Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / crypto / async_tx / async_tx.c
1 /*
2 * core routines for the asynchronous memory transfer/transform api
3 *
4 * Copyright © 2006, Intel Corporation.
5 *
6 * Dan Williams <dan.j.williams@intel.com>
7 *
8 * with architecture considerations by:
9 * Neil Brown <neilb@suse.de>
10 * Jeff Garzik <jeff@garzik.org>
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 *
25 */
26 #include <linux/rculist.h>
27 #include <linux/kernel.h>
28 #include <linux/async_tx.h>
29
30 #ifdef CONFIG_DMA_ENGINE
31 static enum dma_state_client
32 dma_channel_add_remove(struct dma_client *client,
33 struct dma_chan *chan, enum dma_state state);
34
35 static struct dma_client async_tx_dma = {
36 .event_callback = dma_channel_add_remove,
37 /* .cap_mask == 0 defaults to all channels */
38 };
39
40 /**
41 * dma_cap_mask_all - enable iteration over all operation types
42 */
43 static dma_cap_mask_t dma_cap_mask_all;
44
45 /**
46 * chan_ref_percpu - tracks channel allocations per core/opertion
47 */
48 struct chan_ref_percpu {
49 struct dma_chan_ref *ref;
50 };
51
52 static int channel_table_initialized;
53 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
54
55 /**
56 * async_tx_lock - protect modification of async_tx_master_list and serialize
57 * rebalance operations
58 */
59 static spinlock_t async_tx_lock;
60
61 static LIST_HEAD(async_tx_master_list);
62
63 /* async_tx_issue_pending_all - start all transactions on all channels */
64 void async_tx_issue_pending_all(void)
65 {
66 struct dma_chan_ref *ref;
67
68 rcu_read_lock();
69 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
70 ref->chan->device->device_issue_pending(ref->chan);
71 rcu_read_unlock();
72 }
73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
74
75 /* dma_wait_for_async_tx - spin wait for a transcation to complete
76 * @tx: transaction to wait on
77 */
78 enum dma_status
79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
80 {
81 enum dma_status status;
82 struct dma_async_tx_descriptor *iter;
83 struct dma_async_tx_descriptor *parent;
84
85 if (!tx)
86 return DMA_SUCCESS;
87
88 /* poll through the dependency chain, return when tx is complete */
89 do {
90 iter = tx;
91
92 /* find the root of the unsubmitted dependency chain */
93 do {
94 parent = iter->parent;
95 if (!parent)
96 break;
97 else
98 iter = parent;
99 } while (parent);
100
101 /* there is a small window for ->parent == NULL and
102 * ->cookie == -EBUSY
103 */
104 while (iter->cookie == -EBUSY)
105 cpu_relax();
106
107 status = dma_sync_wait(iter->chan, iter->cookie);
108 } while (status == DMA_IN_PROGRESS || (iter != tx));
109
110 return status;
111 }
112 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
113
114 /* async_tx_run_dependencies - helper routine for dma drivers to process
115 * (start) dependent operations on their target channel
116 * @tx: transaction with dependencies
117 */
118 void
119 async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
120 {
121 struct dma_async_tx_descriptor *next = tx->next;
122 struct dma_chan *chan;
123
124 if (!next)
125 return;
126
127 tx->next = NULL;
128 chan = next->chan;
129
130 /* keep submitting up until a channel switch is detected
131 * in that case we will be called again as a result of
132 * processing the interrupt from async_tx_channel_switch
133 */
134 while (next && next->chan == chan) {
135 struct dma_async_tx_descriptor *_next;
136
137 spin_lock_bh(&next->lock);
138 next->parent = NULL;
139 _next = next->next;
140 next->next = NULL;
141 spin_unlock_bh(&next->lock);
142
143 next->tx_submit(next);
144 next = _next;
145 }
146
147 chan->device->device_issue_pending(chan);
148 }
149 EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
150
151 static void
152 free_dma_chan_ref(struct rcu_head *rcu)
153 {
154 struct dma_chan_ref *ref;
155 ref = container_of(rcu, struct dma_chan_ref, rcu);
156 kfree(ref);
157 }
158
159 static void
160 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
161 {
162 INIT_LIST_HEAD(&ref->node);
163 INIT_RCU_HEAD(&ref->rcu);
164 ref->chan = chan;
165 atomic_set(&ref->count, 0);
166 }
167
168 /**
169 * get_chan_ref_by_cap - returns the nth channel of the given capability
170 * defaults to returning the channel with the desired capability and the
171 * lowest reference count if the index can not be satisfied
172 * @cap: capability to match
173 * @index: nth channel desired, passing -1 has the effect of forcing the
174 * default return value
175 */
176 static struct dma_chan_ref *
177 get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
178 {
179 struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
180
181 rcu_read_lock();
182 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
183 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
184 if (!min_ref)
185 min_ref = ref;
186 else if (atomic_read(&ref->count) <
187 atomic_read(&min_ref->count))
188 min_ref = ref;
189
190 if (index-- == 0) {
191 ret_ref = ref;
192 break;
193 }
194 }
195 rcu_read_unlock();
196
197 if (!ret_ref)
198 ret_ref = min_ref;
199
200 if (ret_ref)
201 atomic_inc(&ret_ref->count);
202
203 return ret_ref;
204 }
205
206 /**
207 * async_tx_rebalance - redistribute the available channels, optimize
208 * for cpu isolation in the SMP case, and opertaion isolation in the
209 * uniprocessor case
210 */
211 static void async_tx_rebalance(void)
212 {
213 int cpu, cap, cpu_idx = 0;
214 unsigned long flags;
215
216 if (!channel_table_initialized)
217 return;
218
219 spin_lock_irqsave(&async_tx_lock, flags);
220
221 /* undo the last distribution */
222 for_each_dma_cap_mask(cap, dma_cap_mask_all)
223 for_each_possible_cpu(cpu) {
224 struct dma_chan_ref *ref =
225 per_cpu_ptr(channel_table[cap], cpu)->ref;
226 if (ref) {
227 atomic_set(&ref->count, 0);
228 per_cpu_ptr(channel_table[cap], cpu)->ref =
229 NULL;
230 }
231 }
232
233 for_each_dma_cap_mask(cap, dma_cap_mask_all)
234 for_each_online_cpu(cpu) {
235 struct dma_chan_ref *new;
236 if (NR_CPUS > 1)
237 new = get_chan_ref_by_cap(cap, cpu_idx++);
238 else
239 new = get_chan_ref_by_cap(cap, -1);
240
241 per_cpu_ptr(channel_table[cap], cpu)->ref = new;
242 }
243
244 spin_unlock_irqrestore(&async_tx_lock, flags);
245 }
246
247 static enum dma_state_client
248 dma_channel_add_remove(struct dma_client *client,
249 struct dma_chan *chan, enum dma_state state)
250 {
251 unsigned long found, flags;
252 struct dma_chan_ref *master_ref, *ref;
253 enum dma_state_client ack = DMA_DUP; /* default: take no action */
254
255 switch (state) {
256 case DMA_RESOURCE_AVAILABLE:
257 found = 0;
258 rcu_read_lock();
259 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
260 if (ref->chan == chan) {
261 found = 1;
262 break;
263 }
264 rcu_read_unlock();
265
266 pr_debug("async_tx: dma resource available [%s]\n",
267 found ? "old" : "new");
268
269 if (!found)
270 ack = DMA_ACK;
271 else
272 break;
273
274 /* add the channel to the generic management list */
275 master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
276 if (master_ref) {
277 /* keep a reference until async_tx is unloaded */
278 dma_chan_get(chan);
279 init_dma_chan_ref(master_ref, chan);
280 spin_lock_irqsave(&async_tx_lock, flags);
281 list_add_tail_rcu(&master_ref->node,
282 &async_tx_master_list);
283 spin_unlock_irqrestore(&async_tx_lock,
284 flags);
285 } else {
286 printk(KERN_WARNING "async_tx: unable to create"
287 " new master entry in response to"
288 " a DMA_RESOURCE_ADDED event"
289 " (-ENOMEM)\n");
290 return 0;
291 }
292
293 async_tx_rebalance();
294 break;
295 case DMA_RESOURCE_REMOVED:
296 found = 0;
297 spin_lock_irqsave(&async_tx_lock, flags);
298 list_for_each_entry(ref, &async_tx_master_list, node)
299 if (ref->chan == chan) {
300 /* permit backing devices to go away */
301 dma_chan_put(ref->chan);
302 list_del_rcu(&ref->node);
303 call_rcu(&ref->rcu, free_dma_chan_ref);
304 found = 1;
305 break;
306 }
307 spin_unlock_irqrestore(&async_tx_lock, flags);
308
309 pr_debug("async_tx: dma resource removed [%s]\n",
310 found ? "ours" : "not ours");
311
312 if (found)
313 ack = DMA_ACK;
314 else
315 break;
316
317 async_tx_rebalance();
318 break;
319 case DMA_RESOURCE_SUSPEND:
320 case DMA_RESOURCE_RESUME:
321 printk(KERN_WARNING "async_tx: does not support dma channel"
322 " suspend/resume\n");
323 break;
324 default:
325 BUG();
326 }
327
328 return ack;
329 }
330
331 static int __init
332 async_tx_init(void)
333 {
334 enum dma_transaction_type cap;
335
336 spin_lock_init(&async_tx_lock);
337 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
338
339 /* an interrupt will never be an explicit operation type.
340 * clearing this bit prevents allocation to a slot in 'channel_table'
341 */
342 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
343
344 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
345 channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
346 if (!channel_table[cap])
347 goto err;
348 }
349
350 channel_table_initialized = 1;
351 dma_async_client_register(&async_tx_dma);
352 dma_async_client_chan_request(&async_tx_dma);
353
354 printk(KERN_INFO "async_tx: api initialized (async)\n");
355
356 return 0;
357 err:
358 printk(KERN_ERR "async_tx: initialization failure\n");
359
360 while (--cap >= 0)
361 free_percpu(channel_table[cap]);
362
363 return 1;
364 }
365
366 static void __exit async_tx_exit(void)
367 {
368 enum dma_transaction_type cap;
369
370 channel_table_initialized = 0;
371
372 for_each_dma_cap_mask(cap, dma_cap_mask_all)
373 if (channel_table[cap])
374 free_percpu(channel_table[cap]);
375
376 dma_async_client_unregister(&async_tx_dma);
377 }
378
379 /**
380 * __async_tx_find_channel - find a channel to carry out the operation or let
381 * the transaction execute synchronously
382 * @depend_tx: transaction dependency
383 * @tx_type: transaction type
384 */
385 struct dma_chan *
386 __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
387 enum dma_transaction_type tx_type)
388 {
389 /* see if we can keep the chain on one channel */
390 if (depend_tx &&
391 dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
392 return depend_tx->chan;
393 else if (likely(channel_table_initialized)) {
394 struct dma_chan_ref *ref;
395 int cpu = get_cpu();
396 ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
397 put_cpu();
398 return ref ? ref->chan : NULL;
399 } else
400 return NULL;
401 }
402 EXPORT_SYMBOL_GPL(__async_tx_find_channel);
403 #else
404 static int __init async_tx_init(void)
405 {
406 printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
407 return 0;
408 }
409
410 static void __exit async_tx_exit(void)
411 {
412 do { } while (0);
413 }
414 #endif
415
416
417 /**
418 * async_tx_channel_switch - queue an interrupt descriptor with a dependency
419 * pre-attached.
420 * @depend_tx: the operation that must finish before the new operation runs
421 * @tx: the new operation
422 */
423 static void
424 async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
425 struct dma_async_tx_descriptor *tx)
426 {
427 struct dma_chan *chan;
428 struct dma_device *device;
429 struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
430
431 /* first check to see if we can still append to depend_tx */
432 spin_lock_bh(&depend_tx->lock);
433 if (depend_tx->parent && depend_tx->chan == tx->chan) {
434 tx->parent = depend_tx;
435 depend_tx->next = tx;
436 intr_tx = NULL;
437 }
438 spin_unlock_bh(&depend_tx->lock);
439
440 if (!intr_tx)
441 return;
442
443 chan = depend_tx->chan;
444 device = chan->device;
445
446 /* see if we can schedule an interrupt
447 * otherwise poll for completion
448 */
449 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
450 intr_tx = device->device_prep_dma_interrupt(chan, 0);
451 else
452 intr_tx = NULL;
453
454 if (intr_tx) {
455 intr_tx->callback = NULL;
456 intr_tx->callback_param = NULL;
457 tx->parent = intr_tx;
458 /* safe to set ->next outside the lock since we know we are
459 * not submitted yet
460 */
461 intr_tx->next = tx;
462
463 /* check if we need to append */
464 spin_lock_bh(&depend_tx->lock);
465 if (depend_tx->parent) {
466 intr_tx->parent = depend_tx;
467 depend_tx->next = intr_tx;
468 async_tx_ack(intr_tx);
469 intr_tx = NULL;
470 }
471 spin_unlock_bh(&depend_tx->lock);
472
473 if (intr_tx) {
474 intr_tx->parent = NULL;
475 intr_tx->tx_submit(intr_tx);
476 async_tx_ack(intr_tx);
477 }
478 } else {
479 if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
480 panic("%s: DMA_ERROR waiting for depend_tx\n",
481 __func__);
482 tx->tx_submit(tx);
483 }
484 }
485
486
487 /**
488 * submit_disposition - while holding depend_tx->lock we must avoid submitting
489 * new operations to prevent a circular locking dependency with
490 * drivers that already hold a channel lock when calling
491 * async_tx_run_dependencies.
492 * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
493 * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
494 * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
495 */
496 enum submit_disposition {
497 ASYNC_TX_SUBMITTED,
498 ASYNC_TX_CHANNEL_SWITCH,
499 ASYNC_TX_DIRECT_SUBMIT,
500 };
501
502 void
503 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
504 enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
505 dma_async_tx_callback cb_fn, void *cb_param)
506 {
507 tx->callback = cb_fn;
508 tx->callback_param = cb_param;
509
510 if (depend_tx) {
511 enum submit_disposition s;
512
513 /* sanity check the dependency chain:
514 * 1/ if ack is already set then we cannot be sure
515 * we are referring to the correct operation
516 * 2/ dependencies are 1:1 i.e. two transactions can
517 * not depend on the same parent
518 */
519 BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
520 tx->parent);
521
522 /* the lock prevents async_tx_run_dependencies from missing
523 * the setting of ->next when ->parent != NULL
524 */
525 spin_lock_bh(&depend_tx->lock);
526 if (depend_tx->parent) {
527 /* we have a parent so we can not submit directly
528 * if we are staying on the same channel: append
529 * else: channel switch
530 */
531 if (depend_tx->chan == chan) {
532 tx->parent = depend_tx;
533 depend_tx->next = tx;
534 s = ASYNC_TX_SUBMITTED;
535 } else
536 s = ASYNC_TX_CHANNEL_SWITCH;
537 } else {
538 /* we do not have a parent so we may be able to submit
539 * directly if we are staying on the same channel
540 */
541 if (depend_tx->chan == chan)
542 s = ASYNC_TX_DIRECT_SUBMIT;
543 else
544 s = ASYNC_TX_CHANNEL_SWITCH;
545 }
546 spin_unlock_bh(&depend_tx->lock);
547
548 switch (s) {
549 case ASYNC_TX_SUBMITTED:
550 break;
551 case ASYNC_TX_CHANNEL_SWITCH:
552 async_tx_channel_switch(depend_tx, tx);
553 break;
554 case ASYNC_TX_DIRECT_SUBMIT:
555 tx->parent = NULL;
556 tx->tx_submit(tx);
557 break;
558 }
559 } else {
560 tx->parent = NULL;
561 tx->tx_submit(tx);
562 }
563
564 if (flags & ASYNC_TX_ACK)
565 async_tx_ack(tx);
566
567 if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
568 async_tx_ack(depend_tx);
569 }
570 EXPORT_SYMBOL_GPL(async_tx_submit);
571
572 /**
573 * async_trigger_callback - schedules the callback function to be run after
574 * any dependent operations have been completed.
575 * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
576 * @depend_tx: 'callback' requires the completion of this transaction
577 * @cb_fn: function to call after depend_tx completes
578 * @cb_param: parameter to pass to the callback routine
579 */
580 struct dma_async_tx_descriptor *
581 async_trigger_callback(enum async_tx_flags flags,
582 struct dma_async_tx_descriptor *depend_tx,
583 dma_async_tx_callback cb_fn, void *cb_param)
584 {
585 struct dma_chan *chan;
586 struct dma_device *device;
587 struct dma_async_tx_descriptor *tx;
588
589 if (depend_tx) {
590 chan = depend_tx->chan;
591 device = chan->device;
592
593 /* see if we can schedule an interrupt
594 * otherwise poll for completion
595 */
596 if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
597 device = NULL;
598
599 tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
600 } else
601 tx = NULL;
602
603 if (tx) {
604 pr_debug("%s: (async)\n", __func__);
605
606 async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
607 } else {
608 pr_debug("%s: (sync)\n", __func__);
609
610 /* wait for any prerequisite operations */
611 async_tx_quiesce(&depend_tx);
612
613 async_tx_sync_epilog(cb_fn, cb_param);
614 }
615
616 return tx;
617 }
618 EXPORT_SYMBOL_GPL(async_trigger_callback);
619
620 /**
621 * async_tx_quiesce - ensure tx is complete and freeable upon return
622 * @tx - transaction to quiesce
623 */
624 void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
625 {
626 if (*tx) {
627 /* if ack is already set then we cannot be sure
628 * we are referring to the correct operation
629 */
630 BUG_ON(async_tx_test_ack(*tx));
631 if (dma_wait_for_async_tx(*tx) == DMA_ERROR)
632 panic("DMA_ERROR waiting for transaction\n");
633 async_tx_ack(*tx);
634 *tx = NULL;
635 }
636 }
637 EXPORT_SYMBOL_GPL(async_tx_quiesce);
638
639 module_init(async_tx_init);
640 module_exit(async_tx_exit);
641
642 MODULE_AUTHOR("Intel Corporation");
643 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
644 MODULE_LICENSE("GPL");
This page took 0.123604 seconds and 5 git commands to generate.