ACPI: replace acpi_integer by u64
[deliverable/linux.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define PREFIX "ACPI: "
64
65 #define ACPI_PROCESSOR_CLASS "processor"
66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER "power"
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD 1 /* 1us */
71 #define C3_OVERHEAD 1 /* 1us */
72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88 * For now disable this. Probably a bug somewhere else.
89 *
90 * To skip this limit, boot/load with a large max_cstate limit.
91 */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 return 0;
96
97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100
101 max_cstate = (long)id->driver_data;
102
103 return 0;
104 }
105
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107 callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 { set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 (void *)2},
113 {},
114 };
115
116
117 /*
118 * Callers should disable interrupts before the call and enable
119 * interrupts after return.
120 */
121 static void acpi_safe_halt(void)
122 {
123 current_thread_info()->status &= ~TS_POLLING;
124 /*
125 * TS_POLLING-cleared state must be visible before we
126 * test NEED_RESCHED:
127 */
128 smp_mb();
129 if (!need_resched()) {
130 safe_halt();
131 local_irq_disable();
132 }
133 current_thread_info()->status |= TS_POLLING;
134 }
135
136 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137
138 /*
139 * Some BIOS implementations switch to C3 in the published C2 state.
140 * This seems to be a common problem on AMD boxen, but other vendors
141 * are affected too. We pick the most conservative approach: we assume
142 * that the local APIC stops in both C2 and C3.
143 */
144 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
145 struct acpi_processor_cx *cx)
146 {
147 struct acpi_processor_power *pwr = &pr->power;
148 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149
150 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
151 return;
152
153 if (boot_cpu_has(X86_FEATURE_AMDC1E))
154 type = ACPI_STATE_C1;
155
156 /*
157 * Check, if one of the previous states already marked the lapic
158 * unstable
159 */
160 if (pwr->timer_broadcast_on_state < state)
161 return;
162
163 if (cx->type >= type)
164 pr->power.timer_broadcast_on_state = state;
165 }
166
167 static void __lapic_timer_propagate_broadcast(void *arg)
168 {
169 struct acpi_processor *pr = (struct acpi_processor *) arg;
170 unsigned long reason;
171
172 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
173 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
174
175 clockevents_notify(reason, &pr->id);
176 }
177
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
179 {
180 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
181 (void *)pr, 1);
182 }
183
184 /* Power(C) State timer broadcast control */
185 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
186 struct acpi_processor_cx *cx,
187 int broadcast)
188 {
189 int state = cx - pr->power.states;
190
191 if (state >= pr->power.timer_broadcast_on_state) {
192 unsigned long reason;
193
194 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
195 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
196 clockevents_notify(reason, &pr->id);
197 }
198 }
199
200 #else
201
202 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
203 struct acpi_processor_cx *cstate) { }
204 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
205 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
206 struct acpi_processor_cx *cx,
207 int broadcast)
208 {
209 }
210
211 #endif
212
213 /*
214 * Suspend / resume control
215 */
216 static int acpi_idle_suspend;
217 static u32 saved_bm_rld;
218
219 static void acpi_idle_bm_rld_save(void)
220 {
221 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
222 }
223 static void acpi_idle_bm_rld_restore(void)
224 {
225 u32 resumed_bm_rld;
226
227 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
228
229 if (resumed_bm_rld != saved_bm_rld)
230 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
231 }
232
233 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
234 {
235 if (acpi_idle_suspend == 1)
236 return 0;
237
238 acpi_idle_bm_rld_save();
239 acpi_idle_suspend = 1;
240 return 0;
241 }
242
243 int acpi_processor_resume(struct acpi_device * device)
244 {
245 if (acpi_idle_suspend == 0)
246 return 0;
247
248 acpi_idle_bm_rld_restore();
249 acpi_idle_suspend = 0;
250 return 0;
251 }
252
253 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
254 static void tsc_check_state(int state)
255 {
256 switch (boot_cpu_data.x86_vendor) {
257 case X86_VENDOR_AMD:
258 case X86_VENDOR_INTEL:
259 /*
260 * AMD Fam10h TSC will tick in all
261 * C/P/S0/S1 states when this bit is set.
262 */
263 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
264 return;
265
266 /*FALL THROUGH*/
267 default:
268 /* TSC could halt in idle, so notify users */
269 if (state > ACPI_STATE_C1)
270 mark_tsc_unstable("TSC halts in idle");
271 }
272 }
273 #else
274 static void tsc_check_state(int state) { return; }
275 #endif
276
277 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
278 {
279
280 if (!pr)
281 return -EINVAL;
282
283 if (!pr->pblk)
284 return -ENODEV;
285
286 /* if info is obtained from pblk/fadt, type equals state */
287 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
288 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
289
290 #ifndef CONFIG_HOTPLUG_CPU
291 /*
292 * Check for P_LVL2_UP flag before entering C2 and above on
293 * an SMP system.
294 */
295 if ((num_online_cpus() > 1) &&
296 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
297 return -ENODEV;
298 #endif
299
300 /* determine C2 and C3 address from pblk */
301 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
302 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
303
304 /* determine latencies from FADT */
305 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
306 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
307
308 /*
309 * FADT specified C2 latency must be less than or equal to
310 * 100 microseconds.
311 */
312 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
313 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
314 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
315 /* invalidate C2 */
316 pr->power.states[ACPI_STATE_C2].address = 0;
317 }
318
319 /*
320 * FADT supplied C3 latency must be less than or equal to
321 * 1000 microseconds.
322 */
323 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
324 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
325 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
326 /* invalidate C3 */
327 pr->power.states[ACPI_STATE_C3].address = 0;
328 }
329
330 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
331 "lvl2[0x%08x] lvl3[0x%08x]\n",
332 pr->power.states[ACPI_STATE_C2].address,
333 pr->power.states[ACPI_STATE_C3].address));
334
335 return 0;
336 }
337
338 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
339 {
340 if (!pr->power.states[ACPI_STATE_C1].valid) {
341 /* set the first C-State to C1 */
342 /* all processors need to support C1 */
343 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
344 pr->power.states[ACPI_STATE_C1].valid = 1;
345 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
346 }
347 /* the C0 state only exists as a filler in our array */
348 pr->power.states[ACPI_STATE_C0].valid = 1;
349 return 0;
350 }
351
352 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
353 {
354 acpi_status status = 0;
355 u64 count;
356 int current_count;
357 int i;
358 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
359 union acpi_object *cst;
360
361
362 if (nocst)
363 return -ENODEV;
364
365 current_count = 0;
366
367 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
368 if (ACPI_FAILURE(status)) {
369 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
370 return -ENODEV;
371 }
372
373 cst = buffer.pointer;
374
375 /* There must be at least 2 elements */
376 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
377 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
378 status = -EFAULT;
379 goto end;
380 }
381
382 count = cst->package.elements[0].integer.value;
383
384 /* Validate number of power states. */
385 if (count < 1 || count != cst->package.count - 1) {
386 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
387 status = -EFAULT;
388 goto end;
389 }
390
391 /* Tell driver that at least _CST is supported. */
392 pr->flags.has_cst = 1;
393
394 for (i = 1; i <= count; i++) {
395 union acpi_object *element;
396 union acpi_object *obj;
397 struct acpi_power_register *reg;
398 struct acpi_processor_cx cx;
399
400 memset(&cx, 0, sizeof(cx));
401
402 element = &(cst->package.elements[i]);
403 if (element->type != ACPI_TYPE_PACKAGE)
404 continue;
405
406 if (element->package.count != 4)
407 continue;
408
409 obj = &(element->package.elements[0]);
410
411 if (obj->type != ACPI_TYPE_BUFFER)
412 continue;
413
414 reg = (struct acpi_power_register *)obj->buffer.pointer;
415
416 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
417 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
418 continue;
419
420 /* There should be an easy way to extract an integer... */
421 obj = &(element->package.elements[1]);
422 if (obj->type != ACPI_TYPE_INTEGER)
423 continue;
424
425 cx.type = obj->integer.value;
426 /*
427 * Some buggy BIOSes won't list C1 in _CST -
428 * Let acpi_processor_get_power_info_default() handle them later
429 */
430 if (i == 1 && cx.type != ACPI_STATE_C1)
431 current_count++;
432
433 cx.address = reg->address;
434 cx.index = current_count + 1;
435
436 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
437 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
438 if (acpi_processor_ffh_cstate_probe
439 (pr->id, &cx, reg) == 0) {
440 cx.entry_method = ACPI_CSTATE_FFH;
441 } else if (cx.type == ACPI_STATE_C1) {
442 /*
443 * C1 is a special case where FIXED_HARDWARE
444 * can be handled in non-MWAIT way as well.
445 * In that case, save this _CST entry info.
446 * Otherwise, ignore this info and continue.
447 */
448 cx.entry_method = ACPI_CSTATE_HALT;
449 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
450 } else {
451 continue;
452 }
453 if (cx.type == ACPI_STATE_C1 &&
454 (idle_halt || idle_nomwait)) {
455 /*
456 * In most cases the C1 space_id obtained from
457 * _CST object is FIXED_HARDWARE access mode.
458 * But when the option of idle=halt is added,
459 * the entry_method type should be changed from
460 * CSTATE_FFH to CSTATE_HALT.
461 * When the option of idle=nomwait is added,
462 * the C1 entry_method type should be
463 * CSTATE_HALT.
464 */
465 cx.entry_method = ACPI_CSTATE_HALT;
466 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
467 }
468 } else {
469 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
470 cx.address);
471 }
472
473 if (cx.type == ACPI_STATE_C1) {
474 cx.valid = 1;
475 }
476
477 obj = &(element->package.elements[2]);
478 if (obj->type != ACPI_TYPE_INTEGER)
479 continue;
480
481 cx.latency = obj->integer.value;
482
483 obj = &(element->package.elements[3]);
484 if (obj->type != ACPI_TYPE_INTEGER)
485 continue;
486
487 cx.power = obj->integer.value;
488
489 current_count++;
490 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
491
492 /*
493 * We support total ACPI_PROCESSOR_MAX_POWER - 1
494 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
495 */
496 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
497 printk(KERN_WARNING
498 "Limiting number of power states to max (%d)\n",
499 ACPI_PROCESSOR_MAX_POWER);
500 printk(KERN_WARNING
501 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
502 break;
503 }
504 }
505
506 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
507 current_count));
508
509 /* Validate number of power states discovered */
510 if (current_count < 2)
511 status = -EFAULT;
512
513 end:
514 kfree(buffer.pointer);
515
516 return status;
517 }
518
519 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
520 struct acpi_processor_cx *cx)
521 {
522 static int bm_check_flag = -1;
523 static int bm_control_flag = -1;
524
525
526 if (!cx->address)
527 return;
528
529 /*
530 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
531 * DMA transfers are used by any ISA device to avoid livelock.
532 * Note that we could disable Type-F DMA (as recommended by
533 * the erratum), but this is known to disrupt certain ISA
534 * devices thus we take the conservative approach.
535 */
536 else if (errata.piix4.fdma) {
537 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
538 "C3 not supported on PIIX4 with Type-F DMA\n"));
539 return;
540 }
541
542 /* All the logic here assumes flags.bm_check is same across all CPUs */
543 if (bm_check_flag == -1) {
544 /* Determine whether bm_check is needed based on CPU */
545 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
546 bm_check_flag = pr->flags.bm_check;
547 bm_control_flag = pr->flags.bm_control;
548 } else {
549 pr->flags.bm_check = bm_check_flag;
550 pr->flags.bm_control = bm_control_flag;
551 }
552
553 if (pr->flags.bm_check) {
554 if (!pr->flags.bm_control) {
555 if (pr->flags.has_cst != 1) {
556 /* bus mastering control is necessary */
557 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
558 "C3 support requires BM control\n"));
559 return;
560 } else {
561 /* Here we enter C3 without bus mastering */
562 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
563 "C3 support without BM control\n"));
564 }
565 }
566 } else {
567 /*
568 * WBINVD should be set in fadt, for C3 state to be
569 * supported on when bm_check is not required.
570 */
571 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
572 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 "Cache invalidation should work properly"
574 " for C3 to be enabled on SMP systems\n"));
575 return;
576 }
577 }
578
579 /*
580 * Otherwise we've met all of our C3 requirements.
581 * Normalize the C3 latency to expidite policy. Enable
582 * checking of bus mastering status (bm_check) so we can
583 * use this in our C3 policy
584 */
585 cx->valid = 1;
586
587 cx->latency_ticks = cx->latency;
588 /*
589 * On older chipsets, BM_RLD needs to be set
590 * in order for Bus Master activity to wake the
591 * system from C3. Newer chipsets handle DMA
592 * during C3 automatically and BM_RLD is a NOP.
593 * In either case, the proper way to
594 * handle BM_RLD is to set it and leave it set.
595 */
596 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
597
598 return;
599 }
600
601 static int acpi_processor_power_verify(struct acpi_processor *pr)
602 {
603 unsigned int i;
604 unsigned int working = 0;
605
606 pr->power.timer_broadcast_on_state = INT_MAX;
607
608 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
609 struct acpi_processor_cx *cx = &pr->power.states[i];
610
611 switch (cx->type) {
612 case ACPI_STATE_C1:
613 cx->valid = 1;
614 break;
615
616 case ACPI_STATE_C2:
617 if (!cx->address)
618 break;
619 cx->valid = 1;
620 cx->latency_ticks = cx->latency; /* Normalize latency */
621 break;
622
623 case ACPI_STATE_C3:
624 acpi_processor_power_verify_c3(pr, cx);
625 break;
626 }
627 if (!cx->valid)
628 continue;
629
630 lapic_timer_check_state(i, pr, cx);
631 tsc_check_state(cx->type);
632 working++;
633 }
634
635 lapic_timer_propagate_broadcast(pr);
636
637 return (working);
638 }
639
640 static int acpi_processor_get_power_info(struct acpi_processor *pr)
641 {
642 unsigned int i;
643 int result;
644
645
646 /* NOTE: the idle thread may not be running while calling
647 * this function */
648
649 /* Zero initialize all the C-states info. */
650 memset(pr->power.states, 0, sizeof(pr->power.states));
651
652 result = acpi_processor_get_power_info_cst(pr);
653 if (result == -ENODEV)
654 result = acpi_processor_get_power_info_fadt(pr);
655
656 if (result)
657 return result;
658
659 acpi_processor_get_power_info_default(pr);
660
661 pr->power.count = acpi_processor_power_verify(pr);
662
663 /*
664 * if one state of type C2 or C3 is available, mark this
665 * CPU as being "idle manageable"
666 */
667 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
668 if (pr->power.states[i].valid) {
669 pr->power.count = i;
670 if (pr->power.states[i].type >= ACPI_STATE_C2)
671 pr->flags.power = 1;
672 }
673 }
674
675 return 0;
676 }
677
678 #ifdef CONFIG_ACPI_PROCFS
679 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
680 {
681 struct acpi_processor *pr = seq->private;
682 unsigned int i;
683
684
685 if (!pr)
686 goto end;
687
688 seq_printf(seq, "active state: C%zd\n"
689 "max_cstate: C%d\n"
690 "maximum allowed latency: %d usec\n",
691 pr->power.state ? pr->power.state - pr->power.states : 0,
692 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
693
694 seq_puts(seq, "states:\n");
695
696 for (i = 1; i <= pr->power.count; i++) {
697 seq_printf(seq, " %cC%d: ",
698 (&pr->power.states[i] ==
699 pr->power.state ? '*' : ' '), i);
700
701 if (!pr->power.states[i].valid) {
702 seq_puts(seq, "<not supported>\n");
703 continue;
704 }
705
706 switch (pr->power.states[i].type) {
707 case ACPI_STATE_C1:
708 seq_printf(seq, "type[C1] ");
709 break;
710 case ACPI_STATE_C2:
711 seq_printf(seq, "type[C2] ");
712 break;
713 case ACPI_STATE_C3:
714 seq_printf(seq, "type[C3] ");
715 break;
716 default:
717 seq_printf(seq, "type[--] ");
718 break;
719 }
720
721 if (pr->power.states[i].promotion.state)
722 seq_printf(seq, "promotion[C%zd] ",
723 (pr->power.states[i].promotion.state -
724 pr->power.states));
725 else
726 seq_puts(seq, "promotion[--] ");
727
728 if (pr->power.states[i].demotion.state)
729 seq_printf(seq, "demotion[C%zd] ",
730 (pr->power.states[i].demotion.state -
731 pr->power.states));
732 else
733 seq_puts(seq, "demotion[--] ");
734
735 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
736 pr->power.states[i].latency,
737 pr->power.states[i].usage,
738 (unsigned long long)pr->power.states[i].time);
739 }
740
741 end:
742 return 0;
743 }
744
745 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
746 {
747 return single_open(file, acpi_processor_power_seq_show,
748 PDE(inode)->data);
749 }
750
751 static const struct file_operations acpi_processor_power_fops = {
752 .owner = THIS_MODULE,
753 .open = acpi_processor_power_open_fs,
754 .read = seq_read,
755 .llseek = seq_lseek,
756 .release = single_release,
757 };
758 #endif
759
760 /**
761 * acpi_idle_bm_check - checks if bus master activity was detected
762 */
763 static int acpi_idle_bm_check(void)
764 {
765 u32 bm_status = 0;
766
767 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
768 if (bm_status)
769 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
770 /*
771 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
772 * the true state of bus mastering activity; forcing us to
773 * manually check the BMIDEA bit of each IDE channel.
774 */
775 else if (errata.piix4.bmisx) {
776 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
777 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
778 bm_status = 1;
779 }
780 return bm_status;
781 }
782
783 /**
784 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
785 * @cx: cstate data
786 *
787 * Caller disables interrupt before call and enables interrupt after return.
788 */
789 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
790 {
791 /* Don't trace irqs off for idle */
792 stop_critical_timings();
793 if (cx->entry_method == ACPI_CSTATE_FFH) {
794 /* Call into architectural FFH based C-state */
795 acpi_processor_ffh_cstate_enter(cx);
796 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
797 acpi_safe_halt();
798 } else {
799 int unused;
800 /* IO port based C-state */
801 inb(cx->address);
802 /* Dummy wait op - must do something useless after P_LVL2 read
803 because chipsets cannot guarantee that STPCLK# signal
804 gets asserted in time to freeze execution properly. */
805 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
806 }
807 start_critical_timings();
808 }
809
810 /**
811 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
812 * @dev: the target CPU
813 * @state: the state data
814 *
815 * This is equivalent to the HALT instruction.
816 */
817 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
818 struct cpuidle_state *state)
819 {
820 ktime_t kt1, kt2;
821 s64 idle_time;
822 struct acpi_processor *pr;
823 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
824
825 pr = __get_cpu_var(processors);
826
827 if (unlikely(!pr))
828 return 0;
829
830 local_irq_disable();
831
832 /* Do not access any ACPI IO ports in suspend path */
833 if (acpi_idle_suspend) {
834 local_irq_enable();
835 cpu_relax();
836 return 0;
837 }
838
839 lapic_timer_state_broadcast(pr, cx, 1);
840 kt1 = ktime_get_real();
841 acpi_idle_do_entry(cx);
842 kt2 = ktime_get_real();
843 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
844
845 local_irq_enable();
846 cx->usage++;
847 lapic_timer_state_broadcast(pr, cx, 0);
848
849 return idle_time;
850 }
851
852 /**
853 * acpi_idle_enter_simple - enters an ACPI state without BM handling
854 * @dev: the target CPU
855 * @state: the state data
856 */
857 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
858 struct cpuidle_state *state)
859 {
860 struct acpi_processor *pr;
861 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
862 ktime_t kt1, kt2;
863 s64 idle_time;
864 s64 sleep_ticks = 0;
865
866 pr = __get_cpu_var(processors);
867
868 if (unlikely(!pr))
869 return 0;
870
871 if (acpi_idle_suspend)
872 return(acpi_idle_enter_c1(dev, state));
873
874 local_irq_disable();
875 current_thread_info()->status &= ~TS_POLLING;
876 /*
877 * TS_POLLING-cleared state must be visible before we test
878 * NEED_RESCHED:
879 */
880 smp_mb();
881
882 if (unlikely(need_resched())) {
883 current_thread_info()->status |= TS_POLLING;
884 local_irq_enable();
885 return 0;
886 }
887
888 /*
889 * Must be done before busmaster disable as we might need to
890 * access HPET !
891 */
892 lapic_timer_state_broadcast(pr, cx, 1);
893
894 if (cx->type == ACPI_STATE_C3)
895 ACPI_FLUSH_CPU_CACHE();
896
897 kt1 = ktime_get_real();
898 /* Tell the scheduler that we are going deep-idle: */
899 sched_clock_idle_sleep_event();
900 acpi_idle_do_entry(cx);
901 kt2 = ktime_get_real();
902 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
903
904 sleep_ticks = us_to_pm_timer_ticks(idle_time);
905
906 /* Tell the scheduler how much we idled: */
907 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
908
909 local_irq_enable();
910 current_thread_info()->status |= TS_POLLING;
911
912 cx->usage++;
913
914 lapic_timer_state_broadcast(pr, cx, 0);
915 cx->time += sleep_ticks;
916 return idle_time;
917 }
918
919 static int c3_cpu_count;
920 static DEFINE_SPINLOCK(c3_lock);
921
922 /**
923 * acpi_idle_enter_bm - enters C3 with proper BM handling
924 * @dev: the target CPU
925 * @state: the state data
926 *
927 * If BM is detected, the deepest non-C3 idle state is entered instead.
928 */
929 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
930 struct cpuidle_state *state)
931 {
932 struct acpi_processor *pr;
933 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
934 ktime_t kt1, kt2;
935 s64 idle_time;
936 s64 sleep_ticks = 0;
937
938
939 pr = __get_cpu_var(processors);
940
941 if (unlikely(!pr))
942 return 0;
943
944 if (acpi_idle_suspend)
945 return(acpi_idle_enter_c1(dev, state));
946
947 if (acpi_idle_bm_check()) {
948 if (dev->safe_state) {
949 dev->last_state = dev->safe_state;
950 return dev->safe_state->enter(dev, dev->safe_state);
951 } else {
952 local_irq_disable();
953 acpi_safe_halt();
954 local_irq_enable();
955 return 0;
956 }
957 }
958
959 local_irq_disable();
960 current_thread_info()->status &= ~TS_POLLING;
961 /*
962 * TS_POLLING-cleared state must be visible before we test
963 * NEED_RESCHED:
964 */
965 smp_mb();
966
967 if (unlikely(need_resched())) {
968 current_thread_info()->status |= TS_POLLING;
969 local_irq_enable();
970 return 0;
971 }
972
973 acpi_unlazy_tlb(smp_processor_id());
974
975 /* Tell the scheduler that we are going deep-idle: */
976 sched_clock_idle_sleep_event();
977 /*
978 * Must be done before busmaster disable as we might need to
979 * access HPET !
980 */
981 lapic_timer_state_broadcast(pr, cx, 1);
982
983 kt1 = ktime_get_real();
984 /*
985 * disable bus master
986 * bm_check implies we need ARB_DIS
987 * !bm_check implies we need cache flush
988 * bm_control implies whether we can do ARB_DIS
989 *
990 * That leaves a case where bm_check is set and bm_control is
991 * not set. In that case we cannot do much, we enter C3
992 * without doing anything.
993 */
994 if (pr->flags.bm_check && pr->flags.bm_control) {
995 spin_lock(&c3_lock);
996 c3_cpu_count++;
997 /* Disable bus master arbitration when all CPUs are in C3 */
998 if (c3_cpu_count == num_online_cpus())
999 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1000 spin_unlock(&c3_lock);
1001 } else if (!pr->flags.bm_check) {
1002 ACPI_FLUSH_CPU_CACHE();
1003 }
1004
1005 acpi_idle_do_entry(cx);
1006
1007 /* Re-enable bus master arbitration */
1008 if (pr->flags.bm_check && pr->flags.bm_control) {
1009 spin_lock(&c3_lock);
1010 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1011 c3_cpu_count--;
1012 spin_unlock(&c3_lock);
1013 }
1014 kt2 = ktime_get_real();
1015 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1016
1017 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1018 /* Tell the scheduler how much we idled: */
1019 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1020
1021 local_irq_enable();
1022 current_thread_info()->status |= TS_POLLING;
1023
1024 cx->usage++;
1025
1026 lapic_timer_state_broadcast(pr, cx, 0);
1027 cx->time += sleep_ticks;
1028 return idle_time;
1029 }
1030
1031 struct cpuidle_driver acpi_idle_driver = {
1032 .name = "acpi_idle",
1033 .owner = THIS_MODULE,
1034 };
1035
1036 /**
1037 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1038 * @pr: the ACPI processor
1039 */
1040 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1041 {
1042 int i, count = CPUIDLE_DRIVER_STATE_START;
1043 struct acpi_processor_cx *cx;
1044 struct cpuidle_state *state;
1045 struct cpuidle_device *dev = &pr->power.dev;
1046
1047 if (!pr->flags.power_setup_done)
1048 return -EINVAL;
1049
1050 if (pr->flags.power == 0) {
1051 return -EINVAL;
1052 }
1053
1054 dev->cpu = pr->id;
1055 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1056 dev->states[i].name[0] = '\0';
1057 dev->states[i].desc[0] = '\0';
1058 }
1059
1060 if (max_cstate == 0)
1061 max_cstate = 1;
1062
1063 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1064 cx = &pr->power.states[i];
1065 state = &dev->states[count];
1066
1067 if (!cx->valid)
1068 continue;
1069
1070 #ifdef CONFIG_HOTPLUG_CPU
1071 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1072 !pr->flags.has_cst &&
1073 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1074 continue;
1075 #endif
1076 cpuidle_set_statedata(state, cx);
1077
1078 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1079 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1080 state->exit_latency = cx->latency;
1081 state->target_residency = cx->latency * latency_factor;
1082 state->power_usage = cx->power;
1083
1084 state->flags = 0;
1085 switch (cx->type) {
1086 case ACPI_STATE_C1:
1087 state->flags |= CPUIDLE_FLAG_SHALLOW;
1088 if (cx->entry_method == ACPI_CSTATE_FFH)
1089 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1090
1091 state->enter = acpi_idle_enter_c1;
1092 dev->safe_state = state;
1093 break;
1094
1095 case ACPI_STATE_C2:
1096 state->flags |= CPUIDLE_FLAG_BALANCED;
1097 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1098 state->enter = acpi_idle_enter_simple;
1099 dev->safe_state = state;
1100 break;
1101
1102 case ACPI_STATE_C3:
1103 state->flags |= CPUIDLE_FLAG_DEEP;
1104 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1105 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1106 state->enter = pr->flags.bm_check ?
1107 acpi_idle_enter_bm :
1108 acpi_idle_enter_simple;
1109 break;
1110 }
1111
1112 count++;
1113 if (count == CPUIDLE_STATE_MAX)
1114 break;
1115 }
1116
1117 dev->state_count = count;
1118
1119 if (!count)
1120 return -EINVAL;
1121
1122 return 0;
1123 }
1124
1125 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1126 {
1127 int ret = 0;
1128
1129 if (boot_option_idle_override)
1130 return 0;
1131
1132 if (!pr)
1133 return -EINVAL;
1134
1135 if (nocst) {
1136 return -ENODEV;
1137 }
1138
1139 if (!pr->flags.power_setup_done)
1140 return -ENODEV;
1141
1142 cpuidle_pause_and_lock();
1143 cpuidle_disable_device(&pr->power.dev);
1144 acpi_processor_get_power_info(pr);
1145 if (pr->flags.power) {
1146 acpi_processor_setup_cpuidle(pr);
1147 ret = cpuidle_enable_device(&pr->power.dev);
1148 }
1149 cpuidle_resume_and_unlock();
1150
1151 return ret;
1152 }
1153
1154 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1155 struct acpi_device *device)
1156 {
1157 acpi_status status = 0;
1158 static int first_run;
1159 #ifdef CONFIG_ACPI_PROCFS
1160 struct proc_dir_entry *entry = NULL;
1161 #endif
1162
1163 if (boot_option_idle_override)
1164 return 0;
1165
1166 if (!first_run) {
1167 if (idle_halt) {
1168 /*
1169 * When the boot option of "idle=halt" is added, halt
1170 * is used for CPU IDLE.
1171 * In such case C2/C3 is meaningless. So the max_cstate
1172 * is set to one.
1173 */
1174 max_cstate = 1;
1175 }
1176 dmi_check_system(processor_power_dmi_table);
1177 max_cstate = acpi_processor_cstate_check(max_cstate);
1178 if (max_cstate < ACPI_C_STATES_MAX)
1179 printk(KERN_NOTICE
1180 "ACPI: processor limited to max C-state %d\n",
1181 max_cstate);
1182 first_run++;
1183 }
1184
1185 if (!pr)
1186 return -EINVAL;
1187
1188 if (acpi_gbl_FADT.cst_control && !nocst) {
1189 status =
1190 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1191 if (ACPI_FAILURE(status)) {
1192 ACPI_EXCEPTION((AE_INFO, status,
1193 "Notifying BIOS of _CST ability failed"));
1194 }
1195 }
1196
1197 acpi_processor_get_power_info(pr);
1198 pr->flags.power_setup_done = 1;
1199
1200 /*
1201 * Install the idle handler if processor power management is supported.
1202 * Note that we use previously set idle handler will be used on
1203 * platforms that only support C1.
1204 */
1205 if (pr->flags.power) {
1206 acpi_processor_setup_cpuidle(pr);
1207 if (cpuidle_register_device(&pr->power.dev))
1208 return -EIO;
1209 }
1210 #ifdef CONFIG_ACPI_PROCFS
1211 /* 'power' [R] */
1212 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1213 S_IRUGO, acpi_device_dir(device),
1214 &acpi_processor_power_fops,
1215 acpi_driver_data(device));
1216 if (!entry)
1217 return -EIO;
1218 #endif
1219 return 0;
1220 }
1221
1222 int acpi_processor_power_exit(struct acpi_processor *pr,
1223 struct acpi_device *device)
1224 {
1225 if (boot_option_idle_override)
1226 return 0;
1227
1228 cpuidle_unregister_device(&pr->power.dev);
1229 pr->flags.power_setup_done = 0;
1230
1231 #ifdef CONFIG_ACPI_PROCFS
1232 if (acpi_device_dir(device))
1233 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1234 acpi_device_dir(device));
1235 #endif
1236
1237 return 0;
1238 }
This page took 0.081067 seconds and 5 git commands to generate.