
2245 /*
2246 * If this is an async queue and we have sync IO in flight, let it wait
2247 */
2248 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2249 return false;
2250
2251 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2252 if (cfq_class_idle(cfqq))
2253 max_dispatch = 1;
2254
2255 /*
2256 * Does this cfqq already have too much IO in flight?
2257 */
2258 if (cfqq->dispatched >= max_dispatch) {
2259 /*
2260 * idle queue must always only have a single IO in flight
2261 */
2262 if (cfq_class_idle(cfqq))
2263 return false;
2264
2265 /*
2266 * We have other queues, don't allow more IO from this one
2267 */
2268 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2269 return false;
2270
2271 /*
2272 * Sole queue user, no limit
2273 */
2274 if (cfqd->busy_queues == 1)
2275 max_dispatch = -1;
2276 else
2277 /*
2278 * Normally we start throttling cfqq when cfq_quantum/2
2279 * requests have been dispatched. But we can drive
2280 * deeper queue depths at the beginning of slice
2281 * subjected to upper limit of cfq_quantum.
2282 * */
2283 max_dispatch = cfqd->cfq_quantum;
2284 }
2285
2286 /*
2287 * Async queues must wait a bit before being allowed dispatch.
2288 * We also ramp up the dispatch depth gradually for async IO,
2289 * based on the last sync IO we serviced
2290 */
2291 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2292 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2293 unsigned int depth;
2294
2295 depth = last_sync / cfqd->cfq_slice[1];
2296 if (!depth && !cfqq->dispatched)
2297 depth = 1;
2298 if (depth < max_dispatch)
2299 max_dispatch = depth;
2300 }
2301
2302 /*
2303 * If we're below the current max, allow a dispatch
2304 */
2305 return cfqq->dispatched < max_dispatch;
2306 }
2307
2308 /*
2309 * Dispatch a request from cfqq, moving them to the request queue
2310 * dispatch list.
2311 */
2312 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2313 {
2314 struct request *rq;
2315
2316 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2317
2318 if (!cfq_may_dispatch(cfqd, cfqq))
2319 return false;
2320
2321 /*
2322 * follow expired path, else get first next available
2323 */
2324 rq = cfq_check_fifo(cfqq);
2325 if (!rq)
2326 rq = cfqq->next_rq;
2327
2328 /*
2329 * insert request into driver dispatch list
2330 */
2331 cfq_dispatch_insert(cfqd->queue, rq);
2332
2333 if (!cfqd->active_cic) {
2334 struct cfq_io_context *cic = RQ_CIC(rq);
2335
2336 atomic_long_inc(&cic->ioc->refcount);
2337 cfqd->active_cic = cic;
2338 }
2339
2340 return true;
2341 }
2342
2343 /*
2344 * Find the cfqq that we need to service and move a request from that to the
2345 * dispatch list
2346 */
2347 static int cfq_dispatch_requests(struct request_queue *q, int force)
2348 {
2349 struct cfq_data *cfqd = q->elevator->elevator_data;
2350 struct cfq_queue *cfqq;
2351
2352 if (!cfqd->busy_queues)
2353 return 0;
2354
2355 if (unlikely(force))
2356 return cfq_forced_dispatch(cfqd);
2357
2358 cfqq = cfq_select_queue(cfqd);
2359 if (!cfqq)
2360 return 0;
2361
2362 /*
2363 * Dispatch a request from this cfqq, if it is allowed
2364 */
2365 if (!cfq_dispatch_request(cfqd, cfqq))
2366 return 0;
2367
2368 cfqq->slice_dispatch++;
2369 cfq_clear_cfqq_must_dispatch(cfqq);
2370
2371 /*
2372 * expire an async queue immediately if it has used up its slice. idle
2373 * queue always expire after 1 dispatch round.
2374 */
2375 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2376 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2377 cfq_class_idle(cfqq))) {
2378 cfqq->slice_end = jiffies + 1;
2379 cfq_slice_expired(cfqd, 0);
2380 }
2381
2382 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2383 return 1;
2384 }
2385
2386 /*
2387 * task holds one reference to the queue, dropped when task exits. each rq
2388 * in-flight on this queue also holds a reference, dropped when rq is freed.
2389 *
2390 * Each cfq queue took a reference on the parent group. Drop it now.
2391 * queue lock must be held here.
2392 */
2393 static void cfq_put_queue(struct cfq_queue *cfqq)
2394 {
2395 struct cfq_data *cfqd = cfqq->cfqd;
2396 struct cfq_group *cfqg, *orig_cfqg;
2397
2398 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2399
2400 if (!atomic_dec_and_test(&cfqq->ref))
2401 return;
2402
2403 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2404 BUG_ON(rb_first(&cfqq->sort_list));
2405 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2406 cfqg = cfqq->cfqg;
2407 orig_cfqg = cfqq->orig_cfqg;
2408
2409 if (unlikely(cfqd->active_queue == cfqq)) {
2410 __cfq_slice_expired(cfqd, cfqq, 0);
2411 cfq_schedule_dispatch(cfqd);
2412 }
2413
2414 BUG_ON(cfq_cfqq_on_rr(cfqq));
2415 kmem_cache_free(cfq_pool, cfqq);
2416 cfq_put_cfqg(cfqg);
2417 if (orig_cfqg)
2418 cfq_put_cfqg(orig_cfqg);
2419 }
2420
2421 /*
2422 * Must always be called with the rcu_read_lock() held
2423 */
2424 static void
2425 __call_for_each_cic(struct io_context *ioc,
2426 void (*func)(struct io_context *, struct cfq_io_context *))
2427 {
2428 struct cfq_io_context *cic;
2429 struct hlist_node *n;
2430
2431 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2432 func(ioc, cic);
2433 }
2434
2435 /*
2436 * Call func for each cic attached to this ioc.
2437 */
2438 static void
2439 call_for_each_cic(struct io_context *ioc,
2440 void (*func)(struct io_context *, struct cfq_io_context *))
2441 {
2442 rcu_read_lock();
2443 __call_for_each_cic(ioc, func);
2444 rcu_read_unlock();
2445 }
2446
2447 static void cfq_cic_free_rcu(struct rcu_head *head)
2448 {
2449 struct cfq_io_context *cic;
2450
2451 cic = container_of(head, struct cfq_io_context, rcu_head);
2452
2453 kmem_cache_free(cfq_ioc_pool, cic);
2454 elv_ioc_count_dec(cfq_ioc_count);
2455
2456 if (ioc_gone) {
2457 /*
2458 * CFQ scheduler is exiting, grab exit lock and check
2459 * the pending io context count. If it hits zero,
2460 * complete ioc_gone and set it back to NULL
2461 */
2462 spin_lock(&ioc_gone_lock);
2463 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2464 complete(ioc_gone);
2465 ioc_gone = NULL;
2466 }
2467 spin_unlock(&ioc_gone_lock);
2468 }
2469 }
2470
2471 static void cfq_cic_free(struct cfq_io_context *cic)
2472 {
2473 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2474 }
2475
2476 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2477 {
2478 unsigned long flags;
2479
2480 BUG_ON(!cic->dead_key);
2481
2482 spin_lock_irqsave(&ioc->lock, flags);
2483 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2484 hlist_del_rcu(&cic->cic_list);
2485 spin_unlock_irqrestore(&ioc->lock, flags);
2486
2487 cfq_cic_free(cic);
2488 }
2489
2490 /*
2491 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2492 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2493 * and ->trim() which is called with the task lock held
2494 */
2495 static void cfq_free_io_context(struct io_context *ioc)
2496 {
2497 /*
2498 * ioc->refcount is zero here, or we are called from elv_unregister(),
2499 * so no more cic's are allowed to be linked into this ioc. So it
2500 * should be ok to iterate over the known list, we will see all cic's
2501 * since no new ones are added.
2502 */
2503 __call_for_each_cic(ioc, cic_free_func);
2504 }
2505
2506 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2507 {
2508 struct cfq_queue *__cfqq, *next;
2509
2510 if (unlikely(cfqq == cfqd->active_queue)) {
2511 __cfq_slice_expired(cfqd, cfqq, 0);
2512 cfq_schedule_dispatch(cfqd);
2513 }
2514
2515 /*
2516 * If this queue was scheduled to merge with another queue, be
2517 * sure to drop the reference taken on that queue (and others in
2518 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2519 */
2520 __cfqq = cfqq->new_cfqq;
2521 while (__cfqq) {
2522 if (__cfqq == cfqq) {
2523 WARN(1, "cfqq->new_cfqq loop detected\n");
2524 break;
2525 }
2526 next = __cfqq->new_cfqq;
2527 cfq_put_queue(__cfqq);
2528 __cfqq = next;
2529 }
2530
2531 cfq_put_queue(cfqq);
2532 }
2533
2534 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2535 struct cfq_io_context *cic)
2536 {
2537 struct io_context *ioc = cic->ioc;
2538
2539 list_del_init(&cic->queue_list);
2540
2541 /*
2542 * Make sure key == NULL is seen for dead queues
2543 */
2544 smp_wmb();
2545 cic->dead_key = (unsigned long) cic->key;
2546 cic->key = NULL;
2547
2548 if (ioc->ioc_data == cic)
2549 rcu_assign_pointer(ioc->ioc_data, NULL);
2550
2551 if (cic->cfqq[BLK_RW_ASYNC]) {
2552 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2553 cic->cfqq[BLK_RW_ASYNC] = NULL;
2554 }
2555
2556 if (cic->cfqq[BLK_RW_SYNC]) {
2557 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2558 cic->cfqq[BLK_RW_SYNC] = NULL;
2559 }
2560 }
2561
2562 static void cfq_exit_single_io_context(struct io_context *ioc,
2563 struct cfq_io_context *cic)
2564 {
2565 struct cfq_data *cfqd = cic->key;
2566
2567 if (cfqd) {
2568 struct request_queue *q = cfqd->queue;
2569 unsigned long flags;
2570
2571 spin_lock_irqsave(q->queue_lock, flags);
2572
2573 /*
2574 * Ensure we get a fresh copy of the ->key to prevent
2575 * race between exiting task and queue
2576 */
2577 smp_read_barrier_depends();
2578 if (cic->key)
2579 __cfq_exit_single_io_context(cfqd, cic);
2580
2581 spin_unlock_irqrestore(q->queue_lock, flags);
2582 }
2583 }
2584
2585 /*
2586 * The process that ioc belongs to has exited, we need to clean up
2587 * and put the internal structures we have that belongs to that process.
2588 */
2589 static void cfq_exit_io_context(struct io_context *ioc)
2590 {
2591 call_for_each_cic(ioc, cfq_exit_single_io_context);
2592 }
2593
2594 static struct cfq_io_context *
2595 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2596 {
2597 struct cfq_io_context *cic;
2598
2599 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2600 cfqd->queue->node);
2601 if (cic) {
2602 cic->last_end_request = jiffies;
2603 INIT_LIST_HEAD(&cic->queue_list);
2604 INIT_HLIST_NODE(&cic->cic_list);
2605 cic->dtor = cfq_free_io_context;
2606 cic->exit = cfq_exit_io_context;
2607 elv_ioc_count_inc(cfq_ioc_count);
2608 }
2609
2610 return cic;
2611 }
2612
2613 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2614 {
2615 struct task_struct *tsk = current;
2616 int ioprio_class;
2617
2618 if (!cfq_cfqq_prio_changed(cfqq))
2619 return;
2620
2621 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2622 switch (ioprio_class) {
2623 default:
2624 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2625 case IOPRIO_CLASS_NONE:
2626 /*
2627 * no prio set, inherit CPU scheduling settings
2628 */
2629 cfqq->ioprio = task_nice_ioprio(tsk);
2630 cfqq->ioprio_class = task_nice_ioclass(tsk);
2631 break;
2632 case IOPRIO_CLASS_RT:
2633 cfqq->ioprio = task_ioprio(ioc);
2634 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2635 break;
2636 case IOPRIO_CLASS_BE:
2637 cfqq->ioprio = task_ioprio(ioc);
2638 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2639 break;
2640 case IOPRIO_CLASS_IDLE:
2641 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2642 cfqq->ioprio = 7;
2643 cfq_clear_cfqq_idle_window(cfqq);
2644 break;
2645 }
2646
2647 /*
2648 * keep track of original prio settings in case we have to temporarily
2649 * elevate the priority of this queue
2650 */
2651 cfqq->org_ioprio = cfqq->ioprio;
2652 cfqq->org_ioprio_class = cfqq->ioprio_class;
2653 cfq_clear_cfqq_prio_changed(cfqq);
2654 }
2655
2656 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2657 {
2658 struct cfq_data *cfqd = cic->key;
2659 struct cfq_queue *cfqq;
2660 unsigned long flags;
2661
2662 if (unlikely(!cfqd))
2663 return;
2664
2665 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2666
2667 cfqq = cic->cfqq[BLK_RW_ASYNC];
2668 if (cfqq) {
2669 struct cfq_queue *new_cfqq;
2670 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2671 GFP_ATOMIC);
2672 if (new_cfqq) {
2673 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2674 cfq_put_queue(cfqq);
2675 }
2676 }
2677
2678 cfqq = cic->cfqq[BLK_RW_SYNC];
2679 if (cfqq)
2680 cfq_mark_cfqq_prio_changed(cfqq);
2681
2682 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2683 }
2684
2685 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2686 {
2687 call_for_each_cic(ioc, changed_ioprio);
2688 ioc->ioprio_changed = 0;
2689 }
2690
2691 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2692 pid_t pid, bool is_sync)
2693 {
2694 RB_CLEAR_NODE(&cfqq->rb_node);
2695 RB_CLEAR_NODE(&cfqq->p_node);
2696 INIT_LIST_HEAD(&cfqq->fifo);
2697
2698 atomic_set(&cfqq->ref, 0);
2699 cfqq->cfqd = cfqd;
2700
2701 cfq_mark_cfqq_prio_changed(cfqq);
2702
2703 if (is_sync) {
2704 if (!cfq_class_idle(cfqq))
2705 cfq_mark_cfqq_idle_window(cfqq);
2706 cfq_mark_cfqq_sync(cfqq);
2707 }
2708 cfqq->pid = pid;
2709 }
2710
2711 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2712 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2713 {
2714 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2715 struct cfq_data *cfqd = cic->key;
2716 unsigned long flags;
2717 struct request_queue *q;
2718
2719 if (unlikely(!cfqd))
2720 return;
2721
2722 q = cfqd->queue;
2723
2724 spin_lock_irqsave(q->queue_lock, flags);
2725
2726 if (sync_cfqq) {
2727 /*
2728 * Drop reference to sync queue. A new sync queue will be
2729 * assigned in new group upon arrival of a fresh request.
2730 */
2731 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2732 cic_set_cfqq(cic, NULL, 1);
2733 cfq_put_queue(sync_cfqq);
2734 }
2735
2736 spin_unlock_irqrestore(q->queue_lock, flags);
2737 }
2738
2739 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2740 {
2741 call_for_each_cic(ioc, changed_cgroup);
2742 ioc->cgroup_changed = 0;
2743 }
2744 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2745
2746 static struct cfq_queue *
2747 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2748 struct io_context *ioc, gfp_t gfp_mask)
2749 {
2750 struct cfq_queue *cfqq, *new_cfqq = NULL;
2751 struct cfq_io_context *cic;
2752 struct cfq_group *cfqg;
2753
2754 retry:
2755 cfqg = cfq_get_cfqg(cfqd, 1);
2756 cic = cfq_cic_lookup(cfqd, ioc);
2757 /* cic always exists here */
2758 cfqq = cic_to_cfqq(cic, is_sync);
2759
2760 /*
2761 * Always try a new alloc if we fell back to the OOM cfqq
2762 * originally, since it should just be a temporary situation.
2763 */
2764 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2765 cfqq = NULL;
2766 if (new_cfqq) {
2767 cfqq = new_cfqq;
2768 new_cfqq = NULL;
2769 } else if (gfp_mask & __GFP_WAIT) {
2770 spin_unlock_irq(cfqd->queue->queue_lock);
2771 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2772 gfp_mask | __GFP_ZERO,
2773 cfqd->queue->node);
2774 spin_lock_irq(cfqd->queue->queue_lock);
2775 if (new_cfqq)
2776 goto retry;
2777 } else {
2778 cfqq = kmem_cache_alloc_node(cfq_pool,
2779 gfp_mask | __GFP_ZERO,
2780 cfqd->queue->node);
2781 }
2782
2783 if (cfqq) {
2784 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2785 cfq_init_prio_data(cfqq, ioc);
2786 cfq_link_cfqq_cfqg(cfqq, cfqg);
2787 cfq_log_cfqq(cfqd, cfqq, "alloced");
2788 } else
2789 cfqq = &cfqd->oom_cfqq;
2790 }
2791
2792 if (new_cfqq)
2793 kmem_cache_free(cfq_pool, new_cfqq);
2794
2795 return cfqq;
2796 }
2797
2798 static struct cfq_queue **
2799 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2800 {
2801 switch (ioprio_class) {
2802 case IOPRIO_CLASS_RT:
2803 return &cfqd->async_cfqq[0][ioprio];
2804 case IOPRIO_CLASS_BE:
2805 return &cfqd->async_cfqq[1][ioprio];
2806 case IOPRIO_CLASS_IDLE:
2807 return &cfqd->async_idle_cfqq;
2808 default:
2809 BUG();
2810 }
2811 }
2812
2813 static struct cfq_queue *
2814 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2815 gfp_t gfp_mask)
2816 {
2817 const int ioprio = task_ioprio(ioc);
2818 const int ioprio_class = task_ioprio_class(ioc);
2819 struct cfq_queue **async_cfqq = NULL;
2820 struct cfq_queue *cfqq = NULL;
2821
2822 if (!is_sync) {
2823 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2824 cfqq = *async_cfqq;
2825 }
2826
2827 if (!cfqq)
2828 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2829
2830 /*
2831 * pin the queue now that it's allocated, scheduler exit will prune it
2832 */
2833 if (!is_sync && !(*async_cfqq)) {
2834 atomic_inc(&cfqq->ref);
2835 *async_cfqq = cfqq;
2836 }
2837
2838 atomic_inc(&cfqq->ref);
2839 return cfqq;
2840 }
2841
2842 /*
2843 * We drop cfq io contexts lazily, so we may find a dead one.
2844 */
2845 static void
2846 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2847 struct cfq_io_context *cic)
2848 {
2849 unsigned long flags;
2850
2851 WARN_ON(!list_empty(&cic->queue_list));
2852
2853 spin_lock_irqsave(&ioc->lock, flags);
2854
2855 BUG_ON(ioc->ioc_data == cic);
2856
2857 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2858 hlist_del_rcu(&cic->cic_list);
2859 spin_unlock_irqrestore(&ioc->lock, flags);
2860
2861 cfq_cic_free(cic);
2862 }
2863
2864 static struct cfq_io_context *
2865 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2866 {
2867 struct cfq_io_context *cic;
2868 unsigned long flags;
2869 void *k;
2870
2871 if (unlikely(!ioc))
2872 return NULL;
2873
2874 rcu_read_lock();
2875
2876 /*
2877 * we maintain a last-hit cache, to avoid browsing over the tree
2878 */
2879 cic = rcu_dereference(ioc->ioc_data);
2880 if (cic && cic->key == cfqd) {
2881 rcu_read_unlock();
2882 return cic;
2883 }
2884
2885 do {
2886 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2887 rcu_read_unlock();
2888 if (!cic)
2889 break;
2890 /* ->key must be copied to avoid race with cfq_exit_queue() */
2891 k = cic->key;
2892 if (unlikely(!k)) {
2893 cfq_drop_dead_cic(cfqd, ioc, cic);
2894 rcu_read_lock();
2895 continue;
2896 }
2897
2898 spin_lock_irqsave(&ioc->lock, flags);
2899 rcu_assign_pointer(ioc->ioc_data, cic);
2900 spin_unlock_irqrestore(&ioc->lock, flags);
2901 break;
2902 } while (1);
2903
2904 return cic;
2905 }
2906
2907 /*
2908 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2909 * the process specific cfq io context when entered from the block layer.
2910 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2911 */
2912 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2913 struct cfq_io_context *cic, gfp_t gfp_mask)
2914 {
2915 unsigned long flags;
2916 int ret;
2917
2918 ret = radix_tree_preload(gfp_mask);
2919 if (!ret) {
2920 cic->ioc = ioc;
2921 cic->key = cfqd;
2922
2923 spin_lock_irqsave(&ioc->lock, flags);
2924 ret = radix_tree_insert(&ioc->radix_root,
2925 (unsigned long) cfqd, cic);
2926 if (!ret)
2927 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2928 spin_unlock_irqrestore(&ioc->lock, flags);
2929
2930 radix_tree_preload_end();
2931
2932 if (!ret) {
2933 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2934 list_add(&cic->queue_list, &cfqd->cic_list);
2935 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2936 }
2937 }
2938
2939 if (ret)
2940 printk(KERN_ERR "cfq: cic link failed!\n");
2941
2942 return ret;
2943 }
2944
2945 /*
2946 * Setup general io context and cfq io context. There can be several cfq
2947 * io contexts per general io context, if this process is doing io to more
2948 * than one device managed by cfq.
2949 */
2950 static struct cfq_io_context *
2951 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2952 {
2953 struct io_context *ioc = NULL;
2954 struct cfq_io_context *cic;
2955
2956 might_sleep_if(gfp_mask & __GFP_WAIT);
2957
2958 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2959 if (!ioc)
2960 return NULL;
2961
2962 cic = cfq_cic_lookup(cfqd, ioc);
2963 if (cic)
2964 goto out;
2965
2966 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2967 if (cic == NULL)
2968 goto err;
2969
2970 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2971 goto err_free;
2972
2973 out:
2974 smp_read_barrier_depends();
2975 if (unlikely(ioc->ioprio_changed))
2976 cfq_ioc_set_ioprio(ioc);
2977
2978 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2979 if (unlikely(ioc->cgroup_changed))
2980 cfq_ioc_set_cgroup(ioc);
2981 #endif
2982 return cic;
2983 err_free:
2984 cfq_cic_free(cic);
2985 err:
2986 put_io_context(ioc);
2987 return NULL;
2988 }
2989
2990 static void
2991 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2992 {
2993 unsigned long elapsed = jiffies - cic->last_end_request;
2994 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2995
2996 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2997 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2998 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2999 }
3000
3001 static void
3002 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3003 struct request *rq)
3004 {
3005 sector_t sdist = 0;
3006 sector_t n_sec = blk_rq_sectors(rq);
3007 if (cfqq->last_request_pos) {
3008 if (cfqq->last_request_pos < blk_rq_pos(rq))
3009 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3010 else
3011 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3012 }
3013
3014 cfqq->seek_history <<= 1;
3015 if (blk_queue_nonrot(cfqd->queue))
3016 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3017 else
3018 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3019 }
3020
3021 /*
3022 * Disable idle window if the process thinks too long or seeks so much that
3023 * it doesn't matter
3024 */
3025 static void
3026 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3027 struct cfq_io_context *cic)
3028 {
3029 int old_idle, enable_idle;
3030
3031 /*
3032 * Don't idle for async or idle io prio class
3033 */
3034 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3035 return;
3036
3037 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3038
3039 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3040 cfq_mark_cfqq_deep(cfqq);
3041
3042 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3043 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3044 enable_idle = 0;
3045 else if (sample_valid(cic->ttime_samples)) {
3046 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3047 enable_idle = 0;
3048 else
3049 enable_idle = 1;
3050 }
3051
3052 if (old_idle != enable_idle) {
3053 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3054 if (enable_idle)
3055 cfq_mark_cfqq_idle_window(cfqq);
3056 else
3057 cfq_clear_cfqq_idle_window(cfqq);
3058 }
3059 }
3060
3061 /*
3062 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3063 * no or if we aren't sure, a 1 will cause a preempt.
3064 */
3065 static bool
3066 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3067 struct request *rq)
3068 {
3069 struct cfq_queue *cfqq;
3070
3071 cfqq = cfqd->active_queue;
3072 if (!cfqq)
3073 return false;
3074
3075 if (cfq_class_idle(new_cfqq))
3076 return false;
3077
3078 if (cfq_class_idle(cfqq))
3079 return true;
3080
3081 /*
3082 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3083 */
3084 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3085 return false;
3086
3087 /*
3088 * if the new request is sync, but the currently running queue is
3089 * not, let the sync request have priority.
3090 */
3091 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3092 return true;
3093
3094 if (new_cfqq->cfqg != cfqq->cfqg)
3095 return false;
3096
3097 if (cfq_slice_used(cfqq))
3098 return true;
3099
3100 /* Allow preemption only if we are idling on sync-noidle tree */
3101 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3102 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3103 new_cfqq->service_tree->count == 2 &&
3104 RB_EMPTY_ROOT(&cfqq->sort_list))
3105 return true;
3106
3107 /*
3108 * So both queues are sync. Let the new request get disk time if
3109 * it's a metadata request and the current queue is doing regular IO.
3110 */
3111 if (rq_is_meta(rq) && !cfqq->meta_pending)
3112 return true;
3113
3114 /*
3115 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3116 */
3117 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3118 return true;
3119
3120 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3121 return false;
3122
3123 /*
3124 * if this request is as-good as one we would expect from the
3125 * current cfqq, let it preempt
3126 */
3127 if (cfq_rq_close(cfqd, cfqq, rq))
3128 return true;
3129
3130 return false;
3131 }
3132
3133 /*
3134 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3135 * let it have half of its nominal slice.
3136 */
3137 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3138 {
3139 cfq_log_cfqq(cfqd, cfqq, "preempt");
3140 cfq_slice_expired(cfqd, 1);
3141
3142 /*
3143 * Put the new queue at the front of the of the current list,
3144 * so we know that it will be selected next.
3145 */
3146 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3147
3148 cfq_service_tree_add(cfqd, cfqq, 1);
3149
3150 cfqq->slice_end = 0;
3151 cfq_mark_cfqq_slice_new(cfqq);
3152 }
3153
3154 /*
3155 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3156 * something we should do about it
3157 */
3158 static void
3159 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3160 struct request *rq)
3161 {
3162 struct cfq_io_context *cic = RQ_CIC(rq);
3163
3164 cfqd->rq_queued++;
3165 if (rq_is_meta(rq))
3166 cfqq->meta_pending++;
3167
3168 cfq_update_io_thinktime(cfqd, cic);
3169 cfq_update_io_seektime(cfqd, cfqq, rq);
3170 cfq_update_idle_window(cfqd, cfqq, cic);
3171
3172 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3173
3174 if (cfqq == cfqd->active_queue) {
3175 /*
3176 * Remember that we saw a request from this process, but
3177 * don't start queuing just yet. Otherwise we risk seeing lots
3178 * of tiny requests, because we disrupt the normal plugging
3179 * and merging. If the request is already larger than a single
3180 * page, let it rip immediately. For that case we assume that
3181 * merging is already done. Ditto for a busy system that
3182 * has other work pending, don't risk delaying until the
3183 * idle timer unplug to continue working.
3184 */
3185 if (cfq_cfqq_wait_request(cfqq)) {
3186 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3187 cfqd->busy_queues > 1) {
3188 del_timer(&cfqd->idle_slice_timer);
3189 cfq_clear_cfqq_wait_request(cfqq);
3190 __blk_run_queue(cfqd->queue);
3191 } else
3192 cfq_mark_cfqq_must_dispatch(cfqq);
3193 }
3194 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3195 /*
3196 * not the active queue - expire current slice if it is
3197 * idle and has expired it's mean thinktime or this new queue
3198 * has some old slice time left and is of higher priority or
3199 * this new queue is RT and the current one is BE
3200 */
3201 cfq_preempt_queue(cfqd, cfqq);
3202 __blk_run_queue(cfqd->queue);
3203 }
3204 }
3205
3206 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3207 {
3208 struct cfq_data *cfqd = q->elevator->elevator_data;
3209 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3210
3211 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3212 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3213
3214 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3215 list_add_tail(&rq->queuelist, &cfqq->fifo);
3216 cfq_add_rq_rb(rq);
3217
3218 cfq_rq_enqueued(cfqd, cfqq, rq);
3219 }
3220
3221 /*
3222 * Update hw_tag based on peak queue depth over 50 samples under
3223 * sufficient load.
3224 */
3225 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3226 {
3227 struct cfq_queue *cfqq = cfqd->active_queue;
3228
3229 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3230 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3231
3232 if (cfqd->hw_tag == 1)
3233 return;
3234
3235 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3236 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3237 return;
3238
3239 /*
3240 * If active queue hasn't enough requests and can idle, cfq might not
3241 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3242 * case
3243 */
3244 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3245 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3246 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3247 return;
3248
3249 if (cfqd->hw_tag_samples++ < 50)
3250 return;
3251
3252 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3253 cfqd->hw_tag = 1;
3254 else
3255 cfqd->hw_tag = 0;
3256 }
3257
3258 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3259 {
3260 struct cfq_io_context *cic = cfqd->active_cic;
3261
3262 /* If there are other queues in the group, don't wait */
3263 if (cfqq->cfqg->nr_cfqq > 1)
3264 return false;
3265
3266 if (cfq_slice_used(cfqq))
3267 return true;
3268
3269 /* if slice left is less than think time, wait busy */
3270 if (cic && sample_valid(cic->ttime_samples)
3271 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3272 return true;
3273
3274 /*
3275 * If think times is less than a jiffy than ttime_mean=0 and above
3276 * will not be true. It might happen that slice has not expired yet
3277 * but will expire soon (4-5 ns) during select_queue(). To cover the
3278 * case where think time is less than a jiffy, mark the queue wait
3279 * busy if only 1 jiffy is left in the slice.
3280 */
3281 if (cfqq->slice_end - jiffies == 1)
3282 return true;
3283
3284 return false;
3285 }
3286
3287 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3288 {
3289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3290 struct cfq_data *cfqd = cfqq->cfqd;
3291 const int sync = rq_is_sync(rq);
3292 unsigned long now;
3293
3294 now = jiffies;
3295 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3296
3297 cfq_update_hw_tag(cfqd);
3298
3299 WARN_ON(!cfqd->rq_in_driver);
3300 WARN_ON(!cfqq->dispatched);
3301 cfqd->rq_in_driver--;
3302 cfqq->dispatched--;
3303
3304 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3305
3306 if (sync) {
3307 RQ_CIC(rq)->last_end_request = now;
3308 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3309 cfqd->last_delayed_sync = now;
3310 }
3311
3312 /*
3313 * If this is the active queue, check if it needs to be expired,
3314 * or if we want to idle in case it has no pending requests.
3315 */
3316 if (cfqd->active_queue == cfqq) {
3317 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3318
3319 if (cfq_cfqq_slice_new(cfqq)) {
3320 cfq_set_prio_slice(cfqd, cfqq);
3321 cfq_clear_cfqq_slice_new(cfqq);
3322 }
3323
3324 /*
3325 * Should we wait for next request to come in before we expire
3326 * the queue.
3327 */
3328 if (cfq_should_wait_busy(cfqd, cfqq)) {
3329 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3330 cfq_mark_cfqq_wait_busy(cfqq);
3331 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3332 }
3333
3334 /*
3335 * Idling is not enabled on:
3336 * - expired queues
3337 * - idle-priority queues
3338 * - async queues
3339 * - queues with still some requests queued
3340 * - when there is a close cooperator
3341 */
3342 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3343 cfq_slice_expired(cfqd, 1);
3344 else if (sync && cfqq_empty &&
3345 !cfq_close_cooperator(cfqd, cfqq)) {
3346 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3347 /*
3348 * Idling is enabled for SYNC_WORKLOAD.
3349 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3350 * only if we processed at least one !rq_noidle request
3351 */
3352 if (cfqd->serving_type == SYNC_WORKLOAD
3353 || cfqd->noidle_tree_requires_idle
3354 || cfqq->cfqg->nr_cfqq == 1)
3355 cfq_arm_slice_timer(cfqd);
3356 }
3357 }
3358
3359 if (!cfqd->rq_in_driver)
3360 cfq_schedule_dispatch(cfqd);
3361 }
3362
3363 /*
3364 * we temporarily boost lower priority queues if they are holding fs exclusive
3365 * resources. they are boosted to normal prio (CLASS_BE/4)
3366 */
3367 static void cfq_prio_boost(struct cfq_queue *cfqq)
3368 {
3369 if (has_fs_excl()) {
3370 /*
3371 * boost idle prio on transactions that would lock out other
3372 * users of the filesystem
3373 */
3374 if (cfq_class_idle(cfqq))
3375 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3376 if (cfqq->ioprio > IOPRIO_NORM)
3377 cfqq->ioprio = IOPRIO_NORM;
3378 } else {
3379 /*
3380 * unboost the queue (if needed)
3381 */
3382 cfqq->ioprio_class = cfqq->org_ioprio_class;
3383 cfqq->ioprio = cfqq->org_ioprio;
3384 }
3385 }
3386
3387 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3388 {
3389 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3390 cfq_mark_cfqq_must_alloc_slice(cfqq);
3391 return ELV_MQUEUE_MUST;
3392 }
3393
3394 return ELV_MQUEUE_MAY;
3395 }
3396
3397 static int cfq_may_queue(struct request_queue *q, int rw)
3398 {
3399 struct cfq_data *cfqd = q->elevator->elevator_data;
3400 struct task_struct *tsk = current;
3401 struct cfq_io_context *cic;
3402 struct cfq_queue *cfqq;
3403
3404 /*
3405 * don't force setup of a queue from here, as a call to may_queue
3406 * does not necessarily imply that a request actually will be queued.
3407 * so just lookup a possibly existing queue, or return 'may queue'
3408 * if that fails
3409 */
3410 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3411 if (!cic)
3412 return ELV_MQUEUE_MAY;
3413
3414 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3415 if (cfqq) {
3416 cfq_init_prio_data(cfqq, cic->ioc);
3417 cfq_prio_boost(cfqq);
3418
3419 return __cfq_may_queue(cfqq);
3420 }
3421
3422 return ELV_MQUEUE_MAY;
3423 }
3424
3425 /*
3426 * queue lock held here
3427 */
3428 static void cfq_put_request(struct request *rq)
3429 {
3430 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3431
3432 if (cfqq) {
3433 const int rw = rq_data_dir(rq);
3434
3435 BUG_ON(!cfqq->allocated[rw]);
3436 cfqq->allocated[rw]--;
3437
3438 put_io_context(RQ_CIC(rq)->ioc);
3439
3440 rq->elevator_private = NULL;
3441 rq->elevator_private2 = NULL;
3442
3443 cfq_put_queue(cfqq);
3444 }
3445 }
3446
3447 static struct cfq_queue *
3448 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3449 struct cfq_queue *cfqq)
3450 {
3451 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3452 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3453 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3454 cfq_put_queue(cfqq);
3455 return cic_to_cfqq(cic, 1);
3456 }
3457
3458 /*
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3461 */
3462 static struct cfq_queue *
3463 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3464 {
3465 if (cfqq_process_refs(cfqq) == 1) {
3466 cfqq->pid = current->pid;
3467 cfq_clear_cfqq_coop(cfqq);
3468 cfq_clear_cfqq_split_coop(cfqq);
3469 return cfqq;
3470 }
3471
3472 cic_set_cfqq(cic, NULL, 1);
3473 cfq_put_queue(cfqq);
3474 return NULL;
3475 }
3476 /*
3477 * Allocate cfq data structures associated with this request.
3478 */
3479 static int
3480 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3481 {
3482 struct cfq_data *cfqd = q->elevator->elevator_data;
3483 struct cfq_io_context *cic;
3484 const int rw = rq_data_dir(rq);
3485 const bool is_sync = rq_is_sync(rq);
3486 struct cfq_queue *cfqq;
3487 unsigned long flags;
3488
3489 might_sleep_if(gfp_mask & __GFP_WAIT);
3490
3491 cic = cfq_get_io_context(cfqd, gfp_mask);
3492
3493 spin_lock_irqsave(q->queue_lock, flags);
3494
3495 if (!cic)
3496 goto queue_fail;
3497
3498 new_queue:
3499 cfqq = cic_to_cfqq(cic, is_sync);
3500 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3501 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3502 cic_set_cfqq(cic, cfqq, is_sync);
3503 } else {
3504 /*
3505 * If the queue was seeky for too long, break it apart.
3506 */
3507 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3508 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3509 cfqq = split_cfqq(cic, cfqq);
3510 if (!cfqq)
3511 goto new_queue;
3512 }
3513
3514 /*
3515 * Check to see if this queue is scheduled to merge with
3516 * another, closely cooperating queue. The merging of
3517 * queues happens here as it must be done in process context.
3518 * The reference on new_cfqq was taken in merge_cfqqs.
3519 */
3520 if (cfqq->new_cfqq)
3521 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3522 }
3523
3524 cfqq->allocated[rw]++;
3525 atomic_inc(&cfqq->ref);
3526
3527 spin_unlock_irqrestore(q->queue_lock, flags);
3528
3529 rq->elevator_private = cic;
3530 rq->elevator_private2 = cfqq;
3531 return 0;
3532
3533 queue_fail:
3534 if (cic)
3535 put_io_context(cic->ioc);
3536
3537 cfq_schedule_dispatch(cfqd);
3538 spin_unlock_irqrestore(q->queue_lock, flags);
3539 cfq_log(cfqd, "set_request fail");
3540 return 1;
3541 }
3542
3543 static void cfq_kick_queue(struct work_struct *work)
3544 {
3545 struct cfq_data *cfqd =
3546 container_of(work, struct cfq_data, unplug_work);
3547 struct request_queue *q = cfqd->queue;
3548
3549 spin_lock_irq(q->queue_lock);
3550 __blk_run_queue(cfqd->queue);
3551 spin_unlock_irq(q->queue_lock);
3552 }
3553
3554 /*
3555 * Timer running if the active_queue is currently idling inside its time slice
3556 */
3557 static void cfq_idle_slice_timer(unsigned long data)
3558 {
3559 struct cfq_data *cfqd = (struct cfq_data *) data;
3560 struct cfq_queue *cfqq;
3561 unsigned long flags;
3562 int timed_out = 1;
3563
3564 cfq_log(cfqd, "idle timer fired");
3565
3566 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3567
3568 cfqq = cfqd->active_queue;
3569 if (cfqq) {
3570 timed_out = 0;
3571
3572 /*
3573 * We saw a request before the queue expired, let it through
3574 */
3575 if (cfq_cfqq_must_dispatch(cfqq))
3576 goto out_kick;
3577
3578 /*
3579 * expired
3580 */
3581 if (cfq_slice_used(cfqq))
3582 goto expire;
3583
3584 /*
3585 * only expire and reinvoke request handler, if there are
3586 * other queues with pending requests
3587 */
3588 if (!cfqd->busy_queues)
3589 goto out_cont;
3590
3591 /*
3592 * not expired and it has a request pending, let it dispatch
3593 */
3594 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3595 goto out_kick;
3596
3597 /*
3598 * Queue depth flag is reset only when the idle didn't succeed
3599 */
3600 cfq_clear_cfqq_deep(cfqq);
3601 }
3602 expire:
3603 cfq_slice_expired(cfqd, timed_out);
3604 out_kick:
3605 cfq_schedule_dispatch(cfqd);
3606 out_cont:
3607 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3608 }
3609
3610 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3611 {
3612 del_timer_sync(&cfqd->idle_slice_timer);
3613 cancel_work_sync(&cfqd->unplug_work);
3614 }
3615
3616 static void cfq_put_async_queues(struct cfq_data *cfqd)
3617 {
3618 int i;
3619
3620 for (i = 0; i < IOPRIO_BE_NR; i++) {
3621 if (cfqd->async_cfqq[0][i])
3622 cfq_put_queue(cfqd->async_cfqq[0][i]);
3623 if (cfqd->async_cfqq[1][i])
3624 cfq_put_queue(cfqd->async_cfqq[1][i]);
3625 }
3626
3627 if (cfqd->async_idle_cfqq)
3628 cfq_put_queue(cfqd->async_idle_cfqq);
3629 }
3630
3631 static void cfq_cfqd_free(struct rcu_head *head)
3632 {
3633 kfree(container_of(head, struct cfq_data, rcu));
3634 }
3635
3636 static void cfq_exit_queue(struct elevator_queue *e)
3637 {
3638 struct cfq_data *cfqd = e->elevator_data;
3639 struct request_queue *q = cfqd->queue;
3640
3641 cfq_shutdown_timer_wq(cfqd);
3642
3643 spin_lock_irq(q->queue_lock);
3644
3645 if (cfqd->active_queue)
3646 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3647
3648 while (!list_empty(&cfqd->cic_list)) {
3649 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3650 struct cfq_io_context,
3651 queue_list);
3652
3653 __cfq_exit_single_io_context(cfqd, cic);
3654 }
3655
3656 cfq_put_async_queues(cfqd);
3657 cfq_release_cfq_groups(cfqd);
3658 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3659
3660 spin_unlock_irq(q->queue_lock);
3661
3662 cfq_shutdown_timer_wq(cfqd);
3663
3664 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3665 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3666 }
3667
3668 static void *cfq_init_queue(struct request_queue *q)
3669 {
3670 struct cfq_data *cfqd;
3671 int i, j;
3672 struct cfq_group *cfqg;
3673 struct cfq_rb_root *st;
3674
3675 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3676 if (!cfqd)
3677 return NULL;
3678
3679 /* Init root service tree */
3680 cfqd->grp_service_tree = CFQ_RB_ROOT;
3681
3682 /* Init root group */
3683 cfqg = &cfqd->root_group;
3684 for_each_cfqg_st(cfqg, i, j, st)
3685 *st = CFQ_RB_ROOT;
3686 RB_CLEAR_NODE(&cfqg->rb_node);
3687
3688 /* Give preference to root group over other groups */
3689 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3690
3691 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3692 /*
3693 * Take a reference to root group which we never drop. This is just
3694 * to make sure that cfq_put_cfqg() does not try to kfree root group
3695 */
3696 atomic_set(&cfqg->ref, 1);
3697 rcu_read_lock();
3698 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3699 0);
3700 rcu_read_unlock();
3701 #endif
3702 /*
3703 * Not strictly needed (since RB_ROOT just clears the node and we
3704 * zeroed cfqd on alloc), but better be safe in case someone decides
3705 * to add magic to the rb code
3706 */
3707 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3708 cfqd->prio_trees[i] = RB_ROOT;
3709
3710 /*
3711 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3712 * Grab a permanent reference to it, so that the normal code flow
3713 * will not attempt to free it.
3714 */
3715 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3716 atomic_inc(&cfqd->oom_cfqq.ref);
3717 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3718
3719 INIT_LIST_HEAD(&cfqd->cic_list);
3720
3721 cfqd->queue = q;
3722
3723 init_timer(&cfqd->idle_slice_timer);
3724 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3725 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3726
3727 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3728
3729 cfqd->cfq_quantum = cfq_quantum;
3730 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3731 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3732 cfqd->cfq_back_max = cfq_back_max;
3733 cfqd->cfq_back_penalty = cfq_back_penalty;
3734 cfqd->cfq_slice[0] = cfq_slice_async;
3735 cfqd->cfq_slice[1] = cfq_slice_sync;
3736 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3737 cfqd->cfq_slice_idle = cfq_slice_idle;
3738 cfqd->cfq_latency = 1;
3739 cfqd->cfq_group_isolation = 0;
3740 cfqd->hw_tag = -1;
3741 /*
3742 * we optimistically start assuming sync ops weren't delayed in last
3743 * second, in order to have larger depth for async operations.
3744 */
3745 cfqd->last_delayed_sync = jiffies - HZ;
3746 INIT_RCU_HEAD(&cfqd->rcu);
3747 return cfqd;
3748 }
3749
3750 static void cfq_slab_kill(void)
3751 {
3752 /*
3753 * Caller already ensured that pending RCU callbacks are completed,
3754 * so we should have no busy allocations at this point.
3755 */
3756 if (cfq_pool)
3757 kmem_cache_destroy(cfq_pool);
3758 if (cfq_ioc_pool)
3759 kmem_cache_destroy(cfq_ioc_pool);
3760 }
3761
3762 static int __init cfq_slab_setup(void)
3763 {
3764 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3765 if (!cfq_pool)
3766 goto fail;
3767
3768 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3769 if (!cfq_ioc_pool)
3770 goto fail;
3771
3772 return 0;
3773 fail:
3774 cfq_slab_kill();
3775 return -ENOMEM;
3776 }
3777
3778 /*
3779 * sysfs parts below -->
3780 */
3781 static ssize_t
3782 cfq_var_show(unsigned int var, char *page)
3783 {
3784 return sprintf(page, "%d\n", var);
3785 }
3786
3787 static ssize_t
3788 cfq_var_store(unsigned int *var, const char *page, size_t count)
3789 {
3790 char *p = (char *) page;
3791
3792 *var = simple_strtoul(p, &p, 10);
3793 return count;
3794 }
3795
3796 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3797 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3798 { \
3799 struct cfq_data *cfqd = e->elevator_data; \
3800 unsigned int __data = __VAR; \
3801 if (__CONV) \
3802 __data = jiffies_to_msecs(__data); \
3803 return cfq_var_show(__data, (page)); \
3804 }
3805 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3806 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3807 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3808 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3809 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3810 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3811 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3812 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3813 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3814 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3815 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3816 #undef SHOW_FUNCTION
3817
3818 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3819 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3820 { \
3821 struct cfq_data *cfqd = e->elevator_data; \
3822 unsigned int __data; \
3823 int ret = cfq_var_store(&__data, (page), count); \
3824 if (__data < (MIN)) \
3825 __data = (MIN); \
3826 else if (__data > (MAX)) \
3827 __data = (MAX); \
3828 if (__CONV) \
3829 *(__PTR) = msecs_to_jiffies(__data); \
3830 else \
3831 *(__PTR) = __data; \
3832 return ret; \
3833 }
3834 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3835 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3836 UINT_MAX, 1);
3837 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3838 UINT_MAX, 1);
3839 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3840 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3841 UINT_MAX, 0);
3842 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3843 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3844 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3845 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3846 UINT_MAX, 0);
3847 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3848 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3849 #undef STORE_FUNCTION
3850
3851 #define CFQ_ATTR(name) \
3852 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3853
3854 static struct elv_fs_entry cfq_attrs[] = {
3855 CFQ_ATTR(quantum),
3856 CFQ_ATTR(fifo_expire_sync),
3857 CFQ_ATTR(fifo_expire_async),
3858 CFQ_ATTR(back_seek_max),
3859 CFQ_ATTR(back_seek_penalty),
3860 CFQ_ATTR(slice_sync),
3861 CFQ_ATTR(slice_async),
3862 CFQ_ATTR(slice_async_rq),
3863 CFQ_ATTR(slice_idle),
3864 CFQ_ATTR(low_latency),
3865 CFQ_ATTR(group_isolation),
3866 __ATTR_NULL
3867 };
3868
3869 static struct elevator_type iosched_cfq = {
3870 .ops = {
3871 .elevator_merge_fn = cfq_merge,
3872 .elevator_merged_fn = cfq_merged_request,
3873 .elevator_merge_req_fn = cfq_merged_requests,
3874 .elevator_allow_merge_fn = cfq_allow_merge,
3875 .elevator_dispatch_fn = cfq_dispatch_requests,
3876 .elevator_add_req_fn = cfq_insert_request,
3877 .elevator_activate_req_fn = cfq_activate_request,
3878 .elevator_deactivate_req_fn = cfq_deactivate_request,
3879 .elevator_queue_empty_fn = cfq_queue_empty,
3880 .elevator_completed_req_fn = cfq_completed_request,
3881 .elevator_former_req_fn = elv_rb_former_request,
3882 .elevator_latter_req_fn = elv_rb_latter_request,
3883 .elevator_set_req_fn = cfq_set_request,
3884 .elevator_put_req_fn = cfq_put_request,
3885 .elevator_may_queue_fn = cfq_may_queue,
3886 .elevator_init_fn = cfq_init_queue,
3887 .elevator_exit_fn = cfq_exit_queue,
3888 .trim = cfq_free_io_context,
3889 },
3890 .elevator_attrs = cfq_attrs,
3891 .elevator_name = "cfq",
3892 .elevator_owner = THIS_MODULE,
3893 };
3894
3895 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3896 static struct blkio_policy_type blkio_policy_cfq = {
3897 .ops = {
3898 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3899 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3900 },
3901 };
3902 #else
3903 static struct blkio_policy_type blkio_policy_cfq;
3904 #endif
3905
3906 static int __init cfq_init(void)
3907 {
3908 /*
3909 * could be 0 on HZ < 1000 setups
3910 */
3911 if (!cfq_slice_async)
3912 cfq_slice_async = 1;
3913 if (!cfq_slice_idle)
3914 cfq_slice_idle = 1;
3915
3916 if (cfq_slab_setup())
3917 return -ENOMEM;
3918
3919 elv_register(&iosched_cfq);
3920 blkio_policy_register(&blkio_policy_cfq);
3921
3922 return 0;
3923 }
3924
3925 static void __exit cfq_exit(void)
3926 {
3927 DECLARE_COMPLETION_ONSTACK(all_gone);
3928 blkio_policy_unregister(&blkio_policy_cfq);
3929 elv_unregister(&iosched_cfq);
3930 ioc_gone = &all_gone;
3931 /* ioc_gone's update must be visible before reading ioc_count */
3932 smp_wmb();
3933
3934 /*
3935 * this also protects us from entering cfq_slab_kill() with
3936 * pending RCU callbacks
3937 */
3938 if (elv_ioc_count_read(cfq_ioc_count))
3939 wait_for_completion(&all_gone);
3940 cfq_slab_kill();
3941 }
3942
3943 module_init(cfq_init);
3944 module_exit(cfq_exit);
3945
3946 MODULE_AUTHOR("Jens Axboe");
3947 MODULE_LICENSE("GPL");
3948 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.105898 seconds and 6 git commands to generate.