Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6
[deliverable/linux.git] / crypto / asymmetric_keys / verify_pefile.c
1 /* Parse a signed PE binary
2 *
3 * Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "PEFILE: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/pe.h>
18 #include <linux/asn1.h>
19 #include <crypto/pkcs7.h>
20 #include <crypto/hash.h>
21 #include "verify_pefile.h"
22
23 /*
24 * Parse a PE binary.
25 */
26 static int pefile_parse_binary(const void *pebuf, unsigned int pelen,
27 struct pefile_context *ctx)
28 {
29 const struct mz_hdr *mz = pebuf;
30 const struct pe_hdr *pe;
31 const struct pe32_opt_hdr *pe32;
32 const struct pe32plus_opt_hdr *pe64;
33 const struct data_directory *ddir;
34 const struct data_dirent *dde;
35 const struct section_header *secs, *sec;
36 size_t cursor, datalen = pelen;
37
38 kenter("");
39
40 #define chkaddr(base, x, s) \
41 do { \
42 if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
43 return -ELIBBAD; \
44 } while (0)
45
46 chkaddr(0, 0, sizeof(*mz));
47 if (mz->magic != MZ_MAGIC)
48 return -ELIBBAD;
49 cursor = sizeof(*mz);
50
51 chkaddr(cursor, mz->peaddr, sizeof(*pe));
52 pe = pebuf + mz->peaddr;
53 if (pe->magic != PE_MAGIC)
54 return -ELIBBAD;
55 cursor = mz->peaddr + sizeof(*pe);
56
57 chkaddr(0, cursor, sizeof(pe32->magic));
58 pe32 = pebuf + cursor;
59 pe64 = pebuf + cursor;
60
61 switch (pe32->magic) {
62 case PE_OPT_MAGIC_PE32:
63 chkaddr(0, cursor, sizeof(*pe32));
64 ctx->image_checksum_offset =
65 (unsigned long)&pe32->csum - (unsigned long)pebuf;
66 ctx->header_size = pe32->header_size;
67 cursor += sizeof(*pe32);
68 ctx->n_data_dirents = pe32->data_dirs;
69 break;
70
71 case PE_OPT_MAGIC_PE32PLUS:
72 chkaddr(0, cursor, sizeof(*pe64));
73 ctx->image_checksum_offset =
74 (unsigned long)&pe64->csum - (unsigned long)pebuf;
75 ctx->header_size = pe64->header_size;
76 cursor += sizeof(*pe64);
77 ctx->n_data_dirents = pe64->data_dirs;
78 break;
79
80 default:
81 pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
82 return -ELIBBAD;
83 }
84
85 pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
86 pr_debug("header size = %x\n", ctx->header_size);
87
88 if (cursor >= ctx->header_size || ctx->header_size >= datalen)
89 return -ELIBBAD;
90
91 if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
92 return -ELIBBAD;
93
94 ddir = pebuf + cursor;
95 cursor += sizeof(*dde) * ctx->n_data_dirents;
96
97 ctx->cert_dirent_offset =
98 (unsigned long)&ddir->certs - (unsigned long)pebuf;
99 ctx->certs_size = ddir->certs.size;
100
101 if (!ddir->certs.virtual_address || !ddir->certs.size) {
102 pr_debug("Unsigned PE binary\n");
103 return -EKEYREJECTED;
104 }
105
106 chkaddr(ctx->header_size, ddir->certs.virtual_address,
107 ddir->certs.size);
108 ctx->sig_offset = ddir->certs.virtual_address;
109 ctx->sig_len = ddir->certs.size;
110 pr_debug("cert = %x @%x [%*ph]\n",
111 ctx->sig_len, ctx->sig_offset,
112 ctx->sig_len, pebuf + ctx->sig_offset);
113
114 ctx->n_sections = pe->sections;
115 if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
116 return -ELIBBAD;
117 ctx->secs = secs = pebuf + cursor;
118
119 return 0;
120 }
121
122 /*
123 * Check and strip the PE wrapper from around the signature and check that the
124 * remnant looks something like PKCS#7.
125 */
126 static int pefile_strip_sig_wrapper(const void *pebuf,
127 struct pefile_context *ctx)
128 {
129 struct win_certificate wrapper;
130 const u8 *pkcs7;
131
132 if (ctx->sig_len < sizeof(wrapper)) {
133 pr_debug("Signature wrapper too short\n");
134 return -ELIBBAD;
135 }
136
137 memcpy(&wrapper, pebuf + ctx->sig_offset, sizeof(wrapper));
138 pr_debug("sig wrapper = { %x, %x, %x }\n",
139 wrapper.length, wrapper.revision, wrapper.cert_type);
140
141 /* Both pesign and sbsign round up the length of certificate table
142 * (in optional header data directories) to 8 byte alignment.
143 */
144 if (round_up(wrapper.length, 8) != ctx->sig_len) {
145 pr_debug("Signature wrapper len wrong\n");
146 return -ELIBBAD;
147 }
148 if (wrapper.revision != WIN_CERT_REVISION_2_0) {
149 pr_debug("Signature is not revision 2.0\n");
150 return -ENOTSUPP;
151 }
152 if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
153 pr_debug("Signature certificate type is not PKCS\n");
154 return -ENOTSUPP;
155 }
156
157 /* Looks like actual pkcs signature length is in wrapper->length.
158 * size obtained from data dir entries lists the total size of
159 * certificate table which is also aligned to octawrod boundary.
160 *
161 * So set signature length field appropriately.
162 */
163 ctx->sig_len = wrapper.length;
164 ctx->sig_offset += sizeof(wrapper);
165 ctx->sig_len -= sizeof(wrapper);
166 if (ctx->sig_len == 0) {
167 pr_debug("Signature data missing\n");
168 return -EKEYREJECTED;
169 }
170
171 /* What's left should a PKCS#7 cert */
172 pkcs7 = pebuf + ctx->sig_offset;
173 if (pkcs7[0] == (ASN1_CONS_BIT | ASN1_SEQ)) {
174 if (pkcs7[1] == 0x82 &&
175 pkcs7[2] == (((ctx->sig_len - 4) >> 8) & 0xff) &&
176 pkcs7[3] == ((ctx->sig_len - 4) & 0xff))
177 return 0;
178 if (pkcs7[1] == 0x80)
179 return 0;
180 if (pkcs7[1] > 0x82)
181 return -EMSGSIZE;
182 }
183
184 pr_debug("Signature data not PKCS#7\n");
185 return -ELIBBAD;
186 }
187
188 /*
189 * Compare two sections for canonicalisation.
190 */
191 static int pefile_compare_shdrs(const void *a, const void *b)
192 {
193 const struct section_header *shdra = a;
194 const struct section_header *shdrb = b;
195 int rc;
196
197 if (shdra->data_addr > shdrb->data_addr)
198 return 1;
199 if (shdrb->data_addr > shdra->data_addr)
200 return -1;
201
202 if (shdra->virtual_address > shdrb->virtual_address)
203 return 1;
204 if (shdrb->virtual_address > shdra->virtual_address)
205 return -1;
206
207 rc = strcmp(shdra->name, shdrb->name);
208 if (rc != 0)
209 return rc;
210
211 if (shdra->virtual_size > shdrb->virtual_size)
212 return 1;
213 if (shdrb->virtual_size > shdra->virtual_size)
214 return -1;
215
216 if (shdra->raw_data_size > shdrb->raw_data_size)
217 return 1;
218 if (shdrb->raw_data_size > shdra->raw_data_size)
219 return -1;
220
221 return 0;
222 }
223
224 /*
225 * Load the contents of the PE binary into the digest, leaving out the image
226 * checksum and the certificate data block.
227 */
228 static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
229 struct pefile_context *ctx,
230 struct shash_desc *desc)
231 {
232 unsigned *canon, tmp, loop, i, hashed_bytes;
233 int ret;
234
235 /* Digest the header and data directory, but leave out the image
236 * checksum and the data dirent for the signature.
237 */
238 ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
239 if (ret < 0)
240 return ret;
241
242 tmp = ctx->image_checksum_offset + sizeof(uint32_t);
243 ret = crypto_shash_update(desc, pebuf + tmp,
244 ctx->cert_dirent_offset - tmp);
245 if (ret < 0)
246 return ret;
247
248 tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
249 ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
250 if (ret < 0)
251 return ret;
252
253 canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
254 if (!canon)
255 return -ENOMEM;
256
257 /* We have to canonicalise the section table, so we perform an
258 * insertion sort.
259 */
260 canon[0] = 0;
261 for (loop = 1; loop < ctx->n_sections; loop++) {
262 for (i = 0; i < loop; i++) {
263 if (pefile_compare_shdrs(&ctx->secs[canon[i]],
264 &ctx->secs[loop]) > 0) {
265 memmove(&canon[i + 1], &canon[i],
266 (loop - i) * sizeof(canon[0]));
267 break;
268 }
269 }
270 canon[i] = loop;
271 }
272
273 hashed_bytes = ctx->header_size;
274 for (loop = 0; loop < ctx->n_sections; loop++) {
275 i = canon[loop];
276 if (ctx->secs[i].raw_data_size == 0)
277 continue;
278 ret = crypto_shash_update(desc,
279 pebuf + ctx->secs[i].data_addr,
280 ctx->secs[i].raw_data_size);
281 if (ret < 0) {
282 kfree(canon);
283 return ret;
284 }
285 hashed_bytes += ctx->secs[i].raw_data_size;
286 }
287 kfree(canon);
288
289 if (pelen > hashed_bytes) {
290 tmp = hashed_bytes + ctx->certs_size;
291 ret = crypto_shash_update(desc,
292 pebuf + hashed_bytes,
293 pelen - tmp);
294 if (ret < 0)
295 return ret;
296 }
297
298 return 0;
299 }
300
301 /*
302 * Digest the contents of the PE binary, leaving out the image checksum and the
303 * certificate data block.
304 */
305 static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
306 struct pefile_context *ctx)
307 {
308 struct crypto_shash *tfm;
309 struct shash_desc *desc;
310 size_t digest_size, desc_size;
311 void *digest;
312 int ret;
313
314 kenter(",%u", ctx->digest_algo);
315
316 /* Allocate the hashing algorithm we're going to need and find out how
317 * big the hash operational data will be.
318 */
319 tfm = crypto_alloc_shash(hash_algo_name[ctx->digest_algo], 0, 0);
320 if (IS_ERR(tfm))
321 return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
322
323 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
324 digest_size = crypto_shash_digestsize(tfm);
325
326 if (digest_size != ctx->digest_len) {
327 pr_debug("Digest size mismatch (%zx != %x)\n",
328 digest_size, ctx->digest_len);
329 ret = -EBADMSG;
330 goto error_no_desc;
331 }
332 pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
333
334 ret = -ENOMEM;
335 desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
336 if (!desc)
337 goto error_no_desc;
338
339 desc->tfm = tfm;
340 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
341 ret = crypto_shash_init(desc);
342 if (ret < 0)
343 goto error;
344
345 ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
346 if (ret < 0)
347 goto error;
348
349 digest = (void *)desc + desc_size;
350 ret = crypto_shash_final(desc, digest);
351 if (ret < 0)
352 goto error;
353
354 pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
355
356 /* Check that the PE file digest matches that in the MSCODE part of the
357 * PKCS#7 certificate.
358 */
359 if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
360 pr_debug("Digest mismatch\n");
361 ret = -EKEYREJECTED;
362 } else {
363 pr_debug("The digests match!\n");
364 }
365
366 error:
367 kfree(desc);
368 error_no_desc:
369 crypto_free_shash(tfm);
370 kleave(" = %d", ret);
371 return ret;
372 }
373
374 /**
375 * verify_pefile_signature - Verify the signature on a PE binary image
376 * @pebuf: Buffer containing the PE binary image
377 * @pelen: Length of the binary image
378 * @trust_keyring: Signing certificates to use as starting points
379 * @_trusted: Set to true if trustworth, false otherwise
380 *
381 * Validate that the certificate chain inside the PKCS#7 message inside the PE
382 * binary image intersects keys we already know and trust.
383 *
384 * Returns, in order of descending priority:
385 *
386 * (*) -ELIBBAD if the image cannot be parsed, or:
387 *
388 * (*) -EKEYREJECTED if a signature failed to match for which we have a valid
389 * key, or:
390 *
391 * (*) 0 if at least one signature chain intersects with the keys in the trust
392 * keyring, or:
393 *
394 * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
395 * chain.
396 *
397 * (*) -ENOKEY if we couldn't find a match for any of the signature chains in
398 * the message.
399 *
400 * May also return -ENOMEM.
401 */
402 int verify_pefile_signature(const void *pebuf, unsigned pelen,
403 struct key *trusted_keyring, bool *_trusted)
404 {
405 struct pkcs7_message *pkcs7;
406 struct pefile_context ctx;
407 const void *data;
408 size_t datalen;
409 int ret;
410
411 kenter("");
412
413 memset(&ctx, 0, sizeof(ctx));
414 ret = pefile_parse_binary(pebuf, pelen, &ctx);
415 if (ret < 0)
416 return ret;
417
418 ret = pefile_strip_sig_wrapper(pebuf, &ctx);
419 if (ret < 0)
420 return ret;
421
422 pkcs7 = pkcs7_parse_message(pebuf + ctx.sig_offset, ctx.sig_len);
423 if (IS_ERR(pkcs7))
424 return PTR_ERR(pkcs7);
425 ctx.pkcs7 = pkcs7;
426
427 ret = pkcs7_get_content_data(ctx.pkcs7, &data, &datalen, false);
428 if (ret < 0 || datalen == 0) {
429 pr_devel("PKCS#7 message does not contain data\n");
430 ret = -EBADMSG;
431 goto error;
432 }
433
434 ret = mscode_parse(&ctx);
435 if (ret < 0)
436 goto error;
437
438 pr_debug("Digest: %u [%*ph]\n",
439 ctx.digest_len, ctx.digest_len, ctx.digest);
440
441 /* Generate the digest and check against the PKCS7 certificate
442 * contents.
443 */
444 ret = pefile_digest_pe(pebuf, pelen, &ctx);
445 if (ret < 0)
446 goto error;
447
448 ret = pkcs7_verify(pkcs7);
449 if (ret < 0)
450 goto error;
451
452 ret = pkcs7_validate_trust(pkcs7, trusted_keyring, _trusted);
453
454 error:
455 pkcs7_free_message(ctx.pkcs7);
456 return ret;
457 }
This page took 0.054444 seconds and 5 git commands to generate.