crypto: kpp - Key-agreement Protocol Primitives API (KPP)
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91 config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96 config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105 config CRYPTO_RSA
106 tristate "RSA algorithm"
107 select CRYPTO_AKCIPHER
108 select CRYPTO_MANAGER
109 select MPILIB
110 select ASN1
111 help
112 Generic implementation of the RSA public key algorithm.
113
114 config CRYPTO_MANAGER
115 tristate "Cryptographic algorithm manager"
116 select CRYPTO_MANAGER2
117 help
118 Create default cryptographic template instantiations such as
119 cbc(aes).
120
121 config CRYPTO_MANAGER2
122 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
123 select CRYPTO_AEAD2
124 select CRYPTO_HASH2
125 select CRYPTO_BLKCIPHER2
126 select CRYPTO_AKCIPHER2
127 select CRYPTO_KPP2
128
129 config CRYPTO_USER
130 tristate "Userspace cryptographic algorithm configuration"
131 depends on NET
132 select CRYPTO_MANAGER
133 help
134 Userspace configuration for cryptographic instantiations such as
135 cbc(aes).
136
137 config CRYPTO_MANAGER_DISABLE_TESTS
138 bool "Disable run-time self tests"
139 default y
140 depends on CRYPTO_MANAGER2
141 help
142 Disable run-time self tests that normally take place at
143 algorithm registration.
144
145 config CRYPTO_GF128MUL
146 tristate "GF(2^128) multiplication functions"
147 help
148 Efficient table driven implementation of multiplications in the
149 field GF(2^128). This is needed by some cypher modes. This
150 option will be selected automatically if you select such a
151 cipher mode. Only select this option by hand if you expect to load
152 an external module that requires these functions.
153
154 config CRYPTO_NULL
155 tristate "Null algorithms"
156 select CRYPTO_NULL2
157 help
158 These are 'Null' algorithms, used by IPsec, which do nothing.
159
160 config CRYPTO_NULL2
161 tristate
162 select CRYPTO_ALGAPI2
163 select CRYPTO_BLKCIPHER2
164 select CRYPTO_HASH2
165
166 config CRYPTO_PCRYPT
167 tristate "Parallel crypto engine"
168 depends on SMP
169 select PADATA
170 select CRYPTO_MANAGER
171 select CRYPTO_AEAD
172 help
173 This converts an arbitrary crypto algorithm into a parallel
174 algorithm that executes in kernel threads.
175
176 config CRYPTO_WORKQUEUE
177 tristate
178
179 config CRYPTO_CRYPTD
180 tristate "Software async crypto daemon"
181 select CRYPTO_BLKCIPHER
182 select CRYPTO_HASH
183 select CRYPTO_MANAGER
184 select CRYPTO_WORKQUEUE
185 help
186 This is a generic software asynchronous crypto daemon that
187 converts an arbitrary synchronous software crypto algorithm
188 into an asynchronous algorithm that executes in a kernel thread.
189
190 config CRYPTO_MCRYPTD
191 tristate "Software async multi-buffer crypto daemon"
192 select CRYPTO_BLKCIPHER
193 select CRYPTO_HASH
194 select CRYPTO_MANAGER
195 select CRYPTO_WORKQUEUE
196 help
197 This is a generic software asynchronous crypto daemon that
198 provides the kernel thread to assist multi-buffer crypto
199 algorithms for submitting jobs and flushing jobs in multi-buffer
200 crypto algorithms. Multi-buffer crypto algorithms are executed
201 in the context of this kernel thread and drivers can post
202 their crypto request asynchronously to be processed by this daemon.
203
204 config CRYPTO_AUTHENC
205 tristate "Authenc support"
206 select CRYPTO_AEAD
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_MANAGER
209 select CRYPTO_HASH
210 select CRYPTO_NULL
211 help
212 Authenc: Combined mode wrapper for IPsec.
213 This is required for IPSec.
214
215 config CRYPTO_TEST
216 tristate "Testing module"
217 depends on m
218 select CRYPTO_MANAGER
219 help
220 Quick & dirty crypto test module.
221
222 config CRYPTO_ABLK_HELPER
223 tristate
224 select CRYPTO_CRYPTD
225
226 config CRYPTO_GLUE_HELPER_X86
227 tristate
228 depends on X86
229 select CRYPTO_ALGAPI
230
231 config CRYPTO_ENGINE
232 tristate
233
234 comment "Authenticated Encryption with Associated Data"
235
236 config CRYPTO_CCM
237 tristate "CCM support"
238 select CRYPTO_CTR
239 select CRYPTO_AEAD
240 help
241 Support for Counter with CBC MAC. Required for IPsec.
242
243 config CRYPTO_GCM
244 tristate "GCM/GMAC support"
245 select CRYPTO_CTR
246 select CRYPTO_AEAD
247 select CRYPTO_GHASH
248 select CRYPTO_NULL
249 help
250 Support for Galois/Counter Mode (GCM) and Galois Message
251 Authentication Code (GMAC). Required for IPSec.
252
253 config CRYPTO_CHACHA20POLY1305
254 tristate "ChaCha20-Poly1305 AEAD support"
255 select CRYPTO_CHACHA20
256 select CRYPTO_POLY1305
257 select CRYPTO_AEAD
258 help
259 ChaCha20-Poly1305 AEAD support, RFC7539.
260
261 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
262 with the Poly1305 authenticator. It is defined in RFC7539 for use in
263 IETF protocols.
264
265 config CRYPTO_SEQIV
266 tristate "Sequence Number IV Generator"
267 select CRYPTO_AEAD
268 select CRYPTO_BLKCIPHER
269 select CRYPTO_NULL
270 select CRYPTO_RNG_DEFAULT
271 help
272 This IV generator generates an IV based on a sequence number by
273 xoring it with a salt. This algorithm is mainly useful for CTR
274
275 config CRYPTO_ECHAINIV
276 tristate "Encrypted Chain IV Generator"
277 select CRYPTO_AEAD
278 select CRYPTO_NULL
279 select CRYPTO_RNG_DEFAULT
280 default m
281 help
282 This IV generator generates an IV based on the encryption of
283 a sequence number xored with a salt. This is the default
284 algorithm for CBC.
285
286 comment "Block modes"
287
288 config CRYPTO_CBC
289 tristate "CBC support"
290 select CRYPTO_BLKCIPHER
291 select CRYPTO_MANAGER
292 help
293 CBC: Cipher Block Chaining mode
294 This block cipher algorithm is required for IPSec.
295
296 config CRYPTO_CTR
297 tristate "CTR support"
298 select CRYPTO_BLKCIPHER
299 select CRYPTO_SEQIV
300 select CRYPTO_MANAGER
301 help
302 CTR: Counter mode
303 This block cipher algorithm is required for IPSec.
304
305 config CRYPTO_CTS
306 tristate "CTS support"
307 select CRYPTO_BLKCIPHER
308 help
309 CTS: Cipher Text Stealing
310 This is the Cipher Text Stealing mode as described by
311 Section 8 of rfc2040 and referenced by rfc3962.
312 (rfc3962 includes errata information in its Appendix A)
313 This mode is required for Kerberos gss mechanism support
314 for AES encryption.
315
316 config CRYPTO_ECB
317 tristate "ECB support"
318 select CRYPTO_BLKCIPHER
319 select CRYPTO_MANAGER
320 help
321 ECB: Electronic CodeBook mode
322 This is the simplest block cipher algorithm. It simply encrypts
323 the input block by block.
324
325 config CRYPTO_LRW
326 tristate "LRW support"
327 select CRYPTO_BLKCIPHER
328 select CRYPTO_MANAGER
329 select CRYPTO_GF128MUL
330 help
331 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
332 narrow block cipher mode for dm-crypt. Use it with cipher
333 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
334 The first 128, 192 or 256 bits in the key are used for AES and the
335 rest is used to tie each cipher block to its logical position.
336
337 config CRYPTO_PCBC
338 tristate "PCBC support"
339 select CRYPTO_BLKCIPHER
340 select CRYPTO_MANAGER
341 help
342 PCBC: Propagating Cipher Block Chaining mode
343 This block cipher algorithm is required for RxRPC.
344
345 config CRYPTO_XTS
346 tristate "XTS support"
347 select CRYPTO_BLKCIPHER
348 select CRYPTO_MANAGER
349 select CRYPTO_GF128MUL
350 help
351 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
352 key size 256, 384 or 512 bits. This implementation currently
353 can't handle a sectorsize which is not a multiple of 16 bytes.
354
355 config CRYPTO_KEYWRAP
356 tristate "Key wrapping support"
357 select CRYPTO_BLKCIPHER
358 help
359 Support for key wrapping (NIST SP800-38F / RFC3394) without
360 padding.
361
362 comment "Hash modes"
363
364 config CRYPTO_CMAC
365 tristate "CMAC support"
366 select CRYPTO_HASH
367 select CRYPTO_MANAGER
368 help
369 Cipher-based Message Authentication Code (CMAC) specified by
370 The National Institute of Standards and Technology (NIST).
371
372 https://tools.ietf.org/html/rfc4493
373 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
374
375 config CRYPTO_HMAC
376 tristate "HMAC support"
377 select CRYPTO_HASH
378 select CRYPTO_MANAGER
379 help
380 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
381 This is required for IPSec.
382
383 config CRYPTO_XCBC
384 tristate "XCBC support"
385 select CRYPTO_HASH
386 select CRYPTO_MANAGER
387 help
388 XCBC: Keyed-Hashing with encryption algorithm
389 http://www.ietf.org/rfc/rfc3566.txt
390 http://csrc.nist.gov/encryption/modes/proposedmodes/
391 xcbc-mac/xcbc-mac-spec.pdf
392
393 config CRYPTO_VMAC
394 tristate "VMAC support"
395 select CRYPTO_HASH
396 select CRYPTO_MANAGER
397 help
398 VMAC is a message authentication algorithm designed for
399 very high speed on 64-bit architectures.
400
401 See also:
402 <http://fastcrypto.org/vmac>
403
404 comment "Digest"
405
406 config CRYPTO_CRC32C
407 tristate "CRC32c CRC algorithm"
408 select CRYPTO_HASH
409 select CRC32
410 help
411 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
412 by iSCSI for header and data digests and by others.
413 See Castagnoli93. Module will be crc32c.
414
415 config CRYPTO_CRC32C_INTEL
416 tristate "CRC32c INTEL hardware acceleration"
417 depends on X86
418 select CRYPTO_HASH
419 help
420 In Intel processor with SSE4.2 supported, the processor will
421 support CRC32C implementation using hardware accelerated CRC32
422 instruction. This option will create 'crc32c-intel' module,
423 which will enable any routine to use the CRC32 instruction to
424 gain performance compared with software implementation.
425 Module will be crc32c-intel.
426
427 config CRYPTO_CRC32C_SPARC64
428 tristate "CRC32c CRC algorithm (SPARC64)"
429 depends on SPARC64
430 select CRYPTO_HASH
431 select CRC32
432 help
433 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
434 when available.
435
436 config CRYPTO_CRC32
437 tristate "CRC32 CRC algorithm"
438 select CRYPTO_HASH
439 select CRC32
440 help
441 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
442 Shash crypto api wrappers to crc32_le function.
443
444 config CRYPTO_CRC32_PCLMUL
445 tristate "CRC32 PCLMULQDQ hardware acceleration"
446 depends on X86
447 select CRYPTO_HASH
448 select CRC32
449 help
450 From Intel Westmere and AMD Bulldozer processor with SSE4.2
451 and PCLMULQDQ supported, the processor will support
452 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
453 instruction. This option will create 'crc32-plcmul' module,
454 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
455 and gain better performance as compared with the table implementation.
456
457 config CRYPTO_CRCT10DIF
458 tristate "CRCT10DIF algorithm"
459 select CRYPTO_HASH
460 help
461 CRC T10 Data Integrity Field computation is being cast as
462 a crypto transform. This allows for faster crc t10 diff
463 transforms to be used if they are available.
464
465 config CRYPTO_CRCT10DIF_PCLMUL
466 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
467 depends on X86 && 64BIT && CRC_T10DIF
468 select CRYPTO_HASH
469 help
470 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
471 CRC T10 DIF PCLMULQDQ computation can be hardware
472 accelerated PCLMULQDQ instruction. This option will create
473 'crct10dif-plcmul' module, which is faster when computing the
474 crct10dif checksum as compared with the generic table implementation.
475
476 config CRYPTO_GHASH
477 tristate "GHASH digest algorithm"
478 select CRYPTO_GF128MUL
479 select CRYPTO_HASH
480 help
481 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
482
483 config CRYPTO_POLY1305
484 tristate "Poly1305 authenticator algorithm"
485 select CRYPTO_HASH
486 help
487 Poly1305 authenticator algorithm, RFC7539.
488
489 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
490 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
491 in IETF protocols. This is the portable C implementation of Poly1305.
492
493 config CRYPTO_POLY1305_X86_64
494 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
495 depends on X86 && 64BIT
496 select CRYPTO_POLY1305
497 help
498 Poly1305 authenticator algorithm, RFC7539.
499
500 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
501 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
502 in IETF protocols. This is the x86_64 assembler implementation using SIMD
503 instructions.
504
505 config CRYPTO_MD4
506 tristate "MD4 digest algorithm"
507 select CRYPTO_HASH
508 help
509 MD4 message digest algorithm (RFC1320).
510
511 config CRYPTO_MD5
512 tristate "MD5 digest algorithm"
513 select CRYPTO_HASH
514 help
515 MD5 message digest algorithm (RFC1321).
516
517 config CRYPTO_MD5_OCTEON
518 tristate "MD5 digest algorithm (OCTEON)"
519 depends on CPU_CAVIUM_OCTEON
520 select CRYPTO_MD5
521 select CRYPTO_HASH
522 help
523 MD5 message digest algorithm (RFC1321) implemented
524 using OCTEON crypto instructions, when available.
525
526 config CRYPTO_MD5_PPC
527 tristate "MD5 digest algorithm (PPC)"
528 depends on PPC
529 select CRYPTO_HASH
530 help
531 MD5 message digest algorithm (RFC1321) implemented
532 in PPC assembler.
533
534 config CRYPTO_MD5_SPARC64
535 tristate "MD5 digest algorithm (SPARC64)"
536 depends on SPARC64
537 select CRYPTO_MD5
538 select CRYPTO_HASH
539 help
540 MD5 message digest algorithm (RFC1321) implemented
541 using sparc64 crypto instructions, when available.
542
543 config CRYPTO_MICHAEL_MIC
544 tristate "Michael MIC keyed digest algorithm"
545 select CRYPTO_HASH
546 help
547 Michael MIC is used for message integrity protection in TKIP
548 (IEEE 802.11i). This algorithm is required for TKIP, but it
549 should not be used for other purposes because of the weakness
550 of the algorithm.
551
552 config CRYPTO_RMD128
553 tristate "RIPEMD-128 digest algorithm"
554 select CRYPTO_HASH
555 help
556 RIPEMD-128 (ISO/IEC 10118-3:2004).
557
558 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
559 be used as a secure replacement for RIPEMD. For other use cases,
560 RIPEMD-160 should be used.
561
562 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
563 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
564
565 config CRYPTO_RMD160
566 tristate "RIPEMD-160 digest algorithm"
567 select CRYPTO_HASH
568 help
569 RIPEMD-160 (ISO/IEC 10118-3:2004).
570
571 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
572 to be used as a secure replacement for the 128-bit hash functions
573 MD4, MD5 and it's predecessor RIPEMD
574 (not to be confused with RIPEMD-128).
575
576 It's speed is comparable to SHA1 and there are no known attacks
577 against RIPEMD-160.
578
579 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
580 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
581
582 config CRYPTO_RMD256
583 tristate "RIPEMD-256 digest algorithm"
584 select CRYPTO_HASH
585 help
586 RIPEMD-256 is an optional extension of RIPEMD-128 with a
587 256 bit hash. It is intended for applications that require
588 longer hash-results, without needing a larger security level
589 (than RIPEMD-128).
590
591 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
592 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
593
594 config CRYPTO_RMD320
595 tristate "RIPEMD-320 digest algorithm"
596 select CRYPTO_HASH
597 help
598 RIPEMD-320 is an optional extension of RIPEMD-160 with a
599 320 bit hash. It is intended for applications that require
600 longer hash-results, without needing a larger security level
601 (than RIPEMD-160).
602
603 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
604 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
605
606 config CRYPTO_SHA1
607 tristate "SHA1 digest algorithm"
608 select CRYPTO_HASH
609 help
610 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
611
612 config CRYPTO_SHA1_SSSE3
613 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
614 depends on X86 && 64BIT
615 select CRYPTO_SHA1
616 select CRYPTO_HASH
617 help
618 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
619 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
620 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
621 when available.
622
623 config CRYPTO_SHA256_SSSE3
624 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
625 depends on X86 && 64BIT
626 select CRYPTO_SHA256
627 select CRYPTO_HASH
628 help
629 SHA-256 secure hash standard (DFIPS 180-2) implemented
630 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
631 Extensions version 1 (AVX1), or Advanced Vector Extensions
632 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
633 Instructions) when available.
634
635 config CRYPTO_SHA512_SSSE3
636 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
637 depends on X86 && 64BIT
638 select CRYPTO_SHA512
639 select CRYPTO_HASH
640 help
641 SHA-512 secure hash standard (DFIPS 180-2) implemented
642 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
643 Extensions version 1 (AVX1), or Advanced Vector Extensions
644 version 2 (AVX2) instructions, when available.
645
646 config CRYPTO_SHA1_OCTEON
647 tristate "SHA1 digest algorithm (OCTEON)"
648 depends on CPU_CAVIUM_OCTEON
649 select CRYPTO_SHA1
650 select CRYPTO_HASH
651 help
652 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
653 using OCTEON crypto instructions, when available.
654
655 config CRYPTO_SHA1_SPARC64
656 tristate "SHA1 digest algorithm (SPARC64)"
657 depends on SPARC64
658 select CRYPTO_SHA1
659 select CRYPTO_HASH
660 help
661 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
662 using sparc64 crypto instructions, when available.
663
664 config CRYPTO_SHA1_PPC
665 tristate "SHA1 digest algorithm (powerpc)"
666 depends on PPC
667 help
668 This is the powerpc hardware accelerated implementation of the
669 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
670
671 config CRYPTO_SHA1_PPC_SPE
672 tristate "SHA1 digest algorithm (PPC SPE)"
673 depends on PPC && SPE
674 help
675 SHA-1 secure hash standard (DFIPS 180-4) implemented
676 using powerpc SPE SIMD instruction set.
677
678 config CRYPTO_SHA1_MB
679 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
680 depends on X86 && 64BIT
681 select CRYPTO_SHA1
682 select CRYPTO_HASH
683 select CRYPTO_MCRYPTD
684 help
685 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
686 using multi-buffer technique. This algorithm computes on
687 multiple data lanes concurrently with SIMD instructions for
688 better throughput. It should not be enabled by default but
689 used when there is significant amount of work to keep the keep
690 the data lanes filled to get performance benefit. If the data
691 lanes remain unfilled, a flush operation will be initiated to
692 process the crypto jobs, adding a slight latency.
693
694 config CRYPTO_SHA256
695 tristate "SHA224 and SHA256 digest algorithm"
696 select CRYPTO_HASH
697 help
698 SHA256 secure hash standard (DFIPS 180-2).
699
700 This version of SHA implements a 256 bit hash with 128 bits of
701 security against collision attacks.
702
703 This code also includes SHA-224, a 224 bit hash with 112 bits
704 of security against collision attacks.
705
706 config CRYPTO_SHA256_PPC_SPE
707 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
708 depends on PPC && SPE
709 select CRYPTO_SHA256
710 select CRYPTO_HASH
711 help
712 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
713 implemented using powerpc SPE SIMD instruction set.
714
715 config CRYPTO_SHA256_OCTEON
716 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
717 depends on CPU_CAVIUM_OCTEON
718 select CRYPTO_SHA256
719 select CRYPTO_HASH
720 help
721 SHA-256 secure hash standard (DFIPS 180-2) implemented
722 using OCTEON crypto instructions, when available.
723
724 config CRYPTO_SHA256_SPARC64
725 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
726 depends on SPARC64
727 select CRYPTO_SHA256
728 select CRYPTO_HASH
729 help
730 SHA-256 secure hash standard (DFIPS 180-2) implemented
731 using sparc64 crypto instructions, when available.
732
733 config CRYPTO_SHA512
734 tristate "SHA384 and SHA512 digest algorithms"
735 select CRYPTO_HASH
736 help
737 SHA512 secure hash standard (DFIPS 180-2).
738
739 This version of SHA implements a 512 bit hash with 256 bits of
740 security against collision attacks.
741
742 This code also includes SHA-384, a 384 bit hash with 192 bits
743 of security against collision attacks.
744
745 config CRYPTO_SHA512_OCTEON
746 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
747 depends on CPU_CAVIUM_OCTEON
748 select CRYPTO_SHA512
749 select CRYPTO_HASH
750 help
751 SHA-512 secure hash standard (DFIPS 180-2) implemented
752 using OCTEON crypto instructions, when available.
753
754 config CRYPTO_SHA512_SPARC64
755 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
756 depends on SPARC64
757 select CRYPTO_SHA512
758 select CRYPTO_HASH
759 help
760 SHA-512 secure hash standard (DFIPS 180-2) implemented
761 using sparc64 crypto instructions, when available.
762
763 config CRYPTO_SHA3
764 tristate "SHA3 digest algorithm"
765 select CRYPTO_HASH
766 help
767 SHA-3 secure hash standard (DFIPS 202). It's based on
768 cryptographic sponge function family called Keccak.
769
770 References:
771 http://keccak.noekeon.org/
772
773 config CRYPTO_TGR192
774 tristate "Tiger digest algorithms"
775 select CRYPTO_HASH
776 help
777 Tiger hash algorithm 192, 160 and 128-bit hashes
778
779 Tiger is a hash function optimized for 64-bit processors while
780 still having decent performance on 32-bit processors.
781 Tiger was developed by Ross Anderson and Eli Biham.
782
783 See also:
784 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
785
786 config CRYPTO_WP512
787 tristate "Whirlpool digest algorithms"
788 select CRYPTO_HASH
789 help
790 Whirlpool hash algorithm 512, 384 and 256-bit hashes
791
792 Whirlpool-512 is part of the NESSIE cryptographic primitives.
793 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
794
795 See also:
796 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
797
798 config CRYPTO_GHASH_CLMUL_NI_INTEL
799 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
800 depends on X86 && 64BIT
801 select CRYPTO_CRYPTD
802 help
803 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
804 The implementation is accelerated by CLMUL-NI of Intel.
805
806 comment "Ciphers"
807
808 config CRYPTO_AES
809 tristate "AES cipher algorithms"
810 select CRYPTO_ALGAPI
811 help
812 AES cipher algorithms (FIPS-197). AES uses the Rijndael
813 algorithm.
814
815 Rijndael appears to be consistently a very good performer in
816 both hardware and software across a wide range of computing
817 environments regardless of its use in feedback or non-feedback
818 modes. Its key setup time is excellent, and its key agility is
819 good. Rijndael's very low memory requirements make it very well
820 suited for restricted-space environments, in which it also
821 demonstrates excellent performance. Rijndael's operations are
822 among the easiest to defend against power and timing attacks.
823
824 The AES specifies three key sizes: 128, 192 and 256 bits
825
826 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
827
828 config CRYPTO_AES_586
829 tristate "AES cipher algorithms (i586)"
830 depends on (X86 || UML_X86) && !64BIT
831 select CRYPTO_ALGAPI
832 select CRYPTO_AES
833 help
834 AES cipher algorithms (FIPS-197). AES uses the Rijndael
835 algorithm.
836
837 Rijndael appears to be consistently a very good performer in
838 both hardware and software across a wide range of computing
839 environments regardless of its use in feedback or non-feedback
840 modes. Its key setup time is excellent, and its key agility is
841 good. Rijndael's very low memory requirements make it very well
842 suited for restricted-space environments, in which it also
843 demonstrates excellent performance. Rijndael's operations are
844 among the easiest to defend against power and timing attacks.
845
846 The AES specifies three key sizes: 128, 192 and 256 bits
847
848 See <http://csrc.nist.gov/encryption/aes/> for more information.
849
850 config CRYPTO_AES_X86_64
851 tristate "AES cipher algorithms (x86_64)"
852 depends on (X86 || UML_X86) && 64BIT
853 select CRYPTO_ALGAPI
854 select CRYPTO_AES
855 help
856 AES cipher algorithms (FIPS-197). AES uses the Rijndael
857 algorithm.
858
859 Rijndael appears to be consistently a very good performer in
860 both hardware and software across a wide range of computing
861 environments regardless of its use in feedback or non-feedback
862 modes. Its key setup time is excellent, and its key agility is
863 good. Rijndael's very low memory requirements make it very well
864 suited for restricted-space environments, in which it also
865 demonstrates excellent performance. Rijndael's operations are
866 among the easiest to defend against power and timing attacks.
867
868 The AES specifies three key sizes: 128, 192 and 256 bits
869
870 See <http://csrc.nist.gov/encryption/aes/> for more information.
871
872 config CRYPTO_AES_NI_INTEL
873 tristate "AES cipher algorithms (AES-NI)"
874 depends on X86
875 select CRYPTO_AES_X86_64 if 64BIT
876 select CRYPTO_AES_586 if !64BIT
877 select CRYPTO_CRYPTD
878 select CRYPTO_ABLK_HELPER
879 select CRYPTO_ALGAPI
880 select CRYPTO_GLUE_HELPER_X86 if 64BIT
881 select CRYPTO_LRW
882 select CRYPTO_XTS
883 help
884 Use Intel AES-NI instructions for AES algorithm.
885
886 AES cipher algorithms (FIPS-197). AES uses the Rijndael
887 algorithm.
888
889 Rijndael appears to be consistently a very good performer in
890 both hardware and software across a wide range of computing
891 environments regardless of its use in feedback or non-feedback
892 modes. Its key setup time is excellent, and its key agility is
893 good. Rijndael's very low memory requirements make it very well
894 suited for restricted-space environments, in which it also
895 demonstrates excellent performance. Rijndael's operations are
896 among the easiest to defend against power and timing attacks.
897
898 The AES specifies three key sizes: 128, 192 and 256 bits
899
900 See <http://csrc.nist.gov/encryption/aes/> for more information.
901
902 In addition to AES cipher algorithm support, the acceleration
903 for some popular block cipher mode is supported too, including
904 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
905 acceleration for CTR.
906
907 config CRYPTO_AES_SPARC64
908 tristate "AES cipher algorithms (SPARC64)"
909 depends on SPARC64
910 select CRYPTO_CRYPTD
911 select CRYPTO_ALGAPI
912 help
913 Use SPARC64 crypto opcodes for AES algorithm.
914
915 AES cipher algorithms (FIPS-197). AES uses the Rijndael
916 algorithm.
917
918 Rijndael appears to be consistently a very good performer in
919 both hardware and software across a wide range of computing
920 environments regardless of its use in feedback or non-feedback
921 modes. Its key setup time is excellent, and its key agility is
922 good. Rijndael's very low memory requirements make it very well
923 suited for restricted-space environments, in which it also
924 demonstrates excellent performance. Rijndael's operations are
925 among the easiest to defend against power and timing attacks.
926
927 The AES specifies three key sizes: 128, 192 and 256 bits
928
929 See <http://csrc.nist.gov/encryption/aes/> for more information.
930
931 In addition to AES cipher algorithm support, the acceleration
932 for some popular block cipher mode is supported too, including
933 ECB and CBC.
934
935 config CRYPTO_AES_PPC_SPE
936 tristate "AES cipher algorithms (PPC SPE)"
937 depends on PPC && SPE
938 help
939 AES cipher algorithms (FIPS-197). Additionally the acceleration
940 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
941 This module should only be used for low power (router) devices
942 without hardware AES acceleration (e.g. caam crypto). It reduces the
943 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
944 timining attacks. Nevertheless it might be not as secure as other
945 architecture specific assembler implementations that work on 1KB
946 tables or 256 bytes S-boxes.
947
948 config CRYPTO_ANUBIS
949 tristate "Anubis cipher algorithm"
950 select CRYPTO_ALGAPI
951 help
952 Anubis cipher algorithm.
953
954 Anubis is a variable key length cipher which can use keys from
955 128 bits to 320 bits in length. It was evaluated as a entrant
956 in the NESSIE competition.
957
958 See also:
959 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
960 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
961
962 config CRYPTO_ARC4
963 tristate "ARC4 cipher algorithm"
964 select CRYPTO_BLKCIPHER
965 help
966 ARC4 cipher algorithm.
967
968 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
969 bits in length. This algorithm is required for driver-based
970 WEP, but it should not be for other purposes because of the
971 weakness of the algorithm.
972
973 config CRYPTO_BLOWFISH
974 tristate "Blowfish cipher algorithm"
975 select CRYPTO_ALGAPI
976 select CRYPTO_BLOWFISH_COMMON
977 help
978 Blowfish cipher algorithm, by Bruce Schneier.
979
980 This is a variable key length cipher which can use keys from 32
981 bits to 448 bits in length. It's fast, simple and specifically
982 designed for use on "large microprocessors".
983
984 See also:
985 <http://www.schneier.com/blowfish.html>
986
987 config CRYPTO_BLOWFISH_COMMON
988 tristate
989 help
990 Common parts of the Blowfish cipher algorithm shared by the
991 generic c and the assembler implementations.
992
993 See also:
994 <http://www.schneier.com/blowfish.html>
995
996 config CRYPTO_BLOWFISH_X86_64
997 tristate "Blowfish cipher algorithm (x86_64)"
998 depends on X86 && 64BIT
999 select CRYPTO_ALGAPI
1000 select CRYPTO_BLOWFISH_COMMON
1001 help
1002 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1003
1004 This is a variable key length cipher which can use keys from 32
1005 bits to 448 bits in length. It's fast, simple and specifically
1006 designed for use on "large microprocessors".
1007
1008 See also:
1009 <http://www.schneier.com/blowfish.html>
1010
1011 config CRYPTO_CAMELLIA
1012 tristate "Camellia cipher algorithms"
1013 depends on CRYPTO
1014 select CRYPTO_ALGAPI
1015 help
1016 Camellia cipher algorithms module.
1017
1018 Camellia is a symmetric key block cipher developed jointly
1019 at NTT and Mitsubishi Electric Corporation.
1020
1021 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1022
1023 See also:
1024 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1025
1026 config CRYPTO_CAMELLIA_X86_64
1027 tristate "Camellia cipher algorithm (x86_64)"
1028 depends on X86 && 64BIT
1029 depends on CRYPTO
1030 select CRYPTO_ALGAPI
1031 select CRYPTO_GLUE_HELPER_X86
1032 select CRYPTO_LRW
1033 select CRYPTO_XTS
1034 help
1035 Camellia cipher algorithm module (x86_64).
1036
1037 Camellia is a symmetric key block cipher developed jointly
1038 at NTT and Mitsubishi Electric Corporation.
1039
1040 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1041
1042 See also:
1043 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1044
1045 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1046 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1047 depends on X86 && 64BIT
1048 depends on CRYPTO
1049 select CRYPTO_ALGAPI
1050 select CRYPTO_CRYPTD
1051 select CRYPTO_ABLK_HELPER
1052 select CRYPTO_GLUE_HELPER_X86
1053 select CRYPTO_CAMELLIA_X86_64
1054 select CRYPTO_LRW
1055 select CRYPTO_XTS
1056 help
1057 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1058
1059 Camellia is a symmetric key block cipher developed jointly
1060 at NTT and Mitsubishi Electric Corporation.
1061
1062 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1063
1064 See also:
1065 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1066
1067 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1068 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1069 depends on X86 && 64BIT
1070 depends on CRYPTO
1071 select CRYPTO_ALGAPI
1072 select CRYPTO_CRYPTD
1073 select CRYPTO_ABLK_HELPER
1074 select CRYPTO_GLUE_HELPER_X86
1075 select CRYPTO_CAMELLIA_X86_64
1076 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1077 select CRYPTO_LRW
1078 select CRYPTO_XTS
1079 help
1080 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1081
1082 Camellia is a symmetric key block cipher developed jointly
1083 at NTT and Mitsubishi Electric Corporation.
1084
1085 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1086
1087 See also:
1088 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1089
1090 config CRYPTO_CAMELLIA_SPARC64
1091 tristate "Camellia cipher algorithm (SPARC64)"
1092 depends on SPARC64
1093 depends on CRYPTO
1094 select CRYPTO_ALGAPI
1095 help
1096 Camellia cipher algorithm module (SPARC64).
1097
1098 Camellia is a symmetric key block cipher developed jointly
1099 at NTT and Mitsubishi Electric Corporation.
1100
1101 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1102
1103 See also:
1104 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1105
1106 config CRYPTO_CAST_COMMON
1107 tristate
1108 help
1109 Common parts of the CAST cipher algorithms shared by the
1110 generic c and the assembler implementations.
1111
1112 config CRYPTO_CAST5
1113 tristate "CAST5 (CAST-128) cipher algorithm"
1114 select CRYPTO_ALGAPI
1115 select CRYPTO_CAST_COMMON
1116 help
1117 The CAST5 encryption algorithm (synonymous with CAST-128) is
1118 described in RFC2144.
1119
1120 config CRYPTO_CAST5_AVX_X86_64
1121 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1122 depends on X86 && 64BIT
1123 select CRYPTO_ALGAPI
1124 select CRYPTO_CRYPTD
1125 select CRYPTO_ABLK_HELPER
1126 select CRYPTO_CAST_COMMON
1127 select CRYPTO_CAST5
1128 help
1129 The CAST5 encryption algorithm (synonymous with CAST-128) is
1130 described in RFC2144.
1131
1132 This module provides the Cast5 cipher algorithm that processes
1133 sixteen blocks parallel using the AVX instruction set.
1134
1135 config CRYPTO_CAST6
1136 tristate "CAST6 (CAST-256) cipher algorithm"
1137 select CRYPTO_ALGAPI
1138 select CRYPTO_CAST_COMMON
1139 help
1140 The CAST6 encryption algorithm (synonymous with CAST-256) is
1141 described in RFC2612.
1142
1143 config CRYPTO_CAST6_AVX_X86_64
1144 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1145 depends on X86 && 64BIT
1146 select CRYPTO_ALGAPI
1147 select CRYPTO_CRYPTD
1148 select CRYPTO_ABLK_HELPER
1149 select CRYPTO_GLUE_HELPER_X86
1150 select CRYPTO_CAST_COMMON
1151 select CRYPTO_CAST6
1152 select CRYPTO_LRW
1153 select CRYPTO_XTS
1154 help
1155 The CAST6 encryption algorithm (synonymous with CAST-256) is
1156 described in RFC2612.
1157
1158 This module provides the Cast6 cipher algorithm that processes
1159 eight blocks parallel using the AVX instruction set.
1160
1161 config CRYPTO_DES
1162 tristate "DES and Triple DES EDE cipher algorithms"
1163 select CRYPTO_ALGAPI
1164 help
1165 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1166
1167 config CRYPTO_DES_SPARC64
1168 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1169 depends on SPARC64
1170 select CRYPTO_ALGAPI
1171 select CRYPTO_DES
1172 help
1173 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1174 optimized using SPARC64 crypto opcodes.
1175
1176 config CRYPTO_DES3_EDE_X86_64
1177 tristate "Triple DES EDE cipher algorithm (x86-64)"
1178 depends on X86 && 64BIT
1179 select CRYPTO_ALGAPI
1180 select CRYPTO_DES
1181 help
1182 Triple DES EDE (FIPS 46-3) algorithm.
1183
1184 This module provides implementation of the Triple DES EDE cipher
1185 algorithm that is optimized for x86-64 processors. Two versions of
1186 algorithm are provided; regular processing one input block and
1187 one that processes three blocks parallel.
1188
1189 config CRYPTO_FCRYPT
1190 tristate "FCrypt cipher algorithm"
1191 select CRYPTO_ALGAPI
1192 select CRYPTO_BLKCIPHER
1193 help
1194 FCrypt algorithm used by RxRPC.
1195
1196 config CRYPTO_KHAZAD
1197 tristate "Khazad cipher algorithm"
1198 select CRYPTO_ALGAPI
1199 help
1200 Khazad cipher algorithm.
1201
1202 Khazad was a finalist in the initial NESSIE competition. It is
1203 an algorithm optimized for 64-bit processors with good performance
1204 on 32-bit processors. Khazad uses an 128 bit key size.
1205
1206 See also:
1207 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1208
1209 config CRYPTO_SALSA20
1210 tristate "Salsa20 stream cipher algorithm"
1211 select CRYPTO_BLKCIPHER
1212 help
1213 Salsa20 stream cipher algorithm.
1214
1215 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1216 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1217
1218 The Salsa20 stream cipher algorithm is designed by Daniel J.
1219 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1220
1221 config CRYPTO_SALSA20_586
1222 tristate "Salsa20 stream cipher algorithm (i586)"
1223 depends on (X86 || UML_X86) && !64BIT
1224 select CRYPTO_BLKCIPHER
1225 help
1226 Salsa20 stream cipher algorithm.
1227
1228 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1229 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1230
1231 The Salsa20 stream cipher algorithm is designed by Daniel J.
1232 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1233
1234 config CRYPTO_SALSA20_X86_64
1235 tristate "Salsa20 stream cipher algorithm (x86_64)"
1236 depends on (X86 || UML_X86) && 64BIT
1237 select CRYPTO_BLKCIPHER
1238 help
1239 Salsa20 stream cipher algorithm.
1240
1241 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1242 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1243
1244 The Salsa20 stream cipher algorithm is designed by Daniel J.
1245 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1246
1247 config CRYPTO_CHACHA20
1248 tristate "ChaCha20 cipher algorithm"
1249 select CRYPTO_BLKCIPHER
1250 help
1251 ChaCha20 cipher algorithm, RFC7539.
1252
1253 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1254 Bernstein and further specified in RFC7539 for use in IETF protocols.
1255 This is the portable C implementation of ChaCha20.
1256
1257 See also:
1258 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1259
1260 config CRYPTO_CHACHA20_X86_64
1261 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1262 depends on X86 && 64BIT
1263 select CRYPTO_BLKCIPHER
1264 select CRYPTO_CHACHA20
1265 help
1266 ChaCha20 cipher algorithm, RFC7539.
1267
1268 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1269 Bernstein and further specified in RFC7539 for use in IETF protocols.
1270 This is the x86_64 assembler implementation using SIMD instructions.
1271
1272 See also:
1273 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1274
1275 config CRYPTO_SEED
1276 tristate "SEED cipher algorithm"
1277 select CRYPTO_ALGAPI
1278 help
1279 SEED cipher algorithm (RFC4269).
1280
1281 SEED is a 128-bit symmetric key block cipher that has been
1282 developed by KISA (Korea Information Security Agency) as a
1283 national standard encryption algorithm of the Republic of Korea.
1284 It is a 16 round block cipher with the key size of 128 bit.
1285
1286 See also:
1287 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1288
1289 config CRYPTO_SERPENT
1290 tristate "Serpent cipher algorithm"
1291 select CRYPTO_ALGAPI
1292 help
1293 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295 Keys are allowed to be from 0 to 256 bits in length, in steps
1296 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1297 variant of Serpent for compatibility with old kerneli.org code.
1298
1299 See also:
1300 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1301
1302 config CRYPTO_SERPENT_SSE2_X86_64
1303 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1304 depends on X86 && 64BIT
1305 select CRYPTO_ALGAPI
1306 select CRYPTO_CRYPTD
1307 select CRYPTO_ABLK_HELPER
1308 select CRYPTO_GLUE_HELPER_X86
1309 select CRYPTO_SERPENT
1310 select CRYPTO_LRW
1311 select CRYPTO_XTS
1312 help
1313 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1314
1315 Keys are allowed to be from 0 to 256 bits in length, in steps
1316 of 8 bits.
1317
1318 This module provides Serpent cipher algorithm that processes eight
1319 blocks parallel using SSE2 instruction set.
1320
1321 See also:
1322 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1323
1324 config CRYPTO_SERPENT_SSE2_586
1325 tristate "Serpent cipher algorithm (i586/SSE2)"
1326 depends on X86 && !64BIT
1327 select CRYPTO_ALGAPI
1328 select CRYPTO_CRYPTD
1329 select CRYPTO_ABLK_HELPER
1330 select CRYPTO_GLUE_HELPER_X86
1331 select CRYPTO_SERPENT
1332 select CRYPTO_LRW
1333 select CRYPTO_XTS
1334 help
1335 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1336
1337 Keys are allowed to be from 0 to 256 bits in length, in steps
1338 of 8 bits.
1339
1340 This module provides Serpent cipher algorithm that processes four
1341 blocks parallel using SSE2 instruction set.
1342
1343 See also:
1344 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1345
1346 config CRYPTO_SERPENT_AVX_X86_64
1347 tristate "Serpent cipher algorithm (x86_64/AVX)"
1348 depends on X86 && 64BIT
1349 select CRYPTO_ALGAPI
1350 select CRYPTO_CRYPTD
1351 select CRYPTO_ABLK_HELPER
1352 select CRYPTO_GLUE_HELPER_X86
1353 select CRYPTO_SERPENT
1354 select CRYPTO_LRW
1355 select CRYPTO_XTS
1356 help
1357 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1358
1359 Keys are allowed to be from 0 to 256 bits in length, in steps
1360 of 8 bits.
1361
1362 This module provides the Serpent cipher algorithm that processes
1363 eight blocks parallel using the AVX instruction set.
1364
1365 See also:
1366 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1367
1368 config CRYPTO_SERPENT_AVX2_X86_64
1369 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1370 depends on X86 && 64BIT
1371 select CRYPTO_ALGAPI
1372 select CRYPTO_CRYPTD
1373 select CRYPTO_ABLK_HELPER
1374 select CRYPTO_GLUE_HELPER_X86
1375 select CRYPTO_SERPENT
1376 select CRYPTO_SERPENT_AVX_X86_64
1377 select CRYPTO_LRW
1378 select CRYPTO_XTS
1379 help
1380 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1381
1382 Keys are allowed to be from 0 to 256 bits in length, in steps
1383 of 8 bits.
1384
1385 This module provides Serpent cipher algorithm that processes 16
1386 blocks parallel using AVX2 instruction set.
1387
1388 See also:
1389 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1390
1391 config CRYPTO_TEA
1392 tristate "TEA, XTEA and XETA cipher algorithms"
1393 select CRYPTO_ALGAPI
1394 help
1395 TEA cipher algorithm.
1396
1397 Tiny Encryption Algorithm is a simple cipher that uses
1398 many rounds for security. It is very fast and uses
1399 little memory.
1400
1401 Xtendend Tiny Encryption Algorithm is a modification to
1402 the TEA algorithm to address a potential key weakness
1403 in the TEA algorithm.
1404
1405 Xtendend Encryption Tiny Algorithm is a mis-implementation
1406 of the XTEA algorithm for compatibility purposes.
1407
1408 config CRYPTO_TWOFISH
1409 tristate "Twofish cipher algorithm"
1410 select CRYPTO_ALGAPI
1411 select CRYPTO_TWOFISH_COMMON
1412 help
1413 Twofish cipher algorithm.
1414
1415 Twofish was submitted as an AES (Advanced Encryption Standard)
1416 candidate cipher by researchers at CounterPane Systems. It is a
1417 16 round block cipher supporting key sizes of 128, 192, and 256
1418 bits.
1419
1420 See also:
1421 <http://www.schneier.com/twofish.html>
1422
1423 config CRYPTO_TWOFISH_COMMON
1424 tristate
1425 help
1426 Common parts of the Twofish cipher algorithm shared by the
1427 generic c and the assembler implementations.
1428
1429 config CRYPTO_TWOFISH_586
1430 tristate "Twofish cipher algorithms (i586)"
1431 depends on (X86 || UML_X86) && !64BIT
1432 select CRYPTO_ALGAPI
1433 select CRYPTO_TWOFISH_COMMON
1434 help
1435 Twofish cipher algorithm.
1436
1437 Twofish was submitted as an AES (Advanced Encryption Standard)
1438 candidate cipher by researchers at CounterPane Systems. It is a
1439 16 round block cipher supporting key sizes of 128, 192, and 256
1440 bits.
1441
1442 See also:
1443 <http://www.schneier.com/twofish.html>
1444
1445 config CRYPTO_TWOFISH_X86_64
1446 tristate "Twofish cipher algorithm (x86_64)"
1447 depends on (X86 || UML_X86) && 64BIT
1448 select CRYPTO_ALGAPI
1449 select CRYPTO_TWOFISH_COMMON
1450 help
1451 Twofish cipher algorithm (x86_64).
1452
1453 Twofish was submitted as an AES (Advanced Encryption Standard)
1454 candidate cipher by researchers at CounterPane Systems. It is a
1455 16 round block cipher supporting key sizes of 128, 192, and 256
1456 bits.
1457
1458 See also:
1459 <http://www.schneier.com/twofish.html>
1460
1461 config CRYPTO_TWOFISH_X86_64_3WAY
1462 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1463 depends on X86 && 64BIT
1464 select CRYPTO_ALGAPI
1465 select CRYPTO_TWOFISH_COMMON
1466 select CRYPTO_TWOFISH_X86_64
1467 select CRYPTO_GLUE_HELPER_X86
1468 select CRYPTO_LRW
1469 select CRYPTO_XTS
1470 help
1471 Twofish cipher algorithm (x86_64, 3-way parallel).
1472
1473 Twofish was submitted as an AES (Advanced Encryption Standard)
1474 candidate cipher by researchers at CounterPane Systems. It is a
1475 16 round block cipher supporting key sizes of 128, 192, and 256
1476 bits.
1477
1478 This module provides Twofish cipher algorithm that processes three
1479 blocks parallel, utilizing resources of out-of-order CPUs better.
1480
1481 See also:
1482 <http://www.schneier.com/twofish.html>
1483
1484 config CRYPTO_TWOFISH_AVX_X86_64
1485 tristate "Twofish cipher algorithm (x86_64/AVX)"
1486 depends on X86 && 64BIT
1487 select CRYPTO_ALGAPI
1488 select CRYPTO_CRYPTD
1489 select CRYPTO_ABLK_HELPER
1490 select CRYPTO_GLUE_HELPER_X86
1491 select CRYPTO_TWOFISH_COMMON
1492 select CRYPTO_TWOFISH_X86_64
1493 select CRYPTO_TWOFISH_X86_64_3WAY
1494 select CRYPTO_LRW
1495 select CRYPTO_XTS
1496 help
1497 Twofish cipher algorithm (x86_64/AVX).
1498
1499 Twofish was submitted as an AES (Advanced Encryption Standard)
1500 candidate cipher by researchers at CounterPane Systems. It is a
1501 16 round block cipher supporting key sizes of 128, 192, and 256
1502 bits.
1503
1504 This module provides the Twofish cipher algorithm that processes
1505 eight blocks parallel using the AVX Instruction Set.
1506
1507 See also:
1508 <http://www.schneier.com/twofish.html>
1509
1510 comment "Compression"
1511
1512 config CRYPTO_DEFLATE
1513 tristate "Deflate compression algorithm"
1514 select CRYPTO_ALGAPI
1515 select ZLIB_INFLATE
1516 select ZLIB_DEFLATE
1517 help
1518 This is the Deflate algorithm (RFC1951), specified for use in
1519 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1520
1521 You will most probably want this if using IPSec.
1522
1523 config CRYPTO_LZO
1524 tristate "LZO compression algorithm"
1525 select CRYPTO_ALGAPI
1526 select LZO_COMPRESS
1527 select LZO_DECOMPRESS
1528 help
1529 This is the LZO algorithm.
1530
1531 config CRYPTO_842
1532 tristate "842 compression algorithm"
1533 select CRYPTO_ALGAPI
1534 select 842_COMPRESS
1535 select 842_DECOMPRESS
1536 help
1537 This is the 842 algorithm.
1538
1539 config CRYPTO_LZ4
1540 tristate "LZ4 compression algorithm"
1541 select CRYPTO_ALGAPI
1542 select LZ4_COMPRESS
1543 select LZ4_DECOMPRESS
1544 help
1545 This is the LZ4 algorithm.
1546
1547 config CRYPTO_LZ4HC
1548 tristate "LZ4HC compression algorithm"
1549 select CRYPTO_ALGAPI
1550 select LZ4HC_COMPRESS
1551 select LZ4_DECOMPRESS
1552 help
1553 This is the LZ4 high compression mode algorithm.
1554
1555 comment "Random Number Generation"
1556
1557 config CRYPTO_ANSI_CPRNG
1558 tristate "Pseudo Random Number Generation for Cryptographic modules"
1559 select CRYPTO_AES
1560 select CRYPTO_RNG
1561 help
1562 This option enables the generic pseudo random number generator
1563 for cryptographic modules. Uses the Algorithm specified in
1564 ANSI X9.31 A.2.4. Note that this option must be enabled if
1565 CRYPTO_FIPS is selected
1566
1567 menuconfig CRYPTO_DRBG_MENU
1568 tristate "NIST SP800-90A DRBG"
1569 help
1570 NIST SP800-90A compliant DRBG. In the following submenu, one or
1571 more of the DRBG types must be selected.
1572
1573 if CRYPTO_DRBG_MENU
1574
1575 config CRYPTO_DRBG_HMAC
1576 bool
1577 default y
1578 select CRYPTO_HMAC
1579 select CRYPTO_SHA256
1580
1581 config CRYPTO_DRBG_HASH
1582 bool "Enable Hash DRBG"
1583 select CRYPTO_SHA256
1584 help
1585 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1586
1587 config CRYPTO_DRBG_CTR
1588 bool "Enable CTR DRBG"
1589 select CRYPTO_AES
1590 depends on CRYPTO_CTR
1591 help
1592 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1593
1594 config CRYPTO_DRBG
1595 tristate
1596 default CRYPTO_DRBG_MENU
1597 select CRYPTO_RNG
1598 select CRYPTO_JITTERENTROPY
1599
1600 endif # if CRYPTO_DRBG_MENU
1601
1602 config CRYPTO_JITTERENTROPY
1603 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1604 select CRYPTO_RNG
1605 help
1606 The Jitterentropy RNG is a noise that is intended
1607 to provide seed to another RNG. The RNG does not
1608 perform any cryptographic whitening of the generated
1609 random numbers. This Jitterentropy RNG registers with
1610 the kernel crypto API and can be used by any caller.
1611
1612 config CRYPTO_USER_API
1613 tristate
1614
1615 config CRYPTO_USER_API_HASH
1616 tristate "User-space interface for hash algorithms"
1617 depends on NET
1618 select CRYPTO_HASH
1619 select CRYPTO_USER_API
1620 help
1621 This option enables the user-spaces interface for hash
1622 algorithms.
1623
1624 config CRYPTO_USER_API_SKCIPHER
1625 tristate "User-space interface for symmetric key cipher algorithms"
1626 depends on NET
1627 select CRYPTO_BLKCIPHER
1628 select CRYPTO_USER_API
1629 help
1630 This option enables the user-spaces interface for symmetric
1631 key cipher algorithms.
1632
1633 config CRYPTO_USER_API_RNG
1634 tristate "User-space interface for random number generator algorithms"
1635 depends on NET
1636 select CRYPTO_RNG
1637 select CRYPTO_USER_API
1638 help
1639 This option enables the user-spaces interface for random
1640 number generator algorithms.
1641
1642 config CRYPTO_USER_API_AEAD
1643 tristate "User-space interface for AEAD cipher algorithms"
1644 depends on NET
1645 select CRYPTO_AEAD
1646 select CRYPTO_USER_API
1647 help
1648 This option enables the user-spaces interface for AEAD
1649 cipher algorithms.
1650
1651 config CRYPTO_HASH_INFO
1652 bool
1653
1654 source "drivers/crypto/Kconfig"
1655 source crypto/asymmetric_keys/Kconfig
1656 source certs/Kconfig
1657
1658 endif # if CRYPTO
This page took 0.063696 seconds and 5 git commands to generate.