Remove flush_dry_bio_endio
[deliverable/linux.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 /*
35 * for max sense size
36 */
37 #include <scsi/scsi_cmnd.h>
38
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
46 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
48
49 /*
50 * For the allocated request tables
51 */
52 static struct kmem_cache *request_cachep;
53
54 /*
55 * For queue allocation
56 */
57 static struct kmem_cache *requestq_cachep;
58
59 /*
60 * For io context allocations
61 */
62 static struct kmem_cache *iocontext_cachep;
63
64 /*
65 * Controlling structure to kblockd
66 */
67 static struct workqueue_struct *kblockd_workqueue;
68
69 unsigned long blk_max_low_pfn, blk_max_pfn;
70
71 EXPORT_SYMBOL(blk_max_low_pfn);
72 EXPORT_SYMBOL(blk_max_pfn);
73
74 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
78
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
81
82 /*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 {
89 return q->nr_congestion_on;
90 }
91
92 /*
93 * The threshold at which a queue is considered to be uncongested
94 */
95 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 {
97 return q->nr_congestion_off;
98 }
99
100 static void blk_queue_congestion_threshold(struct request_queue *q)
101 {
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113 }
114
115 /**
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
118 *
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
121 *
122 * Will return NULL if the request queue cannot be located.
123 */
124 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
125 {
126 struct backing_dev_info *ret = NULL;
127 struct request_queue *q = bdev_get_queue(bdev);
128
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
132 }
133 EXPORT_SYMBOL(blk_get_backing_dev_info);
134
135 /**
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
139 *
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
144 *
145 */
146 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
147 {
148 q->prep_rq_fn = pfn;
149 }
150
151 EXPORT_SYMBOL(blk_queue_prep_rq);
152
153 /**
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
157 *
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
168 */
169 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
170 {
171 q->merge_bvec_fn = mbfn;
172 }
173
174 EXPORT_SYMBOL(blk_queue_merge_bvec);
175
176 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
177 {
178 q->softirq_done_fn = fn;
179 }
180
181 EXPORT_SYMBOL(blk_queue_softirq_done);
182
183 /**
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
187 *
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
198 *
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
204 **/
205 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
206 {
207 /*
208 * set defaults
209 */
210 q->nr_requests = BLKDEV_MAX_RQ;
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
222
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
227
228 INIT_WORK(&q->unplug_work, blk_unplug_work);
229
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
232
233 /*
234 * by default assume old behaviour and bounce for any highmem page
235 */
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
237 }
238
239 EXPORT_SYMBOL(blk_queue_make_request);
240
241 static void rq_init(struct request_queue *q, struct request *rq)
242 {
243 INIT_LIST_HEAD(&rq->queuelist);
244 INIT_LIST_HEAD(&rq->donelist);
245
246 rq->errors = 0;
247 rq->bio = rq->biotail = NULL;
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
250 rq->ioprio = 0;
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
257 rq->nr_phys_segments = 0;
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->completion_data = NULL;
262 rq->next_rq = NULL;
263 }
264
265 /**
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
270 *
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
276 *
277 **/
278 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
279 prepare_flush_fn *prepare_flush_fn)
280 {
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
285 }
286
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
296 }
297
298 q->ordered = ordered;
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
301
302 return 0;
303 }
304
305 EXPORT_SYMBOL(blk_queue_ordered);
306
307 /**
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
311 *
312 * Description:
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
315 *
316 **/
317 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
318 {
319 q->issue_flush_fn = iff;
320 }
321
322 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
323
324 /*
325 * Cache flushing for ordered writes handling
326 */
327 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
328 {
329 if (!q->ordseq)
330 return 0;
331 return 1 << ffz(q->ordseq);
332 }
333
334 unsigned blk_ordered_req_seq(struct request *rq)
335 {
336 struct request_queue *q = rq->q;
337
338 BUG_ON(q->ordseq == 0);
339
340 if (rq == &q->pre_flush_rq)
341 return QUEUE_ORDSEQ_PREFLUSH;
342 if (rq == &q->bar_rq)
343 return QUEUE_ORDSEQ_BAR;
344 if (rq == &q->post_flush_rq)
345 return QUEUE_ORDSEQ_POSTFLUSH;
346
347 /*
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
350 *
351 * http://thread.gmane.org/gmane.linux.kernel/537473
352 */
353 if (!blk_fs_request(rq))
354 return QUEUE_ORDSEQ_DRAIN;
355
356 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
357 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
358 return QUEUE_ORDSEQ_DRAIN;
359 else
360 return QUEUE_ORDSEQ_DONE;
361 }
362
363 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
364 {
365 struct request *rq;
366 int uptodate;
367
368 if (error && !q->orderr)
369 q->orderr = error;
370
371 BUG_ON(q->ordseq & seq);
372 q->ordseq |= seq;
373
374 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 return;
376
377 /*
378 * Okay, sequence complete.
379 */
380 rq = q->orig_bar_rq;
381 uptodate = q->orderr ? q->orderr : 1;
382
383 q->ordseq = 0;
384
385 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
386 end_that_request_last(rq, uptodate);
387 }
388
389 static void pre_flush_end_io(struct request *rq, int error)
390 {
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
393 }
394
395 static void bar_end_io(struct request *rq, int error)
396 {
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
399 }
400
401 static void post_flush_end_io(struct request *rq, int error)
402 {
403 elv_completed_request(rq->q, rq);
404 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
405 }
406
407 static void queue_flush(struct request_queue *q, unsigned which)
408 {
409 struct request *rq;
410 rq_end_io_fn *end_io;
411
412 if (which == QUEUE_ORDERED_PREFLUSH) {
413 rq = &q->pre_flush_rq;
414 end_io = pre_flush_end_io;
415 } else {
416 rq = &q->post_flush_rq;
417 end_io = post_flush_end_io;
418 }
419
420 rq->cmd_flags = REQ_HARDBARRIER;
421 rq_init(q, rq);
422 rq->elevator_private = NULL;
423 rq->elevator_private2 = NULL;
424 rq->rq_disk = q->bar_rq.rq_disk;
425 rq->end_io = end_io;
426 q->prepare_flush_fn(q, rq);
427
428 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
429 }
430
431 static inline struct request *start_ordered(struct request_queue *q,
432 struct request *rq)
433 {
434 q->orderr = 0;
435 q->ordered = q->next_ordered;
436 q->ordseq |= QUEUE_ORDSEQ_STARTED;
437
438 /*
439 * Prep proxy barrier request.
440 */
441 blkdev_dequeue_request(rq);
442 q->orig_bar_rq = rq;
443 rq = &q->bar_rq;
444 rq->cmd_flags = 0;
445 rq_init(q, rq);
446 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
447 rq->cmd_flags |= REQ_RW;
448 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
449 rq->elevator_private = NULL;
450 rq->elevator_private2 = NULL;
451 init_request_from_bio(rq, q->orig_bar_rq->bio);
452 rq->end_io = bar_end_io;
453
454 /*
455 * Queue ordered sequence. As we stack them at the head, we
456 * need to queue in reverse order. Note that we rely on that
457 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
458 * request gets inbetween ordered sequence.
459 */
460 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
461 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
462 else
463 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
464
465 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
466
467 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
468 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
469 rq = &q->pre_flush_rq;
470 } else
471 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
472
473 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
474 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
475 else
476 rq = NULL;
477
478 return rq;
479 }
480
481 int blk_do_ordered(struct request_queue *q, struct request **rqp)
482 {
483 struct request *rq = *rqp;
484 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
485
486 if (!q->ordseq) {
487 if (!is_barrier)
488 return 1;
489
490 if (q->next_ordered != QUEUE_ORDERED_NONE) {
491 *rqp = start_ordered(q, rq);
492 return 1;
493 } else {
494 /*
495 * This can happen when the queue switches to
496 * ORDERED_NONE while this request is on it.
497 */
498 blkdev_dequeue_request(rq);
499 end_that_request_first(rq, -EOPNOTSUPP,
500 rq->hard_nr_sectors);
501 end_that_request_last(rq, -EOPNOTSUPP);
502 *rqp = NULL;
503 return 0;
504 }
505 }
506
507 /*
508 * Ordered sequence in progress
509 */
510
511 /* Special requests are not subject to ordering rules. */
512 if (!blk_fs_request(rq) &&
513 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
514 return 1;
515
516 if (q->ordered & QUEUE_ORDERED_TAG) {
517 /* Ordered by tag. Blocking the next barrier is enough. */
518 if (is_barrier && rq != &q->bar_rq)
519 *rqp = NULL;
520 } else {
521 /* Ordered by draining. Wait for turn. */
522 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
523 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
524 *rqp = NULL;
525 }
526
527 return 1;
528 }
529
530 static int ordered_bio_endio(struct request *rq, struct bio *bio,
531 unsigned int nbytes, int error)
532 {
533 struct request_queue *q = rq->q;
534
535 if (&q->bar_rq != rq)
536 return 0;
537
538 /*
539 * Okay, this is the barrier request in progress, just
540 * record the error;
541 */
542 if (error && !q->orderr)
543 q->orderr = error;
544
545 return 1;
546 }
547
548 /**
549 * blk_queue_bounce_limit - set bounce buffer limit for queue
550 * @q: the request queue for the device
551 * @dma_addr: bus address limit
552 *
553 * Description:
554 * Different hardware can have different requirements as to what pages
555 * it can do I/O directly to. A low level driver can call
556 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
557 * buffers for doing I/O to pages residing above @page.
558 **/
559 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
560 {
561 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
562 int dma = 0;
563
564 q->bounce_gfp = GFP_NOIO;
565 #if BITS_PER_LONG == 64
566 /* Assume anything <= 4GB can be handled by IOMMU.
567 Actually some IOMMUs can handle everything, but I don't
568 know of a way to test this here. */
569 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
570 dma = 1;
571 q->bounce_pfn = max_low_pfn;
572 #else
573 if (bounce_pfn < blk_max_low_pfn)
574 dma = 1;
575 q->bounce_pfn = bounce_pfn;
576 #endif
577 if (dma) {
578 init_emergency_isa_pool();
579 q->bounce_gfp = GFP_NOIO | GFP_DMA;
580 q->bounce_pfn = bounce_pfn;
581 }
582 }
583
584 EXPORT_SYMBOL(blk_queue_bounce_limit);
585
586 /**
587 * blk_queue_max_sectors - set max sectors for a request for this queue
588 * @q: the request queue for the device
589 * @max_sectors: max sectors in the usual 512b unit
590 *
591 * Description:
592 * Enables a low level driver to set an upper limit on the size of
593 * received requests.
594 **/
595 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
596 {
597 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
598 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
600 }
601
602 if (BLK_DEF_MAX_SECTORS > max_sectors)
603 q->max_hw_sectors = q->max_sectors = max_sectors;
604 else {
605 q->max_sectors = BLK_DEF_MAX_SECTORS;
606 q->max_hw_sectors = max_sectors;
607 }
608 }
609
610 EXPORT_SYMBOL(blk_queue_max_sectors);
611
612 /**
613 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
614 * @q: the request queue for the device
615 * @max_segments: max number of segments
616 *
617 * Description:
618 * Enables a low level driver to set an upper limit on the number of
619 * physical data segments in a request. This would be the largest sized
620 * scatter list the driver could handle.
621 **/
622 void blk_queue_max_phys_segments(struct request_queue *q,
623 unsigned short max_segments)
624 {
625 if (!max_segments) {
626 max_segments = 1;
627 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
628 }
629
630 q->max_phys_segments = max_segments;
631 }
632
633 EXPORT_SYMBOL(blk_queue_max_phys_segments);
634
635 /**
636 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
637 * @q: the request queue for the device
638 * @max_segments: max number of segments
639 *
640 * Description:
641 * Enables a low level driver to set an upper limit on the number of
642 * hw data segments in a request. This would be the largest number of
643 * address/length pairs the host adapter can actually give as once
644 * to the device.
645 **/
646 void blk_queue_max_hw_segments(struct request_queue *q,
647 unsigned short max_segments)
648 {
649 if (!max_segments) {
650 max_segments = 1;
651 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
652 }
653
654 q->max_hw_segments = max_segments;
655 }
656
657 EXPORT_SYMBOL(blk_queue_max_hw_segments);
658
659 /**
660 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
661 * @q: the request queue for the device
662 * @max_size: max size of segment in bytes
663 *
664 * Description:
665 * Enables a low level driver to set an upper limit on the size of a
666 * coalesced segment
667 **/
668 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
669 {
670 if (max_size < PAGE_CACHE_SIZE) {
671 max_size = PAGE_CACHE_SIZE;
672 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
673 }
674
675 q->max_segment_size = max_size;
676 }
677
678 EXPORT_SYMBOL(blk_queue_max_segment_size);
679
680 /**
681 * blk_queue_hardsect_size - set hardware sector size for the queue
682 * @q: the request queue for the device
683 * @size: the hardware sector size, in bytes
684 *
685 * Description:
686 * This should typically be set to the lowest possible sector size
687 * that the hardware can operate on (possible without reverting to
688 * even internal read-modify-write operations). Usually the default
689 * of 512 covers most hardware.
690 **/
691 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
692 {
693 q->hardsect_size = size;
694 }
695
696 EXPORT_SYMBOL(blk_queue_hardsect_size);
697
698 /*
699 * Returns the minimum that is _not_ zero, unless both are zero.
700 */
701 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
702
703 /**
704 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
705 * @t: the stacking driver (top)
706 * @b: the underlying device (bottom)
707 **/
708 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
709 {
710 /* zero is "infinity" */
711 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
712 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
713
714 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
715 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
716 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
717 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
718 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
719 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
720 }
721
722 EXPORT_SYMBOL(blk_queue_stack_limits);
723
724 /**
725 * blk_queue_segment_boundary - set boundary rules for segment merging
726 * @q: the request queue for the device
727 * @mask: the memory boundary mask
728 **/
729 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
730 {
731 if (mask < PAGE_CACHE_SIZE - 1) {
732 mask = PAGE_CACHE_SIZE - 1;
733 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
734 }
735
736 q->seg_boundary_mask = mask;
737 }
738
739 EXPORT_SYMBOL(blk_queue_segment_boundary);
740
741 /**
742 * blk_queue_dma_alignment - set dma length and memory alignment
743 * @q: the request queue for the device
744 * @mask: alignment mask
745 *
746 * description:
747 * set required memory and length aligment for direct dma transactions.
748 * this is used when buiding direct io requests for the queue.
749 *
750 **/
751 void blk_queue_dma_alignment(struct request_queue *q, int mask)
752 {
753 q->dma_alignment = mask;
754 }
755
756 EXPORT_SYMBOL(blk_queue_dma_alignment);
757
758 /**
759 * blk_queue_find_tag - find a request by its tag and queue
760 * @q: The request queue for the device
761 * @tag: The tag of the request
762 *
763 * Notes:
764 * Should be used when a device returns a tag and you want to match
765 * it with a request.
766 *
767 * no locks need be held.
768 **/
769 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
770 {
771 return blk_map_queue_find_tag(q->queue_tags, tag);
772 }
773
774 EXPORT_SYMBOL(blk_queue_find_tag);
775
776 /**
777 * __blk_free_tags - release a given set of tag maintenance info
778 * @bqt: the tag map to free
779 *
780 * Tries to free the specified @bqt@. Returns true if it was
781 * actually freed and false if there are still references using it
782 */
783 static int __blk_free_tags(struct blk_queue_tag *bqt)
784 {
785 int retval;
786
787 retval = atomic_dec_and_test(&bqt->refcnt);
788 if (retval) {
789 BUG_ON(bqt->busy);
790 BUG_ON(!list_empty(&bqt->busy_list));
791
792 kfree(bqt->tag_index);
793 bqt->tag_index = NULL;
794
795 kfree(bqt->tag_map);
796 bqt->tag_map = NULL;
797
798 kfree(bqt);
799
800 }
801
802 return retval;
803 }
804
805 /**
806 * __blk_queue_free_tags - release tag maintenance info
807 * @q: the request queue for the device
808 *
809 * Notes:
810 * blk_cleanup_queue() will take care of calling this function, if tagging
811 * has been used. So there's no need to call this directly.
812 **/
813 static void __blk_queue_free_tags(struct request_queue *q)
814 {
815 struct blk_queue_tag *bqt = q->queue_tags;
816
817 if (!bqt)
818 return;
819
820 __blk_free_tags(bqt);
821
822 q->queue_tags = NULL;
823 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
824 }
825
826
827 /**
828 * blk_free_tags - release a given set of tag maintenance info
829 * @bqt: the tag map to free
830 *
831 * For externally managed @bqt@ frees the map. Callers of this
832 * function must guarantee to have released all the queues that
833 * might have been using this tag map.
834 */
835 void blk_free_tags(struct blk_queue_tag *bqt)
836 {
837 if (unlikely(!__blk_free_tags(bqt)))
838 BUG();
839 }
840 EXPORT_SYMBOL(blk_free_tags);
841
842 /**
843 * blk_queue_free_tags - release tag maintenance info
844 * @q: the request queue for the device
845 *
846 * Notes:
847 * This is used to disabled tagged queuing to a device, yet leave
848 * queue in function.
849 **/
850 void blk_queue_free_tags(struct request_queue *q)
851 {
852 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
853 }
854
855 EXPORT_SYMBOL(blk_queue_free_tags);
856
857 static int
858 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
859 {
860 struct request **tag_index;
861 unsigned long *tag_map;
862 int nr_ulongs;
863
864 if (q && depth > q->nr_requests * 2) {
865 depth = q->nr_requests * 2;
866 printk(KERN_ERR "%s: adjusted depth to %d\n",
867 __FUNCTION__, depth);
868 }
869
870 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
871 if (!tag_index)
872 goto fail;
873
874 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
875 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
876 if (!tag_map)
877 goto fail;
878
879 tags->real_max_depth = depth;
880 tags->max_depth = depth;
881 tags->tag_index = tag_index;
882 tags->tag_map = tag_map;
883
884 return 0;
885 fail:
886 kfree(tag_index);
887 return -ENOMEM;
888 }
889
890 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
891 int depth)
892 {
893 struct blk_queue_tag *tags;
894
895 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
896 if (!tags)
897 goto fail;
898
899 if (init_tag_map(q, tags, depth))
900 goto fail;
901
902 INIT_LIST_HEAD(&tags->busy_list);
903 tags->busy = 0;
904 atomic_set(&tags->refcnt, 1);
905 return tags;
906 fail:
907 kfree(tags);
908 return NULL;
909 }
910
911 /**
912 * blk_init_tags - initialize the tag info for an external tag map
913 * @depth: the maximum queue depth supported
914 * @tags: the tag to use
915 **/
916 struct blk_queue_tag *blk_init_tags(int depth)
917 {
918 return __blk_queue_init_tags(NULL, depth);
919 }
920 EXPORT_SYMBOL(blk_init_tags);
921
922 /**
923 * blk_queue_init_tags - initialize the queue tag info
924 * @q: the request queue for the device
925 * @depth: the maximum queue depth supported
926 * @tags: the tag to use
927 **/
928 int blk_queue_init_tags(struct request_queue *q, int depth,
929 struct blk_queue_tag *tags)
930 {
931 int rc;
932
933 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
934
935 if (!tags && !q->queue_tags) {
936 tags = __blk_queue_init_tags(q, depth);
937
938 if (!tags)
939 goto fail;
940 } else if (q->queue_tags) {
941 if ((rc = blk_queue_resize_tags(q, depth)))
942 return rc;
943 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
944 return 0;
945 } else
946 atomic_inc(&tags->refcnt);
947
948 /*
949 * assign it, all done
950 */
951 q->queue_tags = tags;
952 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
953 return 0;
954 fail:
955 kfree(tags);
956 return -ENOMEM;
957 }
958
959 EXPORT_SYMBOL(blk_queue_init_tags);
960
961 /**
962 * blk_queue_resize_tags - change the queueing depth
963 * @q: the request queue for the device
964 * @new_depth: the new max command queueing depth
965 *
966 * Notes:
967 * Must be called with the queue lock held.
968 **/
969 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
970 {
971 struct blk_queue_tag *bqt = q->queue_tags;
972 struct request **tag_index;
973 unsigned long *tag_map;
974 int max_depth, nr_ulongs;
975
976 if (!bqt)
977 return -ENXIO;
978
979 /*
980 * if we already have large enough real_max_depth. just
981 * adjust max_depth. *NOTE* as requests with tag value
982 * between new_depth and real_max_depth can be in-flight, tag
983 * map can not be shrunk blindly here.
984 */
985 if (new_depth <= bqt->real_max_depth) {
986 bqt->max_depth = new_depth;
987 return 0;
988 }
989
990 /*
991 * Currently cannot replace a shared tag map with a new
992 * one, so error out if this is the case
993 */
994 if (atomic_read(&bqt->refcnt) != 1)
995 return -EBUSY;
996
997 /*
998 * save the old state info, so we can copy it back
999 */
1000 tag_index = bqt->tag_index;
1001 tag_map = bqt->tag_map;
1002 max_depth = bqt->real_max_depth;
1003
1004 if (init_tag_map(q, bqt, new_depth))
1005 return -ENOMEM;
1006
1007 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1008 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1009 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1010
1011 kfree(tag_index);
1012 kfree(tag_map);
1013 return 0;
1014 }
1015
1016 EXPORT_SYMBOL(blk_queue_resize_tags);
1017
1018 /**
1019 * blk_queue_end_tag - end tag operations for a request
1020 * @q: the request queue for the device
1021 * @rq: the request that has completed
1022 *
1023 * Description:
1024 * Typically called when end_that_request_first() returns 0, meaning
1025 * all transfers have been done for a request. It's important to call
1026 * this function before end_that_request_last(), as that will put the
1027 * request back on the free list thus corrupting the internal tag list.
1028 *
1029 * Notes:
1030 * queue lock must be held.
1031 **/
1032 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1033 {
1034 struct blk_queue_tag *bqt = q->queue_tags;
1035 int tag = rq->tag;
1036
1037 BUG_ON(tag == -1);
1038
1039 if (unlikely(tag >= bqt->real_max_depth))
1040 /*
1041 * This can happen after tag depth has been reduced.
1042 * FIXME: how about a warning or info message here?
1043 */
1044 return;
1045
1046 list_del_init(&rq->queuelist);
1047 rq->cmd_flags &= ~REQ_QUEUED;
1048 rq->tag = -1;
1049
1050 if (unlikely(bqt->tag_index[tag] == NULL))
1051 printk(KERN_ERR "%s: tag %d is missing\n",
1052 __FUNCTION__, tag);
1053
1054 bqt->tag_index[tag] = NULL;
1055
1056 /*
1057 * We use test_and_clear_bit's memory ordering properties here.
1058 * The tag_map bit acts as a lock for tag_index[bit], so we need
1059 * a barrer before clearing the bit (precisely: release semantics).
1060 * Could use clear_bit_unlock when it is merged.
1061 */
1062 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1063 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1064 __FUNCTION__, tag);
1065 return;
1066 }
1067
1068 bqt->busy--;
1069 }
1070
1071 EXPORT_SYMBOL(blk_queue_end_tag);
1072
1073 /**
1074 * blk_queue_start_tag - find a free tag and assign it
1075 * @q: the request queue for the device
1076 * @rq: the block request that needs tagging
1077 *
1078 * Description:
1079 * This can either be used as a stand-alone helper, or possibly be
1080 * assigned as the queue &prep_rq_fn (in which case &struct request
1081 * automagically gets a tag assigned). Note that this function
1082 * assumes that any type of request can be queued! if this is not
1083 * true for your device, you must check the request type before
1084 * calling this function. The request will also be removed from
1085 * the request queue, so it's the drivers responsibility to readd
1086 * it if it should need to be restarted for some reason.
1087 *
1088 * Notes:
1089 * queue lock must be held.
1090 **/
1091 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1092 {
1093 struct blk_queue_tag *bqt = q->queue_tags;
1094 int tag;
1095
1096 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1097 printk(KERN_ERR
1098 "%s: request %p for device [%s] already tagged %d",
1099 __FUNCTION__, rq,
1100 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1101 BUG();
1102 }
1103
1104 /*
1105 * Protect against shared tag maps, as we may not have exclusive
1106 * access to the tag map.
1107 */
1108 do {
1109 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1110 if (tag >= bqt->max_depth)
1111 return 1;
1112
1113 } while (test_and_set_bit(tag, bqt->tag_map));
1114 /*
1115 * We rely on test_and_set_bit providing lock memory ordering semantics
1116 * (could use test_and_set_bit_lock when it is merged).
1117 */
1118
1119 rq->cmd_flags |= REQ_QUEUED;
1120 rq->tag = tag;
1121 bqt->tag_index[tag] = rq;
1122 blkdev_dequeue_request(rq);
1123 list_add(&rq->queuelist, &bqt->busy_list);
1124 bqt->busy++;
1125 return 0;
1126 }
1127
1128 EXPORT_SYMBOL(blk_queue_start_tag);
1129
1130 /**
1131 * blk_queue_invalidate_tags - invalidate all pending tags
1132 * @q: the request queue for the device
1133 *
1134 * Description:
1135 * Hardware conditions may dictate a need to stop all pending requests.
1136 * In this case, we will safely clear the block side of the tag queue and
1137 * readd all requests to the request queue in the right order.
1138 *
1139 * Notes:
1140 * queue lock must be held.
1141 **/
1142 void blk_queue_invalidate_tags(struct request_queue *q)
1143 {
1144 struct blk_queue_tag *bqt = q->queue_tags;
1145 struct list_head *tmp, *n;
1146 struct request *rq;
1147
1148 list_for_each_safe(tmp, n, &bqt->busy_list) {
1149 rq = list_entry_rq(tmp);
1150
1151 if (rq->tag == -1) {
1152 printk(KERN_ERR
1153 "%s: bad tag found on list\n", __FUNCTION__);
1154 list_del_init(&rq->queuelist);
1155 rq->cmd_flags &= ~REQ_QUEUED;
1156 } else
1157 blk_queue_end_tag(q, rq);
1158
1159 rq->cmd_flags &= ~REQ_STARTED;
1160 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1161 }
1162 }
1163
1164 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1165
1166 void blk_dump_rq_flags(struct request *rq, char *msg)
1167 {
1168 int bit;
1169
1170 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1171 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1172 rq->cmd_flags);
1173
1174 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1175 rq->nr_sectors,
1176 rq->current_nr_sectors);
1177 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1178
1179 if (blk_pc_request(rq)) {
1180 printk("cdb: ");
1181 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1182 printk("%02x ", rq->cmd[bit]);
1183 printk("\n");
1184 }
1185 }
1186
1187 EXPORT_SYMBOL(blk_dump_rq_flags);
1188
1189 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1190 {
1191 struct request rq;
1192 struct bio *nxt = bio->bi_next;
1193 rq.q = q;
1194 rq.bio = rq.biotail = bio;
1195 bio->bi_next = NULL;
1196 blk_recalc_rq_segments(&rq);
1197 bio->bi_next = nxt;
1198 bio->bi_phys_segments = rq.nr_phys_segments;
1199 bio->bi_hw_segments = rq.nr_hw_segments;
1200 bio->bi_flags |= (1 << BIO_SEG_VALID);
1201 }
1202 EXPORT_SYMBOL(blk_recount_segments);
1203
1204 static void blk_recalc_rq_segments(struct request *rq)
1205 {
1206 int nr_phys_segs;
1207 int nr_hw_segs;
1208 unsigned int phys_size;
1209 unsigned int hw_size;
1210 struct bio_vec *bv, *bvprv = NULL;
1211 int seg_size;
1212 int hw_seg_size;
1213 int cluster;
1214 struct req_iterator iter;
1215 int high, highprv = 1;
1216 struct request_queue *q = rq->q;
1217
1218 if (!rq->bio)
1219 return;
1220
1221 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1222 hw_seg_size = seg_size = 0;
1223 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1224 rq_for_each_segment(bv, rq, iter) {
1225 /*
1226 * the trick here is making sure that a high page is never
1227 * considered part of another segment, since that might
1228 * change with the bounce page.
1229 */
1230 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1231 if (high || highprv)
1232 goto new_hw_segment;
1233 if (cluster) {
1234 if (seg_size + bv->bv_len > q->max_segment_size)
1235 goto new_segment;
1236 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1237 goto new_segment;
1238 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1239 goto new_segment;
1240 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1241 goto new_hw_segment;
1242
1243 seg_size += bv->bv_len;
1244 hw_seg_size += bv->bv_len;
1245 bvprv = bv;
1246 continue;
1247 }
1248 new_segment:
1249 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1250 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1251 hw_seg_size += bv->bv_len;
1252 else {
1253 new_hw_segment:
1254 if (nr_hw_segs == 1 &&
1255 hw_seg_size > rq->bio->bi_hw_front_size)
1256 rq->bio->bi_hw_front_size = hw_seg_size;
1257 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1258 nr_hw_segs++;
1259 }
1260
1261 nr_phys_segs++;
1262 bvprv = bv;
1263 seg_size = bv->bv_len;
1264 highprv = high;
1265 }
1266
1267 if (nr_hw_segs == 1 &&
1268 hw_seg_size > rq->bio->bi_hw_front_size)
1269 rq->bio->bi_hw_front_size = hw_seg_size;
1270 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1271 rq->biotail->bi_hw_back_size = hw_seg_size;
1272 rq->nr_phys_segments = nr_phys_segs;
1273 rq->nr_hw_segments = nr_hw_segs;
1274 }
1275
1276 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1277 struct bio *nxt)
1278 {
1279 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1280 return 0;
1281
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1283 return 0;
1284 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1285 return 0;
1286
1287 /*
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1290 */
1291 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1292 return 1;
1293
1294 return 0;
1295 }
1296
1297 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1298 struct bio *nxt)
1299 {
1300 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1301 blk_recount_segments(q, bio);
1302 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1303 blk_recount_segments(q, nxt);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1306 return 0;
1307 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1308 return 0;
1309
1310 return 1;
1311 }
1312
1313 /*
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1316 */
1317 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1318 struct scatterlist *sg)
1319 {
1320 struct bio_vec *bvec, *bvprv;
1321 struct req_iterator iter;
1322 int nsegs, cluster;
1323
1324 nsegs = 0;
1325 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1326
1327 /*
1328 * for each bio in rq
1329 */
1330 bvprv = NULL;
1331 rq_for_each_segment(bvec, rq, iter) {
1332 int nbytes = bvec->bv_len;
1333
1334 if (bvprv && cluster) {
1335 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1336 goto new_segment;
1337
1338 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1339 goto new_segment;
1340 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1341 goto new_segment;
1342
1343 sg[nsegs - 1].length += nbytes;
1344 } else {
1345 new_segment:
1346 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1347 sg[nsegs].page = bvec->bv_page;
1348 sg[nsegs].length = nbytes;
1349 sg[nsegs].offset = bvec->bv_offset;
1350
1351 nsegs++;
1352 }
1353 bvprv = bvec;
1354 } /* segments in rq */
1355
1356 return nsegs;
1357 }
1358
1359 EXPORT_SYMBOL(blk_rq_map_sg);
1360
1361 /*
1362 * the standard queue merge functions, can be overridden with device
1363 * specific ones if so desired
1364 */
1365
1366 static inline int ll_new_mergeable(struct request_queue *q,
1367 struct request *req,
1368 struct bio *bio)
1369 {
1370 int nr_phys_segs = bio_phys_segments(q, bio);
1371
1372 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1373 req->cmd_flags |= REQ_NOMERGE;
1374 if (req == q->last_merge)
1375 q->last_merge = NULL;
1376 return 0;
1377 }
1378
1379 /*
1380 * A hw segment is just getting larger, bump just the phys
1381 * counter.
1382 */
1383 req->nr_phys_segments += nr_phys_segs;
1384 return 1;
1385 }
1386
1387 static inline int ll_new_hw_segment(struct request_queue *q,
1388 struct request *req,
1389 struct bio *bio)
1390 {
1391 int nr_hw_segs = bio_hw_segments(q, bio);
1392 int nr_phys_segs = bio_phys_segments(q, bio);
1393
1394 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1395 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1396 req->cmd_flags |= REQ_NOMERGE;
1397 if (req == q->last_merge)
1398 q->last_merge = NULL;
1399 return 0;
1400 }
1401
1402 /*
1403 * This will form the start of a new hw segment. Bump both
1404 * counters.
1405 */
1406 req->nr_hw_segments += nr_hw_segs;
1407 req->nr_phys_segments += nr_phys_segs;
1408 return 1;
1409 }
1410
1411 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1412 struct bio *bio)
1413 {
1414 unsigned short max_sectors;
1415 int len;
1416
1417 if (unlikely(blk_pc_request(req)))
1418 max_sectors = q->max_hw_sectors;
1419 else
1420 max_sectors = q->max_sectors;
1421
1422 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1423 req->cmd_flags |= REQ_NOMERGE;
1424 if (req == q->last_merge)
1425 q->last_merge = NULL;
1426 return 0;
1427 }
1428 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1429 blk_recount_segments(q, req->biotail);
1430 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1431 blk_recount_segments(q, bio);
1432 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1433 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1434 !BIOVEC_VIRT_OVERSIZE(len)) {
1435 int mergeable = ll_new_mergeable(q, req, bio);
1436
1437 if (mergeable) {
1438 if (req->nr_hw_segments == 1)
1439 req->bio->bi_hw_front_size = len;
1440 if (bio->bi_hw_segments == 1)
1441 bio->bi_hw_back_size = len;
1442 }
1443 return mergeable;
1444 }
1445
1446 return ll_new_hw_segment(q, req, bio);
1447 }
1448
1449 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1450 struct bio *bio)
1451 {
1452 unsigned short max_sectors;
1453 int len;
1454
1455 if (unlikely(blk_pc_request(req)))
1456 max_sectors = q->max_hw_sectors;
1457 else
1458 max_sectors = q->max_sectors;
1459
1460
1461 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1462 req->cmd_flags |= REQ_NOMERGE;
1463 if (req == q->last_merge)
1464 q->last_merge = NULL;
1465 return 0;
1466 }
1467 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1468 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1469 blk_recount_segments(q, bio);
1470 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1471 blk_recount_segments(q, req->bio);
1472 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1473 !BIOVEC_VIRT_OVERSIZE(len)) {
1474 int mergeable = ll_new_mergeable(q, req, bio);
1475
1476 if (mergeable) {
1477 if (bio->bi_hw_segments == 1)
1478 bio->bi_hw_front_size = len;
1479 if (req->nr_hw_segments == 1)
1480 req->biotail->bi_hw_back_size = len;
1481 }
1482 return mergeable;
1483 }
1484
1485 return ll_new_hw_segment(q, req, bio);
1486 }
1487
1488 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1489 struct request *next)
1490 {
1491 int total_phys_segments;
1492 int total_hw_segments;
1493
1494 /*
1495 * First check if the either of the requests are re-queued
1496 * requests. Can't merge them if they are.
1497 */
1498 if (req->special || next->special)
1499 return 0;
1500
1501 /*
1502 * Will it become too large?
1503 */
1504 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1505 return 0;
1506
1507 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1508 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1509 total_phys_segments--;
1510
1511 if (total_phys_segments > q->max_phys_segments)
1512 return 0;
1513
1514 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1515 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1516 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1517 /*
1518 * propagate the combined length to the end of the requests
1519 */
1520 if (req->nr_hw_segments == 1)
1521 req->bio->bi_hw_front_size = len;
1522 if (next->nr_hw_segments == 1)
1523 next->biotail->bi_hw_back_size = len;
1524 total_hw_segments--;
1525 }
1526
1527 if (total_hw_segments > q->max_hw_segments)
1528 return 0;
1529
1530 /* Merge is OK... */
1531 req->nr_phys_segments = total_phys_segments;
1532 req->nr_hw_segments = total_hw_segments;
1533 return 1;
1534 }
1535
1536 /*
1537 * "plug" the device if there are no outstanding requests: this will
1538 * force the transfer to start only after we have put all the requests
1539 * on the list.
1540 *
1541 * This is called with interrupts off and no requests on the queue and
1542 * with the queue lock held.
1543 */
1544 void blk_plug_device(struct request_queue *q)
1545 {
1546 WARN_ON(!irqs_disabled());
1547
1548 /*
1549 * don't plug a stopped queue, it must be paired with blk_start_queue()
1550 * which will restart the queueing
1551 */
1552 if (blk_queue_stopped(q))
1553 return;
1554
1555 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1556 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1557 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1558 }
1559 }
1560
1561 EXPORT_SYMBOL(blk_plug_device);
1562
1563 /*
1564 * remove the queue from the plugged list, if present. called with
1565 * queue lock held and interrupts disabled.
1566 */
1567 int blk_remove_plug(struct request_queue *q)
1568 {
1569 WARN_ON(!irqs_disabled());
1570
1571 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1572 return 0;
1573
1574 del_timer(&q->unplug_timer);
1575 return 1;
1576 }
1577
1578 EXPORT_SYMBOL(blk_remove_plug);
1579
1580 /*
1581 * remove the plug and let it rip..
1582 */
1583 void __generic_unplug_device(struct request_queue *q)
1584 {
1585 if (unlikely(blk_queue_stopped(q)))
1586 return;
1587
1588 if (!blk_remove_plug(q))
1589 return;
1590
1591 q->request_fn(q);
1592 }
1593 EXPORT_SYMBOL(__generic_unplug_device);
1594
1595 /**
1596 * generic_unplug_device - fire a request queue
1597 * @q: The &struct request_queue in question
1598 *
1599 * Description:
1600 * Linux uses plugging to build bigger requests queues before letting
1601 * the device have at them. If a queue is plugged, the I/O scheduler
1602 * is still adding and merging requests on the queue. Once the queue
1603 * gets unplugged, the request_fn defined for the queue is invoked and
1604 * transfers started.
1605 **/
1606 void generic_unplug_device(struct request_queue *q)
1607 {
1608 spin_lock_irq(q->queue_lock);
1609 __generic_unplug_device(q);
1610 spin_unlock_irq(q->queue_lock);
1611 }
1612 EXPORT_SYMBOL(generic_unplug_device);
1613
1614 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1615 struct page *page)
1616 {
1617 struct request_queue *q = bdi->unplug_io_data;
1618
1619 /*
1620 * devices don't necessarily have an ->unplug_fn defined
1621 */
1622 if (q->unplug_fn) {
1623 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1624 q->rq.count[READ] + q->rq.count[WRITE]);
1625
1626 q->unplug_fn(q);
1627 }
1628 }
1629
1630 static void blk_unplug_work(struct work_struct *work)
1631 {
1632 struct request_queue *q =
1633 container_of(work, struct request_queue, unplug_work);
1634
1635 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1636 q->rq.count[READ] + q->rq.count[WRITE]);
1637
1638 q->unplug_fn(q);
1639 }
1640
1641 static void blk_unplug_timeout(unsigned long data)
1642 {
1643 struct request_queue *q = (struct request_queue *)data;
1644
1645 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1646 q->rq.count[READ] + q->rq.count[WRITE]);
1647
1648 kblockd_schedule_work(&q->unplug_work);
1649 }
1650
1651 /**
1652 * blk_start_queue - restart a previously stopped queue
1653 * @q: The &struct request_queue in question
1654 *
1655 * Description:
1656 * blk_start_queue() will clear the stop flag on the queue, and call
1657 * the request_fn for the queue if it was in a stopped state when
1658 * entered. Also see blk_stop_queue(). Queue lock must be held.
1659 **/
1660 void blk_start_queue(struct request_queue *q)
1661 {
1662 WARN_ON(!irqs_disabled());
1663
1664 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1665
1666 /*
1667 * one level of recursion is ok and is much faster than kicking
1668 * the unplug handling
1669 */
1670 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1671 q->request_fn(q);
1672 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1673 } else {
1674 blk_plug_device(q);
1675 kblockd_schedule_work(&q->unplug_work);
1676 }
1677 }
1678
1679 EXPORT_SYMBOL(blk_start_queue);
1680
1681 /**
1682 * blk_stop_queue - stop a queue
1683 * @q: The &struct request_queue in question
1684 *
1685 * Description:
1686 * The Linux block layer assumes that a block driver will consume all
1687 * entries on the request queue when the request_fn strategy is called.
1688 * Often this will not happen, because of hardware limitations (queue
1689 * depth settings). If a device driver gets a 'queue full' response,
1690 * or if it simply chooses not to queue more I/O at one point, it can
1691 * call this function to prevent the request_fn from being called until
1692 * the driver has signalled it's ready to go again. This happens by calling
1693 * blk_start_queue() to restart queue operations. Queue lock must be held.
1694 **/
1695 void blk_stop_queue(struct request_queue *q)
1696 {
1697 blk_remove_plug(q);
1698 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1699 }
1700 EXPORT_SYMBOL(blk_stop_queue);
1701
1702 /**
1703 * blk_sync_queue - cancel any pending callbacks on a queue
1704 * @q: the queue
1705 *
1706 * Description:
1707 * The block layer may perform asynchronous callback activity
1708 * on a queue, such as calling the unplug function after a timeout.
1709 * A block device may call blk_sync_queue to ensure that any
1710 * such activity is cancelled, thus allowing it to release resources
1711 * that the callbacks might use. The caller must already have made sure
1712 * that its ->make_request_fn will not re-add plugging prior to calling
1713 * this function.
1714 *
1715 */
1716 void blk_sync_queue(struct request_queue *q)
1717 {
1718 del_timer_sync(&q->unplug_timer);
1719 }
1720 EXPORT_SYMBOL(blk_sync_queue);
1721
1722 /**
1723 * blk_run_queue - run a single device queue
1724 * @q: The queue to run
1725 */
1726 void blk_run_queue(struct request_queue *q)
1727 {
1728 unsigned long flags;
1729
1730 spin_lock_irqsave(q->queue_lock, flags);
1731 blk_remove_plug(q);
1732
1733 /*
1734 * Only recurse once to avoid overrunning the stack, let the unplug
1735 * handling reinvoke the handler shortly if we already got there.
1736 */
1737 if (!elv_queue_empty(q)) {
1738 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1739 q->request_fn(q);
1740 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1741 } else {
1742 blk_plug_device(q);
1743 kblockd_schedule_work(&q->unplug_work);
1744 }
1745 }
1746
1747 spin_unlock_irqrestore(q->queue_lock, flags);
1748 }
1749 EXPORT_SYMBOL(blk_run_queue);
1750
1751 /**
1752 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1753 * @kobj: the kobj belonging of the request queue to be released
1754 *
1755 * Description:
1756 * blk_cleanup_queue is the pair to blk_init_queue() or
1757 * blk_queue_make_request(). It should be called when a request queue is
1758 * being released; typically when a block device is being de-registered.
1759 * Currently, its primary task it to free all the &struct request
1760 * structures that were allocated to the queue and the queue itself.
1761 *
1762 * Caveat:
1763 * Hopefully the low level driver will have finished any
1764 * outstanding requests first...
1765 **/
1766 static void blk_release_queue(struct kobject *kobj)
1767 {
1768 struct request_queue *q =
1769 container_of(kobj, struct request_queue, kobj);
1770 struct request_list *rl = &q->rq;
1771
1772 blk_sync_queue(q);
1773
1774 if (rl->rq_pool)
1775 mempool_destroy(rl->rq_pool);
1776
1777 if (q->queue_tags)
1778 __blk_queue_free_tags(q);
1779
1780 blk_trace_shutdown(q);
1781
1782 kmem_cache_free(requestq_cachep, q);
1783 }
1784
1785 void blk_put_queue(struct request_queue *q)
1786 {
1787 kobject_put(&q->kobj);
1788 }
1789 EXPORT_SYMBOL(blk_put_queue);
1790
1791 void blk_cleanup_queue(struct request_queue * q)
1792 {
1793 mutex_lock(&q->sysfs_lock);
1794 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1795 mutex_unlock(&q->sysfs_lock);
1796
1797 if (q->elevator)
1798 elevator_exit(q->elevator);
1799
1800 blk_put_queue(q);
1801 }
1802
1803 EXPORT_SYMBOL(blk_cleanup_queue);
1804
1805 static int blk_init_free_list(struct request_queue *q)
1806 {
1807 struct request_list *rl = &q->rq;
1808
1809 rl->count[READ] = rl->count[WRITE] = 0;
1810 rl->starved[READ] = rl->starved[WRITE] = 0;
1811 rl->elvpriv = 0;
1812 init_waitqueue_head(&rl->wait[READ]);
1813 init_waitqueue_head(&rl->wait[WRITE]);
1814
1815 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1816 mempool_free_slab, request_cachep, q->node);
1817
1818 if (!rl->rq_pool)
1819 return -ENOMEM;
1820
1821 return 0;
1822 }
1823
1824 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1825 {
1826 return blk_alloc_queue_node(gfp_mask, -1);
1827 }
1828 EXPORT_SYMBOL(blk_alloc_queue);
1829
1830 static struct kobj_type queue_ktype;
1831
1832 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1833 {
1834 struct request_queue *q;
1835
1836 q = kmem_cache_alloc_node(requestq_cachep,
1837 gfp_mask | __GFP_ZERO, node_id);
1838 if (!q)
1839 return NULL;
1840
1841 init_timer(&q->unplug_timer);
1842
1843 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1844 q->kobj.ktype = &queue_ktype;
1845 kobject_init(&q->kobj);
1846
1847 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1848 q->backing_dev_info.unplug_io_data = q;
1849
1850 mutex_init(&q->sysfs_lock);
1851
1852 return q;
1853 }
1854 EXPORT_SYMBOL(blk_alloc_queue_node);
1855
1856 /**
1857 * blk_init_queue - prepare a request queue for use with a block device
1858 * @rfn: The function to be called to process requests that have been
1859 * placed on the queue.
1860 * @lock: Request queue spin lock
1861 *
1862 * Description:
1863 * If a block device wishes to use the standard request handling procedures,
1864 * which sorts requests and coalesces adjacent requests, then it must
1865 * call blk_init_queue(). The function @rfn will be called when there
1866 * are requests on the queue that need to be processed. If the device
1867 * supports plugging, then @rfn may not be called immediately when requests
1868 * are available on the queue, but may be called at some time later instead.
1869 * Plugged queues are generally unplugged when a buffer belonging to one
1870 * of the requests on the queue is needed, or due to memory pressure.
1871 *
1872 * @rfn is not required, or even expected, to remove all requests off the
1873 * queue, but only as many as it can handle at a time. If it does leave
1874 * requests on the queue, it is responsible for arranging that the requests
1875 * get dealt with eventually.
1876 *
1877 * The queue spin lock must be held while manipulating the requests on the
1878 * request queue; this lock will be taken also from interrupt context, so irq
1879 * disabling is needed for it.
1880 *
1881 * Function returns a pointer to the initialized request queue, or NULL if
1882 * it didn't succeed.
1883 *
1884 * Note:
1885 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1886 * when the block device is deactivated (such as at module unload).
1887 **/
1888
1889 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1890 {
1891 return blk_init_queue_node(rfn, lock, -1);
1892 }
1893 EXPORT_SYMBOL(blk_init_queue);
1894
1895 struct request_queue *
1896 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1897 {
1898 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1899
1900 if (!q)
1901 return NULL;
1902
1903 q->node = node_id;
1904 if (blk_init_free_list(q)) {
1905 kmem_cache_free(requestq_cachep, q);
1906 return NULL;
1907 }
1908
1909 /*
1910 * if caller didn't supply a lock, they get per-queue locking with
1911 * our embedded lock
1912 */
1913 if (!lock) {
1914 spin_lock_init(&q->__queue_lock);
1915 lock = &q->__queue_lock;
1916 }
1917
1918 q->request_fn = rfn;
1919 q->prep_rq_fn = NULL;
1920 q->unplug_fn = generic_unplug_device;
1921 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1922 q->queue_lock = lock;
1923
1924 blk_queue_segment_boundary(q, 0xffffffff);
1925
1926 blk_queue_make_request(q, __make_request);
1927 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1928
1929 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1930 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1931
1932 q->sg_reserved_size = INT_MAX;
1933
1934 /*
1935 * all done
1936 */
1937 if (!elevator_init(q, NULL)) {
1938 blk_queue_congestion_threshold(q);
1939 return q;
1940 }
1941
1942 blk_put_queue(q);
1943 return NULL;
1944 }
1945 EXPORT_SYMBOL(blk_init_queue_node);
1946
1947 int blk_get_queue(struct request_queue *q)
1948 {
1949 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1950 kobject_get(&q->kobj);
1951 return 0;
1952 }
1953
1954 return 1;
1955 }
1956
1957 EXPORT_SYMBOL(blk_get_queue);
1958
1959 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1960 {
1961 if (rq->cmd_flags & REQ_ELVPRIV)
1962 elv_put_request(q, rq);
1963 mempool_free(rq, q->rq.rq_pool);
1964 }
1965
1966 static struct request *
1967 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1968 {
1969 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1970
1971 if (!rq)
1972 return NULL;
1973
1974 /*
1975 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1976 * see bio.h and blkdev.h
1977 */
1978 rq->cmd_flags = rw | REQ_ALLOCED;
1979
1980 if (priv) {
1981 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1982 mempool_free(rq, q->rq.rq_pool);
1983 return NULL;
1984 }
1985 rq->cmd_flags |= REQ_ELVPRIV;
1986 }
1987
1988 return rq;
1989 }
1990
1991 /*
1992 * ioc_batching returns true if the ioc is a valid batching request and
1993 * should be given priority access to a request.
1994 */
1995 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1996 {
1997 if (!ioc)
1998 return 0;
1999
2000 /*
2001 * Make sure the process is able to allocate at least 1 request
2002 * even if the batch times out, otherwise we could theoretically
2003 * lose wakeups.
2004 */
2005 return ioc->nr_batch_requests == q->nr_batching ||
2006 (ioc->nr_batch_requests > 0
2007 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2008 }
2009
2010 /*
2011 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2012 * will cause the process to be a "batcher" on all queues in the system. This
2013 * is the behaviour we want though - once it gets a wakeup it should be given
2014 * a nice run.
2015 */
2016 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2017 {
2018 if (!ioc || ioc_batching(q, ioc))
2019 return;
2020
2021 ioc->nr_batch_requests = q->nr_batching;
2022 ioc->last_waited = jiffies;
2023 }
2024
2025 static void __freed_request(struct request_queue *q, int rw)
2026 {
2027 struct request_list *rl = &q->rq;
2028
2029 if (rl->count[rw] < queue_congestion_off_threshold(q))
2030 blk_clear_queue_congested(q, rw);
2031
2032 if (rl->count[rw] + 1 <= q->nr_requests) {
2033 if (waitqueue_active(&rl->wait[rw]))
2034 wake_up(&rl->wait[rw]);
2035
2036 blk_clear_queue_full(q, rw);
2037 }
2038 }
2039
2040 /*
2041 * A request has just been released. Account for it, update the full and
2042 * congestion status, wake up any waiters. Called under q->queue_lock.
2043 */
2044 static void freed_request(struct request_queue *q, int rw, int priv)
2045 {
2046 struct request_list *rl = &q->rq;
2047
2048 rl->count[rw]--;
2049 if (priv)
2050 rl->elvpriv--;
2051
2052 __freed_request(q, rw);
2053
2054 if (unlikely(rl->starved[rw ^ 1]))
2055 __freed_request(q, rw ^ 1);
2056 }
2057
2058 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2059 /*
2060 * Get a free request, queue_lock must be held.
2061 * Returns NULL on failure, with queue_lock held.
2062 * Returns !NULL on success, with queue_lock *not held*.
2063 */
2064 static struct request *get_request(struct request_queue *q, int rw_flags,
2065 struct bio *bio, gfp_t gfp_mask)
2066 {
2067 struct request *rq = NULL;
2068 struct request_list *rl = &q->rq;
2069 struct io_context *ioc = NULL;
2070 const int rw = rw_flags & 0x01;
2071 int may_queue, priv;
2072
2073 may_queue = elv_may_queue(q, rw_flags);
2074 if (may_queue == ELV_MQUEUE_NO)
2075 goto rq_starved;
2076
2077 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2078 if (rl->count[rw]+1 >= q->nr_requests) {
2079 ioc = current_io_context(GFP_ATOMIC, q->node);
2080 /*
2081 * The queue will fill after this allocation, so set
2082 * it as full, and mark this process as "batching".
2083 * This process will be allowed to complete a batch of
2084 * requests, others will be blocked.
2085 */
2086 if (!blk_queue_full(q, rw)) {
2087 ioc_set_batching(q, ioc);
2088 blk_set_queue_full(q, rw);
2089 } else {
2090 if (may_queue != ELV_MQUEUE_MUST
2091 && !ioc_batching(q, ioc)) {
2092 /*
2093 * The queue is full and the allocating
2094 * process is not a "batcher", and not
2095 * exempted by the IO scheduler
2096 */
2097 goto out;
2098 }
2099 }
2100 }
2101 blk_set_queue_congested(q, rw);
2102 }
2103
2104 /*
2105 * Only allow batching queuers to allocate up to 50% over the defined
2106 * limit of requests, otherwise we could have thousands of requests
2107 * allocated with any setting of ->nr_requests
2108 */
2109 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2110 goto out;
2111
2112 rl->count[rw]++;
2113 rl->starved[rw] = 0;
2114
2115 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2116 if (priv)
2117 rl->elvpriv++;
2118
2119 spin_unlock_irq(q->queue_lock);
2120
2121 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2122 if (unlikely(!rq)) {
2123 /*
2124 * Allocation failed presumably due to memory. Undo anything
2125 * we might have messed up.
2126 *
2127 * Allocating task should really be put onto the front of the
2128 * wait queue, but this is pretty rare.
2129 */
2130 spin_lock_irq(q->queue_lock);
2131 freed_request(q, rw, priv);
2132
2133 /*
2134 * in the very unlikely event that allocation failed and no
2135 * requests for this direction was pending, mark us starved
2136 * so that freeing of a request in the other direction will
2137 * notice us. another possible fix would be to split the
2138 * rq mempool into READ and WRITE
2139 */
2140 rq_starved:
2141 if (unlikely(rl->count[rw] == 0))
2142 rl->starved[rw] = 1;
2143
2144 goto out;
2145 }
2146
2147 /*
2148 * ioc may be NULL here, and ioc_batching will be false. That's
2149 * OK, if the queue is under the request limit then requests need
2150 * not count toward the nr_batch_requests limit. There will always
2151 * be some limit enforced by BLK_BATCH_TIME.
2152 */
2153 if (ioc_batching(q, ioc))
2154 ioc->nr_batch_requests--;
2155
2156 rq_init(q, rq);
2157
2158 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2159 out:
2160 return rq;
2161 }
2162
2163 /*
2164 * No available requests for this queue, unplug the device and wait for some
2165 * requests to become available.
2166 *
2167 * Called with q->queue_lock held, and returns with it unlocked.
2168 */
2169 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2170 struct bio *bio)
2171 {
2172 const int rw = rw_flags & 0x01;
2173 struct request *rq;
2174
2175 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2176 while (!rq) {
2177 DEFINE_WAIT(wait);
2178 struct request_list *rl = &q->rq;
2179
2180 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2181 TASK_UNINTERRUPTIBLE);
2182
2183 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2184
2185 if (!rq) {
2186 struct io_context *ioc;
2187
2188 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2189
2190 __generic_unplug_device(q);
2191 spin_unlock_irq(q->queue_lock);
2192 io_schedule();
2193
2194 /*
2195 * After sleeping, we become a "batching" process and
2196 * will be able to allocate at least one request, and
2197 * up to a big batch of them for a small period time.
2198 * See ioc_batching, ioc_set_batching
2199 */
2200 ioc = current_io_context(GFP_NOIO, q->node);
2201 ioc_set_batching(q, ioc);
2202
2203 spin_lock_irq(q->queue_lock);
2204 }
2205 finish_wait(&rl->wait[rw], &wait);
2206 }
2207
2208 return rq;
2209 }
2210
2211 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2212 {
2213 struct request *rq;
2214
2215 BUG_ON(rw != READ && rw != WRITE);
2216
2217 spin_lock_irq(q->queue_lock);
2218 if (gfp_mask & __GFP_WAIT) {
2219 rq = get_request_wait(q, rw, NULL);
2220 } else {
2221 rq = get_request(q, rw, NULL, gfp_mask);
2222 if (!rq)
2223 spin_unlock_irq(q->queue_lock);
2224 }
2225 /* q->queue_lock is unlocked at this point */
2226
2227 return rq;
2228 }
2229 EXPORT_SYMBOL(blk_get_request);
2230
2231 /**
2232 * blk_start_queueing - initiate dispatch of requests to device
2233 * @q: request queue to kick into gear
2234 *
2235 * This is basically a helper to remove the need to know whether a queue
2236 * is plugged or not if someone just wants to initiate dispatch of requests
2237 * for this queue.
2238 *
2239 * The queue lock must be held with interrupts disabled.
2240 */
2241 void blk_start_queueing(struct request_queue *q)
2242 {
2243 if (!blk_queue_plugged(q))
2244 q->request_fn(q);
2245 else
2246 __generic_unplug_device(q);
2247 }
2248 EXPORT_SYMBOL(blk_start_queueing);
2249
2250 /**
2251 * blk_requeue_request - put a request back on queue
2252 * @q: request queue where request should be inserted
2253 * @rq: request to be inserted
2254 *
2255 * Description:
2256 * Drivers often keep queueing requests until the hardware cannot accept
2257 * more, when that condition happens we need to put the request back
2258 * on the queue. Must be called with queue lock held.
2259 */
2260 void blk_requeue_request(struct request_queue *q, struct request *rq)
2261 {
2262 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2263
2264 if (blk_rq_tagged(rq))
2265 blk_queue_end_tag(q, rq);
2266
2267 elv_requeue_request(q, rq);
2268 }
2269
2270 EXPORT_SYMBOL(blk_requeue_request);
2271
2272 /**
2273 * blk_insert_request - insert a special request in to a request queue
2274 * @q: request queue where request should be inserted
2275 * @rq: request to be inserted
2276 * @at_head: insert request at head or tail of queue
2277 * @data: private data
2278 *
2279 * Description:
2280 * Many block devices need to execute commands asynchronously, so they don't
2281 * block the whole kernel from preemption during request execution. This is
2282 * accomplished normally by inserting aritficial requests tagged as
2283 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2284 * scheduled for actual execution by the request queue.
2285 *
2286 * We have the option of inserting the head or the tail of the queue.
2287 * Typically we use the tail for new ioctls and so forth. We use the head
2288 * of the queue for things like a QUEUE_FULL message from a device, or a
2289 * host that is unable to accept a particular command.
2290 */
2291 void blk_insert_request(struct request_queue *q, struct request *rq,
2292 int at_head, void *data)
2293 {
2294 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2295 unsigned long flags;
2296
2297 /*
2298 * tell I/O scheduler that this isn't a regular read/write (ie it
2299 * must not attempt merges on this) and that it acts as a soft
2300 * barrier
2301 */
2302 rq->cmd_type = REQ_TYPE_SPECIAL;
2303 rq->cmd_flags |= REQ_SOFTBARRIER;
2304
2305 rq->special = data;
2306
2307 spin_lock_irqsave(q->queue_lock, flags);
2308
2309 /*
2310 * If command is tagged, release the tag
2311 */
2312 if (blk_rq_tagged(rq))
2313 blk_queue_end_tag(q, rq);
2314
2315 drive_stat_acct(rq, rq->nr_sectors, 1);
2316 __elv_add_request(q, rq, where, 0);
2317 blk_start_queueing(q);
2318 spin_unlock_irqrestore(q->queue_lock, flags);
2319 }
2320
2321 EXPORT_SYMBOL(blk_insert_request);
2322
2323 static int __blk_rq_unmap_user(struct bio *bio)
2324 {
2325 int ret = 0;
2326
2327 if (bio) {
2328 if (bio_flagged(bio, BIO_USER_MAPPED))
2329 bio_unmap_user(bio);
2330 else
2331 ret = bio_uncopy_user(bio);
2332 }
2333
2334 return ret;
2335 }
2336
2337 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2338 struct bio *bio)
2339 {
2340 if (!rq->bio)
2341 blk_rq_bio_prep(q, rq, bio);
2342 else if (!ll_back_merge_fn(q, rq, bio))
2343 return -EINVAL;
2344 else {
2345 rq->biotail->bi_next = bio;
2346 rq->biotail = bio;
2347
2348 rq->data_len += bio->bi_size;
2349 }
2350 return 0;
2351 }
2352 EXPORT_SYMBOL(blk_rq_append_bio);
2353
2354 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2355 void __user *ubuf, unsigned int len)
2356 {
2357 unsigned long uaddr;
2358 struct bio *bio, *orig_bio;
2359 int reading, ret;
2360
2361 reading = rq_data_dir(rq) == READ;
2362
2363 /*
2364 * if alignment requirement is satisfied, map in user pages for
2365 * direct dma. else, set up kernel bounce buffers
2366 */
2367 uaddr = (unsigned long) ubuf;
2368 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2369 bio = bio_map_user(q, NULL, uaddr, len, reading);
2370 else
2371 bio = bio_copy_user(q, uaddr, len, reading);
2372
2373 if (IS_ERR(bio))
2374 return PTR_ERR(bio);
2375
2376 orig_bio = bio;
2377 blk_queue_bounce(q, &bio);
2378
2379 /*
2380 * We link the bounce buffer in and could have to traverse it
2381 * later so we have to get a ref to prevent it from being freed
2382 */
2383 bio_get(bio);
2384
2385 ret = blk_rq_append_bio(q, rq, bio);
2386 if (!ret)
2387 return bio->bi_size;
2388
2389 /* if it was boucned we must call the end io function */
2390 bio_endio(bio, bio->bi_size, 0);
2391 __blk_rq_unmap_user(orig_bio);
2392 bio_put(bio);
2393 return ret;
2394 }
2395
2396 /**
2397 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2398 * @q: request queue where request should be inserted
2399 * @rq: request structure to fill
2400 * @ubuf: the user buffer
2401 * @len: length of user data
2402 *
2403 * Description:
2404 * Data will be mapped directly for zero copy io, if possible. Otherwise
2405 * a kernel bounce buffer is used.
2406 *
2407 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2408 * still in process context.
2409 *
2410 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2411 * before being submitted to the device, as pages mapped may be out of
2412 * reach. It's the callers responsibility to make sure this happens. The
2413 * original bio must be passed back in to blk_rq_unmap_user() for proper
2414 * unmapping.
2415 */
2416 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2417 void __user *ubuf, unsigned long len)
2418 {
2419 unsigned long bytes_read = 0;
2420 struct bio *bio = NULL;
2421 int ret;
2422
2423 if (len > (q->max_hw_sectors << 9))
2424 return -EINVAL;
2425 if (!len || !ubuf)
2426 return -EINVAL;
2427
2428 while (bytes_read != len) {
2429 unsigned long map_len, end, start;
2430
2431 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2432 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2433 >> PAGE_SHIFT;
2434 start = (unsigned long)ubuf >> PAGE_SHIFT;
2435
2436 /*
2437 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2438 * pages. If this happens we just lower the requested
2439 * mapping len by a page so that we can fit
2440 */
2441 if (end - start > BIO_MAX_PAGES)
2442 map_len -= PAGE_SIZE;
2443
2444 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2445 if (ret < 0)
2446 goto unmap_rq;
2447 if (!bio)
2448 bio = rq->bio;
2449 bytes_read += ret;
2450 ubuf += ret;
2451 }
2452
2453 rq->buffer = rq->data = NULL;
2454 return 0;
2455 unmap_rq:
2456 blk_rq_unmap_user(bio);
2457 return ret;
2458 }
2459
2460 EXPORT_SYMBOL(blk_rq_map_user);
2461
2462 /**
2463 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2464 * @q: request queue where request should be inserted
2465 * @rq: request to map data to
2466 * @iov: pointer to the iovec
2467 * @iov_count: number of elements in the iovec
2468 * @len: I/O byte count
2469 *
2470 * Description:
2471 * Data will be mapped directly for zero copy io, if possible. Otherwise
2472 * a kernel bounce buffer is used.
2473 *
2474 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2475 * still in process context.
2476 *
2477 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2478 * before being submitted to the device, as pages mapped may be out of
2479 * reach. It's the callers responsibility to make sure this happens. The
2480 * original bio must be passed back in to blk_rq_unmap_user() for proper
2481 * unmapping.
2482 */
2483 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2484 struct sg_iovec *iov, int iov_count, unsigned int len)
2485 {
2486 struct bio *bio;
2487
2488 if (!iov || iov_count <= 0)
2489 return -EINVAL;
2490
2491 /* we don't allow misaligned data like bio_map_user() does. If the
2492 * user is using sg, they're expected to know the alignment constraints
2493 * and respect them accordingly */
2494 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2495 if (IS_ERR(bio))
2496 return PTR_ERR(bio);
2497
2498 if (bio->bi_size != len) {
2499 bio_endio(bio, bio->bi_size, 0);
2500 bio_unmap_user(bio);
2501 return -EINVAL;
2502 }
2503
2504 bio_get(bio);
2505 blk_rq_bio_prep(q, rq, bio);
2506 rq->buffer = rq->data = NULL;
2507 return 0;
2508 }
2509
2510 EXPORT_SYMBOL(blk_rq_map_user_iov);
2511
2512 /**
2513 * blk_rq_unmap_user - unmap a request with user data
2514 * @bio: start of bio list
2515 *
2516 * Description:
2517 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2518 * supply the original rq->bio from the blk_rq_map_user() return, since
2519 * the io completion may have changed rq->bio.
2520 */
2521 int blk_rq_unmap_user(struct bio *bio)
2522 {
2523 struct bio *mapped_bio;
2524 int ret = 0, ret2;
2525
2526 while (bio) {
2527 mapped_bio = bio;
2528 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2529 mapped_bio = bio->bi_private;
2530
2531 ret2 = __blk_rq_unmap_user(mapped_bio);
2532 if (ret2 && !ret)
2533 ret = ret2;
2534
2535 mapped_bio = bio;
2536 bio = bio->bi_next;
2537 bio_put(mapped_bio);
2538 }
2539
2540 return ret;
2541 }
2542
2543 EXPORT_SYMBOL(blk_rq_unmap_user);
2544
2545 /**
2546 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2547 * @q: request queue where request should be inserted
2548 * @rq: request to fill
2549 * @kbuf: the kernel buffer
2550 * @len: length of user data
2551 * @gfp_mask: memory allocation flags
2552 */
2553 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2554 unsigned int len, gfp_t gfp_mask)
2555 {
2556 struct bio *bio;
2557
2558 if (len > (q->max_hw_sectors << 9))
2559 return -EINVAL;
2560 if (!len || !kbuf)
2561 return -EINVAL;
2562
2563 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2564 if (IS_ERR(bio))
2565 return PTR_ERR(bio);
2566
2567 if (rq_data_dir(rq) == WRITE)
2568 bio->bi_rw |= (1 << BIO_RW);
2569
2570 blk_rq_bio_prep(q, rq, bio);
2571 blk_queue_bounce(q, &rq->bio);
2572 rq->buffer = rq->data = NULL;
2573 return 0;
2574 }
2575
2576 EXPORT_SYMBOL(blk_rq_map_kern);
2577
2578 /**
2579 * blk_execute_rq_nowait - insert a request into queue for execution
2580 * @q: queue to insert the request in
2581 * @bd_disk: matching gendisk
2582 * @rq: request to insert
2583 * @at_head: insert request at head or tail of queue
2584 * @done: I/O completion handler
2585 *
2586 * Description:
2587 * Insert a fully prepared request at the back of the io scheduler queue
2588 * for execution. Don't wait for completion.
2589 */
2590 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2591 struct request *rq, int at_head,
2592 rq_end_io_fn *done)
2593 {
2594 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2595
2596 rq->rq_disk = bd_disk;
2597 rq->cmd_flags |= REQ_NOMERGE;
2598 rq->end_io = done;
2599 WARN_ON(irqs_disabled());
2600 spin_lock_irq(q->queue_lock);
2601 __elv_add_request(q, rq, where, 1);
2602 __generic_unplug_device(q);
2603 spin_unlock_irq(q->queue_lock);
2604 }
2605 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2606
2607 /**
2608 * blk_execute_rq - insert a request into queue for execution
2609 * @q: queue to insert the request in
2610 * @bd_disk: matching gendisk
2611 * @rq: request to insert
2612 * @at_head: insert request at head or tail of queue
2613 *
2614 * Description:
2615 * Insert a fully prepared request at the back of the io scheduler queue
2616 * for execution and wait for completion.
2617 */
2618 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2619 struct request *rq, int at_head)
2620 {
2621 DECLARE_COMPLETION_ONSTACK(wait);
2622 char sense[SCSI_SENSE_BUFFERSIZE];
2623 int err = 0;
2624
2625 /*
2626 * we need an extra reference to the request, so we can look at
2627 * it after io completion
2628 */
2629 rq->ref_count++;
2630
2631 if (!rq->sense) {
2632 memset(sense, 0, sizeof(sense));
2633 rq->sense = sense;
2634 rq->sense_len = 0;
2635 }
2636
2637 rq->end_io_data = &wait;
2638 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2639 wait_for_completion(&wait);
2640
2641 if (rq->errors)
2642 err = -EIO;
2643
2644 return err;
2645 }
2646
2647 EXPORT_SYMBOL(blk_execute_rq);
2648
2649 /**
2650 * blkdev_issue_flush - queue a flush
2651 * @bdev: blockdev to issue flush for
2652 * @error_sector: error sector
2653 *
2654 * Description:
2655 * Issue a flush for the block device in question. Caller can supply
2656 * room for storing the error offset in case of a flush error, if they
2657 * wish to. Caller must run wait_for_completion() on its own.
2658 */
2659 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2660 {
2661 struct request_queue *q;
2662
2663 if (bdev->bd_disk == NULL)
2664 return -ENXIO;
2665
2666 q = bdev_get_queue(bdev);
2667 if (!q)
2668 return -ENXIO;
2669 if (!q->issue_flush_fn)
2670 return -EOPNOTSUPP;
2671
2672 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2673 }
2674
2675 EXPORT_SYMBOL(blkdev_issue_flush);
2676
2677 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2678 {
2679 int rw = rq_data_dir(rq);
2680
2681 if (!blk_fs_request(rq) || !rq->rq_disk)
2682 return;
2683
2684 if (!new_io) {
2685 __disk_stat_inc(rq->rq_disk, merges[rw]);
2686 } else {
2687 disk_round_stats(rq->rq_disk);
2688 rq->rq_disk->in_flight++;
2689 }
2690 }
2691
2692 /*
2693 * add-request adds a request to the linked list.
2694 * queue lock is held and interrupts disabled, as we muck with the
2695 * request queue list.
2696 */
2697 static inline void add_request(struct request_queue * q, struct request * req)
2698 {
2699 drive_stat_acct(req, req->nr_sectors, 1);
2700
2701 /*
2702 * elevator indicated where it wants this request to be
2703 * inserted at elevator_merge time
2704 */
2705 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2706 }
2707
2708 /*
2709 * disk_round_stats() - Round off the performance stats on a struct
2710 * disk_stats.
2711 *
2712 * The average IO queue length and utilisation statistics are maintained
2713 * by observing the current state of the queue length and the amount of
2714 * time it has been in this state for.
2715 *
2716 * Normally, that accounting is done on IO completion, but that can result
2717 * in more than a second's worth of IO being accounted for within any one
2718 * second, leading to >100% utilisation. To deal with that, we call this
2719 * function to do a round-off before returning the results when reading
2720 * /proc/diskstats. This accounts immediately for all queue usage up to
2721 * the current jiffies and restarts the counters again.
2722 */
2723 void disk_round_stats(struct gendisk *disk)
2724 {
2725 unsigned long now = jiffies;
2726
2727 if (now == disk->stamp)
2728 return;
2729
2730 if (disk->in_flight) {
2731 __disk_stat_add(disk, time_in_queue,
2732 disk->in_flight * (now - disk->stamp));
2733 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2734 }
2735 disk->stamp = now;
2736 }
2737
2738 EXPORT_SYMBOL_GPL(disk_round_stats);
2739
2740 /*
2741 * queue lock must be held
2742 */
2743 void __blk_put_request(struct request_queue *q, struct request *req)
2744 {
2745 if (unlikely(!q))
2746 return;
2747 if (unlikely(--req->ref_count))
2748 return;
2749
2750 elv_completed_request(q, req);
2751
2752 /*
2753 * Request may not have originated from ll_rw_blk. if not,
2754 * it didn't come out of our reserved rq pools
2755 */
2756 if (req->cmd_flags & REQ_ALLOCED) {
2757 int rw = rq_data_dir(req);
2758 int priv = req->cmd_flags & REQ_ELVPRIV;
2759
2760 BUG_ON(!list_empty(&req->queuelist));
2761 BUG_ON(!hlist_unhashed(&req->hash));
2762
2763 blk_free_request(q, req);
2764 freed_request(q, rw, priv);
2765 }
2766 }
2767
2768 EXPORT_SYMBOL_GPL(__blk_put_request);
2769
2770 void blk_put_request(struct request *req)
2771 {
2772 unsigned long flags;
2773 struct request_queue *q = req->q;
2774
2775 /*
2776 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2777 * following if (q) test.
2778 */
2779 if (q) {
2780 spin_lock_irqsave(q->queue_lock, flags);
2781 __blk_put_request(q, req);
2782 spin_unlock_irqrestore(q->queue_lock, flags);
2783 }
2784 }
2785
2786 EXPORT_SYMBOL(blk_put_request);
2787
2788 /**
2789 * blk_end_sync_rq - executes a completion event on a request
2790 * @rq: request to complete
2791 * @error: end io status of the request
2792 */
2793 void blk_end_sync_rq(struct request *rq, int error)
2794 {
2795 struct completion *waiting = rq->end_io_data;
2796
2797 rq->end_io_data = NULL;
2798 __blk_put_request(rq->q, rq);
2799
2800 /*
2801 * complete last, if this is a stack request the process (and thus
2802 * the rq pointer) could be invalid right after this complete()
2803 */
2804 complete(waiting);
2805 }
2806 EXPORT_SYMBOL(blk_end_sync_rq);
2807
2808 /*
2809 * Has to be called with the request spinlock acquired
2810 */
2811 static int attempt_merge(struct request_queue *q, struct request *req,
2812 struct request *next)
2813 {
2814 if (!rq_mergeable(req) || !rq_mergeable(next))
2815 return 0;
2816
2817 /*
2818 * not contiguous
2819 */
2820 if (req->sector + req->nr_sectors != next->sector)
2821 return 0;
2822
2823 if (rq_data_dir(req) != rq_data_dir(next)
2824 || req->rq_disk != next->rq_disk
2825 || next->special)
2826 return 0;
2827
2828 /*
2829 * If we are allowed to merge, then append bio list
2830 * from next to rq and release next. merge_requests_fn
2831 * will have updated segment counts, update sector
2832 * counts here.
2833 */
2834 if (!ll_merge_requests_fn(q, req, next))
2835 return 0;
2836
2837 /*
2838 * At this point we have either done a back merge
2839 * or front merge. We need the smaller start_time of
2840 * the merged requests to be the current request
2841 * for accounting purposes.
2842 */
2843 if (time_after(req->start_time, next->start_time))
2844 req->start_time = next->start_time;
2845
2846 req->biotail->bi_next = next->bio;
2847 req->biotail = next->biotail;
2848
2849 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2850
2851 elv_merge_requests(q, req, next);
2852
2853 if (req->rq_disk) {
2854 disk_round_stats(req->rq_disk);
2855 req->rq_disk->in_flight--;
2856 }
2857
2858 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2859
2860 __blk_put_request(q, next);
2861 return 1;
2862 }
2863
2864 static inline int attempt_back_merge(struct request_queue *q,
2865 struct request *rq)
2866 {
2867 struct request *next = elv_latter_request(q, rq);
2868
2869 if (next)
2870 return attempt_merge(q, rq, next);
2871
2872 return 0;
2873 }
2874
2875 static inline int attempt_front_merge(struct request_queue *q,
2876 struct request *rq)
2877 {
2878 struct request *prev = elv_former_request(q, rq);
2879
2880 if (prev)
2881 return attempt_merge(q, prev, rq);
2882
2883 return 0;
2884 }
2885
2886 static void init_request_from_bio(struct request *req, struct bio *bio)
2887 {
2888 req->cmd_type = REQ_TYPE_FS;
2889
2890 /*
2891 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2892 */
2893 if (bio_rw_ahead(bio) || bio_failfast(bio))
2894 req->cmd_flags |= REQ_FAILFAST;
2895
2896 /*
2897 * REQ_BARRIER implies no merging, but lets make it explicit
2898 */
2899 if (unlikely(bio_barrier(bio)))
2900 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2901
2902 if (bio_sync(bio))
2903 req->cmd_flags |= REQ_RW_SYNC;
2904 if (bio_rw_meta(bio))
2905 req->cmd_flags |= REQ_RW_META;
2906
2907 req->errors = 0;
2908 req->hard_sector = req->sector = bio->bi_sector;
2909 req->ioprio = bio_prio(bio);
2910 req->start_time = jiffies;
2911 blk_rq_bio_prep(req->q, req, bio);
2912 }
2913
2914 static int __make_request(struct request_queue *q, struct bio *bio)
2915 {
2916 struct request *req;
2917 int el_ret, nr_sectors, barrier, err;
2918 const unsigned short prio = bio_prio(bio);
2919 const int sync = bio_sync(bio);
2920 int rw_flags;
2921
2922 nr_sectors = bio_sectors(bio);
2923
2924 /*
2925 * low level driver can indicate that it wants pages above a
2926 * certain limit bounced to low memory (ie for highmem, or even
2927 * ISA dma in theory)
2928 */
2929 blk_queue_bounce(q, &bio);
2930
2931 barrier = bio_barrier(bio);
2932 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2933 err = -EOPNOTSUPP;
2934 goto end_io;
2935 }
2936
2937 spin_lock_irq(q->queue_lock);
2938
2939 if (unlikely(barrier) || elv_queue_empty(q))
2940 goto get_rq;
2941
2942 el_ret = elv_merge(q, &req, bio);
2943 switch (el_ret) {
2944 case ELEVATOR_BACK_MERGE:
2945 BUG_ON(!rq_mergeable(req));
2946
2947 if (!ll_back_merge_fn(q, req, bio))
2948 break;
2949
2950 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2951
2952 req->biotail->bi_next = bio;
2953 req->biotail = bio;
2954 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2955 req->ioprio = ioprio_best(req->ioprio, prio);
2956 drive_stat_acct(req, nr_sectors, 0);
2957 if (!attempt_back_merge(q, req))
2958 elv_merged_request(q, req, el_ret);
2959 goto out;
2960
2961 case ELEVATOR_FRONT_MERGE:
2962 BUG_ON(!rq_mergeable(req));
2963
2964 if (!ll_front_merge_fn(q, req, bio))
2965 break;
2966
2967 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2968
2969 bio->bi_next = req->bio;
2970 req->bio = bio;
2971
2972 /*
2973 * may not be valid. if the low level driver said
2974 * it didn't need a bounce buffer then it better
2975 * not touch req->buffer either...
2976 */
2977 req->buffer = bio_data(bio);
2978 req->current_nr_sectors = bio_cur_sectors(bio);
2979 req->hard_cur_sectors = req->current_nr_sectors;
2980 req->sector = req->hard_sector = bio->bi_sector;
2981 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2982 req->ioprio = ioprio_best(req->ioprio, prio);
2983 drive_stat_acct(req, nr_sectors, 0);
2984 if (!attempt_front_merge(q, req))
2985 elv_merged_request(q, req, el_ret);
2986 goto out;
2987
2988 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2989 default:
2990 ;
2991 }
2992
2993 get_rq:
2994 /*
2995 * This sync check and mask will be re-done in init_request_from_bio(),
2996 * but we need to set it earlier to expose the sync flag to the
2997 * rq allocator and io schedulers.
2998 */
2999 rw_flags = bio_data_dir(bio);
3000 if (sync)
3001 rw_flags |= REQ_RW_SYNC;
3002
3003 /*
3004 * Grab a free request. This is might sleep but can not fail.
3005 * Returns with the queue unlocked.
3006 */
3007 req = get_request_wait(q, rw_flags, bio);
3008
3009 /*
3010 * After dropping the lock and possibly sleeping here, our request
3011 * may now be mergeable after it had proven unmergeable (above).
3012 * We don't worry about that case for efficiency. It won't happen
3013 * often, and the elevators are able to handle it.
3014 */
3015 init_request_from_bio(req, bio);
3016
3017 spin_lock_irq(q->queue_lock);
3018 if (elv_queue_empty(q))
3019 blk_plug_device(q);
3020 add_request(q, req);
3021 out:
3022 if (sync)
3023 __generic_unplug_device(q);
3024
3025 spin_unlock_irq(q->queue_lock);
3026 return 0;
3027
3028 end_io:
3029 bio_endio(bio, nr_sectors << 9, err);
3030 return 0;
3031 }
3032
3033 /*
3034 * If bio->bi_dev is a partition, remap the location
3035 */
3036 static inline void blk_partition_remap(struct bio *bio)
3037 {
3038 struct block_device *bdev = bio->bi_bdev;
3039
3040 if (bdev != bdev->bd_contains) {
3041 struct hd_struct *p = bdev->bd_part;
3042 const int rw = bio_data_dir(bio);
3043
3044 p->sectors[rw] += bio_sectors(bio);
3045 p->ios[rw]++;
3046
3047 bio->bi_sector += p->start_sect;
3048 bio->bi_bdev = bdev->bd_contains;
3049
3050 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3051 bdev->bd_dev, bio->bi_sector,
3052 bio->bi_sector - p->start_sect);
3053 }
3054 }
3055
3056 static void handle_bad_sector(struct bio *bio)
3057 {
3058 char b[BDEVNAME_SIZE];
3059
3060 printk(KERN_INFO "attempt to access beyond end of device\n");
3061 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3062 bdevname(bio->bi_bdev, b),
3063 bio->bi_rw,
3064 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3065 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3066
3067 set_bit(BIO_EOF, &bio->bi_flags);
3068 }
3069
3070 #ifdef CONFIG_FAIL_MAKE_REQUEST
3071
3072 static DECLARE_FAULT_ATTR(fail_make_request);
3073
3074 static int __init setup_fail_make_request(char *str)
3075 {
3076 return setup_fault_attr(&fail_make_request, str);
3077 }
3078 __setup("fail_make_request=", setup_fail_make_request);
3079
3080 static int should_fail_request(struct bio *bio)
3081 {
3082 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3083 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3084 return should_fail(&fail_make_request, bio->bi_size);
3085
3086 return 0;
3087 }
3088
3089 static int __init fail_make_request_debugfs(void)
3090 {
3091 return init_fault_attr_dentries(&fail_make_request,
3092 "fail_make_request");
3093 }
3094
3095 late_initcall(fail_make_request_debugfs);
3096
3097 #else /* CONFIG_FAIL_MAKE_REQUEST */
3098
3099 static inline int should_fail_request(struct bio *bio)
3100 {
3101 return 0;
3102 }
3103
3104 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3105
3106 /**
3107 * generic_make_request: hand a buffer to its device driver for I/O
3108 * @bio: The bio describing the location in memory and on the device.
3109 *
3110 * generic_make_request() is used to make I/O requests of block
3111 * devices. It is passed a &struct bio, which describes the I/O that needs
3112 * to be done.
3113 *
3114 * generic_make_request() does not return any status. The
3115 * success/failure status of the request, along with notification of
3116 * completion, is delivered asynchronously through the bio->bi_end_io
3117 * function described (one day) else where.
3118 *
3119 * The caller of generic_make_request must make sure that bi_io_vec
3120 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3121 * set to describe the device address, and the
3122 * bi_end_io and optionally bi_private are set to describe how
3123 * completion notification should be signaled.
3124 *
3125 * generic_make_request and the drivers it calls may use bi_next if this
3126 * bio happens to be merged with someone else, and may change bi_dev and
3127 * bi_sector for remaps as it sees fit. So the values of these fields
3128 * should NOT be depended on after the call to generic_make_request.
3129 */
3130 static inline void __generic_make_request(struct bio *bio)
3131 {
3132 struct request_queue *q;
3133 sector_t maxsector;
3134 sector_t old_sector;
3135 int ret, nr_sectors = bio_sectors(bio);
3136 dev_t old_dev;
3137
3138 might_sleep();
3139 /* Test device or partition size, when known. */
3140 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3141 if (maxsector) {
3142 sector_t sector = bio->bi_sector;
3143
3144 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3145 /*
3146 * This may well happen - the kernel calls bread()
3147 * without checking the size of the device, e.g., when
3148 * mounting a device.
3149 */
3150 handle_bad_sector(bio);
3151 goto end_io;
3152 }
3153 }
3154
3155 /*
3156 * Resolve the mapping until finished. (drivers are
3157 * still free to implement/resolve their own stacking
3158 * by explicitly returning 0)
3159 *
3160 * NOTE: we don't repeat the blk_size check for each new device.
3161 * Stacking drivers are expected to know what they are doing.
3162 */
3163 old_sector = -1;
3164 old_dev = 0;
3165 do {
3166 char b[BDEVNAME_SIZE];
3167
3168 q = bdev_get_queue(bio->bi_bdev);
3169 if (!q) {
3170 printk(KERN_ERR
3171 "generic_make_request: Trying to access "
3172 "nonexistent block-device %s (%Lu)\n",
3173 bdevname(bio->bi_bdev, b),
3174 (long long) bio->bi_sector);
3175 end_io:
3176 bio_endio(bio, bio->bi_size, -EIO);
3177 break;
3178 }
3179
3180 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3181 printk("bio too big device %s (%u > %u)\n",
3182 bdevname(bio->bi_bdev, b),
3183 bio_sectors(bio),
3184 q->max_hw_sectors);
3185 goto end_io;
3186 }
3187
3188 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3189 goto end_io;
3190
3191 if (should_fail_request(bio))
3192 goto end_io;
3193
3194 /*
3195 * If this device has partitions, remap block n
3196 * of partition p to block n+start(p) of the disk.
3197 */
3198 blk_partition_remap(bio);
3199
3200 if (old_sector != -1)
3201 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3202 old_sector);
3203
3204 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3205
3206 old_sector = bio->bi_sector;
3207 old_dev = bio->bi_bdev->bd_dev;
3208
3209 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3210 if (maxsector) {
3211 sector_t sector = bio->bi_sector;
3212
3213 if (maxsector < nr_sectors ||
3214 maxsector - nr_sectors < sector) {
3215 /*
3216 * This may well happen - partitions are not
3217 * checked to make sure they are within the size
3218 * of the whole device.
3219 */
3220 handle_bad_sector(bio);
3221 goto end_io;
3222 }
3223 }
3224
3225 ret = q->make_request_fn(q, bio);
3226 } while (ret);
3227 }
3228
3229 /*
3230 * We only want one ->make_request_fn to be active at a time,
3231 * else stack usage with stacked devices could be a problem.
3232 * So use current->bio_{list,tail} to keep a list of requests
3233 * submited by a make_request_fn function.
3234 * current->bio_tail is also used as a flag to say if
3235 * generic_make_request is currently active in this task or not.
3236 * If it is NULL, then no make_request is active. If it is non-NULL,
3237 * then a make_request is active, and new requests should be added
3238 * at the tail
3239 */
3240 void generic_make_request(struct bio *bio)
3241 {
3242 if (current->bio_tail) {
3243 /* make_request is active */
3244 *(current->bio_tail) = bio;
3245 bio->bi_next = NULL;
3246 current->bio_tail = &bio->bi_next;
3247 return;
3248 }
3249 /* following loop may be a bit non-obvious, and so deserves some
3250 * explanation.
3251 * Before entering the loop, bio->bi_next is NULL (as all callers
3252 * ensure that) so we have a list with a single bio.
3253 * We pretend that we have just taken it off a longer list, so
3254 * we assign bio_list to the next (which is NULL) and bio_tail
3255 * to &bio_list, thus initialising the bio_list of new bios to be
3256 * added. __generic_make_request may indeed add some more bios
3257 * through a recursive call to generic_make_request. If it
3258 * did, we find a non-NULL value in bio_list and re-enter the loop
3259 * from the top. In this case we really did just take the bio
3260 * of the top of the list (no pretending) and so fixup bio_list and
3261 * bio_tail or bi_next, and call into __generic_make_request again.
3262 *
3263 * The loop was structured like this to make only one call to
3264 * __generic_make_request (which is important as it is large and
3265 * inlined) and to keep the structure simple.
3266 */
3267 BUG_ON(bio->bi_next);
3268 do {
3269 current->bio_list = bio->bi_next;
3270 if (bio->bi_next == NULL)
3271 current->bio_tail = &current->bio_list;
3272 else
3273 bio->bi_next = NULL;
3274 __generic_make_request(bio);
3275 bio = current->bio_list;
3276 } while (bio);
3277 current->bio_tail = NULL; /* deactivate */
3278 }
3279
3280 EXPORT_SYMBOL(generic_make_request);
3281
3282 /**
3283 * submit_bio: submit a bio to the block device layer for I/O
3284 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3285 * @bio: The &struct bio which describes the I/O
3286 *
3287 * submit_bio() is very similar in purpose to generic_make_request(), and
3288 * uses that function to do most of the work. Both are fairly rough
3289 * interfaces, @bio must be presetup and ready for I/O.
3290 *
3291 */
3292 void submit_bio(int rw, struct bio *bio)
3293 {
3294 int count = bio_sectors(bio);
3295
3296 BIO_BUG_ON(!bio->bi_size);
3297 BIO_BUG_ON(!bio->bi_io_vec);
3298 bio->bi_rw |= rw;
3299 if (rw & WRITE) {
3300 count_vm_events(PGPGOUT, count);
3301 } else {
3302 task_io_account_read(bio->bi_size);
3303 count_vm_events(PGPGIN, count);
3304 }
3305
3306 if (unlikely(block_dump)) {
3307 char b[BDEVNAME_SIZE];
3308 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3309 current->comm, current->pid,
3310 (rw & WRITE) ? "WRITE" : "READ",
3311 (unsigned long long)bio->bi_sector,
3312 bdevname(bio->bi_bdev,b));
3313 }
3314
3315 generic_make_request(bio);
3316 }
3317
3318 EXPORT_SYMBOL(submit_bio);
3319
3320 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3321 {
3322 if (blk_fs_request(rq)) {
3323 rq->hard_sector += nsect;
3324 rq->hard_nr_sectors -= nsect;
3325
3326 /*
3327 * Move the I/O submission pointers ahead if required.
3328 */
3329 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3330 (rq->sector <= rq->hard_sector)) {
3331 rq->sector = rq->hard_sector;
3332 rq->nr_sectors = rq->hard_nr_sectors;
3333 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3334 rq->current_nr_sectors = rq->hard_cur_sectors;
3335 rq->buffer = bio_data(rq->bio);
3336 }
3337
3338 /*
3339 * if total number of sectors is less than the first segment
3340 * size, something has gone terribly wrong
3341 */
3342 if (rq->nr_sectors < rq->current_nr_sectors) {
3343 printk("blk: request botched\n");
3344 rq->nr_sectors = rq->current_nr_sectors;
3345 }
3346 }
3347 }
3348
3349 static int __end_that_request_first(struct request *req, int uptodate,
3350 int nr_bytes)
3351 {
3352 int total_bytes, bio_nbytes, error, next_idx = 0;
3353 struct bio *bio;
3354
3355 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3356
3357 /*
3358 * extend uptodate bool to allow < 0 value to be direct io error
3359 */
3360 error = 0;
3361 if (end_io_error(uptodate))
3362 error = !uptodate ? -EIO : uptodate;
3363
3364 /*
3365 * for a REQ_BLOCK_PC request, we want to carry any eventual
3366 * sense key with us all the way through
3367 */
3368 if (!blk_pc_request(req))
3369 req->errors = 0;
3370
3371 if (!uptodate) {
3372 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3373 printk("end_request: I/O error, dev %s, sector %llu\n",
3374 req->rq_disk ? req->rq_disk->disk_name : "?",
3375 (unsigned long long)req->sector);
3376 }
3377
3378 if (blk_fs_request(req) && req->rq_disk) {
3379 const int rw = rq_data_dir(req);
3380
3381 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3382 }
3383
3384 total_bytes = bio_nbytes = 0;
3385 while ((bio = req->bio) != NULL) {
3386 int nbytes;
3387
3388 if (nr_bytes >= bio->bi_size) {
3389 req->bio = bio->bi_next;
3390 nbytes = bio->bi_size;
3391 if (!ordered_bio_endio(req, bio, nbytes, error))
3392 bio_endio(bio, nbytes, error);
3393 next_idx = 0;
3394 bio_nbytes = 0;
3395 } else {
3396 int idx = bio->bi_idx + next_idx;
3397
3398 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3399 blk_dump_rq_flags(req, "__end_that");
3400 printk("%s: bio idx %d >= vcnt %d\n",
3401 __FUNCTION__,
3402 bio->bi_idx, bio->bi_vcnt);
3403 break;
3404 }
3405
3406 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3407 BIO_BUG_ON(nbytes > bio->bi_size);
3408
3409 /*
3410 * not a complete bvec done
3411 */
3412 if (unlikely(nbytes > nr_bytes)) {
3413 bio_nbytes += nr_bytes;
3414 total_bytes += nr_bytes;
3415 break;
3416 }
3417
3418 /*
3419 * advance to the next vector
3420 */
3421 next_idx++;
3422 bio_nbytes += nbytes;
3423 }
3424
3425 total_bytes += nbytes;
3426 nr_bytes -= nbytes;
3427
3428 if ((bio = req->bio)) {
3429 /*
3430 * end more in this run, or just return 'not-done'
3431 */
3432 if (unlikely(nr_bytes <= 0))
3433 break;
3434 }
3435 }
3436
3437 /*
3438 * completely done
3439 */
3440 if (!req->bio)
3441 return 0;
3442
3443 /*
3444 * if the request wasn't completed, update state
3445 */
3446 if (bio_nbytes) {
3447 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3448 bio_endio(bio, bio_nbytes, error);
3449 bio->bi_idx += next_idx;
3450 bio_iovec(bio)->bv_offset += nr_bytes;
3451 bio_iovec(bio)->bv_len -= nr_bytes;
3452 }
3453
3454 blk_recalc_rq_sectors(req, total_bytes >> 9);
3455 blk_recalc_rq_segments(req);
3456 return 1;
3457 }
3458
3459 /**
3460 * end_that_request_first - end I/O on a request
3461 * @req: the request being processed
3462 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3463 * @nr_sectors: number of sectors to end I/O on
3464 *
3465 * Description:
3466 * Ends I/O on a number of sectors attached to @req, and sets it up
3467 * for the next range of segments (if any) in the cluster.
3468 *
3469 * Return:
3470 * 0 - we are done with this request, call end_that_request_last()
3471 * 1 - still buffers pending for this request
3472 **/
3473 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3474 {
3475 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3476 }
3477
3478 EXPORT_SYMBOL(end_that_request_first);
3479
3480 /**
3481 * end_that_request_chunk - end I/O on a request
3482 * @req: the request being processed
3483 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3484 * @nr_bytes: number of bytes to complete
3485 *
3486 * Description:
3487 * Ends I/O on a number of bytes attached to @req, and sets it up
3488 * for the next range of segments (if any). Like end_that_request_first(),
3489 * but deals with bytes instead of sectors.
3490 *
3491 * Return:
3492 * 0 - we are done with this request, call end_that_request_last()
3493 * 1 - still buffers pending for this request
3494 **/
3495 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3496 {
3497 return __end_that_request_first(req, uptodate, nr_bytes);
3498 }
3499
3500 EXPORT_SYMBOL(end_that_request_chunk);
3501
3502 /*
3503 * splice the completion data to a local structure and hand off to
3504 * process_completion_queue() to complete the requests
3505 */
3506 static void blk_done_softirq(struct softirq_action *h)
3507 {
3508 struct list_head *cpu_list, local_list;
3509
3510 local_irq_disable();
3511 cpu_list = &__get_cpu_var(blk_cpu_done);
3512 list_replace_init(cpu_list, &local_list);
3513 local_irq_enable();
3514
3515 while (!list_empty(&local_list)) {
3516 struct request *rq = list_entry(local_list.next, struct request, donelist);
3517
3518 list_del_init(&rq->donelist);
3519 rq->q->softirq_done_fn(rq);
3520 }
3521 }
3522
3523 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3524 void *hcpu)
3525 {
3526 /*
3527 * If a CPU goes away, splice its entries to the current CPU
3528 * and trigger a run of the softirq
3529 */
3530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3531 int cpu = (unsigned long) hcpu;
3532
3533 local_irq_disable();
3534 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3535 &__get_cpu_var(blk_cpu_done));
3536 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3537 local_irq_enable();
3538 }
3539
3540 return NOTIFY_OK;
3541 }
3542
3543
3544 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3545 .notifier_call = blk_cpu_notify,
3546 };
3547
3548 /**
3549 * blk_complete_request - end I/O on a request
3550 * @req: the request being processed
3551 *
3552 * Description:
3553 * Ends all I/O on a request. It does not handle partial completions,
3554 * unless the driver actually implements this in its completion callback
3555 * through requeueing. Theh actual completion happens out-of-order,
3556 * through a softirq handler. The user must have registered a completion
3557 * callback through blk_queue_softirq_done().
3558 **/
3559
3560 void blk_complete_request(struct request *req)
3561 {
3562 struct list_head *cpu_list;
3563 unsigned long flags;
3564
3565 BUG_ON(!req->q->softirq_done_fn);
3566
3567 local_irq_save(flags);
3568
3569 cpu_list = &__get_cpu_var(blk_cpu_done);
3570 list_add_tail(&req->donelist, cpu_list);
3571 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3572
3573 local_irq_restore(flags);
3574 }
3575
3576 EXPORT_SYMBOL(blk_complete_request);
3577
3578 /*
3579 * queue lock must be held
3580 */
3581 void end_that_request_last(struct request *req, int uptodate)
3582 {
3583 struct gendisk *disk = req->rq_disk;
3584 int error;
3585
3586 /*
3587 * extend uptodate bool to allow < 0 value to be direct io error
3588 */
3589 error = 0;
3590 if (end_io_error(uptodate))
3591 error = !uptodate ? -EIO : uptodate;
3592
3593 if (unlikely(laptop_mode) && blk_fs_request(req))
3594 laptop_io_completion();
3595
3596 /*
3597 * Account IO completion. bar_rq isn't accounted as a normal
3598 * IO on queueing nor completion. Accounting the containing
3599 * request is enough.
3600 */
3601 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3602 unsigned long duration = jiffies - req->start_time;
3603 const int rw = rq_data_dir(req);
3604
3605 __disk_stat_inc(disk, ios[rw]);
3606 __disk_stat_add(disk, ticks[rw], duration);
3607 disk_round_stats(disk);
3608 disk->in_flight--;
3609 }
3610 if (req->end_io)
3611 req->end_io(req, error);
3612 else
3613 __blk_put_request(req->q, req);
3614 }
3615
3616 EXPORT_SYMBOL(end_that_request_last);
3617
3618 void end_request(struct request *req, int uptodate)
3619 {
3620 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3621 add_disk_randomness(req->rq_disk);
3622 blkdev_dequeue_request(req);
3623 end_that_request_last(req, uptodate);
3624 }
3625 }
3626
3627 EXPORT_SYMBOL(end_request);
3628
3629 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3630 struct bio *bio)
3631 {
3632 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3633 rq->cmd_flags |= (bio->bi_rw & 3);
3634
3635 rq->nr_phys_segments = bio_phys_segments(q, bio);
3636 rq->nr_hw_segments = bio_hw_segments(q, bio);
3637 rq->current_nr_sectors = bio_cur_sectors(bio);
3638 rq->hard_cur_sectors = rq->current_nr_sectors;
3639 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3640 rq->buffer = bio_data(bio);
3641 rq->data_len = bio->bi_size;
3642
3643 rq->bio = rq->biotail = bio;
3644
3645 if (bio->bi_bdev)
3646 rq->rq_disk = bio->bi_bdev->bd_disk;
3647 }
3648
3649 int kblockd_schedule_work(struct work_struct *work)
3650 {
3651 return queue_work(kblockd_workqueue, work);
3652 }
3653
3654 EXPORT_SYMBOL(kblockd_schedule_work);
3655
3656 void kblockd_flush_work(struct work_struct *work)
3657 {
3658 cancel_work_sync(work);
3659 }
3660 EXPORT_SYMBOL(kblockd_flush_work);
3661
3662 int __init blk_dev_init(void)
3663 {
3664 int i;
3665
3666 kblockd_workqueue = create_workqueue("kblockd");
3667 if (!kblockd_workqueue)
3668 panic("Failed to create kblockd\n");
3669
3670 request_cachep = kmem_cache_create("blkdev_requests",
3671 sizeof(struct request), 0, SLAB_PANIC, NULL);
3672
3673 requestq_cachep = kmem_cache_create("blkdev_queue",
3674 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3675
3676 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3677 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3678
3679 for_each_possible_cpu(i)
3680 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3681
3682 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3683 register_hotcpu_notifier(&blk_cpu_notifier);
3684
3685 blk_max_low_pfn = max_low_pfn - 1;
3686 blk_max_pfn = max_pfn - 1;
3687
3688 return 0;
3689 }
3690
3691 /*
3692 * IO Context helper functions
3693 */
3694 void put_io_context(struct io_context *ioc)
3695 {
3696 if (ioc == NULL)
3697 return;
3698
3699 BUG_ON(atomic_read(&ioc->refcount) == 0);
3700
3701 if (atomic_dec_and_test(&ioc->refcount)) {
3702 struct cfq_io_context *cic;
3703
3704 rcu_read_lock();
3705 if (ioc->aic && ioc->aic->dtor)
3706 ioc->aic->dtor(ioc->aic);
3707 if (ioc->cic_root.rb_node != NULL) {
3708 struct rb_node *n = rb_first(&ioc->cic_root);
3709
3710 cic = rb_entry(n, struct cfq_io_context, rb_node);
3711 cic->dtor(ioc);
3712 }
3713 rcu_read_unlock();
3714
3715 kmem_cache_free(iocontext_cachep, ioc);
3716 }
3717 }
3718 EXPORT_SYMBOL(put_io_context);
3719
3720 /* Called by the exitting task */
3721 void exit_io_context(void)
3722 {
3723 struct io_context *ioc;
3724 struct cfq_io_context *cic;
3725
3726 task_lock(current);
3727 ioc = current->io_context;
3728 current->io_context = NULL;
3729 task_unlock(current);
3730
3731 ioc->task = NULL;
3732 if (ioc->aic && ioc->aic->exit)
3733 ioc->aic->exit(ioc->aic);
3734 if (ioc->cic_root.rb_node != NULL) {
3735 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3736 cic->exit(ioc);
3737 }
3738
3739 put_io_context(ioc);
3740 }
3741
3742 /*
3743 * If the current task has no IO context then create one and initialise it.
3744 * Otherwise, return its existing IO context.
3745 *
3746 * This returned IO context doesn't have a specifically elevated refcount,
3747 * but since the current task itself holds a reference, the context can be
3748 * used in general code, so long as it stays within `current` context.
3749 */
3750 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3751 {
3752 struct task_struct *tsk = current;
3753 struct io_context *ret;
3754
3755 ret = tsk->io_context;
3756 if (likely(ret))
3757 return ret;
3758
3759 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3760 if (ret) {
3761 atomic_set(&ret->refcount, 1);
3762 ret->task = current;
3763 ret->ioprio_changed = 0;
3764 ret->last_waited = jiffies; /* doesn't matter... */
3765 ret->nr_batch_requests = 0; /* because this is 0 */
3766 ret->aic = NULL;
3767 ret->cic_root.rb_node = NULL;
3768 ret->ioc_data = NULL;
3769 /* make sure set_task_ioprio() sees the settings above */
3770 smp_wmb();
3771 tsk->io_context = ret;
3772 }
3773
3774 return ret;
3775 }
3776
3777 /*
3778 * If the current task has no IO context then create one and initialise it.
3779 * If it does have a context, take a ref on it.
3780 *
3781 * This is always called in the context of the task which submitted the I/O.
3782 */
3783 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3784 {
3785 struct io_context *ret;
3786 ret = current_io_context(gfp_flags, node);
3787 if (likely(ret))
3788 atomic_inc(&ret->refcount);
3789 return ret;
3790 }
3791 EXPORT_SYMBOL(get_io_context);
3792
3793 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3794 {
3795 struct io_context *src = *psrc;
3796 struct io_context *dst = *pdst;
3797
3798 if (src) {
3799 BUG_ON(atomic_read(&src->refcount) == 0);
3800 atomic_inc(&src->refcount);
3801 put_io_context(dst);
3802 *pdst = src;
3803 }
3804 }
3805 EXPORT_SYMBOL(copy_io_context);
3806
3807 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3808 {
3809 struct io_context *temp;
3810 temp = *ioc1;
3811 *ioc1 = *ioc2;
3812 *ioc2 = temp;
3813 }
3814 EXPORT_SYMBOL(swap_io_context);
3815
3816 /*
3817 * sysfs parts below
3818 */
3819 struct queue_sysfs_entry {
3820 struct attribute attr;
3821 ssize_t (*show)(struct request_queue *, char *);
3822 ssize_t (*store)(struct request_queue *, const char *, size_t);
3823 };
3824
3825 static ssize_t
3826 queue_var_show(unsigned int var, char *page)
3827 {
3828 return sprintf(page, "%d\n", var);
3829 }
3830
3831 static ssize_t
3832 queue_var_store(unsigned long *var, const char *page, size_t count)
3833 {
3834 char *p = (char *) page;
3835
3836 *var = simple_strtoul(p, &p, 10);
3837 return count;
3838 }
3839
3840 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3841 {
3842 return queue_var_show(q->nr_requests, (page));
3843 }
3844
3845 static ssize_t
3846 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3847 {
3848 struct request_list *rl = &q->rq;
3849 unsigned long nr;
3850 int ret = queue_var_store(&nr, page, count);
3851 if (nr < BLKDEV_MIN_RQ)
3852 nr = BLKDEV_MIN_RQ;
3853
3854 spin_lock_irq(q->queue_lock);
3855 q->nr_requests = nr;
3856 blk_queue_congestion_threshold(q);
3857
3858 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3859 blk_set_queue_congested(q, READ);
3860 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3861 blk_clear_queue_congested(q, READ);
3862
3863 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3864 blk_set_queue_congested(q, WRITE);
3865 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3866 blk_clear_queue_congested(q, WRITE);
3867
3868 if (rl->count[READ] >= q->nr_requests) {
3869 blk_set_queue_full(q, READ);
3870 } else if (rl->count[READ]+1 <= q->nr_requests) {
3871 blk_clear_queue_full(q, READ);
3872 wake_up(&rl->wait[READ]);
3873 }
3874
3875 if (rl->count[WRITE] >= q->nr_requests) {
3876 blk_set_queue_full(q, WRITE);
3877 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3878 blk_clear_queue_full(q, WRITE);
3879 wake_up(&rl->wait[WRITE]);
3880 }
3881 spin_unlock_irq(q->queue_lock);
3882 return ret;
3883 }
3884
3885 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3886 {
3887 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3888
3889 return queue_var_show(ra_kb, (page));
3890 }
3891
3892 static ssize_t
3893 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3894 {
3895 unsigned long ra_kb;
3896 ssize_t ret = queue_var_store(&ra_kb, page, count);
3897
3898 spin_lock_irq(q->queue_lock);
3899 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3900 spin_unlock_irq(q->queue_lock);
3901
3902 return ret;
3903 }
3904
3905 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3906 {
3907 int max_sectors_kb = q->max_sectors >> 1;
3908
3909 return queue_var_show(max_sectors_kb, (page));
3910 }
3911
3912 static ssize_t
3913 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3914 {
3915 unsigned long max_sectors_kb,
3916 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3917 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3918 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3919 int ra_kb;
3920
3921 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3922 return -EINVAL;
3923 /*
3924 * Take the queue lock to update the readahead and max_sectors
3925 * values synchronously:
3926 */
3927 spin_lock_irq(q->queue_lock);
3928 /*
3929 * Trim readahead window as well, if necessary:
3930 */
3931 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3932 if (ra_kb > max_sectors_kb)
3933 q->backing_dev_info.ra_pages =
3934 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3935
3936 q->max_sectors = max_sectors_kb << 1;
3937 spin_unlock_irq(q->queue_lock);
3938
3939 return ret;
3940 }
3941
3942 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3943 {
3944 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3945
3946 return queue_var_show(max_hw_sectors_kb, (page));
3947 }
3948
3949
3950 static struct queue_sysfs_entry queue_requests_entry = {
3951 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3952 .show = queue_requests_show,
3953 .store = queue_requests_store,
3954 };
3955
3956 static struct queue_sysfs_entry queue_ra_entry = {
3957 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3958 .show = queue_ra_show,
3959 .store = queue_ra_store,
3960 };
3961
3962 static struct queue_sysfs_entry queue_max_sectors_entry = {
3963 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3964 .show = queue_max_sectors_show,
3965 .store = queue_max_sectors_store,
3966 };
3967
3968 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3969 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3970 .show = queue_max_hw_sectors_show,
3971 };
3972
3973 static struct queue_sysfs_entry queue_iosched_entry = {
3974 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3975 .show = elv_iosched_show,
3976 .store = elv_iosched_store,
3977 };
3978
3979 static struct attribute *default_attrs[] = {
3980 &queue_requests_entry.attr,
3981 &queue_ra_entry.attr,
3982 &queue_max_hw_sectors_entry.attr,
3983 &queue_max_sectors_entry.attr,
3984 &queue_iosched_entry.attr,
3985 NULL,
3986 };
3987
3988 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3989
3990 static ssize_t
3991 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3992 {
3993 struct queue_sysfs_entry *entry = to_queue(attr);
3994 struct request_queue *q =
3995 container_of(kobj, struct request_queue, kobj);
3996 ssize_t res;
3997
3998 if (!entry->show)
3999 return -EIO;
4000 mutex_lock(&q->sysfs_lock);
4001 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4002 mutex_unlock(&q->sysfs_lock);
4003 return -ENOENT;
4004 }
4005 res = entry->show(q, page);
4006 mutex_unlock(&q->sysfs_lock);
4007 return res;
4008 }
4009
4010 static ssize_t
4011 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4012 const char *page, size_t length)
4013 {
4014 struct queue_sysfs_entry *entry = to_queue(attr);
4015 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4016
4017 ssize_t res;
4018
4019 if (!entry->store)
4020 return -EIO;
4021 mutex_lock(&q->sysfs_lock);
4022 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4023 mutex_unlock(&q->sysfs_lock);
4024 return -ENOENT;
4025 }
4026 res = entry->store(q, page, length);
4027 mutex_unlock(&q->sysfs_lock);
4028 return res;
4029 }
4030
4031 static struct sysfs_ops queue_sysfs_ops = {
4032 .show = queue_attr_show,
4033 .store = queue_attr_store,
4034 };
4035
4036 static struct kobj_type queue_ktype = {
4037 .sysfs_ops = &queue_sysfs_ops,
4038 .default_attrs = default_attrs,
4039 .release = blk_release_queue,
4040 };
4041
4042 int blk_register_queue(struct gendisk *disk)
4043 {
4044 int ret;
4045
4046 struct request_queue *q = disk->queue;
4047
4048 if (!q || !q->request_fn)
4049 return -ENXIO;
4050
4051 q->kobj.parent = kobject_get(&disk->kobj);
4052
4053 ret = kobject_add(&q->kobj);
4054 if (ret < 0)
4055 return ret;
4056
4057 kobject_uevent(&q->kobj, KOBJ_ADD);
4058
4059 ret = elv_register_queue(q);
4060 if (ret) {
4061 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4062 kobject_del(&q->kobj);
4063 return ret;
4064 }
4065
4066 return 0;
4067 }
4068
4069 void blk_unregister_queue(struct gendisk *disk)
4070 {
4071 struct request_queue *q = disk->queue;
4072
4073 if (q && q->request_fn) {
4074 elv_unregister_queue(q);
4075
4076 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4077 kobject_del(&q->kobj);
4078 kobject_put(&disk->kobj);
4079 }
4080 }
This page took 0.165077 seconds and 6 git commands to generate.