Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[deliverable/linux.git] / block / elevator.c
1 /*
2 * Block device elevator/IO-scheduler.
3 *
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45
46 /*
47 * Merge hash stuff.
48 */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
55 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
56
57 /*
58 * Query io scheduler to see if the current process issuing bio may be
59 * merged with rq.
60 */
61 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 {
63 struct request_queue *q = rq->q;
64 struct elevator_queue *e = q->elevator;
65
66 if (e->ops->elevator_allow_merge_fn)
67 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68
69 return 1;
70 }
71
72 /*
73 * can we safely merge with this request?
74 */
75 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 {
77 if (!rq_mergeable(rq))
78 return 0;
79
80 /*
81 * Don't merge file system requests and discard requests
82 */
83 if (bio_discard(bio) != bio_discard(rq->bio))
84 return 0;
85
86 /*
87 * different data direction or already started, don't merge
88 */
89 if (bio_data_dir(bio) != rq_data_dir(rq))
90 return 0;
91
92 /*
93 * must be same device and not a special request
94 */
95 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 return 0;
97
98 /*
99 * only merge integrity protected bio into ditto rq
100 */
101 if (bio_integrity(bio) != blk_integrity_rq(rq))
102 return 0;
103
104 if (!elv_iosched_allow_merge(rq, bio))
105 return 0;
106
107 return 1;
108 }
109 EXPORT_SYMBOL(elv_rq_merge_ok);
110
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
112 {
113 int ret = ELEVATOR_NO_MERGE;
114
115 /*
116 * we can merge and sequence is ok, check if it's possible
117 */
118 if (elv_rq_merge_ok(__rq, bio)) {
119 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
120 ret = ELEVATOR_BACK_MERGE;
121 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
122 ret = ELEVATOR_FRONT_MERGE;
123 }
124
125 return ret;
126 }
127
128 static struct elevator_type *elevator_find(const char *name)
129 {
130 struct elevator_type *e;
131
132 list_for_each_entry(e, &elv_list, list) {
133 if (!strcmp(e->elevator_name, name))
134 return e;
135 }
136
137 return NULL;
138 }
139
140 static void elevator_put(struct elevator_type *e)
141 {
142 module_put(e->elevator_owner);
143 }
144
145 static struct elevator_type *elevator_get(const char *name)
146 {
147 struct elevator_type *e;
148
149 spin_lock(&elv_list_lock);
150
151 e = elevator_find(name);
152 if (!e) {
153 char elv[ELV_NAME_MAX + strlen("-iosched")];
154
155 spin_unlock(&elv_list_lock);
156
157 if (!strcmp(name, "anticipatory"))
158 sprintf(elv, "as-iosched");
159 else
160 sprintf(elv, "%s-iosched", name);
161
162 request_module("%s", elv);
163 spin_lock(&elv_list_lock);
164 e = elevator_find(name);
165 }
166
167 if (e && !try_module_get(e->elevator_owner))
168 e = NULL;
169
170 spin_unlock(&elv_list_lock);
171
172 return e;
173 }
174
175 static void *elevator_init_queue(struct request_queue *q,
176 struct elevator_queue *eq)
177 {
178 return eq->ops->elevator_init_fn(q);
179 }
180
181 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
182 void *data)
183 {
184 q->elevator = eq;
185 eq->elevator_data = data;
186 }
187
188 static char chosen_elevator[16];
189
190 static int __init elevator_setup(char *str)
191 {
192 /*
193 * Be backwards-compatible with previous kernels, so users
194 * won't get the wrong elevator.
195 */
196 if (!strcmp(str, "as"))
197 strcpy(chosen_elevator, "anticipatory");
198 else
199 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
200 return 1;
201 }
202
203 __setup("elevator=", elevator_setup);
204
205 static struct kobj_type elv_ktype;
206
207 static struct elevator_queue *elevator_alloc(struct request_queue *q,
208 struct elevator_type *e)
209 {
210 struct elevator_queue *eq;
211 int i;
212
213 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
214 if (unlikely(!eq))
215 goto err;
216
217 eq->ops = &e->ops;
218 eq->elevator_type = e;
219 kobject_init(&eq->kobj, &elv_ktype);
220 mutex_init(&eq->sysfs_lock);
221
222 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
223 GFP_KERNEL, q->node);
224 if (!eq->hash)
225 goto err;
226
227 for (i = 0; i < ELV_HASH_ENTRIES; i++)
228 INIT_HLIST_HEAD(&eq->hash[i]);
229
230 return eq;
231 err:
232 kfree(eq);
233 elevator_put(e);
234 return NULL;
235 }
236
237 static void elevator_release(struct kobject *kobj)
238 {
239 struct elevator_queue *e;
240
241 e = container_of(kobj, struct elevator_queue, kobj);
242 elevator_put(e->elevator_type);
243 kfree(e->hash);
244 kfree(e);
245 }
246
247 int elevator_init(struct request_queue *q, char *name)
248 {
249 struct elevator_type *e = NULL;
250 struct elevator_queue *eq;
251 int ret = 0;
252 void *data;
253
254 INIT_LIST_HEAD(&q->queue_head);
255 q->last_merge = NULL;
256 q->end_sector = 0;
257 q->boundary_rq = NULL;
258
259 if (name) {
260 e = elevator_get(name);
261 if (!e)
262 return -EINVAL;
263 }
264
265 if (!e && *chosen_elevator) {
266 e = elevator_get(chosen_elevator);
267 if (!e)
268 printk(KERN_ERR "I/O scheduler %s not found\n",
269 chosen_elevator);
270 }
271
272 if (!e) {
273 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
274 if (!e) {
275 printk(KERN_ERR
276 "Default I/O scheduler not found. " \
277 "Using noop.\n");
278 e = elevator_get("noop");
279 }
280 }
281
282 eq = elevator_alloc(q, e);
283 if (!eq)
284 return -ENOMEM;
285
286 data = elevator_init_queue(q, eq);
287 if (!data) {
288 kobject_put(&eq->kobj);
289 return -ENOMEM;
290 }
291
292 elevator_attach(q, eq, data);
293 return ret;
294 }
295 EXPORT_SYMBOL(elevator_init);
296
297 void elevator_exit(struct elevator_queue *e)
298 {
299 mutex_lock(&e->sysfs_lock);
300 if (e->ops->elevator_exit_fn)
301 e->ops->elevator_exit_fn(e);
302 e->ops = NULL;
303 mutex_unlock(&e->sysfs_lock);
304
305 kobject_put(&e->kobj);
306 }
307 EXPORT_SYMBOL(elevator_exit);
308
309 static void elv_activate_rq(struct request_queue *q, struct request *rq)
310 {
311 struct elevator_queue *e = q->elevator;
312
313 if (e->ops->elevator_activate_req_fn)
314 e->ops->elevator_activate_req_fn(q, rq);
315 }
316
317 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
318 {
319 struct elevator_queue *e = q->elevator;
320
321 if (e->ops->elevator_deactivate_req_fn)
322 e->ops->elevator_deactivate_req_fn(q, rq);
323 }
324
325 static inline void __elv_rqhash_del(struct request *rq)
326 {
327 hlist_del_init(&rq->hash);
328 }
329
330 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
331 {
332 if (ELV_ON_HASH(rq))
333 __elv_rqhash_del(rq);
334 }
335
336 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
337 {
338 struct elevator_queue *e = q->elevator;
339
340 BUG_ON(ELV_ON_HASH(rq));
341 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
342 }
343
344 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
345 {
346 __elv_rqhash_del(rq);
347 elv_rqhash_add(q, rq);
348 }
349
350 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
351 {
352 struct elevator_queue *e = q->elevator;
353 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
354 struct hlist_node *entry, *next;
355 struct request *rq;
356
357 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
358 BUG_ON(!ELV_ON_HASH(rq));
359
360 if (unlikely(!rq_mergeable(rq))) {
361 __elv_rqhash_del(rq);
362 continue;
363 }
364
365 if (rq_hash_key(rq) == offset)
366 return rq;
367 }
368
369 return NULL;
370 }
371
372 /*
373 * RB-tree support functions for inserting/lookup/removal of requests
374 * in a sorted RB tree.
375 */
376 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
377 {
378 struct rb_node **p = &root->rb_node;
379 struct rb_node *parent = NULL;
380 struct request *__rq;
381
382 while (*p) {
383 parent = *p;
384 __rq = rb_entry(parent, struct request, rb_node);
385
386 if (rq->sector < __rq->sector)
387 p = &(*p)->rb_left;
388 else if (rq->sector > __rq->sector)
389 p = &(*p)->rb_right;
390 else
391 return __rq;
392 }
393
394 rb_link_node(&rq->rb_node, parent, p);
395 rb_insert_color(&rq->rb_node, root);
396 return NULL;
397 }
398 EXPORT_SYMBOL(elv_rb_add);
399
400 void elv_rb_del(struct rb_root *root, struct request *rq)
401 {
402 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
403 rb_erase(&rq->rb_node, root);
404 RB_CLEAR_NODE(&rq->rb_node);
405 }
406 EXPORT_SYMBOL(elv_rb_del);
407
408 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
409 {
410 struct rb_node *n = root->rb_node;
411 struct request *rq;
412
413 while (n) {
414 rq = rb_entry(n, struct request, rb_node);
415
416 if (sector < rq->sector)
417 n = n->rb_left;
418 else if (sector > rq->sector)
419 n = n->rb_right;
420 else
421 return rq;
422 }
423
424 return NULL;
425 }
426 EXPORT_SYMBOL(elv_rb_find);
427
428 /*
429 * Insert rq into dispatch queue of q. Queue lock must be held on
430 * entry. rq is sort instead into the dispatch queue. To be used by
431 * specific elevators.
432 */
433 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
434 {
435 sector_t boundary;
436 struct list_head *entry;
437 int stop_flags;
438
439 if (q->last_merge == rq)
440 q->last_merge = NULL;
441
442 elv_rqhash_del(q, rq);
443
444 q->nr_sorted--;
445
446 boundary = q->end_sector;
447 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
448 list_for_each_prev(entry, &q->queue_head) {
449 struct request *pos = list_entry_rq(entry);
450
451 if (blk_discard_rq(rq) != blk_discard_rq(pos))
452 break;
453 if (rq_data_dir(rq) != rq_data_dir(pos))
454 break;
455 if (pos->cmd_flags & stop_flags)
456 break;
457 if (rq->sector >= boundary) {
458 if (pos->sector < boundary)
459 continue;
460 } else {
461 if (pos->sector >= boundary)
462 break;
463 }
464 if (rq->sector >= pos->sector)
465 break;
466 }
467
468 list_add(&rq->queuelist, entry);
469 }
470 EXPORT_SYMBOL(elv_dispatch_sort);
471
472 /*
473 * Insert rq into dispatch queue of q. Queue lock must be held on
474 * entry. rq is added to the back of the dispatch queue. To be used by
475 * specific elevators.
476 */
477 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
478 {
479 if (q->last_merge == rq)
480 q->last_merge = NULL;
481
482 elv_rqhash_del(q, rq);
483
484 q->nr_sorted--;
485
486 q->end_sector = rq_end_sector(rq);
487 q->boundary_rq = rq;
488 list_add_tail(&rq->queuelist, &q->queue_head);
489 }
490 EXPORT_SYMBOL(elv_dispatch_add_tail);
491
492 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
493 {
494 struct elevator_queue *e = q->elevator;
495 struct request *__rq;
496 int ret;
497
498 /*
499 * First try one-hit cache.
500 */
501 if (q->last_merge) {
502 ret = elv_try_merge(q->last_merge, bio);
503 if (ret != ELEVATOR_NO_MERGE) {
504 *req = q->last_merge;
505 return ret;
506 }
507 }
508
509 if (blk_queue_nomerges(q))
510 return ELEVATOR_NO_MERGE;
511
512 /*
513 * See if our hash lookup can find a potential backmerge.
514 */
515 __rq = elv_rqhash_find(q, bio->bi_sector);
516 if (__rq && elv_rq_merge_ok(__rq, bio)) {
517 *req = __rq;
518 return ELEVATOR_BACK_MERGE;
519 }
520
521 if (e->ops->elevator_merge_fn)
522 return e->ops->elevator_merge_fn(q, req, bio);
523
524 return ELEVATOR_NO_MERGE;
525 }
526
527 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
528 {
529 struct elevator_queue *e = q->elevator;
530
531 if (e->ops->elevator_merged_fn)
532 e->ops->elevator_merged_fn(q, rq, type);
533
534 if (type == ELEVATOR_BACK_MERGE)
535 elv_rqhash_reposition(q, rq);
536
537 q->last_merge = rq;
538 }
539
540 void elv_merge_requests(struct request_queue *q, struct request *rq,
541 struct request *next)
542 {
543 struct elevator_queue *e = q->elevator;
544
545 if (e->ops->elevator_merge_req_fn)
546 e->ops->elevator_merge_req_fn(q, rq, next);
547
548 elv_rqhash_reposition(q, rq);
549 elv_rqhash_del(q, next);
550
551 q->nr_sorted--;
552 q->last_merge = rq;
553 }
554
555 void elv_requeue_request(struct request_queue *q, struct request *rq)
556 {
557 /*
558 * it already went through dequeue, we need to decrement the
559 * in_flight count again
560 */
561 if (blk_account_rq(rq)) {
562 q->in_flight--;
563 if (blk_sorted_rq(rq))
564 elv_deactivate_rq(q, rq);
565 }
566
567 rq->cmd_flags &= ~REQ_STARTED;
568
569 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
570 }
571
572 void elv_drain_elevator(struct request_queue *q)
573 {
574 static int printed;
575 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
576 ;
577 if (q->nr_sorted == 0)
578 return;
579 if (printed++ < 10) {
580 printk(KERN_ERR "%s: forced dispatching is broken "
581 "(nr_sorted=%u), please report this\n",
582 q->elevator->elevator_type->elevator_name, q->nr_sorted);
583 }
584 }
585
586 /*
587 * Call with queue lock held, interrupts disabled
588 */
589 void elv_quiesce_start(struct request_queue *q)
590 {
591 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
592
593 /*
594 * make sure we don't have any requests in flight
595 */
596 elv_drain_elevator(q);
597 while (q->rq.elvpriv) {
598 blk_start_queueing(q);
599 spin_unlock_irq(q->queue_lock);
600 msleep(10);
601 spin_lock_irq(q->queue_lock);
602 elv_drain_elevator(q);
603 }
604 }
605
606 void elv_quiesce_end(struct request_queue *q)
607 {
608 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
609 }
610
611 void elv_insert(struct request_queue *q, struct request *rq, int where)
612 {
613 struct list_head *pos;
614 unsigned ordseq;
615 int unplug_it = 1;
616
617 trace_block_rq_insert(q, rq);
618
619 rq->q = q;
620
621 switch (where) {
622 case ELEVATOR_INSERT_FRONT:
623 rq->cmd_flags |= REQ_SOFTBARRIER;
624
625 list_add(&rq->queuelist, &q->queue_head);
626 break;
627
628 case ELEVATOR_INSERT_BACK:
629 rq->cmd_flags |= REQ_SOFTBARRIER;
630 elv_drain_elevator(q);
631 list_add_tail(&rq->queuelist, &q->queue_head);
632 /*
633 * We kick the queue here for the following reasons.
634 * - The elevator might have returned NULL previously
635 * to delay requests and returned them now. As the
636 * queue wasn't empty before this request, ll_rw_blk
637 * won't run the queue on return, resulting in hang.
638 * - Usually, back inserted requests won't be merged
639 * with anything. There's no point in delaying queue
640 * processing.
641 */
642 blk_remove_plug(q);
643 blk_start_queueing(q);
644 break;
645
646 case ELEVATOR_INSERT_SORT:
647 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
648 rq->cmd_flags |= REQ_SORTED;
649 q->nr_sorted++;
650 if (rq_mergeable(rq)) {
651 elv_rqhash_add(q, rq);
652 if (!q->last_merge)
653 q->last_merge = rq;
654 }
655
656 /*
657 * Some ioscheds (cfq) run q->request_fn directly, so
658 * rq cannot be accessed after calling
659 * elevator_add_req_fn.
660 */
661 q->elevator->ops->elevator_add_req_fn(q, rq);
662 break;
663
664 case ELEVATOR_INSERT_REQUEUE:
665 /*
666 * If ordered flush isn't in progress, we do front
667 * insertion; otherwise, requests should be requeued
668 * in ordseq order.
669 */
670 rq->cmd_flags |= REQ_SOFTBARRIER;
671
672 /*
673 * Most requeues happen because of a busy condition,
674 * don't force unplug of the queue for that case.
675 */
676 unplug_it = 0;
677
678 if (q->ordseq == 0) {
679 list_add(&rq->queuelist, &q->queue_head);
680 break;
681 }
682
683 ordseq = blk_ordered_req_seq(rq);
684
685 list_for_each(pos, &q->queue_head) {
686 struct request *pos_rq = list_entry_rq(pos);
687 if (ordseq <= blk_ordered_req_seq(pos_rq))
688 break;
689 }
690
691 list_add_tail(&rq->queuelist, pos);
692 break;
693
694 default:
695 printk(KERN_ERR "%s: bad insertion point %d\n",
696 __func__, where);
697 BUG();
698 }
699
700 if (unplug_it && blk_queue_plugged(q)) {
701 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
702 - q->in_flight;
703
704 if (nrq >= q->unplug_thresh)
705 __generic_unplug_device(q);
706 }
707 }
708
709 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
710 int plug)
711 {
712 if (q->ordcolor)
713 rq->cmd_flags |= REQ_ORDERED_COLOR;
714
715 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
716 /*
717 * toggle ordered color
718 */
719 if (blk_barrier_rq(rq))
720 q->ordcolor ^= 1;
721
722 /*
723 * barriers implicitly indicate back insertion
724 */
725 if (where == ELEVATOR_INSERT_SORT)
726 where = ELEVATOR_INSERT_BACK;
727
728 /*
729 * this request is scheduling boundary, update
730 * end_sector
731 */
732 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
733 q->end_sector = rq_end_sector(rq);
734 q->boundary_rq = rq;
735 }
736 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
737 where == ELEVATOR_INSERT_SORT)
738 where = ELEVATOR_INSERT_BACK;
739
740 if (plug)
741 blk_plug_device(q);
742
743 elv_insert(q, rq, where);
744 }
745 EXPORT_SYMBOL(__elv_add_request);
746
747 void elv_add_request(struct request_queue *q, struct request *rq, int where,
748 int plug)
749 {
750 unsigned long flags;
751
752 spin_lock_irqsave(q->queue_lock, flags);
753 __elv_add_request(q, rq, where, plug);
754 spin_unlock_irqrestore(q->queue_lock, flags);
755 }
756 EXPORT_SYMBOL(elv_add_request);
757
758 static inline struct request *__elv_next_request(struct request_queue *q)
759 {
760 struct request *rq;
761
762 while (1) {
763 while (!list_empty(&q->queue_head)) {
764 rq = list_entry_rq(q->queue_head.next);
765 if (blk_do_ordered(q, &rq))
766 return rq;
767 }
768
769 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
770 return NULL;
771 }
772 }
773
774 struct request *elv_next_request(struct request_queue *q)
775 {
776 struct request *rq;
777 int ret;
778
779 while ((rq = __elv_next_request(q)) != NULL) {
780 if (!(rq->cmd_flags & REQ_STARTED)) {
781 /*
782 * This is the first time the device driver
783 * sees this request (possibly after
784 * requeueing). Notify IO scheduler.
785 */
786 if (blk_sorted_rq(rq))
787 elv_activate_rq(q, rq);
788
789 /*
790 * just mark as started even if we don't start
791 * it, a request that has been delayed should
792 * not be passed by new incoming requests
793 */
794 rq->cmd_flags |= REQ_STARTED;
795 trace_block_rq_issue(q, rq);
796 }
797
798 if (!q->boundary_rq || q->boundary_rq == rq) {
799 q->end_sector = rq_end_sector(rq);
800 q->boundary_rq = NULL;
801 }
802
803 if (rq->cmd_flags & REQ_DONTPREP)
804 break;
805
806 if (q->dma_drain_size && rq->data_len) {
807 /*
808 * make sure space for the drain appears we
809 * know we can do this because max_hw_segments
810 * has been adjusted to be one fewer than the
811 * device can handle
812 */
813 rq->nr_phys_segments++;
814 }
815
816 if (!q->prep_rq_fn)
817 break;
818
819 ret = q->prep_rq_fn(q, rq);
820 if (ret == BLKPREP_OK) {
821 break;
822 } else if (ret == BLKPREP_DEFER) {
823 /*
824 * the request may have been (partially) prepped.
825 * we need to keep this request in the front to
826 * avoid resource deadlock. REQ_STARTED will
827 * prevent other fs requests from passing this one.
828 */
829 if (q->dma_drain_size && rq->data_len &&
830 !(rq->cmd_flags & REQ_DONTPREP)) {
831 /*
832 * remove the space for the drain we added
833 * so that we don't add it again
834 */
835 --rq->nr_phys_segments;
836 }
837
838 rq = NULL;
839 break;
840 } else if (ret == BLKPREP_KILL) {
841 rq->cmd_flags |= REQ_QUIET;
842 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
843 } else {
844 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
845 break;
846 }
847 }
848
849 return rq;
850 }
851 EXPORT_SYMBOL(elv_next_request);
852
853 void elv_dequeue_request(struct request_queue *q, struct request *rq)
854 {
855 BUG_ON(list_empty(&rq->queuelist));
856 BUG_ON(ELV_ON_HASH(rq));
857
858 list_del_init(&rq->queuelist);
859
860 /*
861 * the time frame between a request being removed from the lists
862 * and to it is freed is accounted as io that is in progress at
863 * the driver side.
864 */
865 if (blk_account_rq(rq))
866 q->in_flight++;
867 }
868
869 int elv_queue_empty(struct request_queue *q)
870 {
871 struct elevator_queue *e = q->elevator;
872
873 if (!list_empty(&q->queue_head))
874 return 0;
875
876 if (e->ops->elevator_queue_empty_fn)
877 return e->ops->elevator_queue_empty_fn(q);
878
879 return 1;
880 }
881 EXPORT_SYMBOL(elv_queue_empty);
882
883 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
884 {
885 struct elevator_queue *e = q->elevator;
886
887 if (e->ops->elevator_latter_req_fn)
888 return e->ops->elevator_latter_req_fn(q, rq);
889 return NULL;
890 }
891
892 struct request *elv_former_request(struct request_queue *q, struct request *rq)
893 {
894 struct elevator_queue *e = q->elevator;
895
896 if (e->ops->elevator_former_req_fn)
897 return e->ops->elevator_former_req_fn(q, rq);
898 return NULL;
899 }
900
901 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
902 {
903 struct elevator_queue *e = q->elevator;
904
905 if (e->ops->elevator_set_req_fn)
906 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
907
908 rq->elevator_private = NULL;
909 return 0;
910 }
911
912 void elv_put_request(struct request_queue *q, struct request *rq)
913 {
914 struct elevator_queue *e = q->elevator;
915
916 if (e->ops->elevator_put_req_fn)
917 e->ops->elevator_put_req_fn(rq);
918 }
919
920 int elv_may_queue(struct request_queue *q, int rw)
921 {
922 struct elevator_queue *e = q->elevator;
923
924 if (e->ops->elevator_may_queue_fn)
925 return e->ops->elevator_may_queue_fn(q, rw);
926
927 return ELV_MQUEUE_MAY;
928 }
929
930 void elv_abort_queue(struct request_queue *q)
931 {
932 struct request *rq;
933
934 while (!list_empty(&q->queue_head)) {
935 rq = list_entry_rq(q->queue_head.next);
936 rq->cmd_flags |= REQ_QUIET;
937 trace_block_rq_abort(q, rq);
938 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
939 }
940 }
941 EXPORT_SYMBOL(elv_abort_queue);
942
943 void elv_completed_request(struct request_queue *q, struct request *rq)
944 {
945 struct elevator_queue *e = q->elevator;
946
947 /*
948 * request is released from the driver, io must be done
949 */
950 if (blk_account_rq(rq)) {
951 q->in_flight--;
952 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
953 e->ops->elevator_completed_req_fn(q, rq);
954 }
955
956 /*
957 * Check if the queue is waiting for fs requests to be
958 * drained for flush sequence.
959 */
960 if (unlikely(q->ordseq)) {
961 struct request *next = NULL;
962
963 if (!list_empty(&q->queue_head))
964 next = list_entry_rq(q->queue_head.next);
965
966 if (!q->in_flight &&
967 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
968 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
969 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
970 blk_start_queueing(q);
971 }
972 }
973 }
974
975 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
976
977 static ssize_t
978 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
979 {
980 struct elv_fs_entry *entry = to_elv(attr);
981 struct elevator_queue *e;
982 ssize_t error;
983
984 if (!entry->show)
985 return -EIO;
986
987 e = container_of(kobj, struct elevator_queue, kobj);
988 mutex_lock(&e->sysfs_lock);
989 error = e->ops ? entry->show(e, page) : -ENOENT;
990 mutex_unlock(&e->sysfs_lock);
991 return error;
992 }
993
994 static ssize_t
995 elv_attr_store(struct kobject *kobj, struct attribute *attr,
996 const char *page, size_t length)
997 {
998 struct elv_fs_entry *entry = to_elv(attr);
999 struct elevator_queue *e;
1000 ssize_t error;
1001
1002 if (!entry->store)
1003 return -EIO;
1004
1005 e = container_of(kobj, struct elevator_queue, kobj);
1006 mutex_lock(&e->sysfs_lock);
1007 error = e->ops ? entry->store(e, page, length) : -ENOENT;
1008 mutex_unlock(&e->sysfs_lock);
1009 return error;
1010 }
1011
1012 static struct sysfs_ops elv_sysfs_ops = {
1013 .show = elv_attr_show,
1014 .store = elv_attr_store,
1015 };
1016
1017 static struct kobj_type elv_ktype = {
1018 .sysfs_ops = &elv_sysfs_ops,
1019 .release = elevator_release,
1020 };
1021
1022 int elv_register_queue(struct request_queue *q)
1023 {
1024 struct elevator_queue *e = q->elevator;
1025 int error;
1026
1027 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1028 if (!error) {
1029 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1030 if (attr) {
1031 while (attr->attr.name) {
1032 if (sysfs_create_file(&e->kobj, &attr->attr))
1033 break;
1034 attr++;
1035 }
1036 }
1037 kobject_uevent(&e->kobj, KOBJ_ADD);
1038 }
1039 return error;
1040 }
1041
1042 static void __elv_unregister_queue(struct elevator_queue *e)
1043 {
1044 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1045 kobject_del(&e->kobj);
1046 }
1047
1048 void elv_unregister_queue(struct request_queue *q)
1049 {
1050 if (q)
1051 __elv_unregister_queue(q->elevator);
1052 }
1053
1054 void elv_register(struct elevator_type *e)
1055 {
1056 char *def = "";
1057
1058 spin_lock(&elv_list_lock);
1059 BUG_ON(elevator_find(e->elevator_name));
1060 list_add_tail(&e->list, &elv_list);
1061 spin_unlock(&elv_list_lock);
1062
1063 if (!strcmp(e->elevator_name, chosen_elevator) ||
1064 (!*chosen_elevator &&
1065 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1066 def = " (default)";
1067
1068 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1069 def);
1070 }
1071 EXPORT_SYMBOL_GPL(elv_register);
1072
1073 void elv_unregister(struct elevator_type *e)
1074 {
1075 struct task_struct *g, *p;
1076
1077 /*
1078 * Iterate every thread in the process to remove the io contexts.
1079 */
1080 if (e->ops.trim) {
1081 read_lock(&tasklist_lock);
1082 do_each_thread(g, p) {
1083 task_lock(p);
1084 if (p->io_context)
1085 e->ops.trim(p->io_context);
1086 task_unlock(p);
1087 } while_each_thread(g, p);
1088 read_unlock(&tasklist_lock);
1089 }
1090
1091 spin_lock(&elv_list_lock);
1092 list_del_init(&e->list);
1093 spin_unlock(&elv_list_lock);
1094 }
1095 EXPORT_SYMBOL_GPL(elv_unregister);
1096
1097 /*
1098 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1099 * we don't free the old io scheduler, before we have allocated what we
1100 * need for the new one. this way we have a chance of going back to the old
1101 * one, if the new one fails init for some reason.
1102 */
1103 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1104 {
1105 struct elevator_queue *old_elevator, *e;
1106 void *data;
1107
1108 /*
1109 * Allocate new elevator
1110 */
1111 e = elevator_alloc(q, new_e);
1112 if (!e)
1113 return 0;
1114
1115 data = elevator_init_queue(q, e);
1116 if (!data) {
1117 kobject_put(&e->kobj);
1118 return 0;
1119 }
1120
1121 /*
1122 * Turn on BYPASS and drain all requests w/ elevator private data
1123 */
1124 spin_lock_irq(q->queue_lock);
1125 elv_quiesce_start(q);
1126
1127 /*
1128 * Remember old elevator.
1129 */
1130 old_elevator = q->elevator;
1131
1132 /*
1133 * attach and start new elevator
1134 */
1135 elevator_attach(q, e, data);
1136
1137 spin_unlock_irq(q->queue_lock);
1138
1139 __elv_unregister_queue(old_elevator);
1140
1141 if (elv_register_queue(q))
1142 goto fail_register;
1143
1144 /*
1145 * finally exit old elevator and turn off BYPASS.
1146 */
1147 elevator_exit(old_elevator);
1148 spin_lock_irq(q->queue_lock);
1149 elv_quiesce_end(q);
1150 spin_unlock_irq(q->queue_lock);
1151
1152 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1153
1154 return 1;
1155
1156 fail_register:
1157 /*
1158 * switch failed, exit the new io scheduler and reattach the old
1159 * one again (along with re-adding the sysfs dir)
1160 */
1161 elevator_exit(e);
1162 q->elevator = old_elevator;
1163 elv_register_queue(q);
1164
1165 spin_lock_irq(q->queue_lock);
1166 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1167 spin_unlock_irq(q->queue_lock);
1168
1169 return 0;
1170 }
1171
1172 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1173 size_t count)
1174 {
1175 char elevator_name[ELV_NAME_MAX];
1176 struct elevator_type *e;
1177
1178 strlcpy(elevator_name, name, sizeof(elevator_name));
1179 strstrip(elevator_name);
1180
1181 e = elevator_get(elevator_name);
1182 if (!e) {
1183 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1184 return -EINVAL;
1185 }
1186
1187 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1188 elevator_put(e);
1189 return count;
1190 }
1191
1192 if (!elevator_switch(q, e))
1193 printk(KERN_ERR "elevator: switch to %s failed\n",
1194 elevator_name);
1195 return count;
1196 }
1197
1198 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1199 {
1200 struct elevator_queue *e = q->elevator;
1201 struct elevator_type *elv = e->elevator_type;
1202 struct elevator_type *__e;
1203 int len = 0;
1204
1205 spin_lock(&elv_list_lock);
1206 list_for_each_entry(__e, &elv_list, list) {
1207 if (!strcmp(elv->elevator_name, __e->elevator_name))
1208 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1209 else
1210 len += sprintf(name+len, "%s ", __e->elevator_name);
1211 }
1212 spin_unlock(&elv_list_lock);
1213
1214 len += sprintf(len+name, "\n");
1215 return len;
1216 }
1217
1218 struct request *elv_rb_former_request(struct request_queue *q,
1219 struct request *rq)
1220 {
1221 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1222
1223 if (rbprev)
1224 return rb_entry_rq(rbprev);
1225
1226 return NULL;
1227 }
1228 EXPORT_SYMBOL(elv_rb_former_request);
1229
1230 struct request *elv_rb_latter_request(struct request_queue *q,
1231 struct request *rq)
1232 {
1233 struct rb_node *rbnext = rb_next(&rq->rb_node);
1234
1235 if (rbnext)
1236 return rb_entry_rq(rbnext);
1237
1238 return NULL;
1239 }
1240 EXPORT_SYMBOL(elv_rb_latter_request);
This page took 0.067421 seconds and 5 git commands to generate.