blk_end_request: changing block layer core (take 4)
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
34
35 /*
36 * for max sense size
37 */
38 #include <scsi/scsi_cmnd.h>
39
40 static void blk_unplug_work(struct work_struct *work);
41 static void blk_unplug_timeout(unsigned long data);
42 static void drive_stat_acct(struct request *rq, int new_io);
43 static void init_request_from_bio(struct request *req, struct bio *bio);
44 static int __make_request(struct request_queue *q, struct bio *bio);
45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 static void blk_recalc_rq_segments(struct request *rq);
47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 static struct kmem_cache *requestq_cachep;
59
60 /*
61 * For io context allocations
62 */
63 static struct kmem_cache *iocontext_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 unsigned long blk_max_low_pfn, blk_max_pfn;
71
72 EXPORT_SYMBOL(blk_max_low_pfn);
73 EXPORT_SYMBOL(blk_max_pfn);
74
75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
79
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
82
83 /*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 {
90 return q->nr_congestion_on;
91 }
92
93 /*
94 * The threshold at which a queue is considered to be uncongested
95 */
96 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 {
98 return q->nr_congestion_off;
99 }
100
101 static void blk_queue_congestion_threshold(struct request_queue *q)
102 {
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114 }
115
116 /**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 {
127 struct backing_dev_info *ret = NULL;
128 struct request_queue *q = bdev_get_queue(bdev);
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133 }
134 EXPORT_SYMBOL(blk_get_backing_dev_info);
135
136 /**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 {
149 q->prep_rq_fn = pfn;
150 }
151
152 EXPORT_SYMBOL(blk_queue_prep_rq);
153
154 /**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 {
172 q->merge_bvec_fn = mbfn;
173 }
174
175 EXPORT_SYMBOL(blk_queue_merge_bvec);
176
177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 {
179 q->softirq_done_fn = fn;
180 }
181
182 EXPORT_SYMBOL(blk_queue_softirq_done);
183
184 /**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 {
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
229 INIT_WORK(&q->unplug_work, blk_unplug_work);
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
238 }
239
240 EXPORT_SYMBOL(blk_queue_make_request);
241
242 static void rq_init(struct request_queue *q, struct request *rq)
243 {
244 INIT_LIST_HEAD(&rq->queuelist);
245 INIT_LIST_HEAD(&rq->donelist);
246
247 rq->errors = 0;
248 rq->bio = rq->biotail = NULL;
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
251 rq->ioprio = 0;
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
258 rq->nr_phys_segments = 0;
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
262 rq->completion_data = NULL;
263 rq->next_rq = NULL;
264 }
265
266 /**
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
280 prepare_flush_fn *prepare_flush_fn)
281 {
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
297 }
298
299 q->ordered = ordered;
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
304 }
305
306 EXPORT_SYMBOL(blk_queue_ordered);
307
308 /*
309 * Cache flushing for ordered writes handling
310 */
311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 {
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
316 }
317
318 unsigned blk_ordered_req_seq(struct request *rq)
319 {
320 struct request_queue *q = rq->q;
321
322 BUG_ON(q->ordseq == 0);
323
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
330
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
345 }
346
347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 {
349 struct request *rq;
350
351 if (error && !q->orderr)
352 q->orderr = error;
353
354 BUG_ON(q->ordseq & seq);
355 q->ordseq |= seq;
356
357 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
358 return;
359
360 /*
361 * Okay, sequence complete.
362 */
363 q->ordseq = 0;
364 rq = q->orig_bar_rq;
365
366 if (__blk_end_request(rq, q->orderr, blk_rq_bytes(rq)))
367 BUG();
368 }
369
370 static void pre_flush_end_io(struct request *rq, int error)
371 {
372 elv_completed_request(rq->q, rq);
373 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
374 }
375
376 static void bar_end_io(struct request *rq, int error)
377 {
378 elv_completed_request(rq->q, rq);
379 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
380 }
381
382 static void post_flush_end_io(struct request *rq, int error)
383 {
384 elv_completed_request(rq->q, rq);
385 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
386 }
387
388 static void queue_flush(struct request_queue *q, unsigned which)
389 {
390 struct request *rq;
391 rq_end_io_fn *end_io;
392
393 if (which == QUEUE_ORDERED_PREFLUSH) {
394 rq = &q->pre_flush_rq;
395 end_io = pre_flush_end_io;
396 } else {
397 rq = &q->post_flush_rq;
398 end_io = post_flush_end_io;
399 }
400
401 rq->cmd_flags = REQ_HARDBARRIER;
402 rq_init(q, rq);
403 rq->elevator_private = NULL;
404 rq->elevator_private2 = NULL;
405 rq->rq_disk = q->bar_rq.rq_disk;
406 rq->end_io = end_io;
407 q->prepare_flush_fn(q, rq);
408
409 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
410 }
411
412 static inline struct request *start_ordered(struct request_queue *q,
413 struct request *rq)
414 {
415 q->orderr = 0;
416 q->ordered = q->next_ordered;
417 q->ordseq |= QUEUE_ORDSEQ_STARTED;
418
419 /*
420 * Prep proxy barrier request.
421 */
422 blkdev_dequeue_request(rq);
423 q->orig_bar_rq = rq;
424 rq = &q->bar_rq;
425 rq->cmd_flags = 0;
426 rq_init(q, rq);
427 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
428 rq->cmd_flags |= REQ_RW;
429 if (q->ordered & QUEUE_ORDERED_FUA)
430 rq->cmd_flags |= REQ_FUA;
431 rq->elevator_private = NULL;
432 rq->elevator_private2 = NULL;
433 init_request_from_bio(rq, q->orig_bar_rq->bio);
434 rq->end_io = bar_end_io;
435
436 /*
437 * Queue ordered sequence. As we stack them at the head, we
438 * need to queue in reverse order. Note that we rely on that
439 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
440 * request gets inbetween ordered sequence. If this request is
441 * an empty barrier, we don't need to do a postflush ever since
442 * there will be no data written between the pre and post flush.
443 * Hence a single flush will suffice.
444 */
445 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
446 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
447 else
448 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
449
450 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
451
452 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
453 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
454 rq = &q->pre_flush_rq;
455 } else
456 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
457
458 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
459 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
460 else
461 rq = NULL;
462
463 return rq;
464 }
465
466 int blk_do_ordered(struct request_queue *q, struct request **rqp)
467 {
468 struct request *rq = *rqp;
469 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
470
471 if (!q->ordseq) {
472 if (!is_barrier)
473 return 1;
474
475 if (q->next_ordered != QUEUE_ORDERED_NONE) {
476 *rqp = start_ordered(q, rq);
477 return 1;
478 } else {
479 /*
480 * This can happen when the queue switches to
481 * ORDERED_NONE while this request is on it.
482 */
483 blkdev_dequeue_request(rq);
484 if (__blk_end_request(rq, -EOPNOTSUPP,
485 blk_rq_bytes(rq)))
486 BUG();
487 *rqp = NULL;
488 return 0;
489 }
490 }
491
492 /*
493 * Ordered sequence in progress
494 */
495
496 /* Special requests are not subject to ordering rules. */
497 if (!blk_fs_request(rq) &&
498 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
499 return 1;
500
501 if (q->ordered & QUEUE_ORDERED_TAG) {
502 /* Ordered by tag. Blocking the next barrier is enough. */
503 if (is_barrier && rq != &q->bar_rq)
504 *rqp = NULL;
505 } else {
506 /* Ordered by draining. Wait for turn. */
507 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
508 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
509 *rqp = NULL;
510 }
511
512 return 1;
513 }
514
515 static void req_bio_endio(struct request *rq, struct bio *bio,
516 unsigned int nbytes, int error)
517 {
518 struct request_queue *q = rq->q;
519
520 if (&q->bar_rq != rq) {
521 if (error)
522 clear_bit(BIO_UPTODATE, &bio->bi_flags);
523 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
524 error = -EIO;
525
526 if (unlikely(nbytes > bio->bi_size)) {
527 printk("%s: want %u bytes done, only %u left\n",
528 __FUNCTION__, nbytes, bio->bi_size);
529 nbytes = bio->bi_size;
530 }
531
532 bio->bi_size -= nbytes;
533 bio->bi_sector += (nbytes >> 9);
534 if (bio->bi_size == 0)
535 bio_endio(bio, error);
536 } else {
537
538 /*
539 * Okay, this is the barrier request in progress, just
540 * record the error;
541 */
542 if (error && !q->orderr)
543 q->orderr = error;
544 }
545 }
546
547 /**
548 * blk_queue_bounce_limit - set bounce buffer limit for queue
549 * @q: the request queue for the device
550 * @dma_addr: bus address limit
551 *
552 * Description:
553 * Different hardware can have different requirements as to what pages
554 * it can do I/O directly to. A low level driver can call
555 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
556 * buffers for doing I/O to pages residing above @page.
557 **/
558 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
559 {
560 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
561 int dma = 0;
562
563 q->bounce_gfp = GFP_NOIO;
564 #if BITS_PER_LONG == 64
565 /* Assume anything <= 4GB can be handled by IOMMU.
566 Actually some IOMMUs can handle everything, but I don't
567 know of a way to test this here. */
568 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
569 dma = 1;
570 q->bounce_pfn = max_low_pfn;
571 #else
572 if (bounce_pfn < blk_max_low_pfn)
573 dma = 1;
574 q->bounce_pfn = bounce_pfn;
575 #endif
576 if (dma) {
577 init_emergency_isa_pool();
578 q->bounce_gfp = GFP_NOIO | GFP_DMA;
579 q->bounce_pfn = bounce_pfn;
580 }
581 }
582
583 EXPORT_SYMBOL(blk_queue_bounce_limit);
584
585 /**
586 * blk_queue_max_sectors - set max sectors for a request for this queue
587 * @q: the request queue for the device
588 * @max_sectors: max sectors in the usual 512b unit
589 *
590 * Description:
591 * Enables a low level driver to set an upper limit on the size of
592 * received requests.
593 **/
594 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
595 {
596 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
597 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
598 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
599 }
600
601 if (BLK_DEF_MAX_SECTORS > max_sectors)
602 q->max_hw_sectors = q->max_sectors = max_sectors;
603 else {
604 q->max_sectors = BLK_DEF_MAX_SECTORS;
605 q->max_hw_sectors = max_sectors;
606 }
607 }
608
609 EXPORT_SYMBOL(blk_queue_max_sectors);
610
611 /**
612 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
613 * @q: the request queue for the device
614 * @max_segments: max number of segments
615 *
616 * Description:
617 * Enables a low level driver to set an upper limit on the number of
618 * physical data segments in a request. This would be the largest sized
619 * scatter list the driver could handle.
620 **/
621 void blk_queue_max_phys_segments(struct request_queue *q,
622 unsigned short max_segments)
623 {
624 if (!max_segments) {
625 max_segments = 1;
626 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
627 }
628
629 q->max_phys_segments = max_segments;
630 }
631
632 EXPORT_SYMBOL(blk_queue_max_phys_segments);
633
634 /**
635 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
636 * @q: the request queue for the device
637 * @max_segments: max number of segments
638 *
639 * Description:
640 * Enables a low level driver to set an upper limit on the number of
641 * hw data segments in a request. This would be the largest number of
642 * address/length pairs the host adapter can actually give as once
643 * to the device.
644 **/
645 void blk_queue_max_hw_segments(struct request_queue *q,
646 unsigned short max_segments)
647 {
648 if (!max_segments) {
649 max_segments = 1;
650 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
651 }
652
653 q->max_hw_segments = max_segments;
654 }
655
656 EXPORT_SYMBOL(blk_queue_max_hw_segments);
657
658 /**
659 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
660 * @q: the request queue for the device
661 * @max_size: max size of segment in bytes
662 *
663 * Description:
664 * Enables a low level driver to set an upper limit on the size of a
665 * coalesced segment
666 **/
667 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
668 {
669 if (max_size < PAGE_CACHE_SIZE) {
670 max_size = PAGE_CACHE_SIZE;
671 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
672 }
673
674 q->max_segment_size = max_size;
675 }
676
677 EXPORT_SYMBOL(blk_queue_max_segment_size);
678
679 /**
680 * blk_queue_hardsect_size - set hardware sector size for the queue
681 * @q: the request queue for the device
682 * @size: the hardware sector size, in bytes
683 *
684 * Description:
685 * This should typically be set to the lowest possible sector size
686 * that the hardware can operate on (possible without reverting to
687 * even internal read-modify-write operations). Usually the default
688 * of 512 covers most hardware.
689 **/
690 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
691 {
692 q->hardsect_size = size;
693 }
694
695 EXPORT_SYMBOL(blk_queue_hardsect_size);
696
697 /*
698 * Returns the minimum that is _not_ zero, unless both are zero.
699 */
700 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
701
702 /**
703 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
704 * @t: the stacking driver (top)
705 * @b: the underlying device (bottom)
706 **/
707 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
708 {
709 /* zero is "infinity" */
710 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
711 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
712
713 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
714 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
715 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
716 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
717 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
718 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
719 }
720
721 EXPORT_SYMBOL(blk_queue_stack_limits);
722
723 /**
724 * blk_queue_segment_boundary - set boundary rules for segment merging
725 * @q: the request queue for the device
726 * @mask: the memory boundary mask
727 **/
728 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
729 {
730 if (mask < PAGE_CACHE_SIZE - 1) {
731 mask = PAGE_CACHE_SIZE - 1;
732 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
733 }
734
735 q->seg_boundary_mask = mask;
736 }
737
738 EXPORT_SYMBOL(blk_queue_segment_boundary);
739
740 /**
741 * blk_queue_dma_alignment - set dma length and memory alignment
742 * @q: the request queue for the device
743 * @mask: alignment mask
744 *
745 * description:
746 * set required memory and length aligment for direct dma transactions.
747 * this is used when buiding direct io requests for the queue.
748 *
749 **/
750 void blk_queue_dma_alignment(struct request_queue *q, int mask)
751 {
752 q->dma_alignment = mask;
753 }
754
755 EXPORT_SYMBOL(blk_queue_dma_alignment);
756
757 /**
758 * blk_queue_update_dma_alignment - update dma length and memory alignment
759 * @q: the request queue for the device
760 * @mask: alignment mask
761 *
762 * description:
763 * update required memory and length aligment for direct dma transactions.
764 * If the requested alignment is larger than the current alignment, then
765 * the current queue alignment is updated to the new value, otherwise it
766 * is left alone. The design of this is to allow multiple objects
767 * (driver, device, transport etc) to set their respective
768 * alignments without having them interfere.
769 *
770 **/
771 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
772 {
773 BUG_ON(mask > PAGE_SIZE);
774
775 if (mask > q->dma_alignment)
776 q->dma_alignment = mask;
777 }
778
779 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
780
781 /**
782 * blk_queue_find_tag - find a request by its tag and queue
783 * @q: The request queue for the device
784 * @tag: The tag of the request
785 *
786 * Notes:
787 * Should be used when a device returns a tag and you want to match
788 * it with a request.
789 *
790 * no locks need be held.
791 **/
792 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
793 {
794 return blk_map_queue_find_tag(q->queue_tags, tag);
795 }
796
797 EXPORT_SYMBOL(blk_queue_find_tag);
798
799 /**
800 * __blk_free_tags - release a given set of tag maintenance info
801 * @bqt: the tag map to free
802 *
803 * Tries to free the specified @bqt@. Returns true if it was
804 * actually freed and false if there are still references using it
805 */
806 static int __blk_free_tags(struct blk_queue_tag *bqt)
807 {
808 int retval;
809
810 retval = atomic_dec_and_test(&bqt->refcnt);
811 if (retval) {
812 BUG_ON(bqt->busy);
813
814 kfree(bqt->tag_index);
815 bqt->tag_index = NULL;
816
817 kfree(bqt->tag_map);
818 bqt->tag_map = NULL;
819
820 kfree(bqt);
821
822 }
823
824 return retval;
825 }
826
827 /**
828 * __blk_queue_free_tags - release tag maintenance info
829 * @q: the request queue for the device
830 *
831 * Notes:
832 * blk_cleanup_queue() will take care of calling this function, if tagging
833 * has been used. So there's no need to call this directly.
834 **/
835 static void __blk_queue_free_tags(struct request_queue *q)
836 {
837 struct blk_queue_tag *bqt = q->queue_tags;
838
839 if (!bqt)
840 return;
841
842 __blk_free_tags(bqt);
843
844 q->queue_tags = NULL;
845 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
846 }
847
848
849 /**
850 * blk_free_tags - release a given set of tag maintenance info
851 * @bqt: the tag map to free
852 *
853 * For externally managed @bqt@ frees the map. Callers of this
854 * function must guarantee to have released all the queues that
855 * might have been using this tag map.
856 */
857 void blk_free_tags(struct blk_queue_tag *bqt)
858 {
859 if (unlikely(!__blk_free_tags(bqt)))
860 BUG();
861 }
862 EXPORT_SYMBOL(blk_free_tags);
863
864 /**
865 * blk_queue_free_tags - release tag maintenance info
866 * @q: the request queue for the device
867 *
868 * Notes:
869 * This is used to disabled tagged queuing to a device, yet leave
870 * queue in function.
871 **/
872 void blk_queue_free_tags(struct request_queue *q)
873 {
874 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
875 }
876
877 EXPORT_SYMBOL(blk_queue_free_tags);
878
879 static int
880 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
881 {
882 struct request **tag_index;
883 unsigned long *tag_map;
884 int nr_ulongs;
885
886 if (q && depth > q->nr_requests * 2) {
887 depth = q->nr_requests * 2;
888 printk(KERN_ERR "%s: adjusted depth to %d\n",
889 __FUNCTION__, depth);
890 }
891
892 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
893 if (!tag_index)
894 goto fail;
895
896 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
897 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
898 if (!tag_map)
899 goto fail;
900
901 tags->real_max_depth = depth;
902 tags->max_depth = depth;
903 tags->tag_index = tag_index;
904 tags->tag_map = tag_map;
905
906 return 0;
907 fail:
908 kfree(tag_index);
909 return -ENOMEM;
910 }
911
912 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
913 int depth)
914 {
915 struct blk_queue_tag *tags;
916
917 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
918 if (!tags)
919 goto fail;
920
921 if (init_tag_map(q, tags, depth))
922 goto fail;
923
924 tags->busy = 0;
925 atomic_set(&tags->refcnt, 1);
926 return tags;
927 fail:
928 kfree(tags);
929 return NULL;
930 }
931
932 /**
933 * blk_init_tags - initialize the tag info for an external tag map
934 * @depth: the maximum queue depth supported
935 * @tags: the tag to use
936 **/
937 struct blk_queue_tag *blk_init_tags(int depth)
938 {
939 return __blk_queue_init_tags(NULL, depth);
940 }
941 EXPORT_SYMBOL(blk_init_tags);
942
943 /**
944 * blk_queue_init_tags - initialize the queue tag info
945 * @q: the request queue for the device
946 * @depth: the maximum queue depth supported
947 * @tags: the tag to use
948 **/
949 int blk_queue_init_tags(struct request_queue *q, int depth,
950 struct blk_queue_tag *tags)
951 {
952 int rc;
953
954 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
955
956 if (!tags && !q->queue_tags) {
957 tags = __blk_queue_init_tags(q, depth);
958
959 if (!tags)
960 goto fail;
961 } else if (q->queue_tags) {
962 if ((rc = blk_queue_resize_tags(q, depth)))
963 return rc;
964 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
965 return 0;
966 } else
967 atomic_inc(&tags->refcnt);
968
969 /*
970 * assign it, all done
971 */
972 q->queue_tags = tags;
973 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
974 INIT_LIST_HEAD(&q->tag_busy_list);
975 return 0;
976 fail:
977 kfree(tags);
978 return -ENOMEM;
979 }
980
981 EXPORT_SYMBOL(blk_queue_init_tags);
982
983 /**
984 * blk_queue_resize_tags - change the queueing depth
985 * @q: the request queue for the device
986 * @new_depth: the new max command queueing depth
987 *
988 * Notes:
989 * Must be called with the queue lock held.
990 **/
991 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
992 {
993 struct blk_queue_tag *bqt = q->queue_tags;
994 struct request **tag_index;
995 unsigned long *tag_map;
996 int max_depth, nr_ulongs;
997
998 if (!bqt)
999 return -ENXIO;
1000
1001 /*
1002 * if we already have large enough real_max_depth. just
1003 * adjust max_depth. *NOTE* as requests with tag value
1004 * between new_depth and real_max_depth can be in-flight, tag
1005 * map can not be shrunk blindly here.
1006 */
1007 if (new_depth <= bqt->real_max_depth) {
1008 bqt->max_depth = new_depth;
1009 return 0;
1010 }
1011
1012 /*
1013 * Currently cannot replace a shared tag map with a new
1014 * one, so error out if this is the case
1015 */
1016 if (atomic_read(&bqt->refcnt) != 1)
1017 return -EBUSY;
1018
1019 /*
1020 * save the old state info, so we can copy it back
1021 */
1022 tag_index = bqt->tag_index;
1023 tag_map = bqt->tag_map;
1024 max_depth = bqt->real_max_depth;
1025
1026 if (init_tag_map(q, bqt, new_depth))
1027 return -ENOMEM;
1028
1029 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1030 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1031 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1032
1033 kfree(tag_index);
1034 kfree(tag_map);
1035 return 0;
1036 }
1037
1038 EXPORT_SYMBOL(blk_queue_resize_tags);
1039
1040 /**
1041 * blk_queue_end_tag - end tag operations for a request
1042 * @q: the request queue for the device
1043 * @rq: the request that has completed
1044 *
1045 * Description:
1046 * Typically called when end_that_request_first() returns 0, meaning
1047 * all transfers have been done for a request. It's important to call
1048 * this function before end_that_request_last(), as that will put the
1049 * request back on the free list thus corrupting the internal tag list.
1050 *
1051 * Notes:
1052 * queue lock must be held.
1053 **/
1054 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1055 {
1056 struct blk_queue_tag *bqt = q->queue_tags;
1057 int tag = rq->tag;
1058
1059 BUG_ON(tag == -1);
1060
1061 if (unlikely(tag >= bqt->real_max_depth))
1062 /*
1063 * This can happen after tag depth has been reduced.
1064 * FIXME: how about a warning or info message here?
1065 */
1066 return;
1067
1068 list_del_init(&rq->queuelist);
1069 rq->cmd_flags &= ~REQ_QUEUED;
1070 rq->tag = -1;
1071
1072 if (unlikely(bqt->tag_index[tag] == NULL))
1073 printk(KERN_ERR "%s: tag %d is missing\n",
1074 __FUNCTION__, tag);
1075
1076 bqt->tag_index[tag] = NULL;
1077
1078 if (unlikely(!test_bit(tag, bqt->tag_map))) {
1079 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1080 __FUNCTION__, tag);
1081 return;
1082 }
1083 /*
1084 * The tag_map bit acts as a lock for tag_index[bit], so we need
1085 * unlock memory barrier semantics.
1086 */
1087 clear_bit_unlock(tag, bqt->tag_map);
1088 bqt->busy--;
1089 }
1090
1091 EXPORT_SYMBOL(blk_queue_end_tag);
1092
1093 /**
1094 * blk_queue_start_tag - find a free tag and assign it
1095 * @q: the request queue for the device
1096 * @rq: the block request that needs tagging
1097 *
1098 * Description:
1099 * This can either be used as a stand-alone helper, or possibly be
1100 * assigned as the queue &prep_rq_fn (in which case &struct request
1101 * automagically gets a tag assigned). Note that this function
1102 * assumes that any type of request can be queued! if this is not
1103 * true for your device, you must check the request type before
1104 * calling this function. The request will also be removed from
1105 * the request queue, so it's the drivers responsibility to readd
1106 * it if it should need to be restarted for some reason.
1107 *
1108 * Notes:
1109 * queue lock must be held.
1110 **/
1111 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1112 {
1113 struct blk_queue_tag *bqt = q->queue_tags;
1114 int tag;
1115
1116 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1117 printk(KERN_ERR
1118 "%s: request %p for device [%s] already tagged %d",
1119 __FUNCTION__, rq,
1120 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1121 BUG();
1122 }
1123
1124 /*
1125 * Protect against shared tag maps, as we may not have exclusive
1126 * access to the tag map.
1127 */
1128 do {
1129 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1130 if (tag >= bqt->max_depth)
1131 return 1;
1132
1133 } while (test_and_set_bit_lock(tag, bqt->tag_map));
1134 /*
1135 * We need lock ordering semantics given by test_and_set_bit_lock.
1136 * See blk_queue_end_tag for details.
1137 */
1138
1139 rq->cmd_flags |= REQ_QUEUED;
1140 rq->tag = tag;
1141 bqt->tag_index[tag] = rq;
1142 blkdev_dequeue_request(rq);
1143 list_add(&rq->queuelist, &q->tag_busy_list);
1144 bqt->busy++;
1145 return 0;
1146 }
1147
1148 EXPORT_SYMBOL(blk_queue_start_tag);
1149
1150 /**
1151 * blk_queue_invalidate_tags - invalidate all pending tags
1152 * @q: the request queue for the device
1153 *
1154 * Description:
1155 * Hardware conditions may dictate a need to stop all pending requests.
1156 * In this case, we will safely clear the block side of the tag queue and
1157 * readd all requests to the request queue in the right order.
1158 *
1159 * Notes:
1160 * queue lock must be held.
1161 **/
1162 void blk_queue_invalidate_tags(struct request_queue *q)
1163 {
1164 struct list_head *tmp, *n;
1165
1166 list_for_each_safe(tmp, n, &q->tag_busy_list)
1167 blk_requeue_request(q, list_entry_rq(tmp));
1168 }
1169
1170 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1171
1172 void blk_dump_rq_flags(struct request *rq, char *msg)
1173 {
1174 int bit;
1175
1176 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1178 rq->cmd_flags);
1179
1180 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1181 rq->nr_sectors,
1182 rq->current_nr_sectors);
1183 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1184
1185 if (blk_pc_request(rq)) {
1186 printk("cdb: ");
1187 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1188 printk("%02x ", rq->cmd[bit]);
1189 printk("\n");
1190 }
1191 }
1192
1193 EXPORT_SYMBOL(blk_dump_rq_flags);
1194
1195 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1196 {
1197 struct request rq;
1198 struct bio *nxt = bio->bi_next;
1199 rq.q = q;
1200 rq.bio = rq.biotail = bio;
1201 bio->bi_next = NULL;
1202 blk_recalc_rq_segments(&rq);
1203 bio->bi_next = nxt;
1204 bio->bi_phys_segments = rq.nr_phys_segments;
1205 bio->bi_hw_segments = rq.nr_hw_segments;
1206 bio->bi_flags |= (1 << BIO_SEG_VALID);
1207 }
1208 EXPORT_SYMBOL(blk_recount_segments);
1209
1210 static void blk_recalc_rq_segments(struct request *rq)
1211 {
1212 int nr_phys_segs;
1213 int nr_hw_segs;
1214 unsigned int phys_size;
1215 unsigned int hw_size;
1216 struct bio_vec *bv, *bvprv = NULL;
1217 int seg_size;
1218 int hw_seg_size;
1219 int cluster;
1220 struct req_iterator iter;
1221 int high, highprv = 1;
1222 struct request_queue *q = rq->q;
1223
1224 if (!rq->bio)
1225 return;
1226
1227 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1228 hw_seg_size = seg_size = 0;
1229 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1230 rq_for_each_segment(bv, rq, iter) {
1231 /*
1232 * the trick here is making sure that a high page is never
1233 * considered part of another segment, since that might
1234 * change with the bounce page.
1235 */
1236 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1237 if (high || highprv)
1238 goto new_hw_segment;
1239 if (cluster) {
1240 if (seg_size + bv->bv_len > q->max_segment_size)
1241 goto new_segment;
1242 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1243 goto new_segment;
1244 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1245 goto new_segment;
1246 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1247 goto new_hw_segment;
1248
1249 seg_size += bv->bv_len;
1250 hw_seg_size += bv->bv_len;
1251 bvprv = bv;
1252 continue;
1253 }
1254 new_segment:
1255 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1256 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1257 hw_seg_size += bv->bv_len;
1258 else {
1259 new_hw_segment:
1260 if (nr_hw_segs == 1 &&
1261 hw_seg_size > rq->bio->bi_hw_front_size)
1262 rq->bio->bi_hw_front_size = hw_seg_size;
1263 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1264 nr_hw_segs++;
1265 }
1266
1267 nr_phys_segs++;
1268 bvprv = bv;
1269 seg_size = bv->bv_len;
1270 highprv = high;
1271 }
1272
1273 if (nr_hw_segs == 1 &&
1274 hw_seg_size > rq->bio->bi_hw_front_size)
1275 rq->bio->bi_hw_front_size = hw_seg_size;
1276 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1277 rq->biotail->bi_hw_back_size = hw_seg_size;
1278 rq->nr_phys_segments = nr_phys_segs;
1279 rq->nr_hw_segments = nr_hw_segs;
1280 }
1281
1282 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1283 struct bio *nxt)
1284 {
1285 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1286 return 0;
1287
1288 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1289 return 0;
1290 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1291 return 0;
1292
1293 /*
1294 * bio and nxt are contigous in memory, check if the queue allows
1295 * these two to be merged into one
1296 */
1297 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1298 return 1;
1299
1300 return 0;
1301 }
1302
1303 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1304 struct bio *nxt)
1305 {
1306 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1307 blk_recount_segments(q, bio);
1308 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1309 blk_recount_segments(q, nxt);
1310 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1311 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1312 return 0;
1313 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1314 return 0;
1315
1316 return 1;
1317 }
1318
1319 /*
1320 * map a request to scatterlist, return number of sg entries setup. Caller
1321 * must make sure sg can hold rq->nr_phys_segments entries
1322 */
1323 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1324 struct scatterlist *sglist)
1325 {
1326 struct bio_vec *bvec, *bvprv;
1327 struct req_iterator iter;
1328 struct scatterlist *sg;
1329 int nsegs, cluster;
1330
1331 nsegs = 0;
1332 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1333
1334 /*
1335 * for each bio in rq
1336 */
1337 bvprv = NULL;
1338 sg = NULL;
1339 rq_for_each_segment(bvec, rq, iter) {
1340 int nbytes = bvec->bv_len;
1341
1342 if (bvprv && cluster) {
1343 if (sg->length + nbytes > q->max_segment_size)
1344 goto new_segment;
1345
1346 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1347 goto new_segment;
1348 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1349 goto new_segment;
1350
1351 sg->length += nbytes;
1352 } else {
1353 new_segment:
1354 if (!sg)
1355 sg = sglist;
1356 else {
1357 /*
1358 * If the driver previously mapped a shorter
1359 * list, we could see a termination bit
1360 * prematurely unless it fully inits the sg
1361 * table on each mapping. We KNOW that there
1362 * must be more entries here or the driver
1363 * would be buggy, so force clear the
1364 * termination bit to avoid doing a full
1365 * sg_init_table() in drivers for each command.
1366 */
1367 sg->page_link &= ~0x02;
1368 sg = sg_next(sg);
1369 }
1370
1371 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
1372 nsegs++;
1373 }
1374 bvprv = bvec;
1375 } /* segments in rq */
1376
1377 if (sg)
1378 sg_mark_end(sg);
1379
1380 return nsegs;
1381 }
1382
1383 EXPORT_SYMBOL(blk_rq_map_sg);
1384
1385 /*
1386 * the standard queue merge functions, can be overridden with device
1387 * specific ones if so desired
1388 */
1389
1390 static inline int ll_new_mergeable(struct request_queue *q,
1391 struct request *req,
1392 struct bio *bio)
1393 {
1394 int nr_phys_segs = bio_phys_segments(q, bio);
1395
1396 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1397 req->cmd_flags |= REQ_NOMERGE;
1398 if (req == q->last_merge)
1399 q->last_merge = NULL;
1400 return 0;
1401 }
1402
1403 /*
1404 * A hw segment is just getting larger, bump just the phys
1405 * counter.
1406 */
1407 req->nr_phys_segments += nr_phys_segs;
1408 return 1;
1409 }
1410
1411 static inline int ll_new_hw_segment(struct request_queue *q,
1412 struct request *req,
1413 struct bio *bio)
1414 {
1415 int nr_hw_segs = bio_hw_segments(q, bio);
1416 int nr_phys_segs = bio_phys_segments(q, bio);
1417
1418 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1419 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1420 req->cmd_flags |= REQ_NOMERGE;
1421 if (req == q->last_merge)
1422 q->last_merge = NULL;
1423 return 0;
1424 }
1425
1426 /*
1427 * This will form the start of a new hw segment. Bump both
1428 * counters.
1429 */
1430 req->nr_hw_segments += nr_hw_segs;
1431 req->nr_phys_segments += nr_phys_segs;
1432 return 1;
1433 }
1434
1435 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1436 struct bio *bio)
1437 {
1438 unsigned short max_sectors;
1439 int len;
1440
1441 if (unlikely(blk_pc_request(req)))
1442 max_sectors = q->max_hw_sectors;
1443 else
1444 max_sectors = q->max_sectors;
1445
1446 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1447 req->cmd_flags |= REQ_NOMERGE;
1448 if (req == q->last_merge)
1449 q->last_merge = NULL;
1450 return 0;
1451 }
1452 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1453 blk_recount_segments(q, req->biotail);
1454 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1455 blk_recount_segments(q, bio);
1456 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1457 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1458 !BIOVEC_VIRT_OVERSIZE(len)) {
1459 int mergeable = ll_new_mergeable(q, req, bio);
1460
1461 if (mergeable) {
1462 if (req->nr_hw_segments == 1)
1463 req->bio->bi_hw_front_size = len;
1464 if (bio->bi_hw_segments == 1)
1465 bio->bi_hw_back_size = len;
1466 }
1467 return mergeable;
1468 }
1469
1470 return ll_new_hw_segment(q, req, bio);
1471 }
1472
1473 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1474 struct bio *bio)
1475 {
1476 unsigned short max_sectors;
1477 int len;
1478
1479 if (unlikely(blk_pc_request(req)))
1480 max_sectors = q->max_hw_sectors;
1481 else
1482 max_sectors = q->max_sectors;
1483
1484
1485 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1486 req->cmd_flags |= REQ_NOMERGE;
1487 if (req == q->last_merge)
1488 q->last_merge = NULL;
1489 return 0;
1490 }
1491 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1492 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1493 blk_recount_segments(q, bio);
1494 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1495 blk_recount_segments(q, req->bio);
1496 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1497 !BIOVEC_VIRT_OVERSIZE(len)) {
1498 int mergeable = ll_new_mergeable(q, req, bio);
1499
1500 if (mergeable) {
1501 if (bio->bi_hw_segments == 1)
1502 bio->bi_hw_front_size = len;
1503 if (req->nr_hw_segments == 1)
1504 req->biotail->bi_hw_back_size = len;
1505 }
1506 return mergeable;
1507 }
1508
1509 return ll_new_hw_segment(q, req, bio);
1510 }
1511
1512 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1513 struct request *next)
1514 {
1515 int total_phys_segments;
1516 int total_hw_segments;
1517
1518 /*
1519 * First check if the either of the requests are re-queued
1520 * requests. Can't merge them if they are.
1521 */
1522 if (req->special || next->special)
1523 return 0;
1524
1525 /*
1526 * Will it become too large?
1527 */
1528 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1529 return 0;
1530
1531 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1532 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1533 total_phys_segments--;
1534
1535 if (total_phys_segments > q->max_phys_segments)
1536 return 0;
1537
1538 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1539 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1540 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1541 /*
1542 * propagate the combined length to the end of the requests
1543 */
1544 if (req->nr_hw_segments == 1)
1545 req->bio->bi_hw_front_size = len;
1546 if (next->nr_hw_segments == 1)
1547 next->biotail->bi_hw_back_size = len;
1548 total_hw_segments--;
1549 }
1550
1551 if (total_hw_segments > q->max_hw_segments)
1552 return 0;
1553
1554 /* Merge is OK... */
1555 req->nr_phys_segments = total_phys_segments;
1556 req->nr_hw_segments = total_hw_segments;
1557 return 1;
1558 }
1559
1560 /*
1561 * "plug" the device if there are no outstanding requests: this will
1562 * force the transfer to start only after we have put all the requests
1563 * on the list.
1564 *
1565 * This is called with interrupts off and no requests on the queue and
1566 * with the queue lock held.
1567 */
1568 void blk_plug_device(struct request_queue *q)
1569 {
1570 WARN_ON(!irqs_disabled());
1571
1572 /*
1573 * don't plug a stopped queue, it must be paired with blk_start_queue()
1574 * which will restart the queueing
1575 */
1576 if (blk_queue_stopped(q))
1577 return;
1578
1579 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1580 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1581 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1582 }
1583 }
1584
1585 EXPORT_SYMBOL(blk_plug_device);
1586
1587 /*
1588 * remove the queue from the plugged list, if present. called with
1589 * queue lock held and interrupts disabled.
1590 */
1591 int blk_remove_plug(struct request_queue *q)
1592 {
1593 WARN_ON(!irqs_disabled());
1594
1595 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1596 return 0;
1597
1598 del_timer(&q->unplug_timer);
1599 return 1;
1600 }
1601
1602 EXPORT_SYMBOL(blk_remove_plug);
1603
1604 /*
1605 * remove the plug and let it rip..
1606 */
1607 void __generic_unplug_device(struct request_queue *q)
1608 {
1609 if (unlikely(blk_queue_stopped(q)))
1610 return;
1611
1612 if (!blk_remove_plug(q))
1613 return;
1614
1615 q->request_fn(q);
1616 }
1617 EXPORT_SYMBOL(__generic_unplug_device);
1618
1619 /**
1620 * generic_unplug_device - fire a request queue
1621 * @q: The &struct request_queue in question
1622 *
1623 * Description:
1624 * Linux uses plugging to build bigger requests queues before letting
1625 * the device have at them. If a queue is plugged, the I/O scheduler
1626 * is still adding and merging requests on the queue. Once the queue
1627 * gets unplugged, the request_fn defined for the queue is invoked and
1628 * transfers started.
1629 **/
1630 void generic_unplug_device(struct request_queue *q)
1631 {
1632 spin_lock_irq(q->queue_lock);
1633 __generic_unplug_device(q);
1634 spin_unlock_irq(q->queue_lock);
1635 }
1636 EXPORT_SYMBOL(generic_unplug_device);
1637
1638 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1639 struct page *page)
1640 {
1641 struct request_queue *q = bdi->unplug_io_data;
1642
1643 blk_unplug(q);
1644 }
1645
1646 static void blk_unplug_work(struct work_struct *work)
1647 {
1648 struct request_queue *q =
1649 container_of(work, struct request_queue, unplug_work);
1650
1651 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1652 q->rq.count[READ] + q->rq.count[WRITE]);
1653
1654 q->unplug_fn(q);
1655 }
1656
1657 static void blk_unplug_timeout(unsigned long data)
1658 {
1659 struct request_queue *q = (struct request_queue *)data;
1660
1661 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1662 q->rq.count[READ] + q->rq.count[WRITE]);
1663
1664 kblockd_schedule_work(&q->unplug_work);
1665 }
1666
1667 void blk_unplug(struct request_queue *q)
1668 {
1669 /*
1670 * devices don't necessarily have an ->unplug_fn defined
1671 */
1672 if (q->unplug_fn) {
1673 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1674 q->rq.count[READ] + q->rq.count[WRITE]);
1675
1676 q->unplug_fn(q);
1677 }
1678 }
1679 EXPORT_SYMBOL(blk_unplug);
1680
1681 /**
1682 * blk_start_queue - restart a previously stopped queue
1683 * @q: The &struct request_queue in question
1684 *
1685 * Description:
1686 * blk_start_queue() will clear the stop flag on the queue, and call
1687 * the request_fn for the queue if it was in a stopped state when
1688 * entered. Also see blk_stop_queue(). Queue lock must be held.
1689 **/
1690 void blk_start_queue(struct request_queue *q)
1691 {
1692 WARN_ON(!irqs_disabled());
1693
1694 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1695
1696 /*
1697 * one level of recursion is ok and is much faster than kicking
1698 * the unplug handling
1699 */
1700 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1701 q->request_fn(q);
1702 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1703 } else {
1704 blk_plug_device(q);
1705 kblockd_schedule_work(&q->unplug_work);
1706 }
1707 }
1708
1709 EXPORT_SYMBOL(blk_start_queue);
1710
1711 /**
1712 * blk_stop_queue - stop a queue
1713 * @q: The &struct request_queue in question
1714 *
1715 * Description:
1716 * The Linux block layer assumes that a block driver will consume all
1717 * entries on the request queue when the request_fn strategy is called.
1718 * Often this will not happen, because of hardware limitations (queue
1719 * depth settings). If a device driver gets a 'queue full' response,
1720 * or if it simply chooses not to queue more I/O at one point, it can
1721 * call this function to prevent the request_fn from being called until
1722 * the driver has signalled it's ready to go again. This happens by calling
1723 * blk_start_queue() to restart queue operations. Queue lock must be held.
1724 **/
1725 void blk_stop_queue(struct request_queue *q)
1726 {
1727 blk_remove_plug(q);
1728 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1729 }
1730 EXPORT_SYMBOL(blk_stop_queue);
1731
1732 /**
1733 * blk_sync_queue - cancel any pending callbacks on a queue
1734 * @q: the queue
1735 *
1736 * Description:
1737 * The block layer may perform asynchronous callback activity
1738 * on a queue, such as calling the unplug function after a timeout.
1739 * A block device may call blk_sync_queue to ensure that any
1740 * such activity is cancelled, thus allowing it to release resources
1741 * that the callbacks might use. The caller must already have made sure
1742 * that its ->make_request_fn will not re-add plugging prior to calling
1743 * this function.
1744 *
1745 */
1746 void blk_sync_queue(struct request_queue *q)
1747 {
1748 del_timer_sync(&q->unplug_timer);
1749 kblockd_flush_work(&q->unplug_work);
1750 }
1751 EXPORT_SYMBOL(blk_sync_queue);
1752
1753 /**
1754 * blk_run_queue - run a single device queue
1755 * @q: The queue to run
1756 */
1757 void blk_run_queue(struct request_queue *q)
1758 {
1759 unsigned long flags;
1760
1761 spin_lock_irqsave(q->queue_lock, flags);
1762 blk_remove_plug(q);
1763
1764 /*
1765 * Only recurse once to avoid overrunning the stack, let the unplug
1766 * handling reinvoke the handler shortly if we already got there.
1767 */
1768 if (!elv_queue_empty(q)) {
1769 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1770 q->request_fn(q);
1771 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1772 } else {
1773 blk_plug_device(q);
1774 kblockd_schedule_work(&q->unplug_work);
1775 }
1776 }
1777
1778 spin_unlock_irqrestore(q->queue_lock, flags);
1779 }
1780 EXPORT_SYMBOL(blk_run_queue);
1781
1782 /**
1783 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1784 * @kobj: the kobj belonging of the request queue to be released
1785 *
1786 * Description:
1787 * blk_cleanup_queue is the pair to blk_init_queue() or
1788 * blk_queue_make_request(). It should be called when a request queue is
1789 * being released; typically when a block device is being de-registered.
1790 * Currently, its primary task it to free all the &struct request
1791 * structures that were allocated to the queue and the queue itself.
1792 *
1793 * Caveat:
1794 * Hopefully the low level driver will have finished any
1795 * outstanding requests first...
1796 **/
1797 static void blk_release_queue(struct kobject *kobj)
1798 {
1799 struct request_queue *q =
1800 container_of(kobj, struct request_queue, kobj);
1801 struct request_list *rl = &q->rq;
1802
1803 blk_sync_queue(q);
1804
1805 if (rl->rq_pool)
1806 mempool_destroy(rl->rq_pool);
1807
1808 if (q->queue_tags)
1809 __blk_queue_free_tags(q);
1810
1811 blk_trace_shutdown(q);
1812
1813 bdi_destroy(&q->backing_dev_info);
1814 kmem_cache_free(requestq_cachep, q);
1815 }
1816
1817 void blk_put_queue(struct request_queue *q)
1818 {
1819 kobject_put(&q->kobj);
1820 }
1821 EXPORT_SYMBOL(blk_put_queue);
1822
1823 void blk_cleanup_queue(struct request_queue * q)
1824 {
1825 mutex_lock(&q->sysfs_lock);
1826 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1827 mutex_unlock(&q->sysfs_lock);
1828
1829 if (q->elevator)
1830 elevator_exit(q->elevator);
1831
1832 blk_put_queue(q);
1833 }
1834
1835 EXPORT_SYMBOL(blk_cleanup_queue);
1836
1837 static int blk_init_free_list(struct request_queue *q)
1838 {
1839 struct request_list *rl = &q->rq;
1840
1841 rl->count[READ] = rl->count[WRITE] = 0;
1842 rl->starved[READ] = rl->starved[WRITE] = 0;
1843 rl->elvpriv = 0;
1844 init_waitqueue_head(&rl->wait[READ]);
1845 init_waitqueue_head(&rl->wait[WRITE]);
1846
1847 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1848 mempool_free_slab, request_cachep, q->node);
1849
1850 if (!rl->rq_pool)
1851 return -ENOMEM;
1852
1853 return 0;
1854 }
1855
1856 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1857 {
1858 return blk_alloc_queue_node(gfp_mask, -1);
1859 }
1860 EXPORT_SYMBOL(blk_alloc_queue);
1861
1862 static struct kobj_type queue_ktype;
1863
1864 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1865 {
1866 struct request_queue *q;
1867 int err;
1868
1869 q = kmem_cache_alloc_node(requestq_cachep,
1870 gfp_mask | __GFP_ZERO, node_id);
1871 if (!q)
1872 return NULL;
1873
1874 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1875 q->backing_dev_info.unplug_io_data = q;
1876 err = bdi_init(&q->backing_dev_info);
1877 if (err) {
1878 kmem_cache_free(requestq_cachep, q);
1879 return NULL;
1880 }
1881
1882 init_timer(&q->unplug_timer);
1883
1884 kobject_init(&q->kobj, &queue_ktype);
1885
1886 mutex_init(&q->sysfs_lock);
1887
1888 return q;
1889 }
1890 EXPORT_SYMBOL(blk_alloc_queue_node);
1891
1892 /**
1893 * blk_init_queue - prepare a request queue for use with a block device
1894 * @rfn: The function to be called to process requests that have been
1895 * placed on the queue.
1896 * @lock: Request queue spin lock
1897 *
1898 * Description:
1899 * If a block device wishes to use the standard request handling procedures,
1900 * which sorts requests and coalesces adjacent requests, then it must
1901 * call blk_init_queue(). The function @rfn will be called when there
1902 * are requests on the queue that need to be processed. If the device
1903 * supports plugging, then @rfn may not be called immediately when requests
1904 * are available on the queue, but may be called at some time later instead.
1905 * Plugged queues are generally unplugged when a buffer belonging to one
1906 * of the requests on the queue is needed, or due to memory pressure.
1907 *
1908 * @rfn is not required, or even expected, to remove all requests off the
1909 * queue, but only as many as it can handle at a time. If it does leave
1910 * requests on the queue, it is responsible for arranging that the requests
1911 * get dealt with eventually.
1912 *
1913 * The queue spin lock must be held while manipulating the requests on the
1914 * request queue; this lock will be taken also from interrupt context, so irq
1915 * disabling is needed for it.
1916 *
1917 * Function returns a pointer to the initialized request queue, or NULL if
1918 * it didn't succeed.
1919 *
1920 * Note:
1921 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1922 * when the block device is deactivated (such as at module unload).
1923 **/
1924
1925 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1926 {
1927 return blk_init_queue_node(rfn, lock, -1);
1928 }
1929 EXPORT_SYMBOL(blk_init_queue);
1930
1931 struct request_queue *
1932 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1933 {
1934 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1935
1936 if (!q)
1937 return NULL;
1938
1939 q->node = node_id;
1940 if (blk_init_free_list(q)) {
1941 kmem_cache_free(requestq_cachep, q);
1942 return NULL;
1943 }
1944
1945 /*
1946 * if caller didn't supply a lock, they get per-queue locking with
1947 * our embedded lock
1948 */
1949 if (!lock) {
1950 spin_lock_init(&q->__queue_lock);
1951 lock = &q->__queue_lock;
1952 }
1953
1954 q->request_fn = rfn;
1955 q->prep_rq_fn = NULL;
1956 q->unplug_fn = generic_unplug_device;
1957 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1958 q->queue_lock = lock;
1959
1960 blk_queue_segment_boundary(q, 0xffffffff);
1961
1962 blk_queue_make_request(q, __make_request);
1963 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1964
1965 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1966 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1967
1968 q->sg_reserved_size = INT_MAX;
1969
1970 /*
1971 * all done
1972 */
1973 if (!elevator_init(q, NULL)) {
1974 blk_queue_congestion_threshold(q);
1975 return q;
1976 }
1977
1978 blk_put_queue(q);
1979 return NULL;
1980 }
1981 EXPORT_SYMBOL(blk_init_queue_node);
1982
1983 int blk_get_queue(struct request_queue *q)
1984 {
1985 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1986 kobject_get(&q->kobj);
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 EXPORT_SYMBOL(blk_get_queue);
1994
1995 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1996 {
1997 if (rq->cmd_flags & REQ_ELVPRIV)
1998 elv_put_request(q, rq);
1999 mempool_free(rq, q->rq.rq_pool);
2000 }
2001
2002 static struct request *
2003 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
2004 {
2005 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2006
2007 if (!rq)
2008 return NULL;
2009
2010 /*
2011 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2012 * see bio.h and blkdev.h
2013 */
2014 rq->cmd_flags = rw | REQ_ALLOCED;
2015
2016 if (priv) {
2017 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2018 mempool_free(rq, q->rq.rq_pool);
2019 return NULL;
2020 }
2021 rq->cmd_flags |= REQ_ELVPRIV;
2022 }
2023
2024 return rq;
2025 }
2026
2027 /*
2028 * ioc_batching returns true if the ioc is a valid batching request and
2029 * should be given priority access to a request.
2030 */
2031 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2032 {
2033 if (!ioc)
2034 return 0;
2035
2036 /*
2037 * Make sure the process is able to allocate at least 1 request
2038 * even if the batch times out, otherwise we could theoretically
2039 * lose wakeups.
2040 */
2041 return ioc->nr_batch_requests == q->nr_batching ||
2042 (ioc->nr_batch_requests > 0
2043 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2044 }
2045
2046 /*
2047 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2048 * will cause the process to be a "batcher" on all queues in the system. This
2049 * is the behaviour we want though - once it gets a wakeup it should be given
2050 * a nice run.
2051 */
2052 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2053 {
2054 if (!ioc || ioc_batching(q, ioc))
2055 return;
2056
2057 ioc->nr_batch_requests = q->nr_batching;
2058 ioc->last_waited = jiffies;
2059 }
2060
2061 static void __freed_request(struct request_queue *q, int rw)
2062 {
2063 struct request_list *rl = &q->rq;
2064
2065 if (rl->count[rw] < queue_congestion_off_threshold(q))
2066 blk_clear_queue_congested(q, rw);
2067
2068 if (rl->count[rw] + 1 <= q->nr_requests) {
2069 if (waitqueue_active(&rl->wait[rw]))
2070 wake_up(&rl->wait[rw]);
2071
2072 blk_clear_queue_full(q, rw);
2073 }
2074 }
2075
2076 /*
2077 * A request has just been released. Account for it, update the full and
2078 * congestion status, wake up any waiters. Called under q->queue_lock.
2079 */
2080 static void freed_request(struct request_queue *q, int rw, int priv)
2081 {
2082 struct request_list *rl = &q->rq;
2083
2084 rl->count[rw]--;
2085 if (priv)
2086 rl->elvpriv--;
2087
2088 __freed_request(q, rw);
2089
2090 if (unlikely(rl->starved[rw ^ 1]))
2091 __freed_request(q, rw ^ 1);
2092 }
2093
2094 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2095 /*
2096 * Get a free request, queue_lock must be held.
2097 * Returns NULL on failure, with queue_lock held.
2098 * Returns !NULL on success, with queue_lock *not held*.
2099 */
2100 static struct request *get_request(struct request_queue *q, int rw_flags,
2101 struct bio *bio, gfp_t gfp_mask)
2102 {
2103 struct request *rq = NULL;
2104 struct request_list *rl = &q->rq;
2105 struct io_context *ioc = NULL;
2106 const int rw = rw_flags & 0x01;
2107 int may_queue, priv;
2108
2109 may_queue = elv_may_queue(q, rw_flags);
2110 if (may_queue == ELV_MQUEUE_NO)
2111 goto rq_starved;
2112
2113 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2114 if (rl->count[rw]+1 >= q->nr_requests) {
2115 ioc = current_io_context(GFP_ATOMIC, q->node);
2116 /*
2117 * The queue will fill after this allocation, so set
2118 * it as full, and mark this process as "batching".
2119 * This process will be allowed to complete a batch of
2120 * requests, others will be blocked.
2121 */
2122 if (!blk_queue_full(q, rw)) {
2123 ioc_set_batching(q, ioc);
2124 blk_set_queue_full(q, rw);
2125 } else {
2126 if (may_queue != ELV_MQUEUE_MUST
2127 && !ioc_batching(q, ioc)) {
2128 /*
2129 * The queue is full and the allocating
2130 * process is not a "batcher", and not
2131 * exempted by the IO scheduler
2132 */
2133 goto out;
2134 }
2135 }
2136 }
2137 blk_set_queue_congested(q, rw);
2138 }
2139
2140 /*
2141 * Only allow batching queuers to allocate up to 50% over the defined
2142 * limit of requests, otherwise we could have thousands of requests
2143 * allocated with any setting of ->nr_requests
2144 */
2145 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2146 goto out;
2147
2148 rl->count[rw]++;
2149 rl->starved[rw] = 0;
2150
2151 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2152 if (priv)
2153 rl->elvpriv++;
2154
2155 spin_unlock_irq(q->queue_lock);
2156
2157 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2158 if (unlikely(!rq)) {
2159 /*
2160 * Allocation failed presumably due to memory. Undo anything
2161 * we might have messed up.
2162 *
2163 * Allocating task should really be put onto the front of the
2164 * wait queue, but this is pretty rare.
2165 */
2166 spin_lock_irq(q->queue_lock);
2167 freed_request(q, rw, priv);
2168
2169 /*
2170 * in the very unlikely event that allocation failed and no
2171 * requests for this direction was pending, mark us starved
2172 * so that freeing of a request in the other direction will
2173 * notice us. another possible fix would be to split the
2174 * rq mempool into READ and WRITE
2175 */
2176 rq_starved:
2177 if (unlikely(rl->count[rw] == 0))
2178 rl->starved[rw] = 1;
2179
2180 goto out;
2181 }
2182
2183 /*
2184 * ioc may be NULL here, and ioc_batching will be false. That's
2185 * OK, if the queue is under the request limit then requests need
2186 * not count toward the nr_batch_requests limit. There will always
2187 * be some limit enforced by BLK_BATCH_TIME.
2188 */
2189 if (ioc_batching(q, ioc))
2190 ioc->nr_batch_requests--;
2191
2192 rq_init(q, rq);
2193
2194 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2195 out:
2196 return rq;
2197 }
2198
2199 /*
2200 * No available requests for this queue, unplug the device and wait for some
2201 * requests to become available.
2202 *
2203 * Called with q->queue_lock held, and returns with it unlocked.
2204 */
2205 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2206 struct bio *bio)
2207 {
2208 const int rw = rw_flags & 0x01;
2209 struct request *rq;
2210
2211 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2212 while (!rq) {
2213 DEFINE_WAIT(wait);
2214 struct request_list *rl = &q->rq;
2215
2216 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2217 TASK_UNINTERRUPTIBLE);
2218
2219 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2220
2221 if (!rq) {
2222 struct io_context *ioc;
2223
2224 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2225
2226 __generic_unplug_device(q);
2227 spin_unlock_irq(q->queue_lock);
2228 io_schedule();
2229
2230 /*
2231 * After sleeping, we become a "batching" process and
2232 * will be able to allocate at least one request, and
2233 * up to a big batch of them for a small period time.
2234 * See ioc_batching, ioc_set_batching
2235 */
2236 ioc = current_io_context(GFP_NOIO, q->node);
2237 ioc_set_batching(q, ioc);
2238
2239 spin_lock_irq(q->queue_lock);
2240 }
2241 finish_wait(&rl->wait[rw], &wait);
2242 }
2243
2244 return rq;
2245 }
2246
2247 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2248 {
2249 struct request *rq;
2250
2251 BUG_ON(rw != READ && rw != WRITE);
2252
2253 spin_lock_irq(q->queue_lock);
2254 if (gfp_mask & __GFP_WAIT) {
2255 rq = get_request_wait(q, rw, NULL);
2256 } else {
2257 rq = get_request(q, rw, NULL, gfp_mask);
2258 if (!rq)
2259 spin_unlock_irq(q->queue_lock);
2260 }
2261 /* q->queue_lock is unlocked at this point */
2262
2263 return rq;
2264 }
2265 EXPORT_SYMBOL(blk_get_request);
2266
2267 /**
2268 * blk_start_queueing - initiate dispatch of requests to device
2269 * @q: request queue to kick into gear
2270 *
2271 * This is basically a helper to remove the need to know whether a queue
2272 * is plugged or not if someone just wants to initiate dispatch of requests
2273 * for this queue.
2274 *
2275 * The queue lock must be held with interrupts disabled.
2276 */
2277 void blk_start_queueing(struct request_queue *q)
2278 {
2279 if (!blk_queue_plugged(q))
2280 q->request_fn(q);
2281 else
2282 __generic_unplug_device(q);
2283 }
2284 EXPORT_SYMBOL(blk_start_queueing);
2285
2286 /**
2287 * blk_requeue_request - put a request back on queue
2288 * @q: request queue where request should be inserted
2289 * @rq: request to be inserted
2290 *
2291 * Description:
2292 * Drivers often keep queueing requests until the hardware cannot accept
2293 * more, when that condition happens we need to put the request back
2294 * on the queue. Must be called with queue lock held.
2295 */
2296 void blk_requeue_request(struct request_queue *q, struct request *rq)
2297 {
2298 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2299
2300 if (blk_rq_tagged(rq))
2301 blk_queue_end_tag(q, rq);
2302
2303 elv_requeue_request(q, rq);
2304 }
2305
2306 EXPORT_SYMBOL(blk_requeue_request);
2307
2308 /**
2309 * blk_insert_request - insert a special request in to a request queue
2310 * @q: request queue where request should be inserted
2311 * @rq: request to be inserted
2312 * @at_head: insert request at head or tail of queue
2313 * @data: private data
2314 *
2315 * Description:
2316 * Many block devices need to execute commands asynchronously, so they don't
2317 * block the whole kernel from preemption during request execution. This is
2318 * accomplished normally by inserting aritficial requests tagged as
2319 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2320 * scheduled for actual execution by the request queue.
2321 *
2322 * We have the option of inserting the head or the tail of the queue.
2323 * Typically we use the tail for new ioctls and so forth. We use the head
2324 * of the queue for things like a QUEUE_FULL message from a device, or a
2325 * host that is unable to accept a particular command.
2326 */
2327 void blk_insert_request(struct request_queue *q, struct request *rq,
2328 int at_head, void *data)
2329 {
2330 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2331 unsigned long flags;
2332
2333 /*
2334 * tell I/O scheduler that this isn't a regular read/write (ie it
2335 * must not attempt merges on this) and that it acts as a soft
2336 * barrier
2337 */
2338 rq->cmd_type = REQ_TYPE_SPECIAL;
2339 rq->cmd_flags |= REQ_SOFTBARRIER;
2340
2341 rq->special = data;
2342
2343 spin_lock_irqsave(q->queue_lock, flags);
2344
2345 /*
2346 * If command is tagged, release the tag
2347 */
2348 if (blk_rq_tagged(rq))
2349 blk_queue_end_tag(q, rq);
2350
2351 drive_stat_acct(rq, 1);
2352 __elv_add_request(q, rq, where, 0);
2353 blk_start_queueing(q);
2354 spin_unlock_irqrestore(q->queue_lock, flags);
2355 }
2356
2357 EXPORT_SYMBOL(blk_insert_request);
2358
2359 static int __blk_rq_unmap_user(struct bio *bio)
2360 {
2361 int ret = 0;
2362
2363 if (bio) {
2364 if (bio_flagged(bio, BIO_USER_MAPPED))
2365 bio_unmap_user(bio);
2366 else
2367 ret = bio_uncopy_user(bio);
2368 }
2369
2370 return ret;
2371 }
2372
2373 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2374 struct bio *bio)
2375 {
2376 if (!rq->bio)
2377 blk_rq_bio_prep(q, rq, bio);
2378 else if (!ll_back_merge_fn(q, rq, bio))
2379 return -EINVAL;
2380 else {
2381 rq->biotail->bi_next = bio;
2382 rq->biotail = bio;
2383
2384 rq->data_len += bio->bi_size;
2385 }
2386 return 0;
2387 }
2388 EXPORT_SYMBOL(blk_rq_append_bio);
2389
2390 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2391 void __user *ubuf, unsigned int len)
2392 {
2393 unsigned long uaddr;
2394 struct bio *bio, *orig_bio;
2395 int reading, ret;
2396
2397 reading = rq_data_dir(rq) == READ;
2398
2399 /*
2400 * if alignment requirement is satisfied, map in user pages for
2401 * direct dma. else, set up kernel bounce buffers
2402 */
2403 uaddr = (unsigned long) ubuf;
2404 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2405 bio = bio_map_user(q, NULL, uaddr, len, reading);
2406 else
2407 bio = bio_copy_user(q, uaddr, len, reading);
2408
2409 if (IS_ERR(bio))
2410 return PTR_ERR(bio);
2411
2412 orig_bio = bio;
2413 blk_queue_bounce(q, &bio);
2414
2415 /*
2416 * We link the bounce buffer in and could have to traverse it
2417 * later so we have to get a ref to prevent it from being freed
2418 */
2419 bio_get(bio);
2420
2421 ret = blk_rq_append_bio(q, rq, bio);
2422 if (!ret)
2423 return bio->bi_size;
2424
2425 /* if it was boucned we must call the end io function */
2426 bio_endio(bio, 0);
2427 __blk_rq_unmap_user(orig_bio);
2428 bio_put(bio);
2429 return ret;
2430 }
2431
2432 /**
2433 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2434 * @q: request queue where request should be inserted
2435 * @rq: request structure to fill
2436 * @ubuf: the user buffer
2437 * @len: length of user data
2438 *
2439 * Description:
2440 * Data will be mapped directly for zero copy io, if possible. Otherwise
2441 * a kernel bounce buffer is used.
2442 *
2443 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2444 * still in process context.
2445 *
2446 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2447 * before being submitted to the device, as pages mapped may be out of
2448 * reach. It's the callers responsibility to make sure this happens. The
2449 * original bio must be passed back in to blk_rq_unmap_user() for proper
2450 * unmapping.
2451 */
2452 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2453 void __user *ubuf, unsigned long len)
2454 {
2455 unsigned long bytes_read = 0;
2456 struct bio *bio = NULL;
2457 int ret;
2458
2459 if (len > (q->max_hw_sectors << 9))
2460 return -EINVAL;
2461 if (!len || !ubuf)
2462 return -EINVAL;
2463
2464 while (bytes_read != len) {
2465 unsigned long map_len, end, start;
2466
2467 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2468 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2469 >> PAGE_SHIFT;
2470 start = (unsigned long)ubuf >> PAGE_SHIFT;
2471
2472 /*
2473 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2474 * pages. If this happens we just lower the requested
2475 * mapping len by a page so that we can fit
2476 */
2477 if (end - start > BIO_MAX_PAGES)
2478 map_len -= PAGE_SIZE;
2479
2480 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2481 if (ret < 0)
2482 goto unmap_rq;
2483 if (!bio)
2484 bio = rq->bio;
2485 bytes_read += ret;
2486 ubuf += ret;
2487 }
2488
2489 rq->buffer = rq->data = NULL;
2490 return 0;
2491 unmap_rq:
2492 blk_rq_unmap_user(bio);
2493 return ret;
2494 }
2495
2496 EXPORT_SYMBOL(blk_rq_map_user);
2497
2498 /**
2499 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2500 * @q: request queue where request should be inserted
2501 * @rq: request to map data to
2502 * @iov: pointer to the iovec
2503 * @iov_count: number of elements in the iovec
2504 * @len: I/O byte count
2505 *
2506 * Description:
2507 * Data will be mapped directly for zero copy io, if possible. Otherwise
2508 * a kernel bounce buffer is used.
2509 *
2510 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2511 * still in process context.
2512 *
2513 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2514 * before being submitted to the device, as pages mapped may be out of
2515 * reach. It's the callers responsibility to make sure this happens. The
2516 * original bio must be passed back in to blk_rq_unmap_user() for proper
2517 * unmapping.
2518 */
2519 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2520 struct sg_iovec *iov, int iov_count, unsigned int len)
2521 {
2522 struct bio *bio;
2523
2524 if (!iov || iov_count <= 0)
2525 return -EINVAL;
2526
2527 /* we don't allow misaligned data like bio_map_user() does. If the
2528 * user is using sg, they're expected to know the alignment constraints
2529 * and respect them accordingly */
2530 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2531 if (IS_ERR(bio))
2532 return PTR_ERR(bio);
2533
2534 if (bio->bi_size != len) {
2535 bio_endio(bio, 0);
2536 bio_unmap_user(bio);
2537 return -EINVAL;
2538 }
2539
2540 bio_get(bio);
2541 blk_rq_bio_prep(q, rq, bio);
2542 rq->buffer = rq->data = NULL;
2543 return 0;
2544 }
2545
2546 EXPORT_SYMBOL(blk_rq_map_user_iov);
2547
2548 /**
2549 * blk_rq_unmap_user - unmap a request with user data
2550 * @bio: start of bio list
2551 *
2552 * Description:
2553 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2554 * supply the original rq->bio from the blk_rq_map_user() return, since
2555 * the io completion may have changed rq->bio.
2556 */
2557 int blk_rq_unmap_user(struct bio *bio)
2558 {
2559 struct bio *mapped_bio;
2560 int ret = 0, ret2;
2561
2562 while (bio) {
2563 mapped_bio = bio;
2564 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2565 mapped_bio = bio->bi_private;
2566
2567 ret2 = __blk_rq_unmap_user(mapped_bio);
2568 if (ret2 && !ret)
2569 ret = ret2;
2570
2571 mapped_bio = bio;
2572 bio = bio->bi_next;
2573 bio_put(mapped_bio);
2574 }
2575
2576 return ret;
2577 }
2578
2579 EXPORT_SYMBOL(blk_rq_unmap_user);
2580
2581 /**
2582 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2583 * @q: request queue where request should be inserted
2584 * @rq: request to fill
2585 * @kbuf: the kernel buffer
2586 * @len: length of user data
2587 * @gfp_mask: memory allocation flags
2588 */
2589 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2590 unsigned int len, gfp_t gfp_mask)
2591 {
2592 struct bio *bio;
2593
2594 if (len > (q->max_hw_sectors << 9))
2595 return -EINVAL;
2596 if (!len || !kbuf)
2597 return -EINVAL;
2598
2599 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2600 if (IS_ERR(bio))
2601 return PTR_ERR(bio);
2602
2603 if (rq_data_dir(rq) == WRITE)
2604 bio->bi_rw |= (1 << BIO_RW);
2605
2606 blk_rq_bio_prep(q, rq, bio);
2607 blk_queue_bounce(q, &rq->bio);
2608 rq->buffer = rq->data = NULL;
2609 return 0;
2610 }
2611
2612 EXPORT_SYMBOL(blk_rq_map_kern);
2613
2614 /**
2615 * blk_execute_rq_nowait - insert a request into queue for execution
2616 * @q: queue to insert the request in
2617 * @bd_disk: matching gendisk
2618 * @rq: request to insert
2619 * @at_head: insert request at head or tail of queue
2620 * @done: I/O completion handler
2621 *
2622 * Description:
2623 * Insert a fully prepared request at the back of the io scheduler queue
2624 * for execution. Don't wait for completion.
2625 */
2626 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2627 struct request *rq, int at_head,
2628 rq_end_io_fn *done)
2629 {
2630 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2631
2632 rq->rq_disk = bd_disk;
2633 rq->cmd_flags |= REQ_NOMERGE;
2634 rq->end_io = done;
2635 WARN_ON(irqs_disabled());
2636 spin_lock_irq(q->queue_lock);
2637 __elv_add_request(q, rq, where, 1);
2638 __generic_unplug_device(q);
2639 spin_unlock_irq(q->queue_lock);
2640 }
2641 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2642
2643 /**
2644 * blk_execute_rq - insert a request into queue for execution
2645 * @q: queue to insert the request in
2646 * @bd_disk: matching gendisk
2647 * @rq: request to insert
2648 * @at_head: insert request at head or tail of queue
2649 *
2650 * Description:
2651 * Insert a fully prepared request at the back of the io scheduler queue
2652 * for execution and wait for completion.
2653 */
2654 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2655 struct request *rq, int at_head)
2656 {
2657 DECLARE_COMPLETION_ONSTACK(wait);
2658 char sense[SCSI_SENSE_BUFFERSIZE];
2659 int err = 0;
2660
2661 /*
2662 * we need an extra reference to the request, so we can look at
2663 * it after io completion
2664 */
2665 rq->ref_count++;
2666
2667 if (!rq->sense) {
2668 memset(sense, 0, sizeof(sense));
2669 rq->sense = sense;
2670 rq->sense_len = 0;
2671 }
2672
2673 rq->end_io_data = &wait;
2674 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2675 wait_for_completion(&wait);
2676
2677 if (rq->errors)
2678 err = -EIO;
2679
2680 return err;
2681 }
2682
2683 EXPORT_SYMBOL(blk_execute_rq);
2684
2685 static void bio_end_empty_barrier(struct bio *bio, int err)
2686 {
2687 if (err)
2688 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2689
2690 complete(bio->bi_private);
2691 }
2692
2693 /**
2694 * blkdev_issue_flush - queue a flush
2695 * @bdev: blockdev to issue flush for
2696 * @error_sector: error sector
2697 *
2698 * Description:
2699 * Issue a flush for the block device in question. Caller can supply
2700 * room for storing the error offset in case of a flush error, if they
2701 * wish to. Caller must run wait_for_completion() on its own.
2702 */
2703 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2704 {
2705 DECLARE_COMPLETION_ONSTACK(wait);
2706 struct request_queue *q;
2707 struct bio *bio;
2708 int ret;
2709
2710 if (bdev->bd_disk == NULL)
2711 return -ENXIO;
2712
2713 q = bdev_get_queue(bdev);
2714 if (!q)
2715 return -ENXIO;
2716
2717 bio = bio_alloc(GFP_KERNEL, 0);
2718 if (!bio)
2719 return -ENOMEM;
2720
2721 bio->bi_end_io = bio_end_empty_barrier;
2722 bio->bi_private = &wait;
2723 bio->bi_bdev = bdev;
2724 submit_bio(1 << BIO_RW_BARRIER, bio);
2725
2726 wait_for_completion(&wait);
2727
2728 /*
2729 * The driver must store the error location in ->bi_sector, if
2730 * it supports it. For non-stacked drivers, this should be copied
2731 * from rq->sector.
2732 */
2733 if (error_sector)
2734 *error_sector = bio->bi_sector;
2735
2736 ret = 0;
2737 if (!bio_flagged(bio, BIO_UPTODATE))
2738 ret = -EIO;
2739
2740 bio_put(bio);
2741 return ret;
2742 }
2743
2744 EXPORT_SYMBOL(blkdev_issue_flush);
2745
2746 static void drive_stat_acct(struct request *rq, int new_io)
2747 {
2748 int rw = rq_data_dir(rq);
2749
2750 if (!blk_fs_request(rq) || !rq->rq_disk)
2751 return;
2752
2753 if (!new_io) {
2754 __disk_stat_inc(rq->rq_disk, merges[rw]);
2755 } else {
2756 disk_round_stats(rq->rq_disk);
2757 rq->rq_disk->in_flight++;
2758 }
2759 }
2760
2761 /*
2762 * add-request adds a request to the linked list.
2763 * queue lock is held and interrupts disabled, as we muck with the
2764 * request queue list.
2765 */
2766 static inline void add_request(struct request_queue * q, struct request * req)
2767 {
2768 drive_stat_acct(req, 1);
2769
2770 /*
2771 * elevator indicated where it wants this request to be
2772 * inserted at elevator_merge time
2773 */
2774 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2775 }
2776
2777 /*
2778 * disk_round_stats() - Round off the performance stats on a struct
2779 * disk_stats.
2780 *
2781 * The average IO queue length and utilisation statistics are maintained
2782 * by observing the current state of the queue length and the amount of
2783 * time it has been in this state for.
2784 *
2785 * Normally, that accounting is done on IO completion, but that can result
2786 * in more than a second's worth of IO being accounted for within any one
2787 * second, leading to >100% utilisation. To deal with that, we call this
2788 * function to do a round-off before returning the results when reading
2789 * /proc/diskstats. This accounts immediately for all queue usage up to
2790 * the current jiffies and restarts the counters again.
2791 */
2792 void disk_round_stats(struct gendisk *disk)
2793 {
2794 unsigned long now = jiffies;
2795
2796 if (now == disk->stamp)
2797 return;
2798
2799 if (disk->in_flight) {
2800 __disk_stat_add(disk, time_in_queue,
2801 disk->in_flight * (now - disk->stamp));
2802 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2803 }
2804 disk->stamp = now;
2805 }
2806
2807 EXPORT_SYMBOL_GPL(disk_round_stats);
2808
2809 /*
2810 * queue lock must be held
2811 */
2812 void __blk_put_request(struct request_queue *q, struct request *req)
2813 {
2814 if (unlikely(!q))
2815 return;
2816 if (unlikely(--req->ref_count))
2817 return;
2818
2819 elv_completed_request(q, req);
2820
2821 /*
2822 * Request may not have originated from ll_rw_blk. if not,
2823 * it didn't come out of our reserved rq pools
2824 */
2825 if (req->cmd_flags & REQ_ALLOCED) {
2826 int rw = rq_data_dir(req);
2827 int priv = req->cmd_flags & REQ_ELVPRIV;
2828
2829 BUG_ON(!list_empty(&req->queuelist));
2830 BUG_ON(!hlist_unhashed(&req->hash));
2831
2832 blk_free_request(q, req);
2833 freed_request(q, rw, priv);
2834 }
2835 }
2836
2837 EXPORT_SYMBOL_GPL(__blk_put_request);
2838
2839 void blk_put_request(struct request *req)
2840 {
2841 unsigned long flags;
2842 struct request_queue *q = req->q;
2843
2844 /*
2845 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2846 * following if (q) test.
2847 */
2848 if (q) {
2849 spin_lock_irqsave(q->queue_lock, flags);
2850 __blk_put_request(q, req);
2851 spin_unlock_irqrestore(q->queue_lock, flags);
2852 }
2853 }
2854
2855 EXPORT_SYMBOL(blk_put_request);
2856
2857 /**
2858 * blk_end_sync_rq - executes a completion event on a request
2859 * @rq: request to complete
2860 * @error: end io status of the request
2861 */
2862 void blk_end_sync_rq(struct request *rq, int error)
2863 {
2864 struct completion *waiting = rq->end_io_data;
2865
2866 rq->end_io_data = NULL;
2867 __blk_put_request(rq->q, rq);
2868
2869 /*
2870 * complete last, if this is a stack request the process (and thus
2871 * the rq pointer) could be invalid right after this complete()
2872 */
2873 complete(waiting);
2874 }
2875 EXPORT_SYMBOL(blk_end_sync_rq);
2876
2877 /*
2878 * Has to be called with the request spinlock acquired
2879 */
2880 static int attempt_merge(struct request_queue *q, struct request *req,
2881 struct request *next)
2882 {
2883 if (!rq_mergeable(req) || !rq_mergeable(next))
2884 return 0;
2885
2886 /*
2887 * not contiguous
2888 */
2889 if (req->sector + req->nr_sectors != next->sector)
2890 return 0;
2891
2892 if (rq_data_dir(req) != rq_data_dir(next)
2893 || req->rq_disk != next->rq_disk
2894 || next->special)
2895 return 0;
2896
2897 /*
2898 * If we are allowed to merge, then append bio list
2899 * from next to rq and release next. merge_requests_fn
2900 * will have updated segment counts, update sector
2901 * counts here.
2902 */
2903 if (!ll_merge_requests_fn(q, req, next))
2904 return 0;
2905
2906 /*
2907 * At this point we have either done a back merge
2908 * or front merge. We need the smaller start_time of
2909 * the merged requests to be the current request
2910 * for accounting purposes.
2911 */
2912 if (time_after(req->start_time, next->start_time))
2913 req->start_time = next->start_time;
2914
2915 req->biotail->bi_next = next->bio;
2916 req->biotail = next->biotail;
2917
2918 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2919
2920 elv_merge_requests(q, req, next);
2921
2922 if (req->rq_disk) {
2923 disk_round_stats(req->rq_disk);
2924 req->rq_disk->in_flight--;
2925 }
2926
2927 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2928
2929 __blk_put_request(q, next);
2930 return 1;
2931 }
2932
2933 static inline int attempt_back_merge(struct request_queue *q,
2934 struct request *rq)
2935 {
2936 struct request *next = elv_latter_request(q, rq);
2937
2938 if (next)
2939 return attempt_merge(q, rq, next);
2940
2941 return 0;
2942 }
2943
2944 static inline int attempt_front_merge(struct request_queue *q,
2945 struct request *rq)
2946 {
2947 struct request *prev = elv_former_request(q, rq);
2948
2949 if (prev)
2950 return attempt_merge(q, prev, rq);
2951
2952 return 0;
2953 }
2954
2955 static void init_request_from_bio(struct request *req, struct bio *bio)
2956 {
2957 req->cmd_type = REQ_TYPE_FS;
2958
2959 /*
2960 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2961 */
2962 if (bio_rw_ahead(bio) || bio_failfast(bio))
2963 req->cmd_flags |= REQ_FAILFAST;
2964
2965 /*
2966 * REQ_BARRIER implies no merging, but lets make it explicit
2967 */
2968 if (unlikely(bio_barrier(bio)))
2969 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2970
2971 if (bio_sync(bio))
2972 req->cmd_flags |= REQ_RW_SYNC;
2973 if (bio_rw_meta(bio))
2974 req->cmd_flags |= REQ_RW_META;
2975
2976 req->errors = 0;
2977 req->hard_sector = req->sector = bio->bi_sector;
2978 req->ioprio = bio_prio(bio);
2979 req->start_time = jiffies;
2980 blk_rq_bio_prep(req->q, req, bio);
2981 }
2982
2983 static int __make_request(struct request_queue *q, struct bio *bio)
2984 {
2985 struct request *req;
2986 int el_ret, nr_sectors, barrier, err;
2987 const unsigned short prio = bio_prio(bio);
2988 const int sync = bio_sync(bio);
2989 int rw_flags;
2990
2991 nr_sectors = bio_sectors(bio);
2992
2993 /*
2994 * low level driver can indicate that it wants pages above a
2995 * certain limit bounced to low memory (ie for highmem, or even
2996 * ISA dma in theory)
2997 */
2998 blk_queue_bounce(q, &bio);
2999
3000 barrier = bio_barrier(bio);
3001 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
3002 err = -EOPNOTSUPP;
3003 goto end_io;
3004 }
3005
3006 spin_lock_irq(q->queue_lock);
3007
3008 if (unlikely(barrier) || elv_queue_empty(q))
3009 goto get_rq;
3010
3011 el_ret = elv_merge(q, &req, bio);
3012 switch (el_ret) {
3013 case ELEVATOR_BACK_MERGE:
3014 BUG_ON(!rq_mergeable(req));
3015
3016 if (!ll_back_merge_fn(q, req, bio))
3017 break;
3018
3019 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3020
3021 req->biotail->bi_next = bio;
3022 req->biotail = bio;
3023 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3024 req->ioprio = ioprio_best(req->ioprio, prio);
3025 drive_stat_acct(req, 0);
3026 if (!attempt_back_merge(q, req))
3027 elv_merged_request(q, req, el_ret);
3028 goto out;
3029
3030 case ELEVATOR_FRONT_MERGE:
3031 BUG_ON(!rq_mergeable(req));
3032
3033 if (!ll_front_merge_fn(q, req, bio))
3034 break;
3035
3036 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3037
3038 bio->bi_next = req->bio;
3039 req->bio = bio;
3040
3041 /*
3042 * may not be valid. if the low level driver said
3043 * it didn't need a bounce buffer then it better
3044 * not touch req->buffer either...
3045 */
3046 req->buffer = bio_data(bio);
3047 req->current_nr_sectors = bio_cur_sectors(bio);
3048 req->hard_cur_sectors = req->current_nr_sectors;
3049 req->sector = req->hard_sector = bio->bi_sector;
3050 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3051 req->ioprio = ioprio_best(req->ioprio, prio);
3052 drive_stat_acct(req, 0);
3053 if (!attempt_front_merge(q, req))
3054 elv_merged_request(q, req, el_ret);
3055 goto out;
3056
3057 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3058 default:
3059 ;
3060 }
3061
3062 get_rq:
3063 /*
3064 * This sync check and mask will be re-done in init_request_from_bio(),
3065 * but we need to set it earlier to expose the sync flag to the
3066 * rq allocator and io schedulers.
3067 */
3068 rw_flags = bio_data_dir(bio);
3069 if (sync)
3070 rw_flags |= REQ_RW_SYNC;
3071
3072 /*
3073 * Grab a free request. This is might sleep but can not fail.
3074 * Returns with the queue unlocked.
3075 */
3076 req = get_request_wait(q, rw_flags, bio);
3077
3078 /*
3079 * After dropping the lock and possibly sleeping here, our request
3080 * may now be mergeable after it had proven unmergeable (above).
3081 * We don't worry about that case for efficiency. It won't happen
3082 * often, and the elevators are able to handle it.
3083 */
3084 init_request_from_bio(req, bio);
3085
3086 spin_lock_irq(q->queue_lock);
3087 if (elv_queue_empty(q))
3088 blk_plug_device(q);
3089 add_request(q, req);
3090 out:
3091 if (sync)
3092 __generic_unplug_device(q);
3093
3094 spin_unlock_irq(q->queue_lock);
3095 return 0;
3096
3097 end_io:
3098 bio_endio(bio, err);
3099 return 0;
3100 }
3101
3102 /*
3103 * If bio->bi_dev is a partition, remap the location
3104 */
3105 static inline void blk_partition_remap(struct bio *bio)
3106 {
3107 struct block_device *bdev = bio->bi_bdev;
3108
3109 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3110 struct hd_struct *p = bdev->bd_part;
3111 const int rw = bio_data_dir(bio);
3112
3113 p->sectors[rw] += bio_sectors(bio);
3114 p->ios[rw]++;
3115
3116 bio->bi_sector += p->start_sect;
3117 bio->bi_bdev = bdev->bd_contains;
3118
3119 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3120 bdev->bd_dev, bio->bi_sector,
3121 bio->bi_sector - p->start_sect);
3122 }
3123 }
3124
3125 static void handle_bad_sector(struct bio *bio)
3126 {
3127 char b[BDEVNAME_SIZE];
3128
3129 printk(KERN_INFO "attempt to access beyond end of device\n");
3130 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3131 bdevname(bio->bi_bdev, b),
3132 bio->bi_rw,
3133 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3134 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3135
3136 set_bit(BIO_EOF, &bio->bi_flags);
3137 }
3138
3139 #ifdef CONFIG_FAIL_MAKE_REQUEST
3140
3141 static DECLARE_FAULT_ATTR(fail_make_request);
3142
3143 static int __init setup_fail_make_request(char *str)
3144 {
3145 return setup_fault_attr(&fail_make_request, str);
3146 }
3147 __setup("fail_make_request=", setup_fail_make_request);
3148
3149 static int should_fail_request(struct bio *bio)
3150 {
3151 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3152 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3153 return should_fail(&fail_make_request, bio->bi_size);
3154
3155 return 0;
3156 }
3157
3158 static int __init fail_make_request_debugfs(void)
3159 {
3160 return init_fault_attr_dentries(&fail_make_request,
3161 "fail_make_request");
3162 }
3163
3164 late_initcall(fail_make_request_debugfs);
3165
3166 #else /* CONFIG_FAIL_MAKE_REQUEST */
3167
3168 static inline int should_fail_request(struct bio *bio)
3169 {
3170 return 0;
3171 }
3172
3173 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3174
3175 /*
3176 * Check whether this bio extends beyond the end of the device.
3177 */
3178 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3179 {
3180 sector_t maxsector;
3181
3182 if (!nr_sectors)
3183 return 0;
3184
3185 /* Test device or partition size, when known. */
3186 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3187 if (maxsector) {
3188 sector_t sector = bio->bi_sector;
3189
3190 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3191 /*
3192 * This may well happen - the kernel calls bread()
3193 * without checking the size of the device, e.g., when
3194 * mounting a device.
3195 */
3196 handle_bad_sector(bio);
3197 return 1;
3198 }
3199 }
3200
3201 return 0;
3202 }
3203
3204 /**
3205 * generic_make_request: hand a buffer to its device driver for I/O
3206 * @bio: The bio describing the location in memory and on the device.
3207 *
3208 * generic_make_request() is used to make I/O requests of block
3209 * devices. It is passed a &struct bio, which describes the I/O that needs
3210 * to be done.
3211 *
3212 * generic_make_request() does not return any status. The
3213 * success/failure status of the request, along with notification of
3214 * completion, is delivered asynchronously through the bio->bi_end_io
3215 * function described (one day) else where.
3216 *
3217 * The caller of generic_make_request must make sure that bi_io_vec
3218 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3219 * set to describe the device address, and the
3220 * bi_end_io and optionally bi_private are set to describe how
3221 * completion notification should be signaled.
3222 *
3223 * generic_make_request and the drivers it calls may use bi_next if this
3224 * bio happens to be merged with someone else, and may change bi_dev and
3225 * bi_sector for remaps as it sees fit. So the values of these fields
3226 * should NOT be depended on after the call to generic_make_request.
3227 */
3228 static inline void __generic_make_request(struct bio *bio)
3229 {
3230 struct request_queue *q;
3231 sector_t old_sector;
3232 int ret, nr_sectors = bio_sectors(bio);
3233 dev_t old_dev;
3234 int err = -EIO;
3235
3236 might_sleep();
3237
3238 if (bio_check_eod(bio, nr_sectors))
3239 goto end_io;
3240
3241 /*
3242 * Resolve the mapping until finished. (drivers are
3243 * still free to implement/resolve their own stacking
3244 * by explicitly returning 0)
3245 *
3246 * NOTE: we don't repeat the blk_size check for each new device.
3247 * Stacking drivers are expected to know what they are doing.
3248 */
3249 old_sector = -1;
3250 old_dev = 0;
3251 do {
3252 char b[BDEVNAME_SIZE];
3253
3254 q = bdev_get_queue(bio->bi_bdev);
3255 if (!q) {
3256 printk(KERN_ERR
3257 "generic_make_request: Trying to access "
3258 "nonexistent block-device %s (%Lu)\n",
3259 bdevname(bio->bi_bdev, b),
3260 (long long) bio->bi_sector);
3261 end_io:
3262 bio_endio(bio, err);
3263 break;
3264 }
3265
3266 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3267 printk("bio too big device %s (%u > %u)\n",
3268 bdevname(bio->bi_bdev, b),
3269 bio_sectors(bio),
3270 q->max_hw_sectors);
3271 goto end_io;
3272 }
3273
3274 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3275 goto end_io;
3276
3277 if (should_fail_request(bio))
3278 goto end_io;
3279
3280 /*
3281 * If this device has partitions, remap block n
3282 * of partition p to block n+start(p) of the disk.
3283 */
3284 blk_partition_remap(bio);
3285
3286 if (old_sector != -1)
3287 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3288 old_sector);
3289
3290 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3291
3292 old_sector = bio->bi_sector;
3293 old_dev = bio->bi_bdev->bd_dev;
3294
3295 if (bio_check_eod(bio, nr_sectors))
3296 goto end_io;
3297 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
3298 err = -EOPNOTSUPP;
3299 goto end_io;
3300 }
3301
3302 ret = q->make_request_fn(q, bio);
3303 } while (ret);
3304 }
3305
3306 /*
3307 * We only want one ->make_request_fn to be active at a time,
3308 * else stack usage with stacked devices could be a problem.
3309 * So use current->bio_{list,tail} to keep a list of requests
3310 * submited by a make_request_fn function.
3311 * current->bio_tail is also used as a flag to say if
3312 * generic_make_request is currently active in this task or not.
3313 * If it is NULL, then no make_request is active. If it is non-NULL,
3314 * then a make_request is active, and new requests should be added
3315 * at the tail
3316 */
3317 void generic_make_request(struct bio *bio)
3318 {
3319 if (current->bio_tail) {
3320 /* make_request is active */
3321 *(current->bio_tail) = bio;
3322 bio->bi_next = NULL;
3323 current->bio_tail = &bio->bi_next;
3324 return;
3325 }
3326 /* following loop may be a bit non-obvious, and so deserves some
3327 * explanation.
3328 * Before entering the loop, bio->bi_next is NULL (as all callers
3329 * ensure that) so we have a list with a single bio.
3330 * We pretend that we have just taken it off a longer list, so
3331 * we assign bio_list to the next (which is NULL) and bio_tail
3332 * to &bio_list, thus initialising the bio_list of new bios to be
3333 * added. __generic_make_request may indeed add some more bios
3334 * through a recursive call to generic_make_request. If it
3335 * did, we find a non-NULL value in bio_list and re-enter the loop
3336 * from the top. In this case we really did just take the bio
3337 * of the top of the list (no pretending) and so fixup bio_list and
3338 * bio_tail or bi_next, and call into __generic_make_request again.
3339 *
3340 * The loop was structured like this to make only one call to
3341 * __generic_make_request (which is important as it is large and
3342 * inlined) and to keep the structure simple.
3343 */
3344 BUG_ON(bio->bi_next);
3345 do {
3346 current->bio_list = bio->bi_next;
3347 if (bio->bi_next == NULL)
3348 current->bio_tail = &current->bio_list;
3349 else
3350 bio->bi_next = NULL;
3351 __generic_make_request(bio);
3352 bio = current->bio_list;
3353 } while (bio);
3354 current->bio_tail = NULL; /* deactivate */
3355 }
3356
3357 EXPORT_SYMBOL(generic_make_request);
3358
3359 /**
3360 * submit_bio: submit a bio to the block device layer for I/O
3361 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3362 * @bio: The &struct bio which describes the I/O
3363 *
3364 * submit_bio() is very similar in purpose to generic_make_request(), and
3365 * uses that function to do most of the work. Both are fairly rough
3366 * interfaces, @bio must be presetup and ready for I/O.
3367 *
3368 */
3369 void submit_bio(int rw, struct bio *bio)
3370 {
3371 int count = bio_sectors(bio);
3372
3373 bio->bi_rw |= rw;
3374
3375 /*
3376 * If it's a regular read/write or a barrier with data attached,
3377 * go through the normal accounting stuff before submission.
3378 */
3379 if (!bio_empty_barrier(bio)) {
3380
3381 BIO_BUG_ON(!bio->bi_size);
3382 BIO_BUG_ON(!bio->bi_io_vec);
3383
3384 if (rw & WRITE) {
3385 count_vm_events(PGPGOUT, count);
3386 } else {
3387 task_io_account_read(bio->bi_size);
3388 count_vm_events(PGPGIN, count);
3389 }
3390
3391 if (unlikely(block_dump)) {
3392 char b[BDEVNAME_SIZE];
3393 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3394 current->comm, task_pid_nr(current),
3395 (rw & WRITE) ? "WRITE" : "READ",
3396 (unsigned long long)bio->bi_sector,
3397 bdevname(bio->bi_bdev,b));
3398 }
3399 }
3400
3401 generic_make_request(bio);
3402 }
3403
3404 EXPORT_SYMBOL(submit_bio);
3405
3406 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3407 {
3408 if (blk_fs_request(rq)) {
3409 rq->hard_sector += nsect;
3410 rq->hard_nr_sectors -= nsect;
3411
3412 /*
3413 * Move the I/O submission pointers ahead if required.
3414 */
3415 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3416 (rq->sector <= rq->hard_sector)) {
3417 rq->sector = rq->hard_sector;
3418 rq->nr_sectors = rq->hard_nr_sectors;
3419 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3420 rq->current_nr_sectors = rq->hard_cur_sectors;
3421 rq->buffer = bio_data(rq->bio);
3422 }
3423
3424 /*
3425 * if total number of sectors is less than the first segment
3426 * size, something has gone terribly wrong
3427 */
3428 if (rq->nr_sectors < rq->current_nr_sectors) {
3429 printk("blk: request botched\n");
3430 rq->nr_sectors = rq->current_nr_sectors;
3431 }
3432 }
3433 }
3434
3435 static int __end_that_request_first(struct request *req, int uptodate,
3436 int nr_bytes)
3437 {
3438 int total_bytes, bio_nbytes, error, next_idx = 0;
3439 struct bio *bio;
3440
3441 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3442
3443 /*
3444 * extend uptodate bool to allow < 0 value to be direct io error
3445 */
3446 error = 0;
3447 if (end_io_error(uptodate))
3448 error = !uptodate ? -EIO : uptodate;
3449
3450 /*
3451 * for a REQ_BLOCK_PC request, we want to carry any eventual
3452 * sense key with us all the way through
3453 */
3454 if (!blk_pc_request(req))
3455 req->errors = 0;
3456
3457 if (!uptodate) {
3458 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3459 printk("end_request: I/O error, dev %s, sector %llu\n",
3460 req->rq_disk ? req->rq_disk->disk_name : "?",
3461 (unsigned long long)req->sector);
3462 }
3463
3464 if (blk_fs_request(req) && req->rq_disk) {
3465 const int rw = rq_data_dir(req);
3466
3467 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3468 }
3469
3470 total_bytes = bio_nbytes = 0;
3471 while ((bio = req->bio) != NULL) {
3472 int nbytes;
3473
3474 /*
3475 * For an empty barrier request, the low level driver must
3476 * store a potential error location in ->sector. We pass
3477 * that back up in ->bi_sector.
3478 */
3479 if (blk_empty_barrier(req))
3480 bio->bi_sector = req->sector;
3481
3482 if (nr_bytes >= bio->bi_size) {
3483 req->bio = bio->bi_next;
3484 nbytes = bio->bi_size;
3485 req_bio_endio(req, bio, nbytes, error);
3486 next_idx = 0;
3487 bio_nbytes = 0;
3488 } else {
3489 int idx = bio->bi_idx + next_idx;
3490
3491 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3492 blk_dump_rq_flags(req, "__end_that");
3493 printk("%s: bio idx %d >= vcnt %d\n",
3494 __FUNCTION__,
3495 bio->bi_idx, bio->bi_vcnt);
3496 break;
3497 }
3498
3499 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3500 BIO_BUG_ON(nbytes > bio->bi_size);
3501
3502 /*
3503 * not a complete bvec done
3504 */
3505 if (unlikely(nbytes > nr_bytes)) {
3506 bio_nbytes += nr_bytes;
3507 total_bytes += nr_bytes;
3508 break;
3509 }
3510
3511 /*
3512 * advance to the next vector
3513 */
3514 next_idx++;
3515 bio_nbytes += nbytes;
3516 }
3517
3518 total_bytes += nbytes;
3519 nr_bytes -= nbytes;
3520
3521 if ((bio = req->bio)) {
3522 /*
3523 * end more in this run, or just return 'not-done'
3524 */
3525 if (unlikely(nr_bytes <= 0))
3526 break;
3527 }
3528 }
3529
3530 /*
3531 * completely done
3532 */
3533 if (!req->bio)
3534 return 0;
3535
3536 /*
3537 * if the request wasn't completed, update state
3538 */
3539 if (bio_nbytes) {
3540 req_bio_endio(req, bio, bio_nbytes, error);
3541 bio->bi_idx += next_idx;
3542 bio_iovec(bio)->bv_offset += nr_bytes;
3543 bio_iovec(bio)->bv_len -= nr_bytes;
3544 }
3545
3546 blk_recalc_rq_sectors(req, total_bytes >> 9);
3547 blk_recalc_rq_segments(req);
3548 return 1;
3549 }
3550
3551 /**
3552 * end_that_request_first - end I/O on a request
3553 * @req: the request being processed
3554 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3555 * @nr_sectors: number of sectors to end I/O on
3556 *
3557 * Description:
3558 * Ends I/O on a number of sectors attached to @req, and sets it up
3559 * for the next range of segments (if any) in the cluster.
3560 *
3561 * Return:
3562 * 0 - we are done with this request, call end_that_request_last()
3563 * 1 - still buffers pending for this request
3564 **/
3565 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3566 {
3567 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3568 }
3569
3570 EXPORT_SYMBOL(end_that_request_first);
3571
3572 /**
3573 * end_that_request_chunk - end I/O on a request
3574 * @req: the request being processed
3575 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3576 * @nr_bytes: number of bytes to complete
3577 *
3578 * Description:
3579 * Ends I/O on a number of bytes attached to @req, and sets it up
3580 * for the next range of segments (if any). Like end_that_request_first(),
3581 * but deals with bytes instead of sectors.
3582 *
3583 * Return:
3584 * 0 - we are done with this request, call end_that_request_last()
3585 * 1 - still buffers pending for this request
3586 **/
3587 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3588 {
3589 return __end_that_request_first(req, uptodate, nr_bytes);
3590 }
3591
3592 EXPORT_SYMBOL(end_that_request_chunk);
3593
3594 /*
3595 * splice the completion data to a local structure and hand off to
3596 * process_completion_queue() to complete the requests
3597 */
3598 static void blk_done_softirq(struct softirq_action *h)
3599 {
3600 struct list_head *cpu_list, local_list;
3601
3602 local_irq_disable();
3603 cpu_list = &__get_cpu_var(blk_cpu_done);
3604 list_replace_init(cpu_list, &local_list);
3605 local_irq_enable();
3606
3607 while (!list_empty(&local_list)) {
3608 struct request *rq = list_entry(local_list.next, struct request, donelist);
3609
3610 list_del_init(&rq->donelist);
3611 rq->q->softirq_done_fn(rq);
3612 }
3613 }
3614
3615 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3616 void *hcpu)
3617 {
3618 /*
3619 * If a CPU goes away, splice its entries to the current CPU
3620 * and trigger a run of the softirq
3621 */
3622 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3623 int cpu = (unsigned long) hcpu;
3624
3625 local_irq_disable();
3626 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3627 &__get_cpu_var(blk_cpu_done));
3628 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3629 local_irq_enable();
3630 }
3631
3632 return NOTIFY_OK;
3633 }
3634
3635
3636 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3637 .notifier_call = blk_cpu_notify,
3638 };
3639
3640 /**
3641 * blk_complete_request - end I/O on a request
3642 * @req: the request being processed
3643 *
3644 * Description:
3645 * Ends all I/O on a request. It does not handle partial completions,
3646 * unless the driver actually implements this in its completion callback
3647 * through requeueing. The actual completion happens out-of-order,
3648 * through a softirq handler. The user must have registered a completion
3649 * callback through blk_queue_softirq_done().
3650 **/
3651
3652 void blk_complete_request(struct request *req)
3653 {
3654 struct list_head *cpu_list;
3655 unsigned long flags;
3656
3657 BUG_ON(!req->q->softirq_done_fn);
3658
3659 local_irq_save(flags);
3660
3661 cpu_list = &__get_cpu_var(blk_cpu_done);
3662 list_add_tail(&req->donelist, cpu_list);
3663 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3664
3665 local_irq_restore(flags);
3666 }
3667
3668 EXPORT_SYMBOL(blk_complete_request);
3669
3670 /*
3671 * queue lock must be held
3672 */
3673 void end_that_request_last(struct request *req, int uptodate)
3674 {
3675 struct gendisk *disk = req->rq_disk;
3676 int error;
3677
3678 /*
3679 * extend uptodate bool to allow < 0 value to be direct io error
3680 */
3681 error = 0;
3682 if (end_io_error(uptodate))
3683 error = !uptodate ? -EIO : uptodate;
3684
3685 if (unlikely(laptop_mode) && blk_fs_request(req))
3686 laptop_io_completion();
3687
3688 /*
3689 * Account IO completion. bar_rq isn't accounted as a normal
3690 * IO on queueing nor completion. Accounting the containing
3691 * request is enough.
3692 */
3693 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3694 unsigned long duration = jiffies - req->start_time;
3695 const int rw = rq_data_dir(req);
3696
3697 __disk_stat_inc(disk, ios[rw]);
3698 __disk_stat_add(disk, ticks[rw], duration);
3699 disk_round_stats(disk);
3700 disk->in_flight--;
3701 }
3702 if (req->end_io)
3703 req->end_io(req, error);
3704 else
3705 __blk_put_request(req->q, req);
3706 }
3707
3708 EXPORT_SYMBOL(end_that_request_last);
3709
3710 static inline void __end_request(struct request *rq, int uptodate,
3711 unsigned int nr_bytes)
3712 {
3713 int error = 0;
3714
3715 if (uptodate <= 0)
3716 error = uptodate ? uptodate : -EIO;
3717
3718 __blk_end_request(rq, error, nr_bytes);
3719 }
3720
3721 /**
3722 * blk_rq_bytes - Returns bytes left to complete in the entire request
3723 **/
3724 unsigned int blk_rq_bytes(struct request *rq)
3725 {
3726 if (blk_fs_request(rq))
3727 return rq->hard_nr_sectors << 9;
3728
3729 return rq->data_len;
3730 }
3731 EXPORT_SYMBOL_GPL(blk_rq_bytes);
3732
3733 /**
3734 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
3735 **/
3736 unsigned int blk_rq_cur_bytes(struct request *rq)
3737 {
3738 if (blk_fs_request(rq))
3739 return rq->current_nr_sectors << 9;
3740
3741 if (rq->bio)
3742 return rq->bio->bi_size;
3743
3744 return rq->data_len;
3745 }
3746 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
3747
3748 /**
3749 * end_queued_request - end all I/O on a queued request
3750 * @rq: the request being processed
3751 * @uptodate: error value or 0/1 uptodate flag
3752 *
3753 * Description:
3754 * Ends all I/O on a request, and removes it from the block layer queues.
3755 * Not suitable for normal IO completion, unless the driver still has
3756 * the request attached to the block layer.
3757 *
3758 **/
3759 void end_queued_request(struct request *rq, int uptodate)
3760 {
3761 __end_request(rq, uptodate, blk_rq_bytes(rq));
3762 }
3763 EXPORT_SYMBOL(end_queued_request);
3764
3765 /**
3766 * end_dequeued_request - end all I/O on a dequeued request
3767 * @rq: the request being processed
3768 * @uptodate: error value or 0/1 uptodate flag
3769 *
3770 * Description:
3771 * Ends all I/O on a request. The request must already have been
3772 * dequeued using blkdev_dequeue_request(), as is normally the case
3773 * for most drivers.
3774 *
3775 **/
3776 void end_dequeued_request(struct request *rq, int uptodate)
3777 {
3778 __end_request(rq, uptodate, blk_rq_bytes(rq));
3779 }
3780 EXPORT_SYMBOL(end_dequeued_request);
3781
3782
3783 /**
3784 * end_request - end I/O on the current segment of the request
3785 * @req: the request being processed
3786 * @uptodate: error value or 0/1 uptodate flag
3787 *
3788 * Description:
3789 * Ends I/O on the current segment of a request. If that is the only
3790 * remaining segment, the request is also completed and freed.
3791 *
3792 * This is a remnant of how older block drivers handled IO completions.
3793 * Modern drivers typically end IO on the full request in one go, unless
3794 * they have a residual value to account for. For that case this function
3795 * isn't really useful, unless the residual just happens to be the
3796 * full current segment. In other words, don't use this function in new
3797 * code. Either use end_request_completely(), or the
3798 * end_that_request_chunk() (along with end_that_request_last()) for
3799 * partial completions.
3800 *
3801 **/
3802 void end_request(struct request *req, int uptodate)
3803 {
3804 __end_request(req, uptodate, req->hard_cur_sectors << 9);
3805 }
3806 EXPORT_SYMBOL(end_request);
3807
3808 static void complete_request(struct request *rq, int error)
3809 {
3810 /*
3811 * REMOVEME: This conversion is transitional and will be removed
3812 * when old end_that_request_* are unexported.
3813 */
3814 int uptodate = 1;
3815 if (error)
3816 uptodate = (error == -EIO) ? 0 : error;
3817
3818 if (blk_rq_tagged(rq))
3819 blk_queue_end_tag(rq->q, rq);
3820
3821 if (blk_queued_rq(rq))
3822 blkdev_dequeue_request(rq);
3823
3824 end_that_request_last(rq, uptodate);
3825 }
3826
3827 /**
3828 * blk_end_request - Helper function for drivers to complete the request.
3829 * @rq: the request being processed
3830 * @error: 0 for success, < 0 for error
3831 * @nr_bytes: number of bytes to complete
3832 *
3833 * Description:
3834 * Ends I/O on a number of bytes attached to @rq.
3835 * If @rq has leftover, sets it up for the next range of segments.
3836 *
3837 * Return:
3838 * 0 - we are done with this request
3839 * 1 - still buffers pending for this request
3840 **/
3841 int blk_end_request(struct request *rq, int error, int nr_bytes)
3842 {
3843 struct request_queue *q = rq->q;
3844 unsigned long flags = 0UL;
3845 /*
3846 * REMOVEME: This conversion is transitional and will be removed
3847 * when old end_that_request_* are unexported.
3848 */
3849 int uptodate = 1;
3850 if (error)
3851 uptodate = (error == -EIO) ? 0 : error;
3852
3853 if (blk_fs_request(rq) || blk_pc_request(rq)) {
3854 if (__end_that_request_first(rq, uptodate, nr_bytes))
3855 return 1;
3856 }
3857
3858 add_disk_randomness(rq->rq_disk);
3859
3860 spin_lock_irqsave(q->queue_lock, flags);
3861 complete_request(rq, error);
3862 spin_unlock_irqrestore(q->queue_lock, flags);
3863
3864 return 0;
3865 }
3866 EXPORT_SYMBOL_GPL(blk_end_request);
3867
3868 /**
3869 * __blk_end_request - Helper function for drivers to complete the request.
3870 * @rq: the request being processed
3871 * @error: 0 for success, < 0 for error
3872 * @nr_bytes: number of bytes to complete
3873 *
3874 * Description:
3875 * Must be called with queue lock held unlike blk_end_request().
3876 *
3877 * Return:
3878 * 0 - we are done with this request
3879 * 1 - still buffers pending for this request
3880 **/
3881 int __blk_end_request(struct request *rq, int error, int nr_bytes)
3882 {
3883 /*
3884 * REMOVEME: This conversion is transitional and will be removed
3885 * when old end_that_request_* are unexported.
3886 */
3887 int uptodate = 1;
3888 if (error)
3889 uptodate = (error == -EIO) ? 0 : error;
3890
3891 if (blk_fs_request(rq) || blk_pc_request(rq)) {
3892 if (__end_that_request_first(rq, uptodate, nr_bytes))
3893 return 1;
3894 }
3895
3896 add_disk_randomness(rq->rq_disk);
3897
3898 complete_request(rq, error);
3899
3900 return 0;
3901 }
3902 EXPORT_SYMBOL_GPL(__blk_end_request);
3903
3904 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3905 struct bio *bio)
3906 {
3907 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3908 rq->cmd_flags |= (bio->bi_rw & 3);
3909
3910 rq->nr_phys_segments = bio_phys_segments(q, bio);
3911 rq->nr_hw_segments = bio_hw_segments(q, bio);
3912 rq->current_nr_sectors = bio_cur_sectors(bio);
3913 rq->hard_cur_sectors = rq->current_nr_sectors;
3914 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3915 rq->buffer = bio_data(bio);
3916 rq->data_len = bio->bi_size;
3917
3918 rq->bio = rq->biotail = bio;
3919
3920 if (bio->bi_bdev)
3921 rq->rq_disk = bio->bi_bdev->bd_disk;
3922 }
3923
3924 int kblockd_schedule_work(struct work_struct *work)
3925 {
3926 return queue_work(kblockd_workqueue, work);
3927 }
3928
3929 EXPORT_SYMBOL(kblockd_schedule_work);
3930
3931 void kblockd_flush_work(struct work_struct *work)
3932 {
3933 cancel_work_sync(work);
3934 }
3935 EXPORT_SYMBOL(kblockd_flush_work);
3936
3937 int __init blk_dev_init(void)
3938 {
3939 int i;
3940
3941 kblockd_workqueue = create_workqueue("kblockd");
3942 if (!kblockd_workqueue)
3943 panic("Failed to create kblockd\n");
3944
3945 request_cachep = kmem_cache_create("blkdev_requests",
3946 sizeof(struct request), 0, SLAB_PANIC, NULL);
3947
3948 requestq_cachep = kmem_cache_create("blkdev_queue",
3949 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3950
3951 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3952 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3953
3954 for_each_possible_cpu(i)
3955 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3956
3957 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3958 register_hotcpu_notifier(&blk_cpu_notifier);
3959
3960 blk_max_low_pfn = max_low_pfn - 1;
3961 blk_max_pfn = max_pfn - 1;
3962
3963 return 0;
3964 }
3965
3966 /*
3967 * IO Context helper functions
3968 */
3969 void put_io_context(struct io_context *ioc)
3970 {
3971 if (ioc == NULL)
3972 return;
3973
3974 BUG_ON(atomic_read(&ioc->refcount) == 0);
3975
3976 if (atomic_dec_and_test(&ioc->refcount)) {
3977 struct cfq_io_context *cic;
3978
3979 rcu_read_lock();
3980 if (ioc->aic && ioc->aic->dtor)
3981 ioc->aic->dtor(ioc->aic);
3982 if (ioc->cic_root.rb_node != NULL) {
3983 struct rb_node *n = rb_first(&ioc->cic_root);
3984
3985 cic = rb_entry(n, struct cfq_io_context, rb_node);
3986 cic->dtor(ioc);
3987 }
3988 rcu_read_unlock();
3989
3990 kmem_cache_free(iocontext_cachep, ioc);
3991 }
3992 }
3993 EXPORT_SYMBOL(put_io_context);
3994
3995 /* Called by the exitting task */
3996 void exit_io_context(void)
3997 {
3998 struct io_context *ioc;
3999 struct cfq_io_context *cic;
4000
4001 task_lock(current);
4002 ioc = current->io_context;
4003 current->io_context = NULL;
4004 task_unlock(current);
4005
4006 ioc->task = NULL;
4007 if (ioc->aic && ioc->aic->exit)
4008 ioc->aic->exit(ioc->aic);
4009 if (ioc->cic_root.rb_node != NULL) {
4010 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
4011 cic->exit(ioc);
4012 }
4013
4014 put_io_context(ioc);
4015 }
4016
4017 /*
4018 * If the current task has no IO context then create one and initialise it.
4019 * Otherwise, return its existing IO context.
4020 *
4021 * This returned IO context doesn't have a specifically elevated refcount,
4022 * but since the current task itself holds a reference, the context can be
4023 * used in general code, so long as it stays within `current` context.
4024 */
4025 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
4026 {
4027 struct task_struct *tsk = current;
4028 struct io_context *ret;
4029
4030 ret = tsk->io_context;
4031 if (likely(ret))
4032 return ret;
4033
4034 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
4035 if (ret) {
4036 atomic_set(&ret->refcount, 1);
4037 ret->task = current;
4038 ret->ioprio_changed = 0;
4039 ret->last_waited = jiffies; /* doesn't matter... */
4040 ret->nr_batch_requests = 0; /* because this is 0 */
4041 ret->aic = NULL;
4042 ret->cic_root.rb_node = NULL;
4043 ret->ioc_data = NULL;
4044 /* make sure set_task_ioprio() sees the settings above */
4045 smp_wmb();
4046 tsk->io_context = ret;
4047 }
4048
4049 return ret;
4050 }
4051
4052 /*
4053 * If the current task has no IO context then create one and initialise it.
4054 * If it does have a context, take a ref on it.
4055 *
4056 * This is always called in the context of the task which submitted the I/O.
4057 */
4058 struct io_context *get_io_context(gfp_t gfp_flags, int node)
4059 {
4060 struct io_context *ret;
4061 ret = current_io_context(gfp_flags, node);
4062 if (likely(ret))
4063 atomic_inc(&ret->refcount);
4064 return ret;
4065 }
4066 EXPORT_SYMBOL(get_io_context);
4067
4068 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
4069 {
4070 struct io_context *src = *psrc;
4071 struct io_context *dst = *pdst;
4072
4073 if (src) {
4074 BUG_ON(atomic_read(&src->refcount) == 0);
4075 atomic_inc(&src->refcount);
4076 put_io_context(dst);
4077 *pdst = src;
4078 }
4079 }
4080 EXPORT_SYMBOL(copy_io_context);
4081
4082 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
4083 {
4084 struct io_context *temp;
4085 temp = *ioc1;
4086 *ioc1 = *ioc2;
4087 *ioc2 = temp;
4088 }
4089 EXPORT_SYMBOL(swap_io_context);
4090
4091 /*
4092 * sysfs parts below
4093 */
4094 struct queue_sysfs_entry {
4095 struct attribute attr;
4096 ssize_t (*show)(struct request_queue *, char *);
4097 ssize_t (*store)(struct request_queue *, const char *, size_t);
4098 };
4099
4100 static ssize_t
4101 queue_var_show(unsigned int var, char *page)
4102 {
4103 return sprintf(page, "%d\n", var);
4104 }
4105
4106 static ssize_t
4107 queue_var_store(unsigned long *var, const char *page, size_t count)
4108 {
4109 char *p = (char *) page;
4110
4111 *var = simple_strtoul(p, &p, 10);
4112 return count;
4113 }
4114
4115 static ssize_t queue_requests_show(struct request_queue *q, char *page)
4116 {
4117 return queue_var_show(q->nr_requests, (page));
4118 }
4119
4120 static ssize_t
4121 queue_requests_store(struct request_queue *q, const char *page, size_t count)
4122 {
4123 struct request_list *rl = &q->rq;
4124 unsigned long nr;
4125 int ret = queue_var_store(&nr, page, count);
4126 if (nr < BLKDEV_MIN_RQ)
4127 nr = BLKDEV_MIN_RQ;
4128
4129 spin_lock_irq(q->queue_lock);
4130 q->nr_requests = nr;
4131 blk_queue_congestion_threshold(q);
4132
4133 if (rl->count[READ] >= queue_congestion_on_threshold(q))
4134 blk_set_queue_congested(q, READ);
4135 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4136 blk_clear_queue_congested(q, READ);
4137
4138 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4139 blk_set_queue_congested(q, WRITE);
4140 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4141 blk_clear_queue_congested(q, WRITE);
4142
4143 if (rl->count[READ] >= q->nr_requests) {
4144 blk_set_queue_full(q, READ);
4145 } else if (rl->count[READ]+1 <= q->nr_requests) {
4146 blk_clear_queue_full(q, READ);
4147 wake_up(&rl->wait[READ]);
4148 }
4149
4150 if (rl->count[WRITE] >= q->nr_requests) {
4151 blk_set_queue_full(q, WRITE);
4152 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4153 blk_clear_queue_full(q, WRITE);
4154 wake_up(&rl->wait[WRITE]);
4155 }
4156 spin_unlock_irq(q->queue_lock);
4157 return ret;
4158 }
4159
4160 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4161 {
4162 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4163
4164 return queue_var_show(ra_kb, (page));
4165 }
4166
4167 static ssize_t
4168 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4169 {
4170 unsigned long ra_kb;
4171 ssize_t ret = queue_var_store(&ra_kb, page, count);
4172
4173 spin_lock_irq(q->queue_lock);
4174 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4175 spin_unlock_irq(q->queue_lock);
4176
4177 return ret;
4178 }
4179
4180 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4181 {
4182 int max_sectors_kb = q->max_sectors >> 1;
4183
4184 return queue_var_show(max_sectors_kb, (page));
4185 }
4186
4187 static ssize_t
4188 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4189 {
4190 unsigned long max_sectors_kb,
4191 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4192 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4193 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4194
4195 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4196 return -EINVAL;
4197 /*
4198 * Take the queue lock to update the readahead and max_sectors
4199 * values synchronously:
4200 */
4201 spin_lock_irq(q->queue_lock);
4202 q->max_sectors = max_sectors_kb << 1;
4203 spin_unlock_irq(q->queue_lock);
4204
4205 return ret;
4206 }
4207
4208 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4209 {
4210 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4211
4212 return queue_var_show(max_hw_sectors_kb, (page));
4213 }
4214
4215
4216 static struct queue_sysfs_entry queue_requests_entry = {
4217 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4218 .show = queue_requests_show,
4219 .store = queue_requests_store,
4220 };
4221
4222 static struct queue_sysfs_entry queue_ra_entry = {
4223 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4224 .show = queue_ra_show,
4225 .store = queue_ra_store,
4226 };
4227
4228 static struct queue_sysfs_entry queue_max_sectors_entry = {
4229 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4230 .show = queue_max_sectors_show,
4231 .store = queue_max_sectors_store,
4232 };
4233
4234 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4235 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4236 .show = queue_max_hw_sectors_show,
4237 };
4238
4239 static struct queue_sysfs_entry queue_iosched_entry = {
4240 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4241 .show = elv_iosched_show,
4242 .store = elv_iosched_store,
4243 };
4244
4245 static struct attribute *default_attrs[] = {
4246 &queue_requests_entry.attr,
4247 &queue_ra_entry.attr,
4248 &queue_max_hw_sectors_entry.attr,
4249 &queue_max_sectors_entry.attr,
4250 &queue_iosched_entry.attr,
4251 NULL,
4252 };
4253
4254 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4255
4256 static ssize_t
4257 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4258 {
4259 struct queue_sysfs_entry *entry = to_queue(attr);
4260 struct request_queue *q =
4261 container_of(kobj, struct request_queue, kobj);
4262 ssize_t res;
4263
4264 if (!entry->show)
4265 return -EIO;
4266 mutex_lock(&q->sysfs_lock);
4267 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4268 mutex_unlock(&q->sysfs_lock);
4269 return -ENOENT;
4270 }
4271 res = entry->show(q, page);
4272 mutex_unlock(&q->sysfs_lock);
4273 return res;
4274 }
4275
4276 static ssize_t
4277 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4278 const char *page, size_t length)
4279 {
4280 struct queue_sysfs_entry *entry = to_queue(attr);
4281 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4282
4283 ssize_t res;
4284
4285 if (!entry->store)
4286 return -EIO;
4287 mutex_lock(&q->sysfs_lock);
4288 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4289 mutex_unlock(&q->sysfs_lock);
4290 return -ENOENT;
4291 }
4292 res = entry->store(q, page, length);
4293 mutex_unlock(&q->sysfs_lock);
4294 return res;
4295 }
4296
4297 static struct sysfs_ops queue_sysfs_ops = {
4298 .show = queue_attr_show,
4299 .store = queue_attr_store,
4300 };
4301
4302 static struct kobj_type queue_ktype = {
4303 .sysfs_ops = &queue_sysfs_ops,
4304 .default_attrs = default_attrs,
4305 .release = blk_release_queue,
4306 };
4307
4308 int blk_register_queue(struct gendisk *disk)
4309 {
4310 int ret;
4311
4312 struct request_queue *q = disk->queue;
4313
4314 if (!q || !q->request_fn)
4315 return -ENXIO;
4316
4317 ret = kobject_add(&q->kobj, kobject_get(&disk->dev.kobj),
4318 "%s", "queue");
4319 if (ret < 0)
4320 return ret;
4321
4322 kobject_uevent(&q->kobj, KOBJ_ADD);
4323
4324 ret = elv_register_queue(q);
4325 if (ret) {
4326 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4327 kobject_del(&q->kobj);
4328 return ret;
4329 }
4330
4331 return 0;
4332 }
4333
4334 void blk_unregister_queue(struct gendisk *disk)
4335 {
4336 struct request_queue *q = disk->queue;
4337
4338 if (q && q->request_fn) {
4339 elv_unregister_queue(q);
4340
4341 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4342 kobject_del(&q->kobj);
4343 kobject_put(&disk->dev.kobj);
4344 }
4345 }
This page took 0.148421 seconds and 6 git commands to generate.