drm/i915: More intel_engine_cs renaming
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57 };
58
59 #ifdef CONFIG_ACPI_CUSTOM_DSDT
60 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
61 #endif
62
63 #ifdef ENABLE_DEBUGGER
64 #include <linux/kdb.h>
65
66 /* stuff for debugger support */
67 int acpi_in_debugger;
68 EXPORT_SYMBOL(acpi_in_debugger);
69 #endif /*ENABLE_DEBUGGER */
70
71 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
72 u32 pm1b_ctrl);
73 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
74 u32 val_b);
75
76 static acpi_osd_handler acpi_irq_handler;
77 static void *acpi_irq_context;
78 static struct workqueue_struct *kacpid_wq;
79 static struct workqueue_struct *kacpi_notify_wq;
80 static struct workqueue_struct *kacpi_hotplug_wq;
81 static bool acpi_os_initialized;
82 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
83
84 /*
85 * This list of permanent mappings is for memory that may be accessed from
86 * interrupt context, where we can't do the ioremap().
87 */
88 struct acpi_ioremap {
89 struct list_head list;
90 void __iomem *virt;
91 acpi_physical_address phys;
92 acpi_size size;
93 unsigned long refcount;
94 };
95
96 static LIST_HEAD(acpi_ioremaps);
97 static DEFINE_MUTEX(acpi_ioremap_lock);
98
99 static void __init acpi_osi_setup_late(void);
100
101 /*
102 * The story of _OSI(Linux)
103 *
104 * From pre-history through Linux-2.6.22,
105 * Linux responded TRUE upon a BIOS OSI(Linux) query.
106 *
107 * Unfortunately, reference BIOS writers got wind of this
108 * and put OSI(Linux) in their example code, quickly exposing
109 * this string as ill-conceived and opening the door to
110 * an un-bounded number of BIOS incompatibilities.
111 *
112 * For example, OSI(Linux) was used on resume to re-POST a
113 * video card on one system, because Linux at that time
114 * could not do a speedy restore in its native driver.
115 * But then upon gaining quick native restore capability,
116 * Linux has no way to tell the BIOS to skip the time-consuming
117 * POST -- putting Linux at a permanent performance disadvantage.
118 * On another system, the BIOS writer used OSI(Linux)
119 * to infer native OS support for IPMI! On other systems,
120 * OSI(Linux) simply got in the way of Linux claiming to
121 * be compatible with other operating systems, exposing
122 * BIOS issues such as skipped device initialization.
123 *
124 * So "Linux" turned out to be a really poor chose of
125 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
126 *
127 * BIOS writers should NOT query _OSI(Linux) on future systems.
128 * Linux will complain on the console when it sees it, and return FALSE.
129 * To get Linux to return TRUE for your system will require
130 * a kernel source update to add a DMI entry,
131 * or boot with "acpi_osi=Linux"
132 */
133
134 static struct osi_linux {
135 unsigned int enable:1;
136 unsigned int dmi:1;
137 unsigned int cmdline:1;
138 unsigned int default_disabling:1;
139 } osi_linux = {0, 0, 0, 0};
140
141 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
142 {
143 if (!strcmp("Linux", interface)) {
144
145 printk_once(KERN_NOTICE FW_BUG PREFIX
146 "BIOS _OSI(Linux) query %s%s\n",
147 osi_linux.enable ? "honored" : "ignored",
148 osi_linux.cmdline ? " via cmdline" :
149 osi_linux.dmi ? " via DMI" : "");
150 }
151
152 if (!strcmp("Darwin", interface)) {
153 /*
154 * Apple firmware will behave poorly if it receives positive
155 * answers to "Darwin" and any other OS. Respond positively
156 * to Darwin and then disable all other vendor strings.
157 */
158 acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
159 supported = ACPI_UINT32_MAX;
160 }
161
162 return supported;
163 }
164
165 static void __init acpi_request_region (struct acpi_generic_address *gas,
166 unsigned int length, char *desc)
167 {
168 u64 addr;
169
170 /* Handle possible alignment issues */
171 memcpy(&addr, &gas->address, sizeof(addr));
172 if (!addr || !length)
173 return;
174
175 /* Resources are never freed */
176 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
177 request_region(addr, length, desc);
178 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
179 request_mem_region(addr, length, desc);
180 }
181
182 static int __init acpi_reserve_resources(void)
183 {
184 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
185 "ACPI PM1a_EVT_BLK");
186
187 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
188 "ACPI PM1b_EVT_BLK");
189
190 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
191 "ACPI PM1a_CNT_BLK");
192
193 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
194 "ACPI PM1b_CNT_BLK");
195
196 if (acpi_gbl_FADT.pm_timer_length == 4)
197 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
198
199 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
200 "ACPI PM2_CNT_BLK");
201
202 /* Length of GPE blocks must be a non-negative multiple of 2 */
203
204 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
205 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
206 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
207
208 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
209 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
210 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
211
212 return 0;
213 }
214 fs_initcall_sync(acpi_reserve_resources);
215
216 void acpi_os_printf(const char *fmt, ...)
217 {
218 va_list args;
219 va_start(args, fmt);
220 acpi_os_vprintf(fmt, args);
221 va_end(args);
222 }
223 EXPORT_SYMBOL(acpi_os_printf);
224
225 void acpi_os_vprintf(const char *fmt, va_list args)
226 {
227 static char buffer[512];
228
229 vsprintf(buffer, fmt, args);
230
231 #ifdef ENABLE_DEBUGGER
232 if (acpi_in_debugger) {
233 kdb_printf("%s", buffer);
234 } else {
235 printk(KERN_CONT "%s", buffer);
236 }
237 #else
238 if (acpi_debugger_write_log(buffer) < 0)
239 printk(KERN_CONT "%s", buffer);
240 #endif
241 }
242
243 #ifdef CONFIG_KEXEC
244 static unsigned long acpi_rsdp;
245 static int __init setup_acpi_rsdp(char *arg)
246 {
247 if (kstrtoul(arg, 16, &acpi_rsdp))
248 return -EINVAL;
249 return 0;
250 }
251 early_param("acpi_rsdp", setup_acpi_rsdp);
252 #endif
253
254 acpi_physical_address __init acpi_os_get_root_pointer(void)
255 {
256 #ifdef CONFIG_KEXEC
257 if (acpi_rsdp)
258 return acpi_rsdp;
259 #endif
260
261 if (efi_enabled(EFI_CONFIG_TABLES)) {
262 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
263 return efi.acpi20;
264 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
265 return efi.acpi;
266 else {
267 printk(KERN_ERR PREFIX
268 "System description tables not found\n");
269 return 0;
270 }
271 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
272 acpi_physical_address pa = 0;
273
274 acpi_find_root_pointer(&pa);
275 return pa;
276 }
277
278 return 0;
279 }
280
281 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
282 static struct acpi_ioremap *
283 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
284 {
285 struct acpi_ioremap *map;
286
287 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
288 if (map->phys <= phys &&
289 phys + size <= map->phys + map->size)
290 return map;
291
292 return NULL;
293 }
294
295 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
296 static void __iomem *
297 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
298 {
299 struct acpi_ioremap *map;
300
301 map = acpi_map_lookup(phys, size);
302 if (map)
303 return map->virt + (phys - map->phys);
304
305 return NULL;
306 }
307
308 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
309 {
310 struct acpi_ioremap *map;
311 void __iomem *virt = NULL;
312
313 mutex_lock(&acpi_ioremap_lock);
314 map = acpi_map_lookup(phys, size);
315 if (map) {
316 virt = map->virt + (phys - map->phys);
317 map->refcount++;
318 }
319 mutex_unlock(&acpi_ioremap_lock);
320 return virt;
321 }
322 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
323
324 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
325 static struct acpi_ioremap *
326 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
327 {
328 struct acpi_ioremap *map;
329
330 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
331 if (map->virt <= virt &&
332 virt + size <= map->virt + map->size)
333 return map;
334
335 return NULL;
336 }
337
338 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
339 /* ioremap will take care of cache attributes */
340 #define should_use_kmap(pfn) 0
341 #else
342 #define should_use_kmap(pfn) page_is_ram(pfn)
343 #endif
344
345 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
346 {
347 unsigned long pfn;
348
349 pfn = pg_off >> PAGE_SHIFT;
350 if (should_use_kmap(pfn)) {
351 if (pg_sz > PAGE_SIZE)
352 return NULL;
353 return (void __iomem __force *)kmap(pfn_to_page(pfn));
354 } else
355 return acpi_os_ioremap(pg_off, pg_sz);
356 }
357
358 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
359 {
360 unsigned long pfn;
361
362 pfn = pg_off >> PAGE_SHIFT;
363 if (should_use_kmap(pfn))
364 kunmap(pfn_to_page(pfn));
365 else
366 iounmap(vaddr);
367 }
368
369 /**
370 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
371 * @phys: Start of the physical address range to map.
372 * @size: Size of the physical address range to map.
373 *
374 * Look up the given physical address range in the list of existing ACPI memory
375 * mappings. If found, get a reference to it and return a pointer to it (its
376 * virtual address). If not found, map it, add it to that list and return a
377 * pointer to it.
378 *
379 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
380 * routine simply calls __acpi_map_table() to get the job done.
381 */
382 void __iomem *__init_refok
383 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
384 {
385 struct acpi_ioremap *map;
386 void __iomem *virt;
387 acpi_physical_address pg_off;
388 acpi_size pg_sz;
389
390 if (phys > ULONG_MAX) {
391 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
392 return NULL;
393 }
394
395 if (!acpi_gbl_permanent_mmap)
396 return __acpi_map_table((unsigned long)phys, size);
397
398 mutex_lock(&acpi_ioremap_lock);
399 /* Check if there's a suitable mapping already. */
400 map = acpi_map_lookup(phys, size);
401 if (map) {
402 map->refcount++;
403 goto out;
404 }
405
406 map = kzalloc(sizeof(*map), GFP_KERNEL);
407 if (!map) {
408 mutex_unlock(&acpi_ioremap_lock);
409 return NULL;
410 }
411
412 pg_off = round_down(phys, PAGE_SIZE);
413 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
414 virt = acpi_map(pg_off, pg_sz);
415 if (!virt) {
416 mutex_unlock(&acpi_ioremap_lock);
417 kfree(map);
418 return NULL;
419 }
420
421 INIT_LIST_HEAD(&map->list);
422 map->virt = virt;
423 map->phys = pg_off;
424 map->size = pg_sz;
425 map->refcount = 1;
426
427 list_add_tail_rcu(&map->list, &acpi_ioremaps);
428
429 out:
430 mutex_unlock(&acpi_ioremap_lock);
431 return map->virt + (phys - map->phys);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
434
435 void *__init_refok
436 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
437 {
438 return (void *)acpi_os_map_iomem(phys, size);
439 }
440 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
441
442 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
443 {
444 if (!--map->refcount)
445 list_del_rcu(&map->list);
446 }
447
448 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
449 {
450 if (!map->refcount) {
451 synchronize_rcu_expedited();
452 acpi_unmap(map->phys, map->virt);
453 kfree(map);
454 }
455 }
456
457 /**
458 * acpi_os_unmap_iomem - Drop a memory mapping reference.
459 * @virt: Start of the address range to drop a reference to.
460 * @size: Size of the address range to drop a reference to.
461 *
462 * Look up the given virtual address range in the list of existing ACPI memory
463 * mappings, drop a reference to it and unmap it if there are no more active
464 * references to it.
465 *
466 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
467 * routine simply calls __acpi_unmap_table() to get the job done. Since
468 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
469 * here.
470 */
471 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
472 {
473 struct acpi_ioremap *map;
474
475 if (!acpi_gbl_permanent_mmap) {
476 __acpi_unmap_table(virt, size);
477 return;
478 }
479
480 mutex_lock(&acpi_ioremap_lock);
481 map = acpi_map_lookup_virt(virt, size);
482 if (!map) {
483 mutex_unlock(&acpi_ioremap_lock);
484 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
485 return;
486 }
487 acpi_os_drop_map_ref(map);
488 mutex_unlock(&acpi_ioremap_lock);
489
490 acpi_os_map_cleanup(map);
491 }
492 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
493
494 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
495 {
496 return acpi_os_unmap_iomem((void __iomem *)virt, size);
497 }
498 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
499
500 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
501 {
502 if (!acpi_gbl_permanent_mmap)
503 __acpi_unmap_table(virt, size);
504 }
505
506 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
507 {
508 u64 addr;
509 void __iomem *virt;
510
511 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
512 return 0;
513
514 /* Handle possible alignment issues */
515 memcpy(&addr, &gas->address, sizeof(addr));
516 if (!addr || !gas->bit_width)
517 return -EINVAL;
518
519 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
520 if (!virt)
521 return -EIO;
522
523 return 0;
524 }
525 EXPORT_SYMBOL(acpi_os_map_generic_address);
526
527 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
528 {
529 u64 addr;
530 struct acpi_ioremap *map;
531
532 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
533 return;
534
535 /* Handle possible alignment issues */
536 memcpy(&addr, &gas->address, sizeof(addr));
537 if (!addr || !gas->bit_width)
538 return;
539
540 mutex_lock(&acpi_ioremap_lock);
541 map = acpi_map_lookup(addr, gas->bit_width / 8);
542 if (!map) {
543 mutex_unlock(&acpi_ioremap_lock);
544 return;
545 }
546 acpi_os_drop_map_ref(map);
547 mutex_unlock(&acpi_ioremap_lock);
548
549 acpi_os_map_cleanup(map);
550 }
551 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
552
553 #ifdef ACPI_FUTURE_USAGE
554 acpi_status
555 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
556 {
557 if (!phys || !virt)
558 return AE_BAD_PARAMETER;
559
560 *phys = virt_to_phys(virt);
561
562 return AE_OK;
563 }
564 #endif
565
566 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
567 static bool acpi_rev_override;
568
569 int __init acpi_rev_override_setup(char *str)
570 {
571 acpi_rev_override = true;
572 return 1;
573 }
574 __setup("acpi_rev_override", acpi_rev_override_setup);
575 #else
576 #define acpi_rev_override false
577 #endif
578
579 #define ACPI_MAX_OVERRIDE_LEN 100
580
581 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
582
583 acpi_status
584 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
585 char **new_val)
586 {
587 if (!init_val || !new_val)
588 return AE_BAD_PARAMETER;
589
590 *new_val = NULL;
591 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
592 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
593 acpi_os_name);
594 *new_val = acpi_os_name;
595 }
596
597 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
598 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
599 *new_val = (char *)5;
600 }
601
602 return AE_OK;
603 }
604
605 #ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
606 #include <linux/earlycpio.h>
607 #include <linux/memblock.h>
608
609 static u64 acpi_tables_addr;
610 static int all_tables_size;
611
612 /* Copied from acpica/tbutils.c:acpi_tb_checksum() */
613 static u8 __init acpi_table_checksum(u8 *buffer, u32 length)
614 {
615 u8 sum = 0;
616 u8 *end = buffer + length;
617
618 while (buffer < end)
619 sum = (u8) (sum + *(buffer++));
620 return sum;
621 }
622
623 /* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */
624 static const char * const table_sigs[] = {
625 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ,
626 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT,
627 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF,
628 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET,
629 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI,
630 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA,
631 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
632 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
633 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL };
634
635 #define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
636
637 #define ACPI_OVERRIDE_TABLES 64
638 static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES];
639
640 #define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT)
641
642 void __init acpi_initrd_override(void *data, size_t size)
643 {
644 int sig, no, table_nr = 0, total_offset = 0;
645 long offset = 0;
646 struct acpi_table_header *table;
647 char cpio_path[32] = "kernel/firmware/acpi/";
648 struct cpio_data file;
649
650 if (data == NULL || size == 0)
651 return;
652
653 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) {
654 file = find_cpio_data(cpio_path, data, size, &offset);
655 if (!file.data)
656 break;
657
658 data += offset;
659 size -= offset;
660
661 if (file.size < sizeof(struct acpi_table_header)) {
662 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n",
663 cpio_path, file.name);
664 continue;
665 }
666
667 table = file.data;
668
669 for (sig = 0; table_sigs[sig]; sig++)
670 if (!memcmp(table->signature, table_sigs[sig], 4))
671 break;
672
673 if (!table_sigs[sig]) {
674 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n",
675 cpio_path, file.name);
676 continue;
677 }
678 if (file.size != table->length) {
679 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n",
680 cpio_path, file.name);
681 continue;
682 }
683 if (acpi_table_checksum(file.data, table->length)) {
684 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n",
685 cpio_path, file.name);
686 continue;
687 }
688
689 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n",
690 table->signature, cpio_path, file.name, table->length);
691
692 all_tables_size += table->length;
693 acpi_initrd_files[table_nr].data = file.data;
694 acpi_initrd_files[table_nr].size = file.size;
695 table_nr++;
696 }
697 if (table_nr == 0)
698 return;
699
700 acpi_tables_addr =
701 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT,
702 all_tables_size, PAGE_SIZE);
703 if (!acpi_tables_addr) {
704 WARN_ON(1);
705 return;
706 }
707 /*
708 * Only calling e820_add_reserve does not work and the
709 * tables are invalid (memory got used) later.
710 * memblock_reserve works as expected and the tables won't get modified.
711 * But it's not enough on X86 because ioremap will
712 * complain later (used by acpi_os_map_memory) that the pages
713 * that should get mapped are not marked "reserved".
714 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area)
715 * works fine.
716 */
717 memblock_reserve(acpi_tables_addr, all_tables_size);
718 arch_reserve_mem_area(acpi_tables_addr, all_tables_size);
719
720 /*
721 * early_ioremap only can remap 256k one time. If we map all
722 * tables one time, we will hit the limit. Need to map chunks
723 * one by one during copying the same as that in relocate_initrd().
724 */
725 for (no = 0; no < table_nr; no++) {
726 unsigned char *src_p = acpi_initrd_files[no].data;
727 phys_addr_t size = acpi_initrd_files[no].size;
728 phys_addr_t dest_addr = acpi_tables_addr + total_offset;
729 phys_addr_t slop, clen;
730 char *dest_p;
731
732 total_offset += size;
733
734 while (size) {
735 slop = dest_addr & ~PAGE_MASK;
736 clen = size;
737 if (clen > MAP_CHUNK_SIZE - slop)
738 clen = MAP_CHUNK_SIZE - slop;
739 dest_p = early_ioremap(dest_addr & PAGE_MASK,
740 clen + slop);
741 memcpy(dest_p + slop, src_p, clen);
742 early_iounmap(dest_p, clen + slop);
743 src_p += clen;
744 dest_addr += clen;
745 size -= clen;
746 }
747 }
748 }
749 #endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */
750
751 static void acpi_table_taint(struct acpi_table_header *table)
752 {
753 pr_warn(PREFIX
754 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n",
755 table->signature, table->oem_table_id);
756 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE);
757 }
758
759
760 acpi_status
761 acpi_os_table_override(struct acpi_table_header * existing_table,
762 struct acpi_table_header ** new_table)
763 {
764 if (!existing_table || !new_table)
765 return AE_BAD_PARAMETER;
766
767 *new_table = NULL;
768
769 #ifdef CONFIG_ACPI_CUSTOM_DSDT
770 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
771 *new_table = (struct acpi_table_header *)AmlCode;
772 #endif
773 if (*new_table != NULL)
774 acpi_table_taint(existing_table);
775 return AE_OK;
776 }
777
778 acpi_status
779 acpi_os_physical_table_override(struct acpi_table_header *existing_table,
780 acpi_physical_address *address,
781 u32 *table_length)
782 {
783 #ifndef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
784 *table_length = 0;
785 *address = 0;
786 return AE_OK;
787 #else
788 int table_offset = 0;
789 struct acpi_table_header *table;
790
791 *table_length = 0;
792 *address = 0;
793
794 if (!acpi_tables_addr)
795 return AE_OK;
796
797 do {
798 if (table_offset + ACPI_HEADER_SIZE > all_tables_size) {
799 WARN_ON(1);
800 return AE_OK;
801 }
802
803 table = acpi_os_map_memory(acpi_tables_addr + table_offset,
804 ACPI_HEADER_SIZE);
805
806 if (table_offset + table->length > all_tables_size) {
807 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
808 WARN_ON(1);
809 return AE_OK;
810 }
811
812 table_offset += table->length;
813
814 if (memcmp(existing_table->signature, table->signature, 4)) {
815 acpi_os_unmap_memory(table,
816 ACPI_HEADER_SIZE);
817 continue;
818 }
819
820 /* Only override tables with matching oem id */
821 if (memcmp(table->oem_table_id, existing_table->oem_table_id,
822 ACPI_OEM_TABLE_ID_SIZE)) {
823 acpi_os_unmap_memory(table,
824 ACPI_HEADER_SIZE);
825 continue;
826 }
827
828 table_offset -= table->length;
829 *table_length = table->length;
830 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
831 *address = acpi_tables_addr + table_offset;
832 break;
833 } while (table_offset + ACPI_HEADER_SIZE < all_tables_size);
834
835 if (*address != 0)
836 acpi_table_taint(existing_table);
837 return AE_OK;
838 #endif
839 }
840
841 static irqreturn_t acpi_irq(int irq, void *dev_id)
842 {
843 u32 handled;
844
845 handled = (*acpi_irq_handler) (acpi_irq_context);
846
847 if (handled) {
848 acpi_irq_handled++;
849 return IRQ_HANDLED;
850 } else {
851 acpi_irq_not_handled++;
852 return IRQ_NONE;
853 }
854 }
855
856 acpi_status
857 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
858 void *context)
859 {
860 unsigned int irq;
861
862 acpi_irq_stats_init();
863
864 /*
865 * ACPI interrupts different from the SCI in our copy of the FADT are
866 * not supported.
867 */
868 if (gsi != acpi_gbl_FADT.sci_interrupt)
869 return AE_BAD_PARAMETER;
870
871 if (acpi_irq_handler)
872 return AE_ALREADY_ACQUIRED;
873
874 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
875 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
876 gsi);
877 return AE_OK;
878 }
879
880 acpi_irq_handler = handler;
881 acpi_irq_context = context;
882 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
883 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
884 acpi_irq_handler = NULL;
885 return AE_NOT_ACQUIRED;
886 }
887 acpi_sci_irq = irq;
888
889 return AE_OK;
890 }
891
892 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
893 {
894 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
895 return AE_BAD_PARAMETER;
896
897 free_irq(acpi_sci_irq, acpi_irq);
898 acpi_irq_handler = NULL;
899 acpi_sci_irq = INVALID_ACPI_IRQ;
900
901 return AE_OK;
902 }
903
904 /*
905 * Running in interpreter thread context, safe to sleep
906 */
907
908 void acpi_os_sleep(u64 ms)
909 {
910 msleep(ms);
911 }
912
913 void acpi_os_stall(u32 us)
914 {
915 while (us) {
916 u32 delay = 1000;
917
918 if (delay > us)
919 delay = us;
920 udelay(delay);
921 touch_nmi_watchdog();
922 us -= delay;
923 }
924 }
925
926 /*
927 * Support ACPI 3.0 AML Timer operand
928 * Returns 64-bit free-running, monotonically increasing timer
929 * with 100ns granularity
930 */
931 u64 acpi_os_get_timer(void)
932 {
933 u64 time_ns = ktime_to_ns(ktime_get());
934 do_div(time_ns, 100);
935 return time_ns;
936 }
937
938 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
939 {
940 u32 dummy;
941
942 if (!value)
943 value = &dummy;
944
945 *value = 0;
946 if (width <= 8) {
947 *(u8 *) value = inb(port);
948 } else if (width <= 16) {
949 *(u16 *) value = inw(port);
950 } else if (width <= 32) {
951 *(u32 *) value = inl(port);
952 } else {
953 BUG();
954 }
955
956 return AE_OK;
957 }
958
959 EXPORT_SYMBOL(acpi_os_read_port);
960
961 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
962 {
963 if (width <= 8) {
964 outb(value, port);
965 } else if (width <= 16) {
966 outw(value, port);
967 } else if (width <= 32) {
968 outl(value, port);
969 } else {
970 BUG();
971 }
972
973 return AE_OK;
974 }
975
976 EXPORT_SYMBOL(acpi_os_write_port);
977
978 acpi_status
979 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
980 {
981 void __iomem *virt_addr;
982 unsigned int size = width / 8;
983 bool unmap = false;
984 u64 dummy;
985
986 rcu_read_lock();
987 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
988 if (!virt_addr) {
989 rcu_read_unlock();
990 virt_addr = acpi_os_ioremap(phys_addr, size);
991 if (!virt_addr)
992 return AE_BAD_ADDRESS;
993 unmap = true;
994 }
995
996 if (!value)
997 value = &dummy;
998
999 switch (width) {
1000 case 8:
1001 *(u8 *) value = readb(virt_addr);
1002 break;
1003 case 16:
1004 *(u16 *) value = readw(virt_addr);
1005 break;
1006 case 32:
1007 *(u32 *) value = readl(virt_addr);
1008 break;
1009 case 64:
1010 *(u64 *) value = readq(virt_addr);
1011 break;
1012 default:
1013 BUG();
1014 }
1015
1016 if (unmap)
1017 iounmap(virt_addr);
1018 else
1019 rcu_read_unlock();
1020
1021 return AE_OK;
1022 }
1023
1024 acpi_status
1025 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
1026 {
1027 void __iomem *virt_addr;
1028 unsigned int size = width / 8;
1029 bool unmap = false;
1030
1031 rcu_read_lock();
1032 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1033 if (!virt_addr) {
1034 rcu_read_unlock();
1035 virt_addr = acpi_os_ioremap(phys_addr, size);
1036 if (!virt_addr)
1037 return AE_BAD_ADDRESS;
1038 unmap = true;
1039 }
1040
1041 switch (width) {
1042 case 8:
1043 writeb(value, virt_addr);
1044 break;
1045 case 16:
1046 writew(value, virt_addr);
1047 break;
1048 case 32:
1049 writel(value, virt_addr);
1050 break;
1051 case 64:
1052 writeq(value, virt_addr);
1053 break;
1054 default:
1055 BUG();
1056 }
1057
1058 if (unmap)
1059 iounmap(virt_addr);
1060 else
1061 rcu_read_unlock();
1062
1063 return AE_OK;
1064 }
1065
1066 acpi_status
1067 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1068 u64 *value, u32 width)
1069 {
1070 int result, size;
1071 u32 value32;
1072
1073 if (!value)
1074 return AE_BAD_PARAMETER;
1075
1076 switch (width) {
1077 case 8:
1078 size = 1;
1079 break;
1080 case 16:
1081 size = 2;
1082 break;
1083 case 32:
1084 size = 4;
1085 break;
1086 default:
1087 return AE_ERROR;
1088 }
1089
1090 result = raw_pci_read(pci_id->segment, pci_id->bus,
1091 PCI_DEVFN(pci_id->device, pci_id->function),
1092 reg, size, &value32);
1093 *value = value32;
1094
1095 return (result ? AE_ERROR : AE_OK);
1096 }
1097
1098 acpi_status
1099 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1100 u64 value, u32 width)
1101 {
1102 int result, size;
1103
1104 switch (width) {
1105 case 8:
1106 size = 1;
1107 break;
1108 case 16:
1109 size = 2;
1110 break;
1111 case 32:
1112 size = 4;
1113 break;
1114 default:
1115 return AE_ERROR;
1116 }
1117
1118 result = raw_pci_write(pci_id->segment, pci_id->bus,
1119 PCI_DEVFN(pci_id->device, pci_id->function),
1120 reg, size, value);
1121
1122 return (result ? AE_ERROR : AE_OK);
1123 }
1124
1125 static void acpi_os_execute_deferred(struct work_struct *work)
1126 {
1127 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
1128
1129 dpc->function(dpc->context);
1130 kfree(dpc);
1131 }
1132
1133 #ifdef CONFIG_ACPI_DEBUGGER
1134 static struct acpi_debugger acpi_debugger;
1135 static bool acpi_debugger_initialized;
1136
1137 int acpi_register_debugger(struct module *owner,
1138 const struct acpi_debugger_ops *ops)
1139 {
1140 int ret = 0;
1141
1142 mutex_lock(&acpi_debugger.lock);
1143 if (acpi_debugger.ops) {
1144 ret = -EBUSY;
1145 goto err_lock;
1146 }
1147
1148 acpi_debugger.owner = owner;
1149 acpi_debugger.ops = ops;
1150
1151 err_lock:
1152 mutex_unlock(&acpi_debugger.lock);
1153 return ret;
1154 }
1155 EXPORT_SYMBOL(acpi_register_debugger);
1156
1157 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
1158 {
1159 mutex_lock(&acpi_debugger.lock);
1160 if (ops == acpi_debugger.ops) {
1161 acpi_debugger.ops = NULL;
1162 acpi_debugger.owner = NULL;
1163 }
1164 mutex_unlock(&acpi_debugger.lock);
1165 }
1166 EXPORT_SYMBOL(acpi_unregister_debugger);
1167
1168 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
1169 {
1170 int ret;
1171 int (*func)(acpi_osd_exec_callback, void *);
1172 struct module *owner;
1173
1174 if (!acpi_debugger_initialized)
1175 return -ENODEV;
1176 mutex_lock(&acpi_debugger.lock);
1177 if (!acpi_debugger.ops) {
1178 ret = -ENODEV;
1179 goto err_lock;
1180 }
1181 if (!try_module_get(acpi_debugger.owner)) {
1182 ret = -ENODEV;
1183 goto err_lock;
1184 }
1185 func = acpi_debugger.ops->create_thread;
1186 owner = acpi_debugger.owner;
1187 mutex_unlock(&acpi_debugger.lock);
1188
1189 ret = func(function, context);
1190
1191 mutex_lock(&acpi_debugger.lock);
1192 module_put(owner);
1193 err_lock:
1194 mutex_unlock(&acpi_debugger.lock);
1195 return ret;
1196 }
1197
1198 ssize_t acpi_debugger_write_log(const char *msg)
1199 {
1200 ssize_t ret;
1201 ssize_t (*func)(const char *);
1202 struct module *owner;
1203
1204 if (!acpi_debugger_initialized)
1205 return -ENODEV;
1206 mutex_lock(&acpi_debugger.lock);
1207 if (!acpi_debugger.ops) {
1208 ret = -ENODEV;
1209 goto err_lock;
1210 }
1211 if (!try_module_get(acpi_debugger.owner)) {
1212 ret = -ENODEV;
1213 goto err_lock;
1214 }
1215 func = acpi_debugger.ops->write_log;
1216 owner = acpi_debugger.owner;
1217 mutex_unlock(&acpi_debugger.lock);
1218
1219 ret = func(msg);
1220
1221 mutex_lock(&acpi_debugger.lock);
1222 module_put(owner);
1223 err_lock:
1224 mutex_unlock(&acpi_debugger.lock);
1225 return ret;
1226 }
1227
1228 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
1229 {
1230 ssize_t ret;
1231 ssize_t (*func)(char *, size_t);
1232 struct module *owner;
1233
1234 if (!acpi_debugger_initialized)
1235 return -ENODEV;
1236 mutex_lock(&acpi_debugger.lock);
1237 if (!acpi_debugger.ops) {
1238 ret = -ENODEV;
1239 goto err_lock;
1240 }
1241 if (!try_module_get(acpi_debugger.owner)) {
1242 ret = -ENODEV;
1243 goto err_lock;
1244 }
1245 func = acpi_debugger.ops->read_cmd;
1246 owner = acpi_debugger.owner;
1247 mutex_unlock(&acpi_debugger.lock);
1248
1249 ret = func(buffer, buffer_length);
1250
1251 mutex_lock(&acpi_debugger.lock);
1252 module_put(owner);
1253 err_lock:
1254 mutex_unlock(&acpi_debugger.lock);
1255 return ret;
1256 }
1257
1258 int acpi_debugger_wait_command_ready(void)
1259 {
1260 int ret;
1261 int (*func)(bool, char *, size_t);
1262 struct module *owner;
1263
1264 if (!acpi_debugger_initialized)
1265 return -ENODEV;
1266 mutex_lock(&acpi_debugger.lock);
1267 if (!acpi_debugger.ops) {
1268 ret = -ENODEV;
1269 goto err_lock;
1270 }
1271 if (!try_module_get(acpi_debugger.owner)) {
1272 ret = -ENODEV;
1273 goto err_lock;
1274 }
1275 func = acpi_debugger.ops->wait_command_ready;
1276 owner = acpi_debugger.owner;
1277 mutex_unlock(&acpi_debugger.lock);
1278
1279 ret = func(acpi_gbl_method_executing,
1280 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1281
1282 mutex_lock(&acpi_debugger.lock);
1283 module_put(owner);
1284 err_lock:
1285 mutex_unlock(&acpi_debugger.lock);
1286 return ret;
1287 }
1288
1289 int acpi_debugger_notify_command_complete(void)
1290 {
1291 int ret;
1292 int (*func)(void);
1293 struct module *owner;
1294
1295 if (!acpi_debugger_initialized)
1296 return -ENODEV;
1297 mutex_lock(&acpi_debugger.lock);
1298 if (!acpi_debugger.ops) {
1299 ret = -ENODEV;
1300 goto err_lock;
1301 }
1302 if (!try_module_get(acpi_debugger.owner)) {
1303 ret = -ENODEV;
1304 goto err_lock;
1305 }
1306 func = acpi_debugger.ops->notify_command_complete;
1307 owner = acpi_debugger.owner;
1308 mutex_unlock(&acpi_debugger.lock);
1309
1310 ret = func();
1311
1312 mutex_lock(&acpi_debugger.lock);
1313 module_put(owner);
1314 err_lock:
1315 mutex_unlock(&acpi_debugger.lock);
1316 return ret;
1317 }
1318
1319 int __init acpi_debugger_init(void)
1320 {
1321 mutex_init(&acpi_debugger.lock);
1322 acpi_debugger_initialized = true;
1323 return 0;
1324 }
1325 #endif
1326
1327 /*******************************************************************************
1328 *
1329 * FUNCTION: acpi_os_execute
1330 *
1331 * PARAMETERS: Type - Type of the callback
1332 * Function - Function to be executed
1333 * Context - Function parameters
1334 *
1335 * RETURN: Status
1336 *
1337 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1338 * immediately executes function on a separate thread.
1339 *
1340 ******************************************************************************/
1341
1342 acpi_status acpi_os_execute(acpi_execute_type type,
1343 acpi_osd_exec_callback function, void *context)
1344 {
1345 acpi_status status = AE_OK;
1346 struct acpi_os_dpc *dpc;
1347 struct workqueue_struct *queue;
1348 int ret;
1349 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1350 "Scheduling function [%p(%p)] for deferred execution.\n",
1351 function, context));
1352
1353 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1354 ret = acpi_debugger_create_thread(function, context);
1355 if (ret) {
1356 pr_err("Call to kthread_create() failed.\n");
1357 status = AE_ERROR;
1358 }
1359 goto out_thread;
1360 }
1361
1362 /*
1363 * Allocate/initialize DPC structure. Note that this memory will be
1364 * freed by the callee. The kernel handles the work_struct list in a
1365 * way that allows us to also free its memory inside the callee.
1366 * Because we may want to schedule several tasks with different
1367 * parameters we can't use the approach some kernel code uses of
1368 * having a static work_struct.
1369 */
1370
1371 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1372 if (!dpc)
1373 return AE_NO_MEMORY;
1374
1375 dpc->function = function;
1376 dpc->context = context;
1377
1378 /*
1379 * To prevent lockdep from complaining unnecessarily, make sure that
1380 * there is a different static lockdep key for each workqueue by using
1381 * INIT_WORK() for each of them separately.
1382 */
1383 if (type == OSL_NOTIFY_HANDLER) {
1384 queue = kacpi_notify_wq;
1385 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1386 } else if (type == OSL_GPE_HANDLER) {
1387 queue = kacpid_wq;
1388 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1389 } else {
1390 pr_err("Unsupported os_execute type %d.\n", type);
1391 status = AE_ERROR;
1392 }
1393
1394 if (ACPI_FAILURE(status))
1395 goto err_workqueue;
1396
1397 /*
1398 * On some machines, a software-initiated SMI causes corruption unless
1399 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1400 * typically it's done in GPE-related methods that are run via
1401 * workqueues, so we can avoid the known corruption cases by always
1402 * queueing on CPU 0.
1403 */
1404 ret = queue_work_on(0, queue, &dpc->work);
1405 if (!ret) {
1406 printk(KERN_ERR PREFIX
1407 "Call to queue_work() failed.\n");
1408 status = AE_ERROR;
1409 }
1410 err_workqueue:
1411 if (ACPI_FAILURE(status))
1412 kfree(dpc);
1413 out_thread:
1414 return status;
1415 }
1416 EXPORT_SYMBOL(acpi_os_execute);
1417
1418 void acpi_os_wait_events_complete(void)
1419 {
1420 /*
1421 * Make sure the GPE handler or the fixed event handler is not used
1422 * on another CPU after removal.
1423 */
1424 if (acpi_sci_irq_valid())
1425 synchronize_hardirq(acpi_sci_irq);
1426 flush_workqueue(kacpid_wq);
1427 flush_workqueue(kacpi_notify_wq);
1428 }
1429
1430 struct acpi_hp_work {
1431 struct work_struct work;
1432 struct acpi_device *adev;
1433 u32 src;
1434 };
1435
1436 static void acpi_hotplug_work_fn(struct work_struct *work)
1437 {
1438 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1439
1440 acpi_os_wait_events_complete();
1441 acpi_device_hotplug(hpw->adev, hpw->src);
1442 kfree(hpw);
1443 }
1444
1445 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1446 {
1447 struct acpi_hp_work *hpw;
1448
1449 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1450 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1451 adev, src));
1452
1453 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1454 if (!hpw)
1455 return AE_NO_MEMORY;
1456
1457 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1458 hpw->adev = adev;
1459 hpw->src = src;
1460 /*
1461 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1462 * the hotplug code may call driver .remove() functions, which may
1463 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1464 * these workqueues.
1465 */
1466 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1467 kfree(hpw);
1468 return AE_ERROR;
1469 }
1470 return AE_OK;
1471 }
1472
1473 bool acpi_queue_hotplug_work(struct work_struct *work)
1474 {
1475 return queue_work(kacpi_hotplug_wq, work);
1476 }
1477
1478 acpi_status
1479 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1480 {
1481 struct semaphore *sem = NULL;
1482
1483 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1484 if (!sem)
1485 return AE_NO_MEMORY;
1486
1487 sema_init(sem, initial_units);
1488
1489 *handle = (acpi_handle *) sem;
1490
1491 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1492 *handle, initial_units));
1493
1494 return AE_OK;
1495 }
1496
1497 /*
1498 * TODO: A better way to delete semaphores? Linux doesn't have a
1499 * 'delete_semaphore()' function -- may result in an invalid
1500 * pointer dereference for non-synchronized consumers. Should
1501 * we at least check for blocked threads and signal/cancel them?
1502 */
1503
1504 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1505 {
1506 struct semaphore *sem = (struct semaphore *)handle;
1507
1508 if (!sem)
1509 return AE_BAD_PARAMETER;
1510
1511 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1512
1513 BUG_ON(!list_empty(&sem->wait_list));
1514 kfree(sem);
1515 sem = NULL;
1516
1517 return AE_OK;
1518 }
1519
1520 /*
1521 * TODO: Support for units > 1?
1522 */
1523 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1524 {
1525 acpi_status status = AE_OK;
1526 struct semaphore *sem = (struct semaphore *)handle;
1527 long jiffies;
1528 int ret = 0;
1529
1530 if (!acpi_os_initialized)
1531 return AE_OK;
1532
1533 if (!sem || (units < 1))
1534 return AE_BAD_PARAMETER;
1535
1536 if (units > 1)
1537 return AE_SUPPORT;
1538
1539 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1540 handle, units, timeout));
1541
1542 if (timeout == ACPI_WAIT_FOREVER)
1543 jiffies = MAX_SCHEDULE_TIMEOUT;
1544 else
1545 jiffies = msecs_to_jiffies(timeout);
1546
1547 ret = down_timeout(sem, jiffies);
1548 if (ret)
1549 status = AE_TIME;
1550
1551 if (ACPI_FAILURE(status)) {
1552 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1553 "Failed to acquire semaphore[%p|%d|%d], %s",
1554 handle, units, timeout,
1555 acpi_format_exception(status)));
1556 } else {
1557 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1558 "Acquired semaphore[%p|%d|%d]", handle,
1559 units, timeout));
1560 }
1561
1562 return status;
1563 }
1564
1565 /*
1566 * TODO: Support for units > 1?
1567 */
1568 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1569 {
1570 struct semaphore *sem = (struct semaphore *)handle;
1571
1572 if (!acpi_os_initialized)
1573 return AE_OK;
1574
1575 if (!sem || (units < 1))
1576 return AE_BAD_PARAMETER;
1577
1578 if (units > 1)
1579 return AE_SUPPORT;
1580
1581 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1582 units));
1583
1584 up(sem);
1585
1586 return AE_OK;
1587 }
1588
1589 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1590 {
1591 #ifdef ENABLE_DEBUGGER
1592 if (acpi_in_debugger) {
1593 u32 chars;
1594
1595 kdb_read(buffer, buffer_length);
1596
1597 /* remove the CR kdb includes */
1598 chars = strlen(buffer) - 1;
1599 buffer[chars] = '\0';
1600 }
1601 #else
1602 int ret;
1603
1604 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1605 if (ret < 0)
1606 return AE_ERROR;
1607 if (bytes_read)
1608 *bytes_read = ret;
1609 #endif
1610
1611 return AE_OK;
1612 }
1613 EXPORT_SYMBOL(acpi_os_get_line);
1614
1615 acpi_status acpi_os_wait_command_ready(void)
1616 {
1617 int ret;
1618
1619 ret = acpi_debugger_wait_command_ready();
1620 if (ret < 0)
1621 return AE_ERROR;
1622 return AE_OK;
1623 }
1624
1625 acpi_status acpi_os_notify_command_complete(void)
1626 {
1627 int ret;
1628
1629 ret = acpi_debugger_notify_command_complete();
1630 if (ret < 0)
1631 return AE_ERROR;
1632 return AE_OK;
1633 }
1634
1635 acpi_status acpi_os_signal(u32 function, void *info)
1636 {
1637 switch (function) {
1638 case ACPI_SIGNAL_FATAL:
1639 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1640 break;
1641 case ACPI_SIGNAL_BREAKPOINT:
1642 /*
1643 * AML Breakpoint
1644 * ACPI spec. says to treat it as a NOP unless
1645 * you are debugging. So if/when we integrate
1646 * AML debugger into the kernel debugger its
1647 * hook will go here. But until then it is
1648 * not useful to print anything on breakpoints.
1649 */
1650 break;
1651 default:
1652 break;
1653 }
1654
1655 return AE_OK;
1656 }
1657
1658 static int __init acpi_os_name_setup(char *str)
1659 {
1660 char *p = acpi_os_name;
1661 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1662
1663 if (!str || !*str)
1664 return 0;
1665
1666 for (; count-- && *str; str++) {
1667 if (isalnum(*str) || *str == ' ' || *str == ':')
1668 *p++ = *str;
1669 else if (*str == '\'' || *str == '"')
1670 continue;
1671 else
1672 break;
1673 }
1674 *p = 0;
1675
1676 return 1;
1677
1678 }
1679
1680 __setup("acpi_os_name=", acpi_os_name_setup);
1681
1682 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1683 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1684
1685 struct osi_setup_entry {
1686 char string[OSI_STRING_LENGTH_MAX];
1687 bool enable;
1688 };
1689
1690 static struct osi_setup_entry
1691 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = {
1692 {"Module Device", true},
1693 {"Processor Device", true},
1694 {"3.0 _SCP Extensions", true},
1695 {"Processor Aggregator Device", true},
1696 };
1697
1698 void __init acpi_osi_setup(char *str)
1699 {
1700 struct osi_setup_entry *osi;
1701 bool enable = true;
1702 int i;
1703
1704 if (!acpi_gbl_create_osi_method)
1705 return;
1706
1707 if (str == NULL || *str == '\0') {
1708 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1709 acpi_gbl_create_osi_method = FALSE;
1710 return;
1711 }
1712
1713 if (*str == '!') {
1714 str++;
1715 if (*str == '\0') {
1716 osi_linux.default_disabling = 1;
1717 return;
1718 } else if (*str == '*') {
1719 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS);
1720 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1721 osi = &osi_setup_entries[i];
1722 osi->enable = false;
1723 }
1724 return;
1725 }
1726 enable = false;
1727 }
1728
1729 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1730 osi = &osi_setup_entries[i];
1731 if (!strcmp(osi->string, str)) {
1732 osi->enable = enable;
1733 break;
1734 } else if (osi->string[0] == '\0') {
1735 osi->enable = enable;
1736 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1737 break;
1738 }
1739 }
1740 }
1741
1742 static void __init set_osi_linux(unsigned int enable)
1743 {
1744 if (osi_linux.enable != enable)
1745 osi_linux.enable = enable;
1746
1747 if (osi_linux.enable)
1748 acpi_osi_setup("Linux");
1749 else
1750 acpi_osi_setup("!Linux");
1751
1752 return;
1753 }
1754
1755 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1756 {
1757 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1758 osi_linux.dmi = 0;
1759 set_osi_linux(enable);
1760
1761 return;
1762 }
1763
1764 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1765 {
1766 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1767
1768 if (enable == -1)
1769 return;
1770
1771 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1772 set_osi_linux(enable);
1773
1774 return;
1775 }
1776
1777 /*
1778 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1779 *
1780 * empty string disables _OSI
1781 * string starting with '!' disables that string
1782 * otherwise string is added to list, augmenting built-in strings
1783 */
1784 static void __init acpi_osi_setup_late(void)
1785 {
1786 struct osi_setup_entry *osi;
1787 char *str;
1788 int i;
1789 acpi_status status;
1790
1791 if (osi_linux.default_disabling) {
1792 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
1793
1794 if (ACPI_SUCCESS(status))
1795 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n");
1796 }
1797
1798 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1799 osi = &osi_setup_entries[i];
1800 str = osi->string;
1801
1802 if (*str == '\0')
1803 break;
1804 if (osi->enable) {
1805 status = acpi_install_interface(str);
1806
1807 if (ACPI_SUCCESS(status))
1808 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1809 } else {
1810 status = acpi_remove_interface(str);
1811
1812 if (ACPI_SUCCESS(status))
1813 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1814 }
1815 }
1816 }
1817
1818 static int __init osi_setup(char *str)
1819 {
1820 if (str && !strcmp("Linux", str))
1821 acpi_cmdline_osi_linux(1);
1822 else if (str && !strcmp("!Linux", str))
1823 acpi_cmdline_osi_linux(0);
1824 else
1825 acpi_osi_setup(str);
1826
1827 return 1;
1828 }
1829
1830 __setup("acpi_osi=", osi_setup);
1831
1832 /*
1833 * Disable the auto-serialization of named objects creation methods.
1834 *
1835 * This feature is enabled by default. It marks the AML control methods
1836 * that contain the opcodes to create named objects as "Serialized".
1837 */
1838 static int __init acpi_no_auto_serialize_setup(char *str)
1839 {
1840 acpi_gbl_auto_serialize_methods = FALSE;
1841 pr_info("ACPI: auto-serialization disabled\n");
1842
1843 return 1;
1844 }
1845
1846 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1847
1848 /* Check of resource interference between native drivers and ACPI
1849 * OperationRegions (SystemIO and System Memory only).
1850 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1851 * in arbitrary AML code and can interfere with legacy drivers.
1852 * acpi_enforce_resources= can be set to:
1853 *
1854 * - strict (default) (2)
1855 * -> further driver trying to access the resources will not load
1856 * - lax (1)
1857 * -> further driver trying to access the resources will load, but you
1858 * get a system message that something might go wrong...
1859 *
1860 * - no (0)
1861 * -> ACPI Operation Region resources will not be registered
1862 *
1863 */
1864 #define ENFORCE_RESOURCES_STRICT 2
1865 #define ENFORCE_RESOURCES_LAX 1
1866 #define ENFORCE_RESOURCES_NO 0
1867
1868 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1869
1870 static int __init acpi_enforce_resources_setup(char *str)
1871 {
1872 if (str == NULL || *str == '\0')
1873 return 0;
1874
1875 if (!strcmp("strict", str))
1876 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1877 else if (!strcmp("lax", str))
1878 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1879 else if (!strcmp("no", str))
1880 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1881
1882 return 1;
1883 }
1884
1885 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1886
1887 /* Check for resource conflicts between ACPI OperationRegions and native
1888 * drivers */
1889 int acpi_check_resource_conflict(const struct resource *res)
1890 {
1891 acpi_adr_space_type space_id;
1892 acpi_size length;
1893 u8 warn = 0;
1894 int clash = 0;
1895
1896 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1897 return 0;
1898 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1899 return 0;
1900
1901 if (res->flags & IORESOURCE_IO)
1902 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1903 else
1904 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1905
1906 length = resource_size(res);
1907 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1908 warn = 1;
1909 clash = acpi_check_address_range(space_id, res->start, length, warn);
1910
1911 if (clash) {
1912 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1913 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1914 printk(KERN_NOTICE "ACPI: This conflict may"
1915 " cause random problems and system"
1916 " instability\n");
1917 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1918 " for this device, you should use it instead of"
1919 " the native driver\n");
1920 }
1921 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1922 return -EBUSY;
1923 }
1924 return 0;
1925 }
1926 EXPORT_SYMBOL(acpi_check_resource_conflict);
1927
1928 int acpi_check_region(resource_size_t start, resource_size_t n,
1929 const char *name)
1930 {
1931 struct resource res = {
1932 .start = start,
1933 .end = start + n - 1,
1934 .name = name,
1935 .flags = IORESOURCE_IO,
1936 };
1937
1938 return acpi_check_resource_conflict(&res);
1939 }
1940 EXPORT_SYMBOL(acpi_check_region);
1941
1942 /*
1943 * Let drivers know whether the resource checks are effective
1944 */
1945 int acpi_resources_are_enforced(void)
1946 {
1947 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1948 }
1949 EXPORT_SYMBOL(acpi_resources_are_enforced);
1950
1951 bool acpi_osi_is_win8(void)
1952 {
1953 return acpi_gbl_osi_data >= ACPI_OSI_WIN_8;
1954 }
1955 EXPORT_SYMBOL(acpi_osi_is_win8);
1956
1957 /*
1958 * Deallocate the memory for a spinlock.
1959 */
1960 void acpi_os_delete_lock(acpi_spinlock handle)
1961 {
1962 ACPI_FREE(handle);
1963 }
1964
1965 /*
1966 * Acquire a spinlock.
1967 *
1968 * handle is a pointer to the spinlock_t.
1969 */
1970
1971 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1972 {
1973 acpi_cpu_flags flags;
1974 spin_lock_irqsave(lockp, flags);
1975 return flags;
1976 }
1977
1978 /*
1979 * Release a spinlock. See above.
1980 */
1981
1982 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1983 {
1984 spin_unlock_irqrestore(lockp, flags);
1985 }
1986
1987 #ifndef ACPI_USE_LOCAL_CACHE
1988
1989 /*******************************************************************************
1990 *
1991 * FUNCTION: acpi_os_create_cache
1992 *
1993 * PARAMETERS: name - Ascii name for the cache
1994 * size - Size of each cached object
1995 * depth - Maximum depth of the cache (in objects) <ignored>
1996 * cache - Where the new cache object is returned
1997 *
1998 * RETURN: status
1999 *
2000 * DESCRIPTION: Create a cache object
2001 *
2002 ******************************************************************************/
2003
2004 acpi_status
2005 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
2006 {
2007 *cache = kmem_cache_create(name, size, 0, 0, NULL);
2008 if (*cache == NULL)
2009 return AE_ERROR;
2010 else
2011 return AE_OK;
2012 }
2013
2014 /*******************************************************************************
2015 *
2016 * FUNCTION: acpi_os_purge_cache
2017 *
2018 * PARAMETERS: Cache - Handle to cache object
2019 *
2020 * RETURN: Status
2021 *
2022 * DESCRIPTION: Free all objects within the requested cache.
2023 *
2024 ******************************************************************************/
2025
2026 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
2027 {
2028 kmem_cache_shrink(cache);
2029 return (AE_OK);
2030 }
2031
2032 /*******************************************************************************
2033 *
2034 * FUNCTION: acpi_os_delete_cache
2035 *
2036 * PARAMETERS: Cache - Handle to cache object
2037 *
2038 * RETURN: Status
2039 *
2040 * DESCRIPTION: Free all objects within the requested cache and delete the
2041 * cache object.
2042 *
2043 ******************************************************************************/
2044
2045 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
2046 {
2047 kmem_cache_destroy(cache);
2048 return (AE_OK);
2049 }
2050
2051 /*******************************************************************************
2052 *
2053 * FUNCTION: acpi_os_release_object
2054 *
2055 * PARAMETERS: Cache - Handle to cache object
2056 * Object - The object to be released
2057 *
2058 * RETURN: None
2059 *
2060 * DESCRIPTION: Release an object to the specified cache. If cache is full,
2061 * the object is deleted.
2062 *
2063 ******************************************************************************/
2064
2065 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
2066 {
2067 kmem_cache_free(cache, object);
2068 return (AE_OK);
2069 }
2070 #endif
2071
2072 static int __init acpi_no_static_ssdt_setup(char *s)
2073 {
2074 acpi_gbl_disable_ssdt_table_install = TRUE;
2075 pr_info("ACPI: static SSDT installation disabled\n");
2076
2077 return 0;
2078 }
2079
2080 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
2081
2082 static int __init acpi_disable_return_repair(char *s)
2083 {
2084 printk(KERN_NOTICE PREFIX
2085 "ACPI: Predefined validation mechanism disabled\n");
2086 acpi_gbl_disable_auto_repair = TRUE;
2087
2088 return 1;
2089 }
2090
2091 __setup("acpica_no_return_repair", acpi_disable_return_repair);
2092
2093 acpi_status __init acpi_os_initialize(void)
2094 {
2095 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2096 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2097 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
2098 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
2099 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
2100 /*
2101 * Use acpi_os_map_generic_address to pre-map the reset
2102 * register if it's in system memory.
2103 */
2104 int rv;
2105
2106 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
2107 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
2108 }
2109 acpi_os_initialized = true;
2110
2111 return AE_OK;
2112 }
2113
2114 acpi_status __init acpi_os_initialize1(void)
2115 {
2116 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
2117 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
2118 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
2119 BUG_ON(!kacpid_wq);
2120 BUG_ON(!kacpi_notify_wq);
2121 BUG_ON(!kacpi_hotplug_wq);
2122 acpi_install_interface_handler(acpi_osi_handler);
2123 acpi_osi_setup_late();
2124 return AE_OK;
2125 }
2126
2127 acpi_status acpi_os_terminate(void)
2128 {
2129 if (acpi_irq_handler) {
2130 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
2131 acpi_irq_handler);
2132 }
2133
2134 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
2135 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
2136 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2137 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2138 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
2139 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
2140
2141 destroy_workqueue(kacpid_wq);
2142 destroy_workqueue(kacpi_notify_wq);
2143 destroy_workqueue(kacpi_hotplug_wq);
2144
2145 return AE_OK;
2146 }
2147
2148 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
2149 u32 pm1b_control)
2150 {
2151 int rc = 0;
2152 if (__acpi_os_prepare_sleep)
2153 rc = __acpi_os_prepare_sleep(sleep_state,
2154 pm1a_control, pm1b_control);
2155 if (rc < 0)
2156 return AE_ERROR;
2157 else if (rc > 0)
2158 return AE_CTRL_SKIP;
2159
2160 return AE_OK;
2161 }
2162
2163 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
2164 u32 pm1a_ctrl, u32 pm1b_ctrl))
2165 {
2166 __acpi_os_prepare_sleep = func;
2167 }
2168
2169 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
2170 u32 val_b)
2171 {
2172 int rc = 0;
2173 if (__acpi_os_prepare_extended_sleep)
2174 rc = __acpi_os_prepare_extended_sleep(sleep_state,
2175 val_a, val_b);
2176 if (rc < 0)
2177 return AE_ERROR;
2178 else if (rc > 0)
2179 return AE_CTRL_SKIP;
2180
2181 return AE_OK;
2182 }
2183
2184 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
2185 u32 val_a, u32 val_b))
2186 {
2187 __acpi_os_prepare_extended_sleep = func;
2188 }
This page took 0.081392 seconds and 5 git commands to generate.