Merge branch 'for-linus' of git://www.atmel.no/~hskinnemoen/linux/kernel/avr32
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 /*
35 * for max sense size
36 */
37 #include <scsi/scsi_cmnd.h>
38
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(request_queue_t *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 static struct kmem_cache *requestq_cachep;
55
56 /*
57 * For io context allocations
58 */
59 static struct kmem_cache *iocontext_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 unsigned long blk_max_low_pfn, blk_max_pfn;
67
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
70
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
75
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
78
79 /*
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
83 */
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 {
86 return q->nr_congestion_on;
87 }
88
89 /*
90 * The threshold at which a queue is considered to be uncongested
91 */
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 {
94 return q->nr_congestion_off;
95 }
96
97 static void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 request_queue_t *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
133 {
134 q->activity_fn = fn;
135 q->activity_data = data;
136 }
137 EXPORT_SYMBOL(blk_queue_activity_fn);
138
139 /**
140 * blk_queue_prep_rq - set a prepare_request function for queue
141 * @q: queue
142 * @pfn: prepare_request function
143 *
144 * It's possible for a queue to register a prepare_request callback which
145 * is invoked before the request is handed to the request_fn. The goal of
146 * the function is to prepare a request for I/O, it can be used to build a
147 * cdb from the request data for instance.
148 *
149 */
150 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
151 {
152 q->prep_rq_fn = pfn;
153 }
154
155 EXPORT_SYMBOL(blk_queue_prep_rq);
156
157 /**
158 * blk_queue_merge_bvec - set a merge_bvec function for queue
159 * @q: queue
160 * @mbfn: merge_bvec_fn
161 *
162 * Usually queues have static limitations on the max sectors or segments that
163 * we can put in a request. Stacking drivers may have some settings that
164 * are dynamic, and thus we have to query the queue whether it is ok to
165 * add a new bio_vec to a bio at a given offset or not. If the block device
166 * has such limitations, it needs to register a merge_bvec_fn to control
167 * the size of bio's sent to it. Note that a block device *must* allow a
168 * single page to be added to an empty bio. The block device driver may want
169 * to use the bio_split() function to deal with these bio's. By default
170 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
171 * honored.
172 */
173 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
174 {
175 q->merge_bvec_fn = mbfn;
176 }
177
178 EXPORT_SYMBOL(blk_queue_merge_bvec);
179
180 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
181 {
182 q->softirq_done_fn = fn;
183 }
184
185 EXPORT_SYMBOL(blk_queue_softirq_done);
186
187 /**
188 * blk_queue_make_request - define an alternate make_request function for a device
189 * @q: the request queue for the device to be affected
190 * @mfn: the alternate make_request function
191 *
192 * Description:
193 * The normal way for &struct bios to be passed to a device
194 * driver is for them to be collected into requests on a request
195 * queue, and then to allow the device driver to select requests
196 * off that queue when it is ready. This works well for many block
197 * devices. However some block devices (typically virtual devices
198 * such as md or lvm) do not benefit from the processing on the
199 * request queue, and are served best by having the requests passed
200 * directly to them. This can be achieved by providing a function
201 * to blk_queue_make_request().
202 *
203 * Caveat:
204 * The driver that does this *must* be able to deal appropriately
205 * with buffers in "highmemory". This can be accomplished by either calling
206 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
207 * blk_queue_bounce() to create a buffer in normal memory.
208 **/
209 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
210 {
211 /*
212 * set defaults
213 */
214 q->nr_requests = BLKDEV_MAX_RQ;
215 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
216 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
217 q->make_request_fn = mfn;
218 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
219 q->backing_dev_info.state = 0;
220 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
221 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
222 blk_queue_hardsect_size(q, 512);
223 blk_queue_dma_alignment(q, 511);
224 blk_queue_congestion_threshold(q);
225 q->nr_batching = BLK_BATCH_REQ;
226
227 q->unplug_thresh = 4; /* hmm */
228 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
229 if (q->unplug_delay == 0)
230 q->unplug_delay = 1;
231
232 INIT_WORK(&q->unplug_work, blk_unplug_work);
233
234 q->unplug_timer.function = blk_unplug_timeout;
235 q->unplug_timer.data = (unsigned long)q;
236
237 /*
238 * by default assume old behaviour and bounce for any highmem page
239 */
240 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
241
242 blk_queue_activity_fn(q, NULL, NULL);
243 }
244
245 EXPORT_SYMBOL(blk_queue_make_request);
246
247 static void rq_init(request_queue_t *q, struct request *rq)
248 {
249 INIT_LIST_HEAD(&rq->queuelist);
250 INIT_LIST_HEAD(&rq->donelist);
251
252 rq->errors = 0;
253 rq->bio = rq->biotail = NULL;
254 INIT_HLIST_NODE(&rq->hash);
255 RB_CLEAR_NODE(&rq->rb_node);
256 rq->ioprio = 0;
257 rq->buffer = NULL;
258 rq->ref_count = 1;
259 rq->q = q;
260 rq->special = NULL;
261 rq->data_len = 0;
262 rq->data = NULL;
263 rq->nr_phys_segments = 0;
264 rq->sense = NULL;
265 rq->end_io = NULL;
266 rq->end_io_data = NULL;
267 rq->completion_data = NULL;
268 }
269
270 /**
271 * blk_queue_ordered - does this queue support ordered writes
272 * @q: the request queue
273 * @ordered: one of QUEUE_ORDERED_*
274 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
275 *
276 * Description:
277 * For journalled file systems, doing ordered writes on a commit
278 * block instead of explicitly doing wait_on_buffer (which is bad
279 * for performance) can be a big win. Block drivers supporting this
280 * feature should call this function and indicate so.
281 *
282 **/
283 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
284 prepare_flush_fn *prepare_flush_fn)
285 {
286 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
287 prepare_flush_fn == NULL) {
288 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
289 return -EINVAL;
290 }
291
292 if (ordered != QUEUE_ORDERED_NONE &&
293 ordered != QUEUE_ORDERED_DRAIN &&
294 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
295 ordered != QUEUE_ORDERED_DRAIN_FUA &&
296 ordered != QUEUE_ORDERED_TAG &&
297 ordered != QUEUE_ORDERED_TAG_FLUSH &&
298 ordered != QUEUE_ORDERED_TAG_FUA) {
299 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
300 return -EINVAL;
301 }
302
303 q->ordered = ordered;
304 q->next_ordered = ordered;
305 q->prepare_flush_fn = prepare_flush_fn;
306
307 return 0;
308 }
309
310 EXPORT_SYMBOL(blk_queue_ordered);
311
312 /**
313 * blk_queue_issue_flush_fn - set function for issuing a flush
314 * @q: the request queue
315 * @iff: the function to be called issuing the flush
316 *
317 * Description:
318 * If a driver supports issuing a flush command, the support is notified
319 * to the block layer by defining it through this call.
320 *
321 **/
322 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
323 {
324 q->issue_flush_fn = iff;
325 }
326
327 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
328
329 /*
330 * Cache flushing for ordered writes handling
331 */
332 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
333 {
334 if (!q->ordseq)
335 return 0;
336 return 1 << ffz(q->ordseq);
337 }
338
339 unsigned blk_ordered_req_seq(struct request *rq)
340 {
341 request_queue_t *q = rq->q;
342
343 BUG_ON(q->ordseq == 0);
344
345 if (rq == &q->pre_flush_rq)
346 return QUEUE_ORDSEQ_PREFLUSH;
347 if (rq == &q->bar_rq)
348 return QUEUE_ORDSEQ_BAR;
349 if (rq == &q->post_flush_rq)
350 return QUEUE_ORDSEQ_POSTFLUSH;
351
352 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
353 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
354 return QUEUE_ORDSEQ_DRAIN;
355 else
356 return QUEUE_ORDSEQ_DONE;
357 }
358
359 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
360 {
361 struct request *rq;
362 int uptodate;
363
364 if (error && !q->orderr)
365 q->orderr = error;
366
367 BUG_ON(q->ordseq & seq);
368 q->ordseq |= seq;
369
370 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
371 return;
372
373 /*
374 * Okay, sequence complete.
375 */
376 rq = q->orig_bar_rq;
377 uptodate = q->orderr ? q->orderr : 1;
378
379 q->ordseq = 0;
380
381 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
382 end_that_request_last(rq, uptodate);
383 }
384
385 static void pre_flush_end_io(struct request *rq, int error)
386 {
387 elv_completed_request(rq->q, rq);
388 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
389 }
390
391 static void bar_end_io(struct request *rq, int error)
392 {
393 elv_completed_request(rq->q, rq);
394 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
395 }
396
397 static void post_flush_end_io(struct request *rq, int error)
398 {
399 elv_completed_request(rq->q, rq);
400 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
401 }
402
403 static void queue_flush(request_queue_t *q, unsigned which)
404 {
405 struct request *rq;
406 rq_end_io_fn *end_io;
407
408 if (which == QUEUE_ORDERED_PREFLUSH) {
409 rq = &q->pre_flush_rq;
410 end_io = pre_flush_end_io;
411 } else {
412 rq = &q->post_flush_rq;
413 end_io = post_flush_end_io;
414 }
415
416 rq->cmd_flags = REQ_HARDBARRIER;
417 rq_init(q, rq);
418 rq->elevator_private = NULL;
419 rq->elevator_private2 = NULL;
420 rq->rq_disk = q->bar_rq.rq_disk;
421 rq->end_io = end_io;
422 q->prepare_flush_fn(q, rq);
423
424 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
425 }
426
427 static inline struct request *start_ordered(request_queue_t *q,
428 struct request *rq)
429 {
430 q->bi_size = 0;
431 q->orderr = 0;
432 q->ordered = q->next_ordered;
433 q->ordseq |= QUEUE_ORDSEQ_STARTED;
434
435 /*
436 * Prep proxy barrier request.
437 */
438 blkdev_dequeue_request(rq);
439 q->orig_bar_rq = rq;
440 rq = &q->bar_rq;
441 rq->cmd_flags = 0;
442 rq_init(q, rq);
443 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
444 rq->cmd_flags |= REQ_RW;
445 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
446 rq->elevator_private = NULL;
447 rq->elevator_private2 = NULL;
448 init_request_from_bio(rq, q->orig_bar_rq->bio);
449 rq->end_io = bar_end_io;
450
451 /*
452 * Queue ordered sequence. As we stack them at the head, we
453 * need to queue in reverse order. Note that we rely on that
454 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
455 * request gets inbetween ordered sequence.
456 */
457 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
458 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
459 else
460 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
461
462 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
463
464 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
465 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
466 rq = &q->pre_flush_rq;
467 } else
468 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
469
470 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
471 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
472 else
473 rq = NULL;
474
475 return rq;
476 }
477
478 int blk_do_ordered(request_queue_t *q, struct request **rqp)
479 {
480 struct request *rq = *rqp;
481 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
482
483 if (!q->ordseq) {
484 if (!is_barrier)
485 return 1;
486
487 if (q->next_ordered != QUEUE_ORDERED_NONE) {
488 *rqp = start_ordered(q, rq);
489 return 1;
490 } else {
491 /*
492 * This can happen when the queue switches to
493 * ORDERED_NONE while this request is on it.
494 */
495 blkdev_dequeue_request(rq);
496 end_that_request_first(rq, -EOPNOTSUPP,
497 rq->hard_nr_sectors);
498 end_that_request_last(rq, -EOPNOTSUPP);
499 *rqp = NULL;
500 return 0;
501 }
502 }
503
504 /*
505 * Ordered sequence in progress
506 */
507
508 /* Special requests are not subject to ordering rules. */
509 if (!blk_fs_request(rq) &&
510 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
511 return 1;
512
513 if (q->ordered & QUEUE_ORDERED_TAG) {
514 /* Ordered by tag. Blocking the next barrier is enough. */
515 if (is_barrier && rq != &q->bar_rq)
516 *rqp = NULL;
517 } else {
518 /* Ordered by draining. Wait for turn. */
519 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
520 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
521 *rqp = NULL;
522 }
523
524 return 1;
525 }
526
527 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
528 {
529 request_queue_t *q = bio->bi_private;
530 struct bio_vec *bvec;
531 int i;
532
533 /*
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
537 */
538 q->bi_size += bytes;
539
540 if (bio->bi_size)
541 return 1;
542
543 /* Rewind bvec's */
544 bio->bi_idx = 0;
545 bio_for_each_segment(bvec, bio, i) {
546 bvec->bv_len += bvec->bv_offset;
547 bvec->bv_offset = 0;
548 }
549
550 /* Reset bio */
551 set_bit(BIO_UPTODATE, &bio->bi_flags);
552 bio->bi_size = q->bi_size;
553 bio->bi_sector -= (q->bi_size >> 9);
554 q->bi_size = 0;
555
556 return 0;
557 }
558
559 static int ordered_bio_endio(struct request *rq, struct bio *bio,
560 unsigned int nbytes, int error)
561 {
562 request_queue_t *q = rq->q;
563 bio_end_io_t *endio;
564 void *private;
565
566 if (&q->bar_rq != rq)
567 return 0;
568
569 /*
570 * Okay, this is the barrier request in progress, dry finish it.
571 */
572 if (error && !q->orderr)
573 q->orderr = error;
574
575 endio = bio->bi_end_io;
576 private = bio->bi_private;
577 bio->bi_end_io = flush_dry_bio_endio;
578 bio->bi_private = q;
579
580 bio_endio(bio, nbytes, error);
581
582 bio->bi_end_io = endio;
583 bio->bi_private = private;
584
585 return 1;
586 }
587
588 /**
589 * blk_queue_bounce_limit - set bounce buffer limit for queue
590 * @q: the request queue for the device
591 * @dma_addr: bus address limit
592 *
593 * Description:
594 * Different hardware can have different requirements as to what pages
595 * it can do I/O directly to. A low level driver can call
596 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
597 * buffers for doing I/O to pages residing above @page.
598 **/
599 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
600 {
601 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
602 int dma = 0;
603
604 q->bounce_gfp = GFP_NOIO;
605 #if BITS_PER_LONG == 64
606 /* Assume anything <= 4GB can be handled by IOMMU.
607 Actually some IOMMUs can handle everything, but I don't
608 know of a way to test this here. */
609 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
610 dma = 1;
611 q->bounce_pfn = max_low_pfn;
612 #else
613 if (bounce_pfn < blk_max_low_pfn)
614 dma = 1;
615 q->bounce_pfn = bounce_pfn;
616 #endif
617 if (dma) {
618 init_emergency_isa_pool();
619 q->bounce_gfp = GFP_NOIO | GFP_DMA;
620 q->bounce_pfn = bounce_pfn;
621 }
622 }
623
624 EXPORT_SYMBOL(blk_queue_bounce_limit);
625
626 /**
627 * blk_queue_max_sectors - set max sectors for a request for this queue
628 * @q: the request queue for the device
629 * @max_sectors: max sectors in the usual 512b unit
630 *
631 * Description:
632 * Enables a low level driver to set an upper limit on the size of
633 * received requests.
634 **/
635 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
636 {
637 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
638 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
639 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
640 }
641
642 if (BLK_DEF_MAX_SECTORS > max_sectors)
643 q->max_hw_sectors = q->max_sectors = max_sectors;
644 else {
645 q->max_sectors = BLK_DEF_MAX_SECTORS;
646 q->max_hw_sectors = max_sectors;
647 }
648 }
649
650 EXPORT_SYMBOL(blk_queue_max_sectors);
651
652 /**
653 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
654 * @q: the request queue for the device
655 * @max_segments: max number of segments
656 *
657 * Description:
658 * Enables a low level driver to set an upper limit on the number of
659 * physical data segments in a request. This would be the largest sized
660 * scatter list the driver could handle.
661 **/
662 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
663 {
664 if (!max_segments) {
665 max_segments = 1;
666 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
667 }
668
669 q->max_phys_segments = max_segments;
670 }
671
672 EXPORT_SYMBOL(blk_queue_max_phys_segments);
673
674 /**
675 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
676 * @q: the request queue for the device
677 * @max_segments: max number of segments
678 *
679 * Description:
680 * Enables a low level driver to set an upper limit on the number of
681 * hw data segments in a request. This would be the largest number of
682 * address/length pairs the host adapter can actually give as once
683 * to the device.
684 **/
685 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
686 {
687 if (!max_segments) {
688 max_segments = 1;
689 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
690 }
691
692 q->max_hw_segments = max_segments;
693 }
694
695 EXPORT_SYMBOL(blk_queue_max_hw_segments);
696
697 /**
698 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
699 * @q: the request queue for the device
700 * @max_size: max size of segment in bytes
701 *
702 * Description:
703 * Enables a low level driver to set an upper limit on the size of a
704 * coalesced segment
705 **/
706 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
707 {
708 if (max_size < PAGE_CACHE_SIZE) {
709 max_size = PAGE_CACHE_SIZE;
710 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
711 }
712
713 q->max_segment_size = max_size;
714 }
715
716 EXPORT_SYMBOL(blk_queue_max_segment_size);
717
718 /**
719 * blk_queue_hardsect_size - set hardware sector size for the queue
720 * @q: the request queue for the device
721 * @size: the hardware sector size, in bytes
722 *
723 * Description:
724 * This should typically be set to the lowest possible sector size
725 * that the hardware can operate on (possible without reverting to
726 * even internal read-modify-write operations). Usually the default
727 * of 512 covers most hardware.
728 **/
729 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
730 {
731 q->hardsect_size = size;
732 }
733
734 EXPORT_SYMBOL(blk_queue_hardsect_size);
735
736 /*
737 * Returns the minimum that is _not_ zero, unless both are zero.
738 */
739 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
740
741 /**
742 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
743 * @t: the stacking driver (top)
744 * @b: the underlying device (bottom)
745 **/
746 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
747 {
748 /* zero is "infinity" */
749 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
750 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
751
752 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
753 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
754 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
755 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
756 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
757 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
758 }
759
760 EXPORT_SYMBOL(blk_queue_stack_limits);
761
762 /**
763 * blk_queue_segment_boundary - set boundary rules for segment merging
764 * @q: the request queue for the device
765 * @mask: the memory boundary mask
766 **/
767 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
768 {
769 if (mask < PAGE_CACHE_SIZE - 1) {
770 mask = PAGE_CACHE_SIZE - 1;
771 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
772 }
773
774 q->seg_boundary_mask = mask;
775 }
776
777 EXPORT_SYMBOL(blk_queue_segment_boundary);
778
779 /**
780 * blk_queue_dma_alignment - set dma length and memory alignment
781 * @q: the request queue for the device
782 * @mask: alignment mask
783 *
784 * description:
785 * set required memory and length aligment for direct dma transactions.
786 * this is used when buiding direct io requests for the queue.
787 *
788 **/
789 void blk_queue_dma_alignment(request_queue_t *q, int mask)
790 {
791 q->dma_alignment = mask;
792 }
793
794 EXPORT_SYMBOL(blk_queue_dma_alignment);
795
796 /**
797 * blk_queue_find_tag - find a request by its tag and queue
798 * @q: The request queue for the device
799 * @tag: The tag of the request
800 *
801 * Notes:
802 * Should be used when a device returns a tag and you want to match
803 * it with a request.
804 *
805 * no locks need be held.
806 **/
807 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
808 {
809 return blk_map_queue_find_tag(q->queue_tags, tag);
810 }
811
812 EXPORT_SYMBOL(blk_queue_find_tag);
813
814 /**
815 * __blk_free_tags - release a given set of tag maintenance info
816 * @bqt: the tag map to free
817 *
818 * Tries to free the specified @bqt@. Returns true if it was
819 * actually freed and false if there are still references using it
820 */
821 static int __blk_free_tags(struct blk_queue_tag *bqt)
822 {
823 int retval;
824
825 retval = atomic_dec_and_test(&bqt->refcnt);
826 if (retval) {
827 BUG_ON(bqt->busy);
828 BUG_ON(!list_empty(&bqt->busy_list));
829
830 kfree(bqt->tag_index);
831 bqt->tag_index = NULL;
832
833 kfree(bqt->tag_map);
834 bqt->tag_map = NULL;
835
836 kfree(bqt);
837
838 }
839
840 return retval;
841 }
842
843 /**
844 * __blk_queue_free_tags - release tag maintenance info
845 * @q: the request queue for the device
846 *
847 * Notes:
848 * blk_cleanup_queue() will take care of calling this function, if tagging
849 * has been used. So there's no need to call this directly.
850 **/
851 static void __blk_queue_free_tags(request_queue_t *q)
852 {
853 struct blk_queue_tag *bqt = q->queue_tags;
854
855 if (!bqt)
856 return;
857
858 __blk_free_tags(bqt);
859
860 q->queue_tags = NULL;
861 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
862 }
863
864
865 /**
866 * blk_free_tags - release a given set of tag maintenance info
867 * @bqt: the tag map to free
868 *
869 * For externally managed @bqt@ frees the map. Callers of this
870 * function must guarantee to have released all the queues that
871 * might have been using this tag map.
872 */
873 void blk_free_tags(struct blk_queue_tag *bqt)
874 {
875 if (unlikely(!__blk_free_tags(bqt)))
876 BUG();
877 }
878 EXPORT_SYMBOL(blk_free_tags);
879
880 /**
881 * blk_queue_free_tags - release tag maintenance info
882 * @q: the request queue for the device
883 *
884 * Notes:
885 * This is used to disabled tagged queuing to a device, yet leave
886 * queue in function.
887 **/
888 void blk_queue_free_tags(request_queue_t *q)
889 {
890 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
891 }
892
893 EXPORT_SYMBOL(blk_queue_free_tags);
894
895 static int
896 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
897 {
898 struct request **tag_index;
899 unsigned long *tag_map;
900 int nr_ulongs;
901
902 if (q && depth > q->nr_requests * 2) {
903 depth = q->nr_requests * 2;
904 printk(KERN_ERR "%s: adjusted depth to %d\n",
905 __FUNCTION__, depth);
906 }
907
908 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
909 if (!tag_index)
910 goto fail;
911
912 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
913 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
914 if (!tag_map)
915 goto fail;
916
917 tags->real_max_depth = depth;
918 tags->max_depth = depth;
919 tags->tag_index = tag_index;
920 tags->tag_map = tag_map;
921
922 return 0;
923 fail:
924 kfree(tag_index);
925 return -ENOMEM;
926 }
927
928 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
929 int depth)
930 {
931 struct blk_queue_tag *tags;
932
933 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
934 if (!tags)
935 goto fail;
936
937 if (init_tag_map(q, tags, depth))
938 goto fail;
939
940 INIT_LIST_HEAD(&tags->busy_list);
941 tags->busy = 0;
942 atomic_set(&tags->refcnt, 1);
943 return tags;
944 fail:
945 kfree(tags);
946 return NULL;
947 }
948
949 /**
950 * blk_init_tags - initialize the tag info for an external tag map
951 * @depth: the maximum queue depth supported
952 * @tags: the tag to use
953 **/
954 struct blk_queue_tag *blk_init_tags(int depth)
955 {
956 return __blk_queue_init_tags(NULL, depth);
957 }
958 EXPORT_SYMBOL(blk_init_tags);
959
960 /**
961 * blk_queue_init_tags - initialize the queue tag info
962 * @q: the request queue for the device
963 * @depth: the maximum queue depth supported
964 * @tags: the tag to use
965 **/
966 int blk_queue_init_tags(request_queue_t *q, int depth,
967 struct blk_queue_tag *tags)
968 {
969 int rc;
970
971 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
972
973 if (!tags && !q->queue_tags) {
974 tags = __blk_queue_init_tags(q, depth);
975
976 if (!tags)
977 goto fail;
978 } else if (q->queue_tags) {
979 if ((rc = blk_queue_resize_tags(q, depth)))
980 return rc;
981 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
982 return 0;
983 } else
984 atomic_inc(&tags->refcnt);
985
986 /*
987 * assign it, all done
988 */
989 q->queue_tags = tags;
990 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
991 return 0;
992 fail:
993 kfree(tags);
994 return -ENOMEM;
995 }
996
997 EXPORT_SYMBOL(blk_queue_init_tags);
998
999 /**
1000 * blk_queue_resize_tags - change the queueing depth
1001 * @q: the request queue for the device
1002 * @new_depth: the new max command queueing depth
1003 *
1004 * Notes:
1005 * Must be called with the queue lock held.
1006 **/
1007 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1008 {
1009 struct blk_queue_tag *bqt = q->queue_tags;
1010 struct request **tag_index;
1011 unsigned long *tag_map;
1012 int max_depth, nr_ulongs;
1013
1014 if (!bqt)
1015 return -ENXIO;
1016
1017 /*
1018 * if we already have large enough real_max_depth. just
1019 * adjust max_depth. *NOTE* as requests with tag value
1020 * between new_depth and real_max_depth can be in-flight, tag
1021 * map can not be shrunk blindly here.
1022 */
1023 if (new_depth <= bqt->real_max_depth) {
1024 bqt->max_depth = new_depth;
1025 return 0;
1026 }
1027
1028 /*
1029 * Currently cannot replace a shared tag map with a new
1030 * one, so error out if this is the case
1031 */
1032 if (atomic_read(&bqt->refcnt) != 1)
1033 return -EBUSY;
1034
1035 /*
1036 * save the old state info, so we can copy it back
1037 */
1038 tag_index = bqt->tag_index;
1039 tag_map = bqt->tag_map;
1040 max_depth = bqt->real_max_depth;
1041
1042 if (init_tag_map(q, bqt, new_depth))
1043 return -ENOMEM;
1044
1045 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1046 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1047 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1048
1049 kfree(tag_index);
1050 kfree(tag_map);
1051 return 0;
1052 }
1053
1054 EXPORT_SYMBOL(blk_queue_resize_tags);
1055
1056 /**
1057 * blk_queue_end_tag - end tag operations for a request
1058 * @q: the request queue for the device
1059 * @rq: the request that has completed
1060 *
1061 * Description:
1062 * Typically called when end_that_request_first() returns 0, meaning
1063 * all transfers have been done for a request. It's important to call
1064 * this function before end_that_request_last(), as that will put the
1065 * request back on the free list thus corrupting the internal tag list.
1066 *
1067 * Notes:
1068 * queue lock must be held.
1069 **/
1070 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1071 {
1072 struct blk_queue_tag *bqt = q->queue_tags;
1073 int tag = rq->tag;
1074
1075 BUG_ON(tag == -1);
1076
1077 if (unlikely(tag >= bqt->real_max_depth))
1078 /*
1079 * This can happen after tag depth has been reduced.
1080 * FIXME: how about a warning or info message here?
1081 */
1082 return;
1083
1084 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1085 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1086 __FUNCTION__, tag);
1087 return;
1088 }
1089
1090 list_del_init(&rq->queuelist);
1091 rq->cmd_flags &= ~REQ_QUEUED;
1092 rq->tag = -1;
1093
1094 if (unlikely(bqt->tag_index[tag] == NULL))
1095 printk(KERN_ERR "%s: tag %d is missing\n",
1096 __FUNCTION__, tag);
1097
1098 bqt->tag_index[tag] = NULL;
1099 bqt->busy--;
1100 }
1101
1102 EXPORT_SYMBOL(blk_queue_end_tag);
1103
1104 /**
1105 * blk_queue_start_tag - find a free tag and assign it
1106 * @q: the request queue for the device
1107 * @rq: the block request that needs tagging
1108 *
1109 * Description:
1110 * This can either be used as a stand-alone helper, or possibly be
1111 * assigned as the queue &prep_rq_fn (in which case &struct request
1112 * automagically gets a tag assigned). Note that this function
1113 * assumes that any type of request can be queued! if this is not
1114 * true for your device, you must check the request type before
1115 * calling this function. The request will also be removed from
1116 * the request queue, so it's the drivers responsibility to readd
1117 * it if it should need to be restarted for some reason.
1118 *
1119 * Notes:
1120 * queue lock must be held.
1121 **/
1122 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1123 {
1124 struct blk_queue_tag *bqt = q->queue_tags;
1125 int tag;
1126
1127 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1128 printk(KERN_ERR
1129 "%s: request %p for device [%s] already tagged %d",
1130 __FUNCTION__, rq,
1131 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1132 BUG();
1133 }
1134
1135 /*
1136 * Protect against shared tag maps, as we may not have exclusive
1137 * access to the tag map.
1138 */
1139 do {
1140 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1141 if (tag >= bqt->max_depth)
1142 return 1;
1143
1144 } while (test_and_set_bit(tag, bqt->tag_map));
1145
1146 rq->cmd_flags |= REQ_QUEUED;
1147 rq->tag = tag;
1148 bqt->tag_index[tag] = rq;
1149 blkdev_dequeue_request(rq);
1150 list_add(&rq->queuelist, &bqt->busy_list);
1151 bqt->busy++;
1152 return 0;
1153 }
1154
1155 EXPORT_SYMBOL(blk_queue_start_tag);
1156
1157 /**
1158 * blk_queue_invalidate_tags - invalidate all pending tags
1159 * @q: the request queue for the device
1160 *
1161 * Description:
1162 * Hardware conditions may dictate a need to stop all pending requests.
1163 * In this case, we will safely clear the block side of the tag queue and
1164 * readd all requests to the request queue in the right order.
1165 *
1166 * Notes:
1167 * queue lock must be held.
1168 **/
1169 void blk_queue_invalidate_tags(request_queue_t *q)
1170 {
1171 struct blk_queue_tag *bqt = q->queue_tags;
1172 struct list_head *tmp, *n;
1173 struct request *rq;
1174
1175 list_for_each_safe(tmp, n, &bqt->busy_list) {
1176 rq = list_entry_rq(tmp);
1177
1178 if (rq->tag == -1) {
1179 printk(KERN_ERR
1180 "%s: bad tag found on list\n", __FUNCTION__);
1181 list_del_init(&rq->queuelist);
1182 rq->cmd_flags &= ~REQ_QUEUED;
1183 } else
1184 blk_queue_end_tag(q, rq);
1185
1186 rq->cmd_flags &= ~REQ_STARTED;
1187 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1188 }
1189 }
1190
1191 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1192
1193 void blk_dump_rq_flags(struct request *rq, char *msg)
1194 {
1195 int bit;
1196
1197 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1198 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1199 rq->cmd_flags);
1200
1201 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1202 rq->nr_sectors,
1203 rq->current_nr_sectors);
1204 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1205
1206 if (blk_pc_request(rq)) {
1207 printk("cdb: ");
1208 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1209 printk("%02x ", rq->cmd[bit]);
1210 printk("\n");
1211 }
1212 }
1213
1214 EXPORT_SYMBOL(blk_dump_rq_flags);
1215
1216 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1217 {
1218 struct bio_vec *bv, *bvprv = NULL;
1219 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1220 int high, highprv = 1;
1221
1222 if (unlikely(!bio->bi_io_vec))
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1226 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1227 bio_for_each_segment(bv, bio, i) {
1228 /*
1229 * the trick here is making sure that a high page is never
1230 * considered part of another segment, since that might
1231 * change with the bounce page.
1232 */
1233 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1234 if (high || highprv)
1235 goto new_hw_segment;
1236 if (cluster) {
1237 if (seg_size + bv->bv_len > q->max_segment_size)
1238 goto new_segment;
1239 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1240 goto new_segment;
1241 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1242 goto new_segment;
1243 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1244 goto new_hw_segment;
1245
1246 seg_size += bv->bv_len;
1247 hw_seg_size += bv->bv_len;
1248 bvprv = bv;
1249 continue;
1250 }
1251 new_segment:
1252 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1253 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1254 hw_seg_size += bv->bv_len;
1255 } else {
1256 new_hw_segment:
1257 if (hw_seg_size > bio->bi_hw_front_size)
1258 bio->bi_hw_front_size = hw_seg_size;
1259 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1260 nr_hw_segs++;
1261 }
1262
1263 nr_phys_segs++;
1264 bvprv = bv;
1265 seg_size = bv->bv_len;
1266 highprv = high;
1267 }
1268 if (hw_seg_size > bio->bi_hw_back_size)
1269 bio->bi_hw_back_size = hw_seg_size;
1270 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1271 bio->bi_hw_front_size = hw_seg_size;
1272 bio->bi_phys_segments = nr_phys_segs;
1273 bio->bi_hw_segments = nr_hw_segs;
1274 bio->bi_flags |= (1 << BIO_SEG_VALID);
1275 }
1276
1277
1278 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1279 struct bio *nxt)
1280 {
1281 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1282 return 0;
1283
1284 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1285 return 0;
1286 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1287 return 0;
1288
1289 /*
1290 * bio and nxt are contigous in memory, check if the queue allows
1291 * these two to be merged into one
1292 */
1293 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1294 return 1;
1295
1296 return 0;
1297 }
1298
1299 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1300 struct bio *nxt)
1301 {
1302 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1303 blk_recount_segments(q, bio);
1304 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1305 blk_recount_segments(q, nxt);
1306 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1307 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1308 return 0;
1309 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1310 return 0;
1311
1312 return 1;
1313 }
1314
1315 /*
1316 * map a request to scatterlist, return number of sg entries setup. Caller
1317 * must make sure sg can hold rq->nr_phys_segments entries
1318 */
1319 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1320 {
1321 struct bio_vec *bvec, *bvprv;
1322 struct bio *bio;
1323 int nsegs, i, cluster;
1324
1325 nsegs = 0;
1326 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1327
1328 /*
1329 * for each bio in rq
1330 */
1331 bvprv = NULL;
1332 rq_for_each_bio(bio, rq) {
1333 /*
1334 * for each segment in bio
1335 */
1336 bio_for_each_segment(bvec, bio, i) {
1337 int nbytes = bvec->bv_len;
1338
1339 if (bvprv && cluster) {
1340 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1341 goto new_segment;
1342
1343 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1344 goto new_segment;
1345 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1346 goto new_segment;
1347
1348 sg[nsegs - 1].length += nbytes;
1349 } else {
1350 new_segment:
1351 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1352 sg[nsegs].page = bvec->bv_page;
1353 sg[nsegs].length = nbytes;
1354 sg[nsegs].offset = bvec->bv_offset;
1355
1356 nsegs++;
1357 }
1358 bvprv = bvec;
1359 } /* segments in bio */
1360 } /* bios in rq */
1361
1362 return nsegs;
1363 }
1364
1365 EXPORT_SYMBOL(blk_rq_map_sg);
1366
1367 /*
1368 * the standard queue merge functions, can be overridden with device
1369 * specific ones if so desired
1370 */
1371
1372 static inline int ll_new_mergeable(request_queue_t *q,
1373 struct request *req,
1374 struct bio *bio)
1375 {
1376 int nr_phys_segs = bio_phys_segments(q, bio);
1377
1378 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1379 req->cmd_flags |= REQ_NOMERGE;
1380 if (req == q->last_merge)
1381 q->last_merge = NULL;
1382 return 0;
1383 }
1384
1385 /*
1386 * A hw segment is just getting larger, bump just the phys
1387 * counter.
1388 */
1389 req->nr_phys_segments += nr_phys_segs;
1390 return 1;
1391 }
1392
1393 static inline int ll_new_hw_segment(request_queue_t *q,
1394 struct request *req,
1395 struct bio *bio)
1396 {
1397 int nr_hw_segs = bio_hw_segments(q, bio);
1398 int nr_phys_segs = bio_phys_segments(q, bio);
1399
1400 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1401 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1402 req->cmd_flags |= REQ_NOMERGE;
1403 if (req == q->last_merge)
1404 q->last_merge = NULL;
1405 return 0;
1406 }
1407
1408 /*
1409 * This will form the start of a new hw segment. Bump both
1410 * counters.
1411 */
1412 req->nr_hw_segments += nr_hw_segs;
1413 req->nr_phys_segments += nr_phys_segs;
1414 return 1;
1415 }
1416
1417 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1418 struct bio *bio)
1419 {
1420 unsigned short max_sectors;
1421 int len;
1422
1423 if (unlikely(blk_pc_request(req)))
1424 max_sectors = q->max_hw_sectors;
1425 else
1426 max_sectors = q->max_sectors;
1427
1428 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1429 req->cmd_flags |= REQ_NOMERGE;
1430 if (req == q->last_merge)
1431 q->last_merge = NULL;
1432 return 0;
1433 }
1434 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1435 blk_recount_segments(q, req->biotail);
1436 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1437 blk_recount_segments(q, bio);
1438 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1439 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1440 !BIOVEC_VIRT_OVERSIZE(len)) {
1441 int mergeable = ll_new_mergeable(q, req, bio);
1442
1443 if (mergeable) {
1444 if (req->nr_hw_segments == 1)
1445 req->bio->bi_hw_front_size = len;
1446 if (bio->bi_hw_segments == 1)
1447 bio->bi_hw_back_size = len;
1448 }
1449 return mergeable;
1450 }
1451
1452 return ll_new_hw_segment(q, req, bio);
1453 }
1454
1455 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1456 struct bio *bio)
1457 {
1458 unsigned short max_sectors;
1459 int len;
1460
1461 if (unlikely(blk_pc_request(req)))
1462 max_sectors = q->max_hw_sectors;
1463 else
1464 max_sectors = q->max_sectors;
1465
1466
1467 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1468 req->cmd_flags |= REQ_NOMERGE;
1469 if (req == q->last_merge)
1470 q->last_merge = NULL;
1471 return 0;
1472 }
1473 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1474 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1475 blk_recount_segments(q, bio);
1476 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1477 blk_recount_segments(q, req->bio);
1478 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1479 !BIOVEC_VIRT_OVERSIZE(len)) {
1480 int mergeable = ll_new_mergeable(q, req, bio);
1481
1482 if (mergeable) {
1483 if (bio->bi_hw_segments == 1)
1484 bio->bi_hw_front_size = len;
1485 if (req->nr_hw_segments == 1)
1486 req->biotail->bi_hw_back_size = len;
1487 }
1488 return mergeable;
1489 }
1490
1491 return ll_new_hw_segment(q, req, bio);
1492 }
1493
1494 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1495 struct request *next)
1496 {
1497 int total_phys_segments;
1498 int total_hw_segments;
1499
1500 /*
1501 * First check if the either of the requests are re-queued
1502 * requests. Can't merge them if they are.
1503 */
1504 if (req->special || next->special)
1505 return 0;
1506
1507 /*
1508 * Will it become too large?
1509 */
1510 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1511 return 0;
1512
1513 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1514 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1515 total_phys_segments--;
1516
1517 if (total_phys_segments > q->max_phys_segments)
1518 return 0;
1519
1520 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1521 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1522 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1523 /*
1524 * propagate the combined length to the end of the requests
1525 */
1526 if (req->nr_hw_segments == 1)
1527 req->bio->bi_hw_front_size = len;
1528 if (next->nr_hw_segments == 1)
1529 next->biotail->bi_hw_back_size = len;
1530 total_hw_segments--;
1531 }
1532
1533 if (total_hw_segments > q->max_hw_segments)
1534 return 0;
1535
1536 /* Merge is OK... */
1537 req->nr_phys_segments = total_phys_segments;
1538 req->nr_hw_segments = total_hw_segments;
1539 return 1;
1540 }
1541
1542 /*
1543 * "plug" the device if there are no outstanding requests: this will
1544 * force the transfer to start only after we have put all the requests
1545 * on the list.
1546 *
1547 * This is called with interrupts off and no requests on the queue and
1548 * with the queue lock held.
1549 */
1550 void blk_plug_device(request_queue_t *q)
1551 {
1552 WARN_ON(!irqs_disabled());
1553
1554 /*
1555 * don't plug a stopped queue, it must be paired with blk_start_queue()
1556 * which will restart the queueing
1557 */
1558 if (blk_queue_stopped(q))
1559 return;
1560
1561 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1562 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1563 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1564 }
1565 }
1566
1567 EXPORT_SYMBOL(blk_plug_device);
1568
1569 /*
1570 * remove the queue from the plugged list, if present. called with
1571 * queue lock held and interrupts disabled.
1572 */
1573 int blk_remove_plug(request_queue_t *q)
1574 {
1575 WARN_ON(!irqs_disabled());
1576
1577 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1578 return 0;
1579
1580 del_timer(&q->unplug_timer);
1581 return 1;
1582 }
1583
1584 EXPORT_SYMBOL(blk_remove_plug);
1585
1586 /*
1587 * remove the plug and let it rip..
1588 */
1589 void __generic_unplug_device(request_queue_t *q)
1590 {
1591 if (unlikely(blk_queue_stopped(q)))
1592 return;
1593
1594 if (!blk_remove_plug(q))
1595 return;
1596
1597 q->request_fn(q);
1598 }
1599 EXPORT_SYMBOL(__generic_unplug_device);
1600
1601 /**
1602 * generic_unplug_device - fire a request queue
1603 * @q: The &request_queue_t in question
1604 *
1605 * Description:
1606 * Linux uses plugging to build bigger requests queues before letting
1607 * the device have at them. If a queue is plugged, the I/O scheduler
1608 * is still adding and merging requests on the queue. Once the queue
1609 * gets unplugged, the request_fn defined for the queue is invoked and
1610 * transfers started.
1611 **/
1612 void generic_unplug_device(request_queue_t *q)
1613 {
1614 spin_lock_irq(q->queue_lock);
1615 __generic_unplug_device(q);
1616 spin_unlock_irq(q->queue_lock);
1617 }
1618 EXPORT_SYMBOL(generic_unplug_device);
1619
1620 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1621 struct page *page)
1622 {
1623 request_queue_t *q = bdi->unplug_io_data;
1624
1625 /*
1626 * devices don't necessarily have an ->unplug_fn defined
1627 */
1628 if (q->unplug_fn) {
1629 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1630 q->rq.count[READ] + q->rq.count[WRITE]);
1631
1632 q->unplug_fn(q);
1633 }
1634 }
1635
1636 static void blk_unplug_work(struct work_struct *work)
1637 {
1638 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1639
1640 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1641 q->rq.count[READ] + q->rq.count[WRITE]);
1642
1643 q->unplug_fn(q);
1644 }
1645
1646 static void blk_unplug_timeout(unsigned long data)
1647 {
1648 request_queue_t *q = (request_queue_t *)data;
1649
1650 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1651 q->rq.count[READ] + q->rq.count[WRITE]);
1652
1653 kblockd_schedule_work(&q->unplug_work);
1654 }
1655
1656 /**
1657 * blk_start_queue - restart a previously stopped queue
1658 * @q: The &request_queue_t in question
1659 *
1660 * Description:
1661 * blk_start_queue() will clear the stop flag on the queue, and call
1662 * the request_fn for the queue if it was in a stopped state when
1663 * entered. Also see blk_stop_queue(). Queue lock must be held.
1664 **/
1665 void blk_start_queue(request_queue_t *q)
1666 {
1667 WARN_ON(!irqs_disabled());
1668
1669 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1670
1671 /*
1672 * one level of recursion is ok and is much faster than kicking
1673 * the unplug handling
1674 */
1675 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1676 q->request_fn(q);
1677 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1678 } else {
1679 blk_plug_device(q);
1680 kblockd_schedule_work(&q->unplug_work);
1681 }
1682 }
1683
1684 EXPORT_SYMBOL(blk_start_queue);
1685
1686 /**
1687 * blk_stop_queue - stop a queue
1688 * @q: The &request_queue_t in question
1689 *
1690 * Description:
1691 * The Linux block layer assumes that a block driver will consume all
1692 * entries on the request queue when the request_fn strategy is called.
1693 * Often this will not happen, because of hardware limitations (queue
1694 * depth settings). If a device driver gets a 'queue full' response,
1695 * or if it simply chooses not to queue more I/O at one point, it can
1696 * call this function to prevent the request_fn from being called until
1697 * the driver has signalled it's ready to go again. This happens by calling
1698 * blk_start_queue() to restart queue operations. Queue lock must be held.
1699 **/
1700 void blk_stop_queue(request_queue_t *q)
1701 {
1702 blk_remove_plug(q);
1703 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1704 }
1705 EXPORT_SYMBOL(blk_stop_queue);
1706
1707 /**
1708 * blk_sync_queue - cancel any pending callbacks on a queue
1709 * @q: the queue
1710 *
1711 * Description:
1712 * The block layer may perform asynchronous callback activity
1713 * on a queue, such as calling the unplug function after a timeout.
1714 * A block device may call blk_sync_queue to ensure that any
1715 * such activity is cancelled, thus allowing it to release resources
1716 * the the callbacks might use. The caller must already have made sure
1717 * that its ->make_request_fn will not re-add plugging prior to calling
1718 * this function.
1719 *
1720 */
1721 void blk_sync_queue(struct request_queue *q)
1722 {
1723 del_timer_sync(&q->unplug_timer);
1724 kblockd_flush();
1725 }
1726 EXPORT_SYMBOL(blk_sync_queue);
1727
1728 /**
1729 * blk_run_queue - run a single device queue
1730 * @q: The queue to run
1731 */
1732 void blk_run_queue(struct request_queue *q)
1733 {
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(q->queue_lock, flags);
1737 blk_remove_plug(q);
1738
1739 /*
1740 * Only recurse once to avoid overrunning the stack, let the unplug
1741 * handling reinvoke the handler shortly if we already got there.
1742 */
1743 if (!elv_queue_empty(q)) {
1744 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1745 q->request_fn(q);
1746 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1747 } else {
1748 blk_plug_device(q);
1749 kblockd_schedule_work(&q->unplug_work);
1750 }
1751 }
1752
1753 spin_unlock_irqrestore(q->queue_lock, flags);
1754 }
1755 EXPORT_SYMBOL(blk_run_queue);
1756
1757 /**
1758 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1759 * @kobj: the kobj belonging of the request queue to be released
1760 *
1761 * Description:
1762 * blk_cleanup_queue is the pair to blk_init_queue() or
1763 * blk_queue_make_request(). It should be called when a request queue is
1764 * being released; typically when a block device is being de-registered.
1765 * Currently, its primary task it to free all the &struct request
1766 * structures that were allocated to the queue and the queue itself.
1767 *
1768 * Caveat:
1769 * Hopefully the low level driver will have finished any
1770 * outstanding requests first...
1771 **/
1772 static void blk_release_queue(struct kobject *kobj)
1773 {
1774 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1775 struct request_list *rl = &q->rq;
1776
1777 blk_sync_queue(q);
1778
1779 if (rl->rq_pool)
1780 mempool_destroy(rl->rq_pool);
1781
1782 if (q->queue_tags)
1783 __blk_queue_free_tags(q);
1784
1785 blk_trace_shutdown(q);
1786
1787 kmem_cache_free(requestq_cachep, q);
1788 }
1789
1790 void blk_put_queue(request_queue_t *q)
1791 {
1792 kobject_put(&q->kobj);
1793 }
1794 EXPORT_SYMBOL(blk_put_queue);
1795
1796 void blk_cleanup_queue(request_queue_t * q)
1797 {
1798 mutex_lock(&q->sysfs_lock);
1799 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1800 mutex_unlock(&q->sysfs_lock);
1801
1802 if (q->elevator)
1803 elevator_exit(q->elevator);
1804
1805 blk_put_queue(q);
1806 }
1807
1808 EXPORT_SYMBOL(blk_cleanup_queue);
1809
1810 static int blk_init_free_list(request_queue_t *q)
1811 {
1812 struct request_list *rl = &q->rq;
1813
1814 rl->count[READ] = rl->count[WRITE] = 0;
1815 rl->starved[READ] = rl->starved[WRITE] = 0;
1816 rl->elvpriv = 0;
1817 init_waitqueue_head(&rl->wait[READ]);
1818 init_waitqueue_head(&rl->wait[WRITE]);
1819
1820 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1821 mempool_free_slab, request_cachep, q->node);
1822
1823 if (!rl->rq_pool)
1824 return -ENOMEM;
1825
1826 return 0;
1827 }
1828
1829 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1830 {
1831 return blk_alloc_queue_node(gfp_mask, -1);
1832 }
1833 EXPORT_SYMBOL(blk_alloc_queue);
1834
1835 static struct kobj_type queue_ktype;
1836
1837 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1838 {
1839 request_queue_t *q;
1840
1841 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1842 if (!q)
1843 return NULL;
1844
1845 memset(q, 0, sizeof(*q));
1846 init_timer(&q->unplug_timer);
1847
1848 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1849 q->kobj.ktype = &queue_ktype;
1850 kobject_init(&q->kobj);
1851
1852 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1853 q->backing_dev_info.unplug_io_data = q;
1854
1855 mutex_init(&q->sysfs_lock);
1856
1857 return q;
1858 }
1859 EXPORT_SYMBOL(blk_alloc_queue_node);
1860
1861 /**
1862 * blk_init_queue - prepare a request queue for use with a block device
1863 * @rfn: The function to be called to process requests that have been
1864 * placed on the queue.
1865 * @lock: Request queue spin lock
1866 *
1867 * Description:
1868 * If a block device wishes to use the standard request handling procedures,
1869 * which sorts requests and coalesces adjacent requests, then it must
1870 * call blk_init_queue(). The function @rfn will be called when there
1871 * are requests on the queue that need to be processed. If the device
1872 * supports plugging, then @rfn may not be called immediately when requests
1873 * are available on the queue, but may be called at some time later instead.
1874 * Plugged queues are generally unplugged when a buffer belonging to one
1875 * of the requests on the queue is needed, or due to memory pressure.
1876 *
1877 * @rfn is not required, or even expected, to remove all requests off the
1878 * queue, but only as many as it can handle at a time. If it does leave
1879 * requests on the queue, it is responsible for arranging that the requests
1880 * get dealt with eventually.
1881 *
1882 * The queue spin lock must be held while manipulating the requests on the
1883 * request queue; this lock will be taken also from interrupt context, so irq
1884 * disabling is needed for it.
1885 *
1886 * Function returns a pointer to the initialized request queue, or NULL if
1887 * it didn't succeed.
1888 *
1889 * Note:
1890 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1891 * when the block device is deactivated (such as at module unload).
1892 **/
1893
1894 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1895 {
1896 return blk_init_queue_node(rfn, lock, -1);
1897 }
1898 EXPORT_SYMBOL(blk_init_queue);
1899
1900 request_queue_t *
1901 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1902 {
1903 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1904
1905 if (!q)
1906 return NULL;
1907
1908 q->node = node_id;
1909 if (blk_init_free_list(q)) {
1910 kmem_cache_free(requestq_cachep, q);
1911 return NULL;
1912 }
1913
1914 /*
1915 * if caller didn't supply a lock, they get per-queue locking with
1916 * our embedded lock
1917 */
1918 if (!lock) {
1919 spin_lock_init(&q->__queue_lock);
1920 lock = &q->__queue_lock;
1921 }
1922
1923 q->request_fn = rfn;
1924 q->back_merge_fn = ll_back_merge_fn;
1925 q->front_merge_fn = ll_front_merge_fn;
1926 q->merge_requests_fn = ll_merge_requests_fn;
1927 q->prep_rq_fn = NULL;
1928 q->unplug_fn = generic_unplug_device;
1929 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1930 q->queue_lock = lock;
1931
1932 blk_queue_segment_boundary(q, 0xffffffff);
1933
1934 blk_queue_make_request(q, __make_request);
1935 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1936
1937 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1938 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1939
1940 /*
1941 * all done
1942 */
1943 if (!elevator_init(q, NULL)) {
1944 blk_queue_congestion_threshold(q);
1945 return q;
1946 }
1947
1948 blk_put_queue(q);
1949 return NULL;
1950 }
1951 EXPORT_SYMBOL(blk_init_queue_node);
1952
1953 int blk_get_queue(request_queue_t *q)
1954 {
1955 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1956 kobject_get(&q->kobj);
1957 return 0;
1958 }
1959
1960 return 1;
1961 }
1962
1963 EXPORT_SYMBOL(blk_get_queue);
1964
1965 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1966 {
1967 if (rq->cmd_flags & REQ_ELVPRIV)
1968 elv_put_request(q, rq);
1969 mempool_free(rq, q->rq.rq_pool);
1970 }
1971
1972 static struct request *
1973 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1974 {
1975 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1976
1977 if (!rq)
1978 return NULL;
1979
1980 /*
1981 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1982 * see bio.h and blkdev.h
1983 */
1984 rq->cmd_flags = rw | REQ_ALLOCED;
1985
1986 if (priv) {
1987 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1988 mempool_free(rq, q->rq.rq_pool);
1989 return NULL;
1990 }
1991 rq->cmd_flags |= REQ_ELVPRIV;
1992 }
1993
1994 return rq;
1995 }
1996
1997 /*
1998 * ioc_batching returns true if the ioc is a valid batching request and
1999 * should be given priority access to a request.
2000 */
2001 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2002 {
2003 if (!ioc)
2004 return 0;
2005
2006 /*
2007 * Make sure the process is able to allocate at least 1 request
2008 * even if the batch times out, otherwise we could theoretically
2009 * lose wakeups.
2010 */
2011 return ioc->nr_batch_requests == q->nr_batching ||
2012 (ioc->nr_batch_requests > 0
2013 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2014 }
2015
2016 /*
2017 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2018 * will cause the process to be a "batcher" on all queues in the system. This
2019 * is the behaviour we want though - once it gets a wakeup it should be given
2020 * a nice run.
2021 */
2022 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2023 {
2024 if (!ioc || ioc_batching(q, ioc))
2025 return;
2026
2027 ioc->nr_batch_requests = q->nr_batching;
2028 ioc->last_waited = jiffies;
2029 }
2030
2031 static void __freed_request(request_queue_t *q, int rw)
2032 {
2033 struct request_list *rl = &q->rq;
2034
2035 if (rl->count[rw] < queue_congestion_off_threshold(q))
2036 blk_clear_queue_congested(q, rw);
2037
2038 if (rl->count[rw] + 1 <= q->nr_requests) {
2039 if (waitqueue_active(&rl->wait[rw]))
2040 wake_up(&rl->wait[rw]);
2041
2042 blk_clear_queue_full(q, rw);
2043 }
2044 }
2045
2046 /*
2047 * A request has just been released. Account for it, update the full and
2048 * congestion status, wake up any waiters. Called under q->queue_lock.
2049 */
2050 static void freed_request(request_queue_t *q, int rw, int priv)
2051 {
2052 struct request_list *rl = &q->rq;
2053
2054 rl->count[rw]--;
2055 if (priv)
2056 rl->elvpriv--;
2057
2058 __freed_request(q, rw);
2059
2060 if (unlikely(rl->starved[rw ^ 1]))
2061 __freed_request(q, rw ^ 1);
2062 }
2063
2064 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2065 /*
2066 * Get a free request, queue_lock must be held.
2067 * Returns NULL on failure, with queue_lock held.
2068 * Returns !NULL on success, with queue_lock *not held*.
2069 */
2070 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2071 gfp_t gfp_mask)
2072 {
2073 struct request *rq = NULL;
2074 struct request_list *rl = &q->rq;
2075 struct io_context *ioc = NULL;
2076 int may_queue, priv;
2077
2078 may_queue = elv_may_queue(q, rw);
2079 if (may_queue == ELV_MQUEUE_NO)
2080 goto rq_starved;
2081
2082 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2083 if (rl->count[rw]+1 >= q->nr_requests) {
2084 ioc = current_io_context(GFP_ATOMIC, q->node);
2085 /*
2086 * The queue will fill after this allocation, so set
2087 * it as full, and mark this process as "batching".
2088 * This process will be allowed to complete a batch of
2089 * requests, others will be blocked.
2090 */
2091 if (!blk_queue_full(q, rw)) {
2092 ioc_set_batching(q, ioc);
2093 blk_set_queue_full(q, rw);
2094 } else {
2095 if (may_queue != ELV_MQUEUE_MUST
2096 && !ioc_batching(q, ioc)) {
2097 /*
2098 * The queue is full and the allocating
2099 * process is not a "batcher", and not
2100 * exempted by the IO scheduler
2101 */
2102 goto out;
2103 }
2104 }
2105 }
2106 blk_set_queue_congested(q, rw);
2107 }
2108
2109 /*
2110 * Only allow batching queuers to allocate up to 50% over the defined
2111 * limit of requests, otherwise we could have thousands of requests
2112 * allocated with any setting of ->nr_requests
2113 */
2114 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2115 goto out;
2116
2117 rl->count[rw]++;
2118 rl->starved[rw] = 0;
2119
2120 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2121 if (priv)
2122 rl->elvpriv++;
2123
2124 spin_unlock_irq(q->queue_lock);
2125
2126 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2127 if (unlikely(!rq)) {
2128 /*
2129 * Allocation failed presumably due to memory. Undo anything
2130 * we might have messed up.
2131 *
2132 * Allocating task should really be put onto the front of the
2133 * wait queue, but this is pretty rare.
2134 */
2135 spin_lock_irq(q->queue_lock);
2136 freed_request(q, rw, priv);
2137
2138 /*
2139 * in the very unlikely event that allocation failed and no
2140 * requests for this direction was pending, mark us starved
2141 * so that freeing of a request in the other direction will
2142 * notice us. another possible fix would be to split the
2143 * rq mempool into READ and WRITE
2144 */
2145 rq_starved:
2146 if (unlikely(rl->count[rw] == 0))
2147 rl->starved[rw] = 1;
2148
2149 goto out;
2150 }
2151
2152 /*
2153 * ioc may be NULL here, and ioc_batching will be false. That's
2154 * OK, if the queue is under the request limit then requests need
2155 * not count toward the nr_batch_requests limit. There will always
2156 * be some limit enforced by BLK_BATCH_TIME.
2157 */
2158 if (ioc_batching(q, ioc))
2159 ioc->nr_batch_requests--;
2160
2161 rq_init(q, rq);
2162
2163 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2164 out:
2165 return rq;
2166 }
2167
2168 /*
2169 * No available requests for this queue, unplug the device and wait for some
2170 * requests to become available.
2171 *
2172 * Called with q->queue_lock held, and returns with it unlocked.
2173 */
2174 static struct request *get_request_wait(request_queue_t *q, int rw,
2175 struct bio *bio)
2176 {
2177 struct request *rq;
2178
2179 rq = get_request(q, rw, bio, GFP_NOIO);
2180 while (!rq) {
2181 DEFINE_WAIT(wait);
2182 struct request_list *rl = &q->rq;
2183
2184 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2185 TASK_UNINTERRUPTIBLE);
2186
2187 rq = get_request(q, rw, bio, GFP_NOIO);
2188
2189 if (!rq) {
2190 struct io_context *ioc;
2191
2192 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2193
2194 __generic_unplug_device(q);
2195 spin_unlock_irq(q->queue_lock);
2196 io_schedule();
2197
2198 /*
2199 * After sleeping, we become a "batching" process and
2200 * will be able to allocate at least one request, and
2201 * up to a big batch of them for a small period time.
2202 * See ioc_batching, ioc_set_batching
2203 */
2204 ioc = current_io_context(GFP_NOIO, q->node);
2205 ioc_set_batching(q, ioc);
2206
2207 spin_lock_irq(q->queue_lock);
2208 }
2209 finish_wait(&rl->wait[rw], &wait);
2210 }
2211
2212 return rq;
2213 }
2214
2215 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2216 {
2217 struct request *rq;
2218
2219 BUG_ON(rw != READ && rw != WRITE);
2220
2221 spin_lock_irq(q->queue_lock);
2222 if (gfp_mask & __GFP_WAIT) {
2223 rq = get_request_wait(q, rw, NULL);
2224 } else {
2225 rq = get_request(q, rw, NULL, gfp_mask);
2226 if (!rq)
2227 spin_unlock_irq(q->queue_lock);
2228 }
2229 /* q->queue_lock is unlocked at this point */
2230
2231 return rq;
2232 }
2233 EXPORT_SYMBOL(blk_get_request);
2234
2235 /**
2236 * blk_start_queueing - initiate dispatch of requests to device
2237 * @q: request queue to kick into gear
2238 *
2239 * This is basically a helper to remove the need to know whether a queue
2240 * is plugged or not if someone just wants to initiate dispatch of requests
2241 * for this queue.
2242 *
2243 * The queue lock must be held with interrupts disabled.
2244 */
2245 void blk_start_queueing(request_queue_t *q)
2246 {
2247 if (!blk_queue_plugged(q))
2248 q->request_fn(q);
2249 else
2250 __generic_unplug_device(q);
2251 }
2252 EXPORT_SYMBOL(blk_start_queueing);
2253
2254 /**
2255 * blk_requeue_request - put a request back on queue
2256 * @q: request queue where request should be inserted
2257 * @rq: request to be inserted
2258 *
2259 * Description:
2260 * Drivers often keep queueing requests until the hardware cannot accept
2261 * more, when that condition happens we need to put the request back
2262 * on the queue. Must be called with queue lock held.
2263 */
2264 void blk_requeue_request(request_queue_t *q, struct request *rq)
2265 {
2266 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2267
2268 if (blk_rq_tagged(rq))
2269 blk_queue_end_tag(q, rq);
2270
2271 elv_requeue_request(q, rq);
2272 }
2273
2274 EXPORT_SYMBOL(blk_requeue_request);
2275
2276 /**
2277 * blk_insert_request - insert a special request in to a request queue
2278 * @q: request queue where request should be inserted
2279 * @rq: request to be inserted
2280 * @at_head: insert request at head or tail of queue
2281 * @data: private data
2282 *
2283 * Description:
2284 * Many block devices need to execute commands asynchronously, so they don't
2285 * block the whole kernel from preemption during request execution. This is
2286 * accomplished normally by inserting aritficial requests tagged as
2287 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2288 * scheduled for actual execution by the request queue.
2289 *
2290 * We have the option of inserting the head or the tail of the queue.
2291 * Typically we use the tail for new ioctls and so forth. We use the head
2292 * of the queue for things like a QUEUE_FULL message from a device, or a
2293 * host that is unable to accept a particular command.
2294 */
2295 void blk_insert_request(request_queue_t *q, struct request *rq,
2296 int at_head, void *data)
2297 {
2298 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2299 unsigned long flags;
2300
2301 /*
2302 * tell I/O scheduler that this isn't a regular read/write (ie it
2303 * must not attempt merges on this) and that it acts as a soft
2304 * barrier
2305 */
2306 rq->cmd_type = REQ_TYPE_SPECIAL;
2307 rq->cmd_flags |= REQ_SOFTBARRIER;
2308
2309 rq->special = data;
2310
2311 spin_lock_irqsave(q->queue_lock, flags);
2312
2313 /*
2314 * If command is tagged, release the tag
2315 */
2316 if (blk_rq_tagged(rq))
2317 blk_queue_end_tag(q, rq);
2318
2319 drive_stat_acct(rq, rq->nr_sectors, 1);
2320 __elv_add_request(q, rq, where, 0);
2321 blk_start_queueing(q);
2322 spin_unlock_irqrestore(q->queue_lock, flags);
2323 }
2324
2325 EXPORT_SYMBOL(blk_insert_request);
2326
2327 static int __blk_rq_unmap_user(struct bio *bio)
2328 {
2329 int ret = 0;
2330
2331 if (bio) {
2332 if (bio_flagged(bio, BIO_USER_MAPPED))
2333 bio_unmap_user(bio);
2334 else
2335 ret = bio_uncopy_user(bio);
2336 }
2337
2338 return ret;
2339 }
2340
2341 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2342 void __user *ubuf, unsigned int len)
2343 {
2344 unsigned long uaddr;
2345 struct bio *bio, *orig_bio;
2346 int reading, ret;
2347
2348 reading = rq_data_dir(rq) == READ;
2349
2350 /*
2351 * if alignment requirement is satisfied, map in user pages for
2352 * direct dma. else, set up kernel bounce buffers
2353 */
2354 uaddr = (unsigned long) ubuf;
2355 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2356 bio = bio_map_user(q, NULL, uaddr, len, reading);
2357 else
2358 bio = bio_copy_user(q, uaddr, len, reading);
2359
2360 if (IS_ERR(bio)) {
2361 return PTR_ERR(bio);
2362 }
2363
2364 orig_bio = bio;
2365 blk_queue_bounce(q, &bio);
2366 /*
2367 * We link the bounce buffer in and could have to traverse it
2368 * later so we have to get a ref to prevent it from being freed
2369 */
2370 bio_get(bio);
2371
2372 /*
2373 * for most (all? don't know of any) queues we could
2374 * skip grabbing the queue lock here. only drivers with
2375 * funky private ->back_merge_fn() function could be
2376 * problematic.
2377 */
2378 spin_lock_irq(q->queue_lock);
2379 if (!rq->bio)
2380 blk_rq_bio_prep(q, rq, bio);
2381 else if (!q->back_merge_fn(q, rq, bio)) {
2382 ret = -EINVAL;
2383 spin_unlock_irq(q->queue_lock);
2384 goto unmap_bio;
2385 } else {
2386 rq->biotail->bi_next = bio;
2387 rq->biotail = bio;
2388
2389 rq->nr_sectors += bio_sectors(bio);
2390 rq->hard_nr_sectors = rq->nr_sectors;
2391 rq->data_len += bio->bi_size;
2392 }
2393 spin_unlock_irq(q->queue_lock);
2394
2395 return bio->bi_size;
2396
2397 unmap_bio:
2398 /* if it was boucned we must call the end io function */
2399 bio_endio(bio, bio->bi_size, 0);
2400 __blk_rq_unmap_user(orig_bio);
2401 bio_put(bio);
2402 return ret;
2403 }
2404
2405 /**
2406 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2407 * @q: request queue where request should be inserted
2408 * @rq: request structure to fill
2409 * @ubuf: the user buffer
2410 * @len: length of user data
2411 *
2412 * Description:
2413 * Data will be mapped directly for zero copy io, if possible. Otherwise
2414 * a kernel bounce buffer is used.
2415 *
2416 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2417 * still in process context.
2418 *
2419 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2420 * before being submitted to the device, as pages mapped may be out of
2421 * reach. It's the callers responsibility to make sure this happens. The
2422 * original bio must be passed back in to blk_rq_unmap_user() for proper
2423 * unmapping.
2424 */
2425 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2426 unsigned long len)
2427 {
2428 unsigned long bytes_read = 0;
2429 int ret;
2430
2431 if (len > (q->max_hw_sectors << 9))
2432 return -EINVAL;
2433 if (!len || !ubuf)
2434 return -EINVAL;
2435
2436 while (bytes_read != len) {
2437 unsigned long map_len, end, start;
2438
2439 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2440 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2441 >> PAGE_SHIFT;
2442 start = (unsigned long)ubuf >> PAGE_SHIFT;
2443
2444 /*
2445 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2446 * pages. If this happens we just lower the requested
2447 * mapping len by a page so that we can fit
2448 */
2449 if (end - start > BIO_MAX_PAGES)
2450 map_len -= PAGE_SIZE;
2451
2452 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2453 if (ret < 0)
2454 goto unmap_rq;
2455 bytes_read += ret;
2456 ubuf += ret;
2457 }
2458
2459 rq->buffer = rq->data = NULL;
2460 return 0;
2461 unmap_rq:
2462 blk_rq_unmap_user(rq);
2463 return ret;
2464 }
2465
2466 EXPORT_SYMBOL(blk_rq_map_user);
2467
2468 /**
2469 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2470 * @q: request queue where request should be inserted
2471 * @rq: request to map data to
2472 * @iov: pointer to the iovec
2473 * @iov_count: number of elements in the iovec
2474 *
2475 * Description:
2476 * Data will be mapped directly for zero copy io, if possible. Otherwise
2477 * a kernel bounce buffer is used.
2478 *
2479 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2480 * still in process context.
2481 *
2482 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2483 * before being submitted to the device, as pages mapped may be out of
2484 * reach. It's the callers responsibility to make sure this happens. The
2485 * original bio must be passed back in to blk_rq_unmap_user() for proper
2486 * unmapping.
2487 */
2488 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2489 struct sg_iovec *iov, int iov_count, unsigned int len)
2490 {
2491 struct bio *bio;
2492
2493 if (!iov || iov_count <= 0)
2494 return -EINVAL;
2495
2496 /* we don't allow misaligned data like bio_map_user() does. If the
2497 * user is using sg, they're expected to know the alignment constraints
2498 * and respect them accordingly */
2499 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2500 if (IS_ERR(bio))
2501 return PTR_ERR(bio);
2502
2503 if (bio->bi_size != len) {
2504 bio_endio(bio, bio->bi_size, 0);
2505 bio_unmap_user(bio);
2506 return -EINVAL;
2507 }
2508
2509 bio_get(bio);
2510 blk_rq_bio_prep(q, rq, bio);
2511 rq->buffer = rq->data = NULL;
2512 return 0;
2513 }
2514
2515 EXPORT_SYMBOL(blk_rq_map_user_iov);
2516
2517 /**
2518 * blk_rq_unmap_user - unmap a request with user data
2519 * @rq: rq to be unmapped
2520 *
2521 * Description:
2522 * Unmap a rq previously mapped by blk_rq_map_user().
2523 * rq->bio must be set to the original head of the request.
2524 */
2525 int blk_rq_unmap_user(struct request *rq)
2526 {
2527 struct bio *bio, *mapped_bio;
2528
2529 while ((bio = rq->bio)) {
2530 if (bio_flagged(bio, BIO_BOUNCED))
2531 mapped_bio = bio->bi_private;
2532 else
2533 mapped_bio = bio;
2534
2535 __blk_rq_unmap_user(mapped_bio);
2536 rq->bio = bio->bi_next;
2537 bio_put(bio);
2538 }
2539 return 0;
2540 }
2541
2542 EXPORT_SYMBOL(blk_rq_unmap_user);
2543
2544 /**
2545 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2546 * @q: request queue where request should be inserted
2547 * @rq: request to fill
2548 * @kbuf: the kernel buffer
2549 * @len: length of user data
2550 * @gfp_mask: memory allocation flags
2551 */
2552 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2553 unsigned int len, gfp_t gfp_mask)
2554 {
2555 struct bio *bio;
2556
2557 if (len > (q->max_hw_sectors << 9))
2558 return -EINVAL;
2559 if (!len || !kbuf)
2560 return -EINVAL;
2561
2562 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2563 if (IS_ERR(bio))
2564 return PTR_ERR(bio);
2565
2566 if (rq_data_dir(rq) == WRITE)
2567 bio->bi_rw |= (1 << BIO_RW);
2568
2569 blk_rq_bio_prep(q, rq, bio);
2570 rq->buffer = rq->data = NULL;
2571 return 0;
2572 }
2573
2574 EXPORT_SYMBOL(blk_rq_map_kern);
2575
2576 /**
2577 * blk_execute_rq_nowait - insert a request into queue for execution
2578 * @q: queue to insert the request in
2579 * @bd_disk: matching gendisk
2580 * @rq: request to insert
2581 * @at_head: insert request at head or tail of queue
2582 * @done: I/O completion handler
2583 *
2584 * Description:
2585 * Insert a fully prepared request at the back of the io scheduler queue
2586 * for execution. Don't wait for completion.
2587 */
2588 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2589 struct request *rq, int at_head,
2590 rq_end_io_fn *done)
2591 {
2592 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2593
2594 rq->rq_disk = bd_disk;
2595 rq->cmd_flags |= REQ_NOMERGE;
2596 rq->end_io = done;
2597 WARN_ON(irqs_disabled());
2598 spin_lock_irq(q->queue_lock);
2599 __elv_add_request(q, rq, where, 1);
2600 __generic_unplug_device(q);
2601 spin_unlock_irq(q->queue_lock);
2602 }
2603 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2604
2605 /**
2606 * blk_execute_rq - insert a request into queue for execution
2607 * @q: queue to insert the request in
2608 * @bd_disk: matching gendisk
2609 * @rq: request to insert
2610 * @at_head: insert request at head or tail of queue
2611 *
2612 * Description:
2613 * Insert a fully prepared request at the back of the io scheduler queue
2614 * for execution and wait for completion.
2615 */
2616 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2617 struct request *rq, int at_head)
2618 {
2619 DECLARE_COMPLETION_ONSTACK(wait);
2620 char sense[SCSI_SENSE_BUFFERSIZE];
2621 int err = 0;
2622
2623 /*
2624 * we need an extra reference to the request, so we can look at
2625 * it after io completion
2626 */
2627 rq->ref_count++;
2628
2629 if (!rq->sense) {
2630 memset(sense, 0, sizeof(sense));
2631 rq->sense = sense;
2632 rq->sense_len = 0;
2633 }
2634
2635 rq->end_io_data = &wait;
2636 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2637 wait_for_completion(&wait);
2638
2639 if (rq->errors)
2640 err = -EIO;
2641
2642 return err;
2643 }
2644
2645 EXPORT_SYMBOL(blk_execute_rq);
2646
2647 /**
2648 * blkdev_issue_flush - queue a flush
2649 * @bdev: blockdev to issue flush for
2650 * @error_sector: error sector
2651 *
2652 * Description:
2653 * Issue a flush for the block device in question. Caller can supply
2654 * room for storing the error offset in case of a flush error, if they
2655 * wish to. Caller must run wait_for_completion() on its own.
2656 */
2657 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2658 {
2659 request_queue_t *q;
2660
2661 if (bdev->bd_disk == NULL)
2662 return -ENXIO;
2663
2664 q = bdev_get_queue(bdev);
2665 if (!q)
2666 return -ENXIO;
2667 if (!q->issue_flush_fn)
2668 return -EOPNOTSUPP;
2669
2670 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2671 }
2672
2673 EXPORT_SYMBOL(blkdev_issue_flush);
2674
2675 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2676 {
2677 int rw = rq_data_dir(rq);
2678
2679 if (!blk_fs_request(rq) || !rq->rq_disk)
2680 return;
2681
2682 if (!new_io) {
2683 __disk_stat_inc(rq->rq_disk, merges[rw]);
2684 } else {
2685 disk_round_stats(rq->rq_disk);
2686 rq->rq_disk->in_flight++;
2687 }
2688 }
2689
2690 /*
2691 * add-request adds a request to the linked list.
2692 * queue lock is held and interrupts disabled, as we muck with the
2693 * request queue list.
2694 */
2695 static inline void add_request(request_queue_t * q, struct request * req)
2696 {
2697 drive_stat_acct(req, req->nr_sectors, 1);
2698
2699 if (q->activity_fn)
2700 q->activity_fn(q->activity_data, rq_data_dir(req));
2701
2702 /*
2703 * elevator indicated where it wants this request to be
2704 * inserted at elevator_merge time
2705 */
2706 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2707 }
2708
2709 /*
2710 * disk_round_stats() - Round off the performance stats on a struct
2711 * disk_stats.
2712 *
2713 * The average IO queue length and utilisation statistics are maintained
2714 * by observing the current state of the queue length and the amount of
2715 * time it has been in this state for.
2716 *
2717 * Normally, that accounting is done on IO completion, but that can result
2718 * in more than a second's worth of IO being accounted for within any one
2719 * second, leading to >100% utilisation. To deal with that, we call this
2720 * function to do a round-off before returning the results when reading
2721 * /proc/diskstats. This accounts immediately for all queue usage up to
2722 * the current jiffies and restarts the counters again.
2723 */
2724 void disk_round_stats(struct gendisk *disk)
2725 {
2726 unsigned long now = jiffies;
2727
2728 if (now == disk->stamp)
2729 return;
2730
2731 if (disk->in_flight) {
2732 __disk_stat_add(disk, time_in_queue,
2733 disk->in_flight * (now - disk->stamp));
2734 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2735 }
2736 disk->stamp = now;
2737 }
2738
2739 EXPORT_SYMBOL_GPL(disk_round_stats);
2740
2741 /*
2742 * queue lock must be held
2743 */
2744 void __blk_put_request(request_queue_t *q, struct request *req)
2745 {
2746 if (unlikely(!q))
2747 return;
2748 if (unlikely(--req->ref_count))
2749 return;
2750
2751 elv_completed_request(q, req);
2752
2753 /*
2754 * Request may not have originated from ll_rw_blk. if not,
2755 * it didn't come out of our reserved rq pools
2756 */
2757 if (req->cmd_flags & REQ_ALLOCED) {
2758 int rw = rq_data_dir(req);
2759 int priv = req->cmd_flags & REQ_ELVPRIV;
2760
2761 BUG_ON(!list_empty(&req->queuelist));
2762 BUG_ON(!hlist_unhashed(&req->hash));
2763
2764 blk_free_request(q, req);
2765 freed_request(q, rw, priv);
2766 }
2767 }
2768
2769 EXPORT_SYMBOL_GPL(__blk_put_request);
2770
2771 void blk_put_request(struct request *req)
2772 {
2773 unsigned long flags;
2774 request_queue_t *q = req->q;
2775
2776 /*
2777 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2778 * following if (q) test.
2779 */
2780 if (q) {
2781 spin_lock_irqsave(q->queue_lock, flags);
2782 __blk_put_request(q, req);
2783 spin_unlock_irqrestore(q->queue_lock, flags);
2784 }
2785 }
2786
2787 EXPORT_SYMBOL(blk_put_request);
2788
2789 /**
2790 * blk_end_sync_rq - executes a completion event on a request
2791 * @rq: request to complete
2792 * @error: end io status of the request
2793 */
2794 void blk_end_sync_rq(struct request *rq, int error)
2795 {
2796 struct completion *waiting = rq->end_io_data;
2797
2798 rq->end_io_data = NULL;
2799 __blk_put_request(rq->q, rq);
2800
2801 /*
2802 * complete last, if this is a stack request the process (and thus
2803 * the rq pointer) could be invalid right after this complete()
2804 */
2805 complete(waiting);
2806 }
2807 EXPORT_SYMBOL(blk_end_sync_rq);
2808
2809 /*
2810 * Has to be called with the request spinlock acquired
2811 */
2812 static int attempt_merge(request_queue_t *q, struct request *req,
2813 struct request *next)
2814 {
2815 if (!rq_mergeable(req) || !rq_mergeable(next))
2816 return 0;
2817
2818 /*
2819 * not contiguous
2820 */
2821 if (req->sector + req->nr_sectors != next->sector)
2822 return 0;
2823
2824 if (rq_data_dir(req) != rq_data_dir(next)
2825 || req->rq_disk != next->rq_disk
2826 || next->special)
2827 return 0;
2828
2829 /*
2830 * If we are allowed to merge, then append bio list
2831 * from next to rq and release next. merge_requests_fn
2832 * will have updated segment counts, update sector
2833 * counts here.
2834 */
2835 if (!q->merge_requests_fn(q, req, next))
2836 return 0;
2837
2838 /*
2839 * At this point we have either done a back merge
2840 * or front merge. We need the smaller start_time of
2841 * the merged requests to be the current request
2842 * for accounting purposes.
2843 */
2844 if (time_after(req->start_time, next->start_time))
2845 req->start_time = next->start_time;
2846
2847 req->biotail->bi_next = next->bio;
2848 req->biotail = next->biotail;
2849
2850 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2851
2852 elv_merge_requests(q, req, next);
2853
2854 if (req->rq_disk) {
2855 disk_round_stats(req->rq_disk);
2856 req->rq_disk->in_flight--;
2857 }
2858
2859 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2860
2861 __blk_put_request(q, next);
2862 return 1;
2863 }
2864
2865 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2866 {
2867 struct request *next = elv_latter_request(q, rq);
2868
2869 if (next)
2870 return attempt_merge(q, rq, next);
2871
2872 return 0;
2873 }
2874
2875 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2876 {
2877 struct request *prev = elv_former_request(q, rq);
2878
2879 if (prev)
2880 return attempt_merge(q, prev, rq);
2881
2882 return 0;
2883 }
2884
2885 static void init_request_from_bio(struct request *req, struct bio *bio)
2886 {
2887 req->cmd_type = REQ_TYPE_FS;
2888
2889 /*
2890 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2891 */
2892 if (bio_rw_ahead(bio) || bio_failfast(bio))
2893 req->cmd_flags |= REQ_FAILFAST;
2894
2895 /*
2896 * REQ_BARRIER implies no merging, but lets make it explicit
2897 */
2898 if (unlikely(bio_barrier(bio)))
2899 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2900
2901 if (bio_sync(bio))
2902 req->cmd_flags |= REQ_RW_SYNC;
2903 if (bio_rw_meta(bio))
2904 req->cmd_flags |= REQ_RW_META;
2905
2906 req->errors = 0;
2907 req->hard_sector = req->sector = bio->bi_sector;
2908 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2909 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2910 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2911 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2912 req->buffer = bio_data(bio); /* see ->buffer comment above */
2913 req->bio = req->biotail = bio;
2914 req->ioprio = bio_prio(bio);
2915 req->rq_disk = bio->bi_bdev->bd_disk;
2916 req->start_time = jiffies;
2917 }
2918
2919 static int __make_request(request_queue_t *q, struct bio *bio)
2920 {
2921 struct request *req;
2922 int el_ret, nr_sectors, barrier, err;
2923 const unsigned short prio = bio_prio(bio);
2924 const int sync = bio_sync(bio);
2925
2926 nr_sectors = bio_sectors(bio);
2927
2928 /*
2929 * low level driver can indicate that it wants pages above a
2930 * certain limit bounced to low memory (ie for highmem, or even
2931 * ISA dma in theory)
2932 */
2933 blk_queue_bounce(q, &bio);
2934
2935 barrier = bio_barrier(bio);
2936 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2937 err = -EOPNOTSUPP;
2938 goto end_io;
2939 }
2940
2941 spin_lock_irq(q->queue_lock);
2942
2943 if (unlikely(barrier) || elv_queue_empty(q))
2944 goto get_rq;
2945
2946 el_ret = elv_merge(q, &req, bio);
2947 switch (el_ret) {
2948 case ELEVATOR_BACK_MERGE:
2949 BUG_ON(!rq_mergeable(req));
2950
2951 if (!q->back_merge_fn(q, req, bio))
2952 break;
2953
2954 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2955
2956 req->biotail->bi_next = bio;
2957 req->biotail = bio;
2958 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2959 req->ioprio = ioprio_best(req->ioprio, prio);
2960 drive_stat_acct(req, nr_sectors, 0);
2961 if (!attempt_back_merge(q, req))
2962 elv_merged_request(q, req, el_ret);
2963 goto out;
2964
2965 case ELEVATOR_FRONT_MERGE:
2966 BUG_ON(!rq_mergeable(req));
2967
2968 if (!q->front_merge_fn(q, req, bio))
2969 break;
2970
2971 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2972
2973 bio->bi_next = req->bio;
2974 req->bio = bio;
2975
2976 /*
2977 * may not be valid. if the low level driver said
2978 * it didn't need a bounce buffer then it better
2979 * not touch req->buffer either...
2980 */
2981 req->buffer = bio_data(bio);
2982 req->current_nr_sectors = bio_cur_sectors(bio);
2983 req->hard_cur_sectors = req->current_nr_sectors;
2984 req->sector = req->hard_sector = bio->bi_sector;
2985 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2986 req->ioprio = ioprio_best(req->ioprio, prio);
2987 drive_stat_acct(req, nr_sectors, 0);
2988 if (!attempt_front_merge(q, req))
2989 elv_merged_request(q, req, el_ret);
2990 goto out;
2991
2992 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2993 default:
2994 ;
2995 }
2996
2997 get_rq:
2998 /*
2999 * Grab a free request. This is might sleep but can not fail.
3000 * Returns with the queue unlocked.
3001 */
3002 req = get_request_wait(q, bio_data_dir(bio), bio);
3003
3004 /*
3005 * After dropping the lock and possibly sleeping here, our request
3006 * may now be mergeable after it had proven unmergeable (above).
3007 * We don't worry about that case for efficiency. It won't happen
3008 * often, and the elevators are able to handle it.
3009 */
3010 init_request_from_bio(req, bio);
3011
3012 spin_lock_irq(q->queue_lock);
3013 if (elv_queue_empty(q))
3014 blk_plug_device(q);
3015 add_request(q, req);
3016 out:
3017 if (sync)
3018 __generic_unplug_device(q);
3019
3020 spin_unlock_irq(q->queue_lock);
3021 return 0;
3022
3023 end_io:
3024 bio_endio(bio, nr_sectors << 9, err);
3025 return 0;
3026 }
3027
3028 /*
3029 * If bio->bi_dev is a partition, remap the location
3030 */
3031 static inline void blk_partition_remap(struct bio *bio)
3032 {
3033 struct block_device *bdev = bio->bi_bdev;
3034
3035 if (bdev != bdev->bd_contains) {
3036 struct hd_struct *p = bdev->bd_part;
3037 const int rw = bio_data_dir(bio);
3038
3039 p->sectors[rw] += bio_sectors(bio);
3040 p->ios[rw]++;
3041
3042 bio->bi_sector += p->start_sect;
3043 bio->bi_bdev = bdev->bd_contains;
3044 }
3045 }
3046
3047 static void handle_bad_sector(struct bio *bio)
3048 {
3049 char b[BDEVNAME_SIZE];
3050
3051 printk(KERN_INFO "attempt to access beyond end of device\n");
3052 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3053 bdevname(bio->bi_bdev, b),
3054 bio->bi_rw,
3055 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3056 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3057
3058 set_bit(BIO_EOF, &bio->bi_flags);
3059 }
3060
3061 #ifdef CONFIG_FAIL_MAKE_REQUEST
3062
3063 static DECLARE_FAULT_ATTR(fail_make_request);
3064
3065 static int __init setup_fail_make_request(char *str)
3066 {
3067 return setup_fault_attr(&fail_make_request, str);
3068 }
3069 __setup("fail_make_request=", setup_fail_make_request);
3070
3071 static int should_fail_request(struct bio *bio)
3072 {
3073 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3074 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3075 return should_fail(&fail_make_request, bio->bi_size);
3076
3077 return 0;
3078 }
3079
3080 static int __init fail_make_request_debugfs(void)
3081 {
3082 return init_fault_attr_dentries(&fail_make_request,
3083 "fail_make_request");
3084 }
3085
3086 late_initcall(fail_make_request_debugfs);
3087
3088 #else /* CONFIG_FAIL_MAKE_REQUEST */
3089
3090 static inline int should_fail_request(struct bio *bio)
3091 {
3092 return 0;
3093 }
3094
3095 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3096
3097 /**
3098 * generic_make_request: hand a buffer to its device driver for I/O
3099 * @bio: The bio describing the location in memory and on the device.
3100 *
3101 * generic_make_request() is used to make I/O requests of block
3102 * devices. It is passed a &struct bio, which describes the I/O that needs
3103 * to be done.
3104 *
3105 * generic_make_request() does not return any status. The
3106 * success/failure status of the request, along with notification of
3107 * completion, is delivered asynchronously through the bio->bi_end_io
3108 * function described (one day) else where.
3109 *
3110 * The caller of generic_make_request must make sure that bi_io_vec
3111 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3112 * set to describe the device address, and the
3113 * bi_end_io and optionally bi_private are set to describe how
3114 * completion notification should be signaled.
3115 *
3116 * generic_make_request and the drivers it calls may use bi_next if this
3117 * bio happens to be merged with someone else, and may change bi_dev and
3118 * bi_sector for remaps as it sees fit. So the values of these fields
3119 * should NOT be depended on after the call to generic_make_request.
3120 */
3121 void generic_make_request(struct bio *bio)
3122 {
3123 request_queue_t *q;
3124 sector_t maxsector;
3125 sector_t old_sector;
3126 int ret, nr_sectors = bio_sectors(bio);
3127 dev_t old_dev;
3128
3129 might_sleep();
3130 /* Test device or partition size, when known. */
3131 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3132 if (maxsector) {
3133 sector_t sector = bio->bi_sector;
3134
3135 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3136 /*
3137 * This may well happen - the kernel calls bread()
3138 * without checking the size of the device, e.g., when
3139 * mounting a device.
3140 */
3141 handle_bad_sector(bio);
3142 goto end_io;
3143 }
3144 }
3145
3146 /*
3147 * Resolve the mapping until finished. (drivers are
3148 * still free to implement/resolve their own stacking
3149 * by explicitly returning 0)
3150 *
3151 * NOTE: we don't repeat the blk_size check for each new device.
3152 * Stacking drivers are expected to know what they are doing.
3153 */
3154 old_sector = -1;
3155 old_dev = 0;
3156 do {
3157 char b[BDEVNAME_SIZE];
3158
3159 q = bdev_get_queue(bio->bi_bdev);
3160 if (!q) {
3161 printk(KERN_ERR
3162 "generic_make_request: Trying to access "
3163 "nonexistent block-device %s (%Lu)\n",
3164 bdevname(bio->bi_bdev, b),
3165 (long long) bio->bi_sector);
3166 end_io:
3167 bio_endio(bio, bio->bi_size, -EIO);
3168 break;
3169 }
3170
3171 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3172 printk("bio too big device %s (%u > %u)\n",
3173 bdevname(bio->bi_bdev, b),
3174 bio_sectors(bio),
3175 q->max_hw_sectors);
3176 goto end_io;
3177 }
3178
3179 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3180 goto end_io;
3181
3182 if (should_fail_request(bio))
3183 goto end_io;
3184
3185 /*
3186 * If this device has partitions, remap block n
3187 * of partition p to block n+start(p) of the disk.
3188 */
3189 blk_partition_remap(bio);
3190
3191 if (old_sector != -1)
3192 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3193 old_sector);
3194
3195 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3196
3197 old_sector = bio->bi_sector;
3198 old_dev = bio->bi_bdev->bd_dev;
3199
3200 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3201 if (maxsector) {
3202 sector_t sector = bio->bi_sector;
3203
3204 if (maxsector < nr_sectors ||
3205 maxsector - nr_sectors < sector) {
3206 /*
3207 * This may well happen - partitions are not
3208 * checked to make sure they are within the size
3209 * of the whole device.
3210 */
3211 handle_bad_sector(bio);
3212 goto end_io;
3213 }
3214 }
3215
3216 ret = q->make_request_fn(q, bio);
3217 } while (ret);
3218 }
3219
3220 EXPORT_SYMBOL(generic_make_request);
3221
3222 /**
3223 * submit_bio: submit a bio to the block device layer for I/O
3224 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3225 * @bio: The &struct bio which describes the I/O
3226 *
3227 * submit_bio() is very similar in purpose to generic_make_request(), and
3228 * uses that function to do most of the work. Both are fairly rough
3229 * interfaces, @bio must be presetup and ready for I/O.
3230 *
3231 */
3232 void submit_bio(int rw, struct bio *bio)
3233 {
3234 int count = bio_sectors(bio);
3235
3236 BIO_BUG_ON(!bio->bi_size);
3237 BIO_BUG_ON(!bio->bi_io_vec);
3238 bio->bi_rw |= rw;
3239 if (rw & WRITE) {
3240 count_vm_events(PGPGOUT, count);
3241 } else {
3242 task_io_account_read(bio->bi_size);
3243 count_vm_events(PGPGIN, count);
3244 }
3245
3246 if (unlikely(block_dump)) {
3247 char b[BDEVNAME_SIZE];
3248 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3249 current->comm, current->pid,
3250 (rw & WRITE) ? "WRITE" : "READ",
3251 (unsigned long long)bio->bi_sector,
3252 bdevname(bio->bi_bdev,b));
3253 }
3254
3255 generic_make_request(bio);
3256 }
3257
3258 EXPORT_SYMBOL(submit_bio);
3259
3260 static void blk_recalc_rq_segments(struct request *rq)
3261 {
3262 struct bio *bio, *prevbio = NULL;
3263 int nr_phys_segs, nr_hw_segs;
3264 unsigned int phys_size, hw_size;
3265 request_queue_t *q = rq->q;
3266
3267 if (!rq->bio)
3268 return;
3269
3270 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3271 rq_for_each_bio(bio, rq) {
3272 /* Force bio hw/phys segs to be recalculated. */
3273 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3274
3275 nr_phys_segs += bio_phys_segments(q, bio);
3276 nr_hw_segs += bio_hw_segments(q, bio);
3277 if (prevbio) {
3278 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3279 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3280
3281 if (blk_phys_contig_segment(q, prevbio, bio) &&
3282 pseg <= q->max_segment_size) {
3283 nr_phys_segs--;
3284 phys_size += prevbio->bi_size + bio->bi_size;
3285 } else
3286 phys_size = 0;
3287
3288 if (blk_hw_contig_segment(q, prevbio, bio) &&
3289 hseg <= q->max_segment_size) {
3290 nr_hw_segs--;
3291 hw_size += prevbio->bi_size + bio->bi_size;
3292 } else
3293 hw_size = 0;
3294 }
3295 prevbio = bio;
3296 }
3297
3298 rq->nr_phys_segments = nr_phys_segs;
3299 rq->nr_hw_segments = nr_hw_segs;
3300 }
3301
3302 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3303 {
3304 if (blk_fs_request(rq)) {
3305 rq->hard_sector += nsect;
3306 rq->hard_nr_sectors -= nsect;
3307
3308 /*
3309 * Move the I/O submission pointers ahead if required.
3310 */
3311 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3312 (rq->sector <= rq->hard_sector)) {
3313 rq->sector = rq->hard_sector;
3314 rq->nr_sectors = rq->hard_nr_sectors;
3315 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3316 rq->current_nr_sectors = rq->hard_cur_sectors;
3317 rq->buffer = bio_data(rq->bio);
3318 }
3319
3320 /*
3321 * if total number of sectors is less than the first segment
3322 * size, something has gone terribly wrong
3323 */
3324 if (rq->nr_sectors < rq->current_nr_sectors) {
3325 printk("blk: request botched\n");
3326 rq->nr_sectors = rq->current_nr_sectors;
3327 }
3328 }
3329 }
3330
3331 static int __end_that_request_first(struct request *req, int uptodate,
3332 int nr_bytes)
3333 {
3334 int total_bytes, bio_nbytes, error, next_idx = 0;
3335 struct bio *bio;
3336
3337 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3338
3339 /*
3340 * extend uptodate bool to allow < 0 value to be direct io error
3341 */
3342 error = 0;
3343 if (end_io_error(uptodate))
3344 error = !uptodate ? -EIO : uptodate;
3345
3346 /*
3347 * for a REQ_BLOCK_PC request, we want to carry any eventual
3348 * sense key with us all the way through
3349 */
3350 if (!blk_pc_request(req))
3351 req->errors = 0;
3352
3353 if (!uptodate) {
3354 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3355 printk("end_request: I/O error, dev %s, sector %llu\n",
3356 req->rq_disk ? req->rq_disk->disk_name : "?",
3357 (unsigned long long)req->sector);
3358 }
3359
3360 if (blk_fs_request(req) && req->rq_disk) {
3361 const int rw = rq_data_dir(req);
3362
3363 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3364 }
3365
3366 total_bytes = bio_nbytes = 0;
3367 while ((bio = req->bio) != NULL) {
3368 int nbytes;
3369
3370 if (nr_bytes >= bio->bi_size) {
3371 req->bio = bio->bi_next;
3372 nbytes = bio->bi_size;
3373 if (!ordered_bio_endio(req, bio, nbytes, error))
3374 bio_endio(bio, nbytes, error);
3375 next_idx = 0;
3376 bio_nbytes = 0;
3377 } else {
3378 int idx = bio->bi_idx + next_idx;
3379
3380 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3381 blk_dump_rq_flags(req, "__end_that");
3382 printk("%s: bio idx %d >= vcnt %d\n",
3383 __FUNCTION__,
3384 bio->bi_idx, bio->bi_vcnt);
3385 break;
3386 }
3387
3388 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3389 BIO_BUG_ON(nbytes > bio->bi_size);
3390
3391 /*
3392 * not a complete bvec done
3393 */
3394 if (unlikely(nbytes > nr_bytes)) {
3395 bio_nbytes += nr_bytes;
3396 total_bytes += nr_bytes;
3397 break;
3398 }
3399
3400 /*
3401 * advance to the next vector
3402 */
3403 next_idx++;
3404 bio_nbytes += nbytes;
3405 }
3406
3407 total_bytes += nbytes;
3408 nr_bytes -= nbytes;
3409
3410 if ((bio = req->bio)) {
3411 /*
3412 * end more in this run, or just return 'not-done'
3413 */
3414 if (unlikely(nr_bytes <= 0))
3415 break;
3416 }
3417 }
3418
3419 /*
3420 * completely done
3421 */
3422 if (!req->bio)
3423 return 0;
3424
3425 /*
3426 * if the request wasn't completed, update state
3427 */
3428 if (bio_nbytes) {
3429 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3430 bio_endio(bio, bio_nbytes, error);
3431 bio->bi_idx += next_idx;
3432 bio_iovec(bio)->bv_offset += nr_bytes;
3433 bio_iovec(bio)->bv_len -= nr_bytes;
3434 }
3435
3436 blk_recalc_rq_sectors(req, total_bytes >> 9);
3437 blk_recalc_rq_segments(req);
3438 return 1;
3439 }
3440
3441 /**
3442 * end_that_request_first - end I/O on a request
3443 * @req: the request being processed
3444 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3445 * @nr_sectors: number of sectors to end I/O on
3446 *
3447 * Description:
3448 * Ends I/O on a number of sectors attached to @req, and sets it up
3449 * for the next range of segments (if any) in the cluster.
3450 *
3451 * Return:
3452 * 0 - we are done with this request, call end_that_request_last()
3453 * 1 - still buffers pending for this request
3454 **/
3455 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3456 {
3457 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3458 }
3459
3460 EXPORT_SYMBOL(end_that_request_first);
3461
3462 /**
3463 * end_that_request_chunk - end I/O on a request
3464 * @req: the request being processed
3465 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3466 * @nr_bytes: number of bytes to complete
3467 *
3468 * Description:
3469 * Ends I/O on a number of bytes attached to @req, and sets it up
3470 * for the next range of segments (if any). Like end_that_request_first(),
3471 * but deals with bytes instead of sectors.
3472 *
3473 * Return:
3474 * 0 - we are done with this request, call end_that_request_last()
3475 * 1 - still buffers pending for this request
3476 **/
3477 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3478 {
3479 return __end_that_request_first(req, uptodate, nr_bytes);
3480 }
3481
3482 EXPORT_SYMBOL(end_that_request_chunk);
3483
3484 /*
3485 * splice the completion data to a local structure and hand off to
3486 * process_completion_queue() to complete the requests
3487 */
3488 static void blk_done_softirq(struct softirq_action *h)
3489 {
3490 struct list_head *cpu_list, local_list;
3491
3492 local_irq_disable();
3493 cpu_list = &__get_cpu_var(blk_cpu_done);
3494 list_replace_init(cpu_list, &local_list);
3495 local_irq_enable();
3496
3497 while (!list_empty(&local_list)) {
3498 struct request *rq = list_entry(local_list.next, struct request, donelist);
3499
3500 list_del_init(&rq->donelist);
3501 rq->q->softirq_done_fn(rq);
3502 }
3503 }
3504
3505 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3506 void *hcpu)
3507 {
3508 /*
3509 * If a CPU goes away, splice its entries to the current CPU
3510 * and trigger a run of the softirq
3511 */
3512 if (action == CPU_DEAD) {
3513 int cpu = (unsigned long) hcpu;
3514
3515 local_irq_disable();
3516 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3517 &__get_cpu_var(blk_cpu_done));
3518 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3519 local_irq_enable();
3520 }
3521
3522 return NOTIFY_OK;
3523 }
3524
3525
3526 static struct notifier_block __devinitdata blk_cpu_notifier = {
3527 .notifier_call = blk_cpu_notify,
3528 };
3529
3530 /**
3531 * blk_complete_request - end I/O on a request
3532 * @req: the request being processed
3533 *
3534 * Description:
3535 * Ends all I/O on a request. It does not handle partial completions,
3536 * unless the driver actually implements this in its completion callback
3537 * through requeueing. Theh actual completion happens out-of-order,
3538 * through a softirq handler. The user must have registered a completion
3539 * callback through blk_queue_softirq_done().
3540 **/
3541
3542 void blk_complete_request(struct request *req)
3543 {
3544 struct list_head *cpu_list;
3545 unsigned long flags;
3546
3547 BUG_ON(!req->q->softirq_done_fn);
3548
3549 local_irq_save(flags);
3550
3551 cpu_list = &__get_cpu_var(blk_cpu_done);
3552 list_add_tail(&req->donelist, cpu_list);
3553 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3554
3555 local_irq_restore(flags);
3556 }
3557
3558 EXPORT_SYMBOL(blk_complete_request);
3559
3560 /*
3561 * queue lock must be held
3562 */
3563 void end_that_request_last(struct request *req, int uptodate)
3564 {
3565 struct gendisk *disk = req->rq_disk;
3566 int error;
3567
3568 /*
3569 * extend uptodate bool to allow < 0 value to be direct io error
3570 */
3571 error = 0;
3572 if (end_io_error(uptodate))
3573 error = !uptodate ? -EIO : uptodate;
3574
3575 if (unlikely(laptop_mode) && blk_fs_request(req))
3576 laptop_io_completion();
3577
3578 /*
3579 * Account IO completion. bar_rq isn't accounted as a normal
3580 * IO on queueing nor completion. Accounting the containing
3581 * request is enough.
3582 */
3583 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3584 unsigned long duration = jiffies - req->start_time;
3585 const int rw = rq_data_dir(req);
3586
3587 __disk_stat_inc(disk, ios[rw]);
3588 __disk_stat_add(disk, ticks[rw], duration);
3589 disk_round_stats(disk);
3590 disk->in_flight--;
3591 }
3592 if (req->end_io)
3593 req->end_io(req, error);
3594 else
3595 __blk_put_request(req->q, req);
3596 }
3597
3598 EXPORT_SYMBOL(end_that_request_last);
3599
3600 void end_request(struct request *req, int uptodate)
3601 {
3602 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3603 add_disk_randomness(req->rq_disk);
3604 blkdev_dequeue_request(req);
3605 end_that_request_last(req, uptodate);
3606 }
3607 }
3608
3609 EXPORT_SYMBOL(end_request);
3610
3611 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3612 {
3613 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3614 rq->cmd_flags |= (bio->bi_rw & 3);
3615
3616 rq->nr_phys_segments = bio_phys_segments(q, bio);
3617 rq->nr_hw_segments = bio_hw_segments(q, bio);
3618 rq->current_nr_sectors = bio_cur_sectors(bio);
3619 rq->hard_cur_sectors = rq->current_nr_sectors;
3620 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3621 rq->buffer = bio_data(bio);
3622 rq->data_len = bio->bi_size;
3623
3624 rq->bio = rq->biotail = bio;
3625 }
3626
3627 EXPORT_SYMBOL(blk_rq_bio_prep);
3628
3629 int kblockd_schedule_work(struct work_struct *work)
3630 {
3631 return queue_work(kblockd_workqueue, work);
3632 }
3633
3634 EXPORT_SYMBOL(kblockd_schedule_work);
3635
3636 void kblockd_flush(void)
3637 {
3638 flush_workqueue(kblockd_workqueue);
3639 }
3640 EXPORT_SYMBOL(kblockd_flush);
3641
3642 int __init blk_dev_init(void)
3643 {
3644 int i;
3645
3646 kblockd_workqueue = create_workqueue("kblockd");
3647 if (!kblockd_workqueue)
3648 panic("Failed to create kblockd\n");
3649
3650 request_cachep = kmem_cache_create("blkdev_requests",
3651 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3652
3653 requestq_cachep = kmem_cache_create("blkdev_queue",
3654 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3655
3656 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3657 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3658
3659 for_each_possible_cpu(i)
3660 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3661
3662 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3663 register_hotcpu_notifier(&blk_cpu_notifier);
3664
3665 blk_max_low_pfn = max_low_pfn;
3666 blk_max_pfn = max_pfn;
3667
3668 return 0;
3669 }
3670
3671 /*
3672 * IO Context helper functions
3673 */
3674 void put_io_context(struct io_context *ioc)
3675 {
3676 if (ioc == NULL)
3677 return;
3678
3679 BUG_ON(atomic_read(&ioc->refcount) == 0);
3680
3681 if (atomic_dec_and_test(&ioc->refcount)) {
3682 struct cfq_io_context *cic;
3683
3684 rcu_read_lock();
3685 if (ioc->aic && ioc->aic->dtor)
3686 ioc->aic->dtor(ioc->aic);
3687 if (ioc->cic_root.rb_node != NULL) {
3688 struct rb_node *n = rb_first(&ioc->cic_root);
3689
3690 cic = rb_entry(n, struct cfq_io_context, rb_node);
3691 cic->dtor(ioc);
3692 }
3693 rcu_read_unlock();
3694
3695 kmem_cache_free(iocontext_cachep, ioc);
3696 }
3697 }
3698 EXPORT_SYMBOL(put_io_context);
3699
3700 /* Called by the exitting task */
3701 void exit_io_context(void)
3702 {
3703 struct io_context *ioc;
3704 struct cfq_io_context *cic;
3705
3706 task_lock(current);
3707 ioc = current->io_context;
3708 current->io_context = NULL;
3709 task_unlock(current);
3710
3711 ioc->task = NULL;
3712 if (ioc->aic && ioc->aic->exit)
3713 ioc->aic->exit(ioc->aic);
3714 if (ioc->cic_root.rb_node != NULL) {
3715 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3716 cic->exit(ioc);
3717 }
3718
3719 put_io_context(ioc);
3720 }
3721
3722 /*
3723 * If the current task has no IO context then create one and initialise it.
3724 * Otherwise, return its existing IO context.
3725 *
3726 * This returned IO context doesn't have a specifically elevated refcount,
3727 * but since the current task itself holds a reference, the context can be
3728 * used in general code, so long as it stays within `current` context.
3729 */
3730 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3731 {
3732 struct task_struct *tsk = current;
3733 struct io_context *ret;
3734
3735 ret = tsk->io_context;
3736 if (likely(ret))
3737 return ret;
3738
3739 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3740 if (ret) {
3741 atomic_set(&ret->refcount, 1);
3742 ret->task = current;
3743 ret->ioprio_changed = 0;
3744 ret->last_waited = jiffies; /* doesn't matter... */
3745 ret->nr_batch_requests = 0; /* because this is 0 */
3746 ret->aic = NULL;
3747 ret->cic_root.rb_node = NULL;
3748 /* make sure set_task_ioprio() sees the settings above */
3749 smp_wmb();
3750 tsk->io_context = ret;
3751 }
3752
3753 return ret;
3754 }
3755 EXPORT_SYMBOL(current_io_context);
3756
3757 /*
3758 * If the current task has no IO context then create one and initialise it.
3759 * If it does have a context, take a ref on it.
3760 *
3761 * This is always called in the context of the task which submitted the I/O.
3762 */
3763 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3764 {
3765 struct io_context *ret;
3766 ret = current_io_context(gfp_flags, node);
3767 if (likely(ret))
3768 atomic_inc(&ret->refcount);
3769 return ret;
3770 }
3771 EXPORT_SYMBOL(get_io_context);
3772
3773 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3774 {
3775 struct io_context *src = *psrc;
3776 struct io_context *dst = *pdst;
3777
3778 if (src) {
3779 BUG_ON(atomic_read(&src->refcount) == 0);
3780 atomic_inc(&src->refcount);
3781 put_io_context(dst);
3782 *pdst = src;
3783 }
3784 }
3785 EXPORT_SYMBOL(copy_io_context);
3786
3787 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3788 {
3789 struct io_context *temp;
3790 temp = *ioc1;
3791 *ioc1 = *ioc2;
3792 *ioc2 = temp;
3793 }
3794 EXPORT_SYMBOL(swap_io_context);
3795
3796 /*
3797 * sysfs parts below
3798 */
3799 struct queue_sysfs_entry {
3800 struct attribute attr;
3801 ssize_t (*show)(struct request_queue *, char *);
3802 ssize_t (*store)(struct request_queue *, const char *, size_t);
3803 };
3804
3805 static ssize_t
3806 queue_var_show(unsigned int var, char *page)
3807 {
3808 return sprintf(page, "%d\n", var);
3809 }
3810
3811 static ssize_t
3812 queue_var_store(unsigned long *var, const char *page, size_t count)
3813 {
3814 char *p = (char *) page;
3815
3816 *var = simple_strtoul(p, &p, 10);
3817 return count;
3818 }
3819
3820 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3821 {
3822 return queue_var_show(q->nr_requests, (page));
3823 }
3824
3825 static ssize_t
3826 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3827 {
3828 struct request_list *rl = &q->rq;
3829 unsigned long nr;
3830 int ret = queue_var_store(&nr, page, count);
3831 if (nr < BLKDEV_MIN_RQ)
3832 nr = BLKDEV_MIN_RQ;
3833
3834 spin_lock_irq(q->queue_lock);
3835 q->nr_requests = nr;
3836 blk_queue_congestion_threshold(q);
3837
3838 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3839 blk_set_queue_congested(q, READ);
3840 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3841 blk_clear_queue_congested(q, READ);
3842
3843 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3844 blk_set_queue_congested(q, WRITE);
3845 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3846 blk_clear_queue_congested(q, WRITE);
3847
3848 if (rl->count[READ] >= q->nr_requests) {
3849 blk_set_queue_full(q, READ);
3850 } else if (rl->count[READ]+1 <= q->nr_requests) {
3851 blk_clear_queue_full(q, READ);
3852 wake_up(&rl->wait[READ]);
3853 }
3854
3855 if (rl->count[WRITE] >= q->nr_requests) {
3856 blk_set_queue_full(q, WRITE);
3857 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3858 blk_clear_queue_full(q, WRITE);
3859 wake_up(&rl->wait[WRITE]);
3860 }
3861 spin_unlock_irq(q->queue_lock);
3862 return ret;
3863 }
3864
3865 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3866 {
3867 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3868
3869 return queue_var_show(ra_kb, (page));
3870 }
3871
3872 static ssize_t
3873 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3874 {
3875 unsigned long ra_kb;
3876 ssize_t ret = queue_var_store(&ra_kb, page, count);
3877
3878 spin_lock_irq(q->queue_lock);
3879 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3880 spin_unlock_irq(q->queue_lock);
3881
3882 return ret;
3883 }
3884
3885 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3886 {
3887 int max_sectors_kb = q->max_sectors >> 1;
3888
3889 return queue_var_show(max_sectors_kb, (page));
3890 }
3891
3892 static ssize_t
3893 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3894 {
3895 unsigned long max_sectors_kb,
3896 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3897 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3898 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3899 int ra_kb;
3900
3901 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3902 return -EINVAL;
3903 /*
3904 * Take the queue lock to update the readahead and max_sectors
3905 * values synchronously:
3906 */
3907 spin_lock_irq(q->queue_lock);
3908 /*
3909 * Trim readahead window as well, if necessary:
3910 */
3911 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3912 if (ra_kb > max_sectors_kb)
3913 q->backing_dev_info.ra_pages =
3914 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3915
3916 q->max_sectors = max_sectors_kb << 1;
3917 spin_unlock_irq(q->queue_lock);
3918
3919 return ret;
3920 }
3921
3922 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3923 {
3924 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3925
3926 return queue_var_show(max_hw_sectors_kb, (page));
3927 }
3928
3929
3930 static struct queue_sysfs_entry queue_requests_entry = {
3931 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3932 .show = queue_requests_show,
3933 .store = queue_requests_store,
3934 };
3935
3936 static struct queue_sysfs_entry queue_ra_entry = {
3937 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3938 .show = queue_ra_show,
3939 .store = queue_ra_store,
3940 };
3941
3942 static struct queue_sysfs_entry queue_max_sectors_entry = {
3943 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3944 .show = queue_max_sectors_show,
3945 .store = queue_max_sectors_store,
3946 };
3947
3948 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3949 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3950 .show = queue_max_hw_sectors_show,
3951 };
3952
3953 static struct queue_sysfs_entry queue_iosched_entry = {
3954 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3955 .show = elv_iosched_show,
3956 .store = elv_iosched_store,
3957 };
3958
3959 static struct attribute *default_attrs[] = {
3960 &queue_requests_entry.attr,
3961 &queue_ra_entry.attr,
3962 &queue_max_hw_sectors_entry.attr,
3963 &queue_max_sectors_entry.attr,
3964 &queue_iosched_entry.attr,
3965 NULL,
3966 };
3967
3968 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3969
3970 static ssize_t
3971 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3972 {
3973 struct queue_sysfs_entry *entry = to_queue(attr);
3974 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3975 ssize_t res;
3976
3977 if (!entry->show)
3978 return -EIO;
3979 mutex_lock(&q->sysfs_lock);
3980 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3981 mutex_unlock(&q->sysfs_lock);
3982 return -ENOENT;
3983 }
3984 res = entry->show(q, page);
3985 mutex_unlock(&q->sysfs_lock);
3986 return res;
3987 }
3988
3989 static ssize_t
3990 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3991 const char *page, size_t length)
3992 {
3993 struct queue_sysfs_entry *entry = to_queue(attr);
3994 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3995
3996 ssize_t res;
3997
3998 if (!entry->store)
3999 return -EIO;
4000 mutex_lock(&q->sysfs_lock);
4001 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4002 mutex_unlock(&q->sysfs_lock);
4003 return -ENOENT;
4004 }
4005 res = entry->store(q, page, length);
4006 mutex_unlock(&q->sysfs_lock);
4007 return res;
4008 }
4009
4010 static struct sysfs_ops queue_sysfs_ops = {
4011 .show = queue_attr_show,
4012 .store = queue_attr_store,
4013 };
4014
4015 static struct kobj_type queue_ktype = {
4016 .sysfs_ops = &queue_sysfs_ops,
4017 .default_attrs = default_attrs,
4018 .release = blk_release_queue,
4019 };
4020
4021 int blk_register_queue(struct gendisk *disk)
4022 {
4023 int ret;
4024
4025 request_queue_t *q = disk->queue;
4026
4027 if (!q || !q->request_fn)
4028 return -ENXIO;
4029
4030 q->kobj.parent = kobject_get(&disk->kobj);
4031
4032 ret = kobject_add(&q->kobj);
4033 if (ret < 0)
4034 return ret;
4035
4036 kobject_uevent(&q->kobj, KOBJ_ADD);
4037
4038 ret = elv_register_queue(q);
4039 if (ret) {
4040 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4041 kobject_del(&q->kobj);
4042 return ret;
4043 }
4044
4045 return 0;
4046 }
4047
4048 void blk_unregister_queue(struct gendisk *disk)
4049 {
4050 request_queue_t *q = disk->queue;
4051
4052 if (q && q->request_fn) {
4053 elv_unregister_queue(q);
4054
4055 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4056 kobject_del(&q->kobj);
4057 kobject_put(&disk->kobj);
4058 }
4059 }
This page took 0.109579 seconds and 6 git commands to generate.