crypto: powerpc/sha1 - kernel config
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51
52 config CRYPTO_BLKCIPHER
53 tristate
54 select CRYPTO_BLKCIPHER2
55 select CRYPTO_ALGAPI
56
57 config CRYPTO_BLKCIPHER2
58 tristate
59 select CRYPTO_ALGAPI2
60 select CRYPTO_RNG2
61 select CRYPTO_WORKQUEUE
62
63 config CRYPTO_HASH
64 tristate
65 select CRYPTO_HASH2
66 select CRYPTO_ALGAPI
67
68 config CRYPTO_HASH2
69 tristate
70 select CRYPTO_ALGAPI2
71
72 config CRYPTO_RNG
73 tristate
74 select CRYPTO_RNG2
75 select CRYPTO_ALGAPI
76
77 config CRYPTO_RNG2
78 tristate
79 select CRYPTO_ALGAPI2
80
81 config CRYPTO_PCOMP
82 tristate
83 select CRYPTO_PCOMP2
84 select CRYPTO_ALGAPI
85
86 config CRYPTO_PCOMP2
87 tristate
88 select CRYPTO_ALGAPI2
89
90 config CRYPTO_MANAGER
91 tristate "Cryptographic algorithm manager"
92 select CRYPTO_MANAGER2
93 help
94 Create default cryptographic template instantiations such as
95 cbc(aes).
96
97 config CRYPTO_MANAGER2
98 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
99 select CRYPTO_AEAD2
100 select CRYPTO_HASH2
101 select CRYPTO_BLKCIPHER2
102 select CRYPTO_PCOMP2
103
104 config CRYPTO_USER
105 tristate "Userspace cryptographic algorithm configuration"
106 depends on NET
107 select CRYPTO_MANAGER
108 help
109 Userspace configuration for cryptographic instantiations such as
110 cbc(aes).
111
112 config CRYPTO_MANAGER_DISABLE_TESTS
113 bool "Disable run-time self tests"
114 default y
115 depends on CRYPTO_MANAGER2
116 help
117 Disable run-time self tests that normally take place at
118 algorithm registration.
119
120 config CRYPTO_GF128MUL
121 tristate "GF(2^128) multiplication functions"
122 help
123 Efficient table driven implementation of multiplications in the
124 field GF(2^128). This is needed by some cypher modes. This
125 option will be selected automatically if you select such a
126 cipher mode. Only select this option by hand if you expect to load
127 an external module that requires these functions.
128
129 config CRYPTO_NULL
130 tristate "Null algorithms"
131 select CRYPTO_ALGAPI
132 select CRYPTO_BLKCIPHER
133 select CRYPTO_HASH
134 help
135 These are 'Null' algorithms, used by IPsec, which do nothing.
136
137 config CRYPTO_PCRYPT
138 tristate "Parallel crypto engine"
139 depends on SMP
140 select PADATA
141 select CRYPTO_MANAGER
142 select CRYPTO_AEAD
143 help
144 This converts an arbitrary crypto algorithm into a parallel
145 algorithm that executes in kernel threads.
146
147 config CRYPTO_WORKQUEUE
148 tristate
149
150 config CRYPTO_CRYPTD
151 tristate "Software async crypto daemon"
152 select CRYPTO_BLKCIPHER
153 select CRYPTO_HASH
154 select CRYPTO_MANAGER
155 select CRYPTO_WORKQUEUE
156 help
157 This is a generic software asynchronous crypto daemon that
158 converts an arbitrary synchronous software crypto algorithm
159 into an asynchronous algorithm that executes in a kernel thread.
160
161 config CRYPTO_MCRYPTD
162 tristate "Software async multi-buffer crypto daemon"
163 select CRYPTO_BLKCIPHER
164 select CRYPTO_HASH
165 select CRYPTO_MANAGER
166 select CRYPTO_WORKQUEUE
167 help
168 This is a generic software asynchronous crypto daemon that
169 provides the kernel thread to assist multi-buffer crypto
170 algorithms for submitting jobs and flushing jobs in multi-buffer
171 crypto algorithms. Multi-buffer crypto algorithms are executed
172 in the context of this kernel thread and drivers can post
173 their crypto request asynchronously to be processed by this daemon.
174
175 config CRYPTO_AUTHENC
176 tristate "Authenc support"
177 select CRYPTO_AEAD
178 select CRYPTO_BLKCIPHER
179 select CRYPTO_MANAGER
180 select CRYPTO_HASH
181 help
182 Authenc: Combined mode wrapper for IPsec.
183 This is required for IPSec.
184
185 config CRYPTO_TEST
186 tristate "Testing module"
187 depends on m
188 select CRYPTO_MANAGER
189 help
190 Quick & dirty crypto test module.
191
192 config CRYPTO_ABLK_HELPER
193 tristate
194 select CRYPTO_CRYPTD
195
196 config CRYPTO_GLUE_HELPER_X86
197 tristate
198 depends on X86
199 select CRYPTO_ALGAPI
200
201 comment "Authenticated Encryption with Associated Data"
202
203 config CRYPTO_CCM
204 tristate "CCM support"
205 select CRYPTO_CTR
206 select CRYPTO_AEAD
207 help
208 Support for Counter with CBC MAC. Required for IPsec.
209
210 config CRYPTO_GCM
211 tristate "GCM/GMAC support"
212 select CRYPTO_CTR
213 select CRYPTO_AEAD
214 select CRYPTO_GHASH
215 select CRYPTO_NULL
216 help
217 Support for Galois/Counter Mode (GCM) and Galois Message
218 Authentication Code (GMAC). Required for IPSec.
219
220 config CRYPTO_SEQIV
221 tristate "Sequence Number IV Generator"
222 select CRYPTO_AEAD
223 select CRYPTO_BLKCIPHER
224 select CRYPTO_RNG
225 help
226 This IV generator generates an IV based on a sequence number by
227 xoring it with a salt. This algorithm is mainly useful for CTR
228
229 comment "Block modes"
230
231 config CRYPTO_CBC
232 tristate "CBC support"
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 help
236 CBC: Cipher Block Chaining mode
237 This block cipher algorithm is required for IPSec.
238
239 config CRYPTO_CTR
240 tristate "CTR support"
241 select CRYPTO_BLKCIPHER
242 select CRYPTO_SEQIV
243 select CRYPTO_MANAGER
244 help
245 CTR: Counter mode
246 This block cipher algorithm is required for IPSec.
247
248 config CRYPTO_CTS
249 tristate "CTS support"
250 select CRYPTO_BLKCIPHER
251 help
252 CTS: Cipher Text Stealing
253 This is the Cipher Text Stealing mode as described by
254 Section 8 of rfc2040 and referenced by rfc3962.
255 (rfc3962 includes errata information in its Appendix A)
256 This mode is required for Kerberos gss mechanism support
257 for AES encryption.
258
259 config CRYPTO_ECB
260 tristate "ECB support"
261 select CRYPTO_BLKCIPHER
262 select CRYPTO_MANAGER
263 help
264 ECB: Electronic CodeBook mode
265 This is the simplest block cipher algorithm. It simply encrypts
266 the input block by block.
267
268 config CRYPTO_LRW
269 tristate "LRW support"
270 select CRYPTO_BLKCIPHER
271 select CRYPTO_MANAGER
272 select CRYPTO_GF128MUL
273 help
274 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
275 narrow block cipher mode for dm-crypt. Use it with cipher
276 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
277 The first 128, 192 or 256 bits in the key are used for AES and the
278 rest is used to tie each cipher block to its logical position.
279
280 config CRYPTO_PCBC
281 tristate "PCBC support"
282 select CRYPTO_BLKCIPHER
283 select CRYPTO_MANAGER
284 help
285 PCBC: Propagating Cipher Block Chaining mode
286 This block cipher algorithm is required for RxRPC.
287
288 config CRYPTO_XTS
289 tristate "XTS support"
290 select CRYPTO_BLKCIPHER
291 select CRYPTO_MANAGER
292 select CRYPTO_GF128MUL
293 help
294 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
295 key size 256, 384 or 512 bits. This implementation currently
296 can't handle a sectorsize which is not a multiple of 16 bytes.
297
298 comment "Hash modes"
299
300 config CRYPTO_CMAC
301 tristate "CMAC support"
302 select CRYPTO_HASH
303 select CRYPTO_MANAGER
304 help
305 Cipher-based Message Authentication Code (CMAC) specified by
306 The National Institute of Standards and Technology (NIST).
307
308 https://tools.ietf.org/html/rfc4493
309 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
310
311 config CRYPTO_HMAC
312 tristate "HMAC support"
313 select CRYPTO_HASH
314 select CRYPTO_MANAGER
315 help
316 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
317 This is required for IPSec.
318
319 config CRYPTO_XCBC
320 tristate "XCBC support"
321 select CRYPTO_HASH
322 select CRYPTO_MANAGER
323 help
324 XCBC: Keyed-Hashing with encryption algorithm
325 http://www.ietf.org/rfc/rfc3566.txt
326 http://csrc.nist.gov/encryption/modes/proposedmodes/
327 xcbc-mac/xcbc-mac-spec.pdf
328
329 config CRYPTO_VMAC
330 tristate "VMAC support"
331 select CRYPTO_HASH
332 select CRYPTO_MANAGER
333 help
334 VMAC is a message authentication algorithm designed for
335 very high speed on 64-bit architectures.
336
337 See also:
338 <http://fastcrypto.org/vmac>
339
340 comment "Digest"
341
342 config CRYPTO_CRC32C
343 tristate "CRC32c CRC algorithm"
344 select CRYPTO_HASH
345 select CRC32
346 help
347 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
348 by iSCSI for header and data digests and by others.
349 See Castagnoli93. Module will be crc32c.
350
351 config CRYPTO_CRC32C_INTEL
352 tristate "CRC32c INTEL hardware acceleration"
353 depends on X86
354 select CRYPTO_HASH
355 help
356 In Intel processor with SSE4.2 supported, the processor will
357 support CRC32C implementation using hardware accelerated CRC32
358 instruction. This option will create 'crc32c-intel' module,
359 which will enable any routine to use the CRC32 instruction to
360 gain performance compared with software implementation.
361 Module will be crc32c-intel.
362
363 config CRYPTO_CRC32C_SPARC64
364 tristate "CRC32c CRC algorithm (SPARC64)"
365 depends on SPARC64
366 select CRYPTO_HASH
367 select CRC32
368 help
369 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
370 when available.
371
372 config CRYPTO_CRC32
373 tristate "CRC32 CRC algorithm"
374 select CRYPTO_HASH
375 select CRC32
376 help
377 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
378 Shash crypto api wrappers to crc32_le function.
379
380 config CRYPTO_CRC32_PCLMUL
381 tristate "CRC32 PCLMULQDQ hardware acceleration"
382 depends on X86
383 select CRYPTO_HASH
384 select CRC32
385 help
386 From Intel Westmere and AMD Bulldozer processor with SSE4.2
387 and PCLMULQDQ supported, the processor will support
388 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
389 instruction. This option will create 'crc32-plcmul' module,
390 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
391 and gain better performance as compared with the table implementation.
392
393 config CRYPTO_CRCT10DIF
394 tristate "CRCT10DIF algorithm"
395 select CRYPTO_HASH
396 help
397 CRC T10 Data Integrity Field computation is being cast as
398 a crypto transform. This allows for faster crc t10 diff
399 transforms to be used if they are available.
400
401 config CRYPTO_CRCT10DIF_PCLMUL
402 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
403 depends on X86 && 64BIT && CRC_T10DIF
404 select CRYPTO_HASH
405 help
406 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
407 CRC T10 DIF PCLMULQDQ computation can be hardware
408 accelerated PCLMULQDQ instruction. This option will create
409 'crct10dif-plcmul' module, which is faster when computing the
410 crct10dif checksum as compared with the generic table implementation.
411
412 config CRYPTO_GHASH
413 tristate "GHASH digest algorithm"
414 select CRYPTO_GF128MUL
415 help
416 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
417
418 config CRYPTO_MD4
419 tristate "MD4 digest algorithm"
420 select CRYPTO_HASH
421 help
422 MD4 message digest algorithm (RFC1320).
423
424 config CRYPTO_MD5
425 tristate "MD5 digest algorithm"
426 select CRYPTO_HASH
427 help
428 MD5 message digest algorithm (RFC1321).
429
430 config CRYPTO_MD5_OCTEON
431 tristate "MD5 digest algorithm (OCTEON)"
432 depends on CPU_CAVIUM_OCTEON
433 select CRYPTO_MD5
434 select CRYPTO_HASH
435 help
436 MD5 message digest algorithm (RFC1321) implemented
437 using OCTEON crypto instructions, when available.
438
439 config CRYPTO_MD5_SPARC64
440 tristate "MD5 digest algorithm (SPARC64)"
441 depends on SPARC64
442 select CRYPTO_MD5
443 select CRYPTO_HASH
444 help
445 MD5 message digest algorithm (RFC1321) implemented
446 using sparc64 crypto instructions, when available.
447
448 config CRYPTO_MICHAEL_MIC
449 tristate "Michael MIC keyed digest algorithm"
450 select CRYPTO_HASH
451 help
452 Michael MIC is used for message integrity protection in TKIP
453 (IEEE 802.11i). This algorithm is required for TKIP, but it
454 should not be used for other purposes because of the weakness
455 of the algorithm.
456
457 config CRYPTO_RMD128
458 tristate "RIPEMD-128 digest algorithm"
459 select CRYPTO_HASH
460 help
461 RIPEMD-128 (ISO/IEC 10118-3:2004).
462
463 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
464 be used as a secure replacement for RIPEMD. For other use cases,
465 RIPEMD-160 should be used.
466
467 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
468 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
469
470 config CRYPTO_RMD160
471 tristate "RIPEMD-160 digest algorithm"
472 select CRYPTO_HASH
473 help
474 RIPEMD-160 (ISO/IEC 10118-3:2004).
475
476 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
477 to be used as a secure replacement for the 128-bit hash functions
478 MD4, MD5 and it's predecessor RIPEMD
479 (not to be confused with RIPEMD-128).
480
481 It's speed is comparable to SHA1 and there are no known attacks
482 against RIPEMD-160.
483
484 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
485 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
486
487 config CRYPTO_RMD256
488 tristate "RIPEMD-256 digest algorithm"
489 select CRYPTO_HASH
490 help
491 RIPEMD-256 is an optional extension of RIPEMD-128 with a
492 256 bit hash. It is intended for applications that require
493 longer hash-results, without needing a larger security level
494 (than RIPEMD-128).
495
496 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
497 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
498
499 config CRYPTO_RMD320
500 tristate "RIPEMD-320 digest algorithm"
501 select CRYPTO_HASH
502 help
503 RIPEMD-320 is an optional extension of RIPEMD-160 with a
504 320 bit hash. It is intended for applications that require
505 longer hash-results, without needing a larger security level
506 (than RIPEMD-160).
507
508 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
509 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
510
511 config CRYPTO_SHA1
512 tristate "SHA1 digest algorithm"
513 select CRYPTO_HASH
514 help
515 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
516
517 config CRYPTO_SHA1_SSSE3
518 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
519 depends on X86 && 64BIT
520 select CRYPTO_SHA1
521 select CRYPTO_HASH
522 help
523 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
524 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
525 Extensions (AVX/AVX2), when available.
526
527 config CRYPTO_SHA256_SSSE3
528 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
529 depends on X86 && 64BIT
530 select CRYPTO_SHA256
531 select CRYPTO_HASH
532 help
533 SHA-256 secure hash standard (DFIPS 180-2) implemented
534 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
535 Extensions version 1 (AVX1), or Advanced Vector Extensions
536 version 2 (AVX2) instructions, when available.
537
538 config CRYPTO_SHA512_SSSE3
539 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
540 depends on X86 && 64BIT
541 select CRYPTO_SHA512
542 select CRYPTO_HASH
543 help
544 SHA-512 secure hash standard (DFIPS 180-2) implemented
545 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
546 Extensions version 1 (AVX1), or Advanced Vector Extensions
547 version 2 (AVX2) instructions, when available.
548
549 config CRYPTO_SHA1_SPARC64
550 tristate "SHA1 digest algorithm (SPARC64)"
551 depends on SPARC64
552 select CRYPTO_SHA1
553 select CRYPTO_HASH
554 help
555 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
556 using sparc64 crypto instructions, when available.
557
558 config CRYPTO_SHA1_ARM
559 tristate "SHA1 digest algorithm (ARM-asm)"
560 depends on ARM
561 select CRYPTO_SHA1
562 select CRYPTO_HASH
563 help
564 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
565 using optimized ARM assembler.
566
567 config CRYPTO_SHA1_ARM_NEON
568 tristate "SHA1 digest algorithm (ARM NEON)"
569 depends on ARM && KERNEL_MODE_NEON
570 select CRYPTO_SHA1_ARM
571 select CRYPTO_SHA1
572 select CRYPTO_HASH
573 help
574 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
575 using optimized ARM NEON assembly, when NEON instructions are
576 available.
577
578 config CRYPTO_SHA1_PPC
579 tristate "SHA1 digest algorithm (powerpc)"
580 depends on PPC
581 help
582 This is the powerpc hardware accelerated implementation of the
583 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
584
585 config CRYPTO_SHA1_PPC_SPE
586 tristate "SHA1 digest algorithm (PPC SPE)"
587 depends on PPC && SPE
588 help
589 SHA-1 secure hash standard (DFIPS 180-4) implemented
590 using powerpc SPE SIMD instruction set.
591
592 config CRYPTO_SHA1_MB
593 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
594 depends on X86 && 64BIT
595 select CRYPTO_SHA1
596 select CRYPTO_HASH
597 select CRYPTO_MCRYPTD
598 help
599 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
600 using multi-buffer technique. This algorithm computes on
601 multiple data lanes concurrently with SIMD instructions for
602 better throughput. It should not be enabled by default but
603 used when there is significant amount of work to keep the keep
604 the data lanes filled to get performance benefit. If the data
605 lanes remain unfilled, a flush operation will be initiated to
606 process the crypto jobs, adding a slight latency.
607
608 config CRYPTO_SHA256
609 tristate "SHA224 and SHA256 digest algorithm"
610 select CRYPTO_HASH
611 help
612 SHA256 secure hash standard (DFIPS 180-2).
613
614 This version of SHA implements a 256 bit hash with 128 bits of
615 security against collision attacks.
616
617 This code also includes SHA-224, a 224 bit hash with 112 bits
618 of security against collision attacks.
619
620 config CRYPTO_SHA256_PPC_SPE
621 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
622 depends on PPC && SPE
623 select CRYPTO_SHA256
624 select CRYPTO_HASH
625 help
626 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
627 implemented using powerpc SPE SIMD instruction set.
628
629 config CRYPTO_SHA256_SPARC64
630 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
631 depends on SPARC64
632 select CRYPTO_SHA256
633 select CRYPTO_HASH
634 help
635 SHA-256 secure hash standard (DFIPS 180-2) implemented
636 using sparc64 crypto instructions, when available.
637
638 config CRYPTO_SHA512
639 tristate "SHA384 and SHA512 digest algorithms"
640 select CRYPTO_HASH
641 help
642 SHA512 secure hash standard (DFIPS 180-2).
643
644 This version of SHA implements a 512 bit hash with 256 bits of
645 security against collision attacks.
646
647 This code also includes SHA-384, a 384 bit hash with 192 bits
648 of security against collision attacks.
649
650 config CRYPTO_SHA512_SPARC64
651 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
652 depends on SPARC64
653 select CRYPTO_SHA512
654 select CRYPTO_HASH
655 help
656 SHA-512 secure hash standard (DFIPS 180-2) implemented
657 using sparc64 crypto instructions, when available.
658
659 config CRYPTO_SHA512_ARM_NEON
660 tristate "SHA384 and SHA512 digest algorithm (ARM NEON)"
661 depends on ARM && KERNEL_MODE_NEON
662 select CRYPTO_SHA512
663 select CRYPTO_HASH
664 help
665 SHA-512 secure hash standard (DFIPS 180-2) implemented
666 using ARM NEON instructions, when available.
667
668 This version of SHA implements a 512 bit hash with 256 bits of
669 security against collision attacks.
670
671 This code also includes SHA-384, a 384 bit hash with 192 bits
672 of security against collision attacks.
673
674 config CRYPTO_TGR192
675 tristate "Tiger digest algorithms"
676 select CRYPTO_HASH
677 help
678 Tiger hash algorithm 192, 160 and 128-bit hashes
679
680 Tiger is a hash function optimized for 64-bit processors while
681 still having decent performance on 32-bit processors.
682 Tiger was developed by Ross Anderson and Eli Biham.
683
684 See also:
685 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
686
687 config CRYPTO_WP512
688 tristate "Whirlpool digest algorithms"
689 select CRYPTO_HASH
690 help
691 Whirlpool hash algorithm 512, 384 and 256-bit hashes
692
693 Whirlpool-512 is part of the NESSIE cryptographic primitives.
694 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
695
696 See also:
697 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
698
699 config CRYPTO_GHASH_CLMUL_NI_INTEL
700 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
701 depends on X86 && 64BIT
702 select CRYPTO_CRYPTD
703 help
704 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
705 The implementation is accelerated by CLMUL-NI of Intel.
706
707 comment "Ciphers"
708
709 config CRYPTO_AES
710 tristate "AES cipher algorithms"
711 select CRYPTO_ALGAPI
712 help
713 AES cipher algorithms (FIPS-197). AES uses the Rijndael
714 algorithm.
715
716 Rijndael appears to be consistently a very good performer in
717 both hardware and software across a wide range of computing
718 environments regardless of its use in feedback or non-feedback
719 modes. Its key setup time is excellent, and its key agility is
720 good. Rijndael's very low memory requirements make it very well
721 suited for restricted-space environments, in which it also
722 demonstrates excellent performance. Rijndael's operations are
723 among the easiest to defend against power and timing attacks.
724
725 The AES specifies three key sizes: 128, 192 and 256 bits
726
727 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
728
729 config CRYPTO_AES_586
730 tristate "AES cipher algorithms (i586)"
731 depends on (X86 || UML_X86) && !64BIT
732 select CRYPTO_ALGAPI
733 select CRYPTO_AES
734 help
735 AES cipher algorithms (FIPS-197). AES uses the Rijndael
736 algorithm.
737
738 Rijndael appears to be consistently a very good performer in
739 both hardware and software across a wide range of computing
740 environments regardless of its use in feedback or non-feedback
741 modes. Its key setup time is excellent, and its key agility is
742 good. Rijndael's very low memory requirements make it very well
743 suited for restricted-space environments, in which it also
744 demonstrates excellent performance. Rijndael's operations are
745 among the easiest to defend against power and timing attacks.
746
747 The AES specifies three key sizes: 128, 192 and 256 bits
748
749 See <http://csrc.nist.gov/encryption/aes/> for more information.
750
751 config CRYPTO_AES_X86_64
752 tristate "AES cipher algorithms (x86_64)"
753 depends on (X86 || UML_X86) && 64BIT
754 select CRYPTO_ALGAPI
755 select CRYPTO_AES
756 help
757 AES cipher algorithms (FIPS-197). AES uses the Rijndael
758 algorithm.
759
760 Rijndael appears to be consistently a very good performer in
761 both hardware and software across a wide range of computing
762 environments regardless of its use in feedback or non-feedback
763 modes. Its key setup time is excellent, and its key agility is
764 good. Rijndael's very low memory requirements make it very well
765 suited for restricted-space environments, in which it also
766 demonstrates excellent performance. Rijndael's operations are
767 among the easiest to defend against power and timing attacks.
768
769 The AES specifies three key sizes: 128, 192 and 256 bits
770
771 See <http://csrc.nist.gov/encryption/aes/> for more information.
772
773 config CRYPTO_AES_NI_INTEL
774 tristate "AES cipher algorithms (AES-NI)"
775 depends on X86
776 select CRYPTO_AES_X86_64 if 64BIT
777 select CRYPTO_AES_586 if !64BIT
778 select CRYPTO_CRYPTD
779 select CRYPTO_ABLK_HELPER
780 select CRYPTO_ALGAPI
781 select CRYPTO_GLUE_HELPER_X86 if 64BIT
782 select CRYPTO_LRW
783 select CRYPTO_XTS
784 help
785 Use Intel AES-NI instructions for AES algorithm.
786
787 AES cipher algorithms (FIPS-197). AES uses the Rijndael
788 algorithm.
789
790 Rijndael appears to be consistently a very good performer in
791 both hardware and software across a wide range of computing
792 environments regardless of its use in feedback or non-feedback
793 modes. Its key setup time is excellent, and its key agility is
794 good. Rijndael's very low memory requirements make it very well
795 suited for restricted-space environments, in which it also
796 demonstrates excellent performance. Rijndael's operations are
797 among the easiest to defend against power and timing attacks.
798
799 The AES specifies three key sizes: 128, 192 and 256 bits
800
801 See <http://csrc.nist.gov/encryption/aes/> for more information.
802
803 In addition to AES cipher algorithm support, the acceleration
804 for some popular block cipher mode is supported too, including
805 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
806 acceleration for CTR.
807
808 config CRYPTO_AES_SPARC64
809 tristate "AES cipher algorithms (SPARC64)"
810 depends on SPARC64
811 select CRYPTO_CRYPTD
812 select CRYPTO_ALGAPI
813 help
814 Use SPARC64 crypto opcodes for AES algorithm.
815
816 AES cipher algorithms (FIPS-197). AES uses the Rijndael
817 algorithm.
818
819 Rijndael appears to be consistently a very good performer in
820 both hardware and software across a wide range of computing
821 environments regardless of its use in feedback or non-feedback
822 modes. Its key setup time is excellent, and its key agility is
823 good. Rijndael's very low memory requirements make it very well
824 suited for restricted-space environments, in which it also
825 demonstrates excellent performance. Rijndael's operations are
826 among the easiest to defend against power and timing attacks.
827
828 The AES specifies three key sizes: 128, 192 and 256 bits
829
830 See <http://csrc.nist.gov/encryption/aes/> for more information.
831
832 In addition to AES cipher algorithm support, the acceleration
833 for some popular block cipher mode is supported too, including
834 ECB and CBC.
835
836 config CRYPTO_AES_ARM
837 tristate "AES cipher algorithms (ARM-asm)"
838 depends on ARM
839 select CRYPTO_ALGAPI
840 select CRYPTO_AES
841 help
842 Use optimized AES assembler routines for ARM platforms.
843
844 AES cipher algorithms (FIPS-197). AES uses the Rijndael
845 algorithm.
846
847 Rijndael appears to be consistently a very good performer in
848 both hardware and software across a wide range of computing
849 environments regardless of its use in feedback or non-feedback
850 modes. Its key setup time is excellent, and its key agility is
851 good. Rijndael's very low memory requirements make it very well
852 suited for restricted-space environments, in which it also
853 demonstrates excellent performance. Rijndael's operations are
854 among the easiest to defend against power and timing attacks.
855
856 The AES specifies three key sizes: 128, 192 and 256 bits
857
858 See <http://csrc.nist.gov/encryption/aes/> for more information.
859
860 config CRYPTO_AES_ARM_BS
861 tristate "Bit sliced AES using NEON instructions"
862 depends on ARM && KERNEL_MODE_NEON
863 select CRYPTO_ALGAPI
864 select CRYPTO_AES_ARM
865 select CRYPTO_ABLK_HELPER
866 help
867 Use a faster and more secure NEON based implementation of AES in CBC,
868 CTR and XTS modes
869
870 Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
871 and for XTS mode encryption, CBC and XTS mode decryption speedup is
872 around 25%. (CBC encryption speed is not affected by this driver.)
873 This implementation does not rely on any lookup tables so it is
874 believed to be invulnerable to cache timing attacks.
875
876 config CRYPTO_AES_PPC_SPE
877 tristate "AES cipher algorithms (PPC SPE)"
878 depends on PPC && SPE
879 help
880 AES cipher algorithms (FIPS-197). Additionally the acceleration
881 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
882 This module should only be used for low power (router) devices
883 without hardware AES acceleration (e.g. caam crypto). It reduces the
884 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
885 timining attacks. Nevertheless it might be not as secure as other
886 architecture specific assembler implementations that work on 1KB
887 tables or 256 bytes S-boxes.
888
889 config CRYPTO_ANUBIS
890 tristate "Anubis cipher algorithm"
891 select CRYPTO_ALGAPI
892 help
893 Anubis cipher algorithm.
894
895 Anubis is a variable key length cipher which can use keys from
896 128 bits to 320 bits in length. It was evaluated as a entrant
897 in the NESSIE competition.
898
899 See also:
900 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
901 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
902
903 config CRYPTO_ARC4
904 tristate "ARC4 cipher algorithm"
905 select CRYPTO_BLKCIPHER
906 help
907 ARC4 cipher algorithm.
908
909 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
910 bits in length. This algorithm is required for driver-based
911 WEP, but it should not be for other purposes because of the
912 weakness of the algorithm.
913
914 config CRYPTO_BLOWFISH
915 tristate "Blowfish cipher algorithm"
916 select CRYPTO_ALGAPI
917 select CRYPTO_BLOWFISH_COMMON
918 help
919 Blowfish cipher algorithm, by Bruce Schneier.
920
921 This is a variable key length cipher which can use keys from 32
922 bits to 448 bits in length. It's fast, simple and specifically
923 designed for use on "large microprocessors".
924
925 See also:
926 <http://www.schneier.com/blowfish.html>
927
928 config CRYPTO_BLOWFISH_COMMON
929 tristate
930 help
931 Common parts of the Blowfish cipher algorithm shared by the
932 generic c and the assembler implementations.
933
934 See also:
935 <http://www.schneier.com/blowfish.html>
936
937 config CRYPTO_BLOWFISH_X86_64
938 tristate "Blowfish cipher algorithm (x86_64)"
939 depends on X86 && 64BIT
940 select CRYPTO_ALGAPI
941 select CRYPTO_BLOWFISH_COMMON
942 help
943 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
944
945 This is a variable key length cipher which can use keys from 32
946 bits to 448 bits in length. It's fast, simple and specifically
947 designed for use on "large microprocessors".
948
949 See also:
950 <http://www.schneier.com/blowfish.html>
951
952 config CRYPTO_CAMELLIA
953 tristate "Camellia cipher algorithms"
954 depends on CRYPTO
955 select CRYPTO_ALGAPI
956 help
957 Camellia cipher algorithms module.
958
959 Camellia is a symmetric key block cipher developed jointly
960 at NTT and Mitsubishi Electric Corporation.
961
962 The Camellia specifies three key sizes: 128, 192 and 256 bits.
963
964 See also:
965 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
966
967 config CRYPTO_CAMELLIA_X86_64
968 tristate "Camellia cipher algorithm (x86_64)"
969 depends on X86 && 64BIT
970 depends on CRYPTO
971 select CRYPTO_ALGAPI
972 select CRYPTO_GLUE_HELPER_X86
973 select CRYPTO_LRW
974 select CRYPTO_XTS
975 help
976 Camellia cipher algorithm module (x86_64).
977
978 Camellia is a symmetric key block cipher developed jointly
979 at NTT and Mitsubishi Electric Corporation.
980
981 The Camellia specifies three key sizes: 128, 192 and 256 bits.
982
983 See also:
984 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
985
986 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
987 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
988 depends on X86 && 64BIT
989 depends on CRYPTO
990 select CRYPTO_ALGAPI
991 select CRYPTO_CRYPTD
992 select CRYPTO_ABLK_HELPER
993 select CRYPTO_GLUE_HELPER_X86
994 select CRYPTO_CAMELLIA_X86_64
995 select CRYPTO_LRW
996 select CRYPTO_XTS
997 help
998 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
999
1000 Camellia is a symmetric key block cipher developed jointly
1001 at NTT and Mitsubishi Electric Corporation.
1002
1003 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1004
1005 See also:
1006 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1007
1008 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1009 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1010 depends on X86 && 64BIT
1011 depends on CRYPTO
1012 select CRYPTO_ALGAPI
1013 select CRYPTO_CRYPTD
1014 select CRYPTO_ABLK_HELPER
1015 select CRYPTO_GLUE_HELPER_X86
1016 select CRYPTO_CAMELLIA_X86_64
1017 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1018 select CRYPTO_LRW
1019 select CRYPTO_XTS
1020 help
1021 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1022
1023 Camellia is a symmetric key block cipher developed jointly
1024 at NTT and Mitsubishi Electric Corporation.
1025
1026 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1027
1028 See also:
1029 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1030
1031 config CRYPTO_CAMELLIA_SPARC64
1032 tristate "Camellia cipher algorithm (SPARC64)"
1033 depends on SPARC64
1034 depends on CRYPTO
1035 select CRYPTO_ALGAPI
1036 help
1037 Camellia cipher algorithm module (SPARC64).
1038
1039 Camellia is a symmetric key block cipher developed jointly
1040 at NTT and Mitsubishi Electric Corporation.
1041
1042 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1043
1044 See also:
1045 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047 config CRYPTO_CAST_COMMON
1048 tristate
1049 help
1050 Common parts of the CAST cipher algorithms shared by the
1051 generic c and the assembler implementations.
1052
1053 config CRYPTO_CAST5
1054 tristate "CAST5 (CAST-128) cipher algorithm"
1055 select CRYPTO_ALGAPI
1056 select CRYPTO_CAST_COMMON
1057 help
1058 The CAST5 encryption algorithm (synonymous with CAST-128) is
1059 described in RFC2144.
1060
1061 config CRYPTO_CAST5_AVX_X86_64
1062 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1063 depends on X86 && 64BIT
1064 select CRYPTO_ALGAPI
1065 select CRYPTO_CRYPTD
1066 select CRYPTO_ABLK_HELPER
1067 select CRYPTO_CAST_COMMON
1068 select CRYPTO_CAST5
1069 help
1070 The CAST5 encryption algorithm (synonymous with CAST-128) is
1071 described in RFC2144.
1072
1073 This module provides the Cast5 cipher algorithm that processes
1074 sixteen blocks parallel using the AVX instruction set.
1075
1076 config CRYPTO_CAST6
1077 tristate "CAST6 (CAST-256) cipher algorithm"
1078 select CRYPTO_ALGAPI
1079 select CRYPTO_CAST_COMMON
1080 help
1081 The CAST6 encryption algorithm (synonymous with CAST-256) is
1082 described in RFC2612.
1083
1084 config CRYPTO_CAST6_AVX_X86_64
1085 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1086 depends on X86 && 64BIT
1087 select CRYPTO_ALGAPI
1088 select CRYPTO_CRYPTD
1089 select CRYPTO_ABLK_HELPER
1090 select CRYPTO_GLUE_HELPER_X86
1091 select CRYPTO_CAST_COMMON
1092 select CRYPTO_CAST6
1093 select CRYPTO_LRW
1094 select CRYPTO_XTS
1095 help
1096 The CAST6 encryption algorithm (synonymous with CAST-256) is
1097 described in RFC2612.
1098
1099 This module provides the Cast6 cipher algorithm that processes
1100 eight blocks parallel using the AVX instruction set.
1101
1102 config CRYPTO_DES
1103 tristate "DES and Triple DES EDE cipher algorithms"
1104 select CRYPTO_ALGAPI
1105 help
1106 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1107
1108 config CRYPTO_DES_SPARC64
1109 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1110 depends on SPARC64
1111 select CRYPTO_ALGAPI
1112 select CRYPTO_DES
1113 help
1114 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1115 optimized using SPARC64 crypto opcodes.
1116
1117 config CRYPTO_DES3_EDE_X86_64
1118 tristate "Triple DES EDE cipher algorithm (x86-64)"
1119 depends on X86 && 64BIT
1120 select CRYPTO_ALGAPI
1121 select CRYPTO_DES
1122 help
1123 Triple DES EDE (FIPS 46-3) algorithm.
1124
1125 This module provides implementation of the Triple DES EDE cipher
1126 algorithm that is optimized for x86-64 processors. Two versions of
1127 algorithm are provided; regular processing one input block and
1128 one that processes three blocks parallel.
1129
1130 config CRYPTO_FCRYPT
1131 tristate "FCrypt cipher algorithm"
1132 select CRYPTO_ALGAPI
1133 select CRYPTO_BLKCIPHER
1134 help
1135 FCrypt algorithm used by RxRPC.
1136
1137 config CRYPTO_KHAZAD
1138 tristate "Khazad cipher algorithm"
1139 select CRYPTO_ALGAPI
1140 help
1141 Khazad cipher algorithm.
1142
1143 Khazad was a finalist in the initial NESSIE competition. It is
1144 an algorithm optimized for 64-bit processors with good performance
1145 on 32-bit processors. Khazad uses an 128 bit key size.
1146
1147 See also:
1148 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1149
1150 config CRYPTO_SALSA20
1151 tristate "Salsa20 stream cipher algorithm"
1152 select CRYPTO_BLKCIPHER
1153 help
1154 Salsa20 stream cipher algorithm.
1155
1156 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1157 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1158
1159 The Salsa20 stream cipher algorithm is designed by Daniel J.
1160 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1161
1162 config CRYPTO_SALSA20_586
1163 tristate "Salsa20 stream cipher algorithm (i586)"
1164 depends on (X86 || UML_X86) && !64BIT
1165 select CRYPTO_BLKCIPHER
1166 help
1167 Salsa20 stream cipher algorithm.
1168
1169 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1170 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1171
1172 The Salsa20 stream cipher algorithm is designed by Daniel J.
1173 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1174
1175 config CRYPTO_SALSA20_X86_64
1176 tristate "Salsa20 stream cipher algorithm (x86_64)"
1177 depends on (X86 || UML_X86) && 64BIT
1178 select CRYPTO_BLKCIPHER
1179 help
1180 Salsa20 stream cipher algorithm.
1181
1182 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1183 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1184
1185 The Salsa20 stream cipher algorithm is designed by Daniel J.
1186 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1187
1188 config CRYPTO_SEED
1189 tristate "SEED cipher algorithm"
1190 select CRYPTO_ALGAPI
1191 help
1192 SEED cipher algorithm (RFC4269).
1193
1194 SEED is a 128-bit symmetric key block cipher that has been
1195 developed by KISA (Korea Information Security Agency) as a
1196 national standard encryption algorithm of the Republic of Korea.
1197 It is a 16 round block cipher with the key size of 128 bit.
1198
1199 See also:
1200 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1201
1202 config CRYPTO_SERPENT
1203 tristate "Serpent cipher algorithm"
1204 select CRYPTO_ALGAPI
1205 help
1206 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1207
1208 Keys are allowed to be from 0 to 256 bits in length, in steps
1209 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1210 variant of Serpent for compatibility with old kerneli.org code.
1211
1212 See also:
1213 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1214
1215 config CRYPTO_SERPENT_SSE2_X86_64
1216 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1217 depends on X86 && 64BIT
1218 select CRYPTO_ALGAPI
1219 select CRYPTO_CRYPTD
1220 select CRYPTO_ABLK_HELPER
1221 select CRYPTO_GLUE_HELPER_X86
1222 select CRYPTO_SERPENT
1223 select CRYPTO_LRW
1224 select CRYPTO_XTS
1225 help
1226 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1227
1228 Keys are allowed to be from 0 to 256 bits in length, in steps
1229 of 8 bits.
1230
1231 This module provides Serpent cipher algorithm that processes eigth
1232 blocks parallel using SSE2 instruction set.
1233
1234 See also:
1235 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1236
1237 config CRYPTO_SERPENT_SSE2_586
1238 tristate "Serpent cipher algorithm (i586/SSE2)"
1239 depends on X86 && !64BIT
1240 select CRYPTO_ALGAPI
1241 select CRYPTO_CRYPTD
1242 select CRYPTO_ABLK_HELPER
1243 select CRYPTO_GLUE_HELPER_X86
1244 select CRYPTO_SERPENT
1245 select CRYPTO_LRW
1246 select CRYPTO_XTS
1247 help
1248 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1249
1250 Keys are allowed to be from 0 to 256 bits in length, in steps
1251 of 8 bits.
1252
1253 This module provides Serpent cipher algorithm that processes four
1254 blocks parallel using SSE2 instruction set.
1255
1256 See also:
1257 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1258
1259 config CRYPTO_SERPENT_AVX_X86_64
1260 tristate "Serpent cipher algorithm (x86_64/AVX)"
1261 depends on X86 && 64BIT
1262 select CRYPTO_ALGAPI
1263 select CRYPTO_CRYPTD
1264 select CRYPTO_ABLK_HELPER
1265 select CRYPTO_GLUE_HELPER_X86
1266 select CRYPTO_SERPENT
1267 select CRYPTO_LRW
1268 select CRYPTO_XTS
1269 help
1270 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1271
1272 Keys are allowed to be from 0 to 256 bits in length, in steps
1273 of 8 bits.
1274
1275 This module provides the Serpent cipher algorithm that processes
1276 eight blocks parallel using the AVX instruction set.
1277
1278 See also:
1279 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1280
1281 config CRYPTO_SERPENT_AVX2_X86_64
1282 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1283 depends on X86 && 64BIT
1284 select CRYPTO_ALGAPI
1285 select CRYPTO_CRYPTD
1286 select CRYPTO_ABLK_HELPER
1287 select CRYPTO_GLUE_HELPER_X86
1288 select CRYPTO_SERPENT
1289 select CRYPTO_SERPENT_AVX_X86_64
1290 select CRYPTO_LRW
1291 select CRYPTO_XTS
1292 help
1293 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295 Keys are allowed to be from 0 to 256 bits in length, in steps
1296 of 8 bits.
1297
1298 This module provides Serpent cipher algorithm that processes 16
1299 blocks parallel using AVX2 instruction set.
1300
1301 See also:
1302 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304 config CRYPTO_TEA
1305 tristate "TEA, XTEA and XETA cipher algorithms"
1306 select CRYPTO_ALGAPI
1307 help
1308 TEA cipher algorithm.
1309
1310 Tiny Encryption Algorithm is a simple cipher that uses
1311 many rounds for security. It is very fast and uses
1312 little memory.
1313
1314 Xtendend Tiny Encryption Algorithm is a modification to
1315 the TEA algorithm to address a potential key weakness
1316 in the TEA algorithm.
1317
1318 Xtendend Encryption Tiny Algorithm is a mis-implementation
1319 of the XTEA algorithm for compatibility purposes.
1320
1321 config CRYPTO_TWOFISH
1322 tristate "Twofish cipher algorithm"
1323 select CRYPTO_ALGAPI
1324 select CRYPTO_TWOFISH_COMMON
1325 help
1326 Twofish cipher algorithm.
1327
1328 Twofish was submitted as an AES (Advanced Encryption Standard)
1329 candidate cipher by researchers at CounterPane Systems. It is a
1330 16 round block cipher supporting key sizes of 128, 192, and 256
1331 bits.
1332
1333 See also:
1334 <http://www.schneier.com/twofish.html>
1335
1336 config CRYPTO_TWOFISH_COMMON
1337 tristate
1338 help
1339 Common parts of the Twofish cipher algorithm shared by the
1340 generic c and the assembler implementations.
1341
1342 config CRYPTO_TWOFISH_586
1343 tristate "Twofish cipher algorithms (i586)"
1344 depends on (X86 || UML_X86) && !64BIT
1345 select CRYPTO_ALGAPI
1346 select CRYPTO_TWOFISH_COMMON
1347 help
1348 Twofish cipher algorithm.
1349
1350 Twofish was submitted as an AES (Advanced Encryption Standard)
1351 candidate cipher by researchers at CounterPane Systems. It is a
1352 16 round block cipher supporting key sizes of 128, 192, and 256
1353 bits.
1354
1355 See also:
1356 <http://www.schneier.com/twofish.html>
1357
1358 config CRYPTO_TWOFISH_X86_64
1359 tristate "Twofish cipher algorithm (x86_64)"
1360 depends on (X86 || UML_X86) && 64BIT
1361 select CRYPTO_ALGAPI
1362 select CRYPTO_TWOFISH_COMMON
1363 help
1364 Twofish cipher algorithm (x86_64).
1365
1366 Twofish was submitted as an AES (Advanced Encryption Standard)
1367 candidate cipher by researchers at CounterPane Systems. It is a
1368 16 round block cipher supporting key sizes of 128, 192, and 256
1369 bits.
1370
1371 See also:
1372 <http://www.schneier.com/twofish.html>
1373
1374 config CRYPTO_TWOFISH_X86_64_3WAY
1375 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1376 depends on X86 && 64BIT
1377 select CRYPTO_ALGAPI
1378 select CRYPTO_TWOFISH_COMMON
1379 select CRYPTO_TWOFISH_X86_64
1380 select CRYPTO_GLUE_HELPER_X86
1381 select CRYPTO_LRW
1382 select CRYPTO_XTS
1383 help
1384 Twofish cipher algorithm (x86_64, 3-way parallel).
1385
1386 Twofish was submitted as an AES (Advanced Encryption Standard)
1387 candidate cipher by researchers at CounterPane Systems. It is a
1388 16 round block cipher supporting key sizes of 128, 192, and 256
1389 bits.
1390
1391 This module provides Twofish cipher algorithm that processes three
1392 blocks parallel, utilizing resources of out-of-order CPUs better.
1393
1394 See also:
1395 <http://www.schneier.com/twofish.html>
1396
1397 config CRYPTO_TWOFISH_AVX_X86_64
1398 tristate "Twofish cipher algorithm (x86_64/AVX)"
1399 depends on X86 && 64BIT
1400 select CRYPTO_ALGAPI
1401 select CRYPTO_CRYPTD
1402 select CRYPTO_ABLK_HELPER
1403 select CRYPTO_GLUE_HELPER_X86
1404 select CRYPTO_TWOFISH_COMMON
1405 select CRYPTO_TWOFISH_X86_64
1406 select CRYPTO_TWOFISH_X86_64_3WAY
1407 select CRYPTO_LRW
1408 select CRYPTO_XTS
1409 help
1410 Twofish cipher algorithm (x86_64/AVX).
1411
1412 Twofish was submitted as an AES (Advanced Encryption Standard)
1413 candidate cipher by researchers at CounterPane Systems. It is a
1414 16 round block cipher supporting key sizes of 128, 192, and 256
1415 bits.
1416
1417 This module provides the Twofish cipher algorithm that processes
1418 eight blocks parallel using the AVX Instruction Set.
1419
1420 See also:
1421 <http://www.schneier.com/twofish.html>
1422
1423 comment "Compression"
1424
1425 config CRYPTO_DEFLATE
1426 tristate "Deflate compression algorithm"
1427 select CRYPTO_ALGAPI
1428 select ZLIB_INFLATE
1429 select ZLIB_DEFLATE
1430 help
1431 This is the Deflate algorithm (RFC1951), specified for use in
1432 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1433
1434 You will most probably want this if using IPSec.
1435
1436 config CRYPTO_ZLIB
1437 tristate "Zlib compression algorithm"
1438 select CRYPTO_PCOMP
1439 select ZLIB_INFLATE
1440 select ZLIB_DEFLATE
1441 select NLATTR
1442 help
1443 This is the zlib algorithm.
1444
1445 config CRYPTO_LZO
1446 tristate "LZO compression algorithm"
1447 select CRYPTO_ALGAPI
1448 select LZO_COMPRESS
1449 select LZO_DECOMPRESS
1450 help
1451 This is the LZO algorithm.
1452
1453 config CRYPTO_842
1454 tristate "842 compression algorithm"
1455 depends on CRYPTO_DEV_NX_COMPRESS
1456 # 842 uses lzo if the hardware becomes unavailable
1457 select LZO_COMPRESS
1458 select LZO_DECOMPRESS
1459 help
1460 This is the 842 algorithm.
1461
1462 config CRYPTO_LZ4
1463 tristate "LZ4 compression algorithm"
1464 select CRYPTO_ALGAPI
1465 select LZ4_COMPRESS
1466 select LZ4_DECOMPRESS
1467 help
1468 This is the LZ4 algorithm.
1469
1470 config CRYPTO_LZ4HC
1471 tristate "LZ4HC compression algorithm"
1472 select CRYPTO_ALGAPI
1473 select LZ4HC_COMPRESS
1474 select LZ4_DECOMPRESS
1475 help
1476 This is the LZ4 high compression mode algorithm.
1477
1478 comment "Random Number Generation"
1479
1480 config CRYPTO_ANSI_CPRNG
1481 tristate "Pseudo Random Number Generation for Cryptographic modules"
1482 default m
1483 select CRYPTO_AES
1484 select CRYPTO_RNG
1485 help
1486 This option enables the generic pseudo random number generator
1487 for cryptographic modules. Uses the Algorithm specified in
1488 ANSI X9.31 A.2.4. Note that this option must be enabled if
1489 CRYPTO_FIPS is selected
1490
1491 menuconfig CRYPTO_DRBG_MENU
1492 tristate "NIST SP800-90A DRBG"
1493 help
1494 NIST SP800-90A compliant DRBG. In the following submenu, one or
1495 more of the DRBG types must be selected.
1496
1497 if CRYPTO_DRBG_MENU
1498
1499 config CRYPTO_DRBG_HMAC
1500 bool "Enable HMAC DRBG"
1501 default y
1502 select CRYPTO_HMAC
1503 help
1504 Enable the HMAC DRBG variant as defined in NIST SP800-90A.
1505
1506 config CRYPTO_DRBG_HASH
1507 bool "Enable Hash DRBG"
1508 select CRYPTO_HASH
1509 help
1510 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1511
1512 config CRYPTO_DRBG_CTR
1513 bool "Enable CTR DRBG"
1514 select CRYPTO_AES
1515 help
1516 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1517
1518 config CRYPTO_DRBG
1519 tristate
1520 default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
1521 select CRYPTO_RNG
1522
1523 endif # if CRYPTO_DRBG_MENU
1524
1525 config CRYPTO_USER_API
1526 tristate
1527
1528 config CRYPTO_USER_API_HASH
1529 tristate "User-space interface for hash algorithms"
1530 depends on NET
1531 select CRYPTO_HASH
1532 select CRYPTO_USER_API
1533 help
1534 This option enables the user-spaces interface for hash
1535 algorithms.
1536
1537 config CRYPTO_USER_API_SKCIPHER
1538 tristate "User-space interface for symmetric key cipher algorithms"
1539 depends on NET
1540 select CRYPTO_BLKCIPHER
1541 select CRYPTO_USER_API
1542 help
1543 This option enables the user-spaces interface for symmetric
1544 key cipher algorithms.
1545
1546 config CRYPTO_USER_API_RNG
1547 tristate "User-space interface for random number generator algorithms"
1548 depends on NET
1549 select CRYPTO_RNG
1550 select CRYPTO_USER_API
1551 help
1552 This option enables the user-spaces interface for random
1553 number generator algorithms.
1554
1555 config CRYPTO_HASH_INFO
1556 bool
1557
1558 source "drivers/crypto/Kconfig"
1559 source crypto/asymmetric_keys/Kconfig
1560
1561 endif # if CRYPTO
This page took 0.073249 seconds and 6 git commands to generate.