[PATCH] Remove struct request_list from struct request
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
31
32 /*
33 * for max sense size
34 */
35 #include <scsi/scsi_cmnd.h>
36
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
42
43 /*
44 * For the allocated request tables
45 */
46 static kmem_cache_t *request_cachep;
47
48 /*
49 * For queue allocation
50 */
51 static kmem_cache_t *requestq_cachep;
52
53 /*
54 * For io context allocations
55 */
56 static kmem_cache_t *iocontext_cachep;
57
58 static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 };
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
68 unsigned long blk_max_low_pfn, blk_max_pfn;
69
70 EXPORT_SYMBOL(blk_max_low_pfn);
71 EXPORT_SYMBOL(blk_max_pfn);
72
73 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
77
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
80
81 /*
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
85 */
86 static inline int queue_congestion_on_threshold(struct request_queue *q)
87 {
88 return q->nr_congestion_on;
89 }
90
91 /*
92 * The threshold at which a queue is considered to be uncongested
93 */
94 static inline int queue_congestion_off_threshold(struct request_queue *q)
95 {
96 return q->nr_congestion_off;
97 }
98
99 static void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112 }
113
114 /*
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
118 */
119 static void clear_queue_congested(request_queue_t *q, int rw)
120 {
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
123
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
129 }
130
131 /*
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
134 */
135 static void set_queue_congested(request_queue_t *q, int rw)
136 {
137 enum bdi_state bit;
138
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
141 }
142
143 /**
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
146 *
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
149 *
150 * Will return NULL if the request queue cannot be located.
151 */
152 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
153 {
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
156
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
160 }
161
162 EXPORT_SYMBOL(blk_get_backing_dev_info);
163
164 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
165 {
166 q->activity_fn = fn;
167 q->activity_data = data;
168 }
169
170 EXPORT_SYMBOL(blk_queue_activity_fn);
171
172 /**
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
176 *
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
181 *
182 */
183 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
184 {
185 q->prep_rq_fn = pfn;
186 }
187
188 EXPORT_SYMBOL(blk_queue_prep_rq);
189
190 /**
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
194 *
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
205 */
206 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
207 {
208 q->merge_bvec_fn = mbfn;
209 }
210
211 EXPORT_SYMBOL(blk_queue_merge_bvec);
212
213 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
214 {
215 q->softirq_done_fn = fn;
216 }
217
218 EXPORT_SYMBOL(blk_queue_softirq_done);
219
220 /**
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
224 *
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
235 *
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
241 **/
242 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
243 {
244 /*
245 * set defaults
246 */
247 q->nr_requests = BLKDEV_MAX_RQ;
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
259
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
264
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
266
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
269
270 /*
271 * by default assume old behaviour and bounce for any highmem page
272 */
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
274
275 blk_queue_activity_fn(q, NULL, NULL);
276 }
277
278 EXPORT_SYMBOL(blk_queue_make_request);
279
280 static inline void rq_init(request_queue_t *q, struct request *rq)
281 {
282 INIT_LIST_HEAD(&rq->queuelist);
283 INIT_LIST_HEAD(&rq->donelist);
284
285 rq->errors = 0;
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
288 INIT_HLIST_NODE(&rq->hash);
289 RB_CLEAR_NODE(&rq->rb_node);
290 rq->ioprio = 0;
291 rq->buffer = NULL;
292 rq->ref_count = 1;
293 rq->q = q;
294 rq->special = NULL;
295 rq->data_len = 0;
296 rq->data = NULL;
297 rq->nr_phys_segments = 0;
298 rq->sense = NULL;
299 rq->end_io = NULL;
300 rq->end_io_data = NULL;
301 rq->completion_data = NULL;
302 }
303
304 /**
305 * blk_queue_ordered - does this queue support ordered writes
306 * @q: the request queue
307 * @ordered: one of QUEUE_ORDERED_*
308 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
309 *
310 * Description:
311 * For journalled file systems, doing ordered writes on a commit
312 * block instead of explicitly doing wait_on_buffer (which is bad
313 * for performance) can be a big win. Block drivers supporting this
314 * feature should call this function and indicate so.
315 *
316 **/
317 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
318 prepare_flush_fn *prepare_flush_fn)
319 {
320 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
321 prepare_flush_fn == NULL) {
322 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
323 return -EINVAL;
324 }
325
326 if (ordered != QUEUE_ORDERED_NONE &&
327 ordered != QUEUE_ORDERED_DRAIN &&
328 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
329 ordered != QUEUE_ORDERED_DRAIN_FUA &&
330 ordered != QUEUE_ORDERED_TAG &&
331 ordered != QUEUE_ORDERED_TAG_FLUSH &&
332 ordered != QUEUE_ORDERED_TAG_FUA) {
333 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
334 return -EINVAL;
335 }
336
337 q->ordered = ordered;
338 q->next_ordered = ordered;
339 q->prepare_flush_fn = prepare_flush_fn;
340
341 return 0;
342 }
343
344 EXPORT_SYMBOL(blk_queue_ordered);
345
346 /**
347 * blk_queue_issue_flush_fn - set function for issuing a flush
348 * @q: the request queue
349 * @iff: the function to be called issuing the flush
350 *
351 * Description:
352 * If a driver supports issuing a flush command, the support is notified
353 * to the block layer by defining it through this call.
354 *
355 **/
356 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357 {
358 q->issue_flush_fn = iff;
359 }
360
361 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
362
363 /*
364 * Cache flushing for ordered writes handling
365 */
366 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
367 {
368 if (!q->ordseq)
369 return 0;
370 return 1 << ffz(q->ordseq);
371 }
372
373 unsigned blk_ordered_req_seq(struct request *rq)
374 {
375 request_queue_t *q = rq->q;
376
377 BUG_ON(q->ordseq == 0);
378
379 if (rq == &q->pre_flush_rq)
380 return QUEUE_ORDSEQ_PREFLUSH;
381 if (rq == &q->bar_rq)
382 return QUEUE_ORDSEQ_BAR;
383 if (rq == &q->post_flush_rq)
384 return QUEUE_ORDSEQ_POSTFLUSH;
385
386 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
387 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
388 return QUEUE_ORDSEQ_DRAIN;
389 else
390 return QUEUE_ORDSEQ_DONE;
391 }
392
393 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
394 {
395 struct request *rq;
396 int uptodate;
397
398 if (error && !q->orderr)
399 q->orderr = error;
400
401 BUG_ON(q->ordseq & seq);
402 q->ordseq |= seq;
403
404 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
405 return;
406
407 /*
408 * Okay, sequence complete.
409 */
410 rq = q->orig_bar_rq;
411 uptodate = q->orderr ? q->orderr : 1;
412
413 q->ordseq = 0;
414
415 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
416 end_that_request_last(rq, uptodate);
417 }
418
419 static void pre_flush_end_io(struct request *rq, int error)
420 {
421 elv_completed_request(rq->q, rq);
422 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
423 }
424
425 static void bar_end_io(struct request *rq, int error)
426 {
427 elv_completed_request(rq->q, rq);
428 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
429 }
430
431 static void post_flush_end_io(struct request *rq, int error)
432 {
433 elv_completed_request(rq->q, rq);
434 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
435 }
436
437 static void queue_flush(request_queue_t *q, unsigned which)
438 {
439 struct request *rq;
440 rq_end_io_fn *end_io;
441
442 if (which == QUEUE_ORDERED_PREFLUSH) {
443 rq = &q->pre_flush_rq;
444 end_io = pre_flush_end_io;
445 } else {
446 rq = &q->post_flush_rq;
447 end_io = post_flush_end_io;
448 }
449
450 rq->cmd_flags = REQ_HARDBARRIER;
451 rq_init(q, rq);
452 rq->elevator_private = NULL;
453 rq->elevator_private2 = NULL;
454 rq->rq_disk = q->bar_rq.rq_disk;
455 rq->end_io = end_io;
456 q->prepare_flush_fn(q, rq);
457
458 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
459 }
460
461 static inline struct request *start_ordered(request_queue_t *q,
462 struct request *rq)
463 {
464 q->bi_size = 0;
465 q->orderr = 0;
466 q->ordered = q->next_ordered;
467 q->ordseq |= QUEUE_ORDSEQ_STARTED;
468
469 /*
470 * Prep proxy barrier request.
471 */
472 blkdev_dequeue_request(rq);
473 q->orig_bar_rq = rq;
474 rq = &q->bar_rq;
475 rq->cmd_flags = 0;
476 rq_init(q, rq);
477 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
478 rq->cmd_flags |= REQ_RW;
479 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
480 rq->elevator_private = NULL;
481 rq->elevator_private2 = NULL;
482 init_request_from_bio(rq, q->orig_bar_rq->bio);
483 rq->end_io = bar_end_io;
484
485 /*
486 * Queue ordered sequence. As we stack them at the head, we
487 * need to queue in reverse order. Note that we rely on that
488 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
489 * request gets inbetween ordered sequence.
490 */
491 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
492 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
493 else
494 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
495
496 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
497
498 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
499 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
500 rq = &q->pre_flush_rq;
501 } else
502 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
503
504 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
505 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
506 else
507 rq = NULL;
508
509 return rq;
510 }
511
512 int blk_do_ordered(request_queue_t *q, struct request **rqp)
513 {
514 struct request *rq = *rqp;
515 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
516
517 if (!q->ordseq) {
518 if (!is_barrier)
519 return 1;
520
521 if (q->next_ordered != QUEUE_ORDERED_NONE) {
522 *rqp = start_ordered(q, rq);
523 return 1;
524 } else {
525 /*
526 * This can happen when the queue switches to
527 * ORDERED_NONE while this request is on it.
528 */
529 blkdev_dequeue_request(rq);
530 end_that_request_first(rq, -EOPNOTSUPP,
531 rq->hard_nr_sectors);
532 end_that_request_last(rq, -EOPNOTSUPP);
533 *rqp = NULL;
534 return 0;
535 }
536 }
537
538 /*
539 * Ordered sequence in progress
540 */
541
542 /* Special requests are not subject to ordering rules. */
543 if (!blk_fs_request(rq) &&
544 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
545 return 1;
546
547 if (q->ordered & QUEUE_ORDERED_TAG) {
548 /* Ordered by tag. Blocking the next barrier is enough. */
549 if (is_barrier && rq != &q->bar_rq)
550 *rqp = NULL;
551 } else {
552 /* Ordered by draining. Wait for turn. */
553 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
554 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
555 *rqp = NULL;
556 }
557
558 return 1;
559 }
560
561 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
562 {
563 request_queue_t *q = bio->bi_private;
564 struct bio_vec *bvec;
565 int i;
566
567 /*
568 * This is dry run, restore bio_sector and size. We'll finish
569 * this request again with the original bi_end_io after an
570 * error occurs or post flush is complete.
571 */
572 q->bi_size += bytes;
573
574 if (bio->bi_size)
575 return 1;
576
577 /* Rewind bvec's */
578 bio->bi_idx = 0;
579 bio_for_each_segment(bvec, bio, i) {
580 bvec->bv_len += bvec->bv_offset;
581 bvec->bv_offset = 0;
582 }
583
584 /* Reset bio */
585 set_bit(BIO_UPTODATE, &bio->bi_flags);
586 bio->bi_size = q->bi_size;
587 bio->bi_sector -= (q->bi_size >> 9);
588 q->bi_size = 0;
589
590 return 0;
591 }
592
593 static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
594 unsigned int nbytes, int error)
595 {
596 request_queue_t *q = rq->q;
597 bio_end_io_t *endio;
598 void *private;
599
600 if (&q->bar_rq != rq)
601 return 0;
602
603 /*
604 * Okay, this is the barrier request in progress, dry finish it.
605 */
606 if (error && !q->orderr)
607 q->orderr = error;
608
609 endio = bio->bi_end_io;
610 private = bio->bi_private;
611 bio->bi_end_io = flush_dry_bio_endio;
612 bio->bi_private = q;
613
614 bio_endio(bio, nbytes, error);
615
616 bio->bi_end_io = endio;
617 bio->bi_private = private;
618
619 return 1;
620 }
621
622 /**
623 * blk_queue_bounce_limit - set bounce buffer limit for queue
624 * @q: the request queue for the device
625 * @dma_addr: bus address limit
626 *
627 * Description:
628 * Different hardware can have different requirements as to what pages
629 * it can do I/O directly to. A low level driver can call
630 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
631 * buffers for doing I/O to pages residing above @page.
632 **/
633 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
634 {
635 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
636 int dma = 0;
637
638 q->bounce_gfp = GFP_NOIO;
639 #if BITS_PER_LONG == 64
640 /* Assume anything <= 4GB can be handled by IOMMU.
641 Actually some IOMMUs can handle everything, but I don't
642 know of a way to test this here. */
643 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
644 dma = 1;
645 q->bounce_pfn = max_low_pfn;
646 #else
647 if (bounce_pfn < blk_max_low_pfn)
648 dma = 1;
649 q->bounce_pfn = bounce_pfn;
650 #endif
651 if (dma) {
652 init_emergency_isa_pool();
653 q->bounce_gfp = GFP_NOIO | GFP_DMA;
654 q->bounce_pfn = bounce_pfn;
655 }
656 }
657
658 EXPORT_SYMBOL(blk_queue_bounce_limit);
659
660 /**
661 * blk_queue_max_sectors - set max sectors for a request for this queue
662 * @q: the request queue for the device
663 * @max_sectors: max sectors in the usual 512b unit
664 *
665 * Description:
666 * Enables a low level driver to set an upper limit on the size of
667 * received requests.
668 **/
669 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
670 {
671 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
672 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
673 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
674 }
675
676 if (BLK_DEF_MAX_SECTORS > max_sectors)
677 q->max_hw_sectors = q->max_sectors = max_sectors;
678 else {
679 q->max_sectors = BLK_DEF_MAX_SECTORS;
680 q->max_hw_sectors = max_sectors;
681 }
682 }
683
684 EXPORT_SYMBOL(blk_queue_max_sectors);
685
686 /**
687 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
688 * @q: the request queue for the device
689 * @max_segments: max number of segments
690 *
691 * Description:
692 * Enables a low level driver to set an upper limit on the number of
693 * physical data segments in a request. This would be the largest sized
694 * scatter list the driver could handle.
695 **/
696 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
697 {
698 if (!max_segments) {
699 max_segments = 1;
700 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
701 }
702
703 q->max_phys_segments = max_segments;
704 }
705
706 EXPORT_SYMBOL(blk_queue_max_phys_segments);
707
708 /**
709 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
710 * @q: the request queue for the device
711 * @max_segments: max number of segments
712 *
713 * Description:
714 * Enables a low level driver to set an upper limit on the number of
715 * hw data segments in a request. This would be the largest number of
716 * address/length pairs the host adapter can actually give as once
717 * to the device.
718 **/
719 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
720 {
721 if (!max_segments) {
722 max_segments = 1;
723 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
724 }
725
726 q->max_hw_segments = max_segments;
727 }
728
729 EXPORT_SYMBOL(blk_queue_max_hw_segments);
730
731 /**
732 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
733 * @q: the request queue for the device
734 * @max_size: max size of segment in bytes
735 *
736 * Description:
737 * Enables a low level driver to set an upper limit on the size of a
738 * coalesced segment
739 **/
740 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
741 {
742 if (max_size < PAGE_CACHE_SIZE) {
743 max_size = PAGE_CACHE_SIZE;
744 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
745 }
746
747 q->max_segment_size = max_size;
748 }
749
750 EXPORT_SYMBOL(blk_queue_max_segment_size);
751
752 /**
753 * blk_queue_hardsect_size - set hardware sector size for the queue
754 * @q: the request queue for the device
755 * @size: the hardware sector size, in bytes
756 *
757 * Description:
758 * This should typically be set to the lowest possible sector size
759 * that the hardware can operate on (possible without reverting to
760 * even internal read-modify-write operations). Usually the default
761 * of 512 covers most hardware.
762 **/
763 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
764 {
765 q->hardsect_size = size;
766 }
767
768 EXPORT_SYMBOL(blk_queue_hardsect_size);
769
770 /*
771 * Returns the minimum that is _not_ zero, unless both are zero.
772 */
773 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
774
775 /**
776 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
777 * @t: the stacking driver (top)
778 * @b: the underlying device (bottom)
779 **/
780 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
781 {
782 /* zero is "infinity" */
783 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
784 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
785
786 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
787 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
788 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
789 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
790 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
791 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
792 }
793
794 EXPORT_SYMBOL(blk_queue_stack_limits);
795
796 /**
797 * blk_queue_segment_boundary - set boundary rules for segment merging
798 * @q: the request queue for the device
799 * @mask: the memory boundary mask
800 **/
801 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
802 {
803 if (mask < PAGE_CACHE_SIZE - 1) {
804 mask = PAGE_CACHE_SIZE - 1;
805 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
806 }
807
808 q->seg_boundary_mask = mask;
809 }
810
811 EXPORT_SYMBOL(blk_queue_segment_boundary);
812
813 /**
814 * blk_queue_dma_alignment - set dma length and memory alignment
815 * @q: the request queue for the device
816 * @mask: alignment mask
817 *
818 * description:
819 * set required memory and length aligment for direct dma transactions.
820 * this is used when buiding direct io requests for the queue.
821 *
822 **/
823 void blk_queue_dma_alignment(request_queue_t *q, int mask)
824 {
825 q->dma_alignment = mask;
826 }
827
828 EXPORT_SYMBOL(blk_queue_dma_alignment);
829
830 /**
831 * blk_queue_find_tag - find a request by its tag and queue
832 * @q: The request queue for the device
833 * @tag: The tag of the request
834 *
835 * Notes:
836 * Should be used when a device returns a tag and you want to match
837 * it with a request.
838 *
839 * no locks need be held.
840 **/
841 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
842 {
843 struct blk_queue_tag *bqt = q->queue_tags;
844
845 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
846 return NULL;
847
848 return bqt->tag_index[tag];
849 }
850
851 EXPORT_SYMBOL(blk_queue_find_tag);
852
853 /**
854 * __blk_free_tags - release a given set of tag maintenance info
855 * @bqt: the tag map to free
856 *
857 * Tries to free the specified @bqt@. Returns true if it was
858 * actually freed and false if there are still references using it
859 */
860 static int __blk_free_tags(struct blk_queue_tag *bqt)
861 {
862 int retval;
863
864 retval = atomic_dec_and_test(&bqt->refcnt);
865 if (retval) {
866 BUG_ON(bqt->busy);
867 BUG_ON(!list_empty(&bqt->busy_list));
868
869 kfree(bqt->tag_index);
870 bqt->tag_index = NULL;
871
872 kfree(bqt->tag_map);
873 bqt->tag_map = NULL;
874
875 kfree(bqt);
876
877 }
878
879 return retval;
880 }
881
882 /**
883 * __blk_queue_free_tags - release tag maintenance info
884 * @q: the request queue for the device
885 *
886 * Notes:
887 * blk_cleanup_queue() will take care of calling this function, if tagging
888 * has been used. So there's no need to call this directly.
889 **/
890 static void __blk_queue_free_tags(request_queue_t *q)
891 {
892 struct blk_queue_tag *bqt = q->queue_tags;
893
894 if (!bqt)
895 return;
896
897 __blk_free_tags(bqt);
898
899 q->queue_tags = NULL;
900 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
901 }
902
903
904 /**
905 * blk_free_tags - release a given set of tag maintenance info
906 * @bqt: the tag map to free
907 *
908 * For externally managed @bqt@ frees the map. Callers of this
909 * function must guarantee to have released all the queues that
910 * might have been using this tag map.
911 */
912 void blk_free_tags(struct blk_queue_tag *bqt)
913 {
914 if (unlikely(!__blk_free_tags(bqt)))
915 BUG();
916 }
917 EXPORT_SYMBOL(blk_free_tags);
918
919 /**
920 * blk_queue_free_tags - release tag maintenance info
921 * @q: the request queue for the device
922 *
923 * Notes:
924 * This is used to disabled tagged queuing to a device, yet leave
925 * queue in function.
926 **/
927 void blk_queue_free_tags(request_queue_t *q)
928 {
929 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
930 }
931
932 EXPORT_SYMBOL(blk_queue_free_tags);
933
934 static int
935 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
936 {
937 struct request **tag_index;
938 unsigned long *tag_map;
939 int nr_ulongs;
940
941 if (q && depth > q->nr_requests * 2) {
942 depth = q->nr_requests * 2;
943 printk(KERN_ERR "%s: adjusted depth to %d\n",
944 __FUNCTION__, depth);
945 }
946
947 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
948 if (!tag_index)
949 goto fail;
950
951 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
952 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
953 if (!tag_map)
954 goto fail;
955
956 tags->real_max_depth = depth;
957 tags->max_depth = depth;
958 tags->tag_index = tag_index;
959 tags->tag_map = tag_map;
960
961 return 0;
962 fail:
963 kfree(tag_index);
964 return -ENOMEM;
965 }
966
967 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
968 int depth)
969 {
970 struct blk_queue_tag *tags;
971
972 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
973 if (!tags)
974 goto fail;
975
976 if (init_tag_map(q, tags, depth))
977 goto fail;
978
979 INIT_LIST_HEAD(&tags->busy_list);
980 tags->busy = 0;
981 atomic_set(&tags->refcnt, 1);
982 return tags;
983 fail:
984 kfree(tags);
985 return NULL;
986 }
987
988 /**
989 * blk_init_tags - initialize the tag info for an external tag map
990 * @depth: the maximum queue depth supported
991 * @tags: the tag to use
992 **/
993 struct blk_queue_tag *blk_init_tags(int depth)
994 {
995 return __blk_queue_init_tags(NULL, depth);
996 }
997 EXPORT_SYMBOL(blk_init_tags);
998
999 /**
1000 * blk_queue_init_tags - initialize the queue tag info
1001 * @q: the request queue for the device
1002 * @depth: the maximum queue depth supported
1003 * @tags: the tag to use
1004 **/
1005 int blk_queue_init_tags(request_queue_t *q, int depth,
1006 struct blk_queue_tag *tags)
1007 {
1008 int rc;
1009
1010 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1011
1012 if (!tags && !q->queue_tags) {
1013 tags = __blk_queue_init_tags(q, depth);
1014
1015 if (!tags)
1016 goto fail;
1017 } else if (q->queue_tags) {
1018 if ((rc = blk_queue_resize_tags(q, depth)))
1019 return rc;
1020 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1021 return 0;
1022 } else
1023 atomic_inc(&tags->refcnt);
1024
1025 /*
1026 * assign it, all done
1027 */
1028 q->queue_tags = tags;
1029 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1030 return 0;
1031 fail:
1032 kfree(tags);
1033 return -ENOMEM;
1034 }
1035
1036 EXPORT_SYMBOL(blk_queue_init_tags);
1037
1038 /**
1039 * blk_queue_resize_tags - change the queueing depth
1040 * @q: the request queue for the device
1041 * @new_depth: the new max command queueing depth
1042 *
1043 * Notes:
1044 * Must be called with the queue lock held.
1045 **/
1046 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1047 {
1048 struct blk_queue_tag *bqt = q->queue_tags;
1049 struct request **tag_index;
1050 unsigned long *tag_map;
1051 int max_depth, nr_ulongs;
1052
1053 if (!bqt)
1054 return -ENXIO;
1055
1056 /*
1057 * if we already have large enough real_max_depth. just
1058 * adjust max_depth. *NOTE* as requests with tag value
1059 * between new_depth and real_max_depth can be in-flight, tag
1060 * map can not be shrunk blindly here.
1061 */
1062 if (new_depth <= bqt->real_max_depth) {
1063 bqt->max_depth = new_depth;
1064 return 0;
1065 }
1066
1067 /*
1068 * Currently cannot replace a shared tag map with a new
1069 * one, so error out if this is the case
1070 */
1071 if (atomic_read(&bqt->refcnt) != 1)
1072 return -EBUSY;
1073
1074 /*
1075 * save the old state info, so we can copy it back
1076 */
1077 tag_index = bqt->tag_index;
1078 tag_map = bqt->tag_map;
1079 max_depth = bqt->real_max_depth;
1080
1081 if (init_tag_map(q, bqt, new_depth))
1082 return -ENOMEM;
1083
1084 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1085 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1086 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1087
1088 kfree(tag_index);
1089 kfree(tag_map);
1090 return 0;
1091 }
1092
1093 EXPORT_SYMBOL(blk_queue_resize_tags);
1094
1095 /**
1096 * blk_queue_end_tag - end tag operations for a request
1097 * @q: the request queue for the device
1098 * @rq: the request that has completed
1099 *
1100 * Description:
1101 * Typically called when end_that_request_first() returns 0, meaning
1102 * all transfers have been done for a request. It's important to call
1103 * this function before end_that_request_last(), as that will put the
1104 * request back on the free list thus corrupting the internal tag list.
1105 *
1106 * Notes:
1107 * queue lock must be held.
1108 **/
1109 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1110 {
1111 struct blk_queue_tag *bqt = q->queue_tags;
1112 int tag = rq->tag;
1113
1114 BUG_ON(tag == -1);
1115
1116 if (unlikely(tag >= bqt->real_max_depth))
1117 /*
1118 * This can happen after tag depth has been reduced.
1119 * FIXME: how about a warning or info message here?
1120 */
1121 return;
1122
1123 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1124 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1125 __FUNCTION__, tag);
1126 return;
1127 }
1128
1129 list_del_init(&rq->queuelist);
1130 rq->cmd_flags &= ~REQ_QUEUED;
1131 rq->tag = -1;
1132
1133 if (unlikely(bqt->tag_index[tag] == NULL))
1134 printk(KERN_ERR "%s: tag %d is missing\n",
1135 __FUNCTION__, tag);
1136
1137 bqt->tag_index[tag] = NULL;
1138 bqt->busy--;
1139 }
1140
1141 EXPORT_SYMBOL(blk_queue_end_tag);
1142
1143 /**
1144 * blk_queue_start_tag - find a free tag and assign it
1145 * @q: the request queue for the device
1146 * @rq: the block request that needs tagging
1147 *
1148 * Description:
1149 * This can either be used as a stand-alone helper, or possibly be
1150 * assigned as the queue &prep_rq_fn (in which case &struct request
1151 * automagically gets a tag assigned). Note that this function
1152 * assumes that any type of request can be queued! if this is not
1153 * true for your device, you must check the request type before
1154 * calling this function. The request will also be removed from
1155 * the request queue, so it's the drivers responsibility to readd
1156 * it if it should need to be restarted for some reason.
1157 *
1158 * Notes:
1159 * queue lock must be held.
1160 **/
1161 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1162 {
1163 struct blk_queue_tag *bqt = q->queue_tags;
1164 int tag;
1165
1166 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1167 printk(KERN_ERR
1168 "%s: request %p for device [%s] already tagged %d",
1169 __FUNCTION__, rq,
1170 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1171 BUG();
1172 }
1173
1174 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1175 if (tag >= bqt->max_depth)
1176 return 1;
1177
1178 __set_bit(tag, bqt->tag_map);
1179
1180 rq->cmd_flags |= REQ_QUEUED;
1181 rq->tag = tag;
1182 bqt->tag_index[tag] = rq;
1183 blkdev_dequeue_request(rq);
1184 list_add(&rq->queuelist, &bqt->busy_list);
1185 bqt->busy++;
1186 return 0;
1187 }
1188
1189 EXPORT_SYMBOL(blk_queue_start_tag);
1190
1191 /**
1192 * blk_queue_invalidate_tags - invalidate all pending tags
1193 * @q: the request queue for the device
1194 *
1195 * Description:
1196 * Hardware conditions may dictate a need to stop all pending requests.
1197 * In this case, we will safely clear the block side of the tag queue and
1198 * readd all requests to the request queue in the right order.
1199 *
1200 * Notes:
1201 * queue lock must be held.
1202 **/
1203 void blk_queue_invalidate_tags(request_queue_t *q)
1204 {
1205 struct blk_queue_tag *bqt = q->queue_tags;
1206 struct list_head *tmp, *n;
1207 struct request *rq;
1208
1209 list_for_each_safe(tmp, n, &bqt->busy_list) {
1210 rq = list_entry_rq(tmp);
1211
1212 if (rq->tag == -1) {
1213 printk(KERN_ERR
1214 "%s: bad tag found on list\n", __FUNCTION__);
1215 list_del_init(&rq->queuelist);
1216 rq->cmd_flags &= ~REQ_QUEUED;
1217 } else
1218 blk_queue_end_tag(q, rq);
1219
1220 rq->cmd_flags &= ~REQ_STARTED;
1221 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1222 }
1223 }
1224
1225 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1226
1227 void blk_dump_rq_flags(struct request *rq, char *msg)
1228 {
1229 int bit;
1230
1231 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1232 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1233 rq->cmd_flags);
1234
1235 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1236 rq->nr_sectors,
1237 rq->current_nr_sectors);
1238 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1239
1240 if (blk_pc_request(rq)) {
1241 printk("cdb: ");
1242 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1243 printk("%02x ", rq->cmd[bit]);
1244 printk("\n");
1245 }
1246 }
1247
1248 EXPORT_SYMBOL(blk_dump_rq_flags);
1249
1250 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1251 {
1252 struct bio_vec *bv, *bvprv = NULL;
1253 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1254 int high, highprv = 1;
1255
1256 if (unlikely(!bio->bi_io_vec))
1257 return;
1258
1259 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1260 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1261 bio_for_each_segment(bv, bio, i) {
1262 /*
1263 * the trick here is making sure that a high page is never
1264 * considered part of another segment, since that might
1265 * change with the bounce page.
1266 */
1267 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1268 if (high || highprv)
1269 goto new_hw_segment;
1270 if (cluster) {
1271 if (seg_size + bv->bv_len > q->max_segment_size)
1272 goto new_segment;
1273 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1274 goto new_segment;
1275 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1276 goto new_segment;
1277 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1278 goto new_hw_segment;
1279
1280 seg_size += bv->bv_len;
1281 hw_seg_size += bv->bv_len;
1282 bvprv = bv;
1283 continue;
1284 }
1285 new_segment:
1286 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1287 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1288 hw_seg_size += bv->bv_len;
1289 } else {
1290 new_hw_segment:
1291 if (hw_seg_size > bio->bi_hw_front_size)
1292 bio->bi_hw_front_size = hw_seg_size;
1293 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1294 nr_hw_segs++;
1295 }
1296
1297 nr_phys_segs++;
1298 bvprv = bv;
1299 seg_size = bv->bv_len;
1300 highprv = high;
1301 }
1302 if (hw_seg_size > bio->bi_hw_back_size)
1303 bio->bi_hw_back_size = hw_seg_size;
1304 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1305 bio->bi_hw_front_size = hw_seg_size;
1306 bio->bi_phys_segments = nr_phys_segs;
1307 bio->bi_hw_segments = nr_hw_segs;
1308 bio->bi_flags |= (1 << BIO_SEG_VALID);
1309 }
1310
1311
1312 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1313 struct bio *nxt)
1314 {
1315 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1316 return 0;
1317
1318 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1319 return 0;
1320 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1321 return 0;
1322
1323 /*
1324 * bio and nxt are contigous in memory, check if the queue allows
1325 * these two to be merged into one
1326 */
1327 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1328 return 1;
1329
1330 return 0;
1331 }
1332
1333 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1334 struct bio *nxt)
1335 {
1336 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1337 blk_recount_segments(q, bio);
1338 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1339 blk_recount_segments(q, nxt);
1340 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1341 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1342 return 0;
1343 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1344 return 0;
1345
1346 return 1;
1347 }
1348
1349 /*
1350 * map a request to scatterlist, return number of sg entries setup. Caller
1351 * must make sure sg can hold rq->nr_phys_segments entries
1352 */
1353 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1354 {
1355 struct bio_vec *bvec, *bvprv;
1356 struct bio *bio;
1357 int nsegs, i, cluster;
1358
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1361
1362 /*
1363 * for each bio in rq
1364 */
1365 bvprv = NULL;
1366 rq_for_each_bio(bio, rq) {
1367 /*
1368 * for each segment in bio
1369 */
1370 bio_for_each_segment(bvec, bio, i) {
1371 int nbytes = bvec->bv_len;
1372
1373 if (bvprv && cluster) {
1374 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1375 goto new_segment;
1376
1377 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1378 goto new_segment;
1379 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1380 goto new_segment;
1381
1382 sg[nsegs - 1].length += nbytes;
1383 } else {
1384 new_segment:
1385 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1386 sg[nsegs].page = bvec->bv_page;
1387 sg[nsegs].length = nbytes;
1388 sg[nsegs].offset = bvec->bv_offset;
1389
1390 nsegs++;
1391 }
1392 bvprv = bvec;
1393 } /* segments in bio */
1394 } /* bios in rq */
1395
1396 return nsegs;
1397 }
1398
1399 EXPORT_SYMBOL(blk_rq_map_sg);
1400
1401 /*
1402 * the standard queue merge functions, can be overridden with device
1403 * specific ones if so desired
1404 */
1405
1406 static inline int ll_new_mergeable(request_queue_t *q,
1407 struct request *req,
1408 struct bio *bio)
1409 {
1410 int nr_phys_segs = bio_phys_segments(q, bio);
1411
1412 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1413 req->cmd_flags |= REQ_NOMERGE;
1414 if (req == q->last_merge)
1415 q->last_merge = NULL;
1416 return 0;
1417 }
1418
1419 /*
1420 * A hw segment is just getting larger, bump just the phys
1421 * counter.
1422 */
1423 req->nr_phys_segments += nr_phys_segs;
1424 return 1;
1425 }
1426
1427 static inline int ll_new_hw_segment(request_queue_t *q,
1428 struct request *req,
1429 struct bio *bio)
1430 {
1431 int nr_hw_segs = bio_hw_segments(q, bio);
1432 int nr_phys_segs = bio_phys_segments(q, bio);
1433
1434 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1435 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1436 req->cmd_flags |= REQ_NOMERGE;
1437 if (req == q->last_merge)
1438 q->last_merge = NULL;
1439 return 0;
1440 }
1441
1442 /*
1443 * This will form the start of a new hw segment. Bump both
1444 * counters.
1445 */
1446 req->nr_hw_segments += nr_hw_segs;
1447 req->nr_phys_segments += nr_phys_segs;
1448 return 1;
1449 }
1450
1451 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1452 struct bio *bio)
1453 {
1454 unsigned short max_sectors;
1455 int len;
1456
1457 if (unlikely(blk_pc_request(req)))
1458 max_sectors = q->max_hw_sectors;
1459 else
1460 max_sectors = q->max_sectors;
1461
1462 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1463 req->cmd_flags |= REQ_NOMERGE;
1464 if (req == q->last_merge)
1465 q->last_merge = NULL;
1466 return 0;
1467 }
1468 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1469 blk_recount_segments(q, req->biotail);
1470 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1471 blk_recount_segments(q, bio);
1472 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1473 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1474 !BIOVEC_VIRT_OVERSIZE(len)) {
1475 int mergeable = ll_new_mergeable(q, req, bio);
1476
1477 if (mergeable) {
1478 if (req->nr_hw_segments == 1)
1479 req->bio->bi_hw_front_size = len;
1480 if (bio->bi_hw_segments == 1)
1481 bio->bi_hw_back_size = len;
1482 }
1483 return mergeable;
1484 }
1485
1486 return ll_new_hw_segment(q, req, bio);
1487 }
1488
1489 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1490 struct bio *bio)
1491 {
1492 unsigned short max_sectors;
1493 int len;
1494
1495 if (unlikely(blk_pc_request(req)))
1496 max_sectors = q->max_hw_sectors;
1497 else
1498 max_sectors = q->max_sectors;
1499
1500
1501 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1502 req->cmd_flags |= REQ_NOMERGE;
1503 if (req == q->last_merge)
1504 q->last_merge = NULL;
1505 return 0;
1506 }
1507 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1508 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1509 blk_recount_segments(q, bio);
1510 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1511 blk_recount_segments(q, req->bio);
1512 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1513 !BIOVEC_VIRT_OVERSIZE(len)) {
1514 int mergeable = ll_new_mergeable(q, req, bio);
1515
1516 if (mergeable) {
1517 if (bio->bi_hw_segments == 1)
1518 bio->bi_hw_front_size = len;
1519 if (req->nr_hw_segments == 1)
1520 req->biotail->bi_hw_back_size = len;
1521 }
1522 return mergeable;
1523 }
1524
1525 return ll_new_hw_segment(q, req, bio);
1526 }
1527
1528 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1529 struct request *next)
1530 {
1531 int total_phys_segments;
1532 int total_hw_segments;
1533
1534 /*
1535 * First check if the either of the requests are re-queued
1536 * requests. Can't merge them if they are.
1537 */
1538 if (req->special || next->special)
1539 return 0;
1540
1541 /*
1542 * Will it become too large?
1543 */
1544 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1545 return 0;
1546
1547 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1548 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1549 total_phys_segments--;
1550
1551 if (total_phys_segments > q->max_phys_segments)
1552 return 0;
1553
1554 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1555 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1556 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1557 /*
1558 * propagate the combined length to the end of the requests
1559 */
1560 if (req->nr_hw_segments == 1)
1561 req->bio->bi_hw_front_size = len;
1562 if (next->nr_hw_segments == 1)
1563 next->biotail->bi_hw_back_size = len;
1564 total_hw_segments--;
1565 }
1566
1567 if (total_hw_segments > q->max_hw_segments)
1568 return 0;
1569
1570 /* Merge is OK... */
1571 req->nr_phys_segments = total_phys_segments;
1572 req->nr_hw_segments = total_hw_segments;
1573 return 1;
1574 }
1575
1576 /*
1577 * "plug" the device if there are no outstanding requests: this will
1578 * force the transfer to start only after we have put all the requests
1579 * on the list.
1580 *
1581 * This is called with interrupts off and no requests on the queue and
1582 * with the queue lock held.
1583 */
1584 void blk_plug_device(request_queue_t *q)
1585 {
1586 WARN_ON(!irqs_disabled());
1587
1588 /*
1589 * don't plug a stopped queue, it must be paired with blk_start_queue()
1590 * which will restart the queueing
1591 */
1592 if (blk_queue_stopped(q))
1593 return;
1594
1595 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1596 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1597 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1598 }
1599 }
1600
1601 EXPORT_SYMBOL(blk_plug_device);
1602
1603 /*
1604 * remove the queue from the plugged list, if present. called with
1605 * queue lock held and interrupts disabled.
1606 */
1607 int blk_remove_plug(request_queue_t *q)
1608 {
1609 WARN_ON(!irqs_disabled());
1610
1611 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1612 return 0;
1613
1614 del_timer(&q->unplug_timer);
1615 return 1;
1616 }
1617
1618 EXPORT_SYMBOL(blk_remove_plug);
1619
1620 /*
1621 * remove the plug and let it rip..
1622 */
1623 void __generic_unplug_device(request_queue_t *q)
1624 {
1625 if (unlikely(blk_queue_stopped(q)))
1626 return;
1627
1628 if (!blk_remove_plug(q))
1629 return;
1630
1631 q->request_fn(q);
1632 }
1633 EXPORT_SYMBOL(__generic_unplug_device);
1634
1635 /**
1636 * generic_unplug_device - fire a request queue
1637 * @q: The &request_queue_t in question
1638 *
1639 * Description:
1640 * Linux uses plugging to build bigger requests queues before letting
1641 * the device have at them. If a queue is plugged, the I/O scheduler
1642 * is still adding and merging requests on the queue. Once the queue
1643 * gets unplugged, the request_fn defined for the queue is invoked and
1644 * transfers started.
1645 **/
1646 void generic_unplug_device(request_queue_t *q)
1647 {
1648 spin_lock_irq(q->queue_lock);
1649 __generic_unplug_device(q);
1650 spin_unlock_irq(q->queue_lock);
1651 }
1652 EXPORT_SYMBOL(generic_unplug_device);
1653
1654 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1655 struct page *page)
1656 {
1657 request_queue_t *q = bdi->unplug_io_data;
1658
1659 /*
1660 * devices don't necessarily have an ->unplug_fn defined
1661 */
1662 if (q->unplug_fn) {
1663 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1664 q->rq.count[READ] + q->rq.count[WRITE]);
1665
1666 q->unplug_fn(q);
1667 }
1668 }
1669
1670 static void blk_unplug_work(void *data)
1671 {
1672 request_queue_t *q = data;
1673
1674 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1675 q->rq.count[READ] + q->rq.count[WRITE]);
1676
1677 q->unplug_fn(q);
1678 }
1679
1680 static void blk_unplug_timeout(unsigned long data)
1681 {
1682 request_queue_t *q = (request_queue_t *)data;
1683
1684 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1685 q->rq.count[READ] + q->rq.count[WRITE]);
1686
1687 kblockd_schedule_work(&q->unplug_work);
1688 }
1689
1690 /**
1691 * blk_start_queue - restart a previously stopped queue
1692 * @q: The &request_queue_t in question
1693 *
1694 * Description:
1695 * blk_start_queue() will clear the stop flag on the queue, and call
1696 * the request_fn for the queue if it was in a stopped state when
1697 * entered. Also see blk_stop_queue(). Queue lock must be held.
1698 **/
1699 void blk_start_queue(request_queue_t *q)
1700 {
1701 WARN_ON(!irqs_disabled());
1702
1703 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1704
1705 /*
1706 * one level of recursion is ok and is much faster than kicking
1707 * the unplug handling
1708 */
1709 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1710 q->request_fn(q);
1711 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1712 } else {
1713 blk_plug_device(q);
1714 kblockd_schedule_work(&q->unplug_work);
1715 }
1716 }
1717
1718 EXPORT_SYMBOL(blk_start_queue);
1719
1720 /**
1721 * blk_stop_queue - stop a queue
1722 * @q: The &request_queue_t in question
1723 *
1724 * Description:
1725 * The Linux block layer assumes that a block driver will consume all
1726 * entries on the request queue when the request_fn strategy is called.
1727 * Often this will not happen, because of hardware limitations (queue
1728 * depth settings). If a device driver gets a 'queue full' response,
1729 * or if it simply chooses not to queue more I/O at one point, it can
1730 * call this function to prevent the request_fn from being called until
1731 * the driver has signalled it's ready to go again. This happens by calling
1732 * blk_start_queue() to restart queue operations. Queue lock must be held.
1733 **/
1734 void blk_stop_queue(request_queue_t *q)
1735 {
1736 blk_remove_plug(q);
1737 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1738 }
1739 EXPORT_SYMBOL(blk_stop_queue);
1740
1741 /**
1742 * blk_sync_queue - cancel any pending callbacks on a queue
1743 * @q: the queue
1744 *
1745 * Description:
1746 * The block layer may perform asynchronous callback activity
1747 * on a queue, such as calling the unplug function after a timeout.
1748 * A block device may call blk_sync_queue to ensure that any
1749 * such activity is cancelled, thus allowing it to release resources
1750 * the the callbacks might use. The caller must already have made sure
1751 * that its ->make_request_fn will not re-add plugging prior to calling
1752 * this function.
1753 *
1754 */
1755 void blk_sync_queue(struct request_queue *q)
1756 {
1757 del_timer_sync(&q->unplug_timer);
1758 kblockd_flush();
1759 }
1760 EXPORT_SYMBOL(blk_sync_queue);
1761
1762 /**
1763 * blk_run_queue - run a single device queue
1764 * @q: The queue to run
1765 */
1766 void blk_run_queue(struct request_queue *q)
1767 {
1768 unsigned long flags;
1769
1770 spin_lock_irqsave(q->queue_lock, flags);
1771 blk_remove_plug(q);
1772
1773 /*
1774 * Only recurse once to avoid overrunning the stack, let the unplug
1775 * handling reinvoke the handler shortly if we already got there.
1776 */
1777 if (!elv_queue_empty(q)) {
1778 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1779 q->request_fn(q);
1780 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1781 } else {
1782 blk_plug_device(q);
1783 kblockd_schedule_work(&q->unplug_work);
1784 }
1785 }
1786
1787 spin_unlock_irqrestore(q->queue_lock, flags);
1788 }
1789 EXPORT_SYMBOL(blk_run_queue);
1790
1791 /**
1792 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1793 * @kobj: the kobj belonging of the request queue to be released
1794 *
1795 * Description:
1796 * blk_cleanup_queue is the pair to blk_init_queue() or
1797 * blk_queue_make_request(). It should be called when a request queue is
1798 * being released; typically when a block device is being de-registered.
1799 * Currently, its primary task it to free all the &struct request
1800 * structures that were allocated to the queue and the queue itself.
1801 *
1802 * Caveat:
1803 * Hopefully the low level driver will have finished any
1804 * outstanding requests first...
1805 **/
1806 static void blk_release_queue(struct kobject *kobj)
1807 {
1808 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1809 struct request_list *rl = &q->rq;
1810
1811 blk_sync_queue(q);
1812
1813 if (rl->rq_pool)
1814 mempool_destroy(rl->rq_pool);
1815
1816 if (q->queue_tags)
1817 __blk_queue_free_tags(q);
1818
1819 blk_trace_shutdown(q);
1820
1821 kmem_cache_free(requestq_cachep, q);
1822 }
1823
1824 void blk_put_queue(request_queue_t *q)
1825 {
1826 kobject_put(&q->kobj);
1827 }
1828 EXPORT_SYMBOL(blk_put_queue);
1829
1830 void blk_cleanup_queue(request_queue_t * q)
1831 {
1832 mutex_lock(&q->sysfs_lock);
1833 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1834 mutex_unlock(&q->sysfs_lock);
1835
1836 if (q->elevator)
1837 elevator_exit(q->elevator);
1838
1839 blk_put_queue(q);
1840 }
1841
1842 EXPORT_SYMBOL(blk_cleanup_queue);
1843
1844 static int blk_init_free_list(request_queue_t *q)
1845 {
1846 struct request_list *rl = &q->rq;
1847
1848 rl->count[READ] = rl->count[WRITE] = 0;
1849 rl->starved[READ] = rl->starved[WRITE] = 0;
1850 rl->elvpriv = 0;
1851 init_waitqueue_head(&rl->wait[READ]);
1852 init_waitqueue_head(&rl->wait[WRITE]);
1853
1854 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1855 mempool_free_slab, request_cachep, q->node);
1856
1857 if (!rl->rq_pool)
1858 return -ENOMEM;
1859
1860 return 0;
1861 }
1862
1863 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1864 {
1865 return blk_alloc_queue_node(gfp_mask, -1);
1866 }
1867 EXPORT_SYMBOL(blk_alloc_queue);
1868
1869 static struct kobj_type queue_ktype;
1870
1871 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1872 {
1873 request_queue_t *q;
1874
1875 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1876 if (!q)
1877 return NULL;
1878
1879 memset(q, 0, sizeof(*q));
1880 init_timer(&q->unplug_timer);
1881
1882 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1883 q->kobj.ktype = &queue_ktype;
1884 kobject_init(&q->kobj);
1885
1886 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1887 q->backing_dev_info.unplug_io_data = q;
1888
1889 mutex_init(&q->sysfs_lock);
1890
1891 return q;
1892 }
1893 EXPORT_SYMBOL(blk_alloc_queue_node);
1894
1895 /**
1896 * blk_init_queue - prepare a request queue for use with a block device
1897 * @rfn: The function to be called to process requests that have been
1898 * placed on the queue.
1899 * @lock: Request queue spin lock
1900 *
1901 * Description:
1902 * If a block device wishes to use the standard request handling procedures,
1903 * which sorts requests and coalesces adjacent requests, then it must
1904 * call blk_init_queue(). The function @rfn will be called when there
1905 * are requests on the queue that need to be processed. If the device
1906 * supports plugging, then @rfn may not be called immediately when requests
1907 * are available on the queue, but may be called at some time later instead.
1908 * Plugged queues are generally unplugged when a buffer belonging to one
1909 * of the requests on the queue is needed, or due to memory pressure.
1910 *
1911 * @rfn is not required, or even expected, to remove all requests off the
1912 * queue, but only as many as it can handle at a time. If it does leave
1913 * requests on the queue, it is responsible for arranging that the requests
1914 * get dealt with eventually.
1915 *
1916 * The queue spin lock must be held while manipulating the requests on the
1917 * request queue; this lock will be taken also from interrupt context, so irq
1918 * disabling is needed for it.
1919 *
1920 * Function returns a pointer to the initialized request queue, or NULL if
1921 * it didn't succeed.
1922 *
1923 * Note:
1924 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1925 * when the block device is deactivated (such as at module unload).
1926 **/
1927
1928 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1929 {
1930 return blk_init_queue_node(rfn, lock, -1);
1931 }
1932 EXPORT_SYMBOL(blk_init_queue);
1933
1934 request_queue_t *
1935 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1936 {
1937 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1938
1939 if (!q)
1940 return NULL;
1941
1942 q->node = node_id;
1943 if (blk_init_free_list(q)) {
1944 kmem_cache_free(requestq_cachep, q);
1945 return NULL;
1946 }
1947
1948 /*
1949 * if caller didn't supply a lock, they get per-queue locking with
1950 * our embedded lock
1951 */
1952 if (!lock) {
1953 spin_lock_init(&q->__queue_lock);
1954 lock = &q->__queue_lock;
1955 }
1956
1957 q->request_fn = rfn;
1958 q->back_merge_fn = ll_back_merge_fn;
1959 q->front_merge_fn = ll_front_merge_fn;
1960 q->merge_requests_fn = ll_merge_requests_fn;
1961 q->prep_rq_fn = NULL;
1962 q->unplug_fn = generic_unplug_device;
1963 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1964 q->queue_lock = lock;
1965
1966 blk_queue_segment_boundary(q, 0xffffffff);
1967
1968 blk_queue_make_request(q, __make_request);
1969 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1970
1971 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1972 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1973
1974 /*
1975 * all done
1976 */
1977 if (!elevator_init(q, NULL)) {
1978 blk_queue_congestion_threshold(q);
1979 return q;
1980 }
1981
1982 blk_put_queue(q);
1983 return NULL;
1984 }
1985 EXPORT_SYMBOL(blk_init_queue_node);
1986
1987 int blk_get_queue(request_queue_t *q)
1988 {
1989 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1990 kobject_get(&q->kobj);
1991 return 0;
1992 }
1993
1994 return 1;
1995 }
1996
1997 EXPORT_SYMBOL(blk_get_queue);
1998
1999 static inline void blk_free_request(request_queue_t *q, struct request *rq)
2000 {
2001 if (rq->cmd_flags & REQ_ELVPRIV)
2002 elv_put_request(q, rq);
2003 mempool_free(rq, q->rq.rq_pool);
2004 }
2005
2006 static inline struct request *
2007 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
2008 int priv, gfp_t gfp_mask)
2009 {
2010 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2011
2012 if (!rq)
2013 return NULL;
2014
2015 /*
2016 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2017 * see bio.h and blkdev.h
2018 */
2019 rq->cmd_flags = rw | REQ_ALLOCED;
2020
2021 if (priv) {
2022 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
2023 mempool_free(rq, q->rq.rq_pool);
2024 return NULL;
2025 }
2026 rq->cmd_flags |= REQ_ELVPRIV;
2027 }
2028
2029 return rq;
2030 }
2031
2032 /*
2033 * ioc_batching returns true if the ioc is a valid batching request and
2034 * should be given priority access to a request.
2035 */
2036 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2037 {
2038 if (!ioc)
2039 return 0;
2040
2041 /*
2042 * Make sure the process is able to allocate at least 1 request
2043 * even if the batch times out, otherwise we could theoretically
2044 * lose wakeups.
2045 */
2046 return ioc->nr_batch_requests == q->nr_batching ||
2047 (ioc->nr_batch_requests > 0
2048 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2049 }
2050
2051 /*
2052 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2053 * will cause the process to be a "batcher" on all queues in the system. This
2054 * is the behaviour we want though - once it gets a wakeup it should be given
2055 * a nice run.
2056 */
2057 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2058 {
2059 if (!ioc || ioc_batching(q, ioc))
2060 return;
2061
2062 ioc->nr_batch_requests = q->nr_batching;
2063 ioc->last_waited = jiffies;
2064 }
2065
2066 static void __freed_request(request_queue_t *q, int rw)
2067 {
2068 struct request_list *rl = &q->rq;
2069
2070 if (rl->count[rw] < queue_congestion_off_threshold(q))
2071 clear_queue_congested(q, rw);
2072
2073 if (rl->count[rw] + 1 <= q->nr_requests) {
2074 if (waitqueue_active(&rl->wait[rw]))
2075 wake_up(&rl->wait[rw]);
2076
2077 blk_clear_queue_full(q, rw);
2078 }
2079 }
2080
2081 /*
2082 * A request has just been released. Account for it, update the full and
2083 * congestion status, wake up any waiters. Called under q->queue_lock.
2084 */
2085 static void freed_request(request_queue_t *q, int rw, int priv)
2086 {
2087 struct request_list *rl = &q->rq;
2088
2089 rl->count[rw]--;
2090 if (priv)
2091 rl->elvpriv--;
2092
2093 __freed_request(q, rw);
2094
2095 if (unlikely(rl->starved[rw ^ 1]))
2096 __freed_request(q, rw ^ 1);
2097 }
2098
2099 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2100 /*
2101 * Get a free request, queue_lock must be held.
2102 * Returns NULL on failure, with queue_lock held.
2103 * Returns !NULL on success, with queue_lock *not held*.
2104 */
2105 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2106 gfp_t gfp_mask)
2107 {
2108 struct request *rq = NULL;
2109 struct request_list *rl = &q->rq;
2110 struct io_context *ioc = NULL;
2111 int may_queue, priv;
2112
2113 may_queue = elv_may_queue(q, rw, bio);
2114 if (may_queue == ELV_MQUEUE_NO)
2115 goto rq_starved;
2116
2117 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2118 if (rl->count[rw]+1 >= q->nr_requests) {
2119 ioc = current_io_context(GFP_ATOMIC);
2120 /*
2121 * The queue will fill after this allocation, so set
2122 * it as full, and mark this process as "batching".
2123 * This process will be allowed to complete a batch of
2124 * requests, others will be blocked.
2125 */
2126 if (!blk_queue_full(q, rw)) {
2127 ioc_set_batching(q, ioc);
2128 blk_set_queue_full(q, rw);
2129 } else {
2130 if (may_queue != ELV_MQUEUE_MUST
2131 && !ioc_batching(q, ioc)) {
2132 /*
2133 * The queue is full and the allocating
2134 * process is not a "batcher", and not
2135 * exempted by the IO scheduler
2136 */
2137 goto out;
2138 }
2139 }
2140 }
2141 set_queue_congested(q, rw);
2142 }
2143
2144 /*
2145 * Only allow batching queuers to allocate up to 50% over the defined
2146 * limit of requests, otherwise we could have thousands of requests
2147 * allocated with any setting of ->nr_requests
2148 */
2149 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2150 goto out;
2151
2152 rl->count[rw]++;
2153 rl->starved[rw] = 0;
2154
2155 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2156 if (priv)
2157 rl->elvpriv++;
2158
2159 spin_unlock_irq(q->queue_lock);
2160
2161 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
2162 if (unlikely(!rq)) {
2163 /*
2164 * Allocation failed presumably due to memory. Undo anything
2165 * we might have messed up.
2166 *
2167 * Allocating task should really be put onto the front of the
2168 * wait queue, but this is pretty rare.
2169 */
2170 spin_lock_irq(q->queue_lock);
2171 freed_request(q, rw, priv);
2172
2173 /*
2174 * in the very unlikely event that allocation failed and no
2175 * requests for this direction was pending, mark us starved
2176 * so that freeing of a request in the other direction will
2177 * notice us. another possible fix would be to split the
2178 * rq mempool into READ and WRITE
2179 */
2180 rq_starved:
2181 if (unlikely(rl->count[rw] == 0))
2182 rl->starved[rw] = 1;
2183
2184 goto out;
2185 }
2186
2187 /*
2188 * ioc may be NULL here, and ioc_batching will be false. That's
2189 * OK, if the queue is under the request limit then requests need
2190 * not count toward the nr_batch_requests limit. There will always
2191 * be some limit enforced by BLK_BATCH_TIME.
2192 */
2193 if (ioc_batching(q, ioc))
2194 ioc->nr_batch_requests--;
2195
2196 rq_init(q, rq);
2197
2198 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2199 out:
2200 return rq;
2201 }
2202
2203 /*
2204 * No available requests for this queue, unplug the device and wait for some
2205 * requests to become available.
2206 *
2207 * Called with q->queue_lock held, and returns with it unlocked.
2208 */
2209 static struct request *get_request_wait(request_queue_t *q, int rw,
2210 struct bio *bio)
2211 {
2212 struct request *rq;
2213
2214 rq = get_request(q, rw, bio, GFP_NOIO);
2215 while (!rq) {
2216 DEFINE_WAIT(wait);
2217 struct request_list *rl = &q->rq;
2218
2219 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2220 TASK_UNINTERRUPTIBLE);
2221
2222 rq = get_request(q, rw, bio, GFP_NOIO);
2223
2224 if (!rq) {
2225 struct io_context *ioc;
2226
2227 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2228
2229 __generic_unplug_device(q);
2230 spin_unlock_irq(q->queue_lock);
2231 io_schedule();
2232
2233 /*
2234 * After sleeping, we become a "batching" process and
2235 * will be able to allocate at least one request, and
2236 * up to a big batch of them for a small period time.
2237 * See ioc_batching, ioc_set_batching
2238 */
2239 ioc = current_io_context(GFP_NOIO);
2240 ioc_set_batching(q, ioc);
2241
2242 spin_lock_irq(q->queue_lock);
2243 }
2244 finish_wait(&rl->wait[rw], &wait);
2245 }
2246
2247 return rq;
2248 }
2249
2250 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2251 {
2252 struct request *rq;
2253
2254 BUG_ON(rw != READ && rw != WRITE);
2255
2256 spin_lock_irq(q->queue_lock);
2257 if (gfp_mask & __GFP_WAIT) {
2258 rq = get_request_wait(q, rw, NULL);
2259 } else {
2260 rq = get_request(q, rw, NULL, gfp_mask);
2261 if (!rq)
2262 spin_unlock_irq(q->queue_lock);
2263 }
2264 /* q->queue_lock is unlocked at this point */
2265
2266 return rq;
2267 }
2268 EXPORT_SYMBOL(blk_get_request);
2269
2270 /**
2271 * blk_requeue_request - put a request back on queue
2272 * @q: request queue where request should be inserted
2273 * @rq: request to be inserted
2274 *
2275 * Description:
2276 * Drivers often keep queueing requests until the hardware cannot accept
2277 * more, when that condition happens we need to put the request back
2278 * on the queue. Must be called with queue lock held.
2279 */
2280 void blk_requeue_request(request_queue_t *q, struct request *rq)
2281 {
2282 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2283
2284 if (blk_rq_tagged(rq))
2285 blk_queue_end_tag(q, rq);
2286
2287 elv_requeue_request(q, rq);
2288 }
2289
2290 EXPORT_SYMBOL(blk_requeue_request);
2291
2292 /**
2293 * blk_insert_request - insert a special request in to a request queue
2294 * @q: request queue where request should be inserted
2295 * @rq: request to be inserted
2296 * @at_head: insert request at head or tail of queue
2297 * @data: private data
2298 *
2299 * Description:
2300 * Many block devices need to execute commands asynchronously, so they don't
2301 * block the whole kernel from preemption during request execution. This is
2302 * accomplished normally by inserting aritficial requests tagged as
2303 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2304 * scheduled for actual execution by the request queue.
2305 *
2306 * We have the option of inserting the head or the tail of the queue.
2307 * Typically we use the tail for new ioctls and so forth. We use the head
2308 * of the queue for things like a QUEUE_FULL message from a device, or a
2309 * host that is unable to accept a particular command.
2310 */
2311 void blk_insert_request(request_queue_t *q, struct request *rq,
2312 int at_head, void *data)
2313 {
2314 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2315 unsigned long flags;
2316
2317 /*
2318 * tell I/O scheduler that this isn't a regular read/write (ie it
2319 * must not attempt merges on this) and that it acts as a soft
2320 * barrier
2321 */
2322 rq->cmd_type = REQ_TYPE_SPECIAL;
2323 rq->cmd_flags |= REQ_SOFTBARRIER;
2324
2325 rq->special = data;
2326
2327 spin_lock_irqsave(q->queue_lock, flags);
2328
2329 /*
2330 * If command is tagged, release the tag
2331 */
2332 if (blk_rq_tagged(rq))
2333 blk_queue_end_tag(q, rq);
2334
2335 drive_stat_acct(rq, rq->nr_sectors, 1);
2336 __elv_add_request(q, rq, where, 0);
2337
2338 if (blk_queue_plugged(q))
2339 __generic_unplug_device(q);
2340 else
2341 q->request_fn(q);
2342 spin_unlock_irqrestore(q->queue_lock, flags);
2343 }
2344
2345 EXPORT_SYMBOL(blk_insert_request);
2346
2347 /**
2348 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2349 * @q: request queue where request should be inserted
2350 * @rq: request structure to fill
2351 * @ubuf: the user buffer
2352 * @len: length of user data
2353 *
2354 * Description:
2355 * Data will be mapped directly for zero copy io, if possible. Otherwise
2356 * a kernel bounce buffer is used.
2357 *
2358 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2359 * still in process context.
2360 *
2361 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2362 * before being submitted to the device, as pages mapped may be out of
2363 * reach. It's the callers responsibility to make sure this happens. The
2364 * original bio must be passed back in to blk_rq_unmap_user() for proper
2365 * unmapping.
2366 */
2367 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2368 unsigned int len)
2369 {
2370 unsigned long uaddr;
2371 struct bio *bio;
2372 int reading;
2373
2374 if (len > (q->max_hw_sectors << 9))
2375 return -EINVAL;
2376 if (!len || !ubuf)
2377 return -EINVAL;
2378
2379 reading = rq_data_dir(rq) == READ;
2380
2381 /*
2382 * if alignment requirement is satisfied, map in user pages for
2383 * direct dma. else, set up kernel bounce buffers
2384 */
2385 uaddr = (unsigned long) ubuf;
2386 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2387 bio = bio_map_user(q, NULL, uaddr, len, reading);
2388 else
2389 bio = bio_copy_user(q, uaddr, len, reading);
2390
2391 if (!IS_ERR(bio)) {
2392 rq->bio = rq->biotail = bio;
2393 blk_rq_bio_prep(q, rq, bio);
2394
2395 rq->buffer = rq->data = NULL;
2396 rq->data_len = len;
2397 return 0;
2398 }
2399
2400 /*
2401 * bio is the err-ptr
2402 */
2403 return PTR_ERR(bio);
2404 }
2405
2406 EXPORT_SYMBOL(blk_rq_map_user);
2407
2408 /**
2409 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2410 * @q: request queue where request should be inserted
2411 * @rq: request to map data to
2412 * @iov: pointer to the iovec
2413 * @iov_count: number of elements in the iovec
2414 *
2415 * Description:
2416 * Data will be mapped directly for zero copy io, if possible. Otherwise
2417 * a kernel bounce buffer is used.
2418 *
2419 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2420 * still in process context.
2421 *
2422 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2423 * before being submitted to the device, as pages mapped may be out of
2424 * reach. It's the callers responsibility to make sure this happens. The
2425 * original bio must be passed back in to blk_rq_unmap_user() for proper
2426 * unmapping.
2427 */
2428 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2429 struct sg_iovec *iov, int iov_count)
2430 {
2431 struct bio *bio;
2432
2433 if (!iov || iov_count <= 0)
2434 return -EINVAL;
2435
2436 /* we don't allow misaligned data like bio_map_user() does. If the
2437 * user is using sg, they're expected to know the alignment constraints
2438 * and respect them accordingly */
2439 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2440 if (IS_ERR(bio))
2441 return PTR_ERR(bio);
2442
2443 rq->bio = rq->biotail = bio;
2444 blk_rq_bio_prep(q, rq, bio);
2445 rq->buffer = rq->data = NULL;
2446 rq->data_len = bio->bi_size;
2447 return 0;
2448 }
2449
2450 EXPORT_SYMBOL(blk_rq_map_user_iov);
2451
2452 /**
2453 * blk_rq_unmap_user - unmap a request with user data
2454 * @bio: bio to be unmapped
2455 * @ulen: length of user buffer
2456 *
2457 * Description:
2458 * Unmap a bio previously mapped by blk_rq_map_user().
2459 */
2460 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2461 {
2462 int ret = 0;
2463
2464 if (bio) {
2465 if (bio_flagged(bio, BIO_USER_MAPPED))
2466 bio_unmap_user(bio);
2467 else
2468 ret = bio_uncopy_user(bio);
2469 }
2470
2471 return 0;
2472 }
2473
2474 EXPORT_SYMBOL(blk_rq_unmap_user);
2475
2476 /**
2477 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2478 * @q: request queue where request should be inserted
2479 * @rq: request to fill
2480 * @kbuf: the kernel buffer
2481 * @len: length of user data
2482 * @gfp_mask: memory allocation flags
2483 */
2484 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2485 unsigned int len, gfp_t gfp_mask)
2486 {
2487 struct bio *bio;
2488
2489 if (len > (q->max_hw_sectors << 9))
2490 return -EINVAL;
2491 if (!len || !kbuf)
2492 return -EINVAL;
2493
2494 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2495 if (IS_ERR(bio))
2496 return PTR_ERR(bio);
2497
2498 if (rq_data_dir(rq) == WRITE)
2499 bio->bi_rw |= (1 << BIO_RW);
2500
2501 rq->bio = rq->biotail = bio;
2502 blk_rq_bio_prep(q, rq, bio);
2503
2504 rq->buffer = rq->data = NULL;
2505 rq->data_len = len;
2506 return 0;
2507 }
2508
2509 EXPORT_SYMBOL(blk_rq_map_kern);
2510
2511 /**
2512 * blk_execute_rq_nowait - insert a request into queue for execution
2513 * @q: queue to insert the request in
2514 * @bd_disk: matching gendisk
2515 * @rq: request to insert
2516 * @at_head: insert request at head or tail of queue
2517 * @done: I/O completion handler
2518 *
2519 * Description:
2520 * Insert a fully prepared request at the back of the io scheduler queue
2521 * for execution. Don't wait for completion.
2522 */
2523 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2524 struct request *rq, int at_head,
2525 rq_end_io_fn *done)
2526 {
2527 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2528
2529 rq->rq_disk = bd_disk;
2530 rq->cmd_flags |= REQ_NOMERGE;
2531 rq->end_io = done;
2532 WARN_ON(irqs_disabled());
2533 spin_lock_irq(q->queue_lock);
2534 __elv_add_request(q, rq, where, 1);
2535 __generic_unplug_device(q);
2536 spin_unlock_irq(q->queue_lock);
2537 }
2538 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2539
2540 /**
2541 * blk_execute_rq - insert a request into queue for execution
2542 * @q: queue to insert the request in
2543 * @bd_disk: matching gendisk
2544 * @rq: request to insert
2545 * @at_head: insert request at head or tail of queue
2546 *
2547 * Description:
2548 * Insert a fully prepared request at the back of the io scheduler queue
2549 * for execution and wait for completion.
2550 */
2551 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2552 struct request *rq, int at_head)
2553 {
2554 DECLARE_COMPLETION_ONSTACK(wait);
2555 char sense[SCSI_SENSE_BUFFERSIZE];
2556 int err = 0;
2557
2558 /*
2559 * we need an extra reference to the request, so we can look at
2560 * it after io completion
2561 */
2562 rq->ref_count++;
2563
2564 if (!rq->sense) {
2565 memset(sense, 0, sizeof(sense));
2566 rq->sense = sense;
2567 rq->sense_len = 0;
2568 }
2569
2570 rq->end_io_data = &wait;
2571 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2572 wait_for_completion(&wait);
2573
2574 if (rq->errors)
2575 err = -EIO;
2576
2577 return err;
2578 }
2579
2580 EXPORT_SYMBOL(blk_execute_rq);
2581
2582 /**
2583 * blkdev_issue_flush - queue a flush
2584 * @bdev: blockdev to issue flush for
2585 * @error_sector: error sector
2586 *
2587 * Description:
2588 * Issue a flush for the block device in question. Caller can supply
2589 * room for storing the error offset in case of a flush error, if they
2590 * wish to. Caller must run wait_for_completion() on its own.
2591 */
2592 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2593 {
2594 request_queue_t *q;
2595
2596 if (bdev->bd_disk == NULL)
2597 return -ENXIO;
2598
2599 q = bdev_get_queue(bdev);
2600 if (!q)
2601 return -ENXIO;
2602 if (!q->issue_flush_fn)
2603 return -EOPNOTSUPP;
2604
2605 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2606 }
2607
2608 EXPORT_SYMBOL(blkdev_issue_flush);
2609
2610 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2611 {
2612 int rw = rq_data_dir(rq);
2613
2614 if (!blk_fs_request(rq) || !rq->rq_disk)
2615 return;
2616
2617 if (!new_io) {
2618 __disk_stat_inc(rq->rq_disk, merges[rw]);
2619 } else {
2620 disk_round_stats(rq->rq_disk);
2621 rq->rq_disk->in_flight++;
2622 }
2623 }
2624
2625 /*
2626 * add-request adds a request to the linked list.
2627 * queue lock is held and interrupts disabled, as we muck with the
2628 * request queue list.
2629 */
2630 static inline void add_request(request_queue_t * q, struct request * req)
2631 {
2632 drive_stat_acct(req, req->nr_sectors, 1);
2633
2634 if (q->activity_fn)
2635 q->activity_fn(q->activity_data, rq_data_dir(req));
2636
2637 /*
2638 * elevator indicated where it wants this request to be
2639 * inserted at elevator_merge time
2640 */
2641 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2642 }
2643
2644 /*
2645 * disk_round_stats() - Round off the performance stats on a struct
2646 * disk_stats.
2647 *
2648 * The average IO queue length and utilisation statistics are maintained
2649 * by observing the current state of the queue length and the amount of
2650 * time it has been in this state for.
2651 *
2652 * Normally, that accounting is done on IO completion, but that can result
2653 * in more than a second's worth of IO being accounted for within any one
2654 * second, leading to >100% utilisation. To deal with that, we call this
2655 * function to do a round-off before returning the results when reading
2656 * /proc/diskstats. This accounts immediately for all queue usage up to
2657 * the current jiffies and restarts the counters again.
2658 */
2659 void disk_round_stats(struct gendisk *disk)
2660 {
2661 unsigned long now = jiffies;
2662
2663 if (now == disk->stamp)
2664 return;
2665
2666 if (disk->in_flight) {
2667 __disk_stat_add(disk, time_in_queue,
2668 disk->in_flight * (now - disk->stamp));
2669 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2670 }
2671 disk->stamp = now;
2672 }
2673
2674 EXPORT_SYMBOL_GPL(disk_round_stats);
2675
2676 /*
2677 * queue lock must be held
2678 */
2679 void __blk_put_request(request_queue_t *q, struct request *req)
2680 {
2681 if (unlikely(!q))
2682 return;
2683 if (unlikely(--req->ref_count))
2684 return;
2685
2686 elv_completed_request(q, req);
2687
2688 req->rq_status = RQ_INACTIVE;
2689
2690 /*
2691 * Request may not have originated from ll_rw_blk. if not,
2692 * it didn't come out of our reserved rq pools
2693 */
2694 if (req->cmd_flags & REQ_ALLOCED) {
2695 int rw = rq_data_dir(req);
2696 int priv = req->cmd_flags & REQ_ELVPRIV;
2697
2698 BUG_ON(!list_empty(&req->queuelist));
2699 BUG_ON(!hlist_unhashed(&req->hash));
2700
2701 blk_free_request(q, req);
2702 freed_request(q, rw, priv);
2703 }
2704 }
2705
2706 EXPORT_SYMBOL_GPL(__blk_put_request);
2707
2708 void blk_put_request(struct request *req)
2709 {
2710 unsigned long flags;
2711 request_queue_t *q = req->q;
2712
2713 /*
2714 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2715 * following if (q) test.
2716 */
2717 if (q) {
2718 spin_lock_irqsave(q->queue_lock, flags);
2719 __blk_put_request(q, req);
2720 spin_unlock_irqrestore(q->queue_lock, flags);
2721 }
2722 }
2723
2724 EXPORT_SYMBOL(blk_put_request);
2725
2726 /**
2727 * blk_end_sync_rq - executes a completion event on a request
2728 * @rq: request to complete
2729 * @error: end io status of the request
2730 */
2731 void blk_end_sync_rq(struct request *rq, int error)
2732 {
2733 struct completion *waiting = rq->end_io_data;
2734
2735 rq->end_io_data = NULL;
2736 __blk_put_request(rq->q, rq);
2737
2738 /*
2739 * complete last, if this is a stack request the process (and thus
2740 * the rq pointer) could be invalid right after this complete()
2741 */
2742 complete(waiting);
2743 }
2744 EXPORT_SYMBOL(blk_end_sync_rq);
2745
2746 /**
2747 * blk_congestion_wait - wait for a queue to become uncongested
2748 * @rw: READ or WRITE
2749 * @timeout: timeout in jiffies
2750 *
2751 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2752 * If no queues are congested then just wait for the next request to be
2753 * returned.
2754 */
2755 long blk_congestion_wait(int rw, long timeout)
2756 {
2757 long ret;
2758 DEFINE_WAIT(wait);
2759 wait_queue_head_t *wqh = &congestion_wqh[rw];
2760
2761 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2762 ret = io_schedule_timeout(timeout);
2763 finish_wait(wqh, &wait);
2764 return ret;
2765 }
2766
2767 EXPORT_SYMBOL(blk_congestion_wait);
2768
2769 /**
2770 * blk_congestion_end - wake up sleepers on a congestion queue
2771 * @rw: READ or WRITE
2772 */
2773 void blk_congestion_end(int rw)
2774 {
2775 wait_queue_head_t *wqh = &congestion_wqh[rw];
2776
2777 if (waitqueue_active(wqh))
2778 wake_up(wqh);
2779 }
2780
2781 /*
2782 * Has to be called with the request spinlock acquired
2783 */
2784 static int attempt_merge(request_queue_t *q, struct request *req,
2785 struct request *next)
2786 {
2787 if (!rq_mergeable(req) || !rq_mergeable(next))
2788 return 0;
2789
2790 /*
2791 * not contiguous
2792 */
2793 if (req->sector + req->nr_sectors != next->sector)
2794 return 0;
2795
2796 if (rq_data_dir(req) != rq_data_dir(next)
2797 || req->rq_disk != next->rq_disk
2798 || next->special)
2799 return 0;
2800
2801 /*
2802 * If we are allowed to merge, then append bio list
2803 * from next to rq and release next. merge_requests_fn
2804 * will have updated segment counts, update sector
2805 * counts here.
2806 */
2807 if (!q->merge_requests_fn(q, req, next))
2808 return 0;
2809
2810 /*
2811 * At this point we have either done a back merge
2812 * or front merge. We need the smaller start_time of
2813 * the merged requests to be the current request
2814 * for accounting purposes.
2815 */
2816 if (time_after(req->start_time, next->start_time))
2817 req->start_time = next->start_time;
2818
2819 req->biotail->bi_next = next->bio;
2820 req->biotail = next->biotail;
2821
2822 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2823
2824 elv_merge_requests(q, req, next);
2825
2826 if (req->rq_disk) {
2827 disk_round_stats(req->rq_disk);
2828 req->rq_disk->in_flight--;
2829 }
2830
2831 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2832
2833 __blk_put_request(q, next);
2834 return 1;
2835 }
2836
2837 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2838 {
2839 struct request *next = elv_latter_request(q, rq);
2840
2841 if (next)
2842 return attempt_merge(q, rq, next);
2843
2844 return 0;
2845 }
2846
2847 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2848 {
2849 struct request *prev = elv_former_request(q, rq);
2850
2851 if (prev)
2852 return attempt_merge(q, prev, rq);
2853
2854 return 0;
2855 }
2856
2857 static void init_request_from_bio(struct request *req, struct bio *bio)
2858 {
2859 req->cmd_type = REQ_TYPE_FS;
2860
2861 /*
2862 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2863 */
2864 if (bio_rw_ahead(bio) || bio_failfast(bio))
2865 req->cmd_flags |= REQ_FAILFAST;
2866
2867 /*
2868 * REQ_BARRIER implies no merging, but lets make it explicit
2869 */
2870 if (unlikely(bio_barrier(bio)))
2871 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2872
2873 if (bio_sync(bio))
2874 req->cmd_flags |= REQ_RW_SYNC;
2875
2876 req->errors = 0;
2877 req->hard_sector = req->sector = bio->bi_sector;
2878 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2879 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2880 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2881 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2882 req->buffer = bio_data(bio); /* see ->buffer comment above */
2883 req->bio = req->biotail = bio;
2884 req->ioprio = bio_prio(bio);
2885 req->rq_disk = bio->bi_bdev->bd_disk;
2886 req->start_time = jiffies;
2887 }
2888
2889 static int __make_request(request_queue_t *q, struct bio *bio)
2890 {
2891 struct request *req;
2892 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2893 unsigned short prio;
2894 sector_t sector;
2895
2896 sector = bio->bi_sector;
2897 nr_sectors = bio_sectors(bio);
2898 cur_nr_sectors = bio_cur_sectors(bio);
2899 prio = bio_prio(bio);
2900
2901 rw = bio_data_dir(bio);
2902 sync = bio_sync(bio);
2903
2904 /*
2905 * low level driver can indicate that it wants pages above a
2906 * certain limit bounced to low memory (ie for highmem, or even
2907 * ISA dma in theory)
2908 */
2909 blk_queue_bounce(q, &bio);
2910
2911 spin_lock_prefetch(q->queue_lock);
2912
2913 barrier = bio_barrier(bio);
2914 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2915 err = -EOPNOTSUPP;
2916 goto end_io;
2917 }
2918
2919 spin_lock_irq(q->queue_lock);
2920
2921 if (unlikely(barrier) || elv_queue_empty(q))
2922 goto get_rq;
2923
2924 el_ret = elv_merge(q, &req, bio);
2925 switch (el_ret) {
2926 case ELEVATOR_BACK_MERGE:
2927 BUG_ON(!rq_mergeable(req));
2928
2929 if (!q->back_merge_fn(q, req, bio))
2930 break;
2931
2932 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2933
2934 req->biotail->bi_next = bio;
2935 req->biotail = bio;
2936 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2937 req->ioprio = ioprio_best(req->ioprio, prio);
2938 drive_stat_acct(req, nr_sectors, 0);
2939 if (!attempt_back_merge(q, req))
2940 elv_merged_request(q, req, el_ret);
2941 goto out;
2942
2943 case ELEVATOR_FRONT_MERGE:
2944 BUG_ON(!rq_mergeable(req));
2945
2946 if (!q->front_merge_fn(q, req, bio))
2947 break;
2948
2949 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2950
2951 bio->bi_next = req->bio;
2952 req->bio = bio;
2953
2954 /*
2955 * may not be valid. if the low level driver said
2956 * it didn't need a bounce buffer then it better
2957 * not touch req->buffer either...
2958 */
2959 req->buffer = bio_data(bio);
2960 req->current_nr_sectors = cur_nr_sectors;
2961 req->hard_cur_sectors = cur_nr_sectors;
2962 req->sector = req->hard_sector = sector;
2963 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2964 req->ioprio = ioprio_best(req->ioprio, prio);
2965 drive_stat_acct(req, nr_sectors, 0);
2966 if (!attempt_front_merge(q, req))
2967 elv_merged_request(q, req, el_ret);
2968 goto out;
2969
2970 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2971 default:
2972 ;
2973 }
2974
2975 get_rq:
2976 /*
2977 * Grab a free request. This is might sleep but can not fail.
2978 * Returns with the queue unlocked.
2979 */
2980 req = get_request_wait(q, rw, bio);
2981
2982 /*
2983 * After dropping the lock and possibly sleeping here, our request
2984 * may now be mergeable after it had proven unmergeable (above).
2985 * We don't worry about that case for efficiency. It won't happen
2986 * often, and the elevators are able to handle it.
2987 */
2988 init_request_from_bio(req, bio);
2989
2990 spin_lock_irq(q->queue_lock);
2991 if (elv_queue_empty(q))
2992 blk_plug_device(q);
2993 add_request(q, req);
2994 out:
2995 if (sync)
2996 __generic_unplug_device(q);
2997
2998 spin_unlock_irq(q->queue_lock);
2999 return 0;
3000
3001 end_io:
3002 bio_endio(bio, nr_sectors << 9, err);
3003 return 0;
3004 }
3005
3006 /*
3007 * If bio->bi_dev is a partition, remap the location
3008 */
3009 static inline void blk_partition_remap(struct bio *bio)
3010 {
3011 struct block_device *bdev = bio->bi_bdev;
3012
3013 if (bdev != bdev->bd_contains) {
3014 struct hd_struct *p = bdev->bd_part;
3015 const int rw = bio_data_dir(bio);
3016
3017 p->sectors[rw] += bio_sectors(bio);
3018 p->ios[rw]++;
3019
3020 bio->bi_sector += p->start_sect;
3021 bio->bi_bdev = bdev->bd_contains;
3022 }
3023 }
3024
3025 static void handle_bad_sector(struct bio *bio)
3026 {
3027 char b[BDEVNAME_SIZE];
3028
3029 printk(KERN_INFO "attempt to access beyond end of device\n");
3030 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3031 bdevname(bio->bi_bdev, b),
3032 bio->bi_rw,
3033 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3034 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3035
3036 set_bit(BIO_EOF, &bio->bi_flags);
3037 }
3038
3039 /**
3040 * generic_make_request: hand a buffer to its device driver for I/O
3041 * @bio: The bio describing the location in memory and on the device.
3042 *
3043 * generic_make_request() is used to make I/O requests of block
3044 * devices. It is passed a &struct bio, which describes the I/O that needs
3045 * to be done.
3046 *
3047 * generic_make_request() does not return any status. The
3048 * success/failure status of the request, along with notification of
3049 * completion, is delivered asynchronously through the bio->bi_end_io
3050 * function described (one day) else where.
3051 *
3052 * The caller of generic_make_request must make sure that bi_io_vec
3053 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3054 * set to describe the device address, and the
3055 * bi_end_io and optionally bi_private are set to describe how
3056 * completion notification should be signaled.
3057 *
3058 * generic_make_request and the drivers it calls may use bi_next if this
3059 * bio happens to be merged with someone else, and may change bi_dev and
3060 * bi_sector for remaps as it sees fit. So the values of these fields
3061 * should NOT be depended on after the call to generic_make_request.
3062 */
3063 void generic_make_request(struct bio *bio)
3064 {
3065 request_queue_t *q;
3066 sector_t maxsector;
3067 int ret, nr_sectors = bio_sectors(bio);
3068 dev_t old_dev;
3069
3070 might_sleep();
3071 /* Test device or partition size, when known. */
3072 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3073 if (maxsector) {
3074 sector_t sector = bio->bi_sector;
3075
3076 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3077 /*
3078 * This may well happen - the kernel calls bread()
3079 * without checking the size of the device, e.g., when
3080 * mounting a device.
3081 */
3082 handle_bad_sector(bio);
3083 goto end_io;
3084 }
3085 }
3086
3087 /*
3088 * Resolve the mapping until finished. (drivers are
3089 * still free to implement/resolve their own stacking
3090 * by explicitly returning 0)
3091 *
3092 * NOTE: we don't repeat the blk_size check for each new device.
3093 * Stacking drivers are expected to know what they are doing.
3094 */
3095 maxsector = -1;
3096 old_dev = 0;
3097 do {
3098 char b[BDEVNAME_SIZE];
3099
3100 q = bdev_get_queue(bio->bi_bdev);
3101 if (!q) {
3102 printk(KERN_ERR
3103 "generic_make_request: Trying to access "
3104 "nonexistent block-device %s (%Lu)\n",
3105 bdevname(bio->bi_bdev, b),
3106 (long long) bio->bi_sector);
3107 end_io:
3108 bio_endio(bio, bio->bi_size, -EIO);
3109 break;
3110 }
3111
3112 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3113 printk("bio too big device %s (%u > %u)\n",
3114 bdevname(bio->bi_bdev, b),
3115 bio_sectors(bio),
3116 q->max_hw_sectors);
3117 goto end_io;
3118 }
3119
3120 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3121 goto end_io;
3122
3123 /*
3124 * If this device has partitions, remap block n
3125 * of partition p to block n+start(p) of the disk.
3126 */
3127 blk_partition_remap(bio);
3128
3129 if (maxsector != -1)
3130 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3131 maxsector);
3132
3133 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3134
3135 maxsector = bio->bi_sector;
3136 old_dev = bio->bi_bdev->bd_dev;
3137
3138 ret = q->make_request_fn(q, bio);
3139 } while (ret);
3140 }
3141
3142 EXPORT_SYMBOL(generic_make_request);
3143
3144 /**
3145 * submit_bio: submit a bio to the block device layer for I/O
3146 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3147 * @bio: The &struct bio which describes the I/O
3148 *
3149 * submit_bio() is very similar in purpose to generic_make_request(), and
3150 * uses that function to do most of the work. Both are fairly rough
3151 * interfaces, @bio must be presetup and ready for I/O.
3152 *
3153 */
3154 void submit_bio(int rw, struct bio *bio)
3155 {
3156 int count = bio_sectors(bio);
3157
3158 BIO_BUG_ON(!bio->bi_size);
3159 BIO_BUG_ON(!bio->bi_io_vec);
3160 bio->bi_rw |= rw;
3161 if (rw & WRITE)
3162 count_vm_events(PGPGOUT, count);
3163 else
3164 count_vm_events(PGPGIN, count);
3165
3166 if (unlikely(block_dump)) {
3167 char b[BDEVNAME_SIZE];
3168 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3169 current->comm, current->pid,
3170 (rw & WRITE) ? "WRITE" : "READ",
3171 (unsigned long long)bio->bi_sector,
3172 bdevname(bio->bi_bdev,b));
3173 }
3174
3175 generic_make_request(bio);
3176 }
3177
3178 EXPORT_SYMBOL(submit_bio);
3179
3180 static void blk_recalc_rq_segments(struct request *rq)
3181 {
3182 struct bio *bio, *prevbio = NULL;
3183 int nr_phys_segs, nr_hw_segs;
3184 unsigned int phys_size, hw_size;
3185 request_queue_t *q = rq->q;
3186
3187 if (!rq->bio)
3188 return;
3189
3190 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3191 rq_for_each_bio(bio, rq) {
3192 /* Force bio hw/phys segs to be recalculated. */
3193 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3194
3195 nr_phys_segs += bio_phys_segments(q, bio);
3196 nr_hw_segs += bio_hw_segments(q, bio);
3197 if (prevbio) {
3198 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3199 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3200
3201 if (blk_phys_contig_segment(q, prevbio, bio) &&
3202 pseg <= q->max_segment_size) {
3203 nr_phys_segs--;
3204 phys_size += prevbio->bi_size + bio->bi_size;
3205 } else
3206 phys_size = 0;
3207
3208 if (blk_hw_contig_segment(q, prevbio, bio) &&
3209 hseg <= q->max_segment_size) {
3210 nr_hw_segs--;
3211 hw_size += prevbio->bi_size + bio->bi_size;
3212 } else
3213 hw_size = 0;
3214 }
3215 prevbio = bio;
3216 }
3217
3218 rq->nr_phys_segments = nr_phys_segs;
3219 rq->nr_hw_segments = nr_hw_segs;
3220 }
3221
3222 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3223 {
3224 if (blk_fs_request(rq)) {
3225 rq->hard_sector += nsect;
3226 rq->hard_nr_sectors -= nsect;
3227
3228 /*
3229 * Move the I/O submission pointers ahead if required.
3230 */
3231 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3232 (rq->sector <= rq->hard_sector)) {
3233 rq->sector = rq->hard_sector;
3234 rq->nr_sectors = rq->hard_nr_sectors;
3235 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3236 rq->current_nr_sectors = rq->hard_cur_sectors;
3237 rq->buffer = bio_data(rq->bio);
3238 }
3239
3240 /*
3241 * if total number of sectors is less than the first segment
3242 * size, something has gone terribly wrong
3243 */
3244 if (rq->nr_sectors < rq->current_nr_sectors) {
3245 printk("blk: request botched\n");
3246 rq->nr_sectors = rq->current_nr_sectors;
3247 }
3248 }
3249 }
3250
3251 static int __end_that_request_first(struct request *req, int uptodate,
3252 int nr_bytes)
3253 {
3254 int total_bytes, bio_nbytes, error, next_idx = 0;
3255 struct bio *bio;
3256
3257 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3258
3259 /*
3260 * extend uptodate bool to allow < 0 value to be direct io error
3261 */
3262 error = 0;
3263 if (end_io_error(uptodate))
3264 error = !uptodate ? -EIO : uptodate;
3265
3266 /*
3267 * for a REQ_BLOCK_PC request, we want to carry any eventual
3268 * sense key with us all the way through
3269 */
3270 if (!blk_pc_request(req))
3271 req->errors = 0;
3272
3273 if (!uptodate) {
3274 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3275 printk("end_request: I/O error, dev %s, sector %llu\n",
3276 req->rq_disk ? req->rq_disk->disk_name : "?",
3277 (unsigned long long)req->sector);
3278 }
3279
3280 if (blk_fs_request(req) && req->rq_disk) {
3281 const int rw = rq_data_dir(req);
3282
3283 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3284 }
3285
3286 total_bytes = bio_nbytes = 0;
3287 while ((bio = req->bio) != NULL) {
3288 int nbytes;
3289
3290 if (nr_bytes >= bio->bi_size) {
3291 req->bio = bio->bi_next;
3292 nbytes = bio->bi_size;
3293 if (!ordered_bio_endio(req, bio, nbytes, error))
3294 bio_endio(bio, nbytes, error);
3295 next_idx = 0;
3296 bio_nbytes = 0;
3297 } else {
3298 int idx = bio->bi_idx + next_idx;
3299
3300 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3301 blk_dump_rq_flags(req, "__end_that");
3302 printk("%s: bio idx %d >= vcnt %d\n",
3303 __FUNCTION__,
3304 bio->bi_idx, bio->bi_vcnt);
3305 break;
3306 }
3307
3308 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3309 BIO_BUG_ON(nbytes > bio->bi_size);
3310
3311 /*
3312 * not a complete bvec done
3313 */
3314 if (unlikely(nbytes > nr_bytes)) {
3315 bio_nbytes += nr_bytes;
3316 total_bytes += nr_bytes;
3317 break;
3318 }
3319
3320 /*
3321 * advance to the next vector
3322 */
3323 next_idx++;
3324 bio_nbytes += nbytes;
3325 }
3326
3327 total_bytes += nbytes;
3328 nr_bytes -= nbytes;
3329
3330 if ((bio = req->bio)) {
3331 /*
3332 * end more in this run, or just return 'not-done'
3333 */
3334 if (unlikely(nr_bytes <= 0))
3335 break;
3336 }
3337 }
3338
3339 /*
3340 * completely done
3341 */
3342 if (!req->bio)
3343 return 0;
3344
3345 /*
3346 * if the request wasn't completed, update state
3347 */
3348 if (bio_nbytes) {
3349 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3350 bio_endio(bio, bio_nbytes, error);
3351 bio->bi_idx += next_idx;
3352 bio_iovec(bio)->bv_offset += nr_bytes;
3353 bio_iovec(bio)->bv_len -= nr_bytes;
3354 }
3355
3356 blk_recalc_rq_sectors(req, total_bytes >> 9);
3357 blk_recalc_rq_segments(req);
3358 return 1;
3359 }
3360
3361 /**
3362 * end_that_request_first - end I/O on a request
3363 * @req: the request being processed
3364 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3365 * @nr_sectors: number of sectors to end I/O on
3366 *
3367 * Description:
3368 * Ends I/O on a number of sectors attached to @req, and sets it up
3369 * for the next range of segments (if any) in the cluster.
3370 *
3371 * Return:
3372 * 0 - we are done with this request, call end_that_request_last()
3373 * 1 - still buffers pending for this request
3374 **/
3375 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3376 {
3377 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3378 }
3379
3380 EXPORT_SYMBOL(end_that_request_first);
3381
3382 /**
3383 * end_that_request_chunk - end I/O on a request
3384 * @req: the request being processed
3385 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3386 * @nr_bytes: number of bytes to complete
3387 *
3388 * Description:
3389 * Ends I/O on a number of bytes attached to @req, and sets it up
3390 * for the next range of segments (if any). Like end_that_request_first(),
3391 * but deals with bytes instead of sectors.
3392 *
3393 * Return:
3394 * 0 - we are done with this request, call end_that_request_last()
3395 * 1 - still buffers pending for this request
3396 **/
3397 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3398 {
3399 return __end_that_request_first(req, uptodate, nr_bytes);
3400 }
3401
3402 EXPORT_SYMBOL(end_that_request_chunk);
3403
3404 /*
3405 * splice the completion data to a local structure and hand off to
3406 * process_completion_queue() to complete the requests
3407 */
3408 static void blk_done_softirq(struct softirq_action *h)
3409 {
3410 struct list_head *cpu_list, local_list;
3411
3412 local_irq_disable();
3413 cpu_list = &__get_cpu_var(blk_cpu_done);
3414 list_replace_init(cpu_list, &local_list);
3415 local_irq_enable();
3416
3417 while (!list_empty(&local_list)) {
3418 struct request *rq = list_entry(local_list.next, struct request, donelist);
3419
3420 list_del_init(&rq->donelist);
3421 rq->q->softirq_done_fn(rq);
3422 }
3423 }
3424
3425 #ifdef CONFIG_HOTPLUG_CPU
3426
3427 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3428 void *hcpu)
3429 {
3430 /*
3431 * If a CPU goes away, splice its entries to the current CPU
3432 * and trigger a run of the softirq
3433 */
3434 if (action == CPU_DEAD) {
3435 int cpu = (unsigned long) hcpu;
3436
3437 local_irq_disable();
3438 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3439 &__get_cpu_var(blk_cpu_done));
3440 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3441 local_irq_enable();
3442 }
3443
3444 return NOTIFY_OK;
3445 }
3446
3447
3448 static struct notifier_block __devinitdata blk_cpu_notifier = {
3449 .notifier_call = blk_cpu_notify,
3450 };
3451
3452 #endif /* CONFIG_HOTPLUG_CPU */
3453
3454 /**
3455 * blk_complete_request - end I/O on a request
3456 * @req: the request being processed
3457 *
3458 * Description:
3459 * Ends all I/O on a request. It does not handle partial completions,
3460 * unless the driver actually implements this in its completion callback
3461 * through requeueing. Theh actual completion happens out-of-order,
3462 * through a softirq handler. The user must have registered a completion
3463 * callback through blk_queue_softirq_done().
3464 **/
3465
3466 void blk_complete_request(struct request *req)
3467 {
3468 struct list_head *cpu_list;
3469 unsigned long flags;
3470
3471 BUG_ON(!req->q->softirq_done_fn);
3472
3473 local_irq_save(flags);
3474
3475 cpu_list = &__get_cpu_var(blk_cpu_done);
3476 list_add_tail(&req->donelist, cpu_list);
3477 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3478
3479 local_irq_restore(flags);
3480 }
3481
3482 EXPORT_SYMBOL(blk_complete_request);
3483
3484 /*
3485 * queue lock must be held
3486 */
3487 void end_that_request_last(struct request *req, int uptodate)
3488 {
3489 struct gendisk *disk = req->rq_disk;
3490 int error;
3491
3492 /*
3493 * extend uptodate bool to allow < 0 value to be direct io error
3494 */
3495 error = 0;
3496 if (end_io_error(uptodate))
3497 error = !uptodate ? -EIO : uptodate;
3498
3499 if (unlikely(laptop_mode) && blk_fs_request(req))
3500 laptop_io_completion();
3501
3502 /*
3503 * Account IO completion. bar_rq isn't accounted as a normal
3504 * IO on queueing nor completion. Accounting the containing
3505 * request is enough.
3506 */
3507 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3508 unsigned long duration = jiffies - req->start_time;
3509 const int rw = rq_data_dir(req);
3510
3511 __disk_stat_inc(disk, ios[rw]);
3512 __disk_stat_add(disk, ticks[rw], duration);
3513 disk_round_stats(disk);
3514 disk->in_flight--;
3515 }
3516 if (req->end_io)
3517 req->end_io(req, error);
3518 else
3519 __blk_put_request(req->q, req);
3520 }
3521
3522 EXPORT_SYMBOL(end_that_request_last);
3523
3524 void end_request(struct request *req, int uptodate)
3525 {
3526 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3527 add_disk_randomness(req->rq_disk);
3528 blkdev_dequeue_request(req);
3529 end_that_request_last(req, uptodate);
3530 }
3531 }
3532
3533 EXPORT_SYMBOL(end_request);
3534
3535 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3536 {
3537 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3538 rq->cmd_flags |= (bio->bi_rw & 3);
3539
3540 rq->nr_phys_segments = bio_phys_segments(q, bio);
3541 rq->nr_hw_segments = bio_hw_segments(q, bio);
3542 rq->current_nr_sectors = bio_cur_sectors(bio);
3543 rq->hard_cur_sectors = rq->current_nr_sectors;
3544 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3545 rq->buffer = bio_data(bio);
3546
3547 rq->bio = rq->biotail = bio;
3548 }
3549
3550 EXPORT_SYMBOL(blk_rq_bio_prep);
3551
3552 int kblockd_schedule_work(struct work_struct *work)
3553 {
3554 return queue_work(kblockd_workqueue, work);
3555 }
3556
3557 EXPORT_SYMBOL(kblockd_schedule_work);
3558
3559 void kblockd_flush(void)
3560 {
3561 flush_workqueue(kblockd_workqueue);
3562 }
3563 EXPORT_SYMBOL(kblockd_flush);
3564
3565 int __init blk_dev_init(void)
3566 {
3567 int i;
3568
3569 kblockd_workqueue = create_workqueue("kblockd");
3570 if (!kblockd_workqueue)
3571 panic("Failed to create kblockd\n");
3572
3573 request_cachep = kmem_cache_create("blkdev_requests",
3574 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3575
3576 requestq_cachep = kmem_cache_create("blkdev_queue",
3577 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3578
3579 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3580 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3581
3582 for_each_possible_cpu(i)
3583 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3584
3585 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3586 register_hotcpu_notifier(&blk_cpu_notifier);
3587
3588 blk_max_low_pfn = max_low_pfn;
3589 blk_max_pfn = max_pfn;
3590
3591 return 0;
3592 }
3593
3594 /*
3595 * IO Context helper functions
3596 */
3597 void put_io_context(struct io_context *ioc)
3598 {
3599 if (ioc == NULL)
3600 return;
3601
3602 BUG_ON(atomic_read(&ioc->refcount) == 0);
3603
3604 if (atomic_dec_and_test(&ioc->refcount)) {
3605 struct cfq_io_context *cic;
3606
3607 rcu_read_lock();
3608 if (ioc->aic && ioc->aic->dtor)
3609 ioc->aic->dtor(ioc->aic);
3610 if (ioc->cic_root.rb_node != NULL) {
3611 struct rb_node *n = rb_first(&ioc->cic_root);
3612
3613 cic = rb_entry(n, struct cfq_io_context, rb_node);
3614 cic->dtor(ioc);
3615 }
3616 rcu_read_unlock();
3617
3618 kmem_cache_free(iocontext_cachep, ioc);
3619 }
3620 }
3621 EXPORT_SYMBOL(put_io_context);
3622
3623 /* Called by the exitting task */
3624 void exit_io_context(void)
3625 {
3626 unsigned long flags;
3627 struct io_context *ioc;
3628 struct cfq_io_context *cic;
3629
3630 local_irq_save(flags);
3631 task_lock(current);
3632 ioc = current->io_context;
3633 current->io_context = NULL;
3634 ioc->task = NULL;
3635 task_unlock(current);
3636 local_irq_restore(flags);
3637
3638 if (ioc->aic && ioc->aic->exit)
3639 ioc->aic->exit(ioc->aic);
3640 if (ioc->cic_root.rb_node != NULL) {
3641 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3642 cic->exit(ioc);
3643 }
3644
3645 put_io_context(ioc);
3646 }
3647
3648 /*
3649 * If the current task has no IO context then create one and initialise it.
3650 * Otherwise, return its existing IO context.
3651 *
3652 * This returned IO context doesn't have a specifically elevated refcount,
3653 * but since the current task itself holds a reference, the context can be
3654 * used in general code, so long as it stays within `current` context.
3655 */
3656 struct io_context *current_io_context(gfp_t gfp_flags)
3657 {
3658 struct task_struct *tsk = current;
3659 struct io_context *ret;
3660
3661 ret = tsk->io_context;
3662 if (likely(ret))
3663 return ret;
3664
3665 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3666 if (ret) {
3667 atomic_set(&ret->refcount, 1);
3668 ret->task = current;
3669 ret->set_ioprio = NULL;
3670 ret->last_waited = jiffies; /* doesn't matter... */
3671 ret->nr_batch_requests = 0; /* because this is 0 */
3672 ret->aic = NULL;
3673 ret->cic_root.rb_node = NULL;
3674 /* make sure set_task_ioprio() sees the settings above */
3675 smp_wmb();
3676 tsk->io_context = ret;
3677 }
3678
3679 return ret;
3680 }
3681 EXPORT_SYMBOL(current_io_context);
3682
3683 /*
3684 * If the current task has no IO context then create one and initialise it.
3685 * If it does have a context, take a ref on it.
3686 *
3687 * This is always called in the context of the task which submitted the I/O.
3688 */
3689 struct io_context *get_io_context(gfp_t gfp_flags)
3690 {
3691 struct io_context *ret;
3692 ret = current_io_context(gfp_flags);
3693 if (likely(ret))
3694 atomic_inc(&ret->refcount);
3695 return ret;
3696 }
3697 EXPORT_SYMBOL(get_io_context);
3698
3699 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3700 {
3701 struct io_context *src = *psrc;
3702 struct io_context *dst = *pdst;
3703
3704 if (src) {
3705 BUG_ON(atomic_read(&src->refcount) == 0);
3706 atomic_inc(&src->refcount);
3707 put_io_context(dst);
3708 *pdst = src;
3709 }
3710 }
3711 EXPORT_SYMBOL(copy_io_context);
3712
3713 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3714 {
3715 struct io_context *temp;
3716 temp = *ioc1;
3717 *ioc1 = *ioc2;
3718 *ioc2 = temp;
3719 }
3720 EXPORT_SYMBOL(swap_io_context);
3721
3722 /*
3723 * sysfs parts below
3724 */
3725 struct queue_sysfs_entry {
3726 struct attribute attr;
3727 ssize_t (*show)(struct request_queue *, char *);
3728 ssize_t (*store)(struct request_queue *, const char *, size_t);
3729 };
3730
3731 static ssize_t
3732 queue_var_show(unsigned int var, char *page)
3733 {
3734 return sprintf(page, "%d\n", var);
3735 }
3736
3737 static ssize_t
3738 queue_var_store(unsigned long *var, const char *page, size_t count)
3739 {
3740 char *p = (char *) page;
3741
3742 *var = simple_strtoul(p, &p, 10);
3743 return count;
3744 }
3745
3746 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3747 {
3748 return queue_var_show(q->nr_requests, (page));
3749 }
3750
3751 static ssize_t
3752 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3753 {
3754 struct request_list *rl = &q->rq;
3755 unsigned long nr;
3756 int ret = queue_var_store(&nr, page, count);
3757 if (nr < BLKDEV_MIN_RQ)
3758 nr = BLKDEV_MIN_RQ;
3759
3760 spin_lock_irq(q->queue_lock);
3761 q->nr_requests = nr;
3762 blk_queue_congestion_threshold(q);
3763
3764 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3765 set_queue_congested(q, READ);
3766 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3767 clear_queue_congested(q, READ);
3768
3769 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3770 set_queue_congested(q, WRITE);
3771 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3772 clear_queue_congested(q, WRITE);
3773
3774 if (rl->count[READ] >= q->nr_requests) {
3775 blk_set_queue_full(q, READ);
3776 } else if (rl->count[READ]+1 <= q->nr_requests) {
3777 blk_clear_queue_full(q, READ);
3778 wake_up(&rl->wait[READ]);
3779 }
3780
3781 if (rl->count[WRITE] >= q->nr_requests) {
3782 blk_set_queue_full(q, WRITE);
3783 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3784 blk_clear_queue_full(q, WRITE);
3785 wake_up(&rl->wait[WRITE]);
3786 }
3787 spin_unlock_irq(q->queue_lock);
3788 return ret;
3789 }
3790
3791 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3792 {
3793 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3794
3795 return queue_var_show(ra_kb, (page));
3796 }
3797
3798 static ssize_t
3799 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3800 {
3801 unsigned long ra_kb;
3802 ssize_t ret = queue_var_store(&ra_kb, page, count);
3803
3804 spin_lock_irq(q->queue_lock);
3805 if (ra_kb > (q->max_sectors >> 1))
3806 ra_kb = (q->max_sectors >> 1);
3807
3808 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3809 spin_unlock_irq(q->queue_lock);
3810
3811 return ret;
3812 }
3813
3814 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3815 {
3816 int max_sectors_kb = q->max_sectors >> 1;
3817
3818 return queue_var_show(max_sectors_kb, (page));
3819 }
3820
3821 static ssize_t
3822 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3823 {
3824 unsigned long max_sectors_kb,
3825 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3826 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3827 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3828 int ra_kb;
3829
3830 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3831 return -EINVAL;
3832 /*
3833 * Take the queue lock to update the readahead and max_sectors
3834 * values synchronously:
3835 */
3836 spin_lock_irq(q->queue_lock);
3837 /*
3838 * Trim readahead window as well, if necessary:
3839 */
3840 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3841 if (ra_kb > max_sectors_kb)
3842 q->backing_dev_info.ra_pages =
3843 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3844
3845 q->max_sectors = max_sectors_kb << 1;
3846 spin_unlock_irq(q->queue_lock);
3847
3848 return ret;
3849 }
3850
3851 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3852 {
3853 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3854
3855 return queue_var_show(max_hw_sectors_kb, (page));
3856 }
3857
3858
3859 static struct queue_sysfs_entry queue_requests_entry = {
3860 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3861 .show = queue_requests_show,
3862 .store = queue_requests_store,
3863 };
3864
3865 static struct queue_sysfs_entry queue_ra_entry = {
3866 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3867 .show = queue_ra_show,
3868 .store = queue_ra_store,
3869 };
3870
3871 static struct queue_sysfs_entry queue_max_sectors_entry = {
3872 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3873 .show = queue_max_sectors_show,
3874 .store = queue_max_sectors_store,
3875 };
3876
3877 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3878 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3879 .show = queue_max_hw_sectors_show,
3880 };
3881
3882 static struct queue_sysfs_entry queue_iosched_entry = {
3883 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3884 .show = elv_iosched_show,
3885 .store = elv_iosched_store,
3886 };
3887
3888 static struct attribute *default_attrs[] = {
3889 &queue_requests_entry.attr,
3890 &queue_ra_entry.attr,
3891 &queue_max_hw_sectors_entry.attr,
3892 &queue_max_sectors_entry.attr,
3893 &queue_iosched_entry.attr,
3894 NULL,
3895 };
3896
3897 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3898
3899 static ssize_t
3900 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3901 {
3902 struct queue_sysfs_entry *entry = to_queue(attr);
3903 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3904 ssize_t res;
3905
3906 if (!entry->show)
3907 return -EIO;
3908 mutex_lock(&q->sysfs_lock);
3909 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3910 mutex_unlock(&q->sysfs_lock);
3911 return -ENOENT;
3912 }
3913 res = entry->show(q, page);
3914 mutex_unlock(&q->sysfs_lock);
3915 return res;
3916 }
3917
3918 static ssize_t
3919 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3920 const char *page, size_t length)
3921 {
3922 struct queue_sysfs_entry *entry = to_queue(attr);
3923 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3924
3925 ssize_t res;
3926
3927 if (!entry->store)
3928 return -EIO;
3929 mutex_lock(&q->sysfs_lock);
3930 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3931 mutex_unlock(&q->sysfs_lock);
3932 return -ENOENT;
3933 }
3934 res = entry->store(q, page, length);
3935 mutex_unlock(&q->sysfs_lock);
3936 return res;
3937 }
3938
3939 static struct sysfs_ops queue_sysfs_ops = {
3940 .show = queue_attr_show,
3941 .store = queue_attr_store,
3942 };
3943
3944 static struct kobj_type queue_ktype = {
3945 .sysfs_ops = &queue_sysfs_ops,
3946 .default_attrs = default_attrs,
3947 .release = blk_release_queue,
3948 };
3949
3950 int blk_register_queue(struct gendisk *disk)
3951 {
3952 int ret;
3953
3954 request_queue_t *q = disk->queue;
3955
3956 if (!q || !q->request_fn)
3957 return -ENXIO;
3958
3959 q->kobj.parent = kobject_get(&disk->kobj);
3960
3961 ret = kobject_add(&q->kobj);
3962 if (ret < 0)
3963 return ret;
3964
3965 kobject_uevent(&q->kobj, KOBJ_ADD);
3966
3967 ret = elv_register_queue(q);
3968 if (ret) {
3969 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3970 kobject_del(&q->kobj);
3971 return ret;
3972 }
3973
3974 return 0;
3975 }
3976
3977 void blk_unregister_queue(struct gendisk *disk)
3978 {
3979 request_queue_t *q = disk->queue;
3980
3981 if (q && q->request_fn) {
3982 elv_unregister_queue(q);
3983
3984 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3985 kobject_del(&q->kobj);
3986 kobject_put(&disk->kobj);
3987 }
3988 }
This page took 0.254548 seconds and 5 git commands to generate.