Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
34
35 /*
36 * for max sense size
37 */
38 #include <scsi/scsi_cmnd.h>
39
40 static void blk_unplug_work(struct work_struct *work);
41 static void blk_unplug_timeout(unsigned long data);
42 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
43 static void init_request_from_bio(struct request *req, struct bio *bio);
44 static int __make_request(struct request_queue *q, struct bio *bio);
45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 static void blk_recalc_rq_segments(struct request *rq);
47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 static struct kmem_cache *requestq_cachep;
59
60 /*
61 * For io context allocations
62 */
63 static struct kmem_cache *iocontext_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 unsigned long blk_max_low_pfn, blk_max_pfn;
71
72 EXPORT_SYMBOL(blk_max_low_pfn);
73 EXPORT_SYMBOL(blk_max_pfn);
74
75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
79
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
82
83 /*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 {
90 return q->nr_congestion_on;
91 }
92
93 /*
94 * The threshold at which a queue is considered to be uncongested
95 */
96 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 {
98 return q->nr_congestion_off;
99 }
100
101 static void blk_queue_congestion_threshold(struct request_queue *q)
102 {
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114 }
115
116 /**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 {
127 struct backing_dev_info *ret = NULL;
128 struct request_queue *q = bdev_get_queue(bdev);
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133 }
134 EXPORT_SYMBOL(blk_get_backing_dev_info);
135
136 /**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 {
149 q->prep_rq_fn = pfn;
150 }
151
152 EXPORT_SYMBOL(blk_queue_prep_rq);
153
154 /**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 {
172 q->merge_bvec_fn = mbfn;
173 }
174
175 EXPORT_SYMBOL(blk_queue_merge_bvec);
176
177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 {
179 q->softirq_done_fn = fn;
180 }
181
182 EXPORT_SYMBOL(blk_queue_softirq_done);
183
184 /**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 {
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
229 INIT_WORK(&q->unplug_work, blk_unplug_work);
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
238 }
239
240 EXPORT_SYMBOL(blk_queue_make_request);
241
242 static void rq_init(struct request_queue *q, struct request *rq)
243 {
244 INIT_LIST_HEAD(&rq->queuelist);
245 INIT_LIST_HEAD(&rq->donelist);
246
247 rq->errors = 0;
248 rq->bio = rq->biotail = NULL;
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
251 rq->ioprio = 0;
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
258 rq->nr_phys_segments = 0;
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
262 rq->completion_data = NULL;
263 rq->next_rq = NULL;
264 }
265
266 /**
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
280 prepare_flush_fn *prepare_flush_fn)
281 {
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
297 }
298
299 q->ordered = ordered;
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
304 }
305
306 EXPORT_SYMBOL(blk_queue_ordered);
307
308 /*
309 * Cache flushing for ordered writes handling
310 */
311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 {
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
316 }
317
318 unsigned blk_ordered_req_seq(struct request *rq)
319 {
320 struct request_queue *q = rq->q;
321
322 BUG_ON(q->ordseq == 0);
323
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
330
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
345 }
346
347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 {
349 struct request *rq;
350 int uptodate;
351
352 if (error && !q->orderr)
353 q->orderr = error;
354
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
357
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
360
361 /*
362 * Okay, sequence complete.
363 */
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
367
368 q->ordseq = 0;
369 rq = q->orig_bar_rq;
370
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
373 }
374
375 static void pre_flush_end_io(struct request *rq, int error)
376 {
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379 }
380
381 static void bar_end_io(struct request *rq, int error)
382 {
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385 }
386
387 static void post_flush_end_io(struct request *rq, int error)
388 {
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391 }
392
393 static void queue_flush(struct request_queue *q, unsigned which)
394 {
395 struct request *rq;
396 rq_end_io_fn *end_io;
397
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
404 }
405
406 rq->cmd_flags = REQ_HARDBARRIER;
407 rq_init(q, rq);
408 rq->elevator_private = NULL;
409 rq->elevator_private2 = NULL;
410 rq->rq_disk = q->bar_rq.rq_disk;
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
415 }
416
417 static inline struct request *start_ordered(struct request_queue *q,
418 struct request *rq)
419 {
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
430 rq->cmd_flags = 0;
431 rq_init(q, rq);
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
436 rq->elevator_private = NULL;
437 rq->elevator_private2 = NULL;
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
449 */
450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
462
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
469 }
470
471 int blk_do_ordered(struct request_queue *q, struct request **rqp)
472 {
473 struct request *rq = *rqp;
474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
475
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
479
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
496
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
506 if (q->ordered & QUEUE_ORDERED_TAG) {
507 /* Ordered by tag. Blocking the next barrier is enough. */
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
515 }
516
517 return 1;
518 }
519
520 static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
522 {
523 struct request_queue *q = rq->q;
524
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
530
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
536
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
540 bio_endio(bio, error);
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
550 }
551
552 /**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
561 * buffers for doing I/O to pages residing above @page.
562 **/
563 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
564 {
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569 #if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576 #else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580 #endif
581 if (dma) {
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
584 q->bounce_pfn = bounce_pfn;
585 }
586 }
587
588 EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590 /**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
599 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
600 {
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
612 }
613
614 EXPORT_SYMBOL(blk_queue_max_sectors);
615
616 /**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
626 void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
628 {
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635 }
636
637 EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639 /**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
650 void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
652 {
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659 }
660
661 EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663 /**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
672 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
673 {
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680 }
681
682 EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684 /**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
695 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
696 {
697 q->hardsect_size = size;
698 }
699
700 EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702 /*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707 /**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
712 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
713 {
714 /* zero is "infinity" */
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
724 }
725
726 EXPORT_SYMBOL(blk_queue_stack_limits);
727
728 /**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
733 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734 {
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741 }
742
743 EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745 /**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
755 void blk_queue_dma_alignment(struct request_queue *q, int mask)
756 {
757 q->dma_alignment = mask;
758 }
759
760 EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762 /**
763 * blk_queue_find_tag - find a request by its tag and queue
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
773 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
774 {
775 return blk_map_queue_find_tag(q->queue_tags, tag);
776 }
777
778 EXPORT_SYMBOL(blk_queue_find_tag);
779
780 /**
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
783 *
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787 static int __blk_free_tags(struct blk_queue_tag *bqt)
788 {
789 int retval;
790
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
803
804 }
805
806 return retval;
807 }
808
809 /**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
817 static void __blk_queue_free_tags(struct request_queue *q)
818 {
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828 }
829
830
831 /**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839 void blk_free_tags(struct blk_queue_tag *bqt)
840 {
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843 }
844 EXPORT_SYMBOL(blk_free_tags);
845
846 /**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
854 void blk_queue_free_tags(struct request_queue *q)
855 {
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857 }
858
859 EXPORT_SYMBOL(blk_queue_free_tags);
860
861 static int
862 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
863 {
864 struct request **tag_index;
865 unsigned long *tag_map;
866 int nr_ulongs;
867
868 if (q && depth > q->nr_requests * 2) {
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
875 if (!tag_index)
876 goto fail;
877
878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
880 if (!tag_map)
881 goto fail;
882
883 tags->real_max_depth = depth;
884 tags->max_depth = depth;
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
888 return 0;
889 fail:
890 kfree(tag_index);
891 return -ENOMEM;
892 }
893
894 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896 {
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910 fail:
911 kfree(tags);
912 return NULL;
913 }
914
915 /**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920 struct blk_queue_tag *blk_init_tags(int depth)
921 {
922 return __blk_queue_init_tags(NULL, depth);
923 }
924 EXPORT_SYMBOL(blk_init_tags);
925
926 /**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
932 int blk_queue_init_tags(struct request_queue *q, int depth,
933 struct blk_queue_tag *tags)
934 {
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
940 tags = __blk_queue_init_tags(q, depth);
941
942 if (!tags)
943 goto fail;
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958 fail:
959 kfree(tags);
960 return -ENOMEM;
961 }
962
963 EXPORT_SYMBOL(blk_queue_init_tags);
964
965 /**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
973 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
974 {
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
978 int max_depth, nr_ulongs;
979
980 if (!bqt)
981 return -ENXIO;
982
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
1006 max_depth = bqt->real_max_depth;
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018 }
1019
1020 EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022 /**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
1036 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1037 {
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
1043 if (unlikely(tag >= bqt->real_max_depth))
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1048 return;
1049
1050 list_del_init(&rq->queuelist);
1051 rq->cmd_flags &= ~REQ_QUEUED;
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1057
1058 bqt->tag_index[tag] = NULL;
1059
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1072 bqt->busy--;
1073 }
1074
1075 EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077 /**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
1095 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1096 {
1097 struct blk_queue_tag *bqt = q->queue_tags;
1098 int tag;
1099
1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1101 printk(KERN_ERR
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1105 BUG();
1106 }
1107
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1116
1117 } while (test_and_set_bit(tag, bqt->tag_map));
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1122
1123 rq->cmd_flags |= REQ_QUEUED;
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130 }
1131
1132 EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134 /**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
1146 void blk_queue_invalidate_tags(struct request_queue *q)
1147 {
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1158 list_del_init(&rq->queuelist);
1159 rq->cmd_flags &= ~REQ_QUEUED;
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
1163 rq->cmd_flags &= ~REQ_STARTED;
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166 }
1167
1168 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1170 void blk_dump_rq_flags(struct request *rq, char *msg)
1171 {
1172 int bit;
1173
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
1183 if (blk_pc_request(rq)) {
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189 }
1190
1191 EXPORT_SYMBOL(blk_dump_rq_flags);
1192
1193 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1194 {
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205 }
1206 EXPORT_SYMBOL(blk_recount_segments);
1207
1208 static void blk_recalc_rq_segments(struct request *rq)
1209 {
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1214 struct bio_vec *bv, *bvprv = NULL;
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
1218 struct req_iterator iter;
1219 int high, highprv = 1;
1220 struct request_queue *q = rq->q;
1221
1222 if (!rq->bio)
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1228 rq_for_each_segment(bv, rq, iter) {
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252 new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1255 hw_seg_size += bv->bv_len;
1256 else {
1257 new_hw_segment:
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1278 }
1279
1280 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1281 struct bio *nxt)
1282 {
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299 }
1300
1301 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1302 struct bio *nxt)
1303 {
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1310 return 0;
1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1312 return 0;
1313
1314 return 1;
1315 }
1316
1317 /*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
1321 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1322 struct scatterlist *sglist)
1323 {
1324 struct bio_vec *bvec, *bvprv;
1325 struct req_iterator iter;
1326 struct scatterlist *sg;
1327 int nsegs, cluster;
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
1336 sg = NULL;
1337 rq_for_each_segment(bvec, rq, iter) {
1338 int nbytes = bvec->bv_len;
1339
1340 if (bvprv && cluster) {
1341 if (sg->length + nbytes > q->max_segment_size)
1342 goto new_segment;
1343
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1348
1349 sg->length += nbytes;
1350 } else {
1351 new_segment:
1352 if (!sg)
1353 sg = sglist;
1354 else
1355 sg = sg_next(sg);
1356
1357 sg_dma_len(sg) = 0;
1358 sg_dma_address(sg) = 0;
1359 sg_set_page(sg, bvec->bv_page);
1360 sg->length = nbytes;
1361 sg->offset = bvec->bv_offset;
1362 nsegs++;
1363 }
1364 bvprv = bvec;
1365 } /* segments in rq */
1366
1367 if (sg)
1368 __sg_mark_end(sg);
1369
1370 return nsegs;
1371 }
1372
1373 EXPORT_SYMBOL(blk_rq_map_sg);
1374
1375 /*
1376 * the standard queue merge functions, can be overridden with device
1377 * specific ones if so desired
1378 */
1379
1380 static inline int ll_new_mergeable(struct request_queue *q,
1381 struct request *req,
1382 struct bio *bio)
1383 {
1384 int nr_phys_segs = bio_phys_segments(q, bio);
1385
1386 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1387 req->cmd_flags |= REQ_NOMERGE;
1388 if (req == q->last_merge)
1389 q->last_merge = NULL;
1390 return 0;
1391 }
1392
1393 /*
1394 * A hw segment is just getting larger, bump just the phys
1395 * counter.
1396 */
1397 req->nr_phys_segments += nr_phys_segs;
1398 return 1;
1399 }
1400
1401 static inline int ll_new_hw_segment(struct request_queue *q,
1402 struct request *req,
1403 struct bio *bio)
1404 {
1405 int nr_hw_segs = bio_hw_segments(q, bio);
1406 int nr_phys_segs = bio_phys_segments(q, bio);
1407
1408 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1409 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1410 req->cmd_flags |= REQ_NOMERGE;
1411 if (req == q->last_merge)
1412 q->last_merge = NULL;
1413 return 0;
1414 }
1415
1416 /*
1417 * This will form the start of a new hw segment. Bump both
1418 * counters.
1419 */
1420 req->nr_hw_segments += nr_hw_segs;
1421 req->nr_phys_segments += nr_phys_segs;
1422 return 1;
1423 }
1424
1425 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1426 struct bio *bio)
1427 {
1428 unsigned short max_sectors;
1429 int len;
1430
1431 if (unlikely(blk_pc_request(req)))
1432 max_sectors = q->max_hw_sectors;
1433 else
1434 max_sectors = q->max_sectors;
1435
1436 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1437 req->cmd_flags |= REQ_NOMERGE;
1438 if (req == q->last_merge)
1439 q->last_merge = NULL;
1440 return 0;
1441 }
1442 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1443 blk_recount_segments(q, req->biotail);
1444 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1445 blk_recount_segments(q, bio);
1446 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1447 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1448 !BIOVEC_VIRT_OVERSIZE(len)) {
1449 int mergeable = ll_new_mergeable(q, req, bio);
1450
1451 if (mergeable) {
1452 if (req->nr_hw_segments == 1)
1453 req->bio->bi_hw_front_size = len;
1454 if (bio->bi_hw_segments == 1)
1455 bio->bi_hw_back_size = len;
1456 }
1457 return mergeable;
1458 }
1459
1460 return ll_new_hw_segment(q, req, bio);
1461 }
1462
1463 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1464 struct bio *bio)
1465 {
1466 unsigned short max_sectors;
1467 int len;
1468
1469 if (unlikely(blk_pc_request(req)))
1470 max_sectors = q->max_hw_sectors;
1471 else
1472 max_sectors = q->max_sectors;
1473
1474
1475 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1476 req->cmd_flags |= REQ_NOMERGE;
1477 if (req == q->last_merge)
1478 q->last_merge = NULL;
1479 return 0;
1480 }
1481 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1482 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1483 blk_recount_segments(q, bio);
1484 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1485 blk_recount_segments(q, req->bio);
1486 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1487 !BIOVEC_VIRT_OVERSIZE(len)) {
1488 int mergeable = ll_new_mergeable(q, req, bio);
1489
1490 if (mergeable) {
1491 if (bio->bi_hw_segments == 1)
1492 bio->bi_hw_front_size = len;
1493 if (req->nr_hw_segments == 1)
1494 req->biotail->bi_hw_back_size = len;
1495 }
1496 return mergeable;
1497 }
1498
1499 return ll_new_hw_segment(q, req, bio);
1500 }
1501
1502 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1503 struct request *next)
1504 {
1505 int total_phys_segments;
1506 int total_hw_segments;
1507
1508 /*
1509 * First check if the either of the requests are re-queued
1510 * requests. Can't merge them if they are.
1511 */
1512 if (req->special || next->special)
1513 return 0;
1514
1515 /*
1516 * Will it become too large?
1517 */
1518 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1519 return 0;
1520
1521 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1522 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1523 total_phys_segments--;
1524
1525 if (total_phys_segments > q->max_phys_segments)
1526 return 0;
1527
1528 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1529 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1530 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1531 /*
1532 * propagate the combined length to the end of the requests
1533 */
1534 if (req->nr_hw_segments == 1)
1535 req->bio->bi_hw_front_size = len;
1536 if (next->nr_hw_segments == 1)
1537 next->biotail->bi_hw_back_size = len;
1538 total_hw_segments--;
1539 }
1540
1541 if (total_hw_segments > q->max_hw_segments)
1542 return 0;
1543
1544 /* Merge is OK... */
1545 req->nr_phys_segments = total_phys_segments;
1546 req->nr_hw_segments = total_hw_segments;
1547 return 1;
1548 }
1549
1550 /*
1551 * "plug" the device if there are no outstanding requests: this will
1552 * force the transfer to start only after we have put all the requests
1553 * on the list.
1554 *
1555 * This is called with interrupts off and no requests on the queue and
1556 * with the queue lock held.
1557 */
1558 void blk_plug_device(struct request_queue *q)
1559 {
1560 WARN_ON(!irqs_disabled());
1561
1562 /*
1563 * don't plug a stopped queue, it must be paired with blk_start_queue()
1564 * which will restart the queueing
1565 */
1566 if (blk_queue_stopped(q))
1567 return;
1568
1569 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1570 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1571 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1572 }
1573 }
1574
1575 EXPORT_SYMBOL(blk_plug_device);
1576
1577 /*
1578 * remove the queue from the plugged list, if present. called with
1579 * queue lock held and interrupts disabled.
1580 */
1581 int blk_remove_plug(struct request_queue *q)
1582 {
1583 WARN_ON(!irqs_disabled());
1584
1585 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1586 return 0;
1587
1588 del_timer(&q->unplug_timer);
1589 return 1;
1590 }
1591
1592 EXPORT_SYMBOL(blk_remove_plug);
1593
1594 /*
1595 * remove the plug and let it rip..
1596 */
1597 void __generic_unplug_device(struct request_queue *q)
1598 {
1599 if (unlikely(blk_queue_stopped(q)))
1600 return;
1601
1602 if (!blk_remove_plug(q))
1603 return;
1604
1605 q->request_fn(q);
1606 }
1607 EXPORT_SYMBOL(__generic_unplug_device);
1608
1609 /**
1610 * generic_unplug_device - fire a request queue
1611 * @q: The &struct request_queue in question
1612 *
1613 * Description:
1614 * Linux uses plugging to build bigger requests queues before letting
1615 * the device have at them. If a queue is plugged, the I/O scheduler
1616 * is still adding and merging requests on the queue. Once the queue
1617 * gets unplugged, the request_fn defined for the queue is invoked and
1618 * transfers started.
1619 **/
1620 void generic_unplug_device(struct request_queue *q)
1621 {
1622 spin_lock_irq(q->queue_lock);
1623 __generic_unplug_device(q);
1624 spin_unlock_irq(q->queue_lock);
1625 }
1626 EXPORT_SYMBOL(generic_unplug_device);
1627
1628 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1629 struct page *page)
1630 {
1631 struct request_queue *q = bdi->unplug_io_data;
1632
1633 /*
1634 * devices don't necessarily have an ->unplug_fn defined
1635 */
1636 if (q->unplug_fn) {
1637 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1638 q->rq.count[READ] + q->rq.count[WRITE]);
1639
1640 q->unplug_fn(q);
1641 }
1642 }
1643
1644 static void blk_unplug_work(struct work_struct *work)
1645 {
1646 struct request_queue *q =
1647 container_of(work, struct request_queue, unplug_work);
1648
1649 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1650 q->rq.count[READ] + q->rq.count[WRITE]);
1651
1652 q->unplug_fn(q);
1653 }
1654
1655 static void blk_unplug_timeout(unsigned long data)
1656 {
1657 struct request_queue *q = (struct request_queue *)data;
1658
1659 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1660 q->rq.count[READ] + q->rq.count[WRITE]);
1661
1662 kblockd_schedule_work(&q->unplug_work);
1663 }
1664
1665 /**
1666 * blk_start_queue - restart a previously stopped queue
1667 * @q: The &struct request_queue in question
1668 *
1669 * Description:
1670 * blk_start_queue() will clear the stop flag on the queue, and call
1671 * the request_fn for the queue if it was in a stopped state when
1672 * entered. Also see blk_stop_queue(). Queue lock must be held.
1673 **/
1674 void blk_start_queue(struct request_queue *q)
1675 {
1676 WARN_ON(!irqs_disabled());
1677
1678 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1679
1680 /*
1681 * one level of recursion is ok and is much faster than kicking
1682 * the unplug handling
1683 */
1684 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1685 q->request_fn(q);
1686 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1687 } else {
1688 blk_plug_device(q);
1689 kblockd_schedule_work(&q->unplug_work);
1690 }
1691 }
1692
1693 EXPORT_SYMBOL(blk_start_queue);
1694
1695 /**
1696 * blk_stop_queue - stop a queue
1697 * @q: The &struct request_queue in question
1698 *
1699 * Description:
1700 * The Linux block layer assumes that a block driver will consume all
1701 * entries on the request queue when the request_fn strategy is called.
1702 * Often this will not happen, because of hardware limitations (queue
1703 * depth settings). If a device driver gets a 'queue full' response,
1704 * or if it simply chooses not to queue more I/O at one point, it can
1705 * call this function to prevent the request_fn from being called until
1706 * the driver has signalled it's ready to go again. This happens by calling
1707 * blk_start_queue() to restart queue operations. Queue lock must be held.
1708 **/
1709 void blk_stop_queue(struct request_queue *q)
1710 {
1711 blk_remove_plug(q);
1712 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1713 }
1714 EXPORT_SYMBOL(blk_stop_queue);
1715
1716 /**
1717 * blk_sync_queue - cancel any pending callbacks on a queue
1718 * @q: the queue
1719 *
1720 * Description:
1721 * The block layer may perform asynchronous callback activity
1722 * on a queue, such as calling the unplug function after a timeout.
1723 * A block device may call blk_sync_queue to ensure that any
1724 * such activity is cancelled, thus allowing it to release resources
1725 * that the callbacks might use. The caller must already have made sure
1726 * that its ->make_request_fn will not re-add plugging prior to calling
1727 * this function.
1728 *
1729 */
1730 void blk_sync_queue(struct request_queue *q)
1731 {
1732 del_timer_sync(&q->unplug_timer);
1733 }
1734 EXPORT_SYMBOL(blk_sync_queue);
1735
1736 /**
1737 * blk_run_queue - run a single device queue
1738 * @q: The queue to run
1739 */
1740 void blk_run_queue(struct request_queue *q)
1741 {
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(q->queue_lock, flags);
1745 blk_remove_plug(q);
1746
1747 /*
1748 * Only recurse once to avoid overrunning the stack, let the unplug
1749 * handling reinvoke the handler shortly if we already got there.
1750 */
1751 if (!elv_queue_empty(q)) {
1752 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1753 q->request_fn(q);
1754 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1755 } else {
1756 blk_plug_device(q);
1757 kblockd_schedule_work(&q->unplug_work);
1758 }
1759 }
1760
1761 spin_unlock_irqrestore(q->queue_lock, flags);
1762 }
1763 EXPORT_SYMBOL(blk_run_queue);
1764
1765 /**
1766 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1767 * @kobj: the kobj belonging of the request queue to be released
1768 *
1769 * Description:
1770 * blk_cleanup_queue is the pair to blk_init_queue() or
1771 * blk_queue_make_request(). It should be called when a request queue is
1772 * being released; typically when a block device is being de-registered.
1773 * Currently, its primary task it to free all the &struct request
1774 * structures that were allocated to the queue and the queue itself.
1775 *
1776 * Caveat:
1777 * Hopefully the low level driver will have finished any
1778 * outstanding requests first...
1779 **/
1780 static void blk_release_queue(struct kobject *kobj)
1781 {
1782 struct request_queue *q =
1783 container_of(kobj, struct request_queue, kobj);
1784 struct request_list *rl = &q->rq;
1785
1786 blk_sync_queue(q);
1787
1788 if (rl->rq_pool)
1789 mempool_destroy(rl->rq_pool);
1790
1791 if (q->queue_tags)
1792 __blk_queue_free_tags(q);
1793
1794 blk_trace_shutdown(q);
1795
1796 bdi_destroy(&q->backing_dev_info);
1797 kmem_cache_free(requestq_cachep, q);
1798 }
1799
1800 void blk_put_queue(struct request_queue *q)
1801 {
1802 kobject_put(&q->kobj);
1803 }
1804 EXPORT_SYMBOL(blk_put_queue);
1805
1806 void blk_cleanup_queue(struct request_queue * q)
1807 {
1808 mutex_lock(&q->sysfs_lock);
1809 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1810 mutex_unlock(&q->sysfs_lock);
1811
1812 if (q->elevator)
1813 elevator_exit(q->elevator);
1814
1815 blk_put_queue(q);
1816 }
1817
1818 EXPORT_SYMBOL(blk_cleanup_queue);
1819
1820 static int blk_init_free_list(struct request_queue *q)
1821 {
1822 struct request_list *rl = &q->rq;
1823
1824 rl->count[READ] = rl->count[WRITE] = 0;
1825 rl->starved[READ] = rl->starved[WRITE] = 0;
1826 rl->elvpriv = 0;
1827 init_waitqueue_head(&rl->wait[READ]);
1828 init_waitqueue_head(&rl->wait[WRITE]);
1829
1830 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1831 mempool_free_slab, request_cachep, q->node);
1832
1833 if (!rl->rq_pool)
1834 return -ENOMEM;
1835
1836 return 0;
1837 }
1838
1839 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1840 {
1841 return blk_alloc_queue_node(gfp_mask, -1);
1842 }
1843 EXPORT_SYMBOL(blk_alloc_queue);
1844
1845 static struct kobj_type queue_ktype;
1846
1847 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1848 {
1849 struct request_queue *q;
1850 int err;
1851
1852 q = kmem_cache_alloc_node(requestq_cachep,
1853 gfp_mask | __GFP_ZERO, node_id);
1854 if (!q)
1855 return NULL;
1856
1857 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1858 q->backing_dev_info.unplug_io_data = q;
1859 err = bdi_init(&q->backing_dev_info);
1860 if (err) {
1861 kmem_cache_free(requestq_cachep, q);
1862 return NULL;
1863 }
1864
1865 init_timer(&q->unplug_timer);
1866
1867 kobject_set_name(&q->kobj, "%s", "queue");
1868 q->kobj.ktype = &queue_ktype;
1869 kobject_init(&q->kobj);
1870
1871 mutex_init(&q->sysfs_lock);
1872
1873 return q;
1874 }
1875 EXPORT_SYMBOL(blk_alloc_queue_node);
1876
1877 /**
1878 * blk_init_queue - prepare a request queue for use with a block device
1879 * @rfn: The function to be called to process requests that have been
1880 * placed on the queue.
1881 * @lock: Request queue spin lock
1882 *
1883 * Description:
1884 * If a block device wishes to use the standard request handling procedures,
1885 * which sorts requests and coalesces adjacent requests, then it must
1886 * call blk_init_queue(). The function @rfn will be called when there
1887 * are requests on the queue that need to be processed. If the device
1888 * supports plugging, then @rfn may not be called immediately when requests
1889 * are available on the queue, but may be called at some time later instead.
1890 * Plugged queues are generally unplugged when a buffer belonging to one
1891 * of the requests on the queue is needed, or due to memory pressure.
1892 *
1893 * @rfn is not required, or even expected, to remove all requests off the
1894 * queue, but only as many as it can handle at a time. If it does leave
1895 * requests on the queue, it is responsible for arranging that the requests
1896 * get dealt with eventually.
1897 *
1898 * The queue spin lock must be held while manipulating the requests on the
1899 * request queue; this lock will be taken also from interrupt context, so irq
1900 * disabling is needed for it.
1901 *
1902 * Function returns a pointer to the initialized request queue, or NULL if
1903 * it didn't succeed.
1904 *
1905 * Note:
1906 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1907 * when the block device is deactivated (such as at module unload).
1908 **/
1909
1910 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1911 {
1912 return blk_init_queue_node(rfn, lock, -1);
1913 }
1914 EXPORT_SYMBOL(blk_init_queue);
1915
1916 struct request_queue *
1917 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1918 {
1919 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1920
1921 if (!q)
1922 return NULL;
1923
1924 q->node = node_id;
1925 if (blk_init_free_list(q)) {
1926 kmem_cache_free(requestq_cachep, q);
1927 return NULL;
1928 }
1929
1930 /*
1931 * if caller didn't supply a lock, they get per-queue locking with
1932 * our embedded lock
1933 */
1934 if (!lock) {
1935 spin_lock_init(&q->__queue_lock);
1936 lock = &q->__queue_lock;
1937 }
1938
1939 q->request_fn = rfn;
1940 q->prep_rq_fn = NULL;
1941 q->unplug_fn = generic_unplug_device;
1942 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1943 q->queue_lock = lock;
1944
1945 blk_queue_segment_boundary(q, 0xffffffff);
1946
1947 blk_queue_make_request(q, __make_request);
1948 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1949
1950 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1951 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1952
1953 q->sg_reserved_size = INT_MAX;
1954
1955 /*
1956 * all done
1957 */
1958 if (!elevator_init(q, NULL)) {
1959 blk_queue_congestion_threshold(q);
1960 return q;
1961 }
1962
1963 blk_put_queue(q);
1964 return NULL;
1965 }
1966 EXPORT_SYMBOL(blk_init_queue_node);
1967
1968 int blk_get_queue(struct request_queue *q)
1969 {
1970 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1971 kobject_get(&q->kobj);
1972 return 0;
1973 }
1974
1975 return 1;
1976 }
1977
1978 EXPORT_SYMBOL(blk_get_queue);
1979
1980 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1981 {
1982 if (rq->cmd_flags & REQ_ELVPRIV)
1983 elv_put_request(q, rq);
1984 mempool_free(rq, q->rq.rq_pool);
1985 }
1986
1987 static struct request *
1988 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1989 {
1990 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1991
1992 if (!rq)
1993 return NULL;
1994
1995 /*
1996 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1997 * see bio.h and blkdev.h
1998 */
1999 rq->cmd_flags = rw | REQ_ALLOCED;
2000
2001 if (priv) {
2002 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2003 mempool_free(rq, q->rq.rq_pool);
2004 return NULL;
2005 }
2006 rq->cmd_flags |= REQ_ELVPRIV;
2007 }
2008
2009 return rq;
2010 }
2011
2012 /*
2013 * ioc_batching returns true if the ioc is a valid batching request and
2014 * should be given priority access to a request.
2015 */
2016 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2017 {
2018 if (!ioc)
2019 return 0;
2020
2021 /*
2022 * Make sure the process is able to allocate at least 1 request
2023 * even if the batch times out, otherwise we could theoretically
2024 * lose wakeups.
2025 */
2026 return ioc->nr_batch_requests == q->nr_batching ||
2027 (ioc->nr_batch_requests > 0
2028 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2029 }
2030
2031 /*
2032 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2033 * will cause the process to be a "batcher" on all queues in the system. This
2034 * is the behaviour we want though - once it gets a wakeup it should be given
2035 * a nice run.
2036 */
2037 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2038 {
2039 if (!ioc || ioc_batching(q, ioc))
2040 return;
2041
2042 ioc->nr_batch_requests = q->nr_batching;
2043 ioc->last_waited = jiffies;
2044 }
2045
2046 static void __freed_request(struct request_queue *q, int rw)
2047 {
2048 struct request_list *rl = &q->rq;
2049
2050 if (rl->count[rw] < queue_congestion_off_threshold(q))
2051 blk_clear_queue_congested(q, rw);
2052
2053 if (rl->count[rw] + 1 <= q->nr_requests) {
2054 if (waitqueue_active(&rl->wait[rw]))
2055 wake_up(&rl->wait[rw]);
2056
2057 blk_clear_queue_full(q, rw);
2058 }
2059 }
2060
2061 /*
2062 * A request has just been released. Account for it, update the full and
2063 * congestion status, wake up any waiters. Called under q->queue_lock.
2064 */
2065 static void freed_request(struct request_queue *q, int rw, int priv)
2066 {
2067 struct request_list *rl = &q->rq;
2068
2069 rl->count[rw]--;
2070 if (priv)
2071 rl->elvpriv--;
2072
2073 __freed_request(q, rw);
2074
2075 if (unlikely(rl->starved[rw ^ 1]))
2076 __freed_request(q, rw ^ 1);
2077 }
2078
2079 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2080 /*
2081 * Get a free request, queue_lock must be held.
2082 * Returns NULL on failure, with queue_lock held.
2083 * Returns !NULL on success, with queue_lock *not held*.
2084 */
2085 static struct request *get_request(struct request_queue *q, int rw_flags,
2086 struct bio *bio, gfp_t gfp_mask)
2087 {
2088 struct request *rq = NULL;
2089 struct request_list *rl = &q->rq;
2090 struct io_context *ioc = NULL;
2091 const int rw = rw_flags & 0x01;
2092 int may_queue, priv;
2093
2094 may_queue = elv_may_queue(q, rw_flags);
2095 if (may_queue == ELV_MQUEUE_NO)
2096 goto rq_starved;
2097
2098 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2099 if (rl->count[rw]+1 >= q->nr_requests) {
2100 ioc = current_io_context(GFP_ATOMIC, q->node);
2101 /*
2102 * The queue will fill after this allocation, so set
2103 * it as full, and mark this process as "batching".
2104 * This process will be allowed to complete a batch of
2105 * requests, others will be blocked.
2106 */
2107 if (!blk_queue_full(q, rw)) {
2108 ioc_set_batching(q, ioc);
2109 blk_set_queue_full(q, rw);
2110 } else {
2111 if (may_queue != ELV_MQUEUE_MUST
2112 && !ioc_batching(q, ioc)) {
2113 /*
2114 * The queue is full and the allocating
2115 * process is not a "batcher", and not
2116 * exempted by the IO scheduler
2117 */
2118 goto out;
2119 }
2120 }
2121 }
2122 blk_set_queue_congested(q, rw);
2123 }
2124
2125 /*
2126 * Only allow batching queuers to allocate up to 50% over the defined
2127 * limit of requests, otherwise we could have thousands of requests
2128 * allocated with any setting of ->nr_requests
2129 */
2130 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2131 goto out;
2132
2133 rl->count[rw]++;
2134 rl->starved[rw] = 0;
2135
2136 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2137 if (priv)
2138 rl->elvpriv++;
2139
2140 spin_unlock_irq(q->queue_lock);
2141
2142 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2143 if (unlikely(!rq)) {
2144 /*
2145 * Allocation failed presumably due to memory. Undo anything
2146 * we might have messed up.
2147 *
2148 * Allocating task should really be put onto the front of the
2149 * wait queue, but this is pretty rare.
2150 */
2151 spin_lock_irq(q->queue_lock);
2152 freed_request(q, rw, priv);
2153
2154 /*
2155 * in the very unlikely event that allocation failed and no
2156 * requests for this direction was pending, mark us starved
2157 * so that freeing of a request in the other direction will
2158 * notice us. another possible fix would be to split the
2159 * rq mempool into READ and WRITE
2160 */
2161 rq_starved:
2162 if (unlikely(rl->count[rw] == 0))
2163 rl->starved[rw] = 1;
2164
2165 goto out;
2166 }
2167
2168 /*
2169 * ioc may be NULL here, and ioc_batching will be false. That's
2170 * OK, if the queue is under the request limit then requests need
2171 * not count toward the nr_batch_requests limit. There will always
2172 * be some limit enforced by BLK_BATCH_TIME.
2173 */
2174 if (ioc_batching(q, ioc))
2175 ioc->nr_batch_requests--;
2176
2177 rq_init(q, rq);
2178
2179 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2180 out:
2181 return rq;
2182 }
2183
2184 /*
2185 * No available requests for this queue, unplug the device and wait for some
2186 * requests to become available.
2187 *
2188 * Called with q->queue_lock held, and returns with it unlocked.
2189 */
2190 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2191 struct bio *bio)
2192 {
2193 const int rw = rw_flags & 0x01;
2194 struct request *rq;
2195
2196 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2197 while (!rq) {
2198 DEFINE_WAIT(wait);
2199 struct request_list *rl = &q->rq;
2200
2201 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2202 TASK_UNINTERRUPTIBLE);
2203
2204 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2205
2206 if (!rq) {
2207 struct io_context *ioc;
2208
2209 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2210
2211 __generic_unplug_device(q);
2212 spin_unlock_irq(q->queue_lock);
2213 io_schedule();
2214
2215 /*
2216 * After sleeping, we become a "batching" process and
2217 * will be able to allocate at least one request, and
2218 * up to a big batch of them for a small period time.
2219 * See ioc_batching, ioc_set_batching
2220 */
2221 ioc = current_io_context(GFP_NOIO, q->node);
2222 ioc_set_batching(q, ioc);
2223
2224 spin_lock_irq(q->queue_lock);
2225 }
2226 finish_wait(&rl->wait[rw], &wait);
2227 }
2228
2229 return rq;
2230 }
2231
2232 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2233 {
2234 struct request *rq;
2235
2236 BUG_ON(rw != READ && rw != WRITE);
2237
2238 spin_lock_irq(q->queue_lock);
2239 if (gfp_mask & __GFP_WAIT) {
2240 rq = get_request_wait(q, rw, NULL);
2241 } else {
2242 rq = get_request(q, rw, NULL, gfp_mask);
2243 if (!rq)
2244 spin_unlock_irq(q->queue_lock);
2245 }
2246 /* q->queue_lock is unlocked at this point */
2247
2248 return rq;
2249 }
2250 EXPORT_SYMBOL(blk_get_request);
2251
2252 /**
2253 * blk_start_queueing - initiate dispatch of requests to device
2254 * @q: request queue to kick into gear
2255 *
2256 * This is basically a helper to remove the need to know whether a queue
2257 * is plugged or not if someone just wants to initiate dispatch of requests
2258 * for this queue.
2259 *
2260 * The queue lock must be held with interrupts disabled.
2261 */
2262 void blk_start_queueing(struct request_queue *q)
2263 {
2264 if (!blk_queue_plugged(q))
2265 q->request_fn(q);
2266 else
2267 __generic_unplug_device(q);
2268 }
2269 EXPORT_SYMBOL(blk_start_queueing);
2270
2271 /**
2272 * blk_requeue_request - put a request back on queue
2273 * @q: request queue where request should be inserted
2274 * @rq: request to be inserted
2275 *
2276 * Description:
2277 * Drivers often keep queueing requests until the hardware cannot accept
2278 * more, when that condition happens we need to put the request back
2279 * on the queue. Must be called with queue lock held.
2280 */
2281 void blk_requeue_request(struct request_queue *q, struct request *rq)
2282 {
2283 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2284
2285 if (blk_rq_tagged(rq))
2286 blk_queue_end_tag(q, rq);
2287
2288 elv_requeue_request(q, rq);
2289 }
2290
2291 EXPORT_SYMBOL(blk_requeue_request);
2292
2293 /**
2294 * blk_insert_request - insert a special request in to a request queue
2295 * @q: request queue where request should be inserted
2296 * @rq: request to be inserted
2297 * @at_head: insert request at head or tail of queue
2298 * @data: private data
2299 *
2300 * Description:
2301 * Many block devices need to execute commands asynchronously, so they don't
2302 * block the whole kernel from preemption during request execution. This is
2303 * accomplished normally by inserting aritficial requests tagged as
2304 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2305 * scheduled for actual execution by the request queue.
2306 *
2307 * We have the option of inserting the head or the tail of the queue.
2308 * Typically we use the tail for new ioctls and so forth. We use the head
2309 * of the queue for things like a QUEUE_FULL message from a device, or a
2310 * host that is unable to accept a particular command.
2311 */
2312 void blk_insert_request(struct request_queue *q, struct request *rq,
2313 int at_head, void *data)
2314 {
2315 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2316 unsigned long flags;
2317
2318 /*
2319 * tell I/O scheduler that this isn't a regular read/write (ie it
2320 * must not attempt merges on this) and that it acts as a soft
2321 * barrier
2322 */
2323 rq->cmd_type = REQ_TYPE_SPECIAL;
2324 rq->cmd_flags |= REQ_SOFTBARRIER;
2325
2326 rq->special = data;
2327
2328 spin_lock_irqsave(q->queue_lock, flags);
2329
2330 /*
2331 * If command is tagged, release the tag
2332 */
2333 if (blk_rq_tagged(rq))
2334 blk_queue_end_tag(q, rq);
2335
2336 drive_stat_acct(rq, rq->nr_sectors, 1);
2337 __elv_add_request(q, rq, where, 0);
2338 blk_start_queueing(q);
2339 spin_unlock_irqrestore(q->queue_lock, flags);
2340 }
2341
2342 EXPORT_SYMBOL(blk_insert_request);
2343
2344 static int __blk_rq_unmap_user(struct bio *bio)
2345 {
2346 int ret = 0;
2347
2348 if (bio) {
2349 if (bio_flagged(bio, BIO_USER_MAPPED))
2350 bio_unmap_user(bio);
2351 else
2352 ret = bio_uncopy_user(bio);
2353 }
2354
2355 return ret;
2356 }
2357
2358 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2359 struct bio *bio)
2360 {
2361 if (!rq->bio)
2362 blk_rq_bio_prep(q, rq, bio);
2363 else if (!ll_back_merge_fn(q, rq, bio))
2364 return -EINVAL;
2365 else {
2366 rq->biotail->bi_next = bio;
2367 rq->biotail = bio;
2368
2369 rq->data_len += bio->bi_size;
2370 }
2371 return 0;
2372 }
2373 EXPORT_SYMBOL(blk_rq_append_bio);
2374
2375 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2376 void __user *ubuf, unsigned int len)
2377 {
2378 unsigned long uaddr;
2379 struct bio *bio, *orig_bio;
2380 int reading, ret;
2381
2382 reading = rq_data_dir(rq) == READ;
2383
2384 /*
2385 * if alignment requirement is satisfied, map in user pages for
2386 * direct dma. else, set up kernel bounce buffers
2387 */
2388 uaddr = (unsigned long) ubuf;
2389 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2390 bio = bio_map_user(q, NULL, uaddr, len, reading);
2391 else
2392 bio = bio_copy_user(q, uaddr, len, reading);
2393
2394 if (IS_ERR(bio))
2395 return PTR_ERR(bio);
2396
2397 orig_bio = bio;
2398 blk_queue_bounce(q, &bio);
2399
2400 /*
2401 * We link the bounce buffer in and could have to traverse it
2402 * later so we have to get a ref to prevent it from being freed
2403 */
2404 bio_get(bio);
2405
2406 ret = blk_rq_append_bio(q, rq, bio);
2407 if (!ret)
2408 return bio->bi_size;
2409
2410 /* if it was boucned we must call the end io function */
2411 bio_endio(bio, 0);
2412 __blk_rq_unmap_user(orig_bio);
2413 bio_put(bio);
2414 return ret;
2415 }
2416
2417 /**
2418 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2419 * @q: request queue where request should be inserted
2420 * @rq: request structure to fill
2421 * @ubuf: the user buffer
2422 * @len: length of user data
2423 *
2424 * Description:
2425 * Data will be mapped directly for zero copy io, if possible. Otherwise
2426 * a kernel bounce buffer is used.
2427 *
2428 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2429 * still in process context.
2430 *
2431 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2432 * before being submitted to the device, as pages mapped may be out of
2433 * reach. It's the callers responsibility to make sure this happens. The
2434 * original bio must be passed back in to blk_rq_unmap_user() for proper
2435 * unmapping.
2436 */
2437 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2438 void __user *ubuf, unsigned long len)
2439 {
2440 unsigned long bytes_read = 0;
2441 struct bio *bio = NULL;
2442 int ret;
2443
2444 if (len > (q->max_hw_sectors << 9))
2445 return -EINVAL;
2446 if (!len || !ubuf)
2447 return -EINVAL;
2448
2449 while (bytes_read != len) {
2450 unsigned long map_len, end, start;
2451
2452 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2453 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2454 >> PAGE_SHIFT;
2455 start = (unsigned long)ubuf >> PAGE_SHIFT;
2456
2457 /*
2458 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2459 * pages. If this happens we just lower the requested
2460 * mapping len by a page so that we can fit
2461 */
2462 if (end - start > BIO_MAX_PAGES)
2463 map_len -= PAGE_SIZE;
2464
2465 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2466 if (ret < 0)
2467 goto unmap_rq;
2468 if (!bio)
2469 bio = rq->bio;
2470 bytes_read += ret;
2471 ubuf += ret;
2472 }
2473
2474 rq->buffer = rq->data = NULL;
2475 return 0;
2476 unmap_rq:
2477 blk_rq_unmap_user(bio);
2478 return ret;
2479 }
2480
2481 EXPORT_SYMBOL(blk_rq_map_user);
2482
2483 /**
2484 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2485 * @q: request queue where request should be inserted
2486 * @rq: request to map data to
2487 * @iov: pointer to the iovec
2488 * @iov_count: number of elements in the iovec
2489 * @len: I/O byte count
2490 *
2491 * Description:
2492 * Data will be mapped directly for zero copy io, if possible. Otherwise
2493 * a kernel bounce buffer is used.
2494 *
2495 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2496 * still in process context.
2497 *
2498 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2499 * before being submitted to the device, as pages mapped may be out of
2500 * reach. It's the callers responsibility to make sure this happens. The
2501 * original bio must be passed back in to blk_rq_unmap_user() for proper
2502 * unmapping.
2503 */
2504 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2505 struct sg_iovec *iov, int iov_count, unsigned int len)
2506 {
2507 struct bio *bio;
2508
2509 if (!iov || iov_count <= 0)
2510 return -EINVAL;
2511
2512 /* we don't allow misaligned data like bio_map_user() does. If the
2513 * user is using sg, they're expected to know the alignment constraints
2514 * and respect them accordingly */
2515 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2516 if (IS_ERR(bio))
2517 return PTR_ERR(bio);
2518
2519 if (bio->bi_size != len) {
2520 bio_endio(bio, 0);
2521 bio_unmap_user(bio);
2522 return -EINVAL;
2523 }
2524
2525 bio_get(bio);
2526 blk_rq_bio_prep(q, rq, bio);
2527 rq->buffer = rq->data = NULL;
2528 return 0;
2529 }
2530
2531 EXPORT_SYMBOL(blk_rq_map_user_iov);
2532
2533 /**
2534 * blk_rq_unmap_user - unmap a request with user data
2535 * @bio: start of bio list
2536 *
2537 * Description:
2538 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2539 * supply the original rq->bio from the blk_rq_map_user() return, since
2540 * the io completion may have changed rq->bio.
2541 */
2542 int blk_rq_unmap_user(struct bio *bio)
2543 {
2544 struct bio *mapped_bio;
2545 int ret = 0, ret2;
2546
2547 while (bio) {
2548 mapped_bio = bio;
2549 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2550 mapped_bio = bio->bi_private;
2551
2552 ret2 = __blk_rq_unmap_user(mapped_bio);
2553 if (ret2 && !ret)
2554 ret = ret2;
2555
2556 mapped_bio = bio;
2557 bio = bio->bi_next;
2558 bio_put(mapped_bio);
2559 }
2560
2561 return ret;
2562 }
2563
2564 EXPORT_SYMBOL(blk_rq_unmap_user);
2565
2566 /**
2567 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2568 * @q: request queue where request should be inserted
2569 * @rq: request to fill
2570 * @kbuf: the kernel buffer
2571 * @len: length of user data
2572 * @gfp_mask: memory allocation flags
2573 */
2574 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2575 unsigned int len, gfp_t gfp_mask)
2576 {
2577 struct bio *bio;
2578
2579 if (len > (q->max_hw_sectors << 9))
2580 return -EINVAL;
2581 if (!len || !kbuf)
2582 return -EINVAL;
2583
2584 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2585 if (IS_ERR(bio))
2586 return PTR_ERR(bio);
2587
2588 if (rq_data_dir(rq) == WRITE)
2589 bio->bi_rw |= (1 << BIO_RW);
2590
2591 blk_rq_bio_prep(q, rq, bio);
2592 blk_queue_bounce(q, &rq->bio);
2593 rq->buffer = rq->data = NULL;
2594 return 0;
2595 }
2596
2597 EXPORT_SYMBOL(blk_rq_map_kern);
2598
2599 /**
2600 * blk_execute_rq_nowait - insert a request into queue for execution
2601 * @q: queue to insert the request in
2602 * @bd_disk: matching gendisk
2603 * @rq: request to insert
2604 * @at_head: insert request at head or tail of queue
2605 * @done: I/O completion handler
2606 *
2607 * Description:
2608 * Insert a fully prepared request at the back of the io scheduler queue
2609 * for execution. Don't wait for completion.
2610 */
2611 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2612 struct request *rq, int at_head,
2613 rq_end_io_fn *done)
2614 {
2615 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2616
2617 rq->rq_disk = bd_disk;
2618 rq->cmd_flags |= REQ_NOMERGE;
2619 rq->end_io = done;
2620 WARN_ON(irqs_disabled());
2621 spin_lock_irq(q->queue_lock);
2622 __elv_add_request(q, rq, where, 1);
2623 __generic_unplug_device(q);
2624 spin_unlock_irq(q->queue_lock);
2625 }
2626 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2627
2628 /**
2629 * blk_execute_rq - insert a request into queue for execution
2630 * @q: queue to insert the request in
2631 * @bd_disk: matching gendisk
2632 * @rq: request to insert
2633 * @at_head: insert request at head or tail of queue
2634 *
2635 * Description:
2636 * Insert a fully prepared request at the back of the io scheduler queue
2637 * for execution and wait for completion.
2638 */
2639 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2640 struct request *rq, int at_head)
2641 {
2642 DECLARE_COMPLETION_ONSTACK(wait);
2643 char sense[SCSI_SENSE_BUFFERSIZE];
2644 int err = 0;
2645
2646 /*
2647 * we need an extra reference to the request, so we can look at
2648 * it after io completion
2649 */
2650 rq->ref_count++;
2651
2652 if (!rq->sense) {
2653 memset(sense, 0, sizeof(sense));
2654 rq->sense = sense;
2655 rq->sense_len = 0;
2656 }
2657
2658 rq->end_io_data = &wait;
2659 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2660 wait_for_completion(&wait);
2661
2662 if (rq->errors)
2663 err = -EIO;
2664
2665 return err;
2666 }
2667
2668 EXPORT_SYMBOL(blk_execute_rq);
2669
2670 static void bio_end_empty_barrier(struct bio *bio, int err)
2671 {
2672 if (err)
2673 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2674
2675 complete(bio->bi_private);
2676 }
2677
2678 /**
2679 * blkdev_issue_flush - queue a flush
2680 * @bdev: blockdev to issue flush for
2681 * @error_sector: error sector
2682 *
2683 * Description:
2684 * Issue a flush for the block device in question. Caller can supply
2685 * room for storing the error offset in case of a flush error, if they
2686 * wish to. Caller must run wait_for_completion() on its own.
2687 */
2688 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2689 {
2690 DECLARE_COMPLETION_ONSTACK(wait);
2691 struct request_queue *q;
2692 struct bio *bio;
2693 int ret;
2694
2695 if (bdev->bd_disk == NULL)
2696 return -ENXIO;
2697
2698 q = bdev_get_queue(bdev);
2699 if (!q)
2700 return -ENXIO;
2701
2702 bio = bio_alloc(GFP_KERNEL, 0);
2703 if (!bio)
2704 return -ENOMEM;
2705
2706 bio->bi_end_io = bio_end_empty_barrier;
2707 bio->bi_private = &wait;
2708 bio->bi_bdev = bdev;
2709 submit_bio(1 << BIO_RW_BARRIER, bio);
2710
2711 wait_for_completion(&wait);
2712
2713 /*
2714 * The driver must store the error location in ->bi_sector, if
2715 * it supports it. For non-stacked drivers, this should be copied
2716 * from rq->sector.
2717 */
2718 if (error_sector)
2719 *error_sector = bio->bi_sector;
2720
2721 ret = 0;
2722 if (!bio_flagged(bio, BIO_UPTODATE))
2723 ret = -EIO;
2724
2725 bio_put(bio);
2726 return ret;
2727 }
2728
2729 EXPORT_SYMBOL(blkdev_issue_flush);
2730
2731 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2732 {
2733 int rw = rq_data_dir(rq);
2734
2735 if (!blk_fs_request(rq) || !rq->rq_disk)
2736 return;
2737
2738 if (!new_io) {
2739 __disk_stat_inc(rq->rq_disk, merges[rw]);
2740 } else {
2741 disk_round_stats(rq->rq_disk);
2742 rq->rq_disk->in_flight++;
2743 }
2744 }
2745
2746 /*
2747 * add-request adds a request to the linked list.
2748 * queue lock is held and interrupts disabled, as we muck with the
2749 * request queue list.
2750 */
2751 static inline void add_request(struct request_queue * q, struct request * req)
2752 {
2753 drive_stat_acct(req, req->nr_sectors, 1);
2754
2755 /*
2756 * elevator indicated where it wants this request to be
2757 * inserted at elevator_merge time
2758 */
2759 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2760 }
2761
2762 /*
2763 * disk_round_stats() - Round off the performance stats on a struct
2764 * disk_stats.
2765 *
2766 * The average IO queue length and utilisation statistics are maintained
2767 * by observing the current state of the queue length and the amount of
2768 * time it has been in this state for.
2769 *
2770 * Normally, that accounting is done on IO completion, but that can result
2771 * in more than a second's worth of IO being accounted for within any one
2772 * second, leading to >100% utilisation. To deal with that, we call this
2773 * function to do a round-off before returning the results when reading
2774 * /proc/diskstats. This accounts immediately for all queue usage up to
2775 * the current jiffies and restarts the counters again.
2776 */
2777 void disk_round_stats(struct gendisk *disk)
2778 {
2779 unsigned long now = jiffies;
2780
2781 if (now == disk->stamp)
2782 return;
2783
2784 if (disk->in_flight) {
2785 __disk_stat_add(disk, time_in_queue,
2786 disk->in_flight * (now - disk->stamp));
2787 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2788 }
2789 disk->stamp = now;
2790 }
2791
2792 EXPORT_SYMBOL_GPL(disk_round_stats);
2793
2794 /*
2795 * queue lock must be held
2796 */
2797 void __blk_put_request(struct request_queue *q, struct request *req)
2798 {
2799 if (unlikely(!q))
2800 return;
2801 if (unlikely(--req->ref_count))
2802 return;
2803
2804 elv_completed_request(q, req);
2805
2806 /*
2807 * Request may not have originated from ll_rw_blk. if not,
2808 * it didn't come out of our reserved rq pools
2809 */
2810 if (req->cmd_flags & REQ_ALLOCED) {
2811 int rw = rq_data_dir(req);
2812 int priv = req->cmd_flags & REQ_ELVPRIV;
2813
2814 BUG_ON(!list_empty(&req->queuelist));
2815 BUG_ON(!hlist_unhashed(&req->hash));
2816
2817 blk_free_request(q, req);
2818 freed_request(q, rw, priv);
2819 }
2820 }
2821
2822 EXPORT_SYMBOL_GPL(__blk_put_request);
2823
2824 void blk_put_request(struct request *req)
2825 {
2826 unsigned long flags;
2827 struct request_queue *q = req->q;
2828
2829 /*
2830 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2831 * following if (q) test.
2832 */
2833 if (q) {
2834 spin_lock_irqsave(q->queue_lock, flags);
2835 __blk_put_request(q, req);
2836 spin_unlock_irqrestore(q->queue_lock, flags);
2837 }
2838 }
2839
2840 EXPORT_SYMBOL(blk_put_request);
2841
2842 /**
2843 * blk_end_sync_rq - executes a completion event on a request
2844 * @rq: request to complete
2845 * @error: end io status of the request
2846 */
2847 void blk_end_sync_rq(struct request *rq, int error)
2848 {
2849 struct completion *waiting = rq->end_io_data;
2850
2851 rq->end_io_data = NULL;
2852 __blk_put_request(rq->q, rq);
2853
2854 /*
2855 * complete last, if this is a stack request the process (and thus
2856 * the rq pointer) could be invalid right after this complete()
2857 */
2858 complete(waiting);
2859 }
2860 EXPORT_SYMBOL(blk_end_sync_rq);
2861
2862 /*
2863 * Has to be called with the request spinlock acquired
2864 */
2865 static int attempt_merge(struct request_queue *q, struct request *req,
2866 struct request *next)
2867 {
2868 if (!rq_mergeable(req) || !rq_mergeable(next))
2869 return 0;
2870
2871 /*
2872 * not contiguous
2873 */
2874 if (req->sector + req->nr_sectors != next->sector)
2875 return 0;
2876
2877 if (rq_data_dir(req) != rq_data_dir(next)
2878 || req->rq_disk != next->rq_disk
2879 || next->special)
2880 return 0;
2881
2882 /*
2883 * If we are allowed to merge, then append bio list
2884 * from next to rq and release next. merge_requests_fn
2885 * will have updated segment counts, update sector
2886 * counts here.
2887 */
2888 if (!ll_merge_requests_fn(q, req, next))
2889 return 0;
2890
2891 /*
2892 * At this point we have either done a back merge
2893 * or front merge. We need the smaller start_time of
2894 * the merged requests to be the current request
2895 * for accounting purposes.
2896 */
2897 if (time_after(req->start_time, next->start_time))
2898 req->start_time = next->start_time;
2899
2900 req->biotail->bi_next = next->bio;
2901 req->biotail = next->biotail;
2902
2903 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2904
2905 elv_merge_requests(q, req, next);
2906
2907 if (req->rq_disk) {
2908 disk_round_stats(req->rq_disk);
2909 req->rq_disk->in_flight--;
2910 }
2911
2912 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2913
2914 __blk_put_request(q, next);
2915 return 1;
2916 }
2917
2918 static inline int attempt_back_merge(struct request_queue *q,
2919 struct request *rq)
2920 {
2921 struct request *next = elv_latter_request(q, rq);
2922
2923 if (next)
2924 return attempt_merge(q, rq, next);
2925
2926 return 0;
2927 }
2928
2929 static inline int attempt_front_merge(struct request_queue *q,
2930 struct request *rq)
2931 {
2932 struct request *prev = elv_former_request(q, rq);
2933
2934 if (prev)
2935 return attempt_merge(q, prev, rq);
2936
2937 return 0;
2938 }
2939
2940 static void init_request_from_bio(struct request *req, struct bio *bio)
2941 {
2942 req->cmd_type = REQ_TYPE_FS;
2943
2944 /*
2945 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2946 */
2947 if (bio_rw_ahead(bio) || bio_failfast(bio))
2948 req->cmd_flags |= REQ_FAILFAST;
2949
2950 /*
2951 * REQ_BARRIER implies no merging, but lets make it explicit
2952 */
2953 if (unlikely(bio_barrier(bio)))
2954 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2955
2956 if (bio_sync(bio))
2957 req->cmd_flags |= REQ_RW_SYNC;
2958 if (bio_rw_meta(bio))
2959 req->cmd_flags |= REQ_RW_META;
2960
2961 req->errors = 0;
2962 req->hard_sector = req->sector = bio->bi_sector;
2963 req->ioprio = bio_prio(bio);
2964 req->start_time = jiffies;
2965 blk_rq_bio_prep(req->q, req, bio);
2966 }
2967
2968 static int __make_request(struct request_queue *q, struct bio *bio)
2969 {
2970 struct request *req;
2971 int el_ret, nr_sectors, barrier, err;
2972 const unsigned short prio = bio_prio(bio);
2973 const int sync = bio_sync(bio);
2974 int rw_flags;
2975
2976 nr_sectors = bio_sectors(bio);
2977
2978 /*
2979 * low level driver can indicate that it wants pages above a
2980 * certain limit bounced to low memory (ie for highmem, or even
2981 * ISA dma in theory)
2982 */
2983 blk_queue_bounce(q, &bio);
2984
2985 barrier = bio_barrier(bio);
2986 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2987 err = -EOPNOTSUPP;
2988 goto end_io;
2989 }
2990
2991 spin_lock_irq(q->queue_lock);
2992
2993 if (unlikely(barrier) || elv_queue_empty(q))
2994 goto get_rq;
2995
2996 el_ret = elv_merge(q, &req, bio);
2997 switch (el_ret) {
2998 case ELEVATOR_BACK_MERGE:
2999 BUG_ON(!rq_mergeable(req));
3000
3001 if (!ll_back_merge_fn(q, req, bio))
3002 break;
3003
3004 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3005
3006 req->biotail->bi_next = bio;
3007 req->biotail = bio;
3008 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3009 req->ioprio = ioprio_best(req->ioprio, prio);
3010 drive_stat_acct(req, nr_sectors, 0);
3011 if (!attempt_back_merge(q, req))
3012 elv_merged_request(q, req, el_ret);
3013 goto out;
3014
3015 case ELEVATOR_FRONT_MERGE:
3016 BUG_ON(!rq_mergeable(req));
3017
3018 if (!ll_front_merge_fn(q, req, bio))
3019 break;
3020
3021 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3022
3023 bio->bi_next = req->bio;
3024 req->bio = bio;
3025
3026 /*
3027 * may not be valid. if the low level driver said
3028 * it didn't need a bounce buffer then it better
3029 * not touch req->buffer either...
3030 */
3031 req->buffer = bio_data(bio);
3032 req->current_nr_sectors = bio_cur_sectors(bio);
3033 req->hard_cur_sectors = req->current_nr_sectors;
3034 req->sector = req->hard_sector = bio->bi_sector;
3035 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3036 req->ioprio = ioprio_best(req->ioprio, prio);
3037 drive_stat_acct(req, nr_sectors, 0);
3038 if (!attempt_front_merge(q, req))
3039 elv_merged_request(q, req, el_ret);
3040 goto out;
3041
3042 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3043 default:
3044 ;
3045 }
3046
3047 get_rq:
3048 /*
3049 * This sync check and mask will be re-done in init_request_from_bio(),
3050 * but we need to set it earlier to expose the sync flag to the
3051 * rq allocator and io schedulers.
3052 */
3053 rw_flags = bio_data_dir(bio);
3054 if (sync)
3055 rw_flags |= REQ_RW_SYNC;
3056
3057 /*
3058 * Grab a free request. This is might sleep but can not fail.
3059 * Returns with the queue unlocked.
3060 */
3061 req = get_request_wait(q, rw_flags, bio);
3062
3063 /*
3064 * After dropping the lock and possibly sleeping here, our request
3065 * may now be mergeable after it had proven unmergeable (above).
3066 * We don't worry about that case for efficiency. It won't happen
3067 * often, and the elevators are able to handle it.
3068 */
3069 init_request_from_bio(req, bio);
3070
3071 spin_lock_irq(q->queue_lock);
3072 if (elv_queue_empty(q))
3073 blk_plug_device(q);
3074 add_request(q, req);
3075 out:
3076 if (sync)
3077 __generic_unplug_device(q);
3078
3079 spin_unlock_irq(q->queue_lock);
3080 return 0;
3081
3082 end_io:
3083 bio_endio(bio, err);
3084 return 0;
3085 }
3086
3087 /*
3088 * If bio->bi_dev is a partition, remap the location
3089 */
3090 static inline void blk_partition_remap(struct bio *bio)
3091 {
3092 struct block_device *bdev = bio->bi_bdev;
3093
3094 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3095 struct hd_struct *p = bdev->bd_part;
3096 const int rw = bio_data_dir(bio);
3097
3098 p->sectors[rw] += bio_sectors(bio);
3099 p->ios[rw]++;
3100
3101 bio->bi_sector += p->start_sect;
3102 bio->bi_bdev = bdev->bd_contains;
3103
3104 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3105 bdev->bd_dev, bio->bi_sector,
3106 bio->bi_sector - p->start_sect);
3107 }
3108 }
3109
3110 static void handle_bad_sector(struct bio *bio)
3111 {
3112 char b[BDEVNAME_SIZE];
3113
3114 printk(KERN_INFO "attempt to access beyond end of device\n");
3115 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3116 bdevname(bio->bi_bdev, b),
3117 bio->bi_rw,
3118 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3119 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3120
3121 set_bit(BIO_EOF, &bio->bi_flags);
3122 }
3123
3124 #ifdef CONFIG_FAIL_MAKE_REQUEST
3125
3126 static DECLARE_FAULT_ATTR(fail_make_request);
3127
3128 static int __init setup_fail_make_request(char *str)
3129 {
3130 return setup_fault_attr(&fail_make_request, str);
3131 }
3132 __setup("fail_make_request=", setup_fail_make_request);
3133
3134 static int should_fail_request(struct bio *bio)
3135 {
3136 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3137 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3138 return should_fail(&fail_make_request, bio->bi_size);
3139
3140 return 0;
3141 }
3142
3143 static int __init fail_make_request_debugfs(void)
3144 {
3145 return init_fault_attr_dentries(&fail_make_request,
3146 "fail_make_request");
3147 }
3148
3149 late_initcall(fail_make_request_debugfs);
3150
3151 #else /* CONFIG_FAIL_MAKE_REQUEST */
3152
3153 static inline int should_fail_request(struct bio *bio)
3154 {
3155 return 0;
3156 }
3157
3158 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3159
3160 /*
3161 * Check whether this bio extends beyond the end of the device.
3162 */
3163 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3164 {
3165 sector_t maxsector;
3166
3167 if (!nr_sectors)
3168 return 0;
3169
3170 /* Test device or partition size, when known. */
3171 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3172 if (maxsector) {
3173 sector_t sector = bio->bi_sector;
3174
3175 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3176 /*
3177 * This may well happen - the kernel calls bread()
3178 * without checking the size of the device, e.g., when
3179 * mounting a device.
3180 */
3181 handle_bad_sector(bio);
3182 return 1;
3183 }
3184 }
3185
3186 return 0;
3187 }
3188
3189 /**
3190 * generic_make_request: hand a buffer to its device driver for I/O
3191 * @bio: The bio describing the location in memory and on the device.
3192 *
3193 * generic_make_request() is used to make I/O requests of block
3194 * devices. It is passed a &struct bio, which describes the I/O that needs
3195 * to be done.
3196 *
3197 * generic_make_request() does not return any status. The
3198 * success/failure status of the request, along with notification of
3199 * completion, is delivered asynchronously through the bio->bi_end_io
3200 * function described (one day) else where.
3201 *
3202 * The caller of generic_make_request must make sure that bi_io_vec
3203 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3204 * set to describe the device address, and the
3205 * bi_end_io and optionally bi_private are set to describe how
3206 * completion notification should be signaled.
3207 *
3208 * generic_make_request and the drivers it calls may use bi_next if this
3209 * bio happens to be merged with someone else, and may change bi_dev and
3210 * bi_sector for remaps as it sees fit. So the values of these fields
3211 * should NOT be depended on after the call to generic_make_request.
3212 */
3213 static inline void __generic_make_request(struct bio *bio)
3214 {
3215 struct request_queue *q;
3216 sector_t old_sector;
3217 int ret, nr_sectors = bio_sectors(bio);
3218 dev_t old_dev;
3219
3220 might_sleep();
3221
3222 if (bio_check_eod(bio, nr_sectors))
3223 goto end_io;
3224
3225 /*
3226 * Resolve the mapping until finished. (drivers are
3227 * still free to implement/resolve their own stacking
3228 * by explicitly returning 0)
3229 *
3230 * NOTE: we don't repeat the blk_size check for each new device.
3231 * Stacking drivers are expected to know what they are doing.
3232 */
3233 old_sector = -1;
3234 old_dev = 0;
3235 do {
3236 char b[BDEVNAME_SIZE];
3237
3238 q = bdev_get_queue(bio->bi_bdev);
3239 if (!q) {
3240 printk(KERN_ERR
3241 "generic_make_request: Trying to access "
3242 "nonexistent block-device %s (%Lu)\n",
3243 bdevname(bio->bi_bdev, b),
3244 (long long) bio->bi_sector);
3245 end_io:
3246 bio_endio(bio, -EIO);
3247 break;
3248 }
3249
3250 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3251 printk("bio too big device %s (%u > %u)\n",
3252 bdevname(bio->bi_bdev, b),
3253 bio_sectors(bio),
3254 q->max_hw_sectors);
3255 goto end_io;
3256 }
3257
3258 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3259 goto end_io;
3260
3261 if (should_fail_request(bio))
3262 goto end_io;
3263
3264 /*
3265 * If this device has partitions, remap block n
3266 * of partition p to block n+start(p) of the disk.
3267 */
3268 blk_partition_remap(bio);
3269
3270 if (old_sector != -1)
3271 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3272 old_sector);
3273
3274 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3275
3276 old_sector = bio->bi_sector;
3277 old_dev = bio->bi_bdev->bd_dev;
3278
3279 if (bio_check_eod(bio, nr_sectors))
3280 goto end_io;
3281
3282 ret = q->make_request_fn(q, bio);
3283 } while (ret);
3284 }
3285
3286 /*
3287 * We only want one ->make_request_fn to be active at a time,
3288 * else stack usage with stacked devices could be a problem.
3289 * So use current->bio_{list,tail} to keep a list of requests
3290 * submited by a make_request_fn function.
3291 * current->bio_tail is also used as a flag to say if
3292 * generic_make_request is currently active in this task or not.
3293 * If it is NULL, then no make_request is active. If it is non-NULL,
3294 * then a make_request is active, and new requests should be added
3295 * at the tail
3296 */
3297 void generic_make_request(struct bio *bio)
3298 {
3299 if (current->bio_tail) {
3300 /* make_request is active */
3301 *(current->bio_tail) = bio;
3302 bio->bi_next = NULL;
3303 current->bio_tail = &bio->bi_next;
3304 return;
3305 }
3306 /* following loop may be a bit non-obvious, and so deserves some
3307 * explanation.
3308 * Before entering the loop, bio->bi_next is NULL (as all callers
3309 * ensure that) so we have a list with a single bio.
3310 * We pretend that we have just taken it off a longer list, so
3311 * we assign bio_list to the next (which is NULL) and bio_tail
3312 * to &bio_list, thus initialising the bio_list of new bios to be
3313 * added. __generic_make_request may indeed add some more bios
3314 * through a recursive call to generic_make_request. If it
3315 * did, we find a non-NULL value in bio_list and re-enter the loop
3316 * from the top. In this case we really did just take the bio
3317 * of the top of the list (no pretending) and so fixup bio_list and
3318 * bio_tail or bi_next, and call into __generic_make_request again.
3319 *
3320 * The loop was structured like this to make only one call to
3321 * __generic_make_request (which is important as it is large and
3322 * inlined) and to keep the structure simple.
3323 */
3324 BUG_ON(bio->bi_next);
3325 do {
3326 current->bio_list = bio->bi_next;
3327 if (bio->bi_next == NULL)
3328 current->bio_tail = &current->bio_list;
3329 else
3330 bio->bi_next = NULL;
3331 __generic_make_request(bio);
3332 bio = current->bio_list;
3333 } while (bio);
3334 current->bio_tail = NULL; /* deactivate */
3335 }
3336
3337 EXPORT_SYMBOL(generic_make_request);
3338
3339 /**
3340 * submit_bio: submit a bio to the block device layer for I/O
3341 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3342 * @bio: The &struct bio which describes the I/O
3343 *
3344 * submit_bio() is very similar in purpose to generic_make_request(), and
3345 * uses that function to do most of the work. Both are fairly rough
3346 * interfaces, @bio must be presetup and ready for I/O.
3347 *
3348 */
3349 void submit_bio(int rw, struct bio *bio)
3350 {
3351 int count = bio_sectors(bio);
3352
3353 bio->bi_rw |= rw;
3354
3355 /*
3356 * If it's a regular read/write or a barrier with data attached,
3357 * go through the normal accounting stuff before submission.
3358 */
3359 if (!bio_empty_barrier(bio)) {
3360
3361 BIO_BUG_ON(!bio->bi_size);
3362 BIO_BUG_ON(!bio->bi_io_vec);
3363
3364 if (rw & WRITE) {
3365 count_vm_events(PGPGOUT, count);
3366 } else {
3367 task_io_account_read(bio->bi_size);
3368 count_vm_events(PGPGIN, count);
3369 }
3370
3371 if (unlikely(block_dump)) {
3372 char b[BDEVNAME_SIZE];
3373 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3374 current->comm, task_pid_nr(current),
3375 (rw & WRITE) ? "WRITE" : "READ",
3376 (unsigned long long)bio->bi_sector,
3377 bdevname(bio->bi_bdev,b));
3378 }
3379 }
3380
3381 generic_make_request(bio);
3382 }
3383
3384 EXPORT_SYMBOL(submit_bio);
3385
3386 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3387 {
3388 if (blk_fs_request(rq)) {
3389 rq->hard_sector += nsect;
3390 rq->hard_nr_sectors -= nsect;
3391
3392 /*
3393 * Move the I/O submission pointers ahead if required.
3394 */
3395 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3396 (rq->sector <= rq->hard_sector)) {
3397 rq->sector = rq->hard_sector;
3398 rq->nr_sectors = rq->hard_nr_sectors;
3399 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3400 rq->current_nr_sectors = rq->hard_cur_sectors;
3401 rq->buffer = bio_data(rq->bio);
3402 }
3403
3404 /*
3405 * if total number of sectors is less than the first segment
3406 * size, something has gone terribly wrong
3407 */
3408 if (rq->nr_sectors < rq->current_nr_sectors) {
3409 printk("blk: request botched\n");
3410 rq->nr_sectors = rq->current_nr_sectors;
3411 }
3412 }
3413 }
3414
3415 static int __end_that_request_first(struct request *req, int uptodate,
3416 int nr_bytes)
3417 {
3418 int total_bytes, bio_nbytes, error, next_idx = 0;
3419 struct bio *bio;
3420
3421 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3422
3423 /*
3424 * extend uptodate bool to allow < 0 value to be direct io error
3425 */
3426 error = 0;
3427 if (end_io_error(uptodate))
3428 error = !uptodate ? -EIO : uptodate;
3429
3430 /*
3431 * for a REQ_BLOCK_PC request, we want to carry any eventual
3432 * sense key with us all the way through
3433 */
3434 if (!blk_pc_request(req))
3435 req->errors = 0;
3436
3437 if (!uptodate) {
3438 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3439 printk("end_request: I/O error, dev %s, sector %llu\n",
3440 req->rq_disk ? req->rq_disk->disk_name : "?",
3441 (unsigned long long)req->sector);
3442 }
3443
3444 if (blk_fs_request(req) && req->rq_disk) {
3445 const int rw = rq_data_dir(req);
3446
3447 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3448 }
3449
3450 total_bytes = bio_nbytes = 0;
3451 while ((bio = req->bio) != NULL) {
3452 int nbytes;
3453
3454 /*
3455 * For an empty barrier request, the low level driver must
3456 * store a potential error location in ->sector. We pass
3457 * that back up in ->bi_sector.
3458 */
3459 if (blk_empty_barrier(req))
3460 bio->bi_sector = req->sector;
3461
3462 if (nr_bytes >= bio->bi_size) {
3463 req->bio = bio->bi_next;
3464 nbytes = bio->bi_size;
3465 req_bio_endio(req, bio, nbytes, error);
3466 next_idx = 0;
3467 bio_nbytes = 0;
3468 } else {
3469 int idx = bio->bi_idx + next_idx;
3470
3471 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3472 blk_dump_rq_flags(req, "__end_that");
3473 printk("%s: bio idx %d >= vcnt %d\n",
3474 __FUNCTION__,
3475 bio->bi_idx, bio->bi_vcnt);
3476 break;
3477 }
3478
3479 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3480 BIO_BUG_ON(nbytes > bio->bi_size);
3481
3482 /*
3483 * not a complete bvec done
3484 */
3485 if (unlikely(nbytes > nr_bytes)) {
3486 bio_nbytes += nr_bytes;
3487 total_bytes += nr_bytes;
3488 break;
3489 }
3490
3491 /*
3492 * advance to the next vector
3493 */
3494 next_idx++;
3495 bio_nbytes += nbytes;
3496 }
3497
3498 total_bytes += nbytes;
3499 nr_bytes -= nbytes;
3500
3501 if ((bio = req->bio)) {
3502 /*
3503 * end more in this run, or just return 'not-done'
3504 */
3505 if (unlikely(nr_bytes <= 0))
3506 break;
3507 }
3508 }
3509
3510 /*
3511 * completely done
3512 */
3513 if (!req->bio)
3514 return 0;
3515
3516 /*
3517 * if the request wasn't completed, update state
3518 */
3519 if (bio_nbytes) {
3520 req_bio_endio(req, bio, bio_nbytes, error);
3521 bio->bi_idx += next_idx;
3522 bio_iovec(bio)->bv_offset += nr_bytes;
3523 bio_iovec(bio)->bv_len -= nr_bytes;
3524 }
3525
3526 blk_recalc_rq_sectors(req, total_bytes >> 9);
3527 blk_recalc_rq_segments(req);
3528 return 1;
3529 }
3530
3531 /**
3532 * end_that_request_first - end I/O on a request
3533 * @req: the request being processed
3534 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3535 * @nr_sectors: number of sectors to end I/O on
3536 *
3537 * Description:
3538 * Ends I/O on a number of sectors attached to @req, and sets it up
3539 * for the next range of segments (if any) in the cluster.
3540 *
3541 * Return:
3542 * 0 - we are done with this request, call end_that_request_last()
3543 * 1 - still buffers pending for this request
3544 **/
3545 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3546 {
3547 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3548 }
3549
3550 EXPORT_SYMBOL(end_that_request_first);
3551
3552 /**
3553 * end_that_request_chunk - end I/O on a request
3554 * @req: the request being processed
3555 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3556 * @nr_bytes: number of bytes to complete
3557 *
3558 * Description:
3559 * Ends I/O on a number of bytes attached to @req, and sets it up
3560 * for the next range of segments (if any). Like end_that_request_first(),
3561 * but deals with bytes instead of sectors.
3562 *
3563 * Return:
3564 * 0 - we are done with this request, call end_that_request_last()
3565 * 1 - still buffers pending for this request
3566 **/
3567 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3568 {
3569 return __end_that_request_first(req, uptodate, nr_bytes);
3570 }
3571
3572 EXPORT_SYMBOL(end_that_request_chunk);
3573
3574 /*
3575 * splice the completion data to a local structure and hand off to
3576 * process_completion_queue() to complete the requests
3577 */
3578 static void blk_done_softirq(struct softirq_action *h)
3579 {
3580 struct list_head *cpu_list, local_list;
3581
3582 local_irq_disable();
3583 cpu_list = &__get_cpu_var(blk_cpu_done);
3584 list_replace_init(cpu_list, &local_list);
3585 local_irq_enable();
3586
3587 while (!list_empty(&local_list)) {
3588 struct request *rq = list_entry(local_list.next, struct request, donelist);
3589
3590 list_del_init(&rq->donelist);
3591 rq->q->softirq_done_fn(rq);
3592 }
3593 }
3594
3595 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3596 void *hcpu)
3597 {
3598 /*
3599 * If a CPU goes away, splice its entries to the current CPU
3600 * and trigger a run of the softirq
3601 */
3602 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3603 int cpu = (unsigned long) hcpu;
3604
3605 local_irq_disable();
3606 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3607 &__get_cpu_var(blk_cpu_done));
3608 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3609 local_irq_enable();
3610 }
3611
3612 return NOTIFY_OK;
3613 }
3614
3615
3616 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3617 .notifier_call = blk_cpu_notify,
3618 };
3619
3620 /**
3621 * blk_complete_request - end I/O on a request
3622 * @req: the request being processed
3623 *
3624 * Description:
3625 * Ends all I/O on a request. It does not handle partial completions,
3626 * unless the driver actually implements this in its completion callback
3627 * through requeueing. The actual completion happens out-of-order,
3628 * through a softirq handler. The user must have registered a completion
3629 * callback through blk_queue_softirq_done().
3630 **/
3631
3632 void blk_complete_request(struct request *req)
3633 {
3634 struct list_head *cpu_list;
3635 unsigned long flags;
3636
3637 BUG_ON(!req->q->softirq_done_fn);
3638
3639 local_irq_save(flags);
3640
3641 cpu_list = &__get_cpu_var(blk_cpu_done);
3642 list_add_tail(&req->donelist, cpu_list);
3643 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3644
3645 local_irq_restore(flags);
3646 }
3647
3648 EXPORT_SYMBOL(blk_complete_request);
3649
3650 /*
3651 * queue lock must be held
3652 */
3653 void end_that_request_last(struct request *req, int uptodate)
3654 {
3655 struct gendisk *disk = req->rq_disk;
3656 int error;
3657
3658 /*
3659 * extend uptodate bool to allow < 0 value to be direct io error
3660 */
3661 error = 0;
3662 if (end_io_error(uptodate))
3663 error = !uptodate ? -EIO : uptodate;
3664
3665 if (unlikely(laptop_mode) && blk_fs_request(req))
3666 laptop_io_completion();
3667
3668 /*
3669 * Account IO completion. bar_rq isn't accounted as a normal
3670 * IO on queueing nor completion. Accounting the containing
3671 * request is enough.
3672 */
3673 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3674 unsigned long duration = jiffies - req->start_time;
3675 const int rw = rq_data_dir(req);
3676
3677 __disk_stat_inc(disk, ios[rw]);
3678 __disk_stat_add(disk, ticks[rw], duration);
3679 disk_round_stats(disk);
3680 disk->in_flight--;
3681 }
3682 if (req->end_io)
3683 req->end_io(req, error);
3684 else
3685 __blk_put_request(req->q, req);
3686 }
3687
3688 EXPORT_SYMBOL(end_that_request_last);
3689
3690 static inline void __end_request(struct request *rq, int uptodate,
3691 unsigned int nr_bytes, int dequeue)
3692 {
3693 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3694 if (dequeue)
3695 blkdev_dequeue_request(rq);
3696 add_disk_randomness(rq->rq_disk);
3697 end_that_request_last(rq, uptodate);
3698 }
3699 }
3700
3701 static unsigned int rq_byte_size(struct request *rq)
3702 {
3703 if (blk_fs_request(rq))
3704 return rq->hard_nr_sectors << 9;
3705
3706 return rq->data_len;
3707 }
3708
3709 /**
3710 * end_queued_request - end all I/O on a queued request
3711 * @rq: the request being processed
3712 * @uptodate: error value or 0/1 uptodate flag
3713 *
3714 * Description:
3715 * Ends all I/O on a request, and removes it from the block layer queues.
3716 * Not suitable for normal IO completion, unless the driver still has
3717 * the request attached to the block layer.
3718 *
3719 **/
3720 void end_queued_request(struct request *rq, int uptodate)
3721 {
3722 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3723 }
3724 EXPORT_SYMBOL(end_queued_request);
3725
3726 /**
3727 * end_dequeued_request - end all I/O on a dequeued request
3728 * @rq: the request being processed
3729 * @uptodate: error value or 0/1 uptodate flag
3730 *
3731 * Description:
3732 * Ends all I/O on a request. The request must already have been
3733 * dequeued using blkdev_dequeue_request(), as is normally the case
3734 * for most drivers.
3735 *
3736 **/
3737 void end_dequeued_request(struct request *rq, int uptodate)
3738 {
3739 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3740 }
3741 EXPORT_SYMBOL(end_dequeued_request);
3742
3743
3744 /**
3745 * end_request - end I/O on the current segment of the request
3746 * @req: the request being processed
3747 * @uptodate: error value or 0/1 uptodate flag
3748 *
3749 * Description:
3750 * Ends I/O on the current segment of a request. If that is the only
3751 * remaining segment, the request is also completed and freed.
3752 *
3753 * This is a remnant of how older block drivers handled IO completions.
3754 * Modern drivers typically end IO on the full request in one go, unless
3755 * they have a residual value to account for. For that case this function
3756 * isn't really useful, unless the residual just happens to be the
3757 * full current segment. In other words, don't use this function in new
3758 * code. Either use end_request_completely(), or the
3759 * end_that_request_chunk() (along with end_that_request_last()) for
3760 * partial completions.
3761 *
3762 **/
3763 void end_request(struct request *req, int uptodate)
3764 {
3765 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3766 }
3767 EXPORT_SYMBOL(end_request);
3768
3769 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3770 struct bio *bio)
3771 {
3772 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3773 rq->cmd_flags |= (bio->bi_rw & 3);
3774
3775 rq->nr_phys_segments = bio_phys_segments(q, bio);
3776 rq->nr_hw_segments = bio_hw_segments(q, bio);
3777 rq->current_nr_sectors = bio_cur_sectors(bio);
3778 rq->hard_cur_sectors = rq->current_nr_sectors;
3779 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3780 rq->buffer = bio_data(bio);
3781 rq->data_len = bio->bi_size;
3782
3783 rq->bio = rq->biotail = bio;
3784
3785 if (bio->bi_bdev)
3786 rq->rq_disk = bio->bi_bdev->bd_disk;
3787 }
3788
3789 int kblockd_schedule_work(struct work_struct *work)
3790 {
3791 return queue_work(kblockd_workqueue, work);
3792 }
3793
3794 EXPORT_SYMBOL(kblockd_schedule_work);
3795
3796 void kblockd_flush_work(struct work_struct *work)
3797 {
3798 cancel_work_sync(work);
3799 }
3800 EXPORT_SYMBOL(kblockd_flush_work);
3801
3802 int __init blk_dev_init(void)
3803 {
3804 int i;
3805
3806 kblockd_workqueue = create_workqueue("kblockd");
3807 if (!kblockd_workqueue)
3808 panic("Failed to create kblockd\n");
3809
3810 request_cachep = kmem_cache_create("blkdev_requests",
3811 sizeof(struct request), 0, SLAB_PANIC, NULL);
3812
3813 requestq_cachep = kmem_cache_create("blkdev_queue",
3814 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3815
3816 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3817 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3818
3819 for_each_possible_cpu(i)
3820 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3821
3822 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3823 register_hotcpu_notifier(&blk_cpu_notifier);
3824
3825 blk_max_low_pfn = max_low_pfn - 1;
3826 blk_max_pfn = max_pfn - 1;
3827
3828 return 0;
3829 }
3830
3831 /*
3832 * IO Context helper functions
3833 */
3834 void put_io_context(struct io_context *ioc)
3835 {
3836 if (ioc == NULL)
3837 return;
3838
3839 BUG_ON(atomic_read(&ioc->refcount) == 0);
3840
3841 if (atomic_dec_and_test(&ioc->refcount)) {
3842 struct cfq_io_context *cic;
3843
3844 rcu_read_lock();
3845 if (ioc->aic && ioc->aic->dtor)
3846 ioc->aic->dtor(ioc->aic);
3847 if (ioc->cic_root.rb_node != NULL) {
3848 struct rb_node *n = rb_first(&ioc->cic_root);
3849
3850 cic = rb_entry(n, struct cfq_io_context, rb_node);
3851 cic->dtor(ioc);
3852 }
3853 rcu_read_unlock();
3854
3855 kmem_cache_free(iocontext_cachep, ioc);
3856 }
3857 }
3858 EXPORT_SYMBOL(put_io_context);
3859
3860 /* Called by the exitting task */
3861 void exit_io_context(void)
3862 {
3863 struct io_context *ioc;
3864 struct cfq_io_context *cic;
3865
3866 task_lock(current);
3867 ioc = current->io_context;
3868 current->io_context = NULL;
3869 task_unlock(current);
3870
3871 ioc->task = NULL;
3872 if (ioc->aic && ioc->aic->exit)
3873 ioc->aic->exit(ioc->aic);
3874 if (ioc->cic_root.rb_node != NULL) {
3875 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3876 cic->exit(ioc);
3877 }
3878
3879 put_io_context(ioc);
3880 }
3881
3882 /*
3883 * If the current task has no IO context then create one and initialise it.
3884 * Otherwise, return its existing IO context.
3885 *
3886 * This returned IO context doesn't have a specifically elevated refcount,
3887 * but since the current task itself holds a reference, the context can be
3888 * used in general code, so long as it stays within `current` context.
3889 */
3890 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3891 {
3892 struct task_struct *tsk = current;
3893 struct io_context *ret;
3894
3895 ret = tsk->io_context;
3896 if (likely(ret))
3897 return ret;
3898
3899 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3900 if (ret) {
3901 atomic_set(&ret->refcount, 1);
3902 ret->task = current;
3903 ret->ioprio_changed = 0;
3904 ret->last_waited = jiffies; /* doesn't matter... */
3905 ret->nr_batch_requests = 0; /* because this is 0 */
3906 ret->aic = NULL;
3907 ret->cic_root.rb_node = NULL;
3908 ret->ioc_data = NULL;
3909 /* make sure set_task_ioprio() sees the settings above */
3910 smp_wmb();
3911 tsk->io_context = ret;
3912 }
3913
3914 return ret;
3915 }
3916
3917 /*
3918 * If the current task has no IO context then create one and initialise it.
3919 * If it does have a context, take a ref on it.
3920 *
3921 * This is always called in the context of the task which submitted the I/O.
3922 */
3923 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3924 {
3925 struct io_context *ret;
3926 ret = current_io_context(gfp_flags, node);
3927 if (likely(ret))
3928 atomic_inc(&ret->refcount);
3929 return ret;
3930 }
3931 EXPORT_SYMBOL(get_io_context);
3932
3933 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3934 {
3935 struct io_context *src = *psrc;
3936 struct io_context *dst = *pdst;
3937
3938 if (src) {
3939 BUG_ON(atomic_read(&src->refcount) == 0);
3940 atomic_inc(&src->refcount);
3941 put_io_context(dst);
3942 *pdst = src;
3943 }
3944 }
3945 EXPORT_SYMBOL(copy_io_context);
3946
3947 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3948 {
3949 struct io_context *temp;
3950 temp = *ioc1;
3951 *ioc1 = *ioc2;
3952 *ioc2 = temp;
3953 }
3954 EXPORT_SYMBOL(swap_io_context);
3955
3956 /*
3957 * sysfs parts below
3958 */
3959 struct queue_sysfs_entry {
3960 struct attribute attr;
3961 ssize_t (*show)(struct request_queue *, char *);
3962 ssize_t (*store)(struct request_queue *, const char *, size_t);
3963 };
3964
3965 static ssize_t
3966 queue_var_show(unsigned int var, char *page)
3967 {
3968 return sprintf(page, "%d\n", var);
3969 }
3970
3971 static ssize_t
3972 queue_var_store(unsigned long *var, const char *page, size_t count)
3973 {
3974 char *p = (char *) page;
3975
3976 *var = simple_strtoul(p, &p, 10);
3977 return count;
3978 }
3979
3980 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3981 {
3982 return queue_var_show(q->nr_requests, (page));
3983 }
3984
3985 static ssize_t
3986 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3987 {
3988 struct request_list *rl = &q->rq;
3989 unsigned long nr;
3990 int ret = queue_var_store(&nr, page, count);
3991 if (nr < BLKDEV_MIN_RQ)
3992 nr = BLKDEV_MIN_RQ;
3993
3994 spin_lock_irq(q->queue_lock);
3995 q->nr_requests = nr;
3996 blk_queue_congestion_threshold(q);
3997
3998 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3999 blk_set_queue_congested(q, READ);
4000 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4001 blk_clear_queue_congested(q, READ);
4002
4003 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4004 blk_set_queue_congested(q, WRITE);
4005 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4006 blk_clear_queue_congested(q, WRITE);
4007
4008 if (rl->count[READ] >= q->nr_requests) {
4009 blk_set_queue_full(q, READ);
4010 } else if (rl->count[READ]+1 <= q->nr_requests) {
4011 blk_clear_queue_full(q, READ);
4012 wake_up(&rl->wait[READ]);
4013 }
4014
4015 if (rl->count[WRITE] >= q->nr_requests) {
4016 blk_set_queue_full(q, WRITE);
4017 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4018 blk_clear_queue_full(q, WRITE);
4019 wake_up(&rl->wait[WRITE]);
4020 }
4021 spin_unlock_irq(q->queue_lock);
4022 return ret;
4023 }
4024
4025 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4026 {
4027 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4028
4029 return queue_var_show(ra_kb, (page));
4030 }
4031
4032 static ssize_t
4033 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4034 {
4035 unsigned long ra_kb;
4036 ssize_t ret = queue_var_store(&ra_kb, page, count);
4037
4038 spin_lock_irq(q->queue_lock);
4039 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4040 spin_unlock_irq(q->queue_lock);
4041
4042 return ret;
4043 }
4044
4045 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4046 {
4047 int max_sectors_kb = q->max_sectors >> 1;
4048
4049 return queue_var_show(max_sectors_kb, (page));
4050 }
4051
4052 static ssize_t
4053 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4054 {
4055 unsigned long max_sectors_kb,
4056 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4057 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4058 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4059
4060 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4061 return -EINVAL;
4062 /*
4063 * Take the queue lock to update the readahead and max_sectors
4064 * values synchronously:
4065 */
4066 spin_lock_irq(q->queue_lock);
4067 q->max_sectors = max_sectors_kb << 1;
4068 spin_unlock_irq(q->queue_lock);
4069
4070 return ret;
4071 }
4072
4073 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4074 {
4075 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4076
4077 return queue_var_show(max_hw_sectors_kb, (page));
4078 }
4079
4080 static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4081 {
4082 return queue_var_show(q->max_phys_segments, page);
4083 }
4084
4085 static ssize_t queue_max_segments_store(struct request_queue *q,
4086 const char *page, size_t count)
4087 {
4088 unsigned long segments;
4089 ssize_t ret = queue_var_store(&segments, page, count);
4090
4091 spin_lock_irq(q->queue_lock);
4092 q->max_phys_segments = segments;
4093 spin_unlock_irq(q->queue_lock);
4094
4095 return ret;
4096 }
4097 static struct queue_sysfs_entry queue_requests_entry = {
4098 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4099 .show = queue_requests_show,
4100 .store = queue_requests_store,
4101 };
4102
4103 static struct queue_sysfs_entry queue_ra_entry = {
4104 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4105 .show = queue_ra_show,
4106 .store = queue_ra_store,
4107 };
4108
4109 static struct queue_sysfs_entry queue_max_sectors_entry = {
4110 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4111 .show = queue_max_sectors_show,
4112 .store = queue_max_sectors_store,
4113 };
4114
4115 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4116 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4117 .show = queue_max_hw_sectors_show,
4118 };
4119
4120 static struct queue_sysfs_entry queue_max_segments_entry = {
4121 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4122 .show = queue_max_segments_show,
4123 .store = queue_max_segments_store,
4124 };
4125
4126 static struct queue_sysfs_entry queue_iosched_entry = {
4127 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4128 .show = elv_iosched_show,
4129 .store = elv_iosched_store,
4130 };
4131
4132 static struct attribute *default_attrs[] = {
4133 &queue_requests_entry.attr,
4134 &queue_ra_entry.attr,
4135 &queue_max_hw_sectors_entry.attr,
4136 &queue_max_sectors_entry.attr,
4137 &queue_max_segments_entry.attr,
4138 &queue_iosched_entry.attr,
4139 NULL,
4140 };
4141
4142 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4143
4144 static ssize_t
4145 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4146 {
4147 struct queue_sysfs_entry *entry = to_queue(attr);
4148 struct request_queue *q =
4149 container_of(kobj, struct request_queue, kobj);
4150 ssize_t res;
4151
4152 if (!entry->show)
4153 return -EIO;
4154 mutex_lock(&q->sysfs_lock);
4155 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4156 mutex_unlock(&q->sysfs_lock);
4157 return -ENOENT;
4158 }
4159 res = entry->show(q, page);
4160 mutex_unlock(&q->sysfs_lock);
4161 return res;
4162 }
4163
4164 static ssize_t
4165 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4166 const char *page, size_t length)
4167 {
4168 struct queue_sysfs_entry *entry = to_queue(attr);
4169 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4170
4171 ssize_t res;
4172
4173 if (!entry->store)
4174 return -EIO;
4175 mutex_lock(&q->sysfs_lock);
4176 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4177 mutex_unlock(&q->sysfs_lock);
4178 return -ENOENT;
4179 }
4180 res = entry->store(q, page, length);
4181 mutex_unlock(&q->sysfs_lock);
4182 return res;
4183 }
4184
4185 static struct sysfs_ops queue_sysfs_ops = {
4186 .show = queue_attr_show,
4187 .store = queue_attr_store,
4188 };
4189
4190 static struct kobj_type queue_ktype = {
4191 .sysfs_ops = &queue_sysfs_ops,
4192 .default_attrs = default_attrs,
4193 .release = blk_release_queue,
4194 };
4195
4196 int blk_register_queue(struct gendisk *disk)
4197 {
4198 int ret;
4199
4200 struct request_queue *q = disk->queue;
4201
4202 if (!q || !q->request_fn)
4203 return -ENXIO;
4204
4205 q->kobj.parent = kobject_get(&disk->kobj);
4206
4207 ret = kobject_add(&q->kobj);
4208 if (ret < 0)
4209 return ret;
4210
4211 kobject_uevent(&q->kobj, KOBJ_ADD);
4212
4213 ret = elv_register_queue(q);
4214 if (ret) {
4215 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4216 kobject_del(&q->kobj);
4217 return ret;
4218 }
4219
4220 return 0;
4221 }
4222
4223 void blk_unregister_queue(struct gendisk *disk)
4224 {
4225 struct request_queue *q = disk->queue;
4226
4227 if (q && q->request_fn) {
4228 elv_unregister_queue(q);
4229
4230 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4231 kobject_del(&q->kobj);
4232 kobject_put(&disk->kobj);
4233 }
4234 }
This page took 0.119654 seconds and 5 git commands to generate.