crypto: akcipher - Changes to asymmetric key API
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_PCOMP
88 tristate
89 select CRYPTO_PCOMP2
90 select CRYPTO_ALGAPI
91
92 config CRYPTO_PCOMP2
93 tristate
94 select CRYPTO_ALGAPI2
95
96 config CRYPTO_AKCIPHER2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_AKCIPHER
101 tristate
102 select CRYPTO_AKCIPHER2
103 select CRYPTO_ALGAPI
104
105 config CRYPTO_RSA
106 tristate "RSA algorithm"
107 select CRYPTO_AKCIPHER
108 select MPILIB
109 select ASN1
110 help
111 Generic implementation of the RSA public key algorithm.
112
113 config CRYPTO_MANAGER
114 tristate "Cryptographic algorithm manager"
115 select CRYPTO_MANAGER2
116 help
117 Create default cryptographic template instantiations such as
118 cbc(aes).
119
120 config CRYPTO_MANAGER2
121 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
122 select CRYPTO_AEAD2
123 select CRYPTO_HASH2
124 select CRYPTO_BLKCIPHER2
125 select CRYPTO_PCOMP2
126 select CRYPTO_AKCIPHER2
127
128 config CRYPTO_USER
129 tristate "Userspace cryptographic algorithm configuration"
130 depends on NET
131 select CRYPTO_MANAGER
132 help
133 Userspace configuration for cryptographic instantiations such as
134 cbc(aes).
135
136 config CRYPTO_MANAGER_DISABLE_TESTS
137 bool "Disable run-time self tests"
138 default y
139 depends on CRYPTO_MANAGER2
140 help
141 Disable run-time self tests that normally take place at
142 algorithm registration.
143
144 config CRYPTO_GF128MUL
145 tristate "GF(2^128) multiplication functions"
146 help
147 Efficient table driven implementation of multiplications in the
148 field GF(2^128). This is needed by some cypher modes. This
149 option will be selected automatically if you select such a
150 cipher mode. Only select this option by hand if you expect to load
151 an external module that requires these functions.
152
153 config CRYPTO_NULL
154 tristate "Null algorithms"
155 select CRYPTO_NULL2
156 help
157 These are 'Null' algorithms, used by IPsec, which do nothing.
158
159 config CRYPTO_NULL2
160 tristate
161 select CRYPTO_ALGAPI2
162 select CRYPTO_BLKCIPHER2
163 select CRYPTO_HASH2
164
165 config CRYPTO_PCRYPT
166 tristate "Parallel crypto engine"
167 depends on SMP
168 select PADATA
169 select CRYPTO_MANAGER
170 select CRYPTO_AEAD
171 help
172 This converts an arbitrary crypto algorithm into a parallel
173 algorithm that executes in kernel threads.
174
175 config CRYPTO_WORKQUEUE
176 tristate
177
178 config CRYPTO_CRYPTD
179 tristate "Software async crypto daemon"
180 select CRYPTO_BLKCIPHER
181 select CRYPTO_HASH
182 select CRYPTO_MANAGER
183 select CRYPTO_WORKQUEUE
184 help
185 This is a generic software asynchronous crypto daemon that
186 converts an arbitrary synchronous software crypto algorithm
187 into an asynchronous algorithm that executes in a kernel thread.
188
189 config CRYPTO_MCRYPTD
190 tristate "Software async multi-buffer crypto daemon"
191 select CRYPTO_BLKCIPHER
192 select CRYPTO_HASH
193 select CRYPTO_MANAGER
194 select CRYPTO_WORKQUEUE
195 help
196 This is a generic software asynchronous crypto daemon that
197 provides the kernel thread to assist multi-buffer crypto
198 algorithms for submitting jobs and flushing jobs in multi-buffer
199 crypto algorithms. Multi-buffer crypto algorithms are executed
200 in the context of this kernel thread and drivers can post
201 their crypto request asynchronously to be processed by this daemon.
202
203 config CRYPTO_AUTHENC
204 tristate "Authenc support"
205 select CRYPTO_AEAD
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_MANAGER
208 select CRYPTO_HASH
209 select CRYPTO_NULL
210 help
211 Authenc: Combined mode wrapper for IPsec.
212 This is required for IPSec.
213
214 config CRYPTO_TEST
215 tristate "Testing module"
216 depends on m
217 select CRYPTO_MANAGER
218 help
219 Quick & dirty crypto test module.
220
221 config CRYPTO_ABLK_HELPER
222 tristate
223 select CRYPTO_CRYPTD
224
225 config CRYPTO_GLUE_HELPER_X86
226 tristate
227 depends on X86
228 select CRYPTO_ALGAPI
229
230 comment "Authenticated Encryption with Associated Data"
231
232 config CRYPTO_CCM
233 tristate "CCM support"
234 select CRYPTO_CTR
235 select CRYPTO_AEAD
236 help
237 Support for Counter with CBC MAC. Required for IPsec.
238
239 config CRYPTO_GCM
240 tristate "GCM/GMAC support"
241 select CRYPTO_CTR
242 select CRYPTO_AEAD
243 select CRYPTO_GHASH
244 select CRYPTO_NULL
245 help
246 Support for Galois/Counter Mode (GCM) and Galois Message
247 Authentication Code (GMAC). Required for IPSec.
248
249 config CRYPTO_CHACHA20POLY1305
250 tristate "ChaCha20-Poly1305 AEAD support"
251 select CRYPTO_CHACHA20
252 select CRYPTO_POLY1305
253 select CRYPTO_AEAD
254 help
255 ChaCha20-Poly1305 AEAD support, RFC7539.
256
257 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
258 with the Poly1305 authenticator. It is defined in RFC7539 for use in
259 IETF protocols.
260
261 config CRYPTO_SEQIV
262 tristate "Sequence Number IV Generator"
263 select CRYPTO_AEAD
264 select CRYPTO_BLKCIPHER
265 select CRYPTO_NULL
266 select CRYPTO_RNG_DEFAULT
267 help
268 This IV generator generates an IV based on a sequence number by
269 xoring it with a salt. This algorithm is mainly useful for CTR
270
271 config CRYPTO_ECHAINIV
272 tristate "Encrypted Chain IV Generator"
273 select CRYPTO_AEAD
274 select CRYPTO_NULL
275 select CRYPTO_RNG_DEFAULT
276 default m
277 help
278 This IV generator generates an IV based on the encryption of
279 a sequence number xored with a salt. This is the default
280 algorithm for CBC.
281
282 comment "Block modes"
283
284 config CRYPTO_CBC
285 tristate "CBC support"
286 select CRYPTO_BLKCIPHER
287 select CRYPTO_MANAGER
288 help
289 CBC: Cipher Block Chaining mode
290 This block cipher algorithm is required for IPSec.
291
292 config CRYPTO_CTR
293 tristate "CTR support"
294 select CRYPTO_BLKCIPHER
295 select CRYPTO_SEQIV
296 select CRYPTO_MANAGER
297 help
298 CTR: Counter mode
299 This block cipher algorithm is required for IPSec.
300
301 config CRYPTO_CTS
302 tristate "CTS support"
303 select CRYPTO_BLKCIPHER
304 help
305 CTS: Cipher Text Stealing
306 This is the Cipher Text Stealing mode as described by
307 Section 8 of rfc2040 and referenced by rfc3962.
308 (rfc3962 includes errata information in its Appendix A)
309 This mode is required for Kerberos gss mechanism support
310 for AES encryption.
311
312 config CRYPTO_ECB
313 tristate "ECB support"
314 select CRYPTO_BLKCIPHER
315 select CRYPTO_MANAGER
316 help
317 ECB: Electronic CodeBook mode
318 This is the simplest block cipher algorithm. It simply encrypts
319 the input block by block.
320
321 config CRYPTO_LRW
322 tristate "LRW support"
323 select CRYPTO_BLKCIPHER
324 select CRYPTO_MANAGER
325 select CRYPTO_GF128MUL
326 help
327 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
328 narrow block cipher mode for dm-crypt. Use it with cipher
329 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
330 The first 128, 192 or 256 bits in the key are used for AES and the
331 rest is used to tie each cipher block to its logical position.
332
333 config CRYPTO_PCBC
334 tristate "PCBC support"
335 select CRYPTO_BLKCIPHER
336 select CRYPTO_MANAGER
337 help
338 PCBC: Propagating Cipher Block Chaining mode
339 This block cipher algorithm is required for RxRPC.
340
341 config CRYPTO_XTS
342 tristate "XTS support"
343 select CRYPTO_BLKCIPHER
344 select CRYPTO_MANAGER
345 select CRYPTO_GF128MUL
346 help
347 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
348 key size 256, 384 or 512 bits. This implementation currently
349 can't handle a sectorsize which is not a multiple of 16 bytes.
350
351 comment "Hash modes"
352
353 config CRYPTO_CMAC
354 tristate "CMAC support"
355 select CRYPTO_HASH
356 select CRYPTO_MANAGER
357 help
358 Cipher-based Message Authentication Code (CMAC) specified by
359 The National Institute of Standards and Technology (NIST).
360
361 https://tools.ietf.org/html/rfc4493
362 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
363
364 config CRYPTO_HMAC
365 tristate "HMAC support"
366 select CRYPTO_HASH
367 select CRYPTO_MANAGER
368 help
369 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
370 This is required for IPSec.
371
372 config CRYPTO_XCBC
373 tristate "XCBC support"
374 select CRYPTO_HASH
375 select CRYPTO_MANAGER
376 help
377 XCBC: Keyed-Hashing with encryption algorithm
378 http://www.ietf.org/rfc/rfc3566.txt
379 http://csrc.nist.gov/encryption/modes/proposedmodes/
380 xcbc-mac/xcbc-mac-spec.pdf
381
382 config CRYPTO_VMAC
383 tristate "VMAC support"
384 select CRYPTO_HASH
385 select CRYPTO_MANAGER
386 help
387 VMAC is a message authentication algorithm designed for
388 very high speed on 64-bit architectures.
389
390 See also:
391 <http://fastcrypto.org/vmac>
392
393 comment "Digest"
394
395 config CRYPTO_CRC32C
396 tristate "CRC32c CRC algorithm"
397 select CRYPTO_HASH
398 select CRC32
399 help
400 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
401 by iSCSI for header and data digests and by others.
402 See Castagnoli93. Module will be crc32c.
403
404 config CRYPTO_CRC32C_INTEL
405 tristate "CRC32c INTEL hardware acceleration"
406 depends on X86
407 select CRYPTO_HASH
408 help
409 In Intel processor with SSE4.2 supported, the processor will
410 support CRC32C implementation using hardware accelerated CRC32
411 instruction. This option will create 'crc32c-intel' module,
412 which will enable any routine to use the CRC32 instruction to
413 gain performance compared with software implementation.
414 Module will be crc32c-intel.
415
416 config CRYPTO_CRC32C_SPARC64
417 tristate "CRC32c CRC algorithm (SPARC64)"
418 depends on SPARC64
419 select CRYPTO_HASH
420 select CRC32
421 help
422 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
423 when available.
424
425 config CRYPTO_CRC32
426 tristate "CRC32 CRC algorithm"
427 select CRYPTO_HASH
428 select CRC32
429 help
430 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
431 Shash crypto api wrappers to crc32_le function.
432
433 config CRYPTO_CRC32_PCLMUL
434 tristate "CRC32 PCLMULQDQ hardware acceleration"
435 depends on X86
436 select CRYPTO_HASH
437 select CRC32
438 help
439 From Intel Westmere and AMD Bulldozer processor with SSE4.2
440 and PCLMULQDQ supported, the processor will support
441 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
442 instruction. This option will create 'crc32-plcmul' module,
443 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
444 and gain better performance as compared with the table implementation.
445
446 config CRYPTO_CRCT10DIF
447 tristate "CRCT10DIF algorithm"
448 select CRYPTO_HASH
449 help
450 CRC T10 Data Integrity Field computation is being cast as
451 a crypto transform. This allows for faster crc t10 diff
452 transforms to be used if they are available.
453
454 config CRYPTO_CRCT10DIF_PCLMUL
455 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
456 depends on X86 && 64BIT && CRC_T10DIF
457 select CRYPTO_HASH
458 help
459 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
460 CRC T10 DIF PCLMULQDQ computation can be hardware
461 accelerated PCLMULQDQ instruction. This option will create
462 'crct10dif-plcmul' module, which is faster when computing the
463 crct10dif checksum as compared with the generic table implementation.
464
465 config CRYPTO_GHASH
466 tristate "GHASH digest algorithm"
467 select CRYPTO_GF128MUL
468 help
469 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
470
471 config CRYPTO_POLY1305
472 tristate "Poly1305 authenticator algorithm"
473 help
474 Poly1305 authenticator algorithm, RFC7539.
475
476 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
477 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
478 in IETF protocols. This is the portable C implementation of Poly1305.
479
480 config CRYPTO_POLY1305_X86_64
481 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
482 depends on X86 && 64BIT
483 select CRYPTO_POLY1305
484 help
485 Poly1305 authenticator algorithm, RFC7539.
486
487 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
488 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
489 in IETF protocols. This is the x86_64 assembler implementation using SIMD
490 instructions.
491
492 config CRYPTO_MD4
493 tristate "MD4 digest algorithm"
494 select CRYPTO_HASH
495 help
496 MD4 message digest algorithm (RFC1320).
497
498 config CRYPTO_MD5
499 tristate "MD5 digest algorithm"
500 select CRYPTO_HASH
501 help
502 MD5 message digest algorithm (RFC1321).
503
504 config CRYPTO_MD5_OCTEON
505 tristate "MD5 digest algorithm (OCTEON)"
506 depends on CPU_CAVIUM_OCTEON
507 select CRYPTO_MD5
508 select CRYPTO_HASH
509 help
510 MD5 message digest algorithm (RFC1321) implemented
511 using OCTEON crypto instructions, when available.
512
513 config CRYPTO_MD5_PPC
514 tristate "MD5 digest algorithm (PPC)"
515 depends on PPC
516 select CRYPTO_HASH
517 help
518 MD5 message digest algorithm (RFC1321) implemented
519 in PPC assembler.
520
521 config CRYPTO_MD5_SPARC64
522 tristate "MD5 digest algorithm (SPARC64)"
523 depends on SPARC64
524 select CRYPTO_MD5
525 select CRYPTO_HASH
526 help
527 MD5 message digest algorithm (RFC1321) implemented
528 using sparc64 crypto instructions, when available.
529
530 config CRYPTO_MICHAEL_MIC
531 tristate "Michael MIC keyed digest algorithm"
532 select CRYPTO_HASH
533 help
534 Michael MIC is used for message integrity protection in TKIP
535 (IEEE 802.11i). This algorithm is required for TKIP, but it
536 should not be used for other purposes because of the weakness
537 of the algorithm.
538
539 config CRYPTO_RMD128
540 tristate "RIPEMD-128 digest algorithm"
541 select CRYPTO_HASH
542 help
543 RIPEMD-128 (ISO/IEC 10118-3:2004).
544
545 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
546 be used as a secure replacement for RIPEMD. For other use cases,
547 RIPEMD-160 should be used.
548
549 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
550 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
551
552 config CRYPTO_RMD160
553 tristate "RIPEMD-160 digest algorithm"
554 select CRYPTO_HASH
555 help
556 RIPEMD-160 (ISO/IEC 10118-3:2004).
557
558 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
559 to be used as a secure replacement for the 128-bit hash functions
560 MD4, MD5 and it's predecessor RIPEMD
561 (not to be confused with RIPEMD-128).
562
563 It's speed is comparable to SHA1 and there are no known attacks
564 against RIPEMD-160.
565
566 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
567 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
568
569 config CRYPTO_RMD256
570 tristate "RIPEMD-256 digest algorithm"
571 select CRYPTO_HASH
572 help
573 RIPEMD-256 is an optional extension of RIPEMD-128 with a
574 256 bit hash. It is intended for applications that require
575 longer hash-results, without needing a larger security level
576 (than RIPEMD-128).
577
578 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
579 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
580
581 config CRYPTO_RMD320
582 tristate "RIPEMD-320 digest algorithm"
583 select CRYPTO_HASH
584 help
585 RIPEMD-320 is an optional extension of RIPEMD-160 with a
586 320 bit hash. It is intended for applications that require
587 longer hash-results, without needing a larger security level
588 (than RIPEMD-160).
589
590 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
591 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
592
593 config CRYPTO_SHA1
594 tristate "SHA1 digest algorithm"
595 select CRYPTO_HASH
596 help
597 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
598
599 config CRYPTO_SHA1_SSSE3
600 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
601 depends on X86 && 64BIT
602 select CRYPTO_SHA1
603 select CRYPTO_HASH
604 help
605 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
606 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
607 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
608 when available.
609
610 config CRYPTO_SHA256_SSSE3
611 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
612 depends on X86 && 64BIT
613 select CRYPTO_SHA256
614 select CRYPTO_HASH
615 help
616 SHA-256 secure hash standard (DFIPS 180-2) implemented
617 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
618 Extensions version 1 (AVX1), or Advanced Vector Extensions
619 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
620 Instructions) when available.
621
622 config CRYPTO_SHA512_SSSE3
623 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
624 depends on X86 && 64BIT
625 select CRYPTO_SHA512
626 select CRYPTO_HASH
627 help
628 SHA-512 secure hash standard (DFIPS 180-2) implemented
629 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
630 Extensions version 1 (AVX1), or Advanced Vector Extensions
631 version 2 (AVX2) instructions, when available.
632
633 config CRYPTO_SHA1_OCTEON
634 tristate "SHA1 digest algorithm (OCTEON)"
635 depends on CPU_CAVIUM_OCTEON
636 select CRYPTO_SHA1
637 select CRYPTO_HASH
638 help
639 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
640 using OCTEON crypto instructions, when available.
641
642 config CRYPTO_SHA1_SPARC64
643 tristate "SHA1 digest algorithm (SPARC64)"
644 depends on SPARC64
645 select CRYPTO_SHA1
646 select CRYPTO_HASH
647 help
648 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
649 using sparc64 crypto instructions, when available.
650
651 config CRYPTO_SHA1_PPC
652 tristate "SHA1 digest algorithm (powerpc)"
653 depends on PPC
654 help
655 This is the powerpc hardware accelerated implementation of the
656 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
657
658 config CRYPTO_SHA1_PPC_SPE
659 tristate "SHA1 digest algorithm (PPC SPE)"
660 depends on PPC && SPE
661 help
662 SHA-1 secure hash standard (DFIPS 180-4) implemented
663 using powerpc SPE SIMD instruction set.
664
665 config CRYPTO_SHA1_MB
666 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
667 depends on X86 && 64BIT
668 select CRYPTO_SHA1
669 select CRYPTO_HASH
670 select CRYPTO_MCRYPTD
671 help
672 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
673 using multi-buffer technique. This algorithm computes on
674 multiple data lanes concurrently with SIMD instructions for
675 better throughput. It should not be enabled by default but
676 used when there is significant amount of work to keep the keep
677 the data lanes filled to get performance benefit. If the data
678 lanes remain unfilled, a flush operation will be initiated to
679 process the crypto jobs, adding a slight latency.
680
681 config CRYPTO_SHA256
682 tristate "SHA224 and SHA256 digest algorithm"
683 select CRYPTO_HASH
684 help
685 SHA256 secure hash standard (DFIPS 180-2).
686
687 This version of SHA implements a 256 bit hash with 128 bits of
688 security against collision attacks.
689
690 This code also includes SHA-224, a 224 bit hash with 112 bits
691 of security against collision attacks.
692
693 config CRYPTO_SHA256_PPC_SPE
694 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
695 depends on PPC && SPE
696 select CRYPTO_SHA256
697 select CRYPTO_HASH
698 help
699 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
700 implemented using powerpc SPE SIMD instruction set.
701
702 config CRYPTO_SHA256_OCTEON
703 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
704 depends on CPU_CAVIUM_OCTEON
705 select CRYPTO_SHA256
706 select CRYPTO_HASH
707 help
708 SHA-256 secure hash standard (DFIPS 180-2) implemented
709 using OCTEON crypto instructions, when available.
710
711 config CRYPTO_SHA256_SPARC64
712 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
713 depends on SPARC64
714 select CRYPTO_SHA256
715 select CRYPTO_HASH
716 help
717 SHA-256 secure hash standard (DFIPS 180-2) implemented
718 using sparc64 crypto instructions, when available.
719
720 config CRYPTO_SHA512
721 tristate "SHA384 and SHA512 digest algorithms"
722 select CRYPTO_HASH
723 help
724 SHA512 secure hash standard (DFIPS 180-2).
725
726 This version of SHA implements a 512 bit hash with 256 bits of
727 security against collision attacks.
728
729 This code also includes SHA-384, a 384 bit hash with 192 bits
730 of security against collision attacks.
731
732 config CRYPTO_SHA512_OCTEON
733 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
734 depends on CPU_CAVIUM_OCTEON
735 select CRYPTO_SHA512
736 select CRYPTO_HASH
737 help
738 SHA-512 secure hash standard (DFIPS 180-2) implemented
739 using OCTEON crypto instructions, when available.
740
741 config CRYPTO_SHA512_SPARC64
742 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
743 depends on SPARC64
744 select CRYPTO_SHA512
745 select CRYPTO_HASH
746 help
747 SHA-512 secure hash standard (DFIPS 180-2) implemented
748 using sparc64 crypto instructions, when available.
749
750 config CRYPTO_TGR192
751 tristate "Tiger digest algorithms"
752 select CRYPTO_HASH
753 help
754 Tiger hash algorithm 192, 160 and 128-bit hashes
755
756 Tiger is a hash function optimized for 64-bit processors while
757 still having decent performance on 32-bit processors.
758 Tiger was developed by Ross Anderson and Eli Biham.
759
760 See also:
761 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
762
763 config CRYPTO_WP512
764 tristate "Whirlpool digest algorithms"
765 select CRYPTO_HASH
766 help
767 Whirlpool hash algorithm 512, 384 and 256-bit hashes
768
769 Whirlpool-512 is part of the NESSIE cryptographic primitives.
770 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
771
772 See also:
773 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
774
775 config CRYPTO_GHASH_CLMUL_NI_INTEL
776 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
777 depends on X86 && 64BIT
778 select CRYPTO_CRYPTD
779 help
780 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
781 The implementation is accelerated by CLMUL-NI of Intel.
782
783 comment "Ciphers"
784
785 config CRYPTO_AES
786 tristate "AES cipher algorithms"
787 select CRYPTO_ALGAPI
788 help
789 AES cipher algorithms (FIPS-197). AES uses the Rijndael
790 algorithm.
791
792 Rijndael appears to be consistently a very good performer in
793 both hardware and software across a wide range of computing
794 environments regardless of its use in feedback or non-feedback
795 modes. Its key setup time is excellent, and its key agility is
796 good. Rijndael's very low memory requirements make it very well
797 suited for restricted-space environments, in which it also
798 demonstrates excellent performance. Rijndael's operations are
799 among the easiest to defend against power and timing attacks.
800
801 The AES specifies three key sizes: 128, 192 and 256 bits
802
803 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
804
805 config CRYPTO_AES_586
806 tristate "AES cipher algorithms (i586)"
807 depends on (X86 || UML_X86) && !64BIT
808 select CRYPTO_ALGAPI
809 select CRYPTO_AES
810 help
811 AES cipher algorithms (FIPS-197). AES uses the Rijndael
812 algorithm.
813
814 Rijndael appears to be consistently a very good performer in
815 both hardware and software across a wide range of computing
816 environments regardless of its use in feedback or non-feedback
817 modes. Its key setup time is excellent, and its key agility is
818 good. Rijndael's very low memory requirements make it very well
819 suited for restricted-space environments, in which it also
820 demonstrates excellent performance. Rijndael's operations are
821 among the easiest to defend against power and timing attacks.
822
823 The AES specifies three key sizes: 128, 192 and 256 bits
824
825 See <http://csrc.nist.gov/encryption/aes/> for more information.
826
827 config CRYPTO_AES_X86_64
828 tristate "AES cipher algorithms (x86_64)"
829 depends on (X86 || UML_X86) && 64BIT
830 select CRYPTO_ALGAPI
831 select CRYPTO_AES
832 help
833 AES cipher algorithms (FIPS-197). AES uses the Rijndael
834 algorithm.
835
836 Rijndael appears to be consistently a very good performer in
837 both hardware and software across a wide range of computing
838 environments regardless of its use in feedback or non-feedback
839 modes. Its key setup time is excellent, and its key agility is
840 good. Rijndael's very low memory requirements make it very well
841 suited for restricted-space environments, in which it also
842 demonstrates excellent performance. Rijndael's operations are
843 among the easiest to defend against power and timing attacks.
844
845 The AES specifies three key sizes: 128, 192 and 256 bits
846
847 See <http://csrc.nist.gov/encryption/aes/> for more information.
848
849 config CRYPTO_AES_NI_INTEL
850 tristate "AES cipher algorithms (AES-NI)"
851 depends on X86
852 select CRYPTO_AES_X86_64 if 64BIT
853 select CRYPTO_AES_586 if !64BIT
854 select CRYPTO_CRYPTD
855 select CRYPTO_ABLK_HELPER
856 select CRYPTO_ALGAPI
857 select CRYPTO_GLUE_HELPER_X86 if 64BIT
858 select CRYPTO_LRW
859 select CRYPTO_XTS
860 help
861 Use Intel AES-NI instructions for AES algorithm.
862
863 AES cipher algorithms (FIPS-197). AES uses the Rijndael
864 algorithm.
865
866 Rijndael appears to be consistently a very good performer in
867 both hardware and software across a wide range of computing
868 environments regardless of its use in feedback or non-feedback
869 modes. Its key setup time is excellent, and its key agility is
870 good. Rijndael's very low memory requirements make it very well
871 suited for restricted-space environments, in which it also
872 demonstrates excellent performance. Rijndael's operations are
873 among the easiest to defend against power and timing attacks.
874
875 The AES specifies three key sizes: 128, 192 and 256 bits
876
877 See <http://csrc.nist.gov/encryption/aes/> for more information.
878
879 In addition to AES cipher algorithm support, the acceleration
880 for some popular block cipher mode is supported too, including
881 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
882 acceleration for CTR.
883
884 config CRYPTO_AES_SPARC64
885 tristate "AES cipher algorithms (SPARC64)"
886 depends on SPARC64
887 select CRYPTO_CRYPTD
888 select CRYPTO_ALGAPI
889 help
890 Use SPARC64 crypto opcodes for AES algorithm.
891
892 AES cipher algorithms (FIPS-197). AES uses the Rijndael
893 algorithm.
894
895 Rijndael appears to be consistently a very good performer in
896 both hardware and software across a wide range of computing
897 environments regardless of its use in feedback or non-feedback
898 modes. Its key setup time is excellent, and its key agility is
899 good. Rijndael's very low memory requirements make it very well
900 suited for restricted-space environments, in which it also
901 demonstrates excellent performance. Rijndael's operations are
902 among the easiest to defend against power and timing attacks.
903
904 The AES specifies three key sizes: 128, 192 and 256 bits
905
906 See <http://csrc.nist.gov/encryption/aes/> for more information.
907
908 In addition to AES cipher algorithm support, the acceleration
909 for some popular block cipher mode is supported too, including
910 ECB and CBC.
911
912 config CRYPTO_AES_PPC_SPE
913 tristate "AES cipher algorithms (PPC SPE)"
914 depends on PPC && SPE
915 help
916 AES cipher algorithms (FIPS-197). Additionally the acceleration
917 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
918 This module should only be used for low power (router) devices
919 without hardware AES acceleration (e.g. caam crypto). It reduces the
920 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
921 timining attacks. Nevertheless it might be not as secure as other
922 architecture specific assembler implementations that work on 1KB
923 tables or 256 bytes S-boxes.
924
925 config CRYPTO_ANUBIS
926 tristate "Anubis cipher algorithm"
927 select CRYPTO_ALGAPI
928 help
929 Anubis cipher algorithm.
930
931 Anubis is a variable key length cipher which can use keys from
932 128 bits to 320 bits in length. It was evaluated as a entrant
933 in the NESSIE competition.
934
935 See also:
936 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
937 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
938
939 config CRYPTO_ARC4
940 tristate "ARC4 cipher algorithm"
941 select CRYPTO_BLKCIPHER
942 help
943 ARC4 cipher algorithm.
944
945 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
946 bits in length. This algorithm is required for driver-based
947 WEP, but it should not be for other purposes because of the
948 weakness of the algorithm.
949
950 config CRYPTO_BLOWFISH
951 tristate "Blowfish cipher algorithm"
952 select CRYPTO_ALGAPI
953 select CRYPTO_BLOWFISH_COMMON
954 help
955 Blowfish cipher algorithm, by Bruce Schneier.
956
957 This is a variable key length cipher which can use keys from 32
958 bits to 448 bits in length. It's fast, simple and specifically
959 designed for use on "large microprocessors".
960
961 See also:
962 <http://www.schneier.com/blowfish.html>
963
964 config CRYPTO_BLOWFISH_COMMON
965 tristate
966 help
967 Common parts of the Blowfish cipher algorithm shared by the
968 generic c and the assembler implementations.
969
970 See also:
971 <http://www.schneier.com/blowfish.html>
972
973 config CRYPTO_BLOWFISH_X86_64
974 tristate "Blowfish cipher algorithm (x86_64)"
975 depends on X86 && 64BIT
976 select CRYPTO_ALGAPI
977 select CRYPTO_BLOWFISH_COMMON
978 help
979 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
980
981 This is a variable key length cipher which can use keys from 32
982 bits to 448 bits in length. It's fast, simple and specifically
983 designed for use on "large microprocessors".
984
985 See also:
986 <http://www.schneier.com/blowfish.html>
987
988 config CRYPTO_CAMELLIA
989 tristate "Camellia cipher algorithms"
990 depends on CRYPTO
991 select CRYPTO_ALGAPI
992 help
993 Camellia cipher algorithms module.
994
995 Camellia is a symmetric key block cipher developed jointly
996 at NTT and Mitsubishi Electric Corporation.
997
998 The Camellia specifies three key sizes: 128, 192 and 256 bits.
999
1000 See also:
1001 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1002
1003 config CRYPTO_CAMELLIA_X86_64
1004 tristate "Camellia cipher algorithm (x86_64)"
1005 depends on X86 && 64BIT
1006 depends on CRYPTO
1007 select CRYPTO_ALGAPI
1008 select CRYPTO_GLUE_HELPER_X86
1009 select CRYPTO_LRW
1010 select CRYPTO_XTS
1011 help
1012 Camellia cipher algorithm module (x86_64).
1013
1014 Camellia is a symmetric key block cipher developed jointly
1015 at NTT and Mitsubishi Electric Corporation.
1016
1017 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1018
1019 See also:
1020 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1021
1022 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1023 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1024 depends on X86 && 64BIT
1025 depends on CRYPTO
1026 select CRYPTO_ALGAPI
1027 select CRYPTO_CRYPTD
1028 select CRYPTO_ABLK_HELPER
1029 select CRYPTO_GLUE_HELPER_X86
1030 select CRYPTO_CAMELLIA_X86_64
1031 select CRYPTO_LRW
1032 select CRYPTO_XTS
1033 help
1034 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1035
1036 Camellia is a symmetric key block cipher developed jointly
1037 at NTT and Mitsubishi Electric Corporation.
1038
1039 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1040
1041 See also:
1042 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1043
1044 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1045 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1046 depends on X86 && 64BIT
1047 depends on CRYPTO
1048 select CRYPTO_ALGAPI
1049 select CRYPTO_CRYPTD
1050 select CRYPTO_ABLK_HELPER
1051 select CRYPTO_GLUE_HELPER_X86
1052 select CRYPTO_CAMELLIA_X86_64
1053 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1054 select CRYPTO_LRW
1055 select CRYPTO_XTS
1056 help
1057 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1058
1059 Camellia is a symmetric key block cipher developed jointly
1060 at NTT and Mitsubishi Electric Corporation.
1061
1062 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1063
1064 See also:
1065 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1066
1067 config CRYPTO_CAMELLIA_SPARC64
1068 tristate "Camellia cipher algorithm (SPARC64)"
1069 depends on SPARC64
1070 depends on CRYPTO
1071 select CRYPTO_ALGAPI
1072 help
1073 Camellia cipher algorithm module (SPARC64).
1074
1075 Camellia is a symmetric key block cipher developed jointly
1076 at NTT and Mitsubishi Electric Corporation.
1077
1078 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1079
1080 See also:
1081 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1082
1083 config CRYPTO_CAST_COMMON
1084 tristate
1085 help
1086 Common parts of the CAST cipher algorithms shared by the
1087 generic c and the assembler implementations.
1088
1089 config CRYPTO_CAST5
1090 tristate "CAST5 (CAST-128) cipher algorithm"
1091 select CRYPTO_ALGAPI
1092 select CRYPTO_CAST_COMMON
1093 help
1094 The CAST5 encryption algorithm (synonymous with CAST-128) is
1095 described in RFC2144.
1096
1097 config CRYPTO_CAST5_AVX_X86_64
1098 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1099 depends on X86 && 64BIT
1100 select CRYPTO_ALGAPI
1101 select CRYPTO_CRYPTD
1102 select CRYPTO_ABLK_HELPER
1103 select CRYPTO_CAST_COMMON
1104 select CRYPTO_CAST5
1105 help
1106 The CAST5 encryption algorithm (synonymous with CAST-128) is
1107 described in RFC2144.
1108
1109 This module provides the Cast5 cipher algorithm that processes
1110 sixteen blocks parallel using the AVX instruction set.
1111
1112 config CRYPTO_CAST6
1113 tristate "CAST6 (CAST-256) cipher algorithm"
1114 select CRYPTO_ALGAPI
1115 select CRYPTO_CAST_COMMON
1116 help
1117 The CAST6 encryption algorithm (synonymous with CAST-256) is
1118 described in RFC2612.
1119
1120 config CRYPTO_CAST6_AVX_X86_64
1121 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1122 depends on X86 && 64BIT
1123 select CRYPTO_ALGAPI
1124 select CRYPTO_CRYPTD
1125 select CRYPTO_ABLK_HELPER
1126 select CRYPTO_GLUE_HELPER_X86
1127 select CRYPTO_CAST_COMMON
1128 select CRYPTO_CAST6
1129 select CRYPTO_LRW
1130 select CRYPTO_XTS
1131 help
1132 The CAST6 encryption algorithm (synonymous with CAST-256) is
1133 described in RFC2612.
1134
1135 This module provides the Cast6 cipher algorithm that processes
1136 eight blocks parallel using the AVX instruction set.
1137
1138 config CRYPTO_DES
1139 tristate "DES and Triple DES EDE cipher algorithms"
1140 select CRYPTO_ALGAPI
1141 help
1142 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1143
1144 config CRYPTO_DES_SPARC64
1145 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1146 depends on SPARC64
1147 select CRYPTO_ALGAPI
1148 select CRYPTO_DES
1149 help
1150 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1151 optimized using SPARC64 crypto opcodes.
1152
1153 config CRYPTO_DES3_EDE_X86_64
1154 tristate "Triple DES EDE cipher algorithm (x86-64)"
1155 depends on X86 && 64BIT
1156 select CRYPTO_ALGAPI
1157 select CRYPTO_DES
1158 help
1159 Triple DES EDE (FIPS 46-3) algorithm.
1160
1161 This module provides implementation of the Triple DES EDE cipher
1162 algorithm that is optimized for x86-64 processors. Two versions of
1163 algorithm are provided; regular processing one input block and
1164 one that processes three blocks parallel.
1165
1166 config CRYPTO_FCRYPT
1167 tristate "FCrypt cipher algorithm"
1168 select CRYPTO_ALGAPI
1169 select CRYPTO_BLKCIPHER
1170 help
1171 FCrypt algorithm used by RxRPC.
1172
1173 config CRYPTO_KHAZAD
1174 tristate "Khazad cipher algorithm"
1175 select CRYPTO_ALGAPI
1176 help
1177 Khazad cipher algorithm.
1178
1179 Khazad was a finalist in the initial NESSIE competition. It is
1180 an algorithm optimized for 64-bit processors with good performance
1181 on 32-bit processors. Khazad uses an 128 bit key size.
1182
1183 See also:
1184 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1185
1186 config CRYPTO_SALSA20
1187 tristate "Salsa20 stream cipher algorithm"
1188 select CRYPTO_BLKCIPHER
1189 help
1190 Salsa20 stream cipher algorithm.
1191
1192 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1193 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1194
1195 The Salsa20 stream cipher algorithm is designed by Daniel J.
1196 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1197
1198 config CRYPTO_SALSA20_586
1199 tristate "Salsa20 stream cipher algorithm (i586)"
1200 depends on (X86 || UML_X86) && !64BIT
1201 select CRYPTO_BLKCIPHER
1202 help
1203 Salsa20 stream cipher algorithm.
1204
1205 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1206 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1207
1208 The Salsa20 stream cipher algorithm is designed by Daniel J.
1209 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1210
1211 config CRYPTO_SALSA20_X86_64
1212 tristate "Salsa20 stream cipher algorithm (x86_64)"
1213 depends on (X86 || UML_X86) && 64BIT
1214 select CRYPTO_BLKCIPHER
1215 help
1216 Salsa20 stream cipher algorithm.
1217
1218 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1219 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1220
1221 The Salsa20 stream cipher algorithm is designed by Daniel J.
1222 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1223
1224 config CRYPTO_CHACHA20
1225 tristate "ChaCha20 cipher algorithm"
1226 select CRYPTO_BLKCIPHER
1227 help
1228 ChaCha20 cipher algorithm, RFC7539.
1229
1230 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1231 Bernstein and further specified in RFC7539 for use in IETF protocols.
1232 This is the portable C implementation of ChaCha20.
1233
1234 See also:
1235 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1236
1237 config CRYPTO_CHACHA20_X86_64
1238 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1239 depends on X86 && 64BIT
1240 select CRYPTO_BLKCIPHER
1241 select CRYPTO_CHACHA20
1242 help
1243 ChaCha20 cipher algorithm, RFC7539.
1244
1245 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1246 Bernstein and further specified in RFC7539 for use in IETF protocols.
1247 This is the x86_64 assembler implementation using SIMD instructions.
1248
1249 See also:
1250 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1251
1252 config CRYPTO_SEED
1253 tristate "SEED cipher algorithm"
1254 select CRYPTO_ALGAPI
1255 help
1256 SEED cipher algorithm (RFC4269).
1257
1258 SEED is a 128-bit symmetric key block cipher that has been
1259 developed by KISA (Korea Information Security Agency) as a
1260 national standard encryption algorithm of the Republic of Korea.
1261 It is a 16 round block cipher with the key size of 128 bit.
1262
1263 See also:
1264 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1265
1266 config CRYPTO_SERPENT
1267 tristate "Serpent cipher algorithm"
1268 select CRYPTO_ALGAPI
1269 help
1270 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1271
1272 Keys are allowed to be from 0 to 256 bits in length, in steps
1273 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1274 variant of Serpent for compatibility with old kerneli.org code.
1275
1276 See also:
1277 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1278
1279 config CRYPTO_SERPENT_SSE2_X86_64
1280 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1281 depends on X86 && 64BIT
1282 select CRYPTO_ALGAPI
1283 select CRYPTO_CRYPTD
1284 select CRYPTO_ABLK_HELPER
1285 select CRYPTO_GLUE_HELPER_X86
1286 select CRYPTO_SERPENT
1287 select CRYPTO_LRW
1288 select CRYPTO_XTS
1289 help
1290 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1291
1292 Keys are allowed to be from 0 to 256 bits in length, in steps
1293 of 8 bits.
1294
1295 This module provides Serpent cipher algorithm that processes eight
1296 blocks parallel using SSE2 instruction set.
1297
1298 See also:
1299 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1300
1301 config CRYPTO_SERPENT_SSE2_586
1302 tristate "Serpent cipher algorithm (i586/SSE2)"
1303 depends on X86 && !64BIT
1304 select CRYPTO_ALGAPI
1305 select CRYPTO_CRYPTD
1306 select CRYPTO_ABLK_HELPER
1307 select CRYPTO_GLUE_HELPER_X86
1308 select CRYPTO_SERPENT
1309 select CRYPTO_LRW
1310 select CRYPTO_XTS
1311 help
1312 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1313
1314 Keys are allowed to be from 0 to 256 bits in length, in steps
1315 of 8 bits.
1316
1317 This module provides Serpent cipher algorithm that processes four
1318 blocks parallel using SSE2 instruction set.
1319
1320 See also:
1321 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1322
1323 config CRYPTO_SERPENT_AVX_X86_64
1324 tristate "Serpent cipher algorithm (x86_64/AVX)"
1325 depends on X86 && 64BIT
1326 select CRYPTO_ALGAPI
1327 select CRYPTO_CRYPTD
1328 select CRYPTO_ABLK_HELPER
1329 select CRYPTO_GLUE_HELPER_X86
1330 select CRYPTO_SERPENT
1331 select CRYPTO_LRW
1332 select CRYPTO_XTS
1333 help
1334 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1335
1336 Keys are allowed to be from 0 to 256 bits in length, in steps
1337 of 8 bits.
1338
1339 This module provides the Serpent cipher algorithm that processes
1340 eight blocks parallel using the AVX instruction set.
1341
1342 See also:
1343 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1344
1345 config CRYPTO_SERPENT_AVX2_X86_64
1346 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1347 depends on X86 && 64BIT
1348 select CRYPTO_ALGAPI
1349 select CRYPTO_CRYPTD
1350 select CRYPTO_ABLK_HELPER
1351 select CRYPTO_GLUE_HELPER_X86
1352 select CRYPTO_SERPENT
1353 select CRYPTO_SERPENT_AVX_X86_64
1354 select CRYPTO_LRW
1355 select CRYPTO_XTS
1356 help
1357 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1358
1359 Keys are allowed to be from 0 to 256 bits in length, in steps
1360 of 8 bits.
1361
1362 This module provides Serpent cipher algorithm that processes 16
1363 blocks parallel using AVX2 instruction set.
1364
1365 See also:
1366 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1367
1368 config CRYPTO_TEA
1369 tristate "TEA, XTEA and XETA cipher algorithms"
1370 select CRYPTO_ALGAPI
1371 help
1372 TEA cipher algorithm.
1373
1374 Tiny Encryption Algorithm is a simple cipher that uses
1375 many rounds for security. It is very fast and uses
1376 little memory.
1377
1378 Xtendend Tiny Encryption Algorithm is a modification to
1379 the TEA algorithm to address a potential key weakness
1380 in the TEA algorithm.
1381
1382 Xtendend Encryption Tiny Algorithm is a mis-implementation
1383 of the XTEA algorithm for compatibility purposes.
1384
1385 config CRYPTO_TWOFISH
1386 tristate "Twofish cipher algorithm"
1387 select CRYPTO_ALGAPI
1388 select CRYPTO_TWOFISH_COMMON
1389 help
1390 Twofish cipher algorithm.
1391
1392 Twofish was submitted as an AES (Advanced Encryption Standard)
1393 candidate cipher by researchers at CounterPane Systems. It is a
1394 16 round block cipher supporting key sizes of 128, 192, and 256
1395 bits.
1396
1397 See also:
1398 <http://www.schneier.com/twofish.html>
1399
1400 config CRYPTO_TWOFISH_COMMON
1401 tristate
1402 help
1403 Common parts of the Twofish cipher algorithm shared by the
1404 generic c and the assembler implementations.
1405
1406 config CRYPTO_TWOFISH_586
1407 tristate "Twofish cipher algorithms (i586)"
1408 depends on (X86 || UML_X86) && !64BIT
1409 select CRYPTO_ALGAPI
1410 select CRYPTO_TWOFISH_COMMON
1411 help
1412 Twofish cipher algorithm.
1413
1414 Twofish was submitted as an AES (Advanced Encryption Standard)
1415 candidate cipher by researchers at CounterPane Systems. It is a
1416 16 round block cipher supporting key sizes of 128, 192, and 256
1417 bits.
1418
1419 See also:
1420 <http://www.schneier.com/twofish.html>
1421
1422 config CRYPTO_TWOFISH_X86_64
1423 tristate "Twofish cipher algorithm (x86_64)"
1424 depends on (X86 || UML_X86) && 64BIT
1425 select CRYPTO_ALGAPI
1426 select CRYPTO_TWOFISH_COMMON
1427 help
1428 Twofish cipher algorithm (x86_64).
1429
1430 Twofish was submitted as an AES (Advanced Encryption Standard)
1431 candidate cipher by researchers at CounterPane Systems. It is a
1432 16 round block cipher supporting key sizes of 128, 192, and 256
1433 bits.
1434
1435 See also:
1436 <http://www.schneier.com/twofish.html>
1437
1438 config CRYPTO_TWOFISH_X86_64_3WAY
1439 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1440 depends on X86 && 64BIT
1441 select CRYPTO_ALGAPI
1442 select CRYPTO_TWOFISH_COMMON
1443 select CRYPTO_TWOFISH_X86_64
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_LRW
1446 select CRYPTO_XTS
1447 help
1448 Twofish cipher algorithm (x86_64, 3-way parallel).
1449
1450 Twofish was submitted as an AES (Advanced Encryption Standard)
1451 candidate cipher by researchers at CounterPane Systems. It is a
1452 16 round block cipher supporting key sizes of 128, 192, and 256
1453 bits.
1454
1455 This module provides Twofish cipher algorithm that processes three
1456 blocks parallel, utilizing resources of out-of-order CPUs better.
1457
1458 See also:
1459 <http://www.schneier.com/twofish.html>
1460
1461 config CRYPTO_TWOFISH_AVX_X86_64
1462 tristate "Twofish cipher algorithm (x86_64/AVX)"
1463 depends on X86 && 64BIT
1464 select CRYPTO_ALGAPI
1465 select CRYPTO_CRYPTD
1466 select CRYPTO_ABLK_HELPER
1467 select CRYPTO_GLUE_HELPER_X86
1468 select CRYPTO_TWOFISH_COMMON
1469 select CRYPTO_TWOFISH_X86_64
1470 select CRYPTO_TWOFISH_X86_64_3WAY
1471 select CRYPTO_LRW
1472 select CRYPTO_XTS
1473 help
1474 Twofish cipher algorithm (x86_64/AVX).
1475
1476 Twofish was submitted as an AES (Advanced Encryption Standard)
1477 candidate cipher by researchers at CounterPane Systems. It is a
1478 16 round block cipher supporting key sizes of 128, 192, and 256
1479 bits.
1480
1481 This module provides the Twofish cipher algorithm that processes
1482 eight blocks parallel using the AVX Instruction Set.
1483
1484 See also:
1485 <http://www.schneier.com/twofish.html>
1486
1487 comment "Compression"
1488
1489 config CRYPTO_DEFLATE
1490 tristate "Deflate compression algorithm"
1491 select CRYPTO_ALGAPI
1492 select ZLIB_INFLATE
1493 select ZLIB_DEFLATE
1494 help
1495 This is the Deflate algorithm (RFC1951), specified for use in
1496 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1497
1498 You will most probably want this if using IPSec.
1499
1500 config CRYPTO_ZLIB
1501 tristate "Zlib compression algorithm"
1502 select CRYPTO_PCOMP
1503 select ZLIB_INFLATE
1504 select ZLIB_DEFLATE
1505 select NLATTR
1506 help
1507 This is the zlib algorithm.
1508
1509 config CRYPTO_LZO
1510 tristate "LZO compression algorithm"
1511 select CRYPTO_ALGAPI
1512 select LZO_COMPRESS
1513 select LZO_DECOMPRESS
1514 help
1515 This is the LZO algorithm.
1516
1517 config CRYPTO_842
1518 tristate "842 compression algorithm"
1519 select CRYPTO_ALGAPI
1520 select 842_COMPRESS
1521 select 842_DECOMPRESS
1522 help
1523 This is the 842 algorithm.
1524
1525 config CRYPTO_LZ4
1526 tristate "LZ4 compression algorithm"
1527 select CRYPTO_ALGAPI
1528 select LZ4_COMPRESS
1529 select LZ4_DECOMPRESS
1530 help
1531 This is the LZ4 algorithm.
1532
1533 config CRYPTO_LZ4HC
1534 tristate "LZ4HC compression algorithm"
1535 select CRYPTO_ALGAPI
1536 select LZ4HC_COMPRESS
1537 select LZ4_DECOMPRESS
1538 help
1539 This is the LZ4 high compression mode algorithm.
1540
1541 comment "Random Number Generation"
1542
1543 config CRYPTO_ANSI_CPRNG
1544 tristate "Pseudo Random Number Generation for Cryptographic modules"
1545 select CRYPTO_AES
1546 select CRYPTO_RNG
1547 help
1548 This option enables the generic pseudo random number generator
1549 for cryptographic modules. Uses the Algorithm specified in
1550 ANSI X9.31 A.2.4. Note that this option must be enabled if
1551 CRYPTO_FIPS is selected
1552
1553 menuconfig CRYPTO_DRBG_MENU
1554 tristate "NIST SP800-90A DRBG"
1555 help
1556 NIST SP800-90A compliant DRBG. In the following submenu, one or
1557 more of the DRBG types must be selected.
1558
1559 if CRYPTO_DRBG_MENU
1560
1561 config CRYPTO_DRBG_HMAC
1562 bool
1563 default y
1564 select CRYPTO_HMAC
1565 select CRYPTO_SHA256
1566
1567 config CRYPTO_DRBG_HASH
1568 bool "Enable Hash DRBG"
1569 select CRYPTO_SHA256
1570 help
1571 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1572
1573 config CRYPTO_DRBG_CTR
1574 bool "Enable CTR DRBG"
1575 select CRYPTO_AES
1576 help
1577 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1578
1579 config CRYPTO_DRBG
1580 tristate
1581 default CRYPTO_DRBG_MENU
1582 select CRYPTO_RNG
1583 select CRYPTO_JITTERENTROPY
1584
1585 endif # if CRYPTO_DRBG_MENU
1586
1587 config CRYPTO_JITTERENTROPY
1588 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1589 help
1590 The Jitterentropy RNG is a noise that is intended
1591 to provide seed to another RNG. The RNG does not
1592 perform any cryptographic whitening of the generated
1593 random numbers. This Jitterentropy RNG registers with
1594 the kernel crypto API and can be used by any caller.
1595
1596 config CRYPTO_USER_API
1597 tristate
1598
1599 config CRYPTO_USER_API_HASH
1600 tristate "User-space interface for hash algorithms"
1601 depends on NET
1602 select CRYPTO_HASH
1603 select CRYPTO_USER_API
1604 help
1605 This option enables the user-spaces interface for hash
1606 algorithms.
1607
1608 config CRYPTO_USER_API_SKCIPHER
1609 tristate "User-space interface for symmetric key cipher algorithms"
1610 depends on NET
1611 select CRYPTO_BLKCIPHER
1612 select CRYPTO_USER_API
1613 help
1614 This option enables the user-spaces interface for symmetric
1615 key cipher algorithms.
1616
1617 config CRYPTO_USER_API_RNG
1618 tristate "User-space interface for random number generator algorithms"
1619 depends on NET
1620 select CRYPTO_RNG
1621 select CRYPTO_USER_API
1622 help
1623 This option enables the user-spaces interface for random
1624 number generator algorithms.
1625
1626 config CRYPTO_USER_API_AEAD
1627 tristate "User-space interface for AEAD cipher algorithms"
1628 depends on NET
1629 select CRYPTO_AEAD
1630 select CRYPTO_USER_API
1631 help
1632 This option enables the user-spaces interface for AEAD
1633 cipher algorithms.
1634
1635 config CRYPTO_HASH_INFO
1636 bool
1637
1638 source "drivers/crypto/Kconfig"
1639 source crypto/asymmetric_keys/Kconfig
1640 source certs/Kconfig
1641
1642 endif # if CRYPTO
This page took 0.06569 seconds and 5 git commands to generate.