Introduce rq_for_each_segment replacing rq_for_each_bio
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 /*
35 * for max sense size
36 */
37 #include <scsi/scsi_cmnd.h>
38
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
46
47 /*
48 * For the allocated request tables
49 */
50 static struct kmem_cache *request_cachep;
51
52 /*
53 * For queue allocation
54 */
55 static struct kmem_cache *requestq_cachep;
56
57 /*
58 * For io context allocations
59 */
60 static struct kmem_cache *iocontext_cachep;
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 unsigned long blk_max_low_pfn, blk_max_pfn;
68
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
71
72 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73
74 /* Amount of time in which a process may batch requests */
75 #define BLK_BATCH_TIME (HZ/50UL)
76
77 /* Number of requests a "batching" process may submit */
78 #define BLK_BATCH_REQ 32
79
80 /*
81 * Return the threshold (number of used requests) at which the queue is
82 * considered to be congested. It include a little hysteresis to keep the
83 * context switch rate down.
84 */
85 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 {
87 return q->nr_congestion_on;
88 }
89
90 /*
91 * The threshold at which a queue is considered to be uncongested
92 */
93 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 {
95 return q->nr_congestion_off;
96 }
97
98 static void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 /**
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * @bdev: device
116 *
117 * Locates the passed device's request queue and returns the address of its
118 * backing_dev_info
119 *
120 * Will return NULL if the request queue cannot be located.
121 */
122 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 {
124 struct backing_dev_info *ret = NULL;
125 struct request_queue *q = bdev_get_queue(bdev);
126
127 if (q)
128 ret = &q->backing_dev_info;
129 return ret;
130 }
131 EXPORT_SYMBOL(blk_get_backing_dev_info);
132
133 /**
134 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @q: queue
136 * @pfn: prepare_request function
137 *
138 * It's possible for a queue to register a prepare_request callback which
139 * is invoked before the request is handed to the request_fn. The goal of
140 * the function is to prepare a request for I/O, it can be used to build a
141 * cdb from the request data for instance.
142 *
143 */
144 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
145 {
146 q->prep_rq_fn = pfn;
147 }
148
149 EXPORT_SYMBOL(blk_queue_prep_rq);
150
151 /**
152 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @q: queue
154 * @mbfn: merge_bvec_fn
155 *
156 * Usually queues have static limitations on the max sectors or segments that
157 * we can put in a request. Stacking drivers may have some settings that
158 * are dynamic, and thus we have to query the queue whether it is ok to
159 * add a new bio_vec to a bio at a given offset or not. If the block device
160 * has such limitations, it needs to register a merge_bvec_fn to control
161 * the size of bio's sent to it. Note that a block device *must* allow a
162 * single page to be added to an empty bio. The block device driver may want
163 * to use the bio_split() function to deal with these bio's. By default
164 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
165 * honored.
166 */
167 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
168 {
169 q->merge_bvec_fn = mbfn;
170 }
171
172 EXPORT_SYMBOL(blk_queue_merge_bvec);
173
174 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
175 {
176 q->softirq_done_fn = fn;
177 }
178
179 EXPORT_SYMBOL(blk_queue_softirq_done);
180
181 /**
182 * blk_queue_make_request - define an alternate make_request function for a device
183 * @q: the request queue for the device to be affected
184 * @mfn: the alternate make_request function
185 *
186 * Description:
187 * The normal way for &struct bios to be passed to a device
188 * driver is for them to be collected into requests on a request
189 * queue, and then to allow the device driver to select requests
190 * off that queue when it is ready. This works well for many block
191 * devices. However some block devices (typically virtual devices
192 * such as md or lvm) do not benefit from the processing on the
193 * request queue, and are served best by having the requests passed
194 * directly to them. This can be achieved by providing a function
195 * to blk_queue_make_request().
196 *
197 * Caveat:
198 * The driver that does this *must* be able to deal appropriately
199 * with buffers in "highmemory". This can be accomplished by either calling
200 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
201 * blk_queue_bounce() to create a buffer in normal memory.
202 **/
203 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
204 {
205 /*
206 * set defaults
207 */
208 q->nr_requests = BLKDEV_MAX_RQ;
209 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
210 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
211 q->make_request_fn = mfn;
212 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
213 q->backing_dev_info.state = 0;
214 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
215 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
216 blk_queue_hardsect_size(q, 512);
217 blk_queue_dma_alignment(q, 511);
218 blk_queue_congestion_threshold(q);
219 q->nr_batching = BLK_BATCH_REQ;
220
221 q->unplug_thresh = 4; /* hmm */
222 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
223 if (q->unplug_delay == 0)
224 q->unplug_delay = 1;
225
226 INIT_WORK(&q->unplug_work, blk_unplug_work);
227
228 q->unplug_timer.function = blk_unplug_timeout;
229 q->unplug_timer.data = (unsigned long)q;
230
231 /*
232 * by default assume old behaviour and bounce for any highmem page
233 */
234 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
235 }
236
237 EXPORT_SYMBOL(blk_queue_make_request);
238
239 static void rq_init(struct request_queue *q, struct request *rq)
240 {
241 INIT_LIST_HEAD(&rq->queuelist);
242 INIT_LIST_HEAD(&rq->donelist);
243
244 rq->errors = 0;
245 rq->bio = rq->biotail = NULL;
246 INIT_HLIST_NODE(&rq->hash);
247 RB_CLEAR_NODE(&rq->rb_node);
248 rq->ioprio = 0;
249 rq->buffer = NULL;
250 rq->ref_count = 1;
251 rq->q = q;
252 rq->special = NULL;
253 rq->data_len = 0;
254 rq->data = NULL;
255 rq->nr_phys_segments = 0;
256 rq->sense = NULL;
257 rq->end_io = NULL;
258 rq->end_io_data = NULL;
259 rq->completion_data = NULL;
260 rq->next_rq = NULL;
261 }
262
263 /**
264 * blk_queue_ordered - does this queue support ordered writes
265 * @q: the request queue
266 * @ordered: one of QUEUE_ORDERED_*
267 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
268 *
269 * Description:
270 * For journalled file systems, doing ordered writes on a commit
271 * block instead of explicitly doing wait_on_buffer (which is bad
272 * for performance) can be a big win. Block drivers supporting this
273 * feature should call this function and indicate so.
274 *
275 **/
276 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
277 prepare_flush_fn *prepare_flush_fn)
278 {
279 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
280 prepare_flush_fn == NULL) {
281 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
282 return -EINVAL;
283 }
284
285 if (ordered != QUEUE_ORDERED_NONE &&
286 ordered != QUEUE_ORDERED_DRAIN &&
287 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
288 ordered != QUEUE_ORDERED_DRAIN_FUA &&
289 ordered != QUEUE_ORDERED_TAG &&
290 ordered != QUEUE_ORDERED_TAG_FLUSH &&
291 ordered != QUEUE_ORDERED_TAG_FUA) {
292 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
293 return -EINVAL;
294 }
295
296 q->ordered = ordered;
297 q->next_ordered = ordered;
298 q->prepare_flush_fn = prepare_flush_fn;
299
300 return 0;
301 }
302
303 EXPORT_SYMBOL(blk_queue_ordered);
304
305 /**
306 * blk_queue_issue_flush_fn - set function for issuing a flush
307 * @q: the request queue
308 * @iff: the function to be called issuing the flush
309 *
310 * Description:
311 * If a driver supports issuing a flush command, the support is notified
312 * to the block layer by defining it through this call.
313 *
314 **/
315 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
316 {
317 q->issue_flush_fn = iff;
318 }
319
320 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
321
322 /*
323 * Cache flushing for ordered writes handling
324 */
325 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
326 {
327 if (!q->ordseq)
328 return 0;
329 return 1 << ffz(q->ordseq);
330 }
331
332 unsigned blk_ordered_req_seq(struct request *rq)
333 {
334 struct request_queue *q = rq->q;
335
336 BUG_ON(q->ordseq == 0);
337
338 if (rq == &q->pre_flush_rq)
339 return QUEUE_ORDSEQ_PREFLUSH;
340 if (rq == &q->bar_rq)
341 return QUEUE_ORDSEQ_BAR;
342 if (rq == &q->post_flush_rq)
343 return QUEUE_ORDSEQ_POSTFLUSH;
344
345 /*
346 * !fs requests don't need to follow barrier ordering. Always
347 * put them at the front. This fixes the following deadlock.
348 *
349 * http://thread.gmane.org/gmane.linux.kernel/537473
350 */
351 if (!blk_fs_request(rq))
352 return QUEUE_ORDSEQ_DRAIN;
353
354 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
355 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
356 return QUEUE_ORDSEQ_DRAIN;
357 else
358 return QUEUE_ORDSEQ_DONE;
359 }
360
361 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
362 {
363 struct request *rq;
364 int uptodate;
365
366 if (error && !q->orderr)
367 q->orderr = error;
368
369 BUG_ON(q->ordseq & seq);
370 q->ordseq |= seq;
371
372 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
373 return;
374
375 /*
376 * Okay, sequence complete.
377 */
378 rq = q->orig_bar_rq;
379 uptodate = q->orderr ? q->orderr : 1;
380
381 q->ordseq = 0;
382
383 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
384 end_that_request_last(rq, uptodate);
385 }
386
387 static void pre_flush_end_io(struct request *rq, int error)
388 {
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
391 }
392
393 static void bar_end_io(struct request *rq, int error)
394 {
395 elv_completed_request(rq->q, rq);
396 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
397 }
398
399 static void post_flush_end_io(struct request *rq, int error)
400 {
401 elv_completed_request(rq->q, rq);
402 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
403 }
404
405 static void queue_flush(struct request_queue *q, unsigned which)
406 {
407 struct request *rq;
408 rq_end_io_fn *end_io;
409
410 if (which == QUEUE_ORDERED_PREFLUSH) {
411 rq = &q->pre_flush_rq;
412 end_io = pre_flush_end_io;
413 } else {
414 rq = &q->post_flush_rq;
415 end_io = post_flush_end_io;
416 }
417
418 rq->cmd_flags = REQ_HARDBARRIER;
419 rq_init(q, rq);
420 rq->elevator_private = NULL;
421 rq->elevator_private2 = NULL;
422 rq->rq_disk = q->bar_rq.rq_disk;
423 rq->end_io = end_io;
424 q->prepare_flush_fn(q, rq);
425
426 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
427 }
428
429 static inline struct request *start_ordered(struct request_queue *q,
430 struct request *rq)
431 {
432 q->bi_size = 0;
433 q->orderr = 0;
434 q->ordered = q->next_ordered;
435 q->ordseq |= QUEUE_ORDSEQ_STARTED;
436
437 /*
438 * Prep proxy barrier request.
439 */
440 blkdev_dequeue_request(rq);
441 q->orig_bar_rq = rq;
442 rq = &q->bar_rq;
443 rq->cmd_flags = 0;
444 rq_init(q, rq);
445 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
446 rq->cmd_flags |= REQ_RW;
447 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
448 rq->elevator_private = NULL;
449 rq->elevator_private2 = NULL;
450 init_request_from_bio(rq, q->orig_bar_rq->bio);
451 rq->end_io = bar_end_io;
452
453 /*
454 * Queue ordered sequence. As we stack them at the head, we
455 * need to queue in reverse order. Note that we rely on that
456 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
457 * request gets inbetween ordered sequence.
458 */
459 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
460 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
461 else
462 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
463
464 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
465
466 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
467 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
468 rq = &q->pre_flush_rq;
469 } else
470 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
471
472 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
473 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
474 else
475 rq = NULL;
476
477 return rq;
478 }
479
480 int blk_do_ordered(struct request_queue *q, struct request **rqp)
481 {
482 struct request *rq = *rqp;
483 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
484
485 if (!q->ordseq) {
486 if (!is_barrier)
487 return 1;
488
489 if (q->next_ordered != QUEUE_ORDERED_NONE) {
490 *rqp = start_ordered(q, rq);
491 return 1;
492 } else {
493 /*
494 * This can happen when the queue switches to
495 * ORDERED_NONE while this request is on it.
496 */
497 blkdev_dequeue_request(rq);
498 end_that_request_first(rq, -EOPNOTSUPP,
499 rq->hard_nr_sectors);
500 end_that_request_last(rq, -EOPNOTSUPP);
501 *rqp = NULL;
502 return 0;
503 }
504 }
505
506 /*
507 * Ordered sequence in progress
508 */
509
510 /* Special requests are not subject to ordering rules. */
511 if (!blk_fs_request(rq) &&
512 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
513 return 1;
514
515 if (q->ordered & QUEUE_ORDERED_TAG) {
516 /* Ordered by tag. Blocking the next barrier is enough. */
517 if (is_barrier && rq != &q->bar_rq)
518 *rqp = NULL;
519 } else {
520 /* Ordered by draining. Wait for turn. */
521 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
522 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
523 *rqp = NULL;
524 }
525
526 return 1;
527 }
528
529 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
530 {
531 struct request_queue *q = bio->bi_private;
532
533 /*
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
537 */
538 q->bi_size += bytes;
539
540 if (bio->bi_size)
541 return 1;
542
543 /* Reset bio */
544 set_bit(BIO_UPTODATE, &bio->bi_flags);
545 bio->bi_size = q->bi_size;
546 bio->bi_sector -= (q->bi_size >> 9);
547 q->bi_size = 0;
548
549 return 0;
550 }
551
552 static int ordered_bio_endio(struct request *rq, struct bio *bio,
553 unsigned int nbytes, int error)
554 {
555 struct request_queue *q = rq->q;
556 bio_end_io_t *endio;
557 void *private;
558
559 if (&q->bar_rq != rq)
560 return 0;
561
562 /*
563 * Okay, this is the barrier request in progress, dry finish it.
564 */
565 if (error && !q->orderr)
566 q->orderr = error;
567
568 endio = bio->bi_end_io;
569 private = bio->bi_private;
570 bio->bi_end_io = flush_dry_bio_endio;
571 bio->bi_private = q;
572
573 bio_endio(bio, nbytes, error);
574
575 bio->bi_end_io = endio;
576 bio->bi_private = private;
577
578 return 1;
579 }
580
581 /**
582 * blk_queue_bounce_limit - set bounce buffer limit for queue
583 * @q: the request queue for the device
584 * @dma_addr: bus address limit
585 *
586 * Description:
587 * Different hardware can have different requirements as to what pages
588 * it can do I/O directly to. A low level driver can call
589 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
590 * buffers for doing I/O to pages residing above @page.
591 **/
592 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
593 {
594 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
595 int dma = 0;
596
597 q->bounce_gfp = GFP_NOIO;
598 #if BITS_PER_LONG == 64
599 /* Assume anything <= 4GB can be handled by IOMMU.
600 Actually some IOMMUs can handle everything, but I don't
601 know of a way to test this here. */
602 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
603 dma = 1;
604 q->bounce_pfn = max_low_pfn;
605 #else
606 if (bounce_pfn < blk_max_low_pfn)
607 dma = 1;
608 q->bounce_pfn = bounce_pfn;
609 #endif
610 if (dma) {
611 init_emergency_isa_pool();
612 q->bounce_gfp = GFP_NOIO | GFP_DMA;
613 q->bounce_pfn = bounce_pfn;
614 }
615 }
616
617 EXPORT_SYMBOL(blk_queue_bounce_limit);
618
619 /**
620 * blk_queue_max_sectors - set max sectors for a request for this queue
621 * @q: the request queue for the device
622 * @max_sectors: max sectors in the usual 512b unit
623 *
624 * Description:
625 * Enables a low level driver to set an upper limit on the size of
626 * received requests.
627 **/
628 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
629 {
630 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
631 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
632 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
633 }
634
635 if (BLK_DEF_MAX_SECTORS > max_sectors)
636 q->max_hw_sectors = q->max_sectors = max_sectors;
637 else {
638 q->max_sectors = BLK_DEF_MAX_SECTORS;
639 q->max_hw_sectors = max_sectors;
640 }
641 }
642
643 EXPORT_SYMBOL(blk_queue_max_sectors);
644
645 /**
646 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
647 * @q: the request queue for the device
648 * @max_segments: max number of segments
649 *
650 * Description:
651 * Enables a low level driver to set an upper limit on the number of
652 * physical data segments in a request. This would be the largest sized
653 * scatter list the driver could handle.
654 **/
655 void blk_queue_max_phys_segments(struct request_queue *q,
656 unsigned short max_segments)
657 {
658 if (!max_segments) {
659 max_segments = 1;
660 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
661 }
662
663 q->max_phys_segments = max_segments;
664 }
665
666 EXPORT_SYMBOL(blk_queue_max_phys_segments);
667
668 /**
669 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
670 * @q: the request queue for the device
671 * @max_segments: max number of segments
672 *
673 * Description:
674 * Enables a low level driver to set an upper limit on the number of
675 * hw data segments in a request. This would be the largest number of
676 * address/length pairs the host adapter can actually give as once
677 * to the device.
678 **/
679 void blk_queue_max_hw_segments(struct request_queue *q,
680 unsigned short max_segments)
681 {
682 if (!max_segments) {
683 max_segments = 1;
684 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
685 }
686
687 q->max_hw_segments = max_segments;
688 }
689
690 EXPORT_SYMBOL(blk_queue_max_hw_segments);
691
692 /**
693 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
694 * @q: the request queue for the device
695 * @max_size: max size of segment in bytes
696 *
697 * Description:
698 * Enables a low level driver to set an upper limit on the size of a
699 * coalesced segment
700 **/
701 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
702 {
703 if (max_size < PAGE_CACHE_SIZE) {
704 max_size = PAGE_CACHE_SIZE;
705 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
706 }
707
708 q->max_segment_size = max_size;
709 }
710
711 EXPORT_SYMBOL(blk_queue_max_segment_size);
712
713 /**
714 * blk_queue_hardsect_size - set hardware sector size for the queue
715 * @q: the request queue for the device
716 * @size: the hardware sector size, in bytes
717 *
718 * Description:
719 * This should typically be set to the lowest possible sector size
720 * that the hardware can operate on (possible without reverting to
721 * even internal read-modify-write operations). Usually the default
722 * of 512 covers most hardware.
723 **/
724 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
725 {
726 q->hardsect_size = size;
727 }
728
729 EXPORT_SYMBOL(blk_queue_hardsect_size);
730
731 /*
732 * Returns the minimum that is _not_ zero, unless both are zero.
733 */
734 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
735
736 /**
737 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
738 * @t: the stacking driver (top)
739 * @b: the underlying device (bottom)
740 **/
741 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
742 {
743 /* zero is "infinity" */
744 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
745 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
746
747 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
748 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
749 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
750 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
751 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
752 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
753 }
754
755 EXPORT_SYMBOL(blk_queue_stack_limits);
756
757 /**
758 * blk_queue_segment_boundary - set boundary rules for segment merging
759 * @q: the request queue for the device
760 * @mask: the memory boundary mask
761 **/
762 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
763 {
764 if (mask < PAGE_CACHE_SIZE - 1) {
765 mask = PAGE_CACHE_SIZE - 1;
766 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
767 }
768
769 q->seg_boundary_mask = mask;
770 }
771
772 EXPORT_SYMBOL(blk_queue_segment_boundary);
773
774 /**
775 * blk_queue_dma_alignment - set dma length and memory alignment
776 * @q: the request queue for the device
777 * @mask: alignment mask
778 *
779 * description:
780 * set required memory and length aligment for direct dma transactions.
781 * this is used when buiding direct io requests for the queue.
782 *
783 **/
784 void blk_queue_dma_alignment(struct request_queue *q, int mask)
785 {
786 q->dma_alignment = mask;
787 }
788
789 EXPORT_SYMBOL(blk_queue_dma_alignment);
790
791 /**
792 * blk_queue_find_tag - find a request by its tag and queue
793 * @q: The request queue for the device
794 * @tag: The tag of the request
795 *
796 * Notes:
797 * Should be used when a device returns a tag and you want to match
798 * it with a request.
799 *
800 * no locks need be held.
801 **/
802 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
803 {
804 return blk_map_queue_find_tag(q->queue_tags, tag);
805 }
806
807 EXPORT_SYMBOL(blk_queue_find_tag);
808
809 /**
810 * __blk_free_tags - release a given set of tag maintenance info
811 * @bqt: the tag map to free
812 *
813 * Tries to free the specified @bqt@. Returns true if it was
814 * actually freed and false if there are still references using it
815 */
816 static int __blk_free_tags(struct blk_queue_tag *bqt)
817 {
818 int retval;
819
820 retval = atomic_dec_and_test(&bqt->refcnt);
821 if (retval) {
822 BUG_ON(bqt->busy);
823 BUG_ON(!list_empty(&bqt->busy_list));
824
825 kfree(bqt->tag_index);
826 bqt->tag_index = NULL;
827
828 kfree(bqt->tag_map);
829 bqt->tag_map = NULL;
830
831 kfree(bqt);
832
833 }
834
835 return retval;
836 }
837
838 /**
839 * __blk_queue_free_tags - release tag maintenance info
840 * @q: the request queue for the device
841 *
842 * Notes:
843 * blk_cleanup_queue() will take care of calling this function, if tagging
844 * has been used. So there's no need to call this directly.
845 **/
846 static void __blk_queue_free_tags(struct request_queue *q)
847 {
848 struct blk_queue_tag *bqt = q->queue_tags;
849
850 if (!bqt)
851 return;
852
853 __blk_free_tags(bqt);
854
855 q->queue_tags = NULL;
856 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
857 }
858
859
860 /**
861 * blk_free_tags - release a given set of tag maintenance info
862 * @bqt: the tag map to free
863 *
864 * For externally managed @bqt@ frees the map. Callers of this
865 * function must guarantee to have released all the queues that
866 * might have been using this tag map.
867 */
868 void blk_free_tags(struct blk_queue_tag *bqt)
869 {
870 if (unlikely(!__blk_free_tags(bqt)))
871 BUG();
872 }
873 EXPORT_SYMBOL(blk_free_tags);
874
875 /**
876 * blk_queue_free_tags - release tag maintenance info
877 * @q: the request queue for the device
878 *
879 * Notes:
880 * This is used to disabled tagged queuing to a device, yet leave
881 * queue in function.
882 **/
883 void blk_queue_free_tags(struct request_queue *q)
884 {
885 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
886 }
887
888 EXPORT_SYMBOL(blk_queue_free_tags);
889
890 static int
891 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
892 {
893 struct request **tag_index;
894 unsigned long *tag_map;
895 int nr_ulongs;
896
897 if (q && depth > q->nr_requests * 2) {
898 depth = q->nr_requests * 2;
899 printk(KERN_ERR "%s: adjusted depth to %d\n",
900 __FUNCTION__, depth);
901 }
902
903 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
904 if (!tag_index)
905 goto fail;
906
907 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
908 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
909 if (!tag_map)
910 goto fail;
911
912 tags->real_max_depth = depth;
913 tags->max_depth = depth;
914 tags->tag_index = tag_index;
915 tags->tag_map = tag_map;
916
917 return 0;
918 fail:
919 kfree(tag_index);
920 return -ENOMEM;
921 }
922
923 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
924 int depth)
925 {
926 struct blk_queue_tag *tags;
927
928 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
929 if (!tags)
930 goto fail;
931
932 if (init_tag_map(q, tags, depth))
933 goto fail;
934
935 INIT_LIST_HEAD(&tags->busy_list);
936 tags->busy = 0;
937 atomic_set(&tags->refcnt, 1);
938 return tags;
939 fail:
940 kfree(tags);
941 return NULL;
942 }
943
944 /**
945 * blk_init_tags - initialize the tag info for an external tag map
946 * @depth: the maximum queue depth supported
947 * @tags: the tag to use
948 **/
949 struct blk_queue_tag *blk_init_tags(int depth)
950 {
951 return __blk_queue_init_tags(NULL, depth);
952 }
953 EXPORT_SYMBOL(blk_init_tags);
954
955 /**
956 * blk_queue_init_tags - initialize the queue tag info
957 * @q: the request queue for the device
958 * @depth: the maximum queue depth supported
959 * @tags: the tag to use
960 **/
961 int blk_queue_init_tags(struct request_queue *q, int depth,
962 struct blk_queue_tag *tags)
963 {
964 int rc;
965
966 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
967
968 if (!tags && !q->queue_tags) {
969 tags = __blk_queue_init_tags(q, depth);
970
971 if (!tags)
972 goto fail;
973 } else if (q->queue_tags) {
974 if ((rc = blk_queue_resize_tags(q, depth)))
975 return rc;
976 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
977 return 0;
978 } else
979 atomic_inc(&tags->refcnt);
980
981 /*
982 * assign it, all done
983 */
984 q->queue_tags = tags;
985 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
986 return 0;
987 fail:
988 kfree(tags);
989 return -ENOMEM;
990 }
991
992 EXPORT_SYMBOL(blk_queue_init_tags);
993
994 /**
995 * blk_queue_resize_tags - change the queueing depth
996 * @q: the request queue for the device
997 * @new_depth: the new max command queueing depth
998 *
999 * Notes:
1000 * Must be called with the queue lock held.
1001 **/
1002 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1003 {
1004 struct blk_queue_tag *bqt = q->queue_tags;
1005 struct request **tag_index;
1006 unsigned long *tag_map;
1007 int max_depth, nr_ulongs;
1008
1009 if (!bqt)
1010 return -ENXIO;
1011
1012 /*
1013 * if we already have large enough real_max_depth. just
1014 * adjust max_depth. *NOTE* as requests with tag value
1015 * between new_depth and real_max_depth can be in-flight, tag
1016 * map can not be shrunk blindly here.
1017 */
1018 if (new_depth <= bqt->real_max_depth) {
1019 bqt->max_depth = new_depth;
1020 return 0;
1021 }
1022
1023 /*
1024 * Currently cannot replace a shared tag map with a new
1025 * one, so error out if this is the case
1026 */
1027 if (atomic_read(&bqt->refcnt) != 1)
1028 return -EBUSY;
1029
1030 /*
1031 * save the old state info, so we can copy it back
1032 */
1033 tag_index = bqt->tag_index;
1034 tag_map = bqt->tag_map;
1035 max_depth = bqt->real_max_depth;
1036
1037 if (init_tag_map(q, bqt, new_depth))
1038 return -ENOMEM;
1039
1040 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1041 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1042 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1043
1044 kfree(tag_index);
1045 kfree(tag_map);
1046 return 0;
1047 }
1048
1049 EXPORT_SYMBOL(blk_queue_resize_tags);
1050
1051 /**
1052 * blk_queue_end_tag - end tag operations for a request
1053 * @q: the request queue for the device
1054 * @rq: the request that has completed
1055 *
1056 * Description:
1057 * Typically called when end_that_request_first() returns 0, meaning
1058 * all transfers have been done for a request. It's important to call
1059 * this function before end_that_request_last(), as that will put the
1060 * request back on the free list thus corrupting the internal tag list.
1061 *
1062 * Notes:
1063 * queue lock must be held.
1064 **/
1065 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1066 {
1067 struct blk_queue_tag *bqt = q->queue_tags;
1068 int tag = rq->tag;
1069
1070 BUG_ON(tag == -1);
1071
1072 if (unlikely(tag >= bqt->real_max_depth))
1073 /*
1074 * This can happen after tag depth has been reduced.
1075 * FIXME: how about a warning or info message here?
1076 */
1077 return;
1078
1079 list_del_init(&rq->queuelist);
1080 rq->cmd_flags &= ~REQ_QUEUED;
1081 rq->tag = -1;
1082
1083 if (unlikely(bqt->tag_index[tag] == NULL))
1084 printk(KERN_ERR "%s: tag %d is missing\n",
1085 __FUNCTION__, tag);
1086
1087 bqt->tag_index[tag] = NULL;
1088
1089 /*
1090 * We use test_and_clear_bit's memory ordering properties here.
1091 * The tag_map bit acts as a lock for tag_index[bit], so we need
1092 * a barrer before clearing the bit (precisely: release semantics).
1093 * Could use clear_bit_unlock when it is merged.
1094 */
1095 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1096 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1097 __FUNCTION__, tag);
1098 return;
1099 }
1100
1101 bqt->busy--;
1102 }
1103
1104 EXPORT_SYMBOL(blk_queue_end_tag);
1105
1106 /**
1107 * blk_queue_start_tag - find a free tag and assign it
1108 * @q: the request queue for the device
1109 * @rq: the block request that needs tagging
1110 *
1111 * Description:
1112 * This can either be used as a stand-alone helper, or possibly be
1113 * assigned as the queue &prep_rq_fn (in which case &struct request
1114 * automagically gets a tag assigned). Note that this function
1115 * assumes that any type of request can be queued! if this is not
1116 * true for your device, you must check the request type before
1117 * calling this function. The request will also be removed from
1118 * the request queue, so it's the drivers responsibility to readd
1119 * it if it should need to be restarted for some reason.
1120 *
1121 * Notes:
1122 * queue lock must be held.
1123 **/
1124 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1125 {
1126 struct blk_queue_tag *bqt = q->queue_tags;
1127 int tag;
1128
1129 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1130 printk(KERN_ERR
1131 "%s: request %p for device [%s] already tagged %d",
1132 __FUNCTION__, rq,
1133 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1134 BUG();
1135 }
1136
1137 /*
1138 * Protect against shared tag maps, as we may not have exclusive
1139 * access to the tag map.
1140 */
1141 do {
1142 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1143 if (tag >= bqt->max_depth)
1144 return 1;
1145
1146 } while (test_and_set_bit(tag, bqt->tag_map));
1147 /*
1148 * We rely on test_and_set_bit providing lock memory ordering semantics
1149 * (could use test_and_set_bit_lock when it is merged).
1150 */
1151
1152 rq->cmd_flags |= REQ_QUEUED;
1153 rq->tag = tag;
1154 bqt->tag_index[tag] = rq;
1155 blkdev_dequeue_request(rq);
1156 list_add(&rq->queuelist, &bqt->busy_list);
1157 bqt->busy++;
1158 return 0;
1159 }
1160
1161 EXPORT_SYMBOL(blk_queue_start_tag);
1162
1163 /**
1164 * blk_queue_invalidate_tags - invalidate all pending tags
1165 * @q: the request queue for the device
1166 *
1167 * Description:
1168 * Hardware conditions may dictate a need to stop all pending requests.
1169 * In this case, we will safely clear the block side of the tag queue and
1170 * readd all requests to the request queue in the right order.
1171 *
1172 * Notes:
1173 * queue lock must be held.
1174 **/
1175 void blk_queue_invalidate_tags(struct request_queue *q)
1176 {
1177 struct blk_queue_tag *bqt = q->queue_tags;
1178 struct list_head *tmp, *n;
1179 struct request *rq;
1180
1181 list_for_each_safe(tmp, n, &bqt->busy_list) {
1182 rq = list_entry_rq(tmp);
1183
1184 if (rq->tag == -1) {
1185 printk(KERN_ERR
1186 "%s: bad tag found on list\n", __FUNCTION__);
1187 list_del_init(&rq->queuelist);
1188 rq->cmd_flags &= ~REQ_QUEUED;
1189 } else
1190 blk_queue_end_tag(q, rq);
1191
1192 rq->cmd_flags &= ~REQ_STARTED;
1193 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1194 }
1195 }
1196
1197 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1198
1199 void blk_dump_rq_flags(struct request *rq, char *msg)
1200 {
1201 int bit;
1202
1203 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1204 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1205 rq->cmd_flags);
1206
1207 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1208 rq->nr_sectors,
1209 rq->current_nr_sectors);
1210 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1211
1212 if (blk_pc_request(rq)) {
1213 printk("cdb: ");
1214 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1215 printk("%02x ", rq->cmd[bit]);
1216 printk("\n");
1217 }
1218 }
1219
1220 EXPORT_SYMBOL(blk_dump_rq_flags);
1221
1222 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1223 {
1224 struct request rq;
1225 struct bio *nxt = bio->bi_next;
1226 rq.q = q;
1227 rq.bio = rq.biotail = bio;
1228 bio->bi_next = NULL;
1229 blk_recalc_rq_segments(&rq);
1230 bio->bi_next = nxt;
1231 bio->bi_phys_segments = rq.nr_phys_segments;
1232 bio->bi_hw_segments = rq.nr_hw_segments;
1233 bio->bi_flags |= (1 << BIO_SEG_VALID);
1234 }
1235 EXPORT_SYMBOL(blk_recount_segments);
1236
1237 static void blk_recalc_rq_segments(struct request *rq)
1238 {
1239 int nr_phys_segs;
1240 int nr_hw_segs;
1241 unsigned int phys_size;
1242 unsigned int hw_size;
1243 struct bio_vec *bv, *bvprv = NULL;
1244 int seg_size;
1245 int hw_seg_size;
1246 int cluster;
1247 struct req_iterator iter;
1248 int high, highprv = 1;
1249 struct request_queue *q = rq->q;
1250
1251 if (!rq->bio)
1252 return;
1253
1254 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1255 hw_seg_size = seg_size = 0;
1256 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1257 rq_for_each_segment(bv, rq, iter) {
1258 /*
1259 * the trick here is making sure that a high page is never
1260 * considered part of another segment, since that might
1261 * change with the bounce page.
1262 */
1263 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1264 if (high || highprv)
1265 goto new_hw_segment;
1266 if (cluster) {
1267 if (seg_size + bv->bv_len > q->max_segment_size)
1268 goto new_segment;
1269 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1270 goto new_segment;
1271 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1272 goto new_segment;
1273 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1274 goto new_hw_segment;
1275
1276 seg_size += bv->bv_len;
1277 hw_seg_size += bv->bv_len;
1278 bvprv = bv;
1279 continue;
1280 }
1281 new_segment:
1282 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1283 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1284 hw_seg_size += bv->bv_len;
1285 else {
1286 new_hw_segment:
1287 if (nr_hw_segs == 1 &&
1288 hw_seg_size > rq->bio->bi_hw_front_size)
1289 rq->bio->bi_hw_front_size = hw_seg_size;
1290 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1291 nr_hw_segs++;
1292 }
1293
1294 nr_phys_segs++;
1295 bvprv = bv;
1296 seg_size = bv->bv_len;
1297 highprv = high;
1298 }
1299
1300 if (nr_hw_segs == 1 &&
1301 hw_seg_size > rq->bio->bi_hw_front_size)
1302 rq->bio->bi_hw_front_size = hw_seg_size;
1303 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1304 rq->biotail->bi_hw_back_size = hw_seg_size;
1305 rq->nr_phys_segments = nr_phys_segs;
1306 rq->nr_hw_segments = nr_hw_segs;
1307 }
1308
1309 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1310 struct bio *nxt)
1311 {
1312 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1313 return 0;
1314
1315 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1316 return 0;
1317 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1318 return 0;
1319
1320 /*
1321 * bio and nxt are contigous in memory, check if the queue allows
1322 * these two to be merged into one
1323 */
1324 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1325 return 1;
1326
1327 return 0;
1328 }
1329
1330 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1331 struct bio *nxt)
1332 {
1333 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1334 blk_recount_segments(q, bio);
1335 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1336 blk_recount_segments(q, nxt);
1337 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1338 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1339 return 0;
1340 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1341 return 0;
1342
1343 return 1;
1344 }
1345
1346 /*
1347 * map a request to scatterlist, return number of sg entries setup. Caller
1348 * must make sure sg can hold rq->nr_phys_segments entries
1349 */
1350 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1351 struct scatterlist *sg)
1352 {
1353 struct bio_vec *bvec, *bvprv;
1354 struct req_iterator iter;
1355 int nsegs, cluster;
1356
1357 nsegs = 0;
1358 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1359
1360 /*
1361 * for each bio in rq
1362 */
1363 bvprv = NULL;
1364 rq_for_each_segment(bvec, rq, iter) {
1365 int nbytes = bvec->bv_len;
1366
1367 if (bvprv && cluster) {
1368 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1369 goto new_segment;
1370
1371 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1372 goto new_segment;
1373 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1374 goto new_segment;
1375
1376 sg[nsegs - 1].length += nbytes;
1377 } else {
1378 new_segment:
1379 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1380 sg[nsegs].page = bvec->bv_page;
1381 sg[nsegs].length = nbytes;
1382 sg[nsegs].offset = bvec->bv_offset;
1383
1384 nsegs++;
1385 }
1386 bvprv = bvec;
1387 } /* segments in rq */
1388
1389 return nsegs;
1390 }
1391
1392 EXPORT_SYMBOL(blk_rq_map_sg);
1393
1394 /*
1395 * the standard queue merge functions, can be overridden with device
1396 * specific ones if so desired
1397 */
1398
1399 static inline int ll_new_mergeable(struct request_queue *q,
1400 struct request *req,
1401 struct bio *bio)
1402 {
1403 int nr_phys_segs = bio_phys_segments(q, bio);
1404
1405 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1406 req->cmd_flags |= REQ_NOMERGE;
1407 if (req == q->last_merge)
1408 q->last_merge = NULL;
1409 return 0;
1410 }
1411
1412 /*
1413 * A hw segment is just getting larger, bump just the phys
1414 * counter.
1415 */
1416 req->nr_phys_segments += nr_phys_segs;
1417 return 1;
1418 }
1419
1420 static inline int ll_new_hw_segment(struct request_queue *q,
1421 struct request *req,
1422 struct bio *bio)
1423 {
1424 int nr_hw_segs = bio_hw_segments(q, bio);
1425 int nr_phys_segs = bio_phys_segments(q, bio);
1426
1427 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1428 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1429 req->cmd_flags |= REQ_NOMERGE;
1430 if (req == q->last_merge)
1431 q->last_merge = NULL;
1432 return 0;
1433 }
1434
1435 /*
1436 * This will form the start of a new hw segment. Bump both
1437 * counters.
1438 */
1439 req->nr_hw_segments += nr_hw_segs;
1440 req->nr_phys_segments += nr_phys_segs;
1441 return 1;
1442 }
1443
1444 int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1445 {
1446 unsigned short max_sectors;
1447 int len;
1448
1449 if (unlikely(blk_pc_request(req)))
1450 max_sectors = q->max_hw_sectors;
1451 else
1452 max_sectors = q->max_sectors;
1453
1454 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1455 req->cmd_flags |= REQ_NOMERGE;
1456 if (req == q->last_merge)
1457 q->last_merge = NULL;
1458 return 0;
1459 }
1460 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1461 blk_recount_segments(q, req->biotail);
1462 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1463 blk_recount_segments(q, bio);
1464 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1465 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1466 !BIOVEC_VIRT_OVERSIZE(len)) {
1467 int mergeable = ll_new_mergeable(q, req, bio);
1468
1469 if (mergeable) {
1470 if (req->nr_hw_segments == 1)
1471 req->bio->bi_hw_front_size = len;
1472 if (bio->bi_hw_segments == 1)
1473 bio->bi_hw_back_size = len;
1474 }
1475 return mergeable;
1476 }
1477
1478 return ll_new_hw_segment(q, req, bio);
1479 }
1480 EXPORT_SYMBOL(ll_back_merge_fn);
1481
1482 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1483 struct bio *bio)
1484 {
1485 unsigned short max_sectors;
1486 int len;
1487
1488 if (unlikely(blk_pc_request(req)))
1489 max_sectors = q->max_hw_sectors;
1490 else
1491 max_sectors = q->max_sectors;
1492
1493
1494 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1495 req->cmd_flags |= REQ_NOMERGE;
1496 if (req == q->last_merge)
1497 q->last_merge = NULL;
1498 return 0;
1499 }
1500 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1501 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1502 blk_recount_segments(q, bio);
1503 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1504 blk_recount_segments(q, req->bio);
1505 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1506 !BIOVEC_VIRT_OVERSIZE(len)) {
1507 int mergeable = ll_new_mergeable(q, req, bio);
1508
1509 if (mergeable) {
1510 if (bio->bi_hw_segments == 1)
1511 bio->bi_hw_front_size = len;
1512 if (req->nr_hw_segments == 1)
1513 req->biotail->bi_hw_back_size = len;
1514 }
1515 return mergeable;
1516 }
1517
1518 return ll_new_hw_segment(q, req, bio);
1519 }
1520
1521 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1522 struct request *next)
1523 {
1524 int total_phys_segments;
1525 int total_hw_segments;
1526
1527 /*
1528 * First check if the either of the requests are re-queued
1529 * requests. Can't merge them if they are.
1530 */
1531 if (req->special || next->special)
1532 return 0;
1533
1534 /*
1535 * Will it become too large?
1536 */
1537 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1538 return 0;
1539
1540 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1541 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1542 total_phys_segments--;
1543
1544 if (total_phys_segments > q->max_phys_segments)
1545 return 0;
1546
1547 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1548 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1549 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1550 /*
1551 * propagate the combined length to the end of the requests
1552 */
1553 if (req->nr_hw_segments == 1)
1554 req->bio->bi_hw_front_size = len;
1555 if (next->nr_hw_segments == 1)
1556 next->biotail->bi_hw_back_size = len;
1557 total_hw_segments--;
1558 }
1559
1560 if (total_hw_segments > q->max_hw_segments)
1561 return 0;
1562
1563 /* Merge is OK... */
1564 req->nr_phys_segments = total_phys_segments;
1565 req->nr_hw_segments = total_hw_segments;
1566 return 1;
1567 }
1568
1569 /*
1570 * "plug" the device if there are no outstanding requests: this will
1571 * force the transfer to start only after we have put all the requests
1572 * on the list.
1573 *
1574 * This is called with interrupts off and no requests on the queue and
1575 * with the queue lock held.
1576 */
1577 void blk_plug_device(struct request_queue *q)
1578 {
1579 WARN_ON(!irqs_disabled());
1580
1581 /*
1582 * don't plug a stopped queue, it must be paired with blk_start_queue()
1583 * which will restart the queueing
1584 */
1585 if (blk_queue_stopped(q))
1586 return;
1587
1588 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1589 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1590 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1591 }
1592 }
1593
1594 EXPORT_SYMBOL(blk_plug_device);
1595
1596 /*
1597 * remove the queue from the plugged list, if present. called with
1598 * queue lock held and interrupts disabled.
1599 */
1600 int blk_remove_plug(struct request_queue *q)
1601 {
1602 WARN_ON(!irqs_disabled());
1603
1604 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1605 return 0;
1606
1607 del_timer(&q->unplug_timer);
1608 return 1;
1609 }
1610
1611 EXPORT_SYMBOL(blk_remove_plug);
1612
1613 /*
1614 * remove the plug and let it rip..
1615 */
1616 void __generic_unplug_device(struct request_queue *q)
1617 {
1618 if (unlikely(blk_queue_stopped(q)))
1619 return;
1620
1621 if (!blk_remove_plug(q))
1622 return;
1623
1624 q->request_fn(q);
1625 }
1626 EXPORT_SYMBOL(__generic_unplug_device);
1627
1628 /**
1629 * generic_unplug_device - fire a request queue
1630 * @q: The &struct request_queue in question
1631 *
1632 * Description:
1633 * Linux uses plugging to build bigger requests queues before letting
1634 * the device have at them. If a queue is plugged, the I/O scheduler
1635 * is still adding and merging requests on the queue. Once the queue
1636 * gets unplugged, the request_fn defined for the queue is invoked and
1637 * transfers started.
1638 **/
1639 void generic_unplug_device(struct request_queue *q)
1640 {
1641 spin_lock_irq(q->queue_lock);
1642 __generic_unplug_device(q);
1643 spin_unlock_irq(q->queue_lock);
1644 }
1645 EXPORT_SYMBOL(generic_unplug_device);
1646
1647 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1648 struct page *page)
1649 {
1650 struct request_queue *q = bdi->unplug_io_data;
1651
1652 /*
1653 * devices don't necessarily have an ->unplug_fn defined
1654 */
1655 if (q->unplug_fn) {
1656 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1657 q->rq.count[READ] + q->rq.count[WRITE]);
1658
1659 q->unplug_fn(q);
1660 }
1661 }
1662
1663 static void blk_unplug_work(struct work_struct *work)
1664 {
1665 struct request_queue *q =
1666 container_of(work, struct request_queue, unplug_work);
1667
1668 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1669 q->rq.count[READ] + q->rq.count[WRITE]);
1670
1671 q->unplug_fn(q);
1672 }
1673
1674 static void blk_unplug_timeout(unsigned long data)
1675 {
1676 struct request_queue *q = (struct request_queue *)data;
1677
1678 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1679 q->rq.count[READ] + q->rq.count[WRITE]);
1680
1681 kblockd_schedule_work(&q->unplug_work);
1682 }
1683
1684 /**
1685 * blk_start_queue - restart a previously stopped queue
1686 * @q: The &struct request_queue in question
1687 *
1688 * Description:
1689 * blk_start_queue() will clear the stop flag on the queue, and call
1690 * the request_fn for the queue if it was in a stopped state when
1691 * entered. Also see blk_stop_queue(). Queue lock must be held.
1692 **/
1693 void blk_start_queue(struct request_queue *q)
1694 {
1695 WARN_ON(!irqs_disabled());
1696
1697 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1698
1699 /*
1700 * one level of recursion is ok and is much faster than kicking
1701 * the unplug handling
1702 */
1703 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1704 q->request_fn(q);
1705 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1706 } else {
1707 blk_plug_device(q);
1708 kblockd_schedule_work(&q->unplug_work);
1709 }
1710 }
1711
1712 EXPORT_SYMBOL(blk_start_queue);
1713
1714 /**
1715 * blk_stop_queue - stop a queue
1716 * @q: The &struct request_queue in question
1717 *
1718 * Description:
1719 * The Linux block layer assumes that a block driver will consume all
1720 * entries on the request queue when the request_fn strategy is called.
1721 * Often this will not happen, because of hardware limitations (queue
1722 * depth settings). If a device driver gets a 'queue full' response,
1723 * or if it simply chooses not to queue more I/O at one point, it can
1724 * call this function to prevent the request_fn from being called until
1725 * the driver has signalled it's ready to go again. This happens by calling
1726 * blk_start_queue() to restart queue operations. Queue lock must be held.
1727 **/
1728 void blk_stop_queue(struct request_queue *q)
1729 {
1730 blk_remove_plug(q);
1731 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1732 }
1733 EXPORT_SYMBOL(blk_stop_queue);
1734
1735 /**
1736 * blk_sync_queue - cancel any pending callbacks on a queue
1737 * @q: the queue
1738 *
1739 * Description:
1740 * The block layer may perform asynchronous callback activity
1741 * on a queue, such as calling the unplug function after a timeout.
1742 * A block device may call blk_sync_queue to ensure that any
1743 * such activity is cancelled, thus allowing it to release resources
1744 * that the callbacks might use. The caller must already have made sure
1745 * that its ->make_request_fn will not re-add plugging prior to calling
1746 * this function.
1747 *
1748 */
1749 void blk_sync_queue(struct request_queue *q)
1750 {
1751 del_timer_sync(&q->unplug_timer);
1752 }
1753 EXPORT_SYMBOL(blk_sync_queue);
1754
1755 /**
1756 * blk_run_queue - run a single device queue
1757 * @q: The queue to run
1758 */
1759 void blk_run_queue(struct request_queue *q)
1760 {
1761 unsigned long flags;
1762
1763 spin_lock_irqsave(q->queue_lock, flags);
1764 blk_remove_plug(q);
1765
1766 /*
1767 * Only recurse once to avoid overrunning the stack, let the unplug
1768 * handling reinvoke the handler shortly if we already got there.
1769 */
1770 if (!elv_queue_empty(q)) {
1771 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1772 q->request_fn(q);
1773 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1774 } else {
1775 blk_plug_device(q);
1776 kblockd_schedule_work(&q->unplug_work);
1777 }
1778 }
1779
1780 spin_unlock_irqrestore(q->queue_lock, flags);
1781 }
1782 EXPORT_SYMBOL(blk_run_queue);
1783
1784 /**
1785 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1786 * @kobj: the kobj belonging of the request queue to be released
1787 *
1788 * Description:
1789 * blk_cleanup_queue is the pair to blk_init_queue() or
1790 * blk_queue_make_request(). It should be called when a request queue is
1791 * being released; typically when a block device is being de-registered.
1792 * Currently, its primary task it to free all the &struct request
1793 * structures that were allocated to the queue and the queue itself.
1794 *
1795 * Caveat:
1796 * Hopefully the low level driver will have finished any
1797 * outstanding requests first...
1798 **/
1799 static void blk_release_queue(struct kobject *kobj)
1800 {
1801 struct request_queue *q =
1802 container_of(kobj, struct request_queue, kobj);
1803 struct request_list *rl = &q->rq;
1804
1805 blk_sync_queue(q);
1806
1807 if (rl->rq_pool)
1808 mempool_destroy(rl->rq_pool);
1809
1810 if (q->queue_tags)
1811 __blk_queue_free_tags(q);
1812
1813 blk_trace_shutdown(q);
1814
1815 kmem_cache_free(requestq_cachep, q);
1816 }
1817
1818 void blk_put_queue(struct request_queue *q)
1819 {
1820 kobject_put(&q->kobj);
1821 }
1822 EXPORT_SYMBOL(blk_put_queue);
1823
1824 void blk_cleanup_queue(struct request_queue * q)
1825 {
1826 mutex_lock(&q->sysfs_lock);
1827 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1828 mutex_unlock(&q->sysfs_lock);
1829
1830 if (q->elevator)
1831 elevator_exit(q->elevator);
1832
1833 blk_put_queue(q);
1834 }
1835
1836 EXPORT_SYMBOL(blk_cleanup_queue);
1837
1838 static int blk_init_free_list(struct request_queue *q)
1839 {
1840 struct request_list *rl = &q->rq;
1841
1842 rl->count[READ] = rl->count[WRITE] = 0;
1843 rl->starved[READ] = rl->starved[WRITE] = 0;
1844 rl->elvpriv = 0;
1845 init_waitqueue_head(&rl->wait[READ]);
1846 init_waitqueue_head(&rl->wait[WRITE]);
1847
1848 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1849 mempool_free_slab, request_cachep, q->node);
1850
1851 if (!rl->rq_pool)
1852 return -ENOMEM;
1853
1854 return 0;
1855 }
1856
1857 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1858 {
1859 return blk_alloc_queue_node(gfp_mask, -1);
1860 }
1861 EXPORT_SYMBOL(blk_alloc_queue);
1862
1863 static struct kobj_type queue_ktype;
1864
1865 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1866 {
1867 struct request_queue *q;
1868
1869 q = kmem_cache_alloc_node(requestq_cachep,
1870 gfp_mask | __GFP_ZERO, node_id);
1871 if (!q)
1872 return NULL;
1873
1874 init_timer(&q->unplug_timer);
1875
1876 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1877 q->kobj.ktype = &queue_ktype;
1878 kobject_init(&q->kobj);
1879
1880 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1881 q->backing_dev_info.unplug_io_data = q;
1882
1883 mutex_init(&q->sysfs_lock);
1884
1885 return q;
1886 }
1887 EXPORT_SYMBOL(blk_alloc_queue_node);
1888
1889 /**
1890 * blk_init_queue - prepare a request queue for use with a block device
1891 * @rfn: The function to be called to process requests that have been
1892 * placed on the queue.
1893 * @lock: Request queue spin lock
1894 *
1895 * Description:
1896 * If a block device wishes to use the standard request handling procedures,
1897 * which sorts requests and coalesces adjacent requests, then it must
1898 * call blk_init_queue(). The function @rfn will be called when there
1899 * are requests on the queue that need to be processed. If the device
1900 * supports plugging, then @rfn may not be called immediately when requests
1901 * are available on the queue, but may be called at some time later instead.
1902 * Plugged queues are generally unplugged when a buffer belonging to one
1903 * of the requests on the queue is needed, or due to memory pressure.
1904 *
1905 * @rfn is not required, or even expected, to remove all requests off the
1906 * queue, but only as many as it can handle at a time. If it does leave
1907 * requests on the queue, it is responsible for arranging that the requests
1908 * get dealt with eventually.
1909 *
1910 * The queue spin lock must be held while manipulating the requests on the
1911 * request queue; this lock will be taken also from interrupt context, so irq
1912 * disabling is needed for it.
1913 *
1914 * Function returns a pointer to the initialized request queue, or NULL if
1915 * it didn't succeed.
1916 *
1917 * Note:
1918 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1919 * when the block device is deactivated (such as at module unload).
1920 **/
1921
1922 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1923 {
1924 return blk_init_queue_node(rfn, lock, -1);
1925 }
1926 EXPORT_SYMBOL(blk_init_queue);
1927
1928 struct request_queue *
1929 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1930 {
1931 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1932
1933 if (!q)
1934 return NULL;
1935
1936 q->node = node_id;
1937 if (blk_init_free_list(q)) {
1938 kmem_cache_free(requestq_cachep, q);
1939 return NULL;
1940 }
1941
1942 /*
1943 * if caller didn't supply a lock, they get per-queue locking with
1944 * our embedded lock
1945 */
1946 if (!lock) {
1947 spin_lock_init(&q->__queue_lock);
1948 lock = &q->__queue_lock;
1949 }
1950
1951 q->request_fn = rfn;
1952 q->prep_rq_fn = NULL;
1953 q->unplug_fn = generic_unplug_device;
1954 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1955 q->queue_lock = lock;
1956
1957 blk_queue_segment_boundary(q, 0xffffffff);
1958
1959 blk_queue_make_request(q, __make_request);
1960 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1961
1962 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1963 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1964
1965 q->sg_reserved_size = INT_MAX;
1966
1967 /*
1968 * all done
1969 */
1970 if (!elevator_init(q, NULL)) {
1971 blk_queue_congestion_threshold(q);
1972 return q;
1973 }
1974
1975 blk_put_queue(q);
1976 return NULL;
1977 }
1978 EXPORT_SYMBOL(blk_init_queue_node);
1979
1980 int blk_get_queue(struct request_queue *q)
1981 {
1982 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1983 kobject_get(&q->kobj);
1984 return 0;
1985 }
1986
1987 return 1;
1988 }
1989
1990 EXPORT_SYMBOL(blk_get_queue);
1991
1992 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1993 {
1994 if (rq->cmd_flags & REQ_ELVPRIV)
1995 elv_put_request(q, rq);
1996 mempool_free(rq, q->rq.rq_pool);
1997 }
1998
1999 static struct request *
2000 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
2001 {
2002 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2003
2004 if (!rq)
2005 return NULL;
2006
2007 /*
2008 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2009 * see bio.h and blkdev.h
2010 */
2011 rq->cmd_flags = rw | REQ_ALLOCED;
2012
2013 if (priv) {
2014 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2015 mempool_free(rq, q->rq.rq_pool);
2016 return NULL;
2017 }
2018 rq->cmd_flags |= REQ_ELVPRIV;
2019 }
2020
2021 return rq;
2022 }
2023
2024 /*
2025 * ioc_batching returns true if the ioc is a valid batching request and
2026 * should be given priority access to a request.
2027 */
2028 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2029 {
2030 if (!ioc)
2031 return 0;
2032
2033 /*
2034 * Make sure the process is able to allocate at least 1 request
2035 * even if the batch times out, otherwise we could theoretically
2036 * lose wakeups.
2037 */
2038 return ioc->nr_batch_requests == q->nr_batching ||
2039 (ioc->nr_batch_requests > 0
2040 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2041 }
2042
2043 /*
2044 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2045 * will cause the process to be a "batcher" on all queues in the system. This
2046 * is the behaviour we want though - once it gets a wakeup it should be given
2047 * a nice run.
2048 */
2049 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2050 {
2051 if (!ioc || ioc_batching(q, ioc))
2052 return;
2053
2054 ioc->nr_batch_requests = q->nr_batching;
2055 ioc->last_waited = jiffies;
2056 }
2057
2058 static void __freed_request(struct request_queue *q, int rw)
2059 {
2060 struct request_list *rl = &q->rq;
2061
2062 if (rl->count[rw] < queue_congestion_off_threshold(q))
2063 blk_clear_queue_congested(q, rw);
2064
2065 if (rl->count[rw] + 1 <= q->nr_requests) {
2066 if (waitqueue_active(&rl->wait[rw]))
2067 wake_up(&rl->wait[rw]);
2068
2069 blk_clear_queue_full(q, rw);
2070 }
2071 }
2072
2073 /*
2074 * A request has just been released. Account for it, update the full and
2075 * congestion status, wake up any waiters. Called under q->queue_lock.
2076 */
2077 static void freed_request(struct request_queue *q, int rw, int priv)
2078 {
2079 struct request_list *rl = &q->rq;
2080
2081 rl->count[rw]--;
2082 if (priv)
2083 rl->elvpriv--;
2084
2085 __freed_request(q, rw);
2086
2087 if (unlikely(rl->starved[rw ^ 1]))
2088 __freed_request(q, rw ^ 1);
2089 }
2090
2091 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2092 /*
2093 * Get a free request, queue_lock must be held.
2094 * Returns NULL on failure, with queue_lock held.
2095 * Returns !NULL on success, with queue_lock *not held*.
2096 */
2097 static struct request *get_request(struct request_queue *q, int rw_flags,
2098 struct bio *bio, gfp_t gfp_mask)
2099 {
2100 struct request *rq = NULL;
2101 struct request_list *rl = &q->rq;
2102 struct io_context *ioc = NULL;
2103 const int rw = rw_flags & 0x01;
2104 int may_queue, priv;
2105
2106 may_queue = elv_may_queue(q, rw_flags);
2107 if (may_queue == ELV_MQUEUE_NO)
2108 goto rq_starved;
2109
2110 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2111 if (rl->count[rw]+1 >= q->nr_requests) {
2112 ioc = current_io_context(GFP_ATOMIC, q->node);
2113 /*
2114 * The queue will fill after this allocation, so set
2115 * it as full, and mark this process as "batching".
2116 * This process will be allowed to complete a batch of
2117 * requests, others will be blocked.
2118 */
2119 if (!blk_queue_full(q, rw)) {
2120 ioc_set_batching(q, ioc);
2121 blk_set_queue_full(q, rw);
2122 } else {
2123 if (may_queue != ELV_MQUEUE_MUST
2124 && !ioc_batching(q, ioc)) {
2125 /*
2126 * The queue is full and the allocating
2127 * process is not a "batcher", and not
2128 * exempted by the IO scheduler
2129 */
2130 goto out;
2131 }
2132 }
2133 }
2134 blk_set_queue_congested(q, rw);
2135 }
2136
2137 /*
2138 * Only allow batching queuers to allocate up to 50% over the defined
2139 * limit of requests, otherwise we could have thousands of requests
2140 * allocated with any setting of ->nr_requests
2141 */
2142 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2143 goto out;
2144
2145 rl->count[rw]++;
2146 rl->starved[rw] = 0;
2147
2148 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2149 if (priv)
2150 rl->elvpriv++;
2151
2152 spin_unlock_irq(q->queue_lock);
2153
2154 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2155 if (unlikely(!rq)) {
2156 /*
2157 * Allocation failed presumably due to memory. Undo anything
2158 * we might have messed up.
2159 *
2160 * Allocating task should really be put onto the front of the
2161 * wait queue, but this is pretty rare.
2162 */
2163 spin_lock_irq(q->queue_lock);
2164 freed_request(q, rw, priv);
2165
2166 /*
2167 * in the very unlikely event that allocation failed and no
2168 * requests for this direction was pending, mark us starved
2169 * so that freeing of a request in the other direction will
2170 * notice us. another possible fix would be to split the
2171 * rq mempool into READ and WRITE
2172 */
2173 rq_starved:
2174 if (unlikely(rl->count[rw] == 0))
2175 rl->starved[rw] = 1;
2176
2177 goto out;
2178 }
2179
2180 /*
2181 * ioc may be NULL here, and ioc_batching will be false. That's
2182 * OK, if the queue is under the request limit then requests need
2183 * not count toward the nr_batch_requests limit. There will always
2184 * be some limit enforced by BLK_BATCH_TIME.
2185 */
2186 if (ioc_batching(q, ioc))
2187 ioc->nr_batch_requests--;
2188
2189 rq_init(q, rq);
2190
2191 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2192 out:
2193 return rq;
2194 }
2195
2196 /*
2197 * No available requests for this queue, unplug the device and wait for some
2198 * requests to become available.
2199 *
2200 * Called with q->queue_lock held, and returns with it unlocked.
2201 */
2202 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2203 struct bio *bio)
2204 {
2205 const int rw = rw_flags & 0x01;
2206 struct request *rq;
2207
2208 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2209 while (!rq) {
2210 DEFINE_WAIT(wait);
2211 struct request_list *rl = &q->rq;
2212
2213 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2214 TASK_UNINTERRUPTIBLE);
2215
2216 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2217
2218 if (!rq) {
2219 struct io_context *ioc;
2220
2221 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2222
2223 __generic_unplug_device(q);
2224 spin_unlock_irq(q->queue_lock);
2225 io_schedule();
2226
2227 /*
2228 * After sleeping, we become a "batching" process and
2229 * will be able to allocate at least one request, and
2230 * up to a big batch of them for a small period time.
2231 * See ioc_batching, ioc_set_batching
2232 */
2233 ioc = current_io_context(GFP_NOIO, q->node);
2234 ioc_set_batching(q, ioc);
2235
2236 spin_lock_irq(q->queue_lock);
2237 }
2238 finish_wait(&rl->wait[rw], &wait);
2239 }
2240
2241 return rq;
2242 }
2243
2244 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2245 {
2246 struct request *rq;
2247
2248 BUG_ON(rw != READ && rw != WRITE);
2249
2250 spin_lock_irq(q->queue_lock);
2251 if (gfp_mask & __GFP_WAIT) {
2252 rq = get_request_wait(q, rw, NULL);
2253 } else {
2254 rq = get_request(q, rw, NULL, gfp_mask);
2255 if (!rq)
2256 spin_unlock_irq(q->queue_lock);
2257 }
2258 /* q->queue_lock is unlocked at this point */
2259
2260 return rq;
2261 }
2262 EXPORT_SYMBOL(blk_get_request);
2263
2264 /**
2265 * blk_start_queueing - initiate dispatch of requests to device
2266 * @q: request queue to kick into gear
2267 *
2268 * This is basically a helper to remove the need to know whether a queue
2269 * is plugged or not if someone just wants to initiate dispatch of requests
2270 * for this queue.
2271 *
2272 * The queue lock must be held with interrupts disabled.
2273 */
2274 void blk_start_queueing(struct request_queue *q)
2275 {
2276 if (!blk_queue_plugged(q))
2277 q->request_fn(q);
2278 else
2279 __generic_unplug_device(q);
2280 }
2281 EXPORT_SYMBOL(blk_start_queueing);
2282
2283 /**
2284 * blk_requeue_request - put a request back on queue
2285 * @q: request queue where request should be inserted
2286 * @rq: request to be inserted
2287 *
2288 * Description:
2289 * Drivers often keep queueing requests until the hardware cannot accept
2290 * more, when that condition happens we need to put the request back
2291 * on the queue. Must be called with queue lock held.
2292 */
2293 void blk_requeue_request(struct request_queue *q, struct request *rq)
2294 {
2295 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2296
2297 if (blk_rq_tagged(rq))
2298 blk_queue_end_tag(q, rq);
2299
2300 elv_requeue_request(q, rq);
2301 }
2302
2303 EXPORT_SYMBOL(blk_requeue_request);
2304
2305 /**
2306 * blk_insert_request - insert a special request in to a request queue
2307 * @q: request queue where request should be inserted
2308 * @rq: request to be inserted
2309 * @at_head: insert request at head or tail of queue
2310 * @data: private data
2311 *
2312 * Description:
2313 * Many block devices need to execute commands asynchronously, so they don't
2314 * block the whole kernel from preemption during request execution. This is
2315 * accomplished normally by inserting aritficial requests tagged as
2316 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2317 * scheduled for actual execution by the request queue.
2318 *
2319 * We have the option of inserting the head or the tail of the queue.
2320 * Typically we use the tail for new ioctls and so forth. We use the head
2321 * of the queue for things like a QUEUE_FULL message from a device, or a
2322 * host that is unable to accept a particular command.
2323 */
2324 void blk_insert_request(struct request_queue *q, struct request *rq,
2325 int at_head, void *data)
2326 {
2327 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2328 unsigned long flags;
2329
2330 /*
2331 * tell I/O scheduler that this isn't a regular read/write (ie it
2332 * must not attempt merges on this) and that it acts as a soft
2333 * barrier
2334 */
2335 rq->cmd_type = REQ_TYPE_SPECIAL;
2336 rq->cmd_flags |= REQ_SOFTBARRIER;
2337
2338 rq->special = data;
2339
2340 spin_lock_irqsave(q->queue_lock, flags);
2341
2342 /*
2343 * If command is tagged, release the tag
2344 */
2345 if (blk_rq_tagged(rq))
2346 blk_queue_end_tag(q, rq);
2347
2348 drive_stat_acct(rq, rq->nr_sectors, 1);
2349 __elv_add_request(q, rq, where, 0);
2350 blk_start_queueing(q);
2351 spin_unlock_irqrestore(q->queue_lock, flags);
2352 }
2353
2354 EXPORT_SYMBOL(blk_insert_request);
2355
2356 static int __blk_rq_unmap_user(struct bio *bio)
2357 {
2358 int ret = 0;
2359
2360 if (bio) {
2361 if (bio_flagged(bio, BIO_USER_MAPPED))
2362 bio_unmap_user(bio);
2363 else
2364 ret = bio_uncopy_user(bio);
2365 }
2366
2367 return ret;
2368 }
2369
2370 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2371 void __user *ubuf, unsigned int len)
2372 {
2373 unsigned long uaddr;
2374 struct bio *bio, *orig_bio;
2375 int reading, ret;
2376
2377 reading = rq_data_dir(rq) == READ;
2378
2379 /*
2380 * if alignment requirement is satisfied, map in user pages for
2381 * direct dma. else, set up kernel bounce buffers
2382 */
2383 uaddr = (unsigned long) ubuf;
2384 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2385 bio = bio_map_user(q, NULL, uaddr, len, reading);
2386 else
2387 bio = bio_copy_user(q, uaddr, len, reading);
2388
2389 if (IS_ERR(bio))
2390 return PTR_ERR(bio);
2391
2392 orig_bio = bio;
2393 blk_queue_bounce(q, &bio);
2394
2395 /*
2396 * We link the bounce buffer in and could have to traverse it
2397 * later so we have to get a ref to prevent it from being freed
2398 */
2399 bio_get(bio);
2400
2401 if (!rq->bio)
2402 blk_rq_bio_prep(q, rq, bio);
2403 else if (!ll_back_merge_fn(q, rq, bio)) {
2404 ret = -EINVAL;
2405 goto unmap_bio;
2406 } else {
2407 rq->biotail->bi_next = bio;
2408 rq->biotail = bio;
2409
2410 rq->data_len += bio->bi_size;
2411 }
2412
2413 return bio->bi_size;
2414
2415 unmap_bio:
2416 /* if it was boucned we must call the end io function */
2417 bio_endio(bio, bio->bi_size, 0);
2418 __blk_rq_unmap_user(orig_bio);
2419 bio_put(bio);
2420 return ret;
2421 }
2422
2423 /**
2424 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2425 * @q: request queue where request should be inserted
2426 * @rq: request structure to fill
2427 * @ubuf: the user buffer
2428 * @len: length of user data
2429 *
2430 * Description:
2431 * Data will be mapped directly for zero copy io, if possible. Otherwise
2432 * a kernel bounce buffer is used.
2433 *
2434 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2435 * still in process context.
2436 *
2437 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2438 * before being submitted to the device, as pages mapped may be out of
2439 * reach. It's the callers responsibility to make sure this happens. The
2440 * original bio must be passed back in to blk_rq_unmap_user() for proper
2441 * unmapping.
2442 */
2443 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2444 void __user *ubuf, unsigned long len)
2445 {
2446 unsigned long bytes_read = 0;
2447 struct bio *bio = NULL;
2448 int ret;
2449
2450 if (len > (q->max_hw_sectors << 9))
2451 return -EINVAL;
2452 if (!len || !ubuf)
2453 return -EINVAL;
2454
2455 while (bytes_read != len) {
2456 unsigned long map_len, end, start;
2457
2458 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2459 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2460 >> PAGE_SHIFT;
2461 start = (unsigned long)ubuf >> PAGE_SHIFT;
2462
2463 /*
2464 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2465 * pages. If this happens we just lower the requested
2466 * mapping len by a page so that we can fit
2467 */
2468 if (end - start > BIO_MAX_PAGES)
2469 map_len -= PAGE_SIZE;
2470
2471 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2472 if (ret < 0)
2473 goto unmap_rq;
2474 if (!bio)
2475 bio = rq->bio;
2476 bytes_read += ret;
2477 ubuf += ret;
2478 }
2479
2480 rq->buffer = rq->data = NULL;
2481 return 0;
2482 unmap_rq:
2483 blk_rq_unmap_user(bio);
2484 return ret;
2485 }
2486
2487 EXPORT_SYMBOL(blk_rq_map_user);
2488
2489 /**
2490 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2491 * @q: request queue where request should be inserted
2492 * @rq: request to map data to
2493 * @iov: pointer to the iovec
2494 * @iov_count: number of elements in the iovec
2495 * @len: I/O byte count
2496 *
2497 * Description:
2498 * Data will be mapped directly for zero copy io, if possible. Otherwise
2499 * a kernel bounce buffer is used.
2500 *
2501 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2502 * still in process context.
2503 *
2504 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2505 * before being submitted to the device, as pages mapped may be out of
2506 * reach. It's the callers responsibility to make sure this happens. The
2507 * original bio must be passed back in to blk_rq_unmap_user() for proper
2508 * unmapping.
2509 */
2510 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2511 struct sg_iovec *iov, int iov_count, unsigned int len)
2512 {
2513 struct bio *bio;
2514
2515 if (!iov || iov_count <= 0)
2516 return -EINVAL;
2517
2518 /* we don't allow misaligned data like bio_map_user() does. If the
2519 * user is using sg, they're expected to know the alignment constraints
2520 * and respect them accordingly */
2521 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2522 if (IS_ERR(bio))
2523 return PTR_ERR(bio);
2524
2525 if (bio->bi_size != len) {
2526 bio_endio(bio, bio->bi_size, 0);
2527 bio_unmap_user(bio);
2528 return -EINVAL;
2529 }
2530
2531 bio_get(bio);
2532 blk_rq_bio_prep(q, rq, bio);
2533 rq->buffer = rq->data = NULL;
2534 return 0;
2535 }
2536
2537 EXPORT_SYMBOL(blk_rq_map_user_iov);
2538
2539 /**
2540 * blk_rq_unmap_user - unmap a request with user data
2541 * @bio: start of bio list
2542 *
2543 * Description:
2544 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2545 * supply the original rq->bio from the blk_rq_map_user() return, since
2546 * the io completion may have changed rq->bio.
2547 */
2548 int blk_rq_unmap_user(struct bio *bio)
2549 {
2550 struct bio *mapped_bio;
2551 int ret = 0, ret2;
2552
2553 while (bio) {
2554 mapped_bio = bio;
2555 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2556 mapped_bio = bio->bi_private;
2557
2558 ret2 = __blk_rq_unmap_user(mapped_bio);
2559 if (ret2 && !ret)
2560 ret = ret2;
2561
2562 mapped_bio = bio;
2563 bio = bio->bi_next;
2564 bio_put(mapped_bio);
2565 }
2566
2567 return ret;
2568 }
2569
2570 EXPORT_SYMBOL(blk_rq_unmap_user);
2571
2572 /**
2573 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2574 * @q: request queue where request should be inserted
2575 * @rq: request to fill
2576 * @kbuf: the kernel buffer
2577 * @len: length of user data
2578 * @gfp_mask: memory allocation flags
2579 */
2580 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2581 unsigned int len, gfp_t gfp_mask)
2582 {
2583 struct bio *bio;
2584
2585 if (len > (q->max_hw_sectors << 9))
2586 return -EINVAL;
2587 if (!len || !kbuf)
2588 return -EINVAL;
2589
2590 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2591 if (IS_ERR(bio))
2592 return PTR_ERR(bio);
2593
2594 if (rq_data_dir(rq) == WRITE)
2595 bio->bi_rw |= (1 << BIO_RW);
2596
2597 blk_rq_bio_prep(q, rq, bio);
2598 blk_queue_bounce(q, &rq->bio);
2599 rq->buffer = rq->data = NULL;
2600 return 0;
2601 }
2602
2603 EXPORT_SYMBOL(blk_rq_map_kern);
2604
2605 /**
2606 * blk_execute_rq_nowait - insert a request into queue for execution
2607 * @q: queue to insert the request in
2608 * @bd_disk: matching gendisk
2609 * @rq: request to insert
2610 * @at_head: insert request at head or tail of queue
2611 * @done: I/O completion handler
2612 *
2613 * Description:
2614 * Insert a fully prepared request at the back of the io scheduler queue
2615 * for execution. Don't wait for completion.
2616 */
2617 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2618 struct request *rq, int at_head,
2619 rq_end_io_fn *done)
2620 {
2621 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2622
2623 rq->rq_disk = bd_disk;
2624 rq->cmd_flags |= REQ_NOMERGE;
2625 rq->end_io = done;
2626 WARN_ON(irqs_disabled());
2627 spin_lock_irq(q->queue_lock);
2628 __elv_add_request(q, rq, where, 1);
2629 __generic_unplug_device(q);
2630 spin_unlock_irq(q->queue_lock);
2631 }
2632 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2633
2634 /**
2635 * blk_execute_rq - insert a request into queue for execution
2636 * @q: queue to insert the request in
2637 * @bd_disk: matching gendisk
2638 * @rq: request to insert
2639 * @at_head: insert request at head or tail of queue
2640 *
2641 * Description:
2642 * Insert a fully prepared request at the back of the io scheduler queue
2643 * for execution and wait for completion.
2644 */
2645 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2646 struct request *rq, int at_head)
2647 {
2648 DECLARE_COMPLETION_ONSTACK(wait);
2649 char sense[SCSI_SENSE_BUFFERSIZE];
2650 int err = 0;
2651
2652 /*
2653 * we need an extra reference to the request, so we can look at
2654 * it after io completion
2655 */
2656 rq->ref_count++;
2657
2658 if (!rq->sense) {
2659 memset(sense, 0, sizeof(sense));
2660 rq->sense = sense;
2661 rq->sense_len = 0;
2662 }
2663
2664 rq->end_io_data = &wait;
2665 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2666 wait_for_completion(&wait);
2667
2668 if (rq->errors)
2669 err = -EIO;
2670
2671 return err;
2672 }
2673
2674 EXPORT_SYMBOL(blk_execute_rq);
2675
2676 /**
2677 * blkdev_issue_flush - queue a flush
2678 * @bdev: blockdev to issue flush for
2679 * @error_sector: error sector
2680 *
2681 * Description:
2682 * Issue a flush for the block device in question. Caller can supply
2683 * room for storing the error offset in case of a flush error, if they
2684 * wish to. Caller must run wait_for_completion() on its own.
2685 */
2686 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2687 {
2688 struct request_queue *q;
2689
2690 if (bdev->bd_disk == NULL)
2691 return -ENXIO;
2692
2693 q = bdev_get_queue(bdev);
2694 if (!q)
2695 return -ENXIO;
2696 if (!q->issue_flush_fn)
2697 return -EOPNOTSUPP;
2698
2699 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2700 }
2701
2702 EXPORT_SYMBOL(blkdev_issue_flush);
2703
2704 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2705 {
2706 int rw = rq_data_dir(rq);
2707
2708 if (!blk_fs_request(rq) || !rq->rq_disk)
2709 return;
2710
2711 if (!new_io) {
2712 __disk_stat_inc(rq->rq_disk, merges[rw]);
2713 } else {
2714 disk_round_stats(rq->rq_disk);
2715 rq->rq_disk->in_flight++;
2716 }
2717 }
2718
2719 /*
2720 * add-request adds a request to the linked list.
2721 * queue lock is held and interrupts disabled, as we muck with the
2722 * request queue list.
2723 */
2724 static inline void add_request(struct request_queue * q, struct request * req)
2725 {
2726 drive_stat_acct(req, req->nr_sectors, 1);
2727
2728 /*
2729 * elevator indicated where it wants this request to be
2730 * inserted at elevator_merge time
2731 */
2732 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2733 }
2734
2735 /*
2736 * disk_round_stats() - Round off the performance stats on a struct
2737 * disk_stats.
2738 *
2739 * The average IO queue length and utilisation statistics are maintained
2740 * by observing the current state of the queue length and the amount of
2741 * time it has been in this state for.
2742 *
2743 * Normally, that accounting is done on IO completion, but that can result
2744 * in more than a second's worth of IO being accounted for within any one
2745 * second, leading to >100% utilisation. To deal with that, we call this
2746 * function to do a round-off before returning the results when reading
2747 * /proc/diskstats. This accounts immediately for all queue usage up to
2748 * the current jiffies and restarts the counters again.
2749 */
2750 void disk_round_stats(struct gendisk *disk)
2751 {
2752 unsigned long now = jiffies;
2753
2754 if (now == disk->stamp)
2755 return;
2756
2757 if (disk->in_flight) {
2758 __disk_stat_add(disk, time_in_queue,
2759 disk->in_flight * (now - disk->stamp));
2760 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2761 }
2762 disk->stamp = now;
2763 }
2764
2765 EXPORT_SYMBOL_GPL(disk_round_stats);
2766
2767 /*
2768 * queue lock must be held
2769 */
2770 void __blk_put_request(struct request_queue *q, struct request *req)
2771 {
2772 if (unlikely(!q))
2773 return;
2774 if (unlikely(--req->ref_count))
2775 return;
2776
2777 elv_completed_request(q, req);
2778
2779 /*
2780 * Request may not have originated from ll_rw_blk. if not,
2781 * it didn't come out of our reserved rq pools
2782 */
2783 if (req->cmd_flags & REQ_ALLOCED) {
2784 int rw = rq_data_dir(req);
2785 int priv = req->cmd_flags & REQ_ELVPRIV;
2786
2787 BUG_ON(!list_empty(&req->queuelist));
2788 BUG_ON(!hlist_unhashed(&req->hash));
2789
2790 blk_free_request(q, req);
2791 freed_request(q, rw, priv);
2792 }
2793 }
2794
2795 EXPORT_SYMBOL_GPL(__blk_put_request);
2796
2797 void blk_put_request(struct request *req)
2798 {
2799 unsigned long flags;
2800 struct request_queue *q = req->q;
2801
2802 /*
2803 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2804 * following if (q) test.
2805 */
2806 if (q) {
2807 spin_lock_irqsave(q->queue_lock, flags);
2808 __blk_put_request(q, req);
2809 spin_unlock_irqrestore(q->queue_lock, flags);
2810 }
2811 }
2812
2813 EXPORT_SYMBOL(blk_put_request);
2814
2815 /**
2816 * blk_end_sync_rq - executes a completion event on a request
2817 * @rq: request to complete
2818 * @error: end io status of the request
2819 */
2820 void blk_end_sync_rq(struct request *rq, int error)
2821 {
2822 struct completion *waiting = rq->end_io_data;
2823
2824 rq->end_io_data = NULL;
2825 __blk_put_request(rq->q, rq);
2826
2827 /*
2828 * complete last, if this is a stack request the process (and thus
2829 * the rq pointer) could be invalid right after this complete()
2830 */
2831 complete(waiting);
2832 }
2833 EXPORT_SYMBOL(blk_end_sync_rq);
2834
2835 /*
2836 * Has to be called with the request spinlock acquired
2837 */
2838 static int attempt_merge(struct request_queue *q, struct request *req,
2839 struct request *next)
2840 {
2841 if (!rq_mergeable(req) || !rq_mergeable(next))
2842 return 0;
2843
2844 /*
2845 * not contiguous
2846 */
2847 if (req->sector + req->nr_sectors != next->sector)
2848 return 0;
2849
2850 if (rq_data_dir(req) != rq_data_dir(next)
2851 || req->rq_disk != next->rq_disk
2852 || next->special)
2853 return 0;
2854
2855 /*
2856 * If we are allowed to merge, then append bio list
2857 * from next to rq and release next. merge_requests_fn
2858 * will have updated segment counts, update sector
2859 * counts here.
2860 */
2861 if (!ll_merge_requests_fn(q, req, next))
2862 return 0;
2863
2864 /*
2865 * At this point we have either done a back merge
2866 * or front merge. We need the smaller start_time of
2867 * the merged requests to be the current request
2868 * for accounting purposes.
2869 */
2870 if (time_after(req->start_time, next->start_time))
2871 req->start_time = next->start_time;
2872
2873 req->biotail->bi_next = next->bio;
2874 req->biotail = next->biotail;
2875
2876 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2877
2878 elv_merge_requests(q, req, next);
2879
2880 if (req->rq_disk) {
2881 disk_round_stats(req->rq_disk);
2882 req->rq_disk->in_flight--;
2883 }
2884
2885 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2886
2887 __blk_put_request(q, next);
2888 return 1;
2889 }
2890
2891 static inline int attempt_back_merge(struct request_queue *q,
2892 struct request *rq)
2893 {
2894 struct request *next = elv_latter_request(q, rq);
2895
2896 if (next)
2897 return attempt_merge(q, rq, next);
2898
2899 return 0;
2900 }
2901
2902 static inline int attempt_front_merge(struct request_queue *q,
2903 struct request *rq)
2904 {
2905 struct request *prev = elv_former_request(q, rq);
2906
2907 if (prev)
2908 return attempt_merge(q, prev, rq);
2909
2910 return 0;
2911 }
2912
2913 static void init_request_from_bio(struct request *req, struct bio *bio)
2914 {
2915 req->cmd_type = REQ_TYPE_FS;
2916
2917 /*
2918 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2919 */
2920 if (bio_rw_ahead(bio) || bio_failfast(bio))
2921 req->cmd_flags |= REQ_FAILFAST;
2922
2923 /*
2924 * REQ_BARRIER implies no merging, but lets make it explicit
2925 */
2926 if (unlikely(bio_barrier(bio)))
2927 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2928
2929 if (bio_sync(bio))
2930 req->cmd_flags |= REQ_RW_SYNC;
2931 if (bio_rw_meta(bio))
2932 req->cmd_flags |= REQ_RW_META;
2933
2934 req->errors = 0;
2935 req->hard_sector = req->sector = bio->bi_sector;
2936 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2937 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2938 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2939 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2940 req->buffer = bio_data(bio); /* see ->buffer comment above */
2941 req->bio = req->biotail = bio;
2942 req->ioprio = bio_prio(bio);
2943 req->rq_disk = bio->bi_bdev->bd_disk;
2944 req->start_time = jiffies;
2945 }
2946
2947 static int __make_request(struct request_queue *q, struct bio *bio)
2948 {
2949 struct request *req;
2950 int el_ret, nr_sectors, barrier, err;
2951 const unsigned short prio = bio_prio(bio);
2952 const int sync = bio_sync(bio);
2953 int rw_flags;
2954
2955 nr_sectors = bio_sectors(bio);
2956
2957 /*
2958 * low level driver can indicate that it wants pages above a
2959 * certain limit bounced to low memory (ie for highmem, or even
2960 * ISA dma in theory)
2961 */
2962 blk_queue_bounce(q, &bio);
2963
2964 barrier = bio_barrier(bio);
2965 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2966 err = -EOPNOTSUPP;
2967 goto end_io;
2968 }
2969
2970 spin_lock_irq(q->queue_lock);
2971
2972 if (unlikely(barrier) || elv_queue_empty(q))
2973 goto get_rq;
2974
2975 el_ret = elv_merge(q, &req, bio);
2976 switch (el_ret) {
2977 case ELEVATOR_BACK_MERGE:
2978 BUG_ON(!rq_mergeable(req));
2979
2980 if (!ll_back_merge_fn(q, req, bio))
2981 break;
2982
2983 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2984
2985 req->biotail->bi_next = bio;
2986 req->biotail = bio;
2987 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2988 req->ioprio = ioprio_best(req->ioprio, prio);
2989 drive_stat_acct(req, nr_sectors, 0);
2990 if (!attempt_back_merge(q, req))
2991 elv_merged_request(q, req, el_ret);
2992 goto out;
2993
2994 case ELEVATOR_FRONT_MERGE:
2995 BUG_ON(!rq_mergeable(req));
2996
2997 if (!ll_front_merge_fn(q, req, bio))
2998 break;
2999
3000 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3001
3002 bio->bi_next = req->bio;
3003 req->bio = bio;
3004
3005 /*
3006 * may not be valid. if the low level driver said
3007 * it didn't need a bounce buffer then it better
3008 * not touch req->buffer either...
3009 */
3010 req->buffer = bio_data(bio);
3011 req->current_nr_sectors = bio_cur_sectors(bio);
3012 req->hard_cur_sectors = req->current_nr_sectors;
3013 req->sector = req->hard_sector = bio->bi_sector;
3014 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3015 req->ioprio = ioprio_best(req->ioprio, prio);
3016 drive_stat_acct(req, nr_sectors, 0);
3017 if (!attempt_front_merge(q, req))
3018 elv_merged_request(q, req, el_ret);
3019 goto out;
3020
3021 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3022 default:
3023 ;
3024 }
3025
3026 get_rq:
3027 /*
3028 * This sync check and mask will be re-done in init_request_from_bio(),
3029 * but we need to set it earlier to expose the sync flag to the
3030 * rq allocator and io schedulers.
3031 */
3032 rw_flags = bio_data_dir(bio);
3033 if (sync)
3034 rw_flags |= REQ_RW_SYNC;
3035
3036 /*
3037 * Grab a free request. This is might sleep but can not fail.
3038 * Returns with the queue unlocked.
3039 */
3040 req = get_request_wait(q, rw_flags, bio);
3041
3042 /*
3043 * After dropping the lock and possibly sleeping here, our request
3044 * may now be mergeable after it had proven unmergeable (above).
3045 * We don't worry about that case for efficiency. It won't happen
3046 * often, and the elevators are able to handle it.
3047 */
3048 init_request_from_bio(req, bio);
3049
3050 spin_lock_irq(q->queue_lock);
3051 if (elv_queue_empty(q))
3052 blk_plug_device(q);
3053 add_request(q, req);
3054 out:
3055 if (sync)
3056 __generic_unplug_device(q);
3057
3058 spin_unlock_irq(q->queue_lock);
3059 return 0;
3060
3061 end_io:
3062 bio_endio(bio, nr_sectors << 9, err);
3063 return 0;
3064 }
3065
3066 /*
3067 * If bio->bi_dev is a partition, remap the location
3068 */
3069 static inline void blk_partition_remap(struct bio *bio)
3070 {
3071 struct block_device *bdev = bio->bi_bdev;
3072
3073 if (bdev != bdev->bd_contains) {
3074 struct hd_struct *p = bdev->bd_part;
3075 const int rw = bio_data_dir(bio);
3076
3077 p->sectors[rw] += bio_sectors(bio);
3078 p->ios[rw]++;
3079
3080 bio->bi_sector += p->start_sect;
3081 bio->bi_bdev = bdev->bd_contains;
3082
3083 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3084 bdev->bd_dev, bio->bi_sector,
3085 bio->bi_sector - p->start_sect);
3086 }
3087 }
3088
3089 static void handle_bad_sector(struct bio *bio)
3090 {
3091 char b[BDEVNAME_SIZE];
3092
3093 printk(KERN_INFO "attempt to access beyond end of device\n");
3094 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3095 bdevname(bio->bi_bdev, b),
3096 bio->bi_rw,
3097 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3098 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3099
3100 set_bit(BIO_EOF, &bio->bi_flags);
3101 }
3102
3103 #ifdef CONFIG_FAIL_MAKE_REQUEST
3104
3105 static DECLARE_FAULT_ATTR(fail_make_request);
3106
3107 static int __init setup_fail_make_request(char *str)
3108 {
3109 return setup_fault_attr(&fail_make_request, str);
3110 }
3111 __setup("fail_make_request=", setup_fail_make_request);
3112
3113 static int should_fail_request(struct bio *bio)
3114 {
3115 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3116 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3117 return should_fail(&fail_make_request, bio->bi_size);
3118
3119 return 0;
3120 }
3121
3122 static int __init fail_make_request_debugfs(void)
3123 {
3124 return init_fault_attr_dentries(&fail_make_request,
3125 "fail_make_request");
3126 }
3127
3128 late_initcall(fail_make_request_debugfs);
3129
3130 #else /* CONFIG_FAIL_MAKE_REQUEST */
3131
3132 static inline int should_fail_request(struct bio *bio)
3133 {
3134 return 0;
3135 }
3136
3137 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3138
3139 /**
3140 * generic_make_request: hand a buffer to its device driver for I/O
3141 * @bio: The bio describing the location in memory and on the device.
3142 *
3143 * generic_make_request() is used to make I/O requests of block
3144 * devices. It is passed a &struct bio, which describes the I/O that needs
3145 * to be done.
3146 *
3147 * generic_make_request() does not return any status. The
3148 * success/failure status of the request, along with notification of
3149 * completion, is delivered asynchronously through the bio->bi_end_io
3150 * function described (one day) else where.
3151 *
3152 * The caller of generic_make_request must make sure that bi_io_vec
3153 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3154 * set to describe the device address, and the
3155 * bi_end_io and optionally bi_private are set to describe how
3156 * completion notification should be signaled.
3157 *
3158 * generic_make_request and the drivers it calls may use bi_next if this
3159 * bio happens to be merged with someone else, and may change bi_dev and
3160 * bi_sector for remaps as it sees fit. So the values of these fields
3161 * should NOT be depended on after the call to generic_make_request.
3162 */
3163 static inline void __generic_make_request(struct bio *bio)
3164 {
3165 struct request_queue *q;
3166 sector_t maxsector;
3167 sector_t old_sector;
3168 int ret, nr_sectors = bio_sectors(bio);
3169 dev_t old_dev;
3170
3171 might_sleep();
3172 /* Test device or partition size, when known. */
3173 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3174 if (maxsector) {
3175 sector_t sector = bio->bi_sector;
3176
3177 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3178 /*
3179 * This may well happen - the kernel calls bread()
3180 * without checking the size of the device, e.g., when
3181 * mounting a device.
3182 */
3183 handle_bad_sector(bio);
3184 goto end_io;
3185 }
3186 }
3187
3188 /*
3189 * Resolve the mapping until finished. (drivers are
3190 * still free to implement/resolve their own stacking
3191 * by explicitly returning 0)
3192 *
3193 * NOTE: we don't repeat the blk_size check for each new device.
3194 * Stacking drivers are expected to know what they are doing.
3195 */
3196 old_sector = -1;
3197 old_dev = 0;
3198 do {
3199 char b[BDEVNAME_SIZE];
3200
3201 q = bdev_get_queue(bio->bi_bdev);
3202 if (!q) {
3203 printk(KERN_ERR
3204 "generic_make_request: Trying to access "
3205 "nonexistent block-device %s (%Lu)\n",
3206 bdevname(bio->bi_bdev, b),
3207 (long long) bio->bi_sector);
3208 end_io:
3209 bio_endio(bio, bio->bi_size, -EIO);
3210 break;
3211 }
3212
3213 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3214 printk("bio too big device %s (%u > %u)\n",
3215 bdevname(bio->bi_bdev, b),
3216 bio_sectors(bio),
3217 q->max_hw_sectors);
3218 goto end_io;
3219 }
3220
3221 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3222 goto end_io;
3223
3224 if (should_fail_request(bio))
3225 goto end_io;
3226
3227 /*
3228 * If this device has partitions, remap block n
3229 * of partition p to block n+start(p) of the disk.
3230 */
3231 blk_partition_remap(bio);
3232
3233 if (old_sector != -1)
3234 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3235 old_sector);
3236
3237 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3238
3239 old_sector = bio->bi_sector;
3240 old_dev = bio->bi_bdev->bd_dev;
3241
3242 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3243 if (maxsector) {
3244 sector_t sector = bio->bi_sector;
3245
3246 if (maxsector < nr_sectors ||
3247 maxsector - nr_sectors < sector) {
3248 /*
3249 * This may well happen - partitions are not
3250 * checked to make sure they are within the size
3251 * of the whole device.
3252 */
3253 handle_bad_sector(bio);
3254 goto end_io;
3255 }
3256 }
3257
3258 ret = q->make_request_fn(q, bio);
3259 } while (ret);
3260 }
3261
3262 /*
3263 * We only want one ->make_request_fn to be active at a time,
3264 * else stack usage with stacked devices could be a problem.
3265 * So use current->bio_{list,tail} to keep a list of requests
3266 * submited by a make_request_fn function.
3267 * current->bio_tail is also used as a flag to say if
3268 * generic_make_request is currently active in this task or not.
3269 * If it is NULL, then no make_request is active. If it is non-NULL,
3270 * then a make_request is active, and new requests should be added
3271 * at the tail
3272 */
3273 void generic_make_request(struct bio *bio)
3274 {
3275 if (current->bio_tail) {
3276 /* make_request is active */
3277 *(current->bio_tail) = bio;
3278 bio->bi_next = NULL;
3279 current->bio_tail = &bio->bi_next;
3280 return;
3281 }
3282 /* following loop may be a bit non-obvious, and so deserves some
3283 * explanation.
3284 * Before entering the loop, bio->bi_next is NULL (as all callers
3285 * ensure that) so we have a list with a single bio.
3286 * We pretend that we have just taken it off a longer list, so
3287 * we assign bio_list to the next (which is NULL) and bio_tail
3288 * to &bio_list, thus initialising the bio_list of new bios to be
3289 * added. __generic_make_request may indeed add some more bios
3290 * through a recursive call to generic_make_request. If it
3291 * did, we find a non-NULL value in bio_list and re-enter the loop
3292 * from the top. In this case we really did just take the bio
3293 * of the top of the list (no pretending) and so fixup bio_list and
3294 * bio_tail or bi_next, and call into __generic_make_request again.
3295 *
3296 * The loop was structured like this to make only one call to
3297 * __generic_make_request (which is important as it is large and
3298 * inlined) and to keep the structure simple.
3299 */
3300 BUG_ON(bio->bi_next);
3301 do {
3302 current->bio_list = bio->bi_next;
3303 if (bio->bi_next == NULL)
3304 current->bio_tail = &current->bio_list;
3305 else
3306 bio->bi_next = NULL;
3307 __generic_make_request(bio);
3308 bio = current->bio_list;
3309 } while (bio);
3310 current->bio_tail = NULL; /* deactivate */
3311 }
3312
3313 EXPORT_SYMBOL(generic_make_request);
3314
3315 /**
3316 * submit_bio: submit a bio to the block device layer for I/O
3317 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3318 * @bio: The &struct bio which describes the I/O
3319 *
3320 * submit_bio() is very similar in purpose to generic_make_request(), and
3321 * uses that function to do most of the work. Both are fairly rough
3322 * interfaces, @bio must be presetup and ready for I/O.
3323 *
3324 */
3325 void submit_bio(int rw, struct bio *bio)
3326 {
3327 int count = bio_sectors(bio);
3328
3329 BIO_BUG_ON(!bio->bi_size);
3330 BIO_BUG_ON(!bio->bi_io_vec);
3331 bio->bi_rw |= rw;
3332 if (rw & WRITE) {
3333 count_vm_events(PGPGOUT, count);
3334 } else {
3335 task_io_account_read(bio->bi_size);
3336 count_vm_events(PGPGIN, count);
3337 }
3338
3339 if (unlikely(block_dump)) {
3340 char b[BDEVNAME_SIZE];
3341 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3342 current->comm, current->pid,
3343 (rw & WRITE) ? "WRITE" : "READ",
3344 (unsigned long long)bio->bi_sector,
3345 bdevname(bio->bi_bdev,b));
3346 }
3347
3348 generic_make_request(bio);
3349 }
3350
3351 EXPORT_SYMBOL(submit_bio);
3352
3353 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3354 {
3355 if (blk_fs_request(rq)) {
3356 rq->hard_sector += nsect;
3357 rq->hard_nr_sectors -= nsect;
3358
3359 /*
3360 * Move the I/O submission pointers ahead if required.
3361 */
3362 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3363 (rq->sector <= rq->hard_sector)) {
3364 rq->sector = rq->hard_sector;
3365 rq->nr_sectors = rq->hard_nr_sectors;
3366 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3367 rq->current_nr_sectors = rq->hard_cur_sectors;
3368 rq->buffer = bio_data(rq->bio);
3369 }
3370
3371 /*
3372 * if total number of sectors is less than the first segment
3373 * size, something has gone terribly wrong
3374 */
3375 if (rq->nr_sectors < rq->current_nr_sectors) {
3376 printk("blk: request botched\n");
3377 rq->nr_sectors = rq->current_nr_sectors;
3378 }
3379 }
3380 }
3381
3382 static int __end_that_request_first(struct request *req, int uptodate,
3383 int nr_bytes)
3384 {
3385 int total_bytes, bio_nbytes, error, next_idx = 0;
3386 struct bio *bio;
3387
3388 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3389
3390 /*
3391 * extend uptodate bool to allow < 0 value to be direct io error
3392 */
3393 error = 0;
3394 if (end_io_error(uptodate))
3395 error = !uptodate ? -EIO : uptodate;
3396
3397 /*
3398 * for a REQ_BLOCK_PC request, we want to carry any eventual
3399 * sense key with us all the way through
3400 */
3401 if (!blk_pc_request(req))
3402 req->errors = 0;
3403
3404 if (!uptodate) {
3405 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3406 printk("end_request: I/O error, dev %s, sector %llu\n",
3407 req->rq_disk ? req->rq_disk->disk_name : "?",
3408 (unsigned long long)req->sector);
3409 }
3410
3411 if (blk_fs_request(req) && req->rq_disk) {
3412 const int rw = rq_data_dir(req);
3413
3414 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3415 }
3416
3417 total_bytes = bio_nbytes = 0;
3418 while ((bio = req->bio) != NULL) {
3419 int nbytes;
3420
3421 if (nr_bytes >= bio->bi_size) {
3422 req->bio = bio->bi_next;
3423 nbytes = bio->bi_size;
3424 if (!ordered_bio_endio(req, bio, nbytes, error))
3425 bio_endio(bio, nbytes, error);
3426 next_idx = 0;
3427 bio_nbytes = 0;
3428 } else {
3429 int idx = bio->bi_idx + next_idx;
3430
3431 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3432 blk_dump_rq_flags(req, "__end_that");
3433 printk("%s: bio idx %d >= vcnt %d\n",
3434 __FUNCTION__,
3435 bio->bi_idx, bio->bi_vcnt);
3436 break;
3437 }
3438
3439 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3440 BIO_BUG_ON(nbytes > bio->bi_size);
3441
3442 /*
3443 * not a complete bvec done
3444 */
3445 if (unlikely(nbytes > nr_bytes)) {
3446 bio_nbytes += nr_bytes;
3447 total_bytes += nr_bytes;
3448 break;
3449 }
3450
3451 /*
3452 * advance to the next vector
3453 */
3454 next_idx++;
3455 bio_nbytes += nbytes;
3456 }
3457
3458 total_bytes += nbytes;
3459 nr_bytes -= nbytes;
3460
3461 if ((bio = req->bio)) {
3462 /*
3463 * end more in this run, or just return 'not-done'
3464 */
3465 if (unlikely(nr_bytes <= 0))
3466 break;
3467 }
3468 }
3469
3470 /*
3471 * completely done
3472 */
3473 if (!req->bio)
3474 return 0;
3475
3476 /*
3477 * if the request wasn't completed, update state
3478 */
3479 if (bio_nbytes) {
3480 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3481 bio_endio(bio, bio_nbytes, error);
3482 bio->bi_idx += next_idx;
3483 bio_iovec(bio)->bv_offset += nr_bytes;
3484 bio_iovec(bio)->bv_len -= nr_bytes;
3485 }
3486
3487 blk_recalc_rq_sectors(req, total_bytes >> 9);
3488 blk_recalc_rq_segments(req);
3489 return 1;
3490 }
3491
3492 /**
3493 * end_that_request_first - end I/O on a request
3494 * @req: the request being processed
3495 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3496 * @nr_sectors: number of sectors to end I/O on
3497 *
3498 * Description:
3499 * Ends I/O on a number of sectors attached to @req, and sets it up
3500 * for the next range of segments (if any) in the cluster.
3501 *
3502 * Return:
3503 * 0 - we are done with this request, call end_that_request_last()
3504 * 1 - still buffers pending for this request
3505 **/
3506 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3507 {
3508 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3509 }
3510
3511 EXPORT_SYMBOL(end_that_request_first);
3512
3513 /**
3514 * end_that_request_chunk - end I/O on a request
3515 * @req: the request being processed
3516 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3517 * @nr_bytes: number of bytes to complete
3518 *
3519 * Description:
3520 * Ends I/O on a number of bytes attached to @req, and sets it up
3521 * for the next range of segments (if any). Like end_that_request_first(),
3522 * but deals with bytes instead of sectors.
3523 *
3524 * Return:
3525 * 0 - we are done with this request, call end_that_request_last()
3526 * 1 - still buffers pending for this request
3527 **/
3528 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3529 {
3530 return __end_that_request_first(req, uptodate, nr_bytes);
3531 }
3532
3533 EXPORT_SYMBOL(end_that_request_chunk);
3534
3535 /*
3536 * splice the completion data to a local structure and hand off to
3537 * process_completion_queue() to complete the requests
3538 */
3539 static void blk_done_softirq(struct softirq_action *h)
3540 {
3541 struct list_head *cpu_list, local_list;
3542
3543 local_irq_disable();
3544 cpu_list = &__get_cpu_var(blk_cpu_done);
3545 list_replace_init(cpu_list, &local_list);
3546 local_irq_enable();
3547
3548 while (!list_empty(&local_list)) {
3549 struct request *rq = list_entry(local_list.next, struct request, donelist);
3550
3551 list_del_init(&rq->donelist);
3552 rq->q->softirq_done_fn(rq);
3553 }
3554 }
3555
3556 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3557 void *hcpu)
3558 {
3559 /*
3560 * If a CPU goes away, splice its entries to the current CPU
3561 * and trigger a run of the softirq
3562 */
3563 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3564 int cpu = (unsigned long) hcpu;
3565
3566 local_irq_disable();
3567 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3568 &__get_cpu_var(blk_cpu_done));
3569 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3570 local_irq_enable();
3571 }
3572
3573 return NOTIFY_OK;
3574 }
3575
3576
3577 static struct notifier_block __devinitdata blk_cpu_notifier = {
3578 .notifier_call = blk_cpu_notify,
3579 };
3580
3581 /**
3582 * blk_complete_request - end I/O on a request
3583 * @req: the request being processed
3584 *
3585 * Description:
3586 * Ends all I/O on a request. It does not handle partial completions,
3587 * unless the driver actually implements this in its completion callback
3588 * through requeueing. Theh actual completion happens out-of-order,
3589 * through a softirq handler. The user must have registered a completion
3590 * callback through blk_queue_softirq_done().
3591 **/
3592
3593 void blk_complete_request(struct request *req)
3594 {
3595 struct list_head *cpu_list;
3596 unsigned long flags;
3597
3598 BUG_ON(!req->q->softirq_done_fn);
3599
3600 local_irq_save(flags);
3601
3602 cpu_list = &__get_cpu_var(blk_cpu_done);
3603 list_add_tail(&req->donelist, cpu_list);
3604 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3605
3606 local_irq_restore(flags);
3607 }
3608
3609 EXPORT_SYMBOL(blk_complete_request);
3610
3611 /*
3612 * queue lock must be held
3613 */
3614 void end_that_request_last(struct request *req, int uptodate)
3615 {
3616 struct gendisk *disk = req->rq_disk;
3617 int error;
3618
3619 /*
3620 * extend uptodate bool to allow < 0 value to be direct io error
3621 */
3622 error = 0;
3623 if (end_io_error(uptodate))
3624 error = !uptodate ? -EIO : uptodate;
3625
3626 if (unlikely(laptop_mode) && blk_fs_request(req))
3627 laptop_io_completion();
3628
3629 /*
3630 * Account IO completion. bar_rq isn't accounted as a normal
3631 * IO on queueing nor completion. Accounting the containing
3632 * request is enough.
3633 */
3634 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3635 unsigned long duration = jiffies - req->start_time;
3636 const int rw = rq_data_dir(req);
3637
3638 __disk_stat_inc(disk, ios[rw]);
3639 __disk_stat_add(disk, ticks[rw], duration);
3640 disk_round_stats(disk);
3641 disk->in_flight--;
3642 }
3643 if (req->end_io)
3644 req->end_io(req, error);
3645 else
3646 __blk_put_request(req->q, req);
3647 }
3648
3649 EXPORT_SYMBOL(end_that_request_last);
3650
3651 void end_request(struct request *req, int uptodate)
3652 {
3653 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3654 add_disk_randomness(req->rq_disk);
3655 blkdev_dequeue_request(req);
3656 end_that_request_last(req, uptodate);
3657 }
3658 }
3659
3660 EXPORT_SYMBOL(end_request);
3661
3662 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3663 struct bio *bio)
3664 {
3665 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3666 rq->cmd_flags |= (bio->bi_rw & 3);
3667
3668 rq->nr_phys_segments = bio_phys_segments(q, bio);
3669 rq->nr_hw_segments = bio_hw_segments(q, bio);
3670 rq->current_nr_sectors = bio_cur_sectors(bio);
3671 rq->hard_cur_sectors = rq->current_nr_sectors;
3672 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3673 rq->buffer = bio_data(bio);
3674 rq->data_len = bio->bi_size;
3675
3676 rq->bio = rq->biotail = bio;
3677 }
3678
3679 EXPORT_SYMBOL(blk_rq_bio_prep);
3680
3681 int kblockd_schedule_work(struct work_struct *work)
3682 {
3683 return queue_work(kblockd_workqueue, work);
3684 }
3685
3686 EXPORT_SYMBOL(kblockd_schedule_work);
3687
3688 void kblockd_flush_work(struct work_struct *work)
3689 {
3690 cancel_work_sync(work);
3691 }
3692 EXPORT_SYMBOL(kblockd_flush_work);
3693
3694 int __init blk_dev_init(void)
3695 {
3696 int i;
3697
3698 kblockd_workqueue = create_workqueue("kblockd");
3699 if (!kblockd_workqueue)
3700 panic("Failed to create kblockd\n");
3701
3702 request_cachep = kmem_cache_create("blkdev_requests",
3703 sizeof(struct request), 0, SLAB_PANIC, NULL);
3704
3705 requestq_cachep = kmem_cache_create("blkdev_queue",
3706 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3707
3708 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3709 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3710
3711 for_each_possible_cpu(i)
3712 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3713
3714 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3715 register_hotcpu_notifier(&blk_cpu_notifier);
3716
3717 blk_max_low_pfn = max_low_pfn - 1;
3718 blk_max_pfn = max_pfn - 1;
3719
3720 return 0;
3721 }
3722
3723 /*
3724 * IO Context helper functions
3725 */
3726 void put_io_context(struct io_context *ioc)
3727 {
3728 if (ioc == NULL)
3729 return;
3730
3731 BUG_ON(atomic_read(&ioc->refcount) == 0);
3732
3733 if (atomic_dec_and_test(&ioc->refcount)) {
3734 struct cfq_io_context *cic;
3735
3736 rcu_read_lock();
3737 if (ioc->aic && ioc->aic->dtor)
3738 ioc->aic->dtor(ioc->aic);
3739 if (ioc->cic_root.rb_node != NULL) {
3740 struct rb_node *n = rb_first(&ioc->cic_root);
3741
3742 cic = rb_entry(n, struct cfq_io_context, rb_node);
3743 cic->dtor(ioc);
3744 }
3745 rcu_read_unlock();
3746
3747 kmem_cache_free(iocontext_cachep, ioc);
3748 }
3749 }
3750 EXPORT_SYMBOL(put_io_context);
3751
3752 /* Called by the exitting task */
3753 void exit_io_context(void)
3754 {
3755 struct io_context *ioc;
3756 struct cfq_io_context *cic;
3757
3758 task_lock(current);
3759 ioc = current->io_context;
3760 current->io_context = NULL;
3761 task_unlock(current);
3762
3763 ioc->task = NULL;
3764 if (ioc->aic && ioc->aic->exit)
3765 ioc->aic->exit(ioc->aic);
3766 if (ioc->cic_root.rb_node != NULL) {
3767 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3768 cic->exit(ioc);
3769 }
3770
3771 put_io_context(ioc);
3772 }
3773
3774 /*
3775 * If the current task has no IO context then create one and initialise it.
3776 * Otherwise, return its existing IO context.
3777 *
3778 * This returned IO context doesn't have a specifically elevated refcount,
3779 * but since the current task itself holds a reference, the context can be
3780 * used in general code, so long as it stays within `current` context.
3781 */
3782 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3783 {
3784 struct task_struct *tsk = current;
3785 struct io_context *ret;
3786
3787 ret = tsk->io_context;
3788 if (likely(ret))
3789 return ret;
3790
3791 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3792 if (ret) {
3793 atomic_set(&ret->refcount, 1);
3794 ret->task = current;
3795 ret->ioprio_changed = 0;
3796 ret->last_waited = jiffies; /* doesn't matter... */
3797 ret->nr_batch_requests = 0; /* because this is 0 */
3798 ret->aic = NULL;
3799 ret->cic_root.rb_node = NULL;
3800 ret->ioc_data = NULL;
3801 /* make sure set_task_ioprio() sees the settings above */
3802 smp_wmb();
3803 tsk->io_context = ret;
3804 }
3805
3806 return ret;
3807 }
3808
3809 /*
3810 * If the current task has no IO context then create one and initialise it.
3811 * If it does have a context, take a ref on it.
3812 *
3813 * This is always called in the context of the task which submitted the I/O.
3814 */
3815 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3816 {
3817 struct io_context *ret;
3818 ret = current_io_context(gfp_flags, node);
3819 if (likely(ret))
3820 atomic_inc(&ret->refcount);
3821 return ret;
3822 }
3823 EXPORT_SYMBOL(get_io_context);
3824
3825 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3826 {
3827 struct io_context *src = *psrc;
3828 struct io_context *dst = *pdst;
3829
3830 if (src) {
3831 BUG_ON(atomic_read(&src->refcount) == 0);
3832 atomic_inc(&src->refcount);
3833 put_io_context(dst);
3834 *pdst = src;
3835 }
3836 }
3837 EXPORT_SYMBOL(copy_io_context);
3838
3839 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3840 {
3841 struct io_context *temp;
3842 temp = *ioc1;
3843 *ioc1 = *ioc2;
3844 *ioc2 = temp;
3845 }
3846 EXPORT_SYMBOL(swap_io_context);
3847
3848 /*
3849 * sysfs parts below
3850 */
3851 struct queue_sysfs_entry {
3852 struct attribute attr;
3853 ssize_t (*show)(struct request_queue *, char *);
3854 ssize_t (*store)(struct request_queue *, const char *, size_t);
3855 };
3856
3857 static ssize_t
3858 queue_var_show(unsigned int var, char *page)
3859 {
3860 return sprintf(page, "%d\n", var);
3861 }
3862
3863 static ssize_t
3864 queue_var_store(unsigned long *var, const char *page, size_t count)
3865 {
3866 char *p = (char *) page;
3867
3868 *var = simple_strtoul(p, &p, 10);
3869 return count;
3870 }
3871
3872 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3873 {
3874 return queue_var_show(q->nr_requests, (page));
3875 }
3876
3877 static ssize_t
3878 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3879 {
3880 struct request_list *rl = &q->rq;
3881 unsigned long nr;
3882 int ret = queue_var_store(&nr, page, count);
3883 if (nr < BLKDEV_MIN_RQ)
3884 nr = BLKDEV_MIN_RQ;
3885
3886 spin_lock_irq(q->queue_lock);
3887 q->nr_requests = nr;
3888 blk_queue_congestion_threshold(q);
3889
3890 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3891 blk_set_queue_congested(q, READ);
3892 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3893 blk_clear_queue_congested(q, READ);
3894
3895 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3896 blk_set_queue_congested(q, WRITE);
3897 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3898 blk_clear_queue_congested(q, WRITE);
3899
3900 if (rl->count[READ] >= q->nr_requests) {
3901 blk_set_queue_full(q, READ);
3902 } else if (rl->count[READ]+1 <= q->nr_requests) {
3903 blk_clear_queue_full(q, READ);
3904 wake_up(&rl->wait[READ]);
3905 }
3906
3907 if (rl->count[WRITE] >= q->nr_requests) {
3908 blk_set_queue_full(q, WRITE);
3909 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3910 blk_clear_queue_full(q, WRITE);
3911 wake_up(&rl->wait[WRITE]);
3912 }
3913 spin_unlock_irq(q->queue_lock);
3914 return ret;
3915 }
3916
3917 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3918 {
3919 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3920
3921 return queue_var_show(ra_kb, (page));
3922 }
3923
3924 static ssize_t
3925 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3926 {
3927 unsigned long ra_kb;
3928 ssize_t ret = queue_var_store(&ra_kb, page, count);
3929
3930 spin_lock_irq(q->queue_lock);
3931 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3932 spin_unlock_irq(q->queue_lock);
3933
3934 return ret;
3935 }
3936
3937 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3938 {
3939 int max_sectors_kb = q->max_sectors >> 1;
3940
3941 return queue_var_show(max_sectors_kb, (page));
3942 }
3943
3944 static ssize_t
3945 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3946 {
3947 unsigned long max_sectors_kb,
3948 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3949 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3950 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3951 int ra_kb;
3952
3953 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3954 return -EINVAL;
3955 /*
3956 * Take the queue lock to update the readahead and max_sectors
3957 * values synchronously:
3958 */
3959 spin_lock_irq(q->queue_lock);
3960 /*
3961 * Trim readahead window as well, if necessary:
3962 */
3963 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3964 if (ra_kb > max_sectors_kb)
3965 q->backing_dev_info.ra_pages =
3966 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3967
3968 q->max_sectors = max_sectors_kb << 1;
3969 spin_unlock_irq(q->queue_lock);
3970
3971 return ret;
3972 }
3973
3974 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3975 {
3976 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3977
3978 return queue_var_show(max_hw_sectors_kb, (page));
3979 }
3980
3981
3982 static struct queue_sysfs_entry queue_requests_entry = {
3983 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3984 .show = queue_requests_show,
3985 .store = queue_requests_store,
3986 };
3987
3988 static struct queue_sysfs_entry queue_ra_entry = {
3989 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3990 .show = queue_ra_show,
3991 .store = queue_ra_store,
3992 };
3993
3994 static struct queue_sysfs_entry queue_max_sectors_entry = {
3995 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3996 .show = queue_max_sectors_show,
3997 .store = queue_max_sectors_store,
3998 };
3999
4000 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4001 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4002 .show = queue_max_hw_sectors_show,
4003 };
4004
4005 static struct queue_sysfs_entry queue_iosched_entry = {
4006 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4007 .show = elv_iosched_show,
4008 .store = elv_iosched_store,
4009 };
4010
4011 static struct attribute *default_attrs[] = {
4012 &queue_requests_entry.attr,
4013 &queue_ra_entry.attr,
4014 &queue_max_hw_sectors_entry.attr,
4015 &queue_max_sectors_entry.attr,
4016 &queue_iosched_entry.attr,
4017 NULL,
4018 };
4019
4020 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4021
4022 static ssize_t
4023 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4024 {
4025 struct queue_sysfs_entry *entry = to_queue(attr);
4026 struct request_queue *q =
4027 container_of(kobj, struct request_queue, kobj);
4028 ssize_t res;
4029
4030 if (!entry->show)
4031 return -EIO;
4032 mutex_lock(&q->sysfs_lock);
4033 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4034 mutex_unlock(&q->sysfs_lock);
4035 return -ENOENT;
4036 }
4037 res = entry->show(q, page);
4038 mutex_unlock(&q->sysfs_lock);
4039 return res;
4040 }
4041
4042 static ssize_t
4043 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4044 const char *page, size_t length)
4045 {
4046 struct queue_sysfs_entry *entry = to_queue(attr);
4047 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4048
4049 ssize_t res;
4050
4051 if (!entry->store)
4052 return -EIO;
4053 mutex_lock(&q->sysfs_lock);
4054 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4055 mutex_unlock(&q->sysfs_lock);
4056 return -ENOENT;
4057 }
4058 res = entry->store(q, page, length);
4059 mutex_unlock(&q->sysfs_lock);
4060 return res;
4061 }
4062
4063 static struct sysfs_ops queue_sysfs_ops = {
4064 .show = queue_attr_show,
4065 .store = queue_attr_store,
4066 };
4067
4068 static struct kobj_type queue_ktype = {
4069 .sysfs_ops = &queue_sysfs_ops,
4070 .default_attrs = default_attrs,
4071 .release = blk_release_queue,
4072 };
4073
4074 int blk_register_queue(struct gendisk *disk)
4075 {
4076 int ret;
4077
4078 struct request_queue *q = disk->queue;
4079
4080 if (!q || !q->request_fn)
4081 return -ENXIO;
4082
4083 q->kobj.parent = kobject_get(&disk->kobj);
4084
4085 ret = kobject_add(&q->kobj);
4086 if (ret < 0)
4087 return ret;
4088
4089 kobject_uevent(&q->kobj, KOBJ_ADD);
4090
4091 ret = elv_register_queue(q);
4092 if (ret) {
4093 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4094 kobject_del(&q->kobj);
4095 return ret;
4096 }
4097
4098 return 0;
4099 }
4100
4101 void blk_unregister_queue(struct gendisk *disk)
4102 {
4103 struct request_queue *q = disk->queue;
4104
4105 if (q && q->request_fn) {
4106 elv_unregister_queue(q);
4107
4108 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4109 kobject_del(&q->kobj);
4110 kobject_put(&disk->kobj);
4111 }
4112 }
This page took 0.189848 seconds and 6 git commands to generate.