merge linus into release branch
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 *
26 */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/kthread.h>
41 #include <acpi/acpi.h>
42 #include <asm/io.h>
43 #include <acpi/acpi_bus.h>
44 #include <acpi/processor.h>
45 #include <asm/uaccess.h>
46
47 #include <linux/efi.h>
48
49 #define _COMPONENT ACPI_OS_SERVICES
50 ACPI_MODULE_NAME("osl")
51 #define PREFIX "ACPI: "
52 struct acpi_os_dpc {
53 acpi_osd_exec_callback function;
54 void *context;
55 };
56
57 #ifdef CONFIG_ACPI_CUSTOM_DSDT
58 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
59 #endif
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67
68 extern char line_buf[80];
69 #endif /*ENABLE_DEBUGGER */
70
71 int acpi_specific_hotkey_enabled = TRUE;
72 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
73
74 static unsigned int acpi_irq_irq;
75 static acpi_osd_handler acpi_irq_handler;
76 static void *acpi_irq_context;
77 static struct workqueue_struct *kacpid_wq;
78
79 acpi_status acpi_os_initialize(void)
80 {
81 return AE_OK;
82 }
83
84 acpi_status acpi_os_initialize1(void)
85 {
86 /*
87 * Initialize PCI configuration space access, as we'll need to access
88 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
89 */
90 if (!raw_pci_ops) {
91 printk(KERN_ERR PREFIX
92 "Access to PCI configuration space unavailable\n");
93 return AE_NULL_ENTRY;
94 }
95 kacpid_wq = create_singlethread_workqueue("kacpid");
96 BUG_ON(!kacpid_wq);
97
98 return AE_OK;
99 }
100
101 acpi_status acpi_os_terminate(void)
102 {
103 if (acpi_irq_handler) {
104 acpi_os_remove_interrupt_handler(acpi_irq_irq,
105 acpi_irq_handler);
106 }
107
108 destroy_workqueue(kacpid_wq);
109
110 return AE_OK;
111 }
112
113 void acpi_os_printf(const char *fmt, ...)
114 {
115 va_list args;
116 va_start(args, fmt);
117 acpi_os_vprintf(fmt, args);
118 va_end(args);
119 }
120
121 EXPORT_SYMBOL(acpi_os_printf);
122
123 void acpi_os_vprintf(const char *fmt, va_list args)
124 {
125 static char buffer[512];
126
127 vsprintf(buffer, fmt, args);
128
129 #ifdef ENABLE_DEBUGGER
130 if (acpi_in_debugger) {
131 kdb_printf("%s", buffer);
132 } else {
133 printk("%s", buffer);
134 }
135 #else
136 printk("%s", buffer);
137 #endif
138 }
139
140
141 extern int acpi_in_resume;
142 void *acpi_os_allocate(acpi_size size)
143 {
144 if (acpi_in_resume)
145 return kmalloc(size, GFP_ATOMIC);
146 else
147 return kmalloc(size, GFP_KERNEL);
148 }
149
150 void acpi_os_free(void *ptr)
151 {
152 kfree(ptr);
153 }
154
155 EXPORT_SYMBOL(acpi_os_free);
156
157 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
158 {
159 if (efi_enabled) {
160 addr->pointer_type = ACPI_PHYSICAL_POINTER;
161 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
162 addr->pointer.physical = efi.acpi20;
163 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
164 addr->pointer.physical = efi.acpi;
165 else {
166 printk(KERN_ERR PREFIX
167 "System description tables not found\n");
168 return AE_NOT_FOUND;
169 }
170 } else {
171 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172 printk(KERN_ERR PREFIX
173 "System description tables not found\n");
174 return AE_NOT_FOUND;
175 }
176 }
177
178 return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183 void __iomem ** virt)
184 {
185 if (phys > ULONG_MAX) {
186 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
187 return AE_BAD_PARAMETER;
188 }
189 /*
190 * ioremap checks to ensure this is in reserved space
191 */
192 *virt = ioremap((unsigned long)phys, size);
193
194 if (!*virt)
195 return AE_NO_MEMORY;
196
197 return AE_OK;
198 }
199 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
200
201 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
202 {
203 iounmap(virt);
204 }
205 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
206
207 #ifdef ACPI_FUTURE_USAGE
208 acpi_status
209 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
210 {
211 if (!phys || !virt)
212 return AE_BAD_PARAMETER;
213
214 *phys = virt_to_phys(virt);
215
216 return AE_OK;
217 }
218 #endif
219
220 #define ACPI_MAX_OVERRIDE_LEN 100
221
222 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
223
224 acpi_status
225 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
226 acpi_string * new_val)
227 {
228 if (!init_val || !new_val)
229 return AE_BAD_PARAMETER;
230
231 *new_val = NULL;
232 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
233 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
234 acpi_os_name);
235 *new_val = acpi_os_name;
236 }
237
238 return AE_OK;
239 }
240
241 acpi_status
242 acpi_os_table_override(struct acpi_table_header * existing_table,
243 struct acpi_table_header ** new_table)
244 {
245 if (!existing_table || !new_table)
246 return AE_BAD_PARAMETER;
247
248 #ifdef CONFIG_ACPI_CUSTOM_DSDT
249 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
250 *new_table = (struct acpi_table_header *)AmlCode;
251 else
252 *new_table = NULL;
253 #else
254 *new_table = NULL;
255 #endif
256 return AE_OK;
257 }
258
259 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
260 {
261 return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
262 }
263
264 acpi_status
265 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
266 void *context)
267 {
268 unsigned int irq;
269
270 /*
271 * Ignore the GSI from the core, and use the value in our copy of the
272 * FADT. It may not be the same if an interrupt source override exists
273 * for the SCI.
274 */
275 gsi = acpi_fadt.sci_int;
276 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
277 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
278 gsi);
279 return AE_OK;
280 }
281
282 acpi_irq_handler = handler;
283 acpi_irq_context = context;
284 if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
285 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
286 return AE_NOT_ACQUIRED;
287 }
288 acpi_irq_irq = irq;
289
290 return AE_OK;
291 }
292
293 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
294 {
295 if (irq) {
296 free_irq(irq, acpi_irq);
297 acpi_irq_handler = NULL;
298 acpi_irq_irq = 0;
299 }
300
301 return AE_OK;
302 }
303
304 /*
305 * Running in interpreter thread context, safe to sleep
306 */
307
308 void acpi_os_sleep(acpi_integer ms)
309 {
310 schedule_timeout_interruptible(msecs_to_jiffies(ms));
311 }
312
313 EXPORT_SYMBOL(acpi_os_sleep);
314
315 void acpi_os_stall(u32 us)
316 {
317 while (us) {
318 u32 delay = 1000;
319
320 if (delay > us)
321 delay = us;
322 udelay(delay);
323 touch_nmi_watchdog();
324 us -= delay;
325 }
326 }
327
328 EXPORT_SYMBOL(acpi_os_stall);
329
330 /*
331 * Support ACPI 3.0 AML Timer operand
332 * Returns 64-bit free-running, monotonically increasing timer
333 * with 100ns granularity
334 */
335 u64 acpi_os_get_timer(void)
336 {
337 static u64 t;
338
339 #ifdef CONFIG_HPET
340 /* TBD: use HPET if available */
341 #endif
342
343 #ifdef CONFIG_X86_PM_TIMER
344 /* TBD: default to PM timer if HPET was not available */
345 #endif
346 if (!t)
347 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
348
349 return ++t;
350 }
351
352 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
353 {
354 u32 dummy;
355
356 if (!value)
357 value = &dummy;
358
359 switch (width) {
360 case 8:
361 *(u8 *) value = inb(port);
362 break;
363 case 16:
364 *(u16 *) value = inw(port);
365 break;
366 case 32:
367 *(u32 *) value = inl(port);
368 break;
369 default:
370 BUG();
371 }
372
373 return AE_OK;
374 }
375
376 EXPORT_SYMBOL(acpi_os_read_port);
377
378 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
379 {
380 switch (width) {
381 case 8:
382 outb(value, port);
383 break;
384 case 16:
385 outw(value, port);
386 break;
387 case 32:
388 outl(value, port);
389 break;
390 default:
391 BUG();
392 }
393
394 return AE_OK;
395 }
396
397 EXPORT_SYMBOL(acpi_os_write_port);
398
399 acpi_status
400 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
401 {
402 u32 dummy;
403 void __iomem *virt_addr;
404
405 virt_addr = ioremap(phys_addr, width);
406 if (!value)
407 value = &dummy;
408
409 switch (width) {
410 case 8:
411 *(u8 *) value = readb(virt_addr);
412 break;
413 case 16:
414 *(u16 *) value = readw(virt_addr);
415 break;
416 case 32:
417 *(u32 *) value = readl(virt_addr);
418 break;
419 default:
420 BUG();
421 }
422
423 iounmap(virt_addr);
424
425 return AE_OK;
426 }
427
428 acpi_status
429 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
430 {
431 void __iomem *virt_addr;
432
433 virt_addr = ioremap(phys_addr, width);
434
435 switch (width) {
436 case 8:
437 writeb(value, virt_addr);
438 break;
439 case 16:
440 writew(value, virt_addr);
441 break;
442 case 32:
443 writel(value, virt_addr);
444 break;
445 default:
446 BUG();
447 }
448
449 iounmap(virt_addr);
450
451 return AE_OK;
452 }
453
454 acpi_status
455 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
456 void *value, u32 width)
457 {
458 int result, size;
459
460 if (!value)
461 return AE_BAD_PARAMETER;
462
463 switch (width) {
464 case 8:
465 size = 1;
466 break;
467 case 16:
468 size = 2;
469 break;
470 case 32:
471 size = 4;
472 break;
473 default:
474 return AE_ERROR;
475 }
476
477 BUG_ON(!raw_pci_ops);
478
479 result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
480 PCI_DEVFN(pci_id->device, pci_id->function),
481 reg, size, value);
482
483 return (result ? AE_ERROR : AE_OK);
484 }
485
486 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
487
488 acpi_status
489 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
490 acpi_integer value, u32 width)
491 {
492 int result, size;
493
494 switch (width) {
495 case 8:
496 size = 1;
497 break;
498 case 16:
499 size = 2;
500 break;
501 case 32:
502 size = 4;
503 break;
504 default:
505 return AE_ERROR;
506 }
507
508 BUG_ON(!raw_pci_ops);
509
510 result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
511 PCI_DEVFN(pci_id->device, pci_id->function),
512 reg, size, value);
513
514 return (result ? AE_ERROR : AE_OK);
515 }
516
517 /* TODO: Change code to take advantage of driver model more */
518 static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
519 acpi_handle chandle, /* current node */
520 struct acpi_pci_id **id,
521 int *is_bridge, u8 * bus_number)
522 {
523 acpi_handle handle;
524 struct acpi_pci_id *pci_id = *id;
525 acpi_status status;
526 unsigned long temp;
527 acpi_object_type type;
528 u8 tu8;
529
530 acpi_get_parent(chandle, &handle);
531 if (handle != rhandle) {
532 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
533 bus_number);
534
535 status = acpi_get_type(handle, &type);
536 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
537 return;
538
539 status =
540 acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
541 &temp);
542 if (ACPI_SUCCESS(status)) {
543 pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
544 pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
545
546 if (*is_bridge)
547 pci_id->bus = *bus_number;
548
549 /* any nicer way to get bus number of bridge ? */
550 status =
551 acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
552 8);
553 if (ACPI_SUCCESS(status)
554 && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
555 status =
556 acpi_os_read_pci_configuration(pci_id, 0x18,
557 &tu8, 8);
558 if (!ACPI_SUCCESS(status)) {
559 /* Certainly broken... FIX ME */
560 return;
561 }
562 *is_bridge = 1;
563 pci_id->bus = tu8;
564 status =
565 acpi_os_read_pci_configuration(pci_id, 0x19,
566 &tu8, 8);
567 if (ACPI_SUCCESS(status)) {
568 *bus_number = tu8;
569 }
570 } else
571 *is_bridge = 0;
572 }
573 }
574 }
575
576 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
577 acpi_handle chandle, /* current node */
578 struct acpi_pci_id **id)
579 {
580 int is_bridge = 1;
581 u8 bus_number = (*id)->bus;
582
583 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
584 }
585
586 static void acpi_os_execute_deferred(void *context)
587 {
588 struct acpi_os_dpc *dpc = NULL;
589
590
591 dpc = (struct acpi_os_dpc *)context;
592 if (!dpc) {
593 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
594 return;
595 }
596
597 dpc->function(dpc->context);
598
599 kfree(dpc);
600
601 return;
602 }
603
604 static int acpi_os_execute_thread(void *context)
605 {
606 struct acpi_os_dpc *dpc = (struct acpi_os_dpc *)context;
607 if (dpc) {
608 dpc->function(dpc->context);
609 kfree(dpc);
610 }
611 do_exit(0);
612 }
613
614 /*******************************************************************************
615 *
616 * FUNCTION: acpi_os_execute
617 *
618 * PARAMETERS: Type - Type of the callback
619 * Function - Function to be executed
620 * Context - Function parameters
621 *
622 * RETURN: Status
623 *
624 * DESCRIPTION: Depending on type, either queues function for deferred execution or
625 * immediately executes function on a separate thread.
626 *
627 ******************************************************************************/
628
629 acpi_status acpi_os_execute(acpi_execute_type type,
630 acpi_osd_exec_callback function, void *context)
631 {
632 acpi_status status = AE_OK;
633 struct acpi_os_dpc *dpc;
634 struct work_struct *task;
635 struct task_struct *p;
636
637 if (!function)
638 return AE_BAD_PARAMETER;
639 /*
640 * Allocate/initialize DPC structure. Note that this memory will be
641 * freed by the callee. The kernel handles the tq_struct list in a
642 * way that allows us to also free its memory inside the callee.
643 * Because we may want to schedule several tasks with different
644 * parameters we can't use the approach some kernel code uses of
645 * having a static tq_struct.
646 * We can save time and code by allocating the DPC and tq_structs
647 * from the same memory.
648 */
649 if (type == OSL_NOTIFY_HANDLER) {
650 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_KERNEL);
651 } else {
652 dpc = kmalloc(sizeof(struct acpi_os_dpc) +
653 sizeof(struct work_struct), GFP_ATOMIC);
654 }
655 if (!dpc)
656 return AE_NO_MEMORY;
657 dpc->function = function;
658 dpc->context = context;
659
660 if (type == OSL_NOTIFY_HANDLER) {
661 p = kthread_create(acpi_os_execute_thread, dpc, "kacpid_notify");
662 if (!IS_ERR(p)) {
663 wake_up_process(p);
664 } else {
665 status = AE_NO_MEMORY;
666 kfree(dpc);
667 }
668 } else {
669 task = (void *)(dpc + 1);
670 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
671 if (!queue_work(kacpid_wq, task)) {
672 status = AE_ERROR;
673 kfree(dpc);
674 }
675 }
676 return status;
677 }
678
679 EXPORT_SYMBOL(acpi_os_execute);
680
681 void acpi_os_wait_events_complete(void *context)
682 {
683 flush_workqueue(kacpid_wq);
684 }
685
686 EXPORT_SYMBOL(acpi_os_wait_events_complete);
687
688 /*
689 * Allocate the memory for a spinlock and initialize it.
690 */
691 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
692 {
693 spin_lock_init(*handle);
694
695 return AE_OK;
696 }
697
698 /*
699 * Deallocate the memory for a spinlock.
700 */
701 void acpi_os_delete_lock(acpi_spinlock handle)
702 {
703 return;
704 }
705
706 acpi_status
707 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
708 {
709 struct semaphore *sem = NULL;
710
711
712 sem = acpi_os_allocate(sizeof(struct semaphore));
713 if (!sem)
714 return AE_NO_MEMORY;
715 memset(sem, 0, sizeof(struct semaphore));
716
717 sema_init(sem, initial_units);
718
719 *handle = (acpi_handle *) sem;
720
721 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
722 *handle, initial_units));
723
724 return AE_OK;
725 }
726
727 EXPORT_SYMBOL(acpi_os_create_semaphore);
728
729 /*
730 * TODO: A better way to delete semaphores? Linux doesn't have a
731 * 'delete_semaphore()' function -- may result in an invalid
732 * pointer dereference for non-synchronized consumers. Should
733 * we at least check for blocked threads and signal/cancel them?
734 */
735
736 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
737 {
738 struct semaphore *sem = (struct semaphore *)handle;
739
740
741 if (!sem)
742 return AE_BAD_PARAMETER;
743
744 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
745
746 acpi_os_free(sem);
747 sem = NULL;
748
749 return AE_OK;
750 }
751
752 EXPORT_SYMBOL(acpi_os_delete_semaphore);
753
754 /*
755 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
756 * improvise. The process is to sleep for one scheduler quantum
757 * until the semaphore becomes available. Downside is that this
758 * may result in starvation for timeout-based waits when there's
759 * lots of semaphore activity.
760 *
761 * TODO: Support for units > 1?
762 */
763 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
764 {
765 acpi_status status = AE_OK;
766 struct semaphore *sem = (struct semaphore *)handle;
767 int ret = 0;
768
769
770 if (!sem || (units < 1))
771 return AE_BAD_PARAMETER;
772
773 if (units > 1)
774 return AE_SUPPORT;
775
776 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
777 handle, units, timeout));
778
779 switch (timeout) {
780 /*
781 * No Wait:
782 * --------
783 * A zero timeout value indicates that we shouldn't wait - just
784 * acquire the semaphore if available otherwise return AE_TIME
785 * (a.k.a. 'would block').
786 */
787 case 0:
788 if (down_trylock(sem))
789 status = AE_TIME;
790 break;
791
792 /*
793 * Wait Indefinitely:
794 * ------------------
795 */
796 case ACPI_WAIT_FOREVER:
797 down(sem);
798 break;
799
800 /*
801 * Wait w/ Timeout:
802 * ----------------
803 */
804 default:
805 // TODO: A better timeout algorithm?
806 {
807 int i = 0;
808 static const int quantum_ms = 1000 / HZ;
809
810 ret = down_trylock(sem);
811 for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
812 schedule_timeout_interruptible(1);
813 ret = down_trylock(sem);
814 }
815
816 if (ret != 0)
817 status = AE_TIME;
818 }
819 break;
820 }
821
822 if (ACPI_FAILURE(status)) {
823 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
824 "Failed to acquire semaphore[%p|%d|%d], %s",
825 handle, units, timeout,
826 acpi_format_exception(status)));
827 } else {
828 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
829 "Acquired semaphore[%p|%d|%d]", handle,
830 units, timeout));
831 }
832
833 return status;
834 }
835
836 EXPORT_SYMBOL(acpi_os_wait_semaphore);
837
838 /*
839 * TODO: Support for units > 1?
840 */
841 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
842 {
843 struct semaphore *sem = (struct semaphore *)handle;
844
845
846 if (!sem || (units < 1))
847 return AE_BAD_PARAMETER;
848
849 if (units > 1)
850 return AE_SUPPORT;
851
852 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
853 units));
854
855 up(sem);
856
857 return AE_OK;
858 }
859
860 EXPORT_SYMBOL(acpi_os_signal_semaphore);
861
862 #ifdef ACPI_FUTURE_USAGE
863 u32 acpi_os_get_line(char *buffer)
864 {
865
866 #ifdef ENABLE_DEBUGGER
867 if (acpi_in_debugger) {
868 u32 chars;
869
870 kdb_read(buffer, sizeof(line_buf));
871
872 /* remove the CR kdb includes */
873 chars = strlen(buffer) - 1;
874 buffer[chars] = '\0';
875 }
876 #endif
877
878 return 0;
879 }
880 #endif /* ACPI_FUTURE_USAGE */
881
882 /* Assumes no unreadable holes inbetween */
883 u8 acpi_os_readable(void *ptr, acpi_size len)
884 {
885 #if defined(__i386__) || defined(__x86_64__)
886 char tmp;
887 return !__get_user(tmp, (char __user *)ptr)
888 && !__get_user(tmp, (char __user *)ptr + len - 1);
889 #endif
890 return 1;
891 }
892
893 #ifdef ACPI_FUTURE_USAGE
894 u8 acpi_os_writable(void *ptr, acpi_size len)
895 {
896 /* could do dummy write (racy) or a kernel page table lookup.
897 The later may be difficult at early boot when kmap doesn't work yet. */
898 return 1;
899 }
900 #endif
901
902 acpi_status acpi_os_signal(u32 function, void *info)
903 {
904 switch (function) {
905 case ACPI_SIGNAL_FATAL:
906 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
907 break;
908 case ACPI_SIGNAL_BREAKPOINT:
909 /*
910 * AML Breakpoint
911 * ACPI spec. says to treat it as a NOP unless
912 * you are debugging. So if/when we integrate
913 * AML debugger into the kernel debugger its
914 * hook will go here. But until then it is
915 * not useful to print anything on breakpoints.
916 */
917 break;
918 default:
919 break;
920 }
921
922 return AE_OK;
923 }
924
925 EXPORT_SYMBOL(acpi_os_signal);
926
927 static int __init acpi_os_name_setup(char *str)
928 {
929 char *p = acpi_os_name;
930 int count = ACPI_MAX_OVERRIDE_LEN - 1;
931
932 if (!str || !*str)
933 return 0;
934
935 for (; count-- && str && *str; str++) {
936 if (isalnum(*str) || *str == ' ' || *str == ':')
937 *p++ = *str;
938 else if (*str == '\'' || *str == '"')
939 continue;
940 else
941 break;
942 }
943 *p = 0;
944
945 return 1;
946
947 }
948
949 __setup("acpi_os_name=", acpi_os_name_setup);
950
951 /*
952 * _OSI control
953 * empty string disables _OSI
954 * TBD additional string adds to _OSI
955 */
956 static int __init acpi_osi_setup(char *str)
957 {
958 if (str == NULL || *str == '\0') {
959 printk(KERN_INFO PREFIX "_OSI method disabled\n");
960 acpi_gbl_create_osi_method = FALSE;
961 } else {
962 /* TBD */
963 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
964 str);
965 }
966
967 return 1;
968 }
969
970 __setup("acpi_osi=", acpi_osi_setup);
971
972 /* enable serialization to combat AE_ALREADY_EXISTS errors */
973 static int __init acpi_serialize_setup(char *str)
974 {
975 printk(KERN_INFO PREFIX "serialize enabled\n");
976
977 acpi_gbl_all_methods_serialized = TRUE;
978
979 return 1;
980 }
981
982 __setup("acpi_serialize", acpi_serialize_setup);
983
984 /*
985 * Wake and Run-Time GPES are expected to be separate.
986 * We disable wake-GPEs at run-time to prevent spurious
987 * interrupts.
988 *
989 * However, if a system exists that shares Wake and
990 * Run-time events on the same GPE this flag is available
991 * to tell Linux to keep the wake-time GPEs enabled at run-time.
992 */
993 static int __init acpi_wake_gpes_always_on_setup(char *str)
994 {
995 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
996
997 acpi_gbl_leave_wake_gpes_disabled = FALSE;
998
999 return 1;
1000 }
1001
1002 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1003
1004 static int __init acpi_hotkey_setup(char *str)
1005 {
1006 acpi_specific_hotkey_enabled = FALSE;
1007 return 1;
1008 }
1009
1010 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1011
1012 /*
1013 * max_cstate is defined in the base kernel so modules can
1014 * change it w/o depending on the state of the processor module.
1015 */
1016 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1017
1018 EXPORT_SYMBOL(max_cstate);
1019
1020 /*
1021 * Acquire a spinlock.
1022 *
1023 * handle is a pointer to the spinlock_t.
1024 */
1025
1026 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1027 {
1028 acpi_cpu_flags flags;
1029 spin_lock_irqsave(lockp, flags);
1030 return flags;
1031 }
1032
1033 /*
1034 * Release a spinlock. See above.
1035 */
1036
1037 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1038 {
1039 spin_unlock_irqrestore(lockp, flags);
1040 }
1041
1042 #ifndef ACPI_USE_LOCAL_CACHE
1043
1044 /*******************************************************************************
1045 *
1046 * FUNCTION: acpi_os_create_cache
1047 *
1048 * PARAMETERS: name - Ascii name for the cache
1049 * size - Size of each cached object
1050 * depth - Maximum depth of the cache (in objects) <ignored>
1051 * cache - Where the new cache object is returned
1052 *
1053 * RETURN: status
1054 *
1055 * DESCRIPTION: Create a cache object
1056 *
1057 ******************************************************************************/
1058
1059 acpi_status
1060 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1061 {
1062 *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1063 if (cache == NULL)
1064 return AE_ERROR;
1065 else
1066 return AE_OK;
1067 }
1068
1069 /*******************************************************************************
1070 *
1071 * FUNCTION: acpi_os_purge_cache
1072 *
1073 * PARAMETERS: Cache - Handle to cache object
1074 *
1075 * RETURN: Status
1076 *
1077 * DESCRIPTION: Free all objects within the requested cache.
1078 *
1079 ******************************************************************************/
1080
1081 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1082 {
1083 (void)kmem_cache_shrink(cache);
1084 return (AE_OK);
1085 }
1086
1087 /*******************************************************************************
1088 *
1089 * FUNCTION: acpi_os_delete_cache
1090 *
1091 * PARAMETERS: Cache - Handle to cache object
1092 *
1093 * RETURN: Status
1094 *
1095 * DESCRIPTION: Free all objects within the requested cache and delete the
1096 * cache object.
1097 *
1098 ******************************************************************************/
1099
1100 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1101 {
1102 (void)kmem_cache_destroy(cache);
1103 return (AE_OK);
1104 }
1105
1106 /*******************************************************************************
1107 *
1108 * FUNCTION: acpi_os_release_object
1109 *
1110 * PARAMETERS: Cache - Handle to cache object
1111 * Object - The object to be released
1112 *
1113 * RETURN: None
1114 *
1115 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1116 * the object is deleted.
1117 *
1118 ******************************************************************************/
1119
1120 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1121 {
1122 kmem_cache_free(cache, object);
1123 return (AE_OK);
1124 }
1125
1126 /*******************************************************************************
1127 *
1128 * FUNCTION: acpi_os_acquire_object
1129 *
1130 * PARAMETERS: Cache - Handle to cache object
1131 * ReturnObject - Where the object is returned
1132 *
1133 * RETURN: Status
1134 *
1135 * DESCRIPTION: Return a zero-filled object.
1136 *
1137 ******************************************************************************/
1138
1139 void *acpi_os_acquire_object(acpi_cache_t * cache)
1140 {
1141 void *object = kmem_cache_zalloc(cache, GFP_KERNEL);
1142 WARN_ON(!object);
1143 return object;
1144 }
1145
1146 /******************************************************************************
1147 *
1148 * FUNCTION: acpi_os_validate_interface
1149 *
1150 * PARAMETERS: interface - Requested interface to be validated
1151 *
1152 * RETURN: AE_OK if interface is supported, AE_SUPPORT otherwise
1153 *
1154 * DESCRIPTION: Match an interface string to the interfaces supported by the
1155 * host. Strings originate from an AML call to the _OSI method.
1156 *
1157 *****************************************************************************/
1158
1159 acpi_status
1160 acpi_os_validate_interface (char *interface)
1161 {
1162
1163 return AE_SUPPORT;
1164 }
1165
1166
1167 /******************************************************************************
1168 *
1169 * FUNCTION: acpi_os_validate_address
1170 *
1171 * PARAMETERS: space_id - ACPI space ID
1172 * address - Physical address
1173 * length - Address length
1174 *
1175 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1176 * should return AE_AML_ILLEGAL_ADDRESS.
1177 *
1178 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1179 * the addresses accessed by AML operation regions.
1180 *
1181 *****************************************************************************/
1182
1183 acpi_status
1184 acpi_os_validate_address (
1185 u8 space_id,
1186 acpi_physical_address address,
1187 acpi_size length)
1188 {
1189
1190 return AE_OK;
1191 }
1192
1193
1194 #endif
This page took 0.064369 seconds and 5 git commands to generate.