block: Use accessor functions for queue limits
[deliverable/linux.git] / block / elevator.c
1 /*
2 * Block device elevator/IO-scheduler.
3 *
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
39
40 #include "blk.h"
41
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44
45 DEFINE_TRACE(block_rq_abort);
46
47 /*
48 * Merge hash stuff.
49 */
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
52 #define ELV_HASH_FN(sec) \
53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
55 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
56
57 DEFINE_TRACE(block_rq_insert);
58 DEFINE_TRACE(block_rq_issue);
59
60 /*
61 * Query io scheduler to see if the current process issuing bio may be
62 * merged with rq.
63 */
64 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
65 {
66 struct request_queue *q = rq->q;
67 struct elevator_queue *e = q->elevator;
68
69 if (e->ops->elevator_allow_merge_fn)
70 return e->ops->elevator_allow_merge_fn(q, rq, bio);
71
72 return 1;
73 }
74
75 /*
76 * can we safely merge with this request?
77 */
78 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
79 {
80 if (!rq_mergeable(rq))
81 return 0;
82
83 /*
84 * Don't merge file system requests and discard requests
85 */
86 if (bio_discard(bio) != bio_discard(rq->bio))
87 return 0;
88
89 /*
90 * different data direction or already started, don't merge
91 */
92 if (bio_data_dir(bio) != rq_data_dir(rq))
93 return 0;
94
95 /*
96 * must be same device and not a special request
97 */
98 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
99 return 0;
100
101 /*
102 * only merge integrity protected bio into ditto rq
103 */
104 if (bio_integrity(bio) != blk_integrity_rq(rq))
105 return 0;
106
107 if (!elv_iosched_allow_merge(rq, bio))
108 return 0;
109
110 return 1;
111 }
112 EXPORT_SYMBOL(elv_rq_merge_ok);
113
114 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
115 {
116 int ret = ELEVATOR_NO_MERGE;
117
118 /*
119 * we can merge and sequence is ok, check if it's possible
120 */
121 if (elv_rq_merge_ok(__rq, bio)) {
122 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
123 ret = ELEVATOR_BACK_MERGE;
124 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
125 ret = ELEVATOR_FRONT_MERGE;
126 }
127
128 return ret;
129 }
130
131 static struct elevator_type *elevator_find(const char *name)
132 {
133 struct elevator_type *e;
134
135 list_for_each_entry(e, &elv_list, list) {
136 if (!strcmp(e->elevator_name, name))
137 return e;
138 }
139
140 return NULL;
141 }
142
143 static void elevator_put(struct elevator_type *e)
144 {
145 module_put(e->elevator_owner);
146 }
147
148 static struct elevator_type *elevator_get(const char *name)
149 {
150 struct elevator_type *e;
151
152 spin_lock(&elv_list_lock);
153
154 e = elevator_find(name);
155 if (!e) {
156 char elv[ELV_NAME_MAX + strlen("-iosched")];
157
158 spin_unlock(&elv_list_lock);
159
160 if (!strcmp(name, "anticipatory"))
161 sprintf(elv, "as-iosched");
162 else
163 sprintf(elv, "%s-iosched", name);
164
165 request_module("%s", elv);
166 spin_lock(&elv_list_lock);
167 e = elevator_find(name);
168 }
169
170 if (e && !try_module_get(e->elevator_owner))
171 e = NULL;
172
173 spin_unlock(&elv_list_lock);
174
175 return e;
176 }
177
178 static void *elevator_init_queue(struct request_queue *q,
179 struct elevator_queue *eq)
180 {
181 return eq->ops->elevator_init_fn(q);
182 }
183
184 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
185 void *data)
186 {
187 q->elevator = eq;
188 eq->elevator_data = data;
189 }
190
191 static char chosen_elevator[16];
192
193 static int __init elevator_setup(char *str)
194 {
195 /*
196 * Be backwards-compatible with previous kernels, so users
197 * won't get the wrong elevator.
198 */
199 if (!strcmp(str, "as"))
200 strcpy(chosen_elevator, "anticipatory");
201 else
202 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
203 return 1;
204 }
205
206 __setup("elevator=", elevator_setup);
207
208 static struct kobj_type elv_ktype;
209
210 static struct elevator_queue *elevator_alloc(struct request_queue *q,
211 struct elevator_type *e)
212 {
213 struct elevator_queue *eq;
214 int i;
215
216 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
217 if (unlikely(!eq))
218 goto err;
219
220 eq->ops = &e->ops;
221 eq->elevator_type = e;
222 kobject_init(&eq->kobj, &elv_ktype);
223 mutex_init(&eq->sysfs_lock);
224
225 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
226 GFP_KERNEL, q->node);
227 if (!eq->hash)
228 goto err;
229
230 for (i = 0; i < ELV_HASH_ENTRIES; i++)
231 INIT_HLIST_HEAD(&eq->hash[i]);
232
233 return eq;
234 err:
235 kfree(eq);
236 elevator_put(e);
237 return NULL;
238 }
239
240 static void elevator_release(struct kobject *kobj)
241 {
242 struct elevator_queue *e;
243
244 e = container_of(kobj, struct elevator_queue, kobj);
245 elevator_put(e->elevator_type);
246 kfree(e->hash);
247 kfree(e);
248 }
249
250 int elevator_init(struct request_queue *q, char *name)
251 {
252 struct elevator_type *e = NULL;
253 struct elevator_queue *eq;
254 int ret = 0;
255 void *data;
256
257 INIT_LIST_HEAD(&q->queue_head);
258 q->last_merge = NULL;
259 q->end_sector = 0;
260 q->boundary_rq = NULL;
261
262 if (name) {
263 e = elevator_get(name);
264 if (!e)
265 return -EINVAL;
266 }
267
268 if (!e && *chosen_elevator) {
269 e = elevator_get(chosen_elevator);
270 if (!e)
271 printk(KERN_ERR "I/O scheduler %s not found\n",
272 chosen_elevator);
273 }
274
275 if (!e) {
276 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
277 if (!e) {
278 printk(KERN_ERR
279 "Default I/O scheduler not found. " \
280 "Using noop.\n");
281 e = elevator_get("noop");
282 }
283 }
284
285 eq = elevator_alloc(q, e);
286 if (!eq)
287 return -ENOMEM;
288
289 data = elevator_init_queue(q, eq);
290 if (!data) {
291 kobject_put(&eq->kobj);
292 return -ENOMEM;
293 }
294
295 elevator_attach(q, eq, data);
296 return ret;
297 }
298 EXPORT_SYMBOL(elevator_init);
299
300 void elevator_exit(struct elevator_queue *e)
301 {
302 mutex_lock(&e->sysfs_lock);
303 if (e->ops->elevator_exit_fn)
304 e->ops->elevator_exit_fn(e);
305 e->ops = NULL;
306 mutex_unlock(&e->sysfs_lock);
307
308 kobject_put(&e->kobj);
309 }
310 EXPORT_SYMBOL(elevator_exit);
311
312 static inline void __elv_rqhash_del(struct request *rq)
313 {
314 hlist_del_init(&rq->hash);
315 }
316
317 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
318 {
319 if (ELV_ON_HASH(rq))
320 __elv_rqhash_del(rq);
321 }
322
323 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
324 {
325 struct elevator_queue *e = q->elevator;
326
327 BUG_ON(ELV_ON_HASH(rq));
328 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
329 }
330
331 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
332 {
333 __elv_rqhash_del(rq);
334 elv_rqhash_add(q, rq);
335 }
336
337 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
338 {
339 struct elevator_queue *e = q->elevator;
340 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
341 struct hlist_node *entry, *next;
342 struct request *rq;
343
344 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
345 BUG_ON(!ELV_ON_HASH(rq));
346
347 if (unlikely(!rq_mergeable(rq))) {
348 __elv_rqhash_del(rq);
349 continue;
350 }
351
352 if (rq_hash_key(rq) == offset)
353 return rq;
354 }
355
356 return NULL;
357 }
358
359 /*
360 * RB-tree support functions for inserting/lookup/removal of requests
361 * in a sorted RB tree.
362 */
363 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
364 {
365 struct rb_node **p = &root->rb_node;
366 struct rb_node *parent = NULL;
367 struct request *__rq;
368
369 while (*p) {
370 parent = *p;
371 __rq = rb_entry(parent, struct request, rb_node);
372
373 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
374 p = &(*p)->rb_left;
375 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
376 p = &(*p)->rb_right;
377 else
378 return __rq;
379 }
380
381 rb_link_node(&rq->rb_node, parent, p);
382 rb_insert_color(&rq->rb_node, root);
383 return NULL;
384 }
385 EXPORT_SYMBOL(elv_rb_add);
386
387 void elv_rb_del(struct rb_root *root, struct request *rq)
388 {
389 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
390 rb_erase(&rq->rb_node, root);
391 RB_CLEAR_NODE(&rq->rb_node);
392 }
393 EXPORT_SYMBOL(elv_rb_del);
394
395 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
396 {
397 struct rb_node *n = root->rb_node;
398 struct request *rq;
399
400 while (n) {
401 rq = rb_entry(n, struct request, rb_node);
402
403 if (sector < blk_rq_pos(rq))
404 n = n->rb_left;
405 else if (sector > blk_rq_pos(rq))
406 n = n->rb_right;
407 else
408 return rq;
409 }
410
411 return NULL;
412 }
413 EXPORT_SYMBOL(elv_rb_find);
414
415 /*
416 * Insert rq into dispatch queue of q. Queue lock must be held on
417 * entry. rq is sort instead into the dispatch queue. To be used by
418 * specific elevators.
419 */
420 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
421 {
422 sector_t boundary;
423 struct list_head *entry;
424 int stop_flags;
425
426 if (q->last_merge == rq)
427 q->last_merge = NULL;
428
429 elv_rqhash_del(q, rq);
430
431 q->nr_sorted--;
432
433 boundary = q->end_sector;
434 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
435 list_for_each_prev(entry, &q->queue_head) {
436 struct request *pos = list_entry_rq(entry);
437
438 if (blk_discard_rq(rq) != blk_discard_rq(pos))
439 break;
440 if (rq_data_dir(rq) != rq_data_dir(pos))
441 break;
442 if (pos->cmd_flags & stop_flags)
443 break;
444 if (blk_rq_pos(rq) >= boundary) {
445 if (blk_rq_pos(pos) < boundary)
446 continue;
447 } else {
448 if (blk_rq_pos(pos) >= boundary)
449 break;
450 }
451 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
452 break;
453 }
454
455 list_add(&rq->queuelist, entry);
456 }
457 EXPORT_SYMBOL(elv_dispatch_sort);
458
459 /*
460 * Insert rq into dispatch queue of q. Queue lock must be held on
461 * entry. rq is added to the back of the dispatch queue. To be used by
462 * specific elevators.
463 */
464 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
465 {
466 if (q->last_merge == rq)
467 q->last_merge = NULL;
468
469 elv_rqhash_del(q, rq);
470
471 q->nr_sorted--;
472
473 q->end_sector = rq_end_sector(rq);
474 q->boundary_rq = rq;
475 list_add_tail(&rq->queuelist, &q->queue_head);
476 }
477 EXPORT_SYMBOL(elv_dispatch_add_tail);
478
479 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
480 {
481 struct elevator_queue *e = q->elevator;
482 struct request *__rq;
483 int ret;
484
485 /*
486 * First try one-hit cache.
487 */
488 if (q->last_merge) {
489 ret = elv_try_merge(q->last_merge, bio);
490 if (ret != ELEVATOR_NO_MERGE) {
491 *req = q->last_merge;
492 return ret;
493 }
494 }
495
496 if (blk_queue_nomerges(q))
497 return ELEVATOR_NO_MERGE;
498
499 /*
500 * See if our hash lookup can find a potential backmerge.
501 */
502 __rq = elv_rqhash_find(q, bio->bi_sector);
503 if (__rq && elv_rq_merge_ok(__rq, bio)) {
504 *req = __rq;
505 return ELEVATOR_BACK_MERGE;
506 }
507
508 if (e->ops->elevator_merge_fn)
509 return e->ops->elevator_merge_fn(q, req, bio);
510
511 return ELEVATOR_NO_MERGE;
512 }
513
514 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
515 {
516 struct elevator_queue *e = q->elevator;
517
518 if (e->ops->elevator_merged_fn)
519 e->ops->elevator_merged_fn(q, rq, type);
520
521 if (type == ELEVATOR_BACK_MERGE)
522 elv_rqhash_reposition(q, rq);
523
524 q->last_merge = rq;
525 }
526
527 void elv_merge_requests(struct request_queue *q, struct request *rq,
528 struct request *next)
529 {
530 struct elevator_queue *e = q->elevator;
531
532 if (e->ops->elevator_merge_req_fn)
533 e->ops->elevator_merge_req_fn(q, rq, next);
534
535 elv_rqhash_reposition(q, rq);
536 elv_rqhash_del(q, next);
537
538 q->nr_sorted--;
539 q->last_merge = rq;
540 }
541
542 void elv_requeue_request(struct request_queue *q, struct request *rq)
543 {
544 /*
545 * it already went through dequeue, we need to decrement the
546 * in_flight count again
547 */
548 if (blk_account_rq(rq)) {
549 q->in_flight[rq_is_sync(rq)]--;
550 if (blk_sorted_rq(rq))
551 elv_deactivate_rq(q, rq);
552 }
553
554 rq->cmd_flags &= ~REQ_STARTED;
555
556 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
557 }
558
559 void elv_drain_elevator(struct request_queue *q)
560 {
561 static int printed;
562 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
563 ;
564 if (q->nr_sorted == 0)
565 return;
566 if (printed++ < 10) {
567 printk(KERN_ERR "%s: forced dispatching is broken "
568 "(nr_sorted=%u), please report this\n",
569 q->elevator->elevator_type->elevator_name, q->nr_sorted);
570 }
571 }
572
573 /*
574 * Call with queue lock held, interrupts disabled
575 */
576 void elv_quiesce_start(struct request_queue *q)
577 {
578 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
579
580 /*
581 * make sure we don't have any requests in flight
582 */
583 elv_drain_elevator(q);
584 while (q->rq.elvpriv) {
585 __blk_run_queue(q);
586 spin_unlock_irq(q->queue_lock);
587 msleep(10);
588 spin_lock_irq(q->queue_lock);
589 elv_drain_elevator(q);
590 }
591 }
592
593 void elv_quiesce_end(struct request_queue *q)
594 {
595 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
596 }
597
598 void elv_insert(struct request_queue *q, struct request *rq, int where)
599 {
600 struct list_head *pos;
601 unsigned ordseq;
602 int unplug_it = 1;
603
604 trace_block_rq_insert(q, rq);
605
606 rq->q = q;
607
608 switch (where) {
609 case ELEVATOR_INSERT_FRONT:
610 rq->cmd_flags |= REQ_SOFTBARRIER;
611
612 list_add(&rq->queuelist, &q->queue_head);
613 break;
614
615 case ELEVATOR_INSERT_BACK:
616 rq->cmd_flags |= REQ_SOFTBARRIER;
617 elv_drain_elevator(q);
618 list_add_tail(&rq->queuelist, &q->queue_head);
619 /*
620 * We kick the queue here for the following reasons.
621 * - The elevator might have returned NULL previously
622 * to delay requests and returned them now. As the
623 * queue wasn't empty before this request, ll_rw_blk
624 * won't run the queue on return, resulting in hang.
625 * - Usually, back inserted requests won't be merged
626 * with anything. There's no point in delaying queue
627 * processing.
628 */
629 __blk_run_queue(q);
630 break;
631
632 case ELEVATOR_INSERT_SORT:
633 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
634 rq->cmd_flags |= REQ_SORTED;
635 q->nr_sorted++;
636 if (rq_mergeable(rq)) {
637 elv_rqhash_add(q, rq);
638 if (!q->last_merge)
639 q->last_merge = rq;
640 }
641
642 /*
643 * Some ioscheds (cfq) run q->request_fn directly, so
644 * rq cannot be accessed after calling
645 * elevator_add_req_fn.
646 */
647 q->elevator->ops->elevator_add_req_fn(q, rq);
648 break;
649
650 case ELEVATOR_INSERT_REQUEUE:
651 /*
652 * If ordered flush isn't in progress, we do front
653 * insertion; otherwise, requests should be requeued
654 * in ordseq order.
655 */
656 rq->cmd_flags |= REQ_SOFTBARRIER;
657
658 /*
659 * Most requeues happen because of a busy condition,
660 * don't force unplug of the queue for that case.
661 */
662 unplug_it = 0;
663
664 if (q->ordseq == 0) {
665 list_add(&rq->queuelist, &q->queue_head);
666 break;
667 }
668
669 ordseq = blk_ordered_req_seq(rq);
670
671 list_for_each(pos, &q->queue_head) {
672 struct request *pos_rq = list_entry_rq(pos);
673 if (ordseq <= blk_ordered_req_seq(pos_rq))
674 break;
675 }
676
677 list_add_tail(&rq->queuelist, pos);
678 break;
679
680 default:
681 printk(KERN_ERR "%s: bad insertion point %d\n",
682 __func__, where);
683 BUG();
684 }
685
686 if (unplug_it && blk_queue_plugged(q)) {
687 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
688 - queue_in_flight(q);
689
690 if (nrq >= q->unplug_thresh)
691 __generic_unplug_device(q);
692 }
693 }
694
695 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
696 int plug)
697 {
698 if (q->ordcolor)
699 rq->cmd_flags |= REQ_ORDERED_COLOR;
700
701 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
702 /*
703 * toggle ordered color
704 */
705 if (blk_barrier_rq(rq))
706 q->ordcolor ^= 1;
707
708 /*
709 * barriers implicitly indicate back insertion
710 */
711 if (where == ELEVATOR_INSERT_SORT)
712 where = ELEVATOR_INSERT_BACK;
713
714 /*
715 * this request is scheduling boundary, update
716 * end_sector
717 */
718 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
719 q->end_sector = rq_end_sector(rq);
720 q->boundary_rq = rq;
721 }
722 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
723 where == ELEVATOR_INSERT_SORT)
724 where = ELEVATOR_INSERT_BACK;
725
726 if (plug)
727 blk_plug_device(q);
728
729 elv_insert(q, rq, where);
730 }
731 EXPORT_SYMBOL(__elv_add_request);
732
733 void elv_add_request(struct request_queue *q, struct request *rq, int where,
734 int plug)
735 {
736 unsigned long flags;
737
738 spin_lock_irqsave(q->queue_lock, flags);
739 __elv_add_request(q, rq, where, plug);
740 spin_unlock_irqrestore(q->queue_lock, flags);
741 }
742 EXPORT_SYMBOL(elv_add_request);
743
744 int elv_queue_empty(struct request_queue *q)
745 {
746 struct elevator_queue *e = q->elevator;
747
748 if (!list_empty(&q->queue_head))
749 return 0;
750
751 if (e->ops->elevator_queue_empty_fn)
752 return e->ops->elevator_queue_empty_fn(q);
753
754 return 1;
755 }
756 EXPORT_SYMBOL(elv_queue_empty);
757
758 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
759 {
760 struct elevator_queue *e = q->elevator;
761
762 if (e->ops->elevator_latter_req_fn)
763 return e->ops->elevator_latter_req_fn(q, rq);
764 return NULL;
765 }
766
767 struct request *elv_former_request(struct request_queue *q, struct request *rq)
768 {
769 struct elevator_queue *e = q->elevator;
770
771 if (e->ops->elevator_former_req_fn)
772 return e->ops->elevator_former_req_fn(q, rq);
773 return NULL;
774 }
775
776 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
777 {
778 struct elevator_queue *e = q->elevator;
779
780 if (e->ops->elevator_set_req_fn)
781 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
782
783 rq->elevator_private = NULL;
784 return 0;
785 }
786
787 void elv_put_request(struct request_queue *q, struct request *rq)
788 {
789 struct elevator_queue *e = q->elevator;
790
791 if (e->ops->elevator_put_req_fn)
792 e->ops->elevator_put_req_fn(rq);
793 }
794
795 int elv_may_queue(struct request_queue *q, int rw)
796 {
797 struct elevator_queue *e = q->elevator;
798
799 if (e->ops->elevator_may_queue_fn)
800 return e->ops->elevator_may_queue_fn(q, rw);
801
802 return ELV_MQUEUE_MAY;
803 }
804
805 void elv_abort_queue(struct request_queue *q)
806 {
807 struct request *rq;
808
809 while (!list_empty(&q->queue_head)) {
810 rq = list_entry_rq(q->queue_head.next);
811 rq->cmd_flags |= REQ_QUIET;
812 trace_block_rq_abort(q, rq);
813 __blk_end_request_all(rq, -EIO);
814 }
815 }
816 EXPORT_SYMBOL(elv_abort_queue);
817
818 void elv_completed_request(struct request_queue *q, struct request *rq)
819 {
820 struct elevator_queue *e = q->elevator;
821
822 /*
823 * request is released from the driver, io must be done
824 */
825 if (blk_account_rq(rq)) {
826 q->in_flight[rq_is_sync(rq)]--;
827 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
828 e->ops->elevator_completed_req_fn(q, rq);
829 }
830
831 /*
832 * Check if the queue is waiting for fs requests to be
833 * drained for flush sequence.
834 */
835 if (unlikely(q->ordseq)) {
836 struct request *next = NULL;
837
838 if (!list_empty(&q->queue_head))
839 next = list_entry_rq(q->queue_head.next);
840
841 if (!queue_in_flight(q) &&
842 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
843 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
844 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
845 __blk_run_queue(q);
846 }
847 }
848 }
849
850 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
851
852 static ssize_t
853 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
854 {
855 struct elv_fs_entry *entry = to_elv(attr);
856 struct elevator_queue *e;
857 ssize_t error;
858
859 if (!entry->show)
860 return -EIO;
861
862 e = container_of(kobj, struct elevator_queue, kobj);
863 mutex_lock(&e->sysfs_lock);
864 error = e->ops ? entry->show(e, page) : -ENOENT;
865 mutex_unlock(&e->sysfs_lock);
866 return error;
867 }
868
869 static ssize_t
870 elv_attr_store(struct kobject *kobj, struct attribute *attr,
871 const char *page, size_t length)
872 {
873 struct elv_fs_entry *entry = to_elv(attr);
874 struct elevator_queue *e;
875 ssize_t error;
876
877 if (!entry->store)
878 return -EIO;
879
880 e = container_of(kobj, struct elevator_queue, kobj);
881 mutex_lock(&e->sysfs_lock);
882 error = e->ops ? entry->store(e, page, length) : -ENOENT;
883 mutex_unlock(&e->sysfs_lock);
884 return error;
885 }
886
887 static struct sysfs_ops elv_sysfs_ops = {
888 .show = elv_attr_show,
889 .store = elv_attr_store,
890 };
891
892 static struct kobj_type elv_ktype = {
893 .sysfs_ops = &elv_sysfs_ops,
894 .release = elevator_release,
895 };
896
897 int elv_register_queue(struct request_queue *q)
898 {
899 struct elevator_queue *e = q->elevator;
900 int error;
901
902 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
903 if (!error) {
904 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
905 if (attr) {
906 while (attr->attr.name) {
907 if (sysfs_create_file(&e->kobj, &attr->attr))
908 break;
909 attr++;
910 }
911 }
912 kobject_uevent(&e->kobj, KOBJ_ADD);
913 }
914 return error;
915 }
916
917 static void __elv_unregister_queue(struct elevator_queue *e)
918 {
919 kobject_uevent(&e->kobj, KOBJ_REMOVE);
920 kobject_del(&e->kobj);
921 }
922
923 void elv_unregister_queue(struct request_queue *q)
924 {
925 if (q)
926 __elv_unregister_queue(q->elevator);
927 }
928
929 void elv_register(struct elevator_type *e)
930 {
931 char *def = "";
932
933 spin_lock(&elv_list_lock);
934 BUG_ON(elevator_find(e->elevator_name));
935 list_add_tail(&e->list, &elv_list);
936 spin_unlock(&elv_list_lock);
937
938 if (!strcmp(e->elevator_name, chosen_elevator) ||
939 (!*chosen_elevator &&
940 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
941 def = " (default)";
942
943 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
944 def);
945 }
946 EXPORT_SYMBOL_GPL(elv_register);
947
948 void elv_unregister(struct elevator_type *e)
949 {
950 struct task_struct *g, *p;
951
952 /*
953 * Iterate every thread in the process to remove the io contexts.
954 */
955 if (e->ops.trim) {
956 read_lock(&tasklist_lock);
957 do_each_thread(g, p) {
958 task_lock(p);
959 if (p->io_context)
960 e->ops.trim(p->io_context);
961 task_unlock(p);
962 } while_each_thread(g, p);
963 read_unlock(&tasklist_lock);
964 }
965
966 spin_lock(&elv_list_lock);
967 list_del_init(&e->list);
968 spin_unlock(&elv_list_lock);
969 }
970 EXPORT_SYMBOL_GPL(elv_unregister);
971
972 /*
973 * switch to new_e io scheduler. be careful not to introduce deadlocks -
974 * we don't free the old io scheduler, before we have allocated what we
975 * need for the new one. this way we have a chance of going back to the old
976 * one, if the new one fails init for some reason.
977 */
978 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
979 {
980 struct elevator_queue *old_elevator, *e;
981 void *data;
982
983 /*
984 * Allocate new elevator
985 */
986 e = elevator_alloc(q, new_e);
987 if (!e)
988 return 0;
989
990 data = elevator_init_queue(q, e);
991 if (!data) {
992 kobject_put(&e->kobj);
993 return 0;
994 }
995
996 /*
997 * Turn on BYPASS and drain all requests w/ elevator private data
998 */
999 spin_lock_irq(q->queue_lock);
1000 elv_quiesce_start(q);
1001
1002 /*
1003 * Remember old elevator.
1004 */
1005 old_elevator = q->elevator;
1006
1007 /*
1008 * attach and start new elevator
1009 */
1010 elevator_attach(q, e, data);
1011
1012 spin_unlock_irq(q->queue_lock);
1013
1014 __elv_unregister_queue(old_elevator);
1015
1016 if (elv_register_queue(q))
1017 goto fail_register;
1018
1019 /*
1020 * finally exit old elevator and turn off BYPASS.
1021 */
1022 elevator_exit(old_elevator);
1023 spin_lock_irq(q->queue_lock);
1024 elv_quiesce_end(q);
1025 spin_unlock_irq(q->queue_lock);
1026
1027 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1028
1029 return 1;
1030
1031 fail_register:
1032 /*
1033 * switch failed, exit the new io scheduler and reattach the old
1034 * one again (along with re-adding the sysfs dir)
1035 */
1036 elevator_exit(e);
1037 q->elevator = old_elevator;
1038 elv_register_queue(q);
1039
1040 spin_lock_irq(q->queue_lock);
1041 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1042 spin_unlock_irq(q->queue_lock);
1043
1044 return 0;
1045 }
1046
1047 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1048 size_t count)
1049 {
1050 char elevator_name[ELV_NAME_MAX];
1051 struct elevator_type *e;
1052
1053 strlcpy(elevator_name, name, sizeof(elevator_name));
1054 strstrip(elevator_name);
1055
1056 e = elevator_get(elevator_name);
1057 if (!e) {
1058 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1059 return -EINVAL;
1060 }
1061
1062 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1063 elevator_put(e);
1064 return count;
1065 }
1066
1067 if (!elevator_switch(q, e))
1068 printk(KERN_ERR "elevator: switch to %s failed\n",
1069 elevator_name);
1070 return count;
1071 }
1072
1073 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1074 {
1075 struct elevator_queue *e = q->elevator;
1076 struct elevator_type *elv = e->elevator_type;
1077 struct elevator_type *__e;
1078 int len = 0;
1079
1080 spin_lock(&elv_list_lock);
1081 list_for_each_entry(__e, &elv_list, list) {
1082 if (!strcmp(elv->elevator_name, __e->elevator_name))
1083 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1084 else
1085 len += sprintf(name+len, "%s ", __e->elevator_name);
1086 }
1087 spin_unlock(&elv_list_lock);
1088
1089 len += sprintf(len+name, "\n");
1090 return len;
1091 }
1092
1093 struct request *elv_rb_former_request(struct request_queue *q,
1094 struct request *rq)
1095 {
1096 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1097
1098 if (rbprev)
1099 return rb_entry_rq(rbprev);
1100
1101 return NULL;
1102 }
1103 EXPORT_SYMBOL(elv_rb_former_request);
1104
1105 struct request *elv_rb_latter_request(struct request_queue *q,
1106 struct request *rq)
1107 {
1108 struct rb_node *rbnext = rb_next(&rq->rb_node);
1109
1110 if (rbnext)
1111 return rb_entry_rq(rbnext);
1112
1113 return NULL;
1114 }
1115 EXPORT_SYMBOL(elv_rb_latter_request);
This page took 0.053602 seconds and 5 git commands to generate.