tcp: initialize rcv_tstamp for restored sockets
[deliverable/linux.git] / drivers / acpi / device_pm.c
1 /*
2 * drivers/acpi/device_pm.c - ACPI device power management routines.
3 *
4 * Copyright (C) 2012, Intel Corp.
5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 */
24
25 #include <linux/device.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/pm_qos.h>
29 #include <linux/pm_runtime.h>
30
31 #include <acpi/acpi.h>
32 #include <acpi/acpi_bus.h>
33 #include <acpi/acpi_drivers.h>
34
35 #include "internal.h"
36
37 #define _COMPONENT ACPI_POWER_COMPONENT
38 ACPI_MODULE_NAME("device_pm");
39
40 /**
41 * acpi_power_state_string - String representation of ACPI device power state.
42 * @state: ACPI device power state to return the string representation of.
43 */
44 const char *acpi_power_state_string(int state)
45 {
46 switch (state) {
47 case ACPI_STATE_D0:
48 return "D0";
49 case ACPI_STATE_D1:
50 return "D1";
51 case ACPI_STATE_D2:
52 return "D2";
53 case ACPI_STATE_D3_HOT:
54 return "D3hot";
55 case ACPI_STATE_D3_COLD:
56 return "D3cold";
57 default:
58 return "(unknown)";
59 }
60 }
61
62 /**
63 * acpi_device_get_power - Get power state of an ACPI device.
64 * @device: Device to get the power state of.
65 * @state: Place to store the power state of the device.
66 *
67 * This function does not update the device's power.state field, but it may
68 * update its parent's power.state field (when the parent's power state is
69 * unknown and the device's power state turns out to be D0).
70 */
71 int acpi_device_get_power(struct acpi_device *device, int *state)
72 {
73 int result = ACPI_STATE_UNKNOWN;
74
75 if (!device || !state)
76 return -EINVAL;
77
78 if (!device->flags.power_manageable) {
79 /* TBD: Non-recursive algorithm for walking up hierarchy. */
80 *state = device->parent ?
81 device->parent->power.state : ACPI_STATE_D0;
82 goto out;
83 }
84
85 /*
86 * Get the device's power state from power resources settings and _PSC,
87 * if available.
88 */
89 if (device->power.flags.power_resources) {
90 int error = acpi_power_get_inferred_state(device, &result);
91 if (error)
92 return error;
93 }
94 if (device->power.flags.explicit_get) {
95 acpi_handle handle = device->handle;
96 unsigned long long psc;
97 acpi_status status;
98
99 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
100 if (ACPI_FAILURE(status))
101 return -ENODEV;
102
103 /*
104 * The power resources settings may indicate a power state
105 * shallower than the actual power state of the device.
106 *
107 * Moreover, on systems predating ACPI 4.0, if the device
108 * doesn't depend on any power resources and _PSC returns 3,
109 * that means "power off". We need to maintain compatibility
110 * with those systems.
111 */
112 if (psc > result && psc < ACPI_STATE_D3_COLD)
113 result = psc;
114 else if (result == ACPI_STATE_UNKNOWN)
115 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc;
116 }
117
118 /*
119 * If we were unsure about the device parent's power state up to this
120 * point, the fact that the device is in D0 implies that the parent has
121 * to be in D0 too.
122 */
123 if (device->parent && device->parent->power.state == ACPI_STATE_UNKNOWN
124 && result == ACPI_STATE_D0)
125 device->parent->power.state = ACPI_STATE_D0;
126
127 *state = result;
128
129 out:
130 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
131 device->pnp.bus_id, acpi_power_state_string(*state)));
132
133 return 0;
134 }
135
136 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
137 {
138 if (adev->power.states[state].flags.explicit_set) {
139 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
140 acpi_status status;
141
142 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
143 if (ACPI_FAILURE(status))
144 return -ENODEV;
145 }
146 return 0;
147 }
148
149 /**
150 * acpi_device_set_power - Set power state of an ACPI device.
151 * @device: Device to set the power state of.
152 * @state: New power state to set.
153 *
154 * Callers must ensure that the device is power manageable before using this
155 * function.
156 */
157 int acpi_device_set_power(struct acpi_device *device, int state)
158 {
159 int result = 0;
160 bool cut_power = false;
161
162 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
163 return -EINVAL;
164
165 /* Make sure this is a valid target state */
166
167 if (state == device->power.state) {
168 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device is already at %s\n",
169 acpi_power_state_string(state)));
170 return 0;
171 }
172
173 if (!device->power.states[state].flags.valid) {
174 printk(KERN_WARNING PREFIX "Device does not support %s\n",
175 acpi_power_state_string(state));
176 return -ENODEV;
177 }
178 if (device->parent && (state < device->parent->power.state)) {
179 printk(KERN_WARNING PREFIX
180 "Cannot set device to a higher-powered"
181 " state than parent\n");
182 return -ENODEV;
183 }
184
185 /* For D3cold we should first transition into D3hot. */
186 if (state == ACPI_STATE_D3_COLD
187 && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) {
188 state = ACPI_STATE_D3_HOT;
189 cut_power = true;
190 }
191
192 if (state < device->power.state && state != ACPI_STATE_D0
193 && device->power.state >= ACPI_STATE_D3_HOT) {
194 printk(KERN_WARNING PREFIX
195 "Cannot transition to non-D0 state from D3\n");
196 return -ENODEV;
197 }
198
199 /*
200 * Transition Power
201 * ----------------
202 * In accordance with the ACPI specification first apply power (via
203 * power resources) and then evalute _PSx.
204 */
205 if (device->power.flags.power_resources) {
206 result = acpi_power_transition(device, state);
207 if (result)
208 goto end;
209 }
210 result = acpi_dev_pm_explicit_set(device, state);
211 if (result)
212 goto end;
213
214 if (cut_power) {
215 device->power.state = state;
216 state = ACPI_STATE_D3_COLD;
217 result = acpi_power_transition(device, state);
218 }
219
220 end:
221 if (result) {
222 printk(KERN_WARNING PREFIX
223 "Device [%s] failed to transition to %s\n",
224 device->pnp.bus_id,
225 acpi_power_state_string(state));
226 } else {
227 device->power.state = state;
228 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
229 "Device [%s] transitioned to %s\n",
230 device->pnp.bus_id,
231 acpi_power_state_string(state)));
232 }
233
234 return result;
235 }
236 EXPORT_SYMBOL(acpi_device_set_power);
237
238 int acpi_bus_set_power(acpi_handle handle, int state)
239 {
240 struct acpi_device *device;
241 int result;
242
243 result = acpi_bus_get_device(handle, &device);
244 if (result)
245 return result;
246
247 if (!device->flags.power_manageable) {
248 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
249 "Device [%s] is not power manageable\n",
250 dev_name(&device->dev)));
251 return -ENODEV;
252 }
253
254 return acpi_device_set_power(device, state);
255 }
256 EXPORT_SYMBOL(acpi_bus_set_power);
257
258 int acpi_bus_init_power(struct acpi_device *device)
259 {
260 int state;
261 int result;
262
263 if (!device)
264 return -EINVAL;
265
266 device->power.state = ACPI_STATE_UNKNOWN;
267
268 result = acpi_device_get_power(device, &state);
269 if (result)
270 return result;
271
272 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
273 result = acpi_power_on_resources(device, state);
274 if (result)
275 return result;
276
277 result = acpi_dev_pm_explicit_set(device, state);
278 if (result)
279 return result;
280 } else if (state == ACPI_STATE_UNKNOWN) {
281 /*
282 * No power resources and missing _PSC? Cross fingers and make
283 * it D0 in hope that this is what the BIOS put the device into.
284 * [We tried to force D0 here by executing _PS0, but that broke
285 * Toshiba P870-303 in a nasty way.]
286 */
287 state = ACPI_STATE_D0;
288 }
289 device->power.state = state;
290 return 0;
291 }
292
293 /**
294 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
295 * @device: Device object whose power state is to be fixed up.
296 *
297 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
298 * are assumed to be put into D0 by the BIOS. However, in some cases that may
299 * not be the case and this function should be used then.
300 */
301 int acpi_device_fix_up_power(struct acpi_device *device)
302 {
303 int ret = 0;
304
305 if (!device->power.flags.power_resources
306 && !device->power.flags.explicit_get
307 && device->power.state == ACPI_STATE_D0)
308 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
309
310 return ret;
311 }
312
313 int acpi_bus_update_power(acpi_handle handle, int *state_p)
314 {
315 struct acpi_device *device;
316 int state;
317 int result;
318
319 result = acpi_bus_get_device(handle, &device);
320 if (result)
321 return result;
322
323 result = acpi_device_get_power(device, &state);
324 if (result)
325 return result;
326
327 if (state == ACPI_STATE_UNKNOWN) {
328 state = ACPI_STATE_D0;
329 result = acpi_device_set_power(device, state);
330 if (result)
331 return result;
332 } else {
333 if (device->power.flags.power_resources) {
334 /*
335 * We don't need to really switch the state, bu we need
336 * to update the power resources' reference counters.
337 */
338 result = acpi_power_transition(device, state);
339 if (result)
340 return result;
341 }
342 device->power.state = state;
343 }
344 if (state_p)
345 *state_p = state;
346
347 return 0;
348 }
349 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
350
351 bool acpi_bus_power_manageable(acpi_handle handle)
352 {
353 struct acpi_device *device;
354 int result;
355
356 result = acpi_bus_get_device(handle, &device);
357 return result ? false : device->flags.power_manageable;
358 }
359 EXPORT_SYMBOL(acpi_bus_power_manageable);
360
361 #ifdef CONFIG_PM
362 static DEFINE_MUTEX(acpi_pm_notifier_lock);
363
364 /**
365 * acpi_add_pm_notifier - Register PM notifier for given ACPI device.
366 * @adev: ACPI device to add the notifier for.
367 * @context: Context information to pass to the notifier routine.
368 *
369 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
370 * PM wakeup events. For example, wakeup events may be generated for bridges
371 * if one of the devices below the bridge is signaling wakeup, even if the
372 * bridge itself doesn't have a wakeup GPE associated with it.
373 */
374 acpi_status acpi_add_pm_notifier(struct acpi_device *adev,
375 acpi_notify_handler handler, void *context)
376 {
377 acpi_status status = AE_ALREADY_EXISTS;
378
379 mutex_lock(&acpi_pm_notifier_lock);
380
381 if (adev->wakeup.flags.notifier_present)
382 goto out;
383
384 status = acpi_install_notify_handler(adev->handle,
385 ACPI_SYSTEM_NOTIFY,
386 handler, context);
387 if (ACPI_FAILURE(status))
388 goto out;
389
390 adev->wakeup.flags.notifier_present = true;
391
392 out:
393 mutex_unlock(&acpi_pm_notifier_lock);
394 return status;
395 }
396
397 /**
398 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
399 * @adev: ACPI device to remove the notifier from.
400 */
401 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev,
402 acpi_notify_handler handler)
403 {
404 acpi_status status = AE_BAD_PARAMETER;
405
406 mutex_lock(&acpi_pm_notifier_lock);
407
408 if (!adev->wakeup.flags.notifier_present)
409 goto out;
410
411 status = acpi_remove_notify_handler(adev->handle,
412 ACPI_SYSTEM_NOTIFY,
413 handler);
414 if (ACPI_FAILURE(status))
415 goto out;
416
417 adev->wakeup.flags.notifier_present = false;
418
419 out:
420 mutex_unlock(&acpi_pm_notifier_lock);
421 return status;
422 }
423
424 bool acpi_bus_can_wakeup(acpi_handle handle)
425 {
426 struct acpi_device *device;
427 int result;
428
429 result = acpi_bus_get_device(handle, &device);
430 return result ? false : device->wakeup.flags.valid;
431 }
432 EXPORT_SYMBOL(acpi_bus_can_wakeup);
433
434 /**
435 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
436 * @dev: Device whose preferred target power state to return.
437 * @adev: ACPI device node corresponding to @dev.
438 * @target_state: System state to match the resultant device state.
439 * @d_min_p: Location to store the highest power state available to the device.
440 * @d_max_p: Location to store the lowest power state available to the device.
441 *
442 * Find the lowest power (highest number) and highest power (lowest number) ACPI
443 * device power states that the device can be in while the system is in the
444 * state represented by @target_state. Store the integer numbers representing
445 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
446 * respectively.
447 *
448 * Callers must ensure that @dev and @adev are valid pointers and that @adev
449 * actually corresponds to @dev before using this function.
450 *
451 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
452 * returns a value that doesn't make sense. The memory locations pointed to by
453 * @d_max_p and @d_min_p are only modified on success.
454 */
455 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
456 u32 target_state, int *d_min_p, int *d_max_p)
457 {
458 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
459 acpi_handle handle = adev->handle;
460 unsigned long long ret;
461 int d_min, d_max;
462 bool wakeup = false;
463 acpi_status status;
464
465 /*
466 * If the system state is S0, the lowest power state the device can be
467 * in is D3cold, unless the device has _S0W and is supposed to signal
468 * wakeup, in which case the return value of _S0W has to be used as the
469 * lowest power state available to the device.
470 */
471 d_min = ACPI_STATE_D0;
472 d_max = ACPI_STATE_D3_COLD;
473
474 /*
475 * If present, _SxD methods return the minimum D-state (highest power
476 * state) we can use for the corresponding S-states. Otherwise, the
477 * minimum D-state is D0 (ACPI 3.x).
478 */
479 if (target_state > ACPI_STATE_S0) {
480 /*
481 * We rely on acpi_evaluate_integer() not clobbering the integer
482 * provided if AE_NOT_FOUND is returned.
483 */
484 ret = d_min;
485 status = acpi_evaluate_integer(handle, method, NULL, &ret);
486 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
487 || ret > ACPI_STATE_D3_COLD)
488 return -ENODATA;
489
490 /*
491 * We need to handle legacy systems where D3hot and D3cold are
492 * the same and 3 is returned in both cases, so fall back to
493 * D3cold if D3hot is not a valid state.
494 */
495 if (!adev->power.states[ret].flags.valid) {
496 if (ret == ACPI_STATE_D3_HOT)
497 ret = ACPI_STATE_D3_COLD;
498 else
499 return -ENODATA;
500 }
501 d_min = ret;
502 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
503 && adev->wakeup.sleep_state >= target_state;
504 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
505 PM_QOS_FLAGS_NONE) {
506 wakeup = adev->wakeup.flags.valid;
507 }
508
509 /*
510 * If _PRW says we can wake up the system from the target sleep state,
511 * the D-state returned by _SxD is sufficient for that (we assume a
512 * wakeup-aware driver if wake is set). Still, if _SxW exists
513 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
514 * can wake the system. _S0W may be valid, too.
515 */
516 if (wakeup) {
517 method[3] = 'W';
518 status = acpi_evaluate_integer(handle, method, NULL, &ret);
519 if (status == AE_NOT_FOUND) {
520 if (target_state > ACPI_STATE_S0)
521 d_max = d_min;
522 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
523 /* Fall back to D3cold if ret is not a valid state. */
524 if (!adev->power.states[ret].flags.valid)
525 ret = ACPI_STATE_D3_COLD;
526
527 d_max = ret > d_min ? ret : d_min;
528 } else {
529 return -ENODATA;
530 }
531 }
532
533 if (d_min_p)
534 *d_min_p = d_min;
535
536 if (d_max_p)
537 *d_max_p = d_max;
538
539 return 0;
540 }
541
542 /**
543 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
544 * @dev: Device whose preferred target power state to return.
545 * @d_min_p: Location to store the upper limit of the allowed states range.
546 * @d_max_in: Deepest low-power state to take into consideration.
547 * Return value: Preferred power state of the device on success, -ENODEV
548 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
549 * incorrect, or -ENODATA on ACPI method failure.
550 *
551 * The caller must ensure that @dev is valid before using this function.
552 */
553 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
554 {
555 acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
556 struct acpi_device *adev;
557 int ret, d_min, d_max;
558
559 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
560 return -EINVAL;
561
562 if (d_max_in > ACPI_STATE_D3_HOT) {
563 enum pm_qos_flags_status stat;
564
565 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
566 if (stat == PM_QOS_FLAGS_ALL)
567 d_max_in = ACPI_STATE_D3_HOT;
568 }
569
570 if (!handle || acpi_bus_get_device(handle, &adev)) {
571 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__);
572 return -ENODEV;
573 }
574
575 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
576 &d_min, &d_max);
577 if (ret)
578 return ret;
579
580 if (d_max_in < d_min)
581 return -EINVAL;
582
583 if (d_max > d_max_in) {
584 for (d_max = d_max_in; d_max > d_min; d_max--) {
585 if (adev->power.states[d_max].flags.valid)
586 break;
587 }
588 }
589
590 if (d_min_p)
591 *d_min_p = d_min;
592
593 return d_max;
594 }
595 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
596
597 #ifdef CONFIG_PM_RUNTIME
598 /**
599 * acpi_wakeup_device - Wakeup notification handler for ACPI devices.
600 * @handle: ACPI handle of the device the notification is for.
601 * @event: Type of the signaled event.
602 * @context: Device corresponding to @handle.
603 */
604 static void acpi_wakeup_device(acpi_handle handle, u32 event, void *context)
605 {
606 struct device *dev = context;
607
608 if (event == ACPI_NOTIFY_DEVICE_WAKE && dev) {
609 pm_wakeup_event(dev, 0);
610 pm_runtime_resume(dev);
611 }
612 }
613
614 /**
615 * __acpi_device_run_wake - Enable/disable runtime remote wakeup for device.
616 * @adev: ACPI device to enable/disable the remote wakeup for.
617 * @enable: Whether to enable or disable the wakeup functionality.
618 *
619 * Enable/disable the GPE associated with @adev so that it can generate
620 * wakeup signals for the device in response to external (remote) events and
621 * enable/disable device wakeup power.
622 *
623 * Callers must ensure that @adev is a valid ACPI device node before executing
624 * this function.
625 */
626 int __acpi_device_run_wake(struct acpi_device *adev, bool enable)
627 {
628 struct acpi_device_wakeup *wakeup = &adev->wakeup;
629
630 if (enable) {
631 acpi_status res;
632 int error;
633
634 error = acpi_enable_wakeup_device_power(adev, ACPI_STATE_S0);
635 if (error)
636 return error;
637
638 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
639 if (ACPI_FAILURE(res)) {
640 acpi_disable_wakeup_device_power(adev);
641 return -EIO;
642 }
643 } else {
644 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
645 acpi_disable_wakeup_device_power(adev);
646 }
647 return 0;
648 }
649
650 /**
651 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
652 * @dev: Device to enable/disable the platform to wake up.
653 * @enable: Whether to enable or disable the wakeup functionality.
654 */
655 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
656 {
657 struct acpi_device *adev;
658 acpi_handle handle;
659
660 if (!device_run_wake(phys_dev))
661 return -EINVAL;
662
663 handle = DEVICE_ACPI_HANDLE(phys_dev);
664 if (!handle || acpi_bus_get_device(handle, &adev)) {
665 dev_dbg(phys_dev, "ACPI handle without context in %s!\n",
666 __func__);
667 return -ENODEV;
668 }
669
670 return __acpi_device_run_wake(adev, enable);
671 }
672 EXPORT_SYMBOL(acpi_pm_device_run_wake);
673 #else
674 static inline void acpi_wakeup_device(acpi_handle handle, u32 event,
675 void *context) {}
676 #endif /* CONFIG_PM_RUNTIME */
677
678 #ifdef CONFIG_PM_SLEEP
679 /**
680 * __acpi_device_sleep_wake - Enable or disable device to wake up the system.
681 * @dev: Device to enable/desible to wake up the system.
682 * @target_state: System state the device is supposed to wake up from.
683 * @enable: Whether to enable or disable @dev to wake up the system.
684 */
685 int __acpi_device_sleep_wake(struct acpi_device *adev, u32 target_state,
686 bool enable)
687 {
688 return enable ?
689 acpi_enable_wakeup_device_power(adev, target_state) :
690 acpi_disable_wakeup_device_power(adev);
691 }
692
693 /**
694 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
695 * @dev: Device to enable/desible to wake up the system from sleep states.
696 * @enable: Whether to enable or disable @dev to wake up the system.
697 */
698 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
699 {
700 acpi_handle handle;
701 struct acpi_device *adev;
702 int error;
703
704 if (!device_can_wakeup(dev))
705 return -EINVAL;
706
707 handle = DEVICE_ACPI_HANDLE(dev);
708 if (!handle || acpi_bus_get_device(handle, &adev)) {
709 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__);
710 return -ENODEV;
711 }
712
713 error = __acpi_device_sleep_wake(adev, acpi_target_system_state(),
714 enable);
715 if (!error)
716 dev_info(dev, "System wakeup %s by ACPI\n",
717 enable ? "enabled" : "disabled");
718
719 return error;
720 }
721 #endif /* CONFIG_PM_SLEEP */
722
723 /**
724 * acpi_dev_pm_get_node - Get ACPI device node for the given physical device.
725 * @dev: Device to get the ACPI node for.
726 */
727 struct acpi_device *acpi_dev_pm_get_node(struct device *dev)
728 {
729 acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
730 struct acpi_device *adev;
731
732 return handle && !acpi_bus_get_device(handle, &adev) ? adev : NULL;
733 }
734
735 /**
736 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
737 * @dev: Device to put into a low-power state.
738 * @adev: ACPI device node corresponding to @dev.
739 * @system_state: System state to choose the device state for.
740 */
741 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
742 u32 system_state)
743 {
744 int ret, state;
745
746 if (!acpi_device_power_manageable(adev))
747 return 0;
748
749 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
750 return ret ? ret : acpi_device_set_power(adev, state);
751 }
752
753 /**
754 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
755 * @adev: ACPI device node to put into the full-power state.
756 */
757 static int acpi_dev_pm_full_power(struct acpi_device *adev)
758 {
759 return acpi_device_power_manageable(adev) ?
760 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
761 }
762
763 #ifdef CONFIG_PM_RUNTIME
764 /**
765 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
766 * @dev: Device to put into a low-power state.
767 *
768 * Put the given device into a runtime low-power state using the standard ACPI
769 * mechanism. Set up remote wakeup if desired, choose the state to put the
770 * device into (this checks if remote wakeup is expected to work too), and set
771 * the power state of the device.
772 */
773 int acpi_dev_runtime_suspend(struct device *dev)
774 {
775 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
776 bool remote_wakeup;
777 int error;
778
779 if (!adev)
780 return 0;
781
782 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
783 PM_QOS_FLAGS_NONE;
784 error = __acpi_device_run_wake(adev, remote_wakeup);
785 if (remote_wakeup && error)
786 return -EAGAIN;
787
788 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
789 if (error)
790 __acpi_device_run_wake(adev, false);
791
792 return error;
793 }
794 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
795
796 /**
797 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
798 * @dev: Device to put into the full-power state.
799 *
800 * Put the given device into the full-power state using the standard ACPI
801 * mechanism at run time. Set the power state of the device to ACPI D0 and
802 * disable remote wakeup.
803 */
804 int acpi_dev_runtime_resume(struct device *dev)
805 {
806 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
807 int error;
808
809 if (!adev)
810 return 0;
811
812 error = acpi_dev_pm_full_power(adev);
813 __acpi_device_run_wake(adev, false);
814 return error;
815 }
816 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
817
818 /**
819 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
820 * @dev: Device to suspend.
821 *
822 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
823 * it into a runtime low-power state.
824 */
825 int acpi_subsys_runtime_suspend(struct device *dev)
826 {
827 int ret = pm_generic_runtime_suspend(dev);
828 return ret ? ret : acpi_dev_runtime_suspend(dev);
829 }
830 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
831
832 /**
833 * acpi_subsys_runtime_resume - Resume device using ACPI.
834 * @dev: Device to Resume.
835 *
836 * Use ACPI to put the given device into the full-power state and carry out the
837 * generic runtime resume procedure for it.
838 */
839 int acpi_subsys_runtime_resume(struct device *dev)
840 {
841 int ret = acpi_dev_runtime_resume(dev);
842 return ret ? ret : pm_generic_runtime_resume(dev);
843 }
844 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
845 #endif /* CONFIG_PM_RUNTIME */
846
847 #ifdef CONFIG_PM_SLEEP
848 /**
849 * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
850 * @dev: Device to put into a low-power state.
851 *
852 * Put the given device into a low-power state during system transition to a
853 * sleep state using the standard ACPI mechanism. Set up system wakeup if
854 * desired, choose the state to put the device into (this checks if system
855 * wakeup is expected to work too), and set the power state of the device.
856 */
857 int acpi_dev_suspend_late(struct device *dev)
858 {
859 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
860 u32 target_state;
861 bool wakeup;
862 int error;
863
864 if (!adev)
865 return 0;
866
867 target_state = acpi_target_system_state();
868 wakeup = device_may_wakeup(dev);
869 error = __acpi_device_sleep_wake(adev, target_state, wakeup);
870 if (wakeup && error)
871 return error;
872
873 error = acpi_dev_pm_low_power(dev, adev, target_state);
874 if (error)
875 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false);
876
877 return error;
878 }
879 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
880
881 /**
882 * acpi_dev_resume_early - Put device into the full-power state using ACPI.
883 * @dev: Device to put into the full-power state.
884 *
885 * Put the given device into the full-power state using the standard ACPI
886 * mechanism during system transition to the working state. Set the power
887 * state of the device to ACPI D0 and disable remote wakeup.
888 */
889 int acpi_dev_resume_early(struct device *dev)
890 {
891 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
892 int error;
893
894 if (!adev)
895 return 0;
896
897 error = acpi_dev_pm_full_power(adev);
898 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false);
899 return error;
900 }
901 EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
902
903 /**
904 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
905 * @dev: Device to prepare.
906 */
907 int acpi_subsys_prepare(struct device *dev)
908 {
909 /*
910 * Follow PCI and resume devices suspended at run time before running
911 * their system suspend callbacks.
912 */
913 pm_runtime_resume(dev);
914 return pm_generic_prepare(dev);
915 }
916 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
917
918 /**
919 * acpi_subsys_suspend_late - Suspend device using ACPI.
920 * @dev: Device to suspend.
921 *
922 * Carry out the generic late suspend procedure for @dev and use ACPI to put
923 * it into a low-power state during system transition into a sleep state.
924 */
925 int acpi_subsys_suspend_late(struct device *dev)
926 {
927 int ret = pm_generic_suspend_late(dev);
928 return ret ? ret : acpi_dev_suspend_late(dev);
929 }
930 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
931
932 /**
933 * acpi_subsys_resume_early - Resume device using ACPI.
934 * @dev: Device to Resume.
935 *
936 * Use ACPI to put the given device into the full-power state and carry out the
937 * generic early resume procedure for it during system transition into the
938 * working state.
939 */
940 int acpi_subsys_resume_early(struct device *dev)
941 {
942 int ret = acpi_dev_resume_early(dev);
943 return ret ? ret : pm_generic_resume_early(dev);
944 }
945 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
946 #endif /* CONFIG_PM_SLEEP */
947
948 static struct dev_pm_domain acpi_general_pm_domain = {
949 .ops = {
950 #ifdef CONFIG_PM_RUNTIME
951 .runtime_suspend = acpi_subsys_runtime_suspend,
952 .runtime_resume = acpi_subsys_runtime_resume,
953 #endif
954 #ifdef CONFIG_PM_SLEEP
955 .prepare = acpi_subsys_prepare,
956 .suspend_late = acpi_subsys_suspend_late,
957 .resume_early = acpi_subsys_resume_early,
958 .poweroff_late = acpi_subsys_suspend_late,
959 .restore_early = acpi_subsys_resume_early,
960 #endif
961 },
962 };
963
964 /**
965 * acpi_dev_pm_attach - Prepare device for ACPI power management.
966 * @dev: Device to prepare.
967 * @power_on: Whether or not to power on the device.
968 *
969 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
970 * attached to it, install a wakeup notification handler for the device and
971 * add it to the general ACPI PM domain. If @power_on is set, the device will
972 * be put into the ACPI D0 state before the function returns.
973 *
974 * This assumes that the @dev's bus type uses generic power management callbacks
975 * (or doesn't use any power management callbacks at all).
976 *
977 * Callers must ensure proper synchronization of this function with power
978 * management callbacks.
979 */
980 int acpi_dev_pm_attach(struct device *dev, bool power_on)
981 {
982 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
983
984 if (!adev)
985 return -ENODEV;
986
987 if (dev->pm_domain)
988 return -EEXIST;
989
990 acpi_add_pm_notifier(adev, acpi_wakeup_device, dev);
991 dev->pm_domain = &acpi_general_pm_domain;
992 if (power_on) {
993 acpi_dev_pm_full_power(adev);
994 __acpi_device_run_wake(adev, false);
995 }
996 return 0;
997 }
998 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
999
1000 /**
1001 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1002 * @dev: Device to take care of.
1003 * @power_off: Whether or not to try to remove power from the device.
1004 *
1005 * Remove the device from the general ACPI PM domain and remove its wakeup
1006 * notifier. If @power_off is set, additionally remove power from the device if
1007 * possible.
1008 *
1009 * Callers must ensure proper synchronization of this function with power
1010 * management callbacks.
1011 */
1012 void acpi_dev_pm_detach(struct device *dev, bool power_off)
1013 {
1014 struct acpi_device *adev = acpi_dev_pm_get_node(dev);
1015
1016 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1017 dev->pm_domain = NULL;
1018 acpi_remove_pm_notifier(adev, acpi_wakeup_device);
1019 if (power_off) {
1020 /*
1021 * If the device's PM QoS resume latency limit or flags
1022 * have been exposed to user space, they have to be
1023 * hidden at this point, so that they don't affect the
1024 * choice of the low-power state to put the device into.
1025 */
1026 dev_pm_qos_hide_latency_limit(dev);
1027 dev_pm_qos_hide_flags(dev);
1028 __acpi_device_run_wake(adev, false);
1029 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1030 }
1031 }
1032 }
1033 EXPORT_SYMBOL_GPL(acpi_dev_pm_detach);
1034
1035 /**
1036 * acpi_dev_pm_add_dependent - Add physical device depending for PM.
1037 * @handle: Handle of ACPI device node.
1038 * @depdev: Device depending on that node for PM.
1039 */
1040 void acpi_dev_pm_add_dependent(acpi_handle handle, struct device *depdev)
1041 {
1042 struct acpi_device_physical_node *dep;
1043 struct acpi_device *adev;
1044
1045 if (!depdev || acpi_bus_get_device(handle, &adev))
1046 return;
1047
1048 mutex_lock(&adev->physical_node_lock);
1049
1050 list_for_each_entry(dep, &adev->power_dependent, node)
1051 if (dep->dev == depdev)
1052 goto out;
1053
1054 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1055 if (dep) {
1056 dep->dev = depdev;
1057 list_add_tail(&dep->node, &adev->power_dependent);
1058 }
1059
1060 out:
1061 mutex_unlock(&adev->physical_node_lock);
1062 }
1063 EXPORT_SYMBOL_GPL(acpi_dev_pm_add_dependent);
1064
1065 /**
1066 * acpi_dev_pm_remove_dependent - Remove physical device depending for PM.
1067 * @handle: Handle of ACPI device node.
1068 * @depdev: Device depending on that node for PM.
1069 */
1070 void acpi_dev_pm_remove_dependent(acpi_handle handle, struct device *depdev)
1071 {
1072 struct acpi_device_physical_node *dep;
1073 struct acpi_device *adev;
1074
1075 if (!depdev || acpi_bus_get_device(handle, &adev))
1076 return;
1077
1078 mutex_lock(&adev->physical_node_lock);
1079
1080 list_for_each_entry(dep, &adev->power_dependent, node)
1081 if (dep->dev == depdev) {
1082 list_del(&dep->node);
1083 kfree(dep);
1084 break;
1085 }
1086
1087 mutex_unlock(&adev->physical_node_lock);
1088 }
1089 EXPORT_SYMBOL_GPL(acpi_dev_pm_remove_dependent);
1090 #endif /* CONFIG_PM */
This page took 0.088875 seconds and 5 git commands to generate.