drm/i915/bdw: Reorganize PPGTT init
[deliverable/linux.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h> /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38
39 /*
40 * Include the apic definitions for x86 to have the APIC timer related defines
41 * available also for UP (on SMP it gets magically included via linux/smp.h).
42 * asm/acpi.h is not an option, as it would require more include magic. Also
43 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
44 */
45 #ifdef CONFIG_X86
46 #include <asm/apic.h>
47 #endif
48
49 #include <acpi/acpi_bus.h>
50 #include <acpi/processor.h>
51
52 #define PREFIX "ACPI: "
53
54 #define ACPI_PROCESSOR_CLASS "processor"
55 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
56 ACPI_MODULE_NAME("processor_idle");
57
58 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
59 module_param(max_cstate, uint, 0000);
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
62 static int bm_check_disable __read_mostly;
63 module_param(bm_check_disable, uint, 0000);
64
65 static unsigned int latency_factor __read_mostly = 2;
66 module_param(latency_factor, uint, 0644);
67
68 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
69
70 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
71 acpi_cstate);
72
73 static int disabled_by_idle_boot_param(void)
74 {
75 return boot_option_idle_override == IDLE_POLL ||
76 boot_option_idle_override == IDLE_HALT;
77 }
78
79 /*
80 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
81 * For now disable this. Probably a bug somewhere else.
82 *
83 * To skip this limit, boot/load with a large max_cstate limit.
84 */
85 static int set_max_cstate(const struct dmi_system_id *id)
86 {
87 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
88 return 0;
89
90 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
91 " Override with \"processor.max_cstate=%d\"\n", id->ident,
92 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93
94 max_cstate = (long)id->driver_data;
95
96 return 0;
97 }
98
99 static struct dmi_system_id processor_power_dmi_table[] = {
100 { set_max_cstate, "Clevo 5600D", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
102 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
103 (void *)2},
104 { set_max_cstate, "Pavilion zv5000", {
105 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
106 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
107 (void *)1},
108 { set_max_cstate, "Asus L8400B", {
109 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
110 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
111 (void *)1},
112 {},
113 };
114
115
116 /*
117 * Callers should disable interrupts before the call and enable
118 * interrupts after return.
119 */
120 static void acpi_safe_halt(void)
121 {
122 if (!tif_need_resched()) {
123 safe_halt();
124 local_irq_disable();
125 }
126 }
127
128 #ifdef ARCH_APICTIMER_STOPS_ON_C3
129
130 /*
131 * Some BIOS implementations switch to C3 in the published C2 state.
132 * This seems to be a common problem on AMD boxen, but other vendors
133 * are affected too. We pick the most conservative approach: we assume
134 * that the local APIC stops in both C2 and C3.
135 */
136 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
137 struct acpi_processor_cx *cx)
138 {
139 struct acpi_processor_power *pwr = &pr->power;
140 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
141
142 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
143 return;
144
145 if (amd_e400_c1e_detected)
146 type = ACPI_STATE_C1;
147
148 /*
149 * Check, if one of the previous states already marked the lapic
150 * unstable
151 */
152 if (pwr->timer_broadcast_on_state < state)
153 return;
154
155 if (cx->type >= type)
156 pr->power.timer_broadcast_on_state = state;
157 }
158
159 static void __lapic_timer_propagate_broadcast(void *arg)
160 {
161 struct acpi_processor *pr = (struct acpi_processor *) arg;
162 unsigned long reason;
163
164 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
165 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
166
167 clockevents_notify(reason, &pr->id);
168 }
169
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 (void *)pr, 1);
174 }
175
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 struct acpi_processor_cx *cx,
179 int broadcast)
180 {
181 int state = cx - pr->power.states;
182
183 if (state >= pr->power.timer_broadcast_on_state) {
184 unsigned long reason;
185
186 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
187 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
188 clockevents_notify(reason, &pr->id);
189 }
190 }
191
192 #else
193
194 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
195 struct acpi_processor_cx *cstate) { }
196 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
197 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
198 struct acpi_processor_cx *cx,
199 int broadcast)
200 {
201 }
202
203 #endif
204
205 #ifdef CONFIG_PM_SLEEP
206 static u32 saved_bm_rld;
207
208 static int acpi_processor_suspend(void)
209 {
210 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
211 return 0;
212 }
213
214 static void acpi_processor_resume(void)
215 {
216 u32 resumed_bm_rld;
217
218 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
219 if (resumed_bm_rld == saved_bm_rld)
220 return;
221
222 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
223 }
224
225 static struct syscore_ops acpi_processor_syscore_ops = {
226 .suspend = acpi_processor_suspend,
227 .resume = acpi_processor_resume,
228 };
229
230 void acpi_processor_syscore_init(void)
231 {
232 register_syscore_ops(&acpi_processor_syscore_ops);
233 }
234
235 void acpi_processor_syscore_exit(void)
236 {
237 unregister_syscore_ops(&acpi_processor_syscore_ops);
238 }
239 #endif /* CONFIG_PM_SLEEP */
240
241 #if defined(CONFIG_X86)
242 static void tsc_check_state(int state)
243 {
244 switch (boot_cpu_data.x86_vendor) {
245 case X86_VENDOR_AMD:
246 case X86_VENDOR_INTEL:
247 /*
248 * AMD Fam10h TSC will tick in all
249 * C/P/S0/S1 states when this bit is set.
250 */
251 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
252 return;
253
254 /*FALL THROUGH*/
255 default:
256 /* TSC could halt in idle, so notify users */
257 if (state > ACPI_STATE_C1)
258 mark_tsc_unstable("TSC halts in idle");
259 }
260 }
261 #else
262 static void tsc_check_state(int state) { return; }
263 #endif
264
265 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
266 {
267
268 if (!pr->pblk)
269 return -ENODEV;
270
271 /* if info is obtained from pblk/fadt, type equals state */
272 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
273 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
274
275 #ifndef CONFIG_HOTPLUG_CPU
276 /*
277 * Check for P_LVL2_UP flag before entering C2 and above on
278 * an SMP system.
279 */
280 if ((num_online_cpus() > 1) &&
281 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
282 return -ENODEV;
283 #endif
284
285 /* determine C2 and C3 address from pblk */
286 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
287 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
288
289 /* determine latencies from FADT */
290 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
291 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
292
293 /*
294 * FADT specified C2 latency must be less than or equal to
295 * 100 microseconds.
296 */
297 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
298 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
299 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
300 /* invalidate C2 */
301 pr->power.states[ACPI_STATE_C2].address = 0;
302 }
303
304 /*
305 * FADT supplied C3 latency must be less than or equal to
306 * 1000 microseconds.
307 */
308 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
309 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
310 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
311 /* invalidate C3 */
312 pr->power.states[ACPI_STATE_C3].address = 0;
313 }
314
315 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
316 "lvl2[0x%08x] lvl3[0x%08x]\n",
317 pr->power.states[ACPI_STATE_C2].address,
318 pr->power.states[ACPI_STATE_C3].address));
319
320 return 0;
321 }
322
323 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
324 {
325 if (!pr->power.states[ACPI_STATE_C1].valid) {
326 /* set the first C-State to C1 */
327 /* all processors need to support C1 */
328 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
329 pr->power.states[ACPI_STATE_C1].valid = 1;
330 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
331 }
332 /* the C0 state only exists as a filler in our array */
333 pr->power.states[ACPI_STATE_C0].valid = 1;
334 return 0;
335 }
336
337 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
338 {
339 acpi_status status = 0;
340 u64 count;
341 int current_count;
342 int i;
343 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
344 union acpi_object *cst;
345
346
347 if (nocst)
348 return -ENODEV;
349
350 current_count = 0;
351
352 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
353 if (ACPI_FAILURE(status)) {
354 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
355 return -ENODEV;
356 }
357
358 cst = buffer.pointer;
359
360 /* There must be at least 2 elements */
361 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
362 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
363 status = -EFAULT;
364 goto end;
365 }
366
367 count = cst->package.elements[0].integer.value;
368
369 /* Validate number of power states. */
370 if (count < 1 || count != cst->package.count - 1) {
371 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
372 status = -EFAULT;
373 goto end;
374 }
375
376 /* Tell driver that at least _CST is supported. */
377 pr->flags.has_cst = 1;
378
379 for (i = 1; i <= count; i++) {
380 union acpi_object *element;
381 union acpi_object *obj;
382 struct acpi_power_register *reg;
383 struct acpi_processor_cx cx;
384
385 memset(&cx, 0, sizeof(cx));
386
387 element = &(cst->package.elements[i]);
388 if (element->type != ACPI_TYPE_PACKAGE)
389 continue;
390
391 if (element->package.count != 4)
392 continue;
393
394 obj = &(element->package.elements[0]);
395
396 if (obj->type != ACPI_TYPE_BUFFER)
397 continue;
398
399 reg = (struct acpi_power_register *)obj->buffer.pointer;
400
401 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
402 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
403 continue;
404
405 /* There should be an easy way to extract an integer... */
406 obj = &(element->package.elements[1]);
407 if (obj->type != ACPI_TYPE_INTEGER)
408 continue;
409
410 cx.type = obj->integer.value;
411 /*
412 * Some buggy BIOSes won't list C1 in _CST -
413 * Let acpi_processor_get_power_info_default() handle them later
414 */
415 if (i == 1 && cx.type != ACPI_STATE_C1)
416 current_count++;
417
418 cx.address = reg->address;
419 cx.index = current_count + 1;
420
421 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
422 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
423 if (acpi_processor_ffh_cstate_probe
424 (pr->id, &cx, reg) == 0) {
425 cx.entry_method = ACPI_CSTATE_FFH;
426 } else if (cx.type == ACPI_STATE_C1) {
427 /*
428 * C1 is a special case where FIXED_HARDWARE
429 * can be handled in non-MWAIT way as well.
430 * In that case, save this _CST entry info.
431 * Otherwise, ignore this info and continue.
432 */
433 cx.entry_method = ACPI_CSTATE_HALT;
434 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
435 } else {
436 continue;
437 }
438 if (cx.type == ACPI_STATE_C1 &&
439 (boot_option_idle_override == IDLE_NOMWAIT)) {
440 /*
441 * In most cases the C1 space_id obtained from
442 * _CST object is FIXED_HARDWARE access mode.
443 * But when the option of idle=halt is added,
444 * the entry_method type should be changed from
445 * CSTATE_FFH to CSTATE_HALT.
446 * When the option of idle=nomwait is added,
447 * the C1 entry_method type should be
448 * CSTATE_HALT.
449 */
450 cx.entry_method = ACPI_CSTATE_HALT;
451 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
452 }
453 } else {
454 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
455 cx.address);
456 }
457
458 if (cx.type == ACPI_STATE_C1) {
459 cx.valid = 1;
460 }
461
462 obj = &(element->package.elements[2]);
463 if (obj->type != ACPI_TYPE_INTEGER)
464 continue;
465
466 cx.latency = obj->integer.value;
467
468 obj = &(element->package.elements[3]);
469 if (obj->type != ACPI_TYPE_INTEGER)
470 continue;
471
472 current_count++;
473 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
474
475 /*
476 * We support total ACPI_PROCESSOR_MAX_POWER - 1
477 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
478 */
479 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
480 printk(KERN_WARNING
481 "Limiting number of power states to max (%d)\n",
482 ACPI_PROCESSOR_MAX_POWER);
483 printk(KERN_WARNING
484 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
485 break;
486 }
487 }
488
489 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
490 current_count));
491
492 /* Validate number of power states discovered */
493 if (current_count < 2)
494 status = -EFAULT;
495
496 end:
497 kfree(buffer.pointer);
498
499 return status;
500 }
501
502 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
503 struct acpi_processor_cx *cx)
504 {
505 static int bm_check_flag = -1;
506 static int bm_control_flag = -1;
507
508
509 if (!cx->address)
510 return;
511
512 /*
513 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
514 * DMA transfers are used by any ISA device to avoid livelock.
515 * Note that we could disable Type-F DMA (as recommended by
516 * the erratum), but this is known to disrupt certain ISA
517 * devices thus we take the conservative approach.
518 */
519 else if (errata.piix4.fdma) {
520 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
521 "C3 not supported on PIIX4 with Type-F DMA\n"));
522 return;
523 }
524
525 /* All the logic here assumes flags.bm_check is same across all CPUs */
526 if (bm_check_flag == -1) {
527 /* Determine whether bm_check is needed based on CPU */
528 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
529 bm_check_flag = pr->flags.bm_check;
530 bm_control_flag = pr->flags.bm_control;
531 } else {
532 pr->flags.bm_check = bm_check_flag;
533 pr->flags.bm_control = bm_control_flag;
534 }
535
536 if (pr->flags.bm_check) {
537 if (!pr->flags.bm_control) {
538 if (pr->flags.has_cst != 1) {
539 /* bus mastering control is necessary */
540 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
541 "C3 support requires BM control\n"));
542 return;
543 } else {
544 /* Here we enter C3 without bus mastering */
545 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
546 "C3 support without BM control\n"));
547 }
548 }
549 } else {
550 /*
551 * WBINVD should be set in fadt, for C3 state to be
552 * supported on when bm_check is not required.
553 */
554 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
555 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
556 "Cache invalidation should work properly"
557 " for C3 to be enabled on SMP systems\n"));
558 return;
559 }
560 }
561
562 /*
563 * Otherwise we've met all of our C3 requirements.
564 * Normalize the C3 latency to expidite policy. Enable
565 * checking of bus mastering status (bm_check) so we can
566 * use this in our C3 policy
567 */
568 cx->valid = 1;
569
570 /*
571 * On older chipsets, BM_RLD needs to be set
572 * in order for Bus Master activity to wake the
573 * system from C3. Newer chipsets handle DMA
574 * during C3 automatically and BM_RLD is a NOP.
575 * In either case, the proper way to
576 * handle BM_RLD is to set it and leave it set.
577 */
578 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
579
580 return;
581 }
582
583 static int acpi_processor_power_verify(struct acpi_processor *pr)
584 {
585 unsigned int i;
586 unsigned int working = 0;
587
588 pr->power.timer_broadcast_on_state = INT_MAX;
589
590 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
591 struct acpi_processor_cx *cx = &pr->power.states[i];
592
593 switch (cx->type) {
594 case ACPI_STATE_C1:
595 cx->valid = 1;
596 break;
597
598 case ACPI_STATE_C2:
599 if (!cx->address)
600 break;
601 cx->valid = 1;
602 break;
603
604 case ACPI_STATE_C3:
605 acpi_processor_power_verify_c3(pr, cx);
606 break;
607 }
608 if (!cx->valid)
609 continue;
610
611 lapic_timer_check_state(i, pr, cx);
612 tsc_check_state(cx->type);
613 working++;
614 }
615
616 lapic_timer_propagate_broadcast(pr);
617
618 return (working);
619 }
620
621 static int acpi_processor_get_power_info(struct acpi_processor *pr)
622 {
623 unsigned int i;
624 int result;
625
626
627 /* NOTE: the idle thread may not be running while calling
628 * this function */
629
630 /* Zero initialize all the C-states info. */
631 memset(pr->power.states, 0, sizeof(pr->power.states));
632
633 result = acpi_processor_get_power_info_cst(pr);
634 if (result == -ENODEV)
635 result = acpi_processor_get_power_info_fadt(pr);
636
637 if (result)
638 return result;
639
640 acpi_processor_get_power_info_default(pr);
641
642 pr->power.count = acpi_processor_power_verify(pr);
643
644 /*
645 * if one state of type C2 or C3 is available, mark this
646 * CPU as being "idle manageable"
647 */
648 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
649 if (pr->power.states[i].valid) {
650 pr->power.count = i;
651 if (pr->power.states[i].type >= ACPI_STATE_C2)
652 pr->flags.power = 1;
653 }
654 }
655
656 return 0;
657 }
658
659 /**
660 * acpi_idle_bm_check - checks if bus master activity was detected
661 */
662 static int acpi_idle_bm_check(void)
663 {
664 u32 bm_status = 0;
665
666 if (bm_check_disable)
667 return 0;
668
669 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
670 if (bm_status)
671 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
672 /*
673 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
674 * the true state of bus mastering activity; forcing us to
675 * manually check the BMIDEA bit of each IDE channel.
676 */
677 else if (errata.piix4.bmisx) {
678 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
679 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
680 bm_status = 1;
681 }
682 return bm_status;
683 }
684
685 /**
686 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
687 * @cx: cstate data
688 *
689 * Caller disables interrupt before call and enables interrupt after return.
690 */
691 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
692 {
693 /* Don't trace irqs off for idle */
694 stop_critical_timings();
695 if (cx->entry_method == ACPI_CSTATE_FFH) {
696 /* Call into architectural FFH based C-state */
697 acpi_processor_ffh_cstate_enter(cx);
698 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
699 acpi_safe_halt();
700 } else {
701 /* IO port based C-state */
702 inb(cx->address);
703 /* Dummy wait op - must do something useless after P_LVL2 read
704 because chipsets cannot guarantee that STPCLK# signal
705 gets asserted in time to freeze execution properly. */
706 inl(acpi_gbl_FADT.xpm_timer_block.address);
707 }
708 start_critical_timings();
709 }
710
711 /**
712 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
713 * @dev: the target CPU
714 * @drv: cpuidle driver containing cpuidle state info
715 * @index: index of target state
716 *
717 * This is equivalent to the HALT instruction.
718 */
719 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
720 struct cpuidle_driver *drv, int index)
721 {
722 struct acpi_processor *pr;
723 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
724
725 pr = __this_cpu_read(processors);
726
727 if (unlikely(!pr))
728 return -EINVAL;
729
730 if (cx->entry_method == ACPI_CSTATE_FFH) {
731 if (current_set_polling_and_test())
732 return -EINVAL;
733 }
734
735 lapic_timer_state_broadcast(pr, cx, 1);
736 acpi_idle_do_entry(cx);
737
738 lapic_timer_state_broadcast(pr, cx, 0);
739
740 return index;
741 }
742
743
744 /**
745 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
746 * @dev: the target CPU
747 * @index: the index of suggested state
748 */
749 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
750 {
751 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
752
753 ACPI_FLUSH_CPU_CACHE();
754
755 while (1) {
756
757 if (cx->entry_method == ACPI_CSTATE_HALT)
758 safe_halt();
759 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
760 inb(cx->address);
761 /* See comment in acpi_idle_do_entry() */
762 inl(acpi_gbl_FADT.xpm_timer_block.address);
763 } else
764 return -ENODEV;
765 }
766
767 /* Never reached */
768 return 0;
769 }
770
771 /**
772 * acpi_idle_enter_simple - enters an ACPI state without BM handling
773 * @dev: the target CPU
774 * @drv: cpuidle driver with cpuidle state information
775 * @index: the index of suggested state
776 */
777 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
778 struct cpuidle_driver *drv, int index)
779 {
780 struct acpi_processor *pr;
781 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
782
783 pr = __this_cpu_read(processors);
784
785 if (unlikely(!pr))
786 return -EINVAL;
787
788 if (cx->entry_method == ACPI_CSTATE_FFH) {
789 if (current_set_polling_and_test())
790 return -EINVAL;
791 }
792
793 /*
794 * Must be done before busmaster disable as we might need to
795 * access HPET !
796 */
797 lapic_timer_state_broadcast(pr, cx, 1);
798
799 if (cx->type == ACPI_STATE_C3)
800 ACPI_FLUSH_CPU_CACHE();
801
802 /* Tell the scheduler that we are going deep-idle: */
803 sched_clock_idle_sleep_event();
804 acpi_idle_do_entry(cx);
805
806 sched_clock_idle_wakeup_event(0);
807
808 lapic_timer_state_broadcast(pr, cx, 0);
809 return index;
810 }
811
812 static int c3_cpu_count;
813 static DEFINE_RAW_SPINLOCK(c3_lock);
814
815 /**
816 * acpi_idle_enter_bm - enters C3 with proper BM handling
817 * @dev: the target CPU
818 * @drv: cpuidle driver containing state data
819 * @index: the index of suggested state
820 *
821 * If BM is detected, the deepest non-C3 idle state is entered instead.
822 */
823 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
824 struct cpuidle_driver *drv, int index)
825 {
826 struct acpi_processor *pr;
827 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
828
829 pr = __this_cpu_read(processors);
830
831 if (unlikely(!pr))
832 return -EINVAL;
833
834 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
835 if (drv->safe_state_index >= 0) {
836 return drv->states[drv->safe_state_index].enter(dev,
837 drv, drv->safe_state_index);
838 } else {
839 acpi_safe_halt();
840 return -EBUSY;
841 }
842 }
843
844 if (cx->entry_method == ACPI_CSTATE_FFH) {
845 if (current_set_polling_and_test())
846 return -EINVAL;
847 }
848
849 acpi_unlazy_tlb(smp_processor_id());
850
851 /* Tell the scheduler that we are going deep-idle: */
852 sched_clock_idle_sleep_event();
853 /*
854 * Must be done before busmaster disable as we might need to
855 * access HPET !
856 */
857 lapic_timer_state_broadcast(pr, cx, 1);
858
859 /*
860 * disable bus master
861 * bm_check implies we need ARB_DIS
862 * !bm_check implies we need cache flush
863 * bm_control implies whether we can do ARB_DIS
864 *
865 * That leaves a case where bm_check is set and bm_control is
866 * not set. In that case we cannot do much, we enter C3
867 * without doing anything.
868 */
869 if (pr->flags.bm_check && pr->flags.bm_control) {
870 raw_spin_lock(&c3_lock);
871 c3_cpu_count++;
872 /* Disable bus master arbitration when all CPUs are in C3 */
873 if (c3_cpu_count == num_online_cpus())
874 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
875 raw_spin_unlock(&c3_lock);
876 } else if (!pr->flags.bm_check) {
877 ACPI_FLUSH_CPU_CACHE();
878 }
879
880 acpi_idle_do_entry(cx);
881
882 /* Re-enable bus master arbitration */
883 if (pr->flags.bm_check && pr->flags.bm_control) {
884 raw_spin_lock(&c3_lock);
885 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
886 c3_cpu_count--;
887 raw_spin_unlock(&c3_lock);
888 }
889
890 sched_clock_idle_wakeup_event(0);
891
892 lapic_timer_state_broadcast(pr, cx, 0);
893 return index;
894 }
895
896 struct cpuidle_driver acpi_idle_driver = {
897 .name = "acpi_idle",
898 .owner = THIS_MODULE,
899 };
900
901 /**
902 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
903 * device i.e. per-cpu data
904 *
905 * @pr: the ACPI processor
906 * @dev : the cpuidle device
907 */
908 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
909 struct cpuidle_device *dev)
910 {
911 int i, count = CPUIDLE_DRIVER_STATE_START;
912 struct acpi_processor_cx *cx;
913
914 if (!pr->flags.power_setup_done)
915 return -EINVAL;
916
917 if (pr->flags.power == 0) {
918 return -EINVAL;
919 }
920
921 if (!dev)
922 return -EINVAL;
923
924 dev->cpu = pr->id;
925
926 if (max_cstate == 0)
927 max_cstate = 1;
928
929 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
930 cx = &pr->power.states[i];
931
932 if (!cx->valid)
933 continue;
934
935 #ifdef CONFIG_HOTPLUG_CPU
936 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
937 !pr->flags.has_cst &&
938 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
939 continue;
940 #endif
941 per_cpu(acpi_cstate[count], dev->cpu) = cx;
942
943 count++;
944 if (count == CPUIDLE_STATE_MAX)
945 break;
946 }
947
948 dev->state_count = count;
949
950 if (!count)
951 return -EINVAL;
952
953 return 0;
954 }
955
956 /**
957 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
958 * global state data i.e. idle routines
959 *
960 * @pr: the ACPI processor
961 */
962 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
963 {
964 int i, count = CPUIDLE_DRIVER_STATE_START;
965 struct acpi_processor_cx *cx;
966 struct cpuidle_state *state;
967 struct cpuidle_driver *drv = &acpi_idle_driver;
968
969 if (!pr->flags.power_setup_done)
970 return -EINVAL;
971
972 if (pr->flags.power == 0)
973 return -EINVAL;
974
975 drv->safe_state_index = -1;
976 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
977 drv->states[i].name[0] = '\0';
978 drv->states[i].desc[0] = '\0';
979 }
980
981 if (max_cstate == 0)
982 max_cstate = 1;
983
984 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
985 cx = &pr->power.states[i];
986
987 if (!cx->valid)
988 continue;
989
990 #ifdef CONFIG_HOTPLUG_CPU
991 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
992 !pr->flags.has_cst &&
993 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
994 continue;
995 #endif
996
997 state = &drv->states[count];
998 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
999 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1000 state->exit_latency = cx->latency;
1001 state->target_residency = cx->latency * latency_factor;
1002
1003 state->flags = 0;
1004 switch (cx->type) {
1005 case ACPI_STATE_C1:
1006 if (cx->entry_method == ACPI_CSTATE_FFH)
1007 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1008
1009 state->enter = acpi_idle_enter_c1;
1010 state->enter_dead = acpi_idle_play_dead;
1011 drv->safe_state_index = count;
1012 break;
1013
1014 case ACPI_STATE_C2:
1015 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1016 state->enter = acpi_idle_enter_simple;
1017 state->enter_dead = acpi_idle_play_dead;
1018 drv->safe_state_index = count;
1019 break;
1020
1021 case ACPI_STATE_C3:
1022 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1023 state->enter = pr->flags.bm_check ?
1024 acpi_idle_enter_bm :
1025 acpi_idle_enter_simple;
1026 break;
1027 }
1028
1029 count++;
1030 if (count == CPUIDLE_STATE_MAX)
1031 break;
1032 }
1033
1034 drv->state_count = count;
1035
1036 if (!count)
1037 return -EINVAL;
1038
1039 return 0;
1040 }
1041
1042 int acpi_processor_hotplug(struct acpi_processor *pr)
1043 {
1044 int ret = 0;
1045 struct cpuidle_device *dev;
1046
1047 if (disabled_by_idle_boot_param())
1048 return 0;
1049
1050 if (nocst)
1051 return -ENODEV;
1052
1053 if (!pr->flags.power_setup_done)
1054 return -ENODEV;
1055
1056 dev = per_cpu(acpi_cpuidle_device, pr->id);
1057 cpuidle_pause_and_lock();
1058 cpuidle_disable_device(dev);
1059 acpi_processor_get_power_info(pr);
1060 if (pr->flags.power) {
1061 acpi_processor_setup_cpuidle_cx(pr, dev);
1062 ret = cpuidle_enable_device(dev);
1063 }
1064 cpuidle_resume_and_unlock();
1065
1066 return ret;
1067 }
1068
1069 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1070 {
1071 int cpu;
1072 struct acpi_processor *_pr;
1073 struct cpuidle_device *dev;
1074
1075 if (disabled_by_idle_boot_param())
1076 return 0;
1077
1078 if (nocst)
1079 return -ENODEV;
1080
1081 if (!pr->flags.power_setup_done)
1082 return -ENODEV;
1083
1084 /*
1085 * FIXME: Design the ACPI notification to make it once per
1086 * system instead of once per-cpu. This condition is a hack
1087 * to make the code that updates C-States be called once.
1088 */
1089
1090 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1091
1092 cpuidle_pause_and_lock();
1093 /* Protect against cpu-hotplug */
1094 get_online_cpus();
1095
1096 /* Disable all cpuidle devices */
1097 for_each_online_cpu(cpu) {
1098 _pr = per_cpu(processors, cpu);
1099 if (!_pr || !_pr->flags.power_setup_done)
1100 continue;
1101 dev = per_cpu(acpi_cpuidle_device, cpu);
1102 cpuidle_disable_device(dev);
1103 }
1104
1105 /* Populate Updated C-state information */
1106 acpi_processor_get_power_info(pr);
1107 acpi_processor_setup_cpuidle_states(pr);
1108
1109 /* Enable all cpuidle devices */
1110 for_each_online_cpu(cpu) {
1111 _pr = per_cpu(processors, cpu);
1112 if (!_pr || !_pr->flags.power_setup_done)
1113 continue;
1114 acpi_processor_get_power_info(_pr);
1115 if (_pr->flags.power) {
1116 dev = per_cpu(acpi_cpuidle_device, cpu);
1117 acpi_processor_setup_cpuidle_cx(_pr, dev);
1118 cpuidle_enable_device(dev);
1119 }
1120 }
1121 put_online_cpus();
1122 cpuidle_resume_and_unlock();
1123 }
1124
1125 return 0;
1126 }
1127
1128 static int acpi_processor_registered;
1129
1130 int acpi_processor_power_init(struct acpi_processor *pr)
1131 {
1132 acpi_status status = 0;
1133 int retval;
1134 struct cpuidle_device *dev;
1135 static int first_run;
1136
1137 if (disabled_by_idle_boot_param())
1138 return 0;
1139
1140 if (!first_run) {
1141 dmi_check_system(processor_power_dmi_table);
1142 max_cstate = acpi_processor_cstate_check(max_cstate);
1143 if (max_cstate < ACPI_C_STATES_MAX)
1144 printk(KERN_NOTICE
1145 "ACPI: processor limited to max C-state %d\n",
1146 max_cstate);
1147 first_run++;
1148 }
1149
1150 if (acpi_gbl_FADT.cst_control && !nocst) {
1151 status =
1152 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1153 if (ACPI_FAILURE(status)) {
1154 ACPI_EXCEPTION((AE_INFO, status,
1155 "Notifying BIOS of _CST ability failed"));
1156 }
1157 }
1158
1159 acpi_processor_get_power_info(pr);
1160 pr->flags.power_setup_done = 1;
1161
1162 /*
1163 * Install the idle handler if processor power management is supported.
1164 * Note that we use previously set idle handler will be used on
1165 * platforms that only support C1.
1166 */
1167 if (pr->flags.power) {
1168 /* Register acpi_idle_driver if not already registered */
1169 if (!acpi_processor_registered) {
1170 acpi_processor_setup_cpuidle_states(pr);
1171 retval = cpuidle_register_driver(&acpi_idle_driver);
1172 if (retval)
1173 return retval;
1174 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1175 acpi_idle_driver.name);
1176 }
1177
1178 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1179 if (!dev)
1180 return -ENOMEM;
1181 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1182
1183 acpi_processor_setup_cpuidle_cx(pr, dev);
1184
1185 /* Register per-cpu cpuidle_device. Cpuidle driver
1186 * must already be registered before registering device
1187 */
1188 retval = cpuidle_register_device(dev);
1189 if (retval) {
1190 if (acpi_processor_registered == 0)
1191 cpuidle_unregister_driver(&acpi_idle_driver);
1192 return retval;
1193 }
1194 acpi_processor_registered++;
1195 }
1196 return 0;
1197 }
1198
1199 int acpi_processor_power_exit(struct acpi_processor *pr)
1200 {
1201 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1202
1203 if (disabled_by_idle_boot_param())
1204 return 0;
1205
1206 if (pr->flags.power) {
1207 cpuidle_unregister_device(dev);
1208 acpi_processor_registered--;
1209 if (acpi_processor_registered == 0)
1210 cpuidle_unregister_driver(&acpi_idle_driver);
1211 }
1212
1213 pr->flags.power_setup_done = 0;
1214 return 0;
1215 }
This page took 0.066322 seconds and 5 git commands to generate.