Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79
80 /*
81 * This list of permanent mappings is for memory that may be accessed from
82 * interrupt context, where we can't do the ioremap().
83 */
84 struct acpi_ioremap {
85 struct list_head list;
86 void __iomem *virt;
87 acpi_physical_address phys;
88 acpi_size size;
89 unsigned long refcount;
90 };
91
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96 unsigned int length, char *desc)
97 {
98 u64 addr;
99
100 /* Handle possible alignment issues */
101 memcpy(&addr, &gas->address, sizeof(addr));
102 if (!addr || !length)
103 return;
104
105 /* Resources are never freed */
106 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107 request_region(addr, length, desc);
108 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109 request_mem_region(addr, length, desc);
110 }
111
112 static int __init acpi_reserve_resources(void)
113 {
114 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1a_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1b_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1a_CNT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1b_CNT_BLK");
125
126 if (acpi_gbl_FADT.pm_timer_length == 4)
127 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128
129 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 "ACPI PM2_CNT_BLK");
131
132 /* Length of GPE blocks must be a non-negative multiple of 2 */
133
134 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137
138 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141
142 return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145
146 void acpi_os_printf(const char *fmt, ...)
147 {
148 va_list args;
149 va_start(args, fmt);
150 acpi_os_vprintf(fmt, args);
151 va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157 static char buffer[512];
158
159 vsprintf(buffer, fmt, args);
160
161 #ifdef ENABLE_DEBUGGER
162 if (acpi_in_debugger) {
163 kdb_printf("%s", buffer);
164 } else {
165 printk(KERN_CONT "%s", buffer);
166 }
167 #else
168 if (acpi_debugger_write_log(buffer) < 0)
169 printk(KERN_CONT "%s", buffer);
170 #endif
171 }
172
173 #ifdef CONFIG_KEXEC
174 static unsigned long acpi_rsdp;
175 static int __init setup_acpi_rsdp(char *arg)
176 {
177 if (kstrtoul(arg, 16, &acpi_rsdp))
178 return -EINVAL;
179 return 0;
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 #ifdef CONFIG_KEXEC
187 if (acpi_rsdp)
188 return acpi_rsdp;
189 #endif
190
191 if (efi_enabled(EFI_CONFIG_TABLES)) {
192 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
193 return efi.acpi20;
194 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
195 return efi.acpi;
196 else {
197 printk(KERN_ERR PREFIX
198 "System description tables not found\n");
199 return 0;
200 }
201 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
202 acpi_physical_address pa = 0;
203
204 acpi_find_root_pointer(&pa);
205 return pa;
206 }
207
208 return 0;
209 }
210
211 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
212 static struct acpi_ioremap *
213 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
214 {
215 struct acpi_ioremap *map;
216
217 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
218 if (map->phys <= phys &&
219 phys + size <= map->phys + map->size)
220 return map;
221
222 return NULL;
223 }
224
225 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
226 static void __iomem *
227 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
228 {
229 struct acpi_ioremap *map;
230
231 map = acpi_map_lookup(phys, size);
232 if (map)
233 return map->virt + (phys - map->phys);
234
235 return NULL;
236 }
237
238 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
239 {
240 struct acpi_ioremap *map;
241 void __iomem *virt = NULL;
242
243 mutex_lock(&acpi_ioremap_lock);
244 map = acpi_map_lookup(phys, size);
245 if (map) {
246 virt = map->virt + (phys - map->phys);
247 map->refcount++;
248 }
249 mutex_unlock(&acpi_ioremap_lock);
250 return virt;
251 }
252 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
253
254 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
255 static struct acpi_ioremap *
256 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
257 {
258 struct acpi_ioremap *map;
259
260 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
261 if (map->virt <= virt &&
262 virt + size <= map->virt + map->size)
263 return map;
264
265 return NULL;
266 }
267
268 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
269 /* ioremap will take care of cache attributes */
270 #define should_use_kmap(pfn) 0
271 #else
272 #define should_use_kmap(pfn) page_is_ram(pfn)
273 #endif
274
275 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
276 {
277 unsigned long pfn;
278
279 pfn = pg_off >> PAGE_SHIFT;
280 if (should_use_kmap(pfn)) {
281 if (pg_sz > PAGE_SIZE)
282 return NULL;
283 return (void __iomem __force *)kmap(pfn_to_page(pfn));
284 } else
285 return acpi_os_ioremap(pg_off, pg_sz);
286 }
287
288 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
289 {
290 unsigned long pfn;
291
292 pfn = pg_off >> PAGE_SHIFT;
293 if (should_use_kmap(pfn))
294 kunmap(pfn_to_page(pfn));
295 else
296 iounmap(vaddr);
297 }
298
299 /**
300 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
301 * @phys: Start of the physical address range to map.
302 * @size: Size of the physical address range to map.
303 *
304 * Look up the given physical address range in the list of existing ACPI memory
305 * mappings. If found, get a reference to it and return a pointer to it (its
306 * virtual address). If not found, map it, add it to that list and return a
307 * pointer to it.
308 *
309 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
310 * routine simply calls __acpi_map_table() to get the job done.
311 */
312 void __iomem *__init_refok
313 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
314 {
315 struct acpi_ioremap *map;
316 void __iomem *virt;
317 acpi_physical_address pg_off;
318 acpi_size pg_sz;
319
320 if (phys > ULONG_MAX) {
321 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
322 return NULL;
323 }
324
325 if (!acpi_gbl_permanent_mmap)
326 return __acpi_map_table((unsigned long)phys, size);
327
328 mutex_lock(&acpi_ioremap_lock);
329 /* Check if there's a suitable mapping already. */
330 map = acpi_map_lookup(phys, size);
331 if (map) {
332 map->refcount++;
333 goto out;
334 }
335
336 map = kzalloc(sizeof(*map), GFP_KERNEL);
337 if (!map) {
338 mutex_unlock(&acpi_ioremap_lock);
339 return NULL;
340 }
341
342 pg_off = round_down(phys, PAGE_SIZE);
343 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
344 virt = acpi_map(pg_off, pg_sz);
345 if (!virt) {
346 mutex_unlock(&acpi_ioremap_lock);
347 kfree(map);
348 return NULL;
349 }
350
351 INIT_LIST_HEAD(&map->list);
352 map->virt = virt;
353 map->phys = pg_off;
354 map->size = pg_sz;
355 map->refcount = 1;
356
357 list_add_tail_rcu(&map->list, &acpi_ioremaps);
358
359 out:
360 mutex_unlock(&acpi_ioremap_lock);
361 return map->virt + (phys - map->phys);
362 }
363 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
364
365 void *__init_refok
366 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368 return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374 if (!--map->refcount)
375 list_del_rcu(&map->list);
376 }
377
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380 if (!map->refcount) {
381 synchronize_rcu_expedited();
382 acpi_unmap(map->phys, map->virt);
383 kfree(map);
384 }
385 }
386
387 /**
388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
389 * @virt: Start of the address range to drop a reference to.
390 * @size: Size of the address range to drop a reference to.
391 *
392 * Look up the given virtual address range in the list of existing ACPI memory
393 * mappings, drop a reference to it and unmap it if there are no more active
394 * references to it.
395 *
396 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
397 * routine simply calls __acpi_unmap_table() to get the job done. Since
398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399 * here.
400 */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403 struct acpi_ioremap *map;
404
405 if (!acpi_gbl_permanent_mmap) {
406 __acpi_unmap_table(virt, size);
407 return;
408 }
409
410 mutex_lock(&acpi_ioremap_lock);
411 map = acpi_map_lookup_virt(virt, size);
412 if (!map) {
413 mutex_unlock(&acpi_ioremap_lock);
414 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 return;
416 }
417 acpi_os_drop_map_ref(map);
418 mutex_unlock(&acpi_ioremap_lock);
419
420 acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426 return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429
430 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
431 {
432 if (!acpi_gbl_permanent_mmap)
433 __acpi_unmap_table(virt, size);
434 }
435
436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438 u64 addr;
439 void __iomem *virt;
440
441 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442 return 0;
443
444 /* Handle possible alignment issues */
445 memcpy(&addr, &gas->address, sizeof(addr));
446 if (!addr || !gas->bit_width)
447 return -EINVAL;
448
449 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450 if (!virt)
451 return -EIO;
452
453 return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456
457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459 u64 addr;
460 struct acpi_ioremap *map;
461
462 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
463 return;
464
465 /* Handle possible alignment issues */
466 memcpy(&addr, &gas->address, sizeof(addr));
467 if (!addr || !gas->bit_width)
468 return;
469
470 mutex_lock(&acpi_ioremap_lock);
471 map = acpi_map_lookup(addr, gas->bit_width / 8);
472 if (!map) {
473 mutex_unlock(&acpi_ioremap_lock);
474 return;
475 }
476 acpi_os_drop_map_ref(map);
477 mutex_unlock(&acpi_ioremap_lock);
478
479 acpi_os_map_cleanup(map);
480 }
481 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
482
483 #ifdef ACPI_FUTURE_USAGE
484 acpi_status
485 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
486 {
487 if (!phys || !virt)
488 return AE_BAD_PARAMETER;
489
490 *phys = virt_to_phys(virt);
491
492 return AE_OK;
493 }
494 #endif
495
496 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
497 static bool acpi_rev_override;
498
499 int __init acpi_rev_override_setup(char *str)
500 {
501 acpi_rev_override = true;
502 return 1;
503 }
504 __setup("acpi_rev_override", acpi_rev_override_setup);
505 #else
506 #define acpi_rev_override false
507 #endif
508
509 #define ACPI_MAX_OVERRIDE_LEN 100
510
511 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
512
513 acpi_status
514 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
515 acpi_string *new_val)
516 {
517 if (!init_val || !new_val)
518 return AE_BAD_PARAMETER;
519
520 *new_val = NULL;
521 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
522 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
523 acpi_os_name);
524 *new_val = acpi_os_name;
525 }
526
527 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
528 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
529 *new_val = (char *)5;
530 }
531
532 return AE_OK;
533 }
534
535 static irqreturn_t acpi_irq(int irq, void *dev_id)
536 {
537 u32 handled;
538
539 handled = (*acpi_irq_handler) (acpi_irq_context);
540
541 if (handled) {
542 acpi_irq_handled++;
543 return IRQ_HANDLED;
544 } else {
545 acpi_irq_not_handled++;
546 return IRQ_NONE;
547 }
548 }
549
550 acpi_status
551 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
552 void *context)
553 {
554 unsigned int irq;
555
556 acpi_irq_stats_init();
557
558 /*
559 * ACPI interrupts different from the SCI in our copy of the FADT are
560 * not supported.
561 */
562 if (gsi != acpi_gbl_FADT.sci_interrupt)
563 return AE_BAD_PARAMETER;
564
565 if (acpi_irq_handler)
566 return AE_ALREADY_ACQUIRED;
567
568 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
569 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
570 gsi);
571 return AE_OK;
572 }
573
574 acpi_irq_handler = handler;
575 acpi_irq_context = context;
576 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
577 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
578 acpi_irq_handler = NULL;
579 return AE_NOT_ACQUIRED;
580 }
581 acpi_sci_irq = irq;
582
583 return AE_OK;
584 }
585
586 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
587 {
588 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
589 return AE_BAD_PARAMETER;
590
591 free_irq(acpi_sci_irq, acpi_irq);
592 acpi_irq_handler = NULL;
593 acpi_sci_irq = INVALID_ACPI_IRQ;
594
595 return AE_OK;
596 }
597
598 /*
599 * Running in interpreter thread context, safe to sleep
600 */
601
602 void acpi_os_sleep(u64 ms)
603 {
604 msleep(ms);
605 }
606
607 void acpi_os_stall(u32 us)
608 {
609 while (us) {
610 u32 delay = 1000;
611
612 if (delay > us)
613 delay = us;
614 udelay(delay);
615 touch_nmi_watchdog();
616 us -= delay;
617 }
618 }
619
620 /*
621 * Support ACPI 3.0 AML Timer operand
622 * Returns 64-bit free-running, monotonically increasing timer
623 * with 100ns granularity
624 */
625 u64 acpi_os_get_timer(void)
626 {
627 u64 time_ns = ktime_to_ns(ktime_get());
628 do_div(time_ns, 100);
629 return time_ns;
630 }
631
632 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
633 {
634 u32 dummy;
635
636 if (!value)
637 value = &dummy;
638
639 *value = 0;
640 if (width <= 8) {
641 *(u8 *) value = inb(port);
642 } else if (width <= 16) {
643 *(u16 *) value = inw(port);
644 } else if (width <= 32) {
645 *(u32 *) value = inl(port);
646 } else {
647 BUG();
648 }
649
650 return AE_OK;
651 }
652
653 EXPORT_SYMBOL(acpi_os_read_port);
654
655 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
656 {
657 if (width <= 8) {
658 outb(value, port);
659 } else if (width <= 16) {
660 outw(value, port);
661 } else if (width <= 32) {
662 outl(value, port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668 }
669
670 EXPORT_SYMBOL(acpi_os_write_port);
671
672 acpi_status
673 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
674 {
675 void __iomem *virt_addr;
676 unsigned int size = width / 8;
677 bool unmap = false;
678 u64 dummy;
679
680 rcu_read_lock();
681 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
682 if (!virt_addr) {
683 rcu_read_unlock();
684 virt_addr = acpi_os_ioremap(phys_addr, size);
685 if (!virt_addr)
686 return AE_BAD_ADDRESS;
687 unmap = true;
688 }
689
690 if (!value)
691 value = &dummy;
692
693 switch (width) {
694 case 8:
695 *(u8 *) value = readb(virt_addr);
696 break;
697 case 16:
698 *(u16 *) value = readw(virt_addr);
699 break;
700 case 32:
701 *(u32 *) value = readl(virt_addr);
702 break;
703 case 64:
704 *(u64 *) value = readq(virt_addr);
705 break;
706 default:
707 BUG();
708 }
709
710 if (unmap)
711 iounmap(virt_addr);
712 else
713 rcu_read_unlock();
714
715 return AE_OK;
716 }
717
718 acpi_status
719 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
720 {
721 void __iomem *virt_addr;
722 unsigned int size = width / 8;
723 bool unmap = false;
724
725 rcu_read_lock();
726 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
727 if (!virt_addr) {
728 rcu_read_unlock();
729 virt_addr = acpi_os_ioremap(phys_addr, size);
730 if (!virt_addr)
731 return AE_BAD_ADDRESS;
732 unmap = true;
733 }
734
735 switch (width) {
736 case 8:
737 writeb(value, virt_addr);
738 break;
739 case 16:
740 writew(value, virt_addr);
741 break;
742 case 32:
743 writel(value, virt_addr);
744 break;
745 case 64:
746 writeq(value, virt_addr);
747 break;
748 default:
749 BUG();
750 }
751
752 if (unmap)
753 iounmap(virt_addr);
754 else
755 rcu_read_unlock();
756
757 return AE_OK;
758 }
759
760 acpi_status
761 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
762 u64 *value, u32 width)
763 {
764 int result, size;
765 u32 value32;
766
767 if (!value)
768 return AE_BAD_PARAMETER;
769
770 switch (width) {
771 case 8:
772 size = 1;
773 break;
774 case 16:
775 size = 2;
776 break;
777 case 32:
778 size = 4;
779 break;
780 default:
781 return AE_ERROR;
782 }
783
784 result = raw_pci_read(pci_id->segment, pci_id->bus,
785 PCI_DEVFN(pci_id->device, pci_id->function),
786 reg, size, &value32);
787 *value = value32;
788
789 return (result ? AE_ERROR : AE_OK);
790 }
791
792 acpi_status
793 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
794 u64 value, u32 width)
795 {
796 int result, size;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_write(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, value);
815
816 return (result ? AE_ERROR : AE_OK);
817 }
818
819 static void acpi_os_execute_deferred(struct work_struct *work)
820 {
821 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
822
823 dpc->function(dpc->context);
824 kfree(dpc);
825 }
826
827 #ifdef CONFIG_ACPI_DEBUGGER
828 static struct acpi_debugger acpi_debugger;
829 static bool acpi_debugger_initialized;
830
831 int acpi_register_debugger(struct module *owner,
832 const struct acpi_debugger_ops *ops)
833 {
834 int ret = 0;
835
836 mutex_lock(&acpi_debugger.lock);
837 if (acpi_debugger.ops) {
838 ret = -EBUSY;
839 goto err_lock;
840 }
841
842 acpi_debugger.owner = owner;
843 acpi_debugger.ops = ops;
844
845 err_lock:
846 mutex_unlock(&acpi_debugger.lock);
847 return ret;
848 }
849 EXPORT_SYMBOL(acpi_register_debugger);
850
851 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
852 {
853 mutex_lock(&acpi_debugger.lock);
854 if (ops == acpi_debugger.ops) {
855 acpi_debugger.ops = NULL;
856 acpi_debugger.owner = NULL;
857 }
858 mutex_unlock(&acpi_debugger.lock);
859 }
860 EXPORT_SYMBOL(acpi_unregister_debugger);
861
862 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
863 {
864 int ret;
865 int (*func)(acpi_osd_exec_callback, void *);
866 struct module *owner;
867
868 if (!acpi_debugger_initialized)
869 return -ENODEV;
870 mutex_lock(&acpi_debugger.lock);
871 if (!acpi_debugger.ops) {
872 ret = -ENODEV;
873 goto err_lock;
874 }
875 if (!try_module_get(acpi_debugger.owner)) {
876 ret = -ENODEV;
877 goto err_lock;
878 }
879 func = acpi_debugger.ops->create_thread;
880 owner = acpi_debugger.owner;
881 mutex_unlock(&acpi_debugger.lock);
882
883 ret = func(function, context);
884
885 mutex_lock(&acpi_debugger.lock);
886 module_put(owner);
887 err_lock:
888 mutex_unlock(&acpi_debugger.lock);
889 return ret;
890 }
891
892 ssize_t acpi_debugger_write_log(const char *msg)
893 {
894 ssize_t ret;
895 ssize_t (*func)(const char *);
896 struct module *owner;
897
898 if (!acpi_debugger_initialized)
899 return -ENODEV;
900 mutex_lock(&acpi_debugger.lock);
901 if (!acpi_debugger.ops) {
902 ret = -ENODEV;
903 goto err_lock;
904 }
905 if (!try_module_get(acpi_debugger.owner)) {
906 ret = -ENODEV;
907 goto err_lock;
908 }
909 func = acpi_debugger.ops->write_log;
910 owner = acpi_debugger.owner;
911 mutex_unlock(&acpi_debugger.lock);
912
913 ret = func(msg);
914
915 mutex_lock(&acpi_debugger.lock);
916 module_put(owner);
917 err_lock:
918 mutex_unlock(&acpi_debugger.lock);
919 return ret;
920 }
921
922 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
923 {
924 ssize_t ret;
925 ssize_t (*func)(char *, size_t);
926 struct module *owner;
927
928 if (!acpi_debugger_initialized)
929 return -ENODEV;
930 mutex_lock(&acpi_debugger.lock);
931 if (!acpi_debugger.ops) {
932 ret = -ENODEV;
933 goto err_lock;
934 }
935 if (!try_module_get(acpi_debugger.owner)) {
936 ret = -ENODEV;
937 goto err_lock;
938 }
939 func = acpi_debugger.ops->read_cmd;
940 owner = acpi_debugger.owner;
941 mutex_unlock(&acpi_debugger.lock);
942
943 ret = func(buffer, buffer_length);
944
945 mutex_lock(&acpi_debugger.lock);
946 module_put(owner);
947 err_lock:
948 mutex_unlock(&acpi_debugger.lock);
949 return ret;
950 }
951
952 int acpi_debugger_wait_command_ready(void)
953 {
954 int ret;
955 int (*func)(bool, char *, size_t);
956 struct module *owner;
957
958 if (!acpi_debugger_initialized)
959 return -ENODEV;
960 mutex_lock(&acpi_debugger.lock);
961 if (!acpi_debugger.ops) {
962 ret = -ENODEV;
963 goto err_lock;
964 }
965 if (!try_module_get(acpi_debugger.owner)) {
966 ret = -ENODEV;
967 goto err_lock;
968 }
969 func = acpi_debugger.ops->wait_command_ready;
970 owner = acpi_debugger.owner;
971 mutex_unlock(&acpi_debugger.lock);
972
973 ret = func(acpi_gbl_method_executing,
974 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
975
976 mutex_lock(&acpi_debugger.lock);
977 module_put(owner);
978 err_lock:
979 mutex_unlock(&acpi_debugger.lock);
980 return ret;
981 }
982
983 int acpi_debugger_notify_command_complete(void)
984 {
985 int ret;
986 int (*func)(void);
987 struct module *owner;
988
989 if (!acpi_debugger_initialized)
990 return -ENODEV;
991 mutex_lock(&acpi_debugger.lock);
992 if (!acpi_debugger.ops) {
993 ret = -ENODEV;
994 goto err_lock;
995 }
996 if (!try_module_get(acpi_debugger.owner)) {
997 ret = -ENODEV;
998 goto err_lock;
999 }
1000 func = acpi_debugger.ops->notify_command_complete;
1001 owner = acpi_debugger.owner;
1002 mutex_unlock(&acpi_debugger.lock);
1003
1004 ret = func();
1005
1006 mutex_lock(&acpi_debugger.lock);
1007 module_put(owner);
1008 err_lock:
1009 mutex_unlock(&acpi_debugger.lock);
1010 return ret;
1011 }
1012
1013 int __init acpi_debugger_init(void)
1014 {
1015 mutex_init(&acpi_debugger.lock);
1016 acpi_debugger_initialized = true;
1017 return 0;
1018 }
1019 #endif
1020
1021 /*******************************************************************************
1022 *
1023 * FUNCTION: acpi_os_execute
1024 *
1025 * PARAMETERS: Type - Type of the callback
1026 * Function - Function to be executed
1027 * Context - Function parameters
1028 *
1029 * RETURN: Status
1030 *
1031 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032 * immediately executes function on a separate thread.
1033 *
1034 ******************************************************************************/
1035
1036 acpi_status acpi_os_execute(acpi_execute_type type,
1037 acpi_osd_exec_callback function, void *context)
1038 {
1039 acpi_status status = AE_OK;
1040 struct acpi_os_dpc *dpc;
1041 struct workqueue_struct *queue;
1042 int ret;
1043 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044 "Scheduling function [%p(%p)] for deferred execution.\n",
1045 function, context));
1046
1047 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048 ret = acpi_debugger_create_thread(function, context);
1049 if (ret) {
1050 pr_err("Call to kthread_create() failed.\n");
1051 status = AE_ERROR;
1052 }
1053 goto out_thread;
1054 }
1055
1056 /*
1057 * Allocate/initialize DPC structure. Note that this memory will be
1058 * freed by the callee. The kernel handles the work_struct list in a
1059 * way that allows us to also free its memory inside the callee.
1060 * Because we may want to schedule several tasks with different
1061 * parameters we can't use the approach some kernel code uses of
1062 * having a static work_struct.
1063 */
1064
1065 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066 if (!dpc)
1067 return AE_NO_MEMORY;
1068
1069 dpc->function = function;
1070 dpc->context = context;
1071
1072 /*
1073 * To prevent lockdep from complaining unnecessarily, make sure that
1074 * there is a different static lockdep key for each workqueue by using
1075 * INIT_WORK() for each of them separately.
1076 */
1077 if (type == OSL_NOTIFY_HANDLER) {
1078 queue = kacpi_notify_wq;
1079 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080 } else if (type == OSL_GPE_HANDLER) {
1081 queue = kacpid_wq;
1082 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083 } else {
1084 pr_err("Unsupported os_execute type %d.\n", type);
1085 status = AE_ERROR;
1086 }
1087
1088 if (ACPI_FAILURE(status))
1089 goto err_workqueue;
1090
1091 /*
1092 * On some machines, a software-initiated SMI causes corruption unless
1093 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1094 * typically it's done in GPE-related methods that are run via
1095 * workqueues, so we can avoid the known corruption cases by always
1096 * queueing on CPU 0.
1097 */
1098 ret = queue_work_on(0, queue, &dpc->work);
1099 if (!ret) {
1100 printk(KERN_ERR PREFIX
1101 "Call to queue_work() failed.\n");
1102 status = AE_ERROR;
1103 }
1104 err_workqueue:
1105 if (ACPI_FAILURE(status))
1106 kfree(dpc);
1107 out_thread:
1108 return status;
1109 }
1110 EXPORT_SYMBOL(acpi_os_execute);
1111
1112 void acpi_os_wait_events_complete(void)
1113 {
1114 /*
1115 * Make sure the GPE handler or the fixed event handler is not used
1116 * on another CPU after removal.
1117 */
1118 if (acpi_sci_irq_valid())
1119 synchronize_hardirq(acpi_sci_irq);
1120 flush_workqueue(kacpid_wq);
1121 flush_workqueue(kacpi_notify_wq);
1122 }
1123
1124 struct acpi_hp_work {
1125 struct work_struct work;
1126 struct acpi_device *adev;
1127 u32 src;
1128 };
1129
1130 static void acpi_hotplug_work_fn(struct work_struct *work)
1131 {
1132 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1133
1134 acpi_os_wait_events_complete();
1135 acpi_device_hotplug(hpw->adev, hpw->src);
1136 kfree(hpw);
1137 }
1138
1139 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1140 {
1141 struct acpi_hp_work *hpw;
1142
1143 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1144 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1145 adev, src));
1146
1147 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1148 if (!hpw)
1149 return AE_NO_MEMORY;
1150
1151 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1152 hpw->adev = adev;
1153 hpw->src = src;
1154 /*
1155 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1156 * the hotplug code may call driver .remove() functions, which may
1157 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1158 * these workqueues.
1159 */
1160 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1161 kfree(hpw);
1162 return AE_ERROR;
1163 }
1164 return AE_OK;
1165 }
1166
1167 bool acpi_queue_hotplug_work(struct work_struct *work)
1168 {
1169 return queue_work(kacpi_hotplug_wq, work);
1170 }
1171
1172 acpi_status
1173 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1174 {
1175 struct semaphore *sem = NULL;
1176
1177 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1178 if (!sem)
1179 return AE_NO_MEMORY;
1180
1181 sema_init(sem, initial_units);
1182
1183 *handle = (acpi_handle *) sem;
1184
1185 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1186 *handle, initial_units));
1187
1188 return AE_OK;
1189 }
1190
1191 /*
1192 * TODO: A better way to delete semaphores? Linux doesn't have a
1193 * 'delete_semaphore()' function -- may result in an invalid
1194 * pointer dereference for non-synchronized consumers. Should
1195 * we at least check for blocked threads and signal/cancel them?
1196 */
1197
1198 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1199 {
1200 struct semaphore *sem = (struct semaphore *)handle;
1201
1202 if (!sem)
1203 return AE_BAD_PARAMETER;
1204
1205 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1206
1207 BUG_ON(!list_empty(&sem->wait_list));
1208 kfree(sem);
1209 sem = NULL;
1210
1211 return AE_OK;
1212 }
1213
1214 /*
1215 * TODO: Support for units > 1?
1216 */
1217 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1218 {
1219 acpi_status status = AE_OK;
1220 struct semaphore *sem = (struct semaphore *)handle;
1221 long jiffies;
1222 int ret = 0;
1223
1224 if (!acpi_os_initialized)
1225 return AE_OK;
1226
1227 if (!sem || (units < 1))
1228 return AE_BAD_PARAMETER;
1229
1230 if (units > 1)
1231 return AE_SUPPORT;
1232
1233 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1234 handle, units, timeout));
1235
1236 if (timeout == ACPI_WAIT_FOREVER)
1237 jiffies = MAX_SCHEDULE_TIMEOUT;
1238 else
1239 jiffies = msecs_to_jiffies(timeout);
1240
1241 ret = down_timeout(sem, jiffies);
1242 if (ret)
1243 status = AE_TIME;
1244
1245 if (ACPI_FAILURE(status)) {
1246 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1247 "Failed to acquire semaphore[%p|%d|%d], %s",
1248 handle, units, timeout,
1249 acpi_format_exception(status)));
1250 } else {
1251 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1252 "Acquired semaphore[%p|%d|%d]", handle,
1253 units, timeout));
1254 }
1255
1256 return status;
1257 }
1258
1259 /*
1260 * TODO: Support for units > 1?
1261 */
1262 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1263 {
1264 struct semaphore *sem = (struct semaphore *)handle;
1265
1266 if (!acpi_os_initialized)
1267 return AE_OK;
1268
1269 if (!sem || (units < 1))
1270 return AE_BAD_PARAMETER;
1271
1272 if (units > 1)
1273 return AE_SUPPORT;
1274
1275 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1276 units));
1277
1278 up(sem);
1279
1280 return AE_OK;
1281 }
1282
1283 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1284 {
1285 #ifdef ENABLE_DEBUGGER
1286 if (acpi_in_debugger) {
1287 u32 chars;
1288
1289 kdb_read(buffer, buffer_length);
1290
1291 /* remove the CR kdb includes */
1292 chars = strlen(buffer) - 1;
1293 buffer[chars] = '\0';
1294 }
1295 #else
1296 int ret;
1297
1298 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1299 if (ret < 0)
1300 return AE_ERROR;
1301 if (bytes_read)
1302 *bytes_read = ret;
1303 #endif
1304
1305 return AE_OK;
1306 }
1307 EXPORT_SYMBOL(acpi_os_get_line);
1308
1309 acpi_status acpi_os_wait_command_ready(void)
1310 {
1311 int ret;
1312
1313 ret = acpi_debugger_wait_command_ready();
1314 if (ret < 0)
1315 return AE_ERROR;
1316 return AE_OK;
1317 }
1318
1319 acpi_status acpi_os_notify_command_complete(void)
1320 {
1321 int ret;
1322
1323 ret = acpi_debugger_notify_command_complete();
1324 if (ret < 0)
1325 return AE_ERROR;
1326 return AE_OK;
1327 }
1328
1329 acpi_status acpi_os_signal(u32 function, void *info)
1330 {
1331 switch (function) {
1332 case ACPI_SIGNAL_FATAL:
1333 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1334 break;
1335 case ACPI_SIGNAL_BREAKPOINT:
1336 /*
1337 * AML Breakpoint
1338 * ACPI spec. says to treat it as a NOP unless
1339 * you are debugging. So if/when we integrate
1340 * AML debugger into the kernel debugger its
1341 * hook will go here. But until then it is
1342 * not useful to print anything on breakpoints.
1343 */
1344 break;
1345 default:
1346 break;
1347 }
1348
1349 return AE_OK;
1350 }
1351
1352 static int __init acpi_os_name_setup(char *str)
1353 {
1354 char *p = acpi_os_name;
1355 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1356
1357 if (!str || !*str)
1358 return 0;
1359
1360 for (; count-- && *str; str++) {
1361 if (isalnum(*str) || *str == ' ' || *str == ':')
1362 *p++ = *str;
1363 else if (*str == '\'' || *str == '"')
1364 continue;
1365 else
1366 break;
1367 }
1368 *p = 0;
1369
1370 return 1;
1371
1372 }
1373
1374 __setup("acpi_os_name=", acpi_os_name_setup);
1375
1376 /*
1377 * Disable the auto-serialization of named objects creation methods.
1378 *
1379 * This feature is enabled by default. It marks the AML control methods
1380 * that contain the opcodes to create named objects as "Serialized".
1381 */
1382 static int __init acpi_no_auto_serialize_setup(char *str)
1383 {
1384 acpi_gbl_auto_serialize_methods = FALSE;
1385 pr_info("ACPI: auto-serialization disabled\n");
1386
1387 return 1;
1388 }
1389
1390 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1391
1392 /* Check of resource interference between native drivers and ACPI
1393 * OperationRegions (SystemIO and System Memory only).
1394 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1395 * in arbitrary AML code and can interfere with legacy drivers.
1396 * acpi_enforce_resources= can be set to:
1397 *
1398 * - strict (default) (2)
1399 * -> further driver trying to access the resources will not load
1400 * - lax (1)
1401 * -> further driver trying to access the resources will load, but you
1402 * get a system message that something might go wrong...
1403 *
1404 * - no (0)
1405 * -> ACPI Operation Region resources will not be registered
1406 *
1407 */
1408 #define ENFORCE_RESOURCES_STRICT 2
1409 #define ENFORCE_RESOURCES_LAX 1
1410 #define ENFORCE_RESOURCES_NO 0
1411
1412 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1413
1414 static int __init acpi_enforce_resources_setup(char *str)
1415 {
1416 if (str == NULL || *str == '\0')
1417 return 0;
1418
1419 if (!strcmp("strict", str))
1420 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1421 else if (!strcmp("lax", str))
1422 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1423 else if (!strcmp("no", str))
1424 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1425
1426 return 1;
1427 }
1428
1429 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1430
1431 /* Check for resource conflicts between ACPI OperationRegions and native
1432 * drivers */
1433 int acpi_check_resource_conflict(const struct resource *res)
1434 {
1435 acpi_adr_space_type space_id;
1436 acpi_size length;
1437 u8 warn = 0;
1438 int clash = 0;
1439
1440 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1441 return 0;
1442 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1443 return 0;
1444
1445 if (res->flags & IORESOURCE_IO)
1446 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1447 else
1448 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1449
1450 length = resource_size(res);
1451 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1452 warn = 1;
1453 clash = acpi_check_address_range(space_id, res->start, length, warn);
1454
1455 if (clash) {
1456 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1457 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1458 printk(KERN_NOTICE "ACPI: This conflict may"
1459 " cause random problems and system"
1460 " instability\n");
1461 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1462 " for this device, you should use it instead of"
1463 " the native driver\n");
1464 }
1465 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1466 return -EBUSY;
1467 }
1468 return 0;
1469 }
1470 EXPORT_SYMBOL(acpi_check_resource_conflict);
1471
1472 int acpi_check_region(resource_size_t start, resource_size_t n,
1473 const char *name)
1474 {
1475 struct resource res = {
1476 .start = start,
1477 .end = start + n - 1,
1478 .name = name,
1479 .flags = IORESOURCE_IO,
1480 };
1481
1482 return acpi_check_resource_conflict(&res);
1483 }
1484 EXPORT_SYMBOL(acpi_check_region);
1485
1486 /*
1487 * Let drivers know whether the resource checks are effective
1488 */
1489 int acpi_resources_are_enforced(void)
1490 {
1491 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1492 }
1493 EXPORT_SYMBOL(acpi_resources_are_enforced);
1494
1495 /*
1496 * Deallocate the memory for a spinlock.
1497 */
1498 void acpi_os_delete_lock(acpi_spinlock handle)
1499 {
1500 ACPI_FREE(handle);
1501 }
1502
1503 /*
1504 * Acquire a spinlock.
1505 *
1506 * handle is a pointer to the spinlock_t.
1507 */
1508
1509 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1510 {
1511 acpi_cpu_flags flags;
1512 spin_lock_irqsave(lockp, flags);
1513 return flags;
1514 }
1515
1516 /*
1517 * Release a spinlock. See above.
1518 */
1519
1520 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1521 {
1522 spin_unlock_irqrestore(lockp, flags);
1523 }
1524
1525 #ifndef ACPI_USE_LOCAL_CACHE
1526
1527 /*******************************************************************************
1528 *
1529 * FUNCTION: acpi_os_create_cache
1530 *
1531 * PARAMETERS: name - Ascii name for the cache
1532 * size - Size of each cached object
1533 * depth - Maximum depth of the cache (in objects) <ignored>
1534 * cache - Where the new cache object is returned
1535 *
1536 * RETURN: status
1537 *
1538 * DESCRIPTION: Create a cache object
1539 *
1540 ******************************************************************************/
1541
1542 acpi_status
1543 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1544 {
1545 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1546 if (*cache == NULL)
1547 return AE_ERROR;
1548 else
1549 return AE_OK;
1550 }
1551
1552 /*******************************************************************************
1553 *
1554 * FUNCTION: acpi_os_purge_cache
1555 *
1556 * PARAMETERS: Cache - Handle to cache object
1557 *
1558 * RETURN: Status
1559 *
1560 * DESCRIPTION: Free all objects within the requested cache.
1561 *
1562 ******************************************************************************/
1563
1564 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1565 {
1566 kmem_cache_shrink(cache);
1567 return (AE_OK);
1568 }
1569
1570 /*******************************************************************************
1571 *
1572 * FUNCTION: acpi_os_delete_cache
1573 *
1574 * PARAMETERS: Cache - Handle to cache object
1575 *
1576 * RETURN: Status
1577 *
1578 * DESCRIPTION: Free all objects within the requested cache and delete the
1579 * cache object.
1580 *
1581 ******************************************************************************/
1582
1583 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1584 {
1585 kmem_cache_destroy(cache);
1586 return (AE_OK);
1587 }
1588
1589 /*******************************************************************************
1590 *
1591 * FUNCTION: acpi_os_release_object
1592 *
1593 * PARAMETERS: Cache - Handle to cache object
1594 * Object - The object to be released
1595 *
1596 * RETURN: None
1597 *
1598 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1599 * the object is deleted.
1600 *
1601 ******************************************************************************/
1602
1603 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1604 {
1605 kmem_cache_free(cache, object);
1606 return (AE_OK);
1607 }
1608 #endif
1609
1610 static int __init acpi_no_static_ssdt_setup(char *s)
1611 {
1612 acpi_gbl_disable_ssdt_table_install = TRUE;
1613 pr_info("ACPI: static SSDT installation disabled\n");
1614
1615 return 0;
1616 }
1617
1618 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1619
1620 static int __init acpi_disable_return_repair(char *s)
1621 {
1622 printk(KERN_NOTICE PREFIX
1623 "ACPI: Predefined validation mechanism disabled\n");
1624 acpi_gbl_disable_auto_repair = TRUE;
1625
1626 return 1;
1627 }
1628
1629 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1630
1631 acpi_status __init acpi_os_initialize(void)
1632 {
1633 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1634 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1635 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1636 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1637 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1638 /*
1639 * Use acpi_os_map_generic_address to pre-map the reset
1640 * register if it's in system memory.
1641 */
1642 int rv;
1643
1644 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1645 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1646 }
1647 acpi_os_initialized = true;
1648
1649 return AE_OK;
1650 }
1651
1652 acpi_status __init acpi_os_initialize1(void)
1653 {
1654 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1655 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1656 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1657 BUG_ON(!kacpid_wq);
1658 BUG_ON(!kacpi_notify_wq);
1659 BUG_ON(!kacpi_hotplug_wq);
1660 acpi_osi_init();
1661 return AE_OK;
1662 }
1663
1664 acpi_status acpi_os_terminate(void)
1665 {
1666 if (acpi_irq_handler) {
1667 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1668 acpi_irq_handler);
1669 }
1670
1671 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1672 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1673 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1674 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1675 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1676 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1677
1678 destroy_workqueue(kacpid_wq);
1679 destroy_workqueue(kacpi_notify_wq);
1680 destroy_workqueue(kacpi_hotplug_wq);
1681
1682 return AE_OK;
1683 }
1684
1685 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1686 u32 pm1b_control)
1687 {
1688 int rc = 0;
1689 if (__acpi_os_prepare_sleep)
1690 rc = __acpi_os_prepare_sleep(sleep_state,
1691 pm1a_control, pm1b_control);
1692 if (rc < 0)
1693 return AE_ERROR;
1694 else if (rc > 0)
1695 return AE_CTRL_SKIP;
1696
1697 return AE_OK;
1698 }
1699
1700 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1701 u32 pm1a_ctrl, u32 pm1b_ctrl))
1702 {
1703 __acpi_os_prepare_sleep = func;
1704 }
1705
1706 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1707 u32 val_b)
1708 {
1709 int rc = 0;
1710 if (__acpi_os_prepare_extended_sleep)
1711 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1712 val_a, val_b);
1713 if (rc < 0)
1714 return AE_ERROR;
1715 else if (rc > 0)
1716 return AE_CTRL_SKIP;
1717
1718 return AE_OK;
1719 }
1720
1721 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1722 u32 val_a, u32 val_b))
1723 {
1724 __acpi_os_prepare_extended_sleep = func;
1725 }
This page took 0.068066 seconds and 5 git commands to generate.