a8c417c2f480deba28b8acdcb2fdc6e6aac24bc2
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57 };
58
59 #ifdef CONFIG_ACPI_CUSTOM_DSDT
60 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
61 #endif
62
63 #ifdef ENABLE_DEBUGGER
64 #include <linux/kdb.h>
65
66 /* stuff for debugger support */
67 int acpi_in_debugger;
68 EXPORT_SYMBOL(acpi_in_debugger);
69 #endif /*ENABLE_DEBUGGER */
70
71 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
72 u32 pm1b_ctrl);
73 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
74 u32 val_b);
75
76 static acpi_osd_handler acpi_irq_handler;
77 static void *acpi_irq_context;
78 static struct workqueue_struct *kacpid_wq;
79 static struct workqueue_struct *kacpi_notify_wq;
80 static struct workqueue_struct *kacpi_hotplug_wq;
81 static bool acpi_os_initialized;
82 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
83
84 /*
85 * This list of permanent mappings is for memory that may be accessed from
86 * interrupt context, where we can't do the ioremap().
87 */
88 struct acpi_ioremap {
89 struct list_head list;
90 void __iomem *virt;
91 acpi_physical_address phys;
92 acpi_size size;
93 unsigned long refcount;
94 };
95
96 static LIST_HEAD(acpi_ioremaps);
97 static DEFINE_MUTEX(acpi_ioremap_lock);
98
99 static void __init acpi_osi_setup_late(void);
100
101 /*
102 * The story of _OSI(Linux)
103 *
104 * From pre-history through Linux-2.6.22,
105 * Linux responded TRUE upon a BIOS OSI(Linux) query.
106 *
107 * Unfortunately, reference BIOS writers got wind of this
108 * and put OSI(Linux) in their example code, quickly exposing
109 * this string as ill-conceived and opening the door to
110 * an un-bounded number of BIOS incompatibilities.
111 *
112 * For example, OSI(Linux) was used on resume to re-POST a
113 * video card on one system, because Linux at that time
114 * could not do a speedy restore in its native driver.
115 * But then upon gaining quick native restore capability,
116 * Linux has no way to tell the BIOS to skip the time-consuming
117 * POST -- putting Linux at a permanent performance disadvantage.
118 * On another system, the BIOS writer used OSI(Linux)
119 * to infer native OS support for IPMI! On other systems,
120 * OSI(Linux) simply got in the way of Linux claiming to
121 * be compatible with other operating systems, exposing
122 * BIOS issues such as skipped device initialization.
123 *
124 * So "Linux" turned out to be a really poor chose of
125 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
126 *
127 * BIOS writers should NOT query _OSI(Linux) on future systems.
128 * Linux will complain on the console when it sees it, and return FALSE.
129 * To get Linux to return TRUE for your system will require
130 * a kernel source update to add a DMI entry,
131 * or boot with "acpi_osi=Linux"
132 */
133
134 static struct osi_linux {
135 unsigned int enable:1;
136 unsigned int dmi:1;
137 unsigned int cmdline:1;
138 unsigned int default_disabling:1;
139 } osi_linux = {0, 0, 0, 0};
140
141 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
142 {
143 if (!strcmp("Linux", interface)) {
144
145 printk_once(KERN_NOTICE FW_BUG PREFIX
146 "BIOS _OSI(Linux) query %s%s\n",
147 osi_linux.enable ? "honored" : "ignored",
148 osi_linux.cmdline ? " via cmdline" :
149 osi_linux.dmi ? " via DMI" : "");
150 }
151
152 if (!strcmp("Darwin", interface)) {
153 /*
154 * Apple firmware will behave poorly if it receives positive
155 * answers to "Darwin" and any other OS. Respond positively
156 * to Darwin and then disable all other vendor strings.
157 */
158 acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
159 supported = ACPI_UINT32_MAX;
160 }
161
162 return supported;
163 }
164
165 static void __init acpi_request_region (struct acpi_generic_address *gas,
166 unsigned int length, char *desc)
167 {
168 u64 addr;
169
170 /* Handle possible alignment issues */
171 memcpy(&addr, &gas->address, sizeof(addr));
172 if (!addr || !length)
173 return;
174
175 /* Resources are never freed */
176 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
177 request_region(addr, length, desc);
178 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
179 request_mem_region(addr, length, desc);
180 }
181
182 static int __init acpi_reserve_resources(void)
183 {
184 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
185 "ACPI PM1a_EVT_BLK");
186
187 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
188 "ACPI PM1b_EVT_BLK");
189
190 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
191 "ACPI PM1a_CNT_BLK");
192
193 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
194 "ACPI PM1b_CNT_BLK");
195
196 if (acpi_gbl_FADT.pm_timer_length == 4)
197 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
198
199 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
200 "ACPI PM2_CNT_BLK");
201
202 /* Length of GPE blocks must be a non-negative multiple of 2 */
203
204 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
205 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
206 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
207
208 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
209 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
210 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
211
212 return 0;
213 }
214 fs_initcall_sync(acpi_reserve_resources);
215
216 void acpi_os_printf(const char *fmt, ...)
217 {
218 va_list args;
219 va_start(args, fmt);
220 acpi_os_vprintf(fmt, args);
221 va_end(args);
222 }
223 EXPORT_SYMBOL(acpi_os_printf);
224
225 void acpi_os_vprintf(const char *fmt, va_list args)
226 {
227 static char buffer[512];
228
229 vsprintf(buffer, fmt, args);
230
231 #ifdef ENABLE_DEBUGGER
232 if (acpi_in_debugger) {
233 kdb_printf("%s", buffer);
234 } else {
235 printk(KERN_CONT "%s", buffer);
236 }
237 #else
238 if (acpi_debugger_write_log(buffer) < 0)
239 printk(KERN_CONT "%s", buffer);
240 #endif
241 }
242
243 #ifdef CONFIG_KEXEC
244 static unsigned long acpi_rsdp;
245 static int __init setup_acpi_rsdp(char *arg)
246 {
247 if (kstrtoul(arg, 16, &acpi_rsdp))
248 return -EINVAL;
249 return 0;
250 }
251 early_param("acpi_rsdp", setup_acpi_rsdp);
252 #endif
253
254 acpi_physical_address __init acpi_os_get_root_pointer(void)
255 {
256 #ifdef CONFIG_KEXEC
257 if (acpi_rsdp)
258 return acpi_rsdp;
259 #endif
260
261 if (efi_enabled(EFI_CONFIG_TABLES)) {
262 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
263 return efi.acpi20;
264 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
265 return efi.acpi;
266 else {
267 printk(KERN_ERR PREFIX
268 "System description tables not found\n");
269 return 0;
270 }
271 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
272 acpi_physical_address pa = 0;
273
274 acpi_find_root_pointer(&pa);
275 return pa;
276 }
277
278 return 0;
279 }
280
281 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
282 static struct acpi_ioremap *
283 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
284 {
285 struct acpi_ioremap *map;
286
287 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
288 if (map->phys <= phys &&
289 phys + size <= map->phys + map->size)
290 return map;
291
292 return NULL;
293 }
294
295 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
296 static void __iomem *
297 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
298 {
299 struct acpi_ioremap *map;
300
301 map = acpi_map_lookup(phys, size);
302 if (map)
303 return map->virt + (phys - map->phys);
304
305 return NULL;
306 }
307
308 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
309 {
310 struct acpi_ioremap *map;
311 void __iomem *virt = NULL;
312
313 mutex_lock(&acpi_ioremap_lock);
314 map = acpi_map_lookup(phys, size);
315 if (map) {
316 virt = map->virt + (phys - map->phys);
317 map->refcount++;
318 }
319 mutex_unlock(&acpi_ioremap_lock);
320 return virt;
321 }
322 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
323
324 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
325 static struct acpi_ioremap *
326 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
327 {
328 struct acpi_ioremap *map;
329
330 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
331 if (map->virt <= virt &&
332 virt + size <= map->virt + map->size)
333 return map;
334
335 return NULL;
336 }
337
338 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
339 /* ioremap will take care of cache attributes */
340 #define should_use_kmap(pfn) 0
341 #else
342 #define should_use_kmap(pfn) page_is_ram(pfn)
343 #endif
344
345 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
346 {
347 unsigned long pfn;
348
349 pfn = pg_off >> PAGE_SHIFT;
350 if (should_use_kmap(pfn)) {
351 if (pg_sz > PAGE_SIZE)
352 return NULL;
353 return (void __iomem __force *)kmap(pfn_to_page(pfn));
354 } else
355 return acpi_os_ioremap(pg_off, pg_sz);
356 }
357
358 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
359 {
360 unsigned long pfn;
361
362 pfn = pg_off >> PAGE_SHIFT;
363 if (should_use_kmap(pfn))
364 kunmap(pfn_to_page(pfn));
365 else
366 iounmap(vaddr);
367 }
368
369 /**
370 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
371 * @phys: Start of the physical address range to map.
372 * @size: Size of the physical address range to map.
373 *
374 * Look up the given physical address range in the list of existing ACPI memory
375 * mappings. If found, get a reference to it and return a pointer to it (its
376 * virtual address). If not found, map it, add it to that list and return a
377 * pointer to it.
378 *
379 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
380 * routine simply calls __acpi_map_table() to get the job done.
381 */
382 void __iomem *__init_refok
383 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
384 {
385 struct acpi_ioremap *map;
386 void __iomem *virt;
387 acpi_physical_address pg_off;
388 acpi_size pg_sz;
389
390 if (phys > ULONG_MAX) {
391 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
392 return NULL;
393 }
394
395 if (!acpi_gbl_permanent_mmap)
396 return __acpi_map_table((unsigned long)phys, size);
397
398 mutex_lock(&acpi_ioremap_lock);
399 /* Check if there's a suitable mapping already. */
400 map = acpi_map_lookup(phys, size);
401 if (map) {
402 map->refcount++;
403 goto out;
404 }
405
406 map = kzalloc(sizeof(*map), GFP_KERNEL);
407 if (!map) {
408 mutex_unlock(&acpi_ioremap_lock);
409 return NULL;
410 }
411
412 pg_off = round_down(phys, PAGE_SIZE);
413 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
414 virt = acpi_map(pg_off, pg_sz);
415 if (!virt) {
416 mutex_unlock(&acpi_ioremap_lock);
417 kfree(map);
418 return NULL;
419 }
420
421 INIT_LIST_HEAD(&map->list);
422 map->virt = virt;
423 map->phys = pg_off;
424 map->size = pg_sz;
425 map->refcount = 1;
426
427 list_add_tail_rcu(&map->list, &acpi_ioremaps);
428
429 out:
430 mutex_unlock(&acpi_ioremap_lock);
431 return map->virt + (phys - map->phys);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
434
435 void *__init_refok
436 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
437 {
438 return (void *)acpi_os_map_iomem(phys, size);
439 }
440 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
441
442 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
443 {
444 if (!--map->refcount)
445 list_del_rcu(&map->list);
446 }
447
448 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
449 {
450 if (!map->refcount) {
451 synchronize_rcu_expedited();
452 acpi_unmap(map->phys, map->virt);
453 kfree(map);
454 }
455 }
456
457 /**
458 * acpi_os_unmap_iomem - Drop a memory mapping reference.
459 * @virt: Start of the address range to drop a reference to.
460 * @size: Size of the address range to drop a reference to.
461 *
462 * Look up the given virtual address range in the list of existing ACPI memory
463 * mappings, drop a reference to it and unmap it if there are no more active
464 * references to it.
465 *
466 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
467 * routine simply calls __acpi_unmap_table() to get the job done. Since
468 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
469 * here.
470 */
471 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
472 {
473 struct acpi_ioremap *map;
474
475 if (!acpi_gbl_permanent_mmap) {
476 __acpi_unmap_table(virt, size);
477 return;
478 }
479
480 mutex_lock(&acpi_ioremap_lock);
481 map = acpi_map_lookup_virt(virt, size);
482 if (!map) {
483 mutex_unlock(&acpi_ioremap_lock);
484 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
485 return;
486 }
487 acpi_os_drop_map_ref(map);
488 mutex_unlock(&acpi_ioremap_lock);
489
490 acpi_os_map_cleanup(map);
491 }
492 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
493
494 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
495 {
496 return acpi_os_unmap_iomem((void __iomem *)virt, size);
497 }
498 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
499
500 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
501 {
502 if (!acpi_gbl_permanent_mmap)
503 __acpi_unmap_table(virt, size);
504 }
505
506 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
507 {
508 u64 addr;
509 void __iomem *virt;
510
511 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
512 return 0;
513
514 /* Handle possible alignment issues */
515 memcpy(&addr, &gas->address, sizeof(addr));
516 if (!addr || !gas->bit_width)
517 return -EINVAL;
518
519 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
520 if (!virt)
521 return -EIO;
522
523 return 0;
524 }
525 EXPORT_SYMBOL(acpi_os_map_generic_address);
526
527 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
528 {
529 u64 addr;
530 struct acpi_ioremap *map;
531
532 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
533 return;
534
535 /* Handle possible alignment issues */
536 memcpy(&addr, &gas->address, sizeof(addr));
537 if (!addr || !gas->bit_width)
538 return;
539
540 mutex_lock(&acpi_ioremap_lock);
541 map = acpi_map_lookup(addr, gas->bit_width / 8);
542 if (!map) {
543 mutex_unlock(&acpi_ioremap_lock);
544 return;
545 }
546 acpi_os_drop_map_ref(map);
547 mutex_unlock(&acpi_ioremap_lock);
548
549 acpi_os_map_cleanup(map);
550 }
551 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
552
553 #ifdef ACPI_FUTURE_USAGE
554 acpi_status
555 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
556 {
557 if (!phys || !virt)
558 return AE_BAD_PARAMETER;
559
560 *phys = virt_to_phys(virt);
561
562 return AE_OK;
563 }
564 #endif
565
566 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
567 static bool acpi_rev_override;
568
569 int __init acpi_rev_override_setup(char *str)
570 {
571 acpi_rev_override = true;
572 return 1;
573 }
574 __setup("acpi_rev_override", acpi_rev_override_setup);
575 #else
576 #define acpi_rev_override false
577 #endif
578
579 #define ACPI_MAX_OVERRIDE_LEN 100
580
581 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
582
583 acpi_status
584 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
585 char **new_val)
586 {
587 if (!init_val || !new_val)
588 return AE_BAD_PARAMETER;
589
590 *new_val = NULL;
591 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
592 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
593 acpi_os_name);
594 *new_val = acpi_os_name;
595 }
596
597 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
598 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
599 *new_val = (char *)5;
600 }
601
602 return AE_OK;
603 }
604
605 static void acpi_table_taint(struct acpi_table_header *table)
606 {
607 pr_warn(PREFIX
608 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n",
609 table->signature, table->oem_table_id);
610 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE);
611 }
612
613 #ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
614 #include <linux/earlycpio.h>
615 #include <linux/memblock.h>
616
617 static u64 acpi_tables_addr;
618 static int all_tables_size;
619
620 /* Copied from acpica/tbutils.c:acpi_tb_checksum() */
621 static u8 __init acpi_table_checksum(u8 *buffer, u32 length)
622 {
623 u8 sum = 0;
624 u8 *end = buffer + length;
625
626 while (buffer < end)
627 sum = (u8) (sum + *(buffer++));
628 return sum;
629 }
630
631 /* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */
632 static const char * const table_sigs[] = {
633 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ,
634 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT,
635 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF,
636 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET,
637 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI,
638 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA,
639 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
640 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
641 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL };
642
643 #define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
644
645 #define ACPI_OVERRIDE_TABLES 64
646 static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES];
647
648 #define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT)
649
650 void __init acpi_initrd_override(void *data, size_t size)
651 {
652 int sig, no, table_nr = 0, total_offset = 0;
653 long offset = 0;
654 struct acpi_table_header *table;
655 char cpio_path[32] = "kernel/firmware/acpi/";
656 struct cpio_data file;
657
658 if (data == NULL || size == 0)
659 return;
660
661 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) {
662 file = find_cpio_data(cpio_path, data, size, &offset);
663 if (!file.data)
664 break;
665
666 data += offset;
667 size -= offset;
668
669 if (file.size < sizeof(struct acpi_table_header)) {
670 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n",
671 cpio_path, file.name);
672 continue;
673 }
674
675 table = file.data;
676
677 for (sig = 0; table_sigs[sig]; sig++)
678 if (!memcmp(table->signature, table_sigs[sig], 4))
679 break;
680
681 if (!table_sigs[sig]) {
682 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n",
683 cpio_path, file.name);
684 continue;
685 }
686 if (file.size != table->length) {
687 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n",
688 cpio_path, file.name);
689 continue;
690 }
691 if (acpi_table_checksum(file.data, table->length)) {
692 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n",
693 cpio_path, file.name);
694 continue;
695 }
696
697 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n",
698 table->signature, cpio_path, file.name, table->length);
699
700 all_tables_size += table->length;
701 acpi_initrd_files[table_nr].data = file.data;
702 acpi_initrd_files[table_nr].size = file.size;
703 table_nr++;
704 }
705 if (table_nr == 0)
706 return;
707
708 acpi_tables_addr =
709 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT,
710 all_tables_size, PAGE_SIZE);
711 if (!acpi_tables_addr) {
712 WARN_ON(1);
713 return;
714 }
715 /*
716 * Only calling e820_add_reserve does not work and the
717 * tables are invalid (memory got used) later.
718 * memblock_reserve works as expected and the tables won't get modified.
719 * But it's not enough on X86 because ioremap will
720 * complain later (used by acpi_os_map_memory) that the pages
721 * that should get mapped are not marked "reserved".
722 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area)
723 * works fine.
724 */
725 memblock_reserve(acpi_tables_addr, all_tables_size);
726 arch_reserve_mem_area(acpi_tables_addr, all_tables_size);
727
728 /*
729 * early_ioremap only can remap 256k one time. If we map all
730 * tables one time, we will hit the limit. Need to map chunks
731 * one by one during copying the same as that in relocate_initrd().
732 */
733 for (no = 0; no < table_nr; no++) {
734 unsigned char *src_p = acpi_initrd_files[no].data;
735 phys_addr_t size = acpi_initrd_files[no].size;
736 phys_addr_t dest_addr = acpi_tables_addr + total_offset;
737 phys_addr_t slop, clen;
738 char *dest_p;
739
740 total_offset += size;
741
742 while (size) {
743 slop = dest_addr & ~PAGE_MASK;
744 clen = size;
745 if (clen > MAP_CHUNK_SIZE - slop)
746 clen = MAP_CHUNK_SIZE - slop;
747 dest_p = early_ioremap(dest_addr & PAGE_MASK,
748 clen + slop);
749 memcpy(dest_p + slop, src_p, clen);
750 early_iounmap(dest_p, clen + slop);
751 src_p += clen;
752 dest_addr += clen;
753 size -= clen;
754 }
755 }
756 }
757
758 acpi_status
759 acpi_os_physical_table_override(struct acpi_table_header *existing_table,
760 acpi_physical_address *address, u32 *length)
761 {
762 int table_offset = 0;
763 struct acpi_table_header *table;
764 u32 table_length;
765
766 *length = 0;
767 *address = 0;
768 if (!acpi_tables_addr)
769 return AE_OK;
770
771 while (table_offset + ACPI_HEADER_SIZE <= all_tables_size) {
772 table = acpi_os_map_memory(acpi_tables_addr + table_offset,
773 ACPI_HEADER_SIZE);
774 if (table_offset + table->length > all_tables_size) {
775 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
776 WARN_ON(1);
777 return AE_OK;
778 }
779
780 table_length = table->length;
781
782 /* Only override tables matched */
783 if (memcmp(existing_table->signature, table->signature, 4) ||
784 memcmp(table->oem_table_id, existing_table->oem_table_id,
785 ACPI_OEM_TABLE_ID_SIZE)) {
786 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
787 goto next_table;
788 }
789
790 *length = table_length;
791 *address = acpi_tables_addr + table_offset;
792 acpi_table_taint(existing_table);
793 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
794 break;
795
796 next_table:
797 table_offset += table_length;
798 }
799 return AE_OK;
800 }
801 #else
802 acpi_status
803 acpi_os_physical_table_override(struct acpi_table_header *existing_table,
804 acpi_physical_address *address,
805 u32 *table_length)
806 {
807 *table_length = 0;
808 *address = 0;
809 return AE_OK;
810 }
811 #endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */
812
813 acpi_status
814 acpi_os_table_override(struct acpi_table_header *existing_table,
815 struct acpi_table_header **new_table)
816 {
817 if (!existing_table || !new_table)
818 return AE_BAD_PARAMETER;
819
820 *new_table = NULL;
821
822 #ifdef CONFIG_ACPI_CUSTOM_DSDT
823 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
824 *new_table = (struct acpi_table_header *)AmlCode;
825 #endif
826 if (*new_table != NULL)
827 acpi_table_taint(existing_table);
828 return AE_OK;
829 }
830
831 static irqreturn_t acpi_irq(int irq, void *dev_id)
832 {
833 u32 handled;
834
835 handled = (*acpi_irq_handler) (acpi_irq_context);
836
837 if (handled) {
838 acpi_irq_handled++;
839 return IRQ_HANDLED;
840 } else {
841 acpi_irq_not_handled++;
842 return IRQ_NONE;
843 }
844 }
845
846 acpi_status
847 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
848 void *context)
849 {
850 unsigned int irq;
851
852 acpi_irq_stats_init();
853
854 /*
855 * ACPI interrupts different from the SCI in our copy of the FADT are
856 * not supported.
857 */
858 if (gsi != acpi_gbl_FADT.sci_interrupt)
859 return AE_BAD_PARAMETER;
860
861 if (acpi_irq_handler)
862 return AE_ALREADY_ACQUIRED;
863
864 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
865 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
866 gsi);
867 return AE_OK;
868 }
869
870 acpi_irq_handler = handler;
871 acpi_irq_context = context;
872 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
873 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
874 acpi_irq_handler = NULL;
875 return AE_NOT_ACQUIRED;
876 }
877 acpi_sci_irq = irq;
878
879 return AE_OK;
880 }
881
882 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
883 {
884 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
885 return AE_BAD_PARAMETER;
886
887 free_irq(acpi_sci_irq, acpi_irq);
888 acpi_irq_handler = NULL;
889 acpi_sci_irq = INVALID_ACPI_IRQ;
890
891 return AE_OK;
892 }
893
894 /*
895 * Running in interpreter thread context, safe to sleep
896 */
897
898 void acpi_os_sleep(u64 ms)
899 {
900 msleep(ms);
901 }
902
903 void acpi_os_stall(u32 us)
904 {
905 while (us) {
906 u32 delay = 1000;
907
908 if (delay > us)
909 delay = us;
910 udelay(delay);
911 touch_nmi_watchdog();
912 us -= delay;
913 }
914 }
915
916 /*
917 * Support ACPI 3.0 AML Timer operand
918 * Returns 64-bit free-running, monotonically increasing timer
919 * with 100ns granularity
920 */
921 u64 acpi_os_get_timer(void)
922 {
923 u64 time_ns = ktime_to_ns(ktime_get());
924 do_div(time_ns, 100);
925 return time_ns;
926 }
927
928 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
929 {
930 u32 dummy;
931
932 if (!value)
933 value = &dummy;
934
935 *value = 0;
936 if (width <= 8) {
937 *(u8 *) value = inb(port);
938 } else if (width <= 16) {
939 *(u16 *) value = inw(port);
940 } else if (width <= 32) {
941 *(u32 *) value = inl(port);
942 } else {
943 BUG();
944 }
945
946 return AE_OK;
947 }
948
949 EXPORT_SYMBOL(acpi_os_read_port);
950
951 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
952 {
953 if (width <= 8) {
954 outb(value, port);
955 } else if (width <= 16) {
956 outw(value, port);
957 } else if (width <= 32) {
958 outl(value, port);
959 } else {
960 BUG();
961 }
962
963 return AE_OK;
964 }
965
966 EXPORT_SYMBOL(acpi_os_write_port);
967
968 acpi_status
969 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
970 {
971 void __iomem *virt_addr;
972 unsigned int size = width / 8;
973 bool unmap = false;
974 u64 dummy;
975
976 rcu_read_lock();
977 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
978 if (!virt_addr) {
979 rcu_read_unlock();
980 virt_addr = acpi_os_ioremap(phys_addr, size);
981 if (!virt_addr)
982 return AE_BAD_ADDRESS;
983 unmap = true;
984 }
985
986 if (!value)
987 value = &dummy;
988
989 switch (width) {
990 case 8:
991 *(u8 *) value = readb(virt_addr);
992 break;
993 case 16:
994 *(u16 *) value = readw(virt_addr);
995 break;
996 case 32:
997 *(u32 *) value = readl(virt_addr);
998 break;
999 case 64:
1000 *(u64 *) value = readq(virt_addr);
1001 break;
1002 default:
1003 BUG();
1004 }
1005
1006 if (unmap)
1007 iounmap(virt_addr);
1008 else
1009 rcu_read_unlock();
1010
1011 return AE_OK;
1012 }
1013
1014 acpi_status
1015 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
1016 {
1017 void __iomem *virt_addr;
1018 unsigned int size = width / 8;
1019 bool unmap = false;
1020
1021 rcu_read_lock();
1022 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1023 if (!virt_addr) {
1024 rcu_read_unlock();
1025 virt_addr = acpi_os_ioremap(phys_addr, size);
1026 if (!virt_addr)
1027 return AE_BAD_ADDRESS;
1028 unmap = true;
1029 }
1030
1031 switch (width) {
1032 case 8:
1033 writeb(value, virt_addr);
1034 break;
1035 case 16:
1036 writew(value, virt_addr);
1037 break;
1038 case 32:
1039 writel(value, virt_addr);
1040 break;
1041 case 64:
1042 writeq(value, virt_addr);
1043 break;
1044 default:
1045 BUG();
1046 }
1047
1048 if (unmap)
1049 iounmap(virt_addr);
1050 else
1051 rcu_read_unlock();
1052
1053 return AE_OK;
1054 }
1055
1056 acpi_status
1057 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1058 u64 *value, u32 width)
1059 {
1060 int result, size;
1061 u32 value32;
1062
1063 if (!value)
1064 return AE_BAD_PARAMETER;
1065
1066 switch (width) {
1067 case 8:
1068 size = 1;
1069 break;
1070 case 16:
1071 size = 2;
1072 break;
1073 case 32:
1074 size = 4;
1075 break;
1076 default:
1077 return AE_ERROR;
1078 }
1079
1080 result = raw_pci_read(pci_id->segment, pci_id->bus,
1081 PCI_DEVFN(pci_id->device, pci_id->function),
1082 reg, size, &value32);
1083 *value = value32;
1084
1085 return (result ? AE_ERROR : AE_OK);
1086 }
1087
1088 acpi_status
1089 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1090 u64 value, u32 width)
1091 {
1092 int result, size;
1093
1094 switch (width) {
1095 case 8:
1096 size = 1;
1097 break;
1098 case 16:
1099 size = 2;
1100 break;
1101 case 32:
1102 size = 4;
1103 break;
1104 default:
1105 return AE_ERROR;
1106 }
1107
1108 result = raw_pci_write(pci_id->segment, pci_id->bus,
1109 PCI_DEVFN(pci_id->device, pci_id->function),
1110 reg, size, value);
1111
1112 return (result ? AE_ERROR : AE_OK);
1113 }
1114
1115 static void acpi_os_execute_deferred(struct work_struct *work)
1116 {
1117 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
1118
1119 dpc->function(dpc->context);
1120 kfree(dpc);
1121 }
1122
1123 #ifdef CONFIG_ACPI_DEBUGGER
1124 static struct acpi_debugger acpi_debugger;
1125 static bool acpi_debugger_initialized;
1126
1127 int acpi_register_debugger(struct module *owner,
1128 const struct acpi_debugger_ops *ops)
1129 {
1130 int ret = 0;
1131
1132 mutex_lock(&acpi_debugger.lock);
1133 if (acpi_debugger.ops) {
1134 ret = -EBUSY;
1135 goto err_lock;
1136 }
1137
1138 acpi_debugger.owner = owner;
1139 acpi_debugger.ops = ops;
1140
1141 err_lock:
1142 mutex_unlock(&acpi_debugger.lock);
1143 return ret;
1144 }
1145 EXPORT_SYMBOL(acpi_register_debugger);
1146
1147 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
1148 {
1149 mutex_lock(&acpi_debugger.lock);
1150 if (ops == acpi_debugger.ops) {
1151 acpi_debugger.ops = NULL;
1152 acpi_debugger.owner = NULL;
1153 }
1154 mutex_unlock(&acpi_debugger.lock);
1155 }
1156 EXPORT_SYMBOL(acpi_unregister_debugger);
1157
1158 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
1159 {
1160 int ret;
1161 int (*func)(acpi_osd_exec_callback, void *);
1162 struct module *owner;
1163
1164 if (!acpi_debugger_initialized)
1165 return -ENODEV;
1166 mutex_lock(&acpi_debugger.lock);
1167 if (!acpi_debugger.ops) {
1168 ret = -ENODEV;
1169 goto err_lock;
1170 }
1171 if (!try_module_get(acpi_debugger.owner)) {
1172 ret = -ENODEV;
1173 goto err_lock;
1174 }
1175 func = acpi_debugger.ops->create_thread;
1176 owner = acpi_debugger.owner;
1177 mutex_unlock(&acpi_debugger.lock);
1178
1179 ret = func(function, context);
1180
1181 mutex_lock(&acpi_debugger.lock);
1182 module_put(owner);
1183 err_lock:
1184 mutex_unlock(&acpi_debugger.lock);
1185 return ret;
1186 }
1187
1188 ssize_t acpi_debugger_write_log(const char *msg)
1189 {
1190 ssize_t ret;
1191 ssize_t (*func)(const char *);
1192 struct module *owner;
1193
1194 if (!acpi_debugger_initialized)
1195 return -ENODEV;
1196 mutex_lock(&acpi_debugger.lock);
1197 if (!acpi_debugger.ops) {
1198 ret = -ENODEV;
1199 goto err_lock;
1200 }
1201 if (!try_module_get(acpi_debugger.owner)) {
1202 ret = -ENODEV;
1203 goto err_lock;
1204 }
1205 func = acpi_debugger.ops->write_log;
1206 owner = acpi_debugger.owner;
1207 mutex_unlock(&acpi_debugger.lock);
1208
1209 ret = func(msg);
1210
1211 mutex_lock(&acpi_debugger.lock);
1212 module_put(owner);
1213 err_lock:
1214 mutex_unlock(&acpi_debugger.lock);
1215 return ret;
1216 }
1217
1218 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
1219 {
1220 ssize_t ret;
1221 ssize_t (*func)(char *, size_t);
1222 struct module *owner;
1223
1224 if (!acpi_debugger_initialized)
1225 return -ENODEV;
1226 mutex_lock(&acpi_debugger.lock);
1227 if (!acpi_debugger.ops) {
1228 ret = -ENODEV;
1229 goto err_lock;
1230 }
1231 if (!try_module_get(acpi_debugger.owner)) {
1232 ret = -ENODEV;
1233 goto err_lock;
1234 }
1235 func = acpi_debugger.ops->read_cmd;
1236 owner = acpi_debugger.owner;
1237 mutex_unlock(&acpi_debugger.lock);
1238
1239 ret = func(buffer, buffer_length);
1240
1241 mutex_lock(&acpi_debugger.lock);
1242 module_put(owner);
1243 err_lock:
1244 mutex_unlock(&acpi_debugger.lock);
1245 return ret;
1246 }
1247
1248 int acpi_debugger_wait_command_ready(void)
1249 {
1250 int ret;
1251 int (*func)(bool, char *, size_t);
1252 struct module *owner;
1253
1254 if (!acpi_debugger_initialized)
1255 return -ENODEV;
1256 mutex_lock(&acpi_debugger.lock);
1257 if (!acpi_debugger.ops) {
1258 ret = -ENODEV;
1259 goto err_lock;
1260 }
1261 if (!try_module_get(acpi_debugger.owner)) {
1262 ret = -ENODEV;
1263 goto err_lock;
1264 }
1265 func = acpi_debugger.ops->wait_command_ready;
1266 owner = acpi_debugger.owner;
1267 mutex_unlock(&acpi_debugger.lock);
1268
1269 ret = func(acpi_gbl_method_executing,
1270 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1271
1272 mutex_lock(&acpi_debugger.lock);
1273 module_put(owner);
1274 err_lock:
1275 mutex_unlock(&acpi_debugger.lock);
1276 return ret;
1277 }
1278
1279 int acpi_debugger_notify_command_complete(void)
1280 {
1281 int ret;
1282 int (*func)(void);
1283 struct module *owner;
1284
1285 if (!acpi_debugger_initialized)
1286 return -ENODEV;
1287 mutex_lock(&acpi_debugger.lock);
1288 if (!acpi_debugger.ops) {
1289 ret = -ENODEV;
1290 goto err_lock;
1291 }
1292 if (!try_module_get(acpi_debugger.owner)) {
1293 ret = -ENODEV;
1294 goto err_lock;
1295 }
1296 func = acpi_debugger.ops->notify_command_complete;
1297 owner = acpi_debugger.owner;
1298 mutex_unlock(&acpi_debugger.lock);
1299
1300 ret = func();
1301
1302 mutex_lock(&acpi_debugger.lock);
1303 module_put(owner);
1304 err_lock:
1305 mutex_unlock(&acpi_debugger.lock);
1306 return ret;
1307 }
1308
1309 int __init acpi_debugger_init(void)
1310 {
1311 mutex_init(&acpi_debugger.lock);
1312 acpi_debugger_initialized = true;
1313 return 0;
1314 }
1315 #endif
1316
1317 /*******************************************************************************
1318 *
1319 * FUNCTION: acpi_os_execute
1320 *
1321 * PARAMETERS: Type - Type of the callback
1322 * Function - Function to be executed
1323 * Context - Function parameters
1324 *
1325 * RETURN: Status
1326 *
1327 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1328 * immediately executes function on a separate thread.
1329 *
1330 ******************************************************************************/
1331
1332 acpi_status acpi_os_execute(acpi_execute_type type,
1333 acpi_osd_exec_callback function, void *context)
1334 {
1335 acpi_status status = AE_OK;
1336 struct acpi_os_dpc *dpc;
1337 struct workqueue_struct *queue;
1338 int ret;
1339 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1340 "Scheduling function [%p(%p)] for deferred execution.\n",
1341 function, context));
1342
1343 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1344 ret = acpi_debugger_create_thread(function, context);
1345 if (ret) {
1346 pr_err("Call to kthread_create() failed.\n");
1347 status = AE_ERROR;
1348 }
1349 goto out_thread;
1350 }
1351
1352 /*
1353 * Allocate/initialize DPC structure. Note that this memory will be
1354 * freed by the callee. The kernel handles the work_struct list in a
1355 * way that allows us to also free its memory inside the callee.
1356 * Because we may want to schedule several tasks with different
1357 * parameters we can't use the approach some kernel code uses of
1358 * having a static work_struct.
1359 */
1360
1361 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1362 if (!dpc)
1363 return AE_NO_MEMORY;
1364
1365 dpc->function = function;
1366 dpc->context = context;
1367
1368 /*
1369 * To prevent lockdep from complaining unnecessarily, make sure that
1370 * there is a different static lockdep key for each workqueue by using
1371 * INIT_WORK() for each of them separately.
1372 */
1373 if (type == OSL_NOTIFY_HANDLER) {
1374 queue = kacpi_notify_wq;
1375 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1376 } else if (type == OSL_GPE_HANDLER) {
1377 queue = kacpid_wq;
1378 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1379 } else {
1380 pr_err("Unsupported os_execute type %d.\n", type);
1381 status = AE_ERROR;
1382 }
1383
1384 if (ACPI_FAILURE(status))
1385 goto err_workqueue;
1386
1387 /*
1388 * On some machines, a software-initiated SMI causes corruption unless
1389 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1390 * typically it's done in GPE-related methods that are run via
1391 * workqueues, so we can avoid the known corruption cases by always
1392 * queueing on CPU 0.
1393 */
1394 ret = queue_work_on(0, queue, &dpc->work);
1395 if (!ret) {
1396 printk(KERN_ERR PREFIX
1397 "Call to queue_work() failed.\n");
1398 status = AE_ERROR;
1399 }
1400 err_workqueue:
1401 if (ACPI_FAILURE(status))
1402 kfree(dpc);
1403 out_thread:
1404 return status;
1405 }
1406 EXPORT_SYMBOL(acpi_os_execute);
1407
1408 void acpi_os_wait_events_complete(void)
1409 {
1410 /*
1411 * Make sure the GPE handler or the fixed event handler is not used
1412 * on another CPU after removal.
1413 */
1414 if (acpi_sci_irq_valid())
1415 synchronize_hardirq(acpi_sci_irq);
1416 flush_workqueue(kacpid_wq);
1417 flush_workqueue(kacpi_notify_wq);
1418 }
1419
1420 struct acpi_hp_work {
1421 struct work_struct work;
1422 struct acpi_device *adev;
1423 u32 src;
1424 };
1425
1426 static void acpi_hotplug_work_fn(struct work_struct *work)
1427 {
1428 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1429
1430 acpi_os_wait_events_complete();
1431 acpi_device_hotplug(hpw->adev, hpw->src);
1432 kfree(hpw);
1433 }
1434
1435 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1436 {
1437 struct acpi_hp_work *hpw;
1438
1439 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1440 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1441 adev, src));
1442
1443 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1444 if (!hpw)
1445 return AE_NO_MEMORY;
1446
1447 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1448 hpw->adev = adev;
1449 hpw->src = src;
1450 /*
1451 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1452 * the hotplug code may call driver .remove() functions, which may
1453 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1454 * these workqueues.
1455 */
1456 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1457 kfree(hpw);
1458 return AE_ERROR;
1459 }
1460 return AE_OK;
1461 }
1462
1463 bool acpi_queue_hotplug_work(struct work_struct *work)
1464 {
1465 return queue_work(kacpi_hotplug_wq, work);
1466 }
1467
1468 acpi_status
1469 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1470 {
1471 struct semaphore *sem = NULL;
1472
1473 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1474 if (!sem)
1475 return AE_NO_MEMORY;
1476
1477 sema_init(sem, initial_units);
1478
1479 *handle = (acpi_handle *) sem;
1480
1481 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1482 *handle, initial_units));
1483
1484 return AE_OK;
1485 }
1486
1487 /*
1488 * TODO: A better way to delete semaphores? Linux doesn't have a
1489 * 'delete_semaphore()' function -- may result in an invalid
1490 * pointer dereference for non-synchronized consumers. Should
1491 * we at least check for blocked threads and signal/cancel them?
1492 */
1493
1494 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1495 {
1496 struct semaphore *sem = (struct semaphore *)handle;
1497
1498 if (!sem)
1499 return AE_BAD_PARAMETER;
1500
1501 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1502
1503 BUG_ON(!list_empty(&sem->wait_list));
1504 kfree(sem);
1505 sem = NULL;
1506
1507 return AE_OK;
1508 }
1509
1510 /*
1511 * TODO: Support for units > 1?
1512 */
1513 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1514 {
1515 acpi_status status = AE_OK;
1516 struct semaphore *sem = (struct semaphore *)handle;
1517 long jiffies;
1518 int ret = 0;
1519
1520 if (!acpi_os_initialized)
1521 return AE_OK;
1522
1523 if (!sem || (units < 1))
1524 return AE_BAD_PARAMETER;
1525
1526 if (units > 1)
1527 return AE_SUPPORT;
1528
1529 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1530 handle, units, timeout));
1531
1532 if (timeout == ACPI_WAIT_FOREVER)
1533 jiffies = MAX_SCHEDULE_TIMEOUT;
1534 else
1535 jiffies = msecs_to_jiffies(timeout);
1536
1537 ret = down_timeout(sem, jiffies);
1538 if (ret)
1539 status = AE_TIME;
1540
1541 if (ACPI_FAILURE(status)) {
1542 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1543 "Failed to acquire semaphore[%p|%d|%d], %s",
1544 handle, units, timeout,
1545 acpi_format_exception(status)));
1546 } else {
1547 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1548 "Acquired semaphore[%p|%d|%d]", handle,
1549 units, timeout));
1550 }
1551
1552 return status;
1553 }
1554
1555 /*
1556 * TODO: Support for units > 1?
1557 */
1558 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1559 {
1560 struct semaphore *sem = (struct semaphore *)handle;
1561
1562 if (!acpi_os_initialized)
1563 return AE_OK;
1564
1565 if (!sem || (units < 1))
1566 return AE_BAD_PARAMETER;
1567
1568 if (units > 1)
1569 return AE_SUPPORT;
1570
1571 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1572 units));
1573
1574 up(sem);
1575
1576 return AE_OK;
1577 }
1578
1579 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1580 {
1581 #ifdef ENABLE_DEBUGGER
1582 if (acpi_in_debugger) {
1583 u32 chars;
1584
1585 kdb_read(buffer, buffer_length);
1586
1587 /* remove the CR kdb includes */
1588 chars = strlen(buffer) - 1;
1589 buffer[chars] = '\0';
1590 }
1591 #else
1592 int ret;
1593
1594 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1595 if (ret < 0)
1596 return AE_ERROR;
1597 if (bytes_read)
1598 *bytes_read = ret;
1599 #endif
1600
1601 return AE_OK;
1602 }
1603 EXPORT_SYMBOL(acpi_os_get_line);
1604
1605 acpi_status acpi_os_wait_command_ready(void)
1606 {
1607 int ret;
1608
1609 ret = acpi_debugger_wait_command_ready();
1610 if (ret < 0)
1611 return AE_ERROR;
1612 return AE_OK;
1613 }
1614
1615 acpi_status acpi_os_notify_command_complete(void)
1616 {
1617 int ret;
1618
1619 ret = acpi_debugger_notify_command_complete();
1620 if (ret < 0)
1621 return AE_ERROR;
1622 return AE_OK;
1623 }
1624
1625 acpi_status acpi_os_signal(u32 function, void *info)
1626 {
1627 switch (function) {
1628 case ACPI_SIGNAL_FATAL:
1629 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1630 break;
1631 case ACPI_SIGNAL_BREAKPOINT:
1632 /*
1633 * AML Breakpoint
1634 * ACPI spec. says to treat it as a NOP unless
1635 * you are debugging. So if/when we integrate
1636 * AML debugger into the kernel debugger its
1637 * hook will go here. But until then it is
1638 * not useful to print anything on breakpoints.
1639 */
1640 break;
1641 default:
1642 break;
1643 }
1644
1645 return AE_OK;
1646 }
1647
1648 static int __init acpi_os_name_setup(char *str)
1649 {
1650 char *p = acpi_os_name;
1651 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1652
1653 if (!str || !*str)
1654 return 0;
1655
1656 for (; count-- && *str; str++) {
1657 if (isalnum(*str) || *str == ' ' || *str == ':')
1658 *p++ = *str;
1659 else if (*str == '\'' || *str == '"')
1660 continue;
1661 else
1662 break;
1663 }
1664 *p = 0;
1665
1666 return 1;
1667
1668 }
1669
1670 __setup("acpi_os_name=", acpi_os_name_setup);
1671
1672 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1673 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1674
1675 struct osi_setup_entry {
1676 char string[OSI_STRING_LENGTH_MAX];
1677 bool enable;
1678 };
1679
1680 static struct osi_setup_entry
1681 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = {
1682 {"Module Device", true},
1683 {"Processor Device", true},
1684 {"3.0 _SCP Extensions", true},
1685 {"Processor Aggregator Device", true},
1686 };
1687
1688 void __init acpi_osi_setup(char *str)
1689 {
1690 struct osi_setup_entry *osi;
1691 bool enable = true;
1692 int i;
1693
1694 if (!acpi_gbl_create_osi_method)
1695 return;
1696
1697 if (str == NULL || *str == '\0') {
1698 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1699 acpi_gbl_create_osi_method = FALSE;
1700 return;
1701 }
1702
1703 if (*str == '!') {
1704 str++;
1705 if (*str == '\0') {
1706 osi_linux.default_disabling = 1;
1707 return;
1708 } else if (*str == '*') {
1709 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS);
1710 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1711 osi = &osi_setup_entries[i];
1712 osi->enable = false;
1713 }
1714 return;
1715 }
1716 enable = false;
1717 }
1718
1719 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1720 osi = &osi_setup_entries[i];
1721 if (!strcmp(osi->string, str)) {
1722 osi->enable = enable;
1723 break;
1724 } else if (osi->string[0] == '\0') {
1725 osi->enable = enable;
1726 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1727 break;
1728 }
1729 }
1730 }
1731
1732 static void __init set_osi_linux(unsigned int enable)
1733 {
1734 if (osi_linux.enable != enable)
1735 osi_linux.enable = enable;
1736
1737 if (osi_linux.enable)
1738 acpi_osi_setup("Linux");
1739 else
1740 acpi_osi_setup("!Linux");
1741
1742 return;
1743 }
1744
1745 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1746 {
1747 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1748 osi_linux.dmi = 0;
1749 set_osi_linux(enable);
1750
1751 return;
1752 }
1753
1754 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1755 {
1756 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1757
1758 if (enable == -1)
1759 return;
1760
1761 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1762 set_osi_linux(enable);
1763
1764 return;
1765 }
1766
1767 /*
1768 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1769 *
1770 * empty string disables _OSI
1771 * string starting with '!' disables that string
1772 * otherwise string is added to list, augmenting built-in strings
1773 */
1774 static void __init acpi_osi_setup_late(void)
1775 {
1776 struct osi_setup_entry *osi;
1777 char *str;
1778 int i;
1779 acpi_status status;
1780
1781 if (osi_linux.default_disabling) {
1782 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
1783
1784 if (ACPI_SUCCESS(status))
1785 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n");
1786 }
1787
1788 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1789 osi = &osi_setup_entries[i];
1790 str = osi->string;
1791
1792 if (*str == '\0')
1793 break;
1794 if (osi->enable) {
1795 status = acpi_install_interface(str);
1796
1797 if (ACPI_SUCCESS(status))
1798 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1799 } else {
1800 status = acpi_remove_interface(str);
1801
1802 if (ACPI_SUCCESS(status))
1803 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1804 }
1805 }
1806 }
1807
1808 static int __init osi_setup(char *str)
1809 {
1810 if (str && !strcmp("Linux", str))
1811 acpi_cmdline_osi_linux(1);
1812 else if (str && !strcmp("!Linux", str))
1813 acpi_cmdline_osi_linux(0);
1814 else
1815 acpi_osi_setup(str);
1816
1817 return 1;
1818 }
1819
1820 __setup("acpi_osi=", osi_setup);
1821
1822 /*
1823 * Disable the auto-serialization of named objects creation methods.
1824 *
1825 * This feature is enabled by default. It marks the AML control methods
1826 * that contain the opcodes to create named objects as "Serialized".
1827 */
1828 static int __init acpi_no_auto_serialize_setup(char *str)
1829 {
1830 acpi_gbl_auto_serialize_methods = FALSE;
1831 pr_info("ACPI: auto-serialization disabled\n");
1832
1833 return 1;
1834 }
1835
1836 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1837
1838 /* Check of resource interference between native drivers and ACPI
1839 * OperationRegions (SystemIO and System Memory only).
1840 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1841 * in arbitrary AML code and can interfere with legacy drivers.
1842 * acpi_enforce_resources= can be set to:
1843 *
1844 * - strict (default) (2)
1845 * -> further driver trying to access the resources will not load
1846 * - lax (1)
1847 * -> further driver trying to access the resources will load, but you
1848 * get a system message that something might go wrong...
1849 *
1850 * - no (0)
1851 * -> ACPI Operation Region resources will not be registered
1852 *
1853 */
1854 #define ENFORCE_RESOURCES_STRICT 2
1855 #define ENFORCE_RESOURCES_LAX 1
1856 #define ENFORCE_RESOURCES_NO 0
1857
1858 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1859
1860 static int __init acpi_enforce_resources_setup(char *str)
1861 {
1862 if (str == NULL || *str == '\0')
1863 return 0;
1864
1865 if (!strcmp("strict", str))
1866 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1867 else if (!strcmp("lax", str))
1868 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1869 else if (!strcmp("no", str))
1870 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1871
1872 return 1;
1873 }
1874
1875 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1876
1877 /* Check for resource conflicts between ACPI OperationRegions and native
1878 * drivers */
1879 int acpi_check_resource_conflict(const struct resource *res)
1880 {
1881 acpi_adr_space_type space_id;
1882 acpi_size length;
1883 u8 warn = 0;
1884 int clash = 0;
1885
1886 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1887 return 0;
1888 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1889 return 0;
1890
1891 if (res->flags & IORESOURCE_IO)
1892 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1893 else
1894 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1895
1896 length = resource_size(res);
1897 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1898 warn = 1;
1899 clash = acpi_check_address_range(space_id, res->start, length, warn);
1900
1901 if (clash) {
1902 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1903 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1904 printk(KERN_NOTICE "ACPI: This conflict may"
1905 " cause random problems and system"
1906 " instability\n");
1907 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1908 " for this device, you should use it instead of"
1909 " the native driver\n");
1910 }
1911 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1912 return -EBUSY;
1913 }
1914 return 0;
1915 }
1916 EXPORT_SYMBOL(acpi_check_resource_conflict);
1917
1918 int acpi_check_region(resource_size_t start, resource_size_t n,
1919 const char *name)
1920 {
1921 struct resource res = {
1922 .start = start,
1923 .end = start + n - 1,
1924 .name = name,
1925 .flags = IORESOURCE_IO,
1926 };
1927
1928 return acpi_check_resource_conflict(&res);
1929 }
1930 EXPORT_SYMBOL(acpi_check_region);
1931
1932 /*
1933 * Let drivers know whether the resource checks are effective
1934 */
1935 int acpi_resources_are_enforced(void)
1936 {
1937 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1938 }
1939 EXPORT_SYMBOL(acpi_resources_are_enforced);
1940
1941 bool acpi_osi_is_win8(void)
1942 {
1943 return acpi_gbl_osi_data >= ACPI_OSI_WIN_8;
1944 }
1945 EXPORT_SYMBOL(acpi_osi_is_win8);
1946
1947 /*
1948 * Deallocate the memory for a spinlock.
1949 */
1950 void acpi_os_delete_lock(acpi_spinlock handle)
1951 {
1952 ACPI_FREE(handle);
1953 }
1954
1955 /*
1956 * Acquire a spinlock.
1957 *
1958 * handle is a pointer to the spinlock_t.
1959 */
1960
1961 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1962 {
1963 acpi_cpu_flags flags;
1964 spin_lock_irqsave(lockp, flags);
1965 return flags;
1966 }
1967
1968 /*
1969 * Release a spinlock. See above.
1970 */
1971
1972 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1973 {
1974 spin_unlock_irqrestore(lockp, flags);
1975 }
1976
1977 #ifndef ACPI_USE_LOCAL_CACHE
1978
1979 /*******************************************************************************
1980 *
1981 * FUNCTION: acpi_os_create_cache
1982 *
1983 * PARAMETERS: name - Ascii name for the cache
1984 * size - Size of each cached object
1985 * depth - Maximum depth of the cache (in objects) <ignored>
1986 * cache - Where the new cache object is returned
1987 *
1988 * RETURN: status
1989 *
1990 * DESCRIPTION: Create a cache object
1991 *
1992 ******************************************************************************/
1993
1994 acpi_status
1995 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1996 {
1997 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1998 if (*cache == NULL)
1999 return AE_ERROR;
2000 else
2001 return AE_OK;
2002 }
2003
2004 /*******************************************************************************
2005 *
2006 * FUNCTION: acpi_os_purge_cache
2007 *
2008 * PARAMETERS: Cache - Handle to cache object
2009 *
2010 * RETURN: Status
2011 *
2012 * DESCRIPTION: Free all objects within the requested cache.
2013 *
2014 ******************************************************************************/
2015
2016 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
2017 {
2018 kmem_cache_shrink(cache);
2019 return (AE_OK);
2020 }
2021
2022 /*******************************************************************************
2023 *
2024 * FUNCTION: acpi_os_delete_cache
2025 *
2026 * PARAMETERS: Cache - Handle to cache object
2027 *
2028 * RETURN: Status
2029 *
2030 * DESCRIPTION: Free all objects within the requested cache and delete the
2031 * cache object.
2032 *
2033 ******************************************************************************/
2034
2035 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
2036 {
2037 kmem_cache_destroy(cache);
2038 return (AE_OK);
2039 }
2040
2041 /*******************************************************************************
2042 *
2043 * FUNCTION: acpi_os_release_object
2044 *
2045 * PARAMETERS: Cache - Handle to cache object
2046 * Object - The object to be released
2047 *
2048 * RETURN: None
2049 *
2050 * DESCRIPTION: Release an object to the specified cache. If cache is full,
2051 * the object is deleted.
2052 *
2053 ******************************************************************************/
2054
2055 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
2056 {
2057 kmem_cache_free(cache, object);
2058 return (AE_OK);
2059 }
2060 #endif
2061
2062 static int __init acpi_no_static_ssdt_setup(char *s)
2063 {
2064 acpi_gbl_disable_ssdt_table_install = TRUE;
2065 pr_info("ACPI: static SSDT installation disabled\n");
2066
2067 return 0;
2068 }
2069
2070 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
2071
2072 static int __init acpi_disable_return_repair(char *s)
2073 {
2074 printk(KERN_NOTICE PREFIX
2075 "ACPI: Predefined validation mechanism disabled\n");
2076 acpi_gbl_disable_auto_repair = TRUE;
2077
2078 return 1;
2079 }
2080
2081 __setup("acpica_no_return_repair", acpi_disable_return_repair);
2082
2083 acpi_status __init acpi_os_initialize(void)
2084 {
2085 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2086 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2087 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
2088 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
2089 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
2090 /*
2091 * Use acpi_os_map_generic_address to pre-map the reset
2092 * register if it's in system memory.
2093 */
2094 int rv;
2095
2096 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
2097 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
2098 }
2099 acpi_os_initialized = true;
2100
2101 return AE_OK;
2102 }
2103
2104 acpi_status __init acpi_os_initialize1(void)
2105 {
2106 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
2107 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
2108 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
2109 BUG_ON(!kacpid_wq);
2110 BUG_ON(!kacpi_notify_wq);
2111 BUG_ON(!kacpi_hotplug_wq);
2112 acpi_install_interface_handler(acpi_osi_handler);
2113 acpi_osi_setup_late();
2114 return AE_OK;
2115 }
2116
2117 acpi_status acpi_os_terminate(void)
2118 {
2119 if (acpi_irq_handler) {
2120 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
2121 acpi_irq_handler);
2122 }
2123
2124 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
2125 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
2126 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2127 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2128 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
2129 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
2130
2131 destroy_workqueue(kacpid_wq);
2132 destroy_workqueue(kacpi_notify_wq);
2133 destroy_workqueue(kacpi_hotplug_wq);
2134
2135 return AE_OK;
2136 }
2137
2138 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
2139 u32 pm1b_control)
2140 {
2141 int rc = 0;
2142 if (__acpi_os_prepare_sleep)
2143 rc = __acpi_os_prepare_sleep(sleep_state,
2144 pm1a_control, pm1b_control);
2145 if (rc < 0)
2146 return AE_ERROR;
2147 else if (rc > 0)
2148 return AE_CTRL_SKIP;
2149
2150 return AE_OK;
2151 }
2152
2153 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
2154 u32 pm1a_ctrl, u32 pm1b_ctrl))
2155 {
2156 __acpi_os_prepare_sleep = func;
2157 }
2158
2159 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
2160 u32 val_b)
2161 {
2162 int rc = 0;
2163 if (__acpi_os_prepare_extended_sleep)
2164 rc = __acpi_os_prepare_extended_sleep(sleep_state,
2165 val_a, val_b);
2166 if (rc < 0)
2167 return AE_ERROR;
2168 else if (rc > 0)
2169 return AE_CTRL_SKIP;
2170
2171 return AE_OK;
2172 }
2173
2174 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
2175 u32 val_a, u32 val_b))
2176 {
2177 __acpi_os_prepare_extended_sleep = func;
2178 }
This page took 0.150346 seconds and 4 git commands to generate.