ACPICA: Clear PM register write-only bits on reading
[deliverable/linux.git] / drivers / acpi / acpica / hwregs.c
1
2 /*******************************************************************************
3 *
4 * Module Name: hwregs - Read/write access functions for the various ACPI
5 * control and status registers.
6 *
7 ******************************************************************************/
8
9 /*
10 * Copyright (C) 2000 - 2008, Intel Corp.
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions, and the following disclaimer,
18 * without modification.
19 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
20 * substantially similar to the "NO WARRANTY" disclaimer below
21 * ("Disclaimer") and any redistribution must be conditioned upon
22 * including a substantially similar Disclaimer requirement for further
23 * binary redistribution.
24 * 3. Neither the names of the above-listed copyright holders nor the names
25 * of any contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * Alternatively, this software may be distributed under the terms of the
29 * GNU General Public License ("GPL") version 2 as published by the Free
30 * Software Foundation.
31 *
32 * NO WARRANTY
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
42 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43 * POSSIBILITY OF SUCH DAMAGES.
44 */
45
46 #include <acpi/acpi.h>
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acevents.h"
50
51 #define _COMPONENT ACPI_HARDWARE
52 ACPI_MODULE_NAME("hwregs")
53
54 /* Local Prototypes */
55 static acpi_status
56 acpi_hw_read_multiple(u32 *value,
57 struct acpi_generic_address *register_a,
58 struct acpi_generic_address *register_b);
59
60 static acpi_status
61 acpi_hw_write_multiple(u32 value,
62 struct acpi_generic_address *register_a,
63 struct acpi_generic_address *register_b);
64
65 /*******************************************************************************
66 *
67 * FUNCTION: acpi_hw_clear_acpi_status
68 *
69 * PARAMETERS: None
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Clears all fixed and general purpose status bits
74 *
75 ******************************************************************************/
76
77 acpi_status acpi_hw_clear_acpi_status(void)
78 {
79 acpi_status status;
80 acpi_cpu_flags lock_flags = 0;
81
82 ACPI_FUNCTION_TRACE(hw_clear_acpi_status);
83
84 ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %0llX\n",
85 ACPI_BITMASK_ALL_FIXED_STATUS,
86 acpi_gbl_xpm1a_status.address));
87
88 lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
89
90 /* Clear the fixed events in PM1 A/B */
91
92 status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
93 ACPI_BITMASK_ALL_FIXED_STATUS);
94 if (ACPI_FAILURE(status)) {
95 goto unlock_and_exit;
96 }
97
98 /* Clear the GPE Bits in all GPE registers in all GPE blocks */
99
100 status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block, NULL);
101
102 unlock_and_exit:
103 acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
104 return_ACPI_STATUS(status);
105 }
106
107 /*******************************************************************************
108 *
109 * FUNCTION: acpi_hw_get_register_bit_mask
110 *
111 * PARAMETERS: register_id - Index of ACPI Register to access
112 *
113 * RETURN: The bitmask to be used when accessing the register
114 *
115 * DESCRIPTION: Map register_id into a register bitmask.
116 *
117 ******************************************************************************/
118
119 struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id)
120 {
121 ACPI_FUNCTION_ENTRY();
122
123 if (register_id > ACPI_BITREG_MAX) {
124 ACPI_ERROR((AE_INFO, "Invalid BitRegister ID: %X",
125 register_id));
126 return (NULL);
127 }
128
129 return (&acpi_gbl_bit_register_info[register_id]);
130 }
131
132 /******************************************************************************
133 *
134 * FUNCTION: acpi_hw_write_pm1_control
135 *
136 * PARAMETERS: pm1a_control - Value to be written to PM1A control
137 * pm1b_control - Value to be written to PM1B control
138 *
139 * RETURN: Status
140 *
141 * DESCRIPTION: Write the PM1 A/B control registers. These registers are
142 * different than than the PM1 A/B status and enable registers
143 * in that different values can be written to the A/B registers.
144 * Most notably, the SLP_TYP bits can be different, as per the
145 * values returned from the _Sx predefined methods.
146 *
147 ******************************************************************************/
148
149 acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control)
150 {
151 acpi_status status;
152
153 ACPI_FUNCTION_TRACE(hw_write_pm1_control);
154
155 status = acpi_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block);
156 if (ACPI_FAILURE(status)) {
157 return_ACPI_STATUS(status);
158 }
159
160 if (acpi_gbl_FADT.xpm1b_control_block.address) {
161 status =
162 acpi_write(pm1b_control,
163 &acpi_gbl_FADT.xpm1b_control_block);
164 }
165 return_ACPI_STATUS(status);
166 }
167
168 /******************************************************************************
169 *
170 * FUNCTION: acpi_hw_register_read
171 *
172 * PARAMETERS: register_id - ACPI Register ID
173 * return_value - Where the register value is returned
174 *
175 * RETURN: Status and the value read.
176 *
177 * DESCRIPTION: Read from the specified ACPI register
178 *
179 ******************************************************************************/
180 acpi_status
181 acpi_hw_register_read(u32 register_id, u32 * return_value)
182 {
183 u32 value = 0;
184 acpi_status status;
185
186 ACPI_FUNCTION_TRACE(hw_register_read);
187
188 switch (register_id) {
189 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
190
191 status = acpi_hw_read_multiple(&value,
192 &acpi_gbl_xpm1a_status,
193 &acpi_gbl_xpm1b_status);
194 break;
195
196 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */
197
198 status = acpi_hw_read_multiple(&value,
199 &acpi_gbl_xpm1a_enable,
200 &acpi_gbl_xpm1b_enable);
201 break;
202
203 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
204
205 status = acpi_hw_read_multiple(&value,
206 &acpi_gbl_FADT.
207 xpm1a_control_block,
208 &acpi_gbl_FADT.
209 xpm1b_control_block);
210
211 /*
212 * Zero the write-only bits. From the ACPI specification, "Hardware
213 * Write-Only Bits": "Upon reads to registers with write-only bits,
214 * software masks out all write-only bits."
215 */
216 value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS;
217 break;
218
219 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
220
221 status = acpi_read(&value, &acpi_gbl_FADT.xpm2_control_block);
222 break;
223
224 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
225
226 status = acpi_read(&value, &acpi_gbl_FADT.xpm_timer_block);
227 break;
228
229 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
230
231 status =
232 acpi_hw_read_port(acpi_gbl_FADT.smi_command, &value, 8);
233 break;
234
235 default:
236 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
237 status = AE_BAD_PARAMETER;
238 break;
239 }
240
241 if (ACPI_SUCCESS(status)) {
242 *return_value = value;
243 }
244
245 return_ACPI_STATUS(status);
246 }
247
248 /******************************************************************************
249 *
250 * FUNCTION: acpi_hw_register_write
251 *
252 * PARAMETERS: register_id - ACPI Register ID
253 * Value - The value to write
254 *
255 * RETURN: Status
256 *
257 * DESCRIPTION: Write to the specified ACPI register
258 *
259 * NOTE: In accordance with the ACPI specification, this function automatically
260 * preserves the value of the following bits, meaning that these bits cannot be
261 * changed via this interface:
262 *
263 * PM1_CONTROL[0] = SCI_EN
264 * PM1_CONTROL[9]
265 * PM1_STATUS[11]
266 *
267 * ACPI References:
268 * 1) Hardware Ignored Bits: When software writes to a register with ignored
269 * bit fields, it preserves the ignored bit fields
270 * 2) SCI_EN: OSPM always preserves this bit position
271 *
272 ******************************************************************************/
273
274 acpi_status acpi_hw_register_write(u32 register_id, u32 value)
275 {
276 acpi_status status;
277 u32 read_value;
278
279 ACPI_FUNCTION_TRACE(hw_register_write);
280
281 switch (register_id) {
282 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
283 /*
284 * Handle the "ignored" bit in PM1 Status. According to the ACPI
285 * specification, ignored bits are to be preserved when writing.
286 * Normally, this would mean a read/modify/write sequence. However,
287 * preserving a bit in the status register is different. Writing a
288 * one clears the status, and writing a zero preserves the status.
289 * Therefore, we must always write zero to the ignored bit.
290 *
291 * This behavior is clarified in the ACPI 4.0 specification.
292 */
293 value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;
294
295 status = acpi_hw_write_multiple(value,
296 &acpi_gbl_xpm1a_status,
297 &acpi_gbl_xpm1b_status);
298 break;
299
300 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access */
301
302 status = acpi_hw_write_multiple(value,
303 &acpi_gbl_xpm1a_enable,
304 &acpi_gbl_xpm1b_enable);
305 break;
306
307 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
308
309 /*
310 * Perform a read first to preserve certain bits (per ACPI spec)
311 * Note: This includes SCI_EN, we never want to change this bit
312 */
313 status = acpi_hw_read_multiple(&read_value,
314 &acpi_gbl_FADT.
315 xpm1a_control_block,
316 &acpi_gbl_FADT.
317 xpm1b_control_block);
318 if (ACPI_FAILURE(status)) {
319 goto exit;
320 }
321
322 /* Insert the bits to be preserved */
323
324 ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS,
325 read_value);
326
327 /* Now we can write the data */
328
329 status = acpi_hw_write_multiple(value,
330 &acpi_gbl_FADT.
331 xpm1a_control_block,
332 &acpi_gbl_FADT.
333 xpm1b_control_block);
334 break;
335
336 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
337
338 /*
339 * For control registers, all reserved bits must be preserved,
340 * as per the ACPI spec.
341 */
342 status =
343 acpi_read(&read_value, &acpi_gbl_FADT.xpm2_control_block);
344 if (ACPI_FAILURE(status)) {
345 goto exit;
346 }
347
348 /* Insert the bits to be preserved */
349
350 ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS,
351 read_value);
352
353 status = acpi_write(value, &acpi_gbl_FADT.xpm2_control_block);
354 break;
355
356 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
357
358 status = acpi_write(value, &acpi_gbl_FADT.xpm_timer_block);
359 break;
360
361 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
362
363 /* SMI_CMD is currently always in IO space */
364
365 status =
366 acpi_hw_write_port(acpi_gbl_FADT.smi_command, value, 8);
367 break;
368
369 default:
370 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
371 status = AE_BAD_PARAMETER;
372 break;
373 }
374
375 exit:
376 return_ACPI_STATUS(status);
377 }
378
379 /******************************************************************************
380 *
381 * FUNCTION: acpi_hw_read_multiple
382 *
383 * PARAMETERS: Value - Where the register value is returned
384 * register_a - First ACPI register (required)
385 * register_b - Second ACPI register (optional)
386 *
387 * RETURN: Status
388 *
389 * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B)
390 *
391 ******************************************************************************/
392
393 static acpi_status
394 acpi_hw_read_multiple(u32 *value,
395 struct acpi_generic_address *register_a,
396 struct acpi_generic_address *register_b)
397 {
398 u32 value_a = 0;
399 u32 value_b = 0;
400 acpi_status status;
401
402 /* The first register is always required */
403
404 status = acpi_read(&value_a, register_a);
405 if (ACPI_FAILURE(status)) {
406 return (status);
407 }
408
409 /* Second register is optional */
410
411 if (register_b->address) {
412 status = acpi_read(&value_b, register_b);
413 if (ACPI_FAILURE(status)) {
414 return (status);
415 }
416 }
417
418 /*
419 * OR the two return values together. No shifting or masking is necessary,
420 * because of how the PM1 registers are defined in the ACPI specification:
421 *
422 * "Although the bits can be split between the two register blocks (each
423 * register block has a unique pointer within the FADT), the bit positions
424 * are maintained. The register block with unimplemented bits (that is,
425 * those implemented in the other register block) always returns zeros,
426 * and writes have no side effects"
427 */
428 *value = (value_a | value_b);
429 return (AE_OK);
430 }
431
432 /******************************************************************************
433 *
434 * FUNCTION: acpi_hw_write_multiple
435 *
436 * PARAMETERS: Value - The value to write
437 * register_a - First ACPI register (required)
438 * register_b - Second ACPI register (optional)
439 *
440 * RETURN: Status
441 *
442 * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B)
443 *
444 ******************************************************************************/
445
446 static acpi_status
447 acpi_hw_write_multiple(u32 value,
448 struct acpi_generic_address *register_a,
449 struct acpi_generic_address *register_b)
450 {
451 acpi_status status;
452
453 /* The first register is always required */
454
455 status = acpi_write(value, register_a);
456 if (ACPI_FAILURE(status)) {
457 return (status);
458 }
459
460 /*
461 * Second register is optional
462 *
463 * No bit shifting or clearing is necessary, because of how the PM1
464 * registers are defined in the ACPI specification:
465 *
466 * "Although the bits can be split between the two register blocks (each
467 * register block has a unique pointer within the FADT), the bit positions
468 * are maintained. The register block with unimplemented bits (that is,
469 * those implemented in the other register block) always returns zeros,
470 * and writes have no side effects"
471 */
472 if (register_b->address) {
473 status = acpi_write(value, register_b);
474 }
475
476 return (status);
477 }
This page took 0.052804 seconds and 5 git commands to generate.