ftrace: disable tracing on acpi idle calls
[deliverable/linux.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuidle.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_COMPONENT 0x01000000
64 #define ACPI_PROCESSOR_CLASS "processor"
65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER "power"
68 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #ifndef CONFIG_CPU_IDLE
71 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
72 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
73 static void (*pm_idle_save) (void) __read_mostly;
74 #else
75 #define C2_OVERHEAD 1 /* 1us */
76 #define C3_OVERHEAD 1 /* 1us */
77 #endif
78 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
79
80 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
81 #ifdef CONFIG_CPU_IDLE
82 module_param(max_cstate, uint, 0000);
83 #else
84 module_param(max_cstate, uint, 0644);
85 #endif
86 static unsigned int nocst __read_mostly;
87 module_param(nocst, uint, 0000);
88
89 #ifndef CONFIG_CPU_IDLE
90 /*
91 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
92 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
93 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
94 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
95 * reduce history for more aggressive entry into C3
96 */
97 static unsigned int bm_history __read_mostly =
98 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
99 module_param(bm_history, uint, 0644);
100
101 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
102
103 #else /* CONFIG_CPU_IDLE */
104 static unsigned int latency_factor __read_mostly = 2;
105 module_param(latency_factor, uint, 0644);
106 #endif
107
108 /*
109 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
110 * For now disable this. Probably a bug somewhere else.
111 *
112 * To skip this limit, boot/load with a large max_cstate limit.
113 */
114 static int set_max_cstate(const struct dmi_system_id *id)
115 {
116 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
117 return 0;
118
119 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
120 " Override with \"processor.max_cstate=%d\"\n", id->ident,
121 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
122
123 max_cstate = (long)id->driver_data;
124
125 return 0;
126 }
127
128 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
129 callers to only run once -AK */
130 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
170 { set_max_cstate, "IBM ThinkPad R40e", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
172 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
173 { set_max_cstate, "IBM ThinkPad R40e", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
175 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
176 { set_max_cstate, "IBM ThinkPad R40e", {
177 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
178 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
179 { set_max_cstate, "Medion 41700", {
180 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
181 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
182 { set_max_cstate, "Clevo 5600D", {
183 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
184 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
185 (void *)2},
186 {},
187 };
188
189 static inline u32 ticks_elapsed(u32 t1, u32 t2)
190 {
191 if (t2 >= t1)
192 return (t2 - t1);
193 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
194 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
195 else
196 return ((0xFFFFFFFF - t1) + t2);
197 }
198
199 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
200 {
201 if (t2 >= t1)
202 return PM_TIMER_TICKS_TO_US(t2 - t1);
203 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
204 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
205 else
206 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
207 }
208
209 /*
210 * Callers should disable interrupts before the call and enable
211 * interrupts after return.
212 */
213 static void acpi_safe_halt(void)
214 {
215 current_thread_info()->status &= ~TS_POLLING;
216 /*
217 * TS_POLLING-cleared state must be visible before we
218 * test NEED_RESCHED:
219 */
220 smp_mb();
221 if (!need_resched()) {
222 safe_halt();
223 local_irq_disable();
224 }
225 current_thread_info()->status |= TS_POLLING;
226 }
227
228 #ifndef CONFIG_CPU_IDLE
229
230 static void
231 acpi_processor_power_activate(struct acpi_processor *pr,
232 struct acpi_processor_cx *new)
233 {
234 struct acpi_processor_cx *old;
235
236 if (!pr || !new)
237 return;
238
239 old = pr->power.state;
240
241 if (old)
242 old->promotion.count = 0;
243 new->demotion.count = 0;
244
245 /* Cleanup from old state. */
246 if (old) {
247 switch (old->type) {
248 case ACPI_STATE_C3:
249 /* Disable bus master reload */
250 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
251 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
252 break;
253 }
254 }
255
256 /* Prepare to use new state. */
257 switch (new->type) {
258 case ACPI_STATE_C3:
259 /* Enable bus master reload */
260 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
261 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
262 break;
263 }
264
265 pr->power.state = new;
266
267 return;
268 }
269
270 static atomic_t c3_cpu_count;
271
272 /* Common C-state entry for C2, C3, .. */
273 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
274 {
275 /* Don't trace irqs off for idle */
276 stop_critical_timings();
277 if (cstate->entry_method == ACPI_CSTATE_FFH) {
278 /* Call into architectural FFH based C-state */
279 acpi_processor_ffh_cstate_enter(cstate);
280 } else {
281 int unused;
282 /* IO port based C-state */
283 inb(cstate->address);
284 /* Dummy wait op - must do something useless after P_LVL2 read
285 because chipsets cannot guarantee that STPCLK# signal
286 gets asserted in time to freeze execution properly. */
287 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
288 }
289 start_critical_timings();
290 }
291 #endif /* !CONFIG_CPU_IDLE */
292
293 #ifdef ARCH_APICTIMER_STOPS_ON_C3
294
295 /*
296 * Some BIOS implementations switch to C3 in the published C2 state.
297 * This seems to be a common problem on AMD boxen, but other vendors
298 * are affected too. We pick the most conservative approach: we assume
299 * that the local APIC stops in both C2 and C3.
300 */
301 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
302 struct acpi_processor_cx *cx)
303 {
304 struct acpi_processor_power *pwr = &pr->power;
305 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
306
307 /*
308 * Check, if one of the previous states already marked the lapic
309 * unstable
310 */
311 if (pwr->timer_broadcast_on_state < state)
312 return;
313
314 if (cx->type >= type)
315 pr->power.timer_broadcast_on_state = state;
316 }
317
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
319 {
320 unsigned long reason;
321
322 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
323 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
324
325 clockevents_notify(reason, &pr->id);
326 }
327
328 /* Power(C) State timer broadcast control */
329 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
330 struct acpi_processor_cx *cx,
331 int broadcast)
332 {
333 int state = cx - pr->power.states;
334
335 if (state >= pr->power.timer_broadcast_on_state) {
336 unsigned long reason;
337
338 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
339 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
340 clockevents_notify(reason, &pr->id);
341 }
342 }
343
344 #else
345
346 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
347 struct acpi_processor_cx *cstate) { }
348 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
349 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
350 struct acpi_processor_cx *cx,
351 int broadcast)
352 {
353 }
354
355 #endif
356
357 /*
358 * Suspend / resume control
359 */
360 static int acpi_idle_suspend;
361
362 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
363 {
364 acpi_idle_suspend = 1;
365 return 0;
366 }
367
368 int acpi_processor_resume(struct acpi_device * device)
369 {
370 acpi_idle_suspend = 0;
371 return 0;
372 }
373
374 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
375 static int tsc_halts_in_c(int state)
376 {
377 switch (boot_cpu_data.x86_vendor) {
378 case X86_VENDOR_AMD:
379 /*
380 * AMD Fam10h TSC will tick in all
381 * C/P/S0/S1 states when this bit is set.
382 */
383 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
384 return 0;
385 /*FALL THROUGH*/
386 case X86_VENDOR_INTEL:
387 /* Several cases known where TSC halts in C2 too */
388 default:
389 return state > ACPI_STATE_C1;
390 }
391 }
392 #endif
393
394 #ifndef CONFIG_CPU_IDLE
395 static void acpi_processor_idle(void)
396 {
397 struct acpi_processor *pr = NULL;
398 struct acpi_processor_cx *cx = NULL;
399 struct acpi_processor_cx *next_state = NULL;
400 int sleep_ticks = 0;
401 u32 t1, t2 = 0;
402
403 /*
404 * Interrupts must be disabled during bus mastering calculations and
405 * for C2/C3 transitions.
406 */
407 local_irq_disable();
408
409 pr = __get_cpu_var(processors);
410 if (!pr) {
411 local_irq_enable();
412 return;
413 }
414
415 /*
416 * Check whether we truly need to go idle, or should
417 * reschedule:
418 */
419 if (unlikely(need_resched())) {
420 local_irq_enable();
421 return;
422 }
423
424 cx = pr->power.state;
425 if (!cx || acpi_idle_suspend) {
426 if (pm_idle_save) {
427 pm_idle_save(); /* enables IRQs */
428 } else {
429 acpi_safe_halt();
430 local_irq_enable();
431 }
432
433 return;
434 }
435
436 /*
437 * Check BM Activity
438 * -----------------
439 * Check for bus mastering activity (if required), record, and check
440 * for demotion.
441 */
442 if (pr->flags.bm_check) {
443 u32 bm_status = 0;
444 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
445
446 if (diff > 31)
447 diff = 31;
448
449 pr->power.bm_activity <<= diff;
450
451 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
452 if (bm_status) {
453 pr->power.bm_activity |= 0x1;
454 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
455 }
456 /*
457 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
458 * the true state of bus mastering activity; forcing us to
459 * manually check the BMIDEA bit of each IDE channel.
460 */
461 else if (errata.piix4.bmisx) {
462 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
463 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
464 pr->power.bm_activity |= 0x1;
465 }
466
467 pr->power.bm_check_timestamp = jiffies;
468
469 /*
470 * If bus mastering is or was active this jiffy, demote
471 * to avoid a faulty transition. Note that the processor
472 * won't enter a low-power state during this call (to this
473 * function) but should upon the next.
474 *
475 * TBD: A better policy might be to fallback to the demotion
476 * state (use it for this quantum only) istead of
477 * demoting -- and rely on duration as our sole demotion
478 * qualification. This may, however, introduce DMA
479 * issues (e.g. floppy DMA transfer overrun/underrun).
480 */
481 if ((pr->power.bm_activity & 0x1) &&
482 cx->demotion.threshold.bm) {
483 local_irq_enable();
484 next_state = cx->demotion.state;
485 goto end;
486 }
487 }
488
489 #ifdef CONFIG_HOTPLUG_CPU
490 /*
491 * Check for P_LVL2_UP flag before entering C2 and above on
492 * an SMP system. We do it here instead of doing it at _CST/P_LVL
493 * detection phase, to work cleanly with logical CPU hotplug.
494 */
495 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
496 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
497 cx = &pr->power.states[ACPI_STATE_C1];
498 #endif
499
500 /*
501 * Sleep:
502 * ------
503 * Invoke the current Cx state to put the processor to sleep.
504 */
505 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
506 current_thread_info()->status &= ~TS_POLLING;
507 /*
508 * TS_POLLING-cleared state must be visible before we
509 * test NEED_RESCHED:
510 */
511 smp_mb();
512 if (need_resched()) {
513 current_thread_info()->status |= TS_POLLING;
514 local_irq_enable();
515 return;
516 }
517 }
518
519 switch (cx->type) {
520
521 case ACPI_STATE_C1:
522 /*
523 * Invoke C1.
524 * Use the appropriate idle routine, the one that would
525 * be used without acpi C-states.
526 */
527 if (pm_idle_save) {
528 pm_idle_save(); /* enables IRQs */
529 } else {
530 acpi_safe_halt();
531 local_irq_enable();
532 }
533
534 /*
535 * TBD: Can't get time duration while in C1, as resumes
536 * go to an ISR rather than here. Need to instrument
537 * base interrupt handler.
538 *
539 * Note: the TSC better not stop in C1, sched_clock() will
540 * skew otherwise.
541 */
542 sleep_ticks = 0xFFFFFFFF;
543
544 break;
545
546 case ACPI_STATE_C2:
547 /* Get start time (ticks) */
548 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
549 /* Tell the scheduler that we are going deep-idle: */
550 sched_clock_idle_sleep_event();
551 /* Invoke C2 */
552 acpi_state_timer_broadcast(pr, cx, 1);
553 acpi_cstate_enter(cx);
554 /* Get end time (ticks) */
555 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
556
557 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
558 /* TSC halts in C2, so notify users */
559 if (tsc_halts_in_c(ACPI_STATE_C2))
560 mark_tsc_unstable("possible TSC halt in C2");
561 #endif
562 /* Compute time (ticks) that we were actually asleep */
563 sleep_ticks = ticks_elapsed(t1, t2);
564
565 /* Tell the scheduler how much we idled: */
566 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
567
568 /* Re-enable interrupts */
569 local_irq_enable();
570 /* Do not account our idle-switching overhead: */
571 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
572
573 current_thread_info()->status |= TS_POLLING;
574 acpi_state_timer_broadcast(pr, cx, 0);
575 break;
576
577 case ACPI_STATE_C3:
578 acpi_unlazy_tlb(smp_processor_id());
579 /*
580 * Must be done before busmaster disable as we might
581 * need to access HPET !
582 */
583 acpi_state_timer_broadcast(pr, cx, 1);
584 /*
585 * disable bus master
586 * bm_check implies we need ARB_DIS
587 * !bm_check implies we need cache flush
588 * bm_control implies whether we can do ARB_DIS
589 *
590 * That leaves a case where bm_check is set and bm_control is
591 * not set. In that case we cannot do much, we enter C3
592 * without doing anything.
593 */
594 if (pr->flags.bm_check && pr->flags.bm_control) {
595 if (atomic_inc_return(&c3_cpu_count) ==
596 num_online_cpus()) {
597 /*
598 * All CPUs are trying to go to C3
599 * Disable bus master arbitration
600 */
601 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
602 }
603 } else if (!pr->flags.bm_check) {
604 /* SMP with no shared cache... Invalidate cache */
605 ACPI_FLUSH_CPU_CACHE();
606 }
607
608 /* Get start time (ticks) */
609 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
610 /* Invoke C3 */
611 /* Tell the scheduler that we are going deep-idle: */
612 sched_clock_idle_sleep_event();
613 acpi_cstate_enter(cx);
614 /* Get end time (ticks) */
615 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
616 if (pr->flags.bm_check && pr->flags.bm_control) {
617 /* Enable bus master arbitration */
618 atomic_dec(&c3_cpu_count);
619 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
620 }
621
622 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
623 /* TSC halts in C3, so notify users */
624 if (tsc_halts_in_c(ACPI_STATE_C3))
625 mark_tsc_unstable("TSC halts in C3");
626 #endif
627 /* Compute time (ticks) that we were actually asleep */
628 sleep_ticks = ticks_elapsed(t1, t2);
629 /* Tell the scheduler how much we idled: */
630 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
631
632 /* Re-enable interrupts */
633 local_irq_enable();
634 /* Do not account our idle-switching overhead: */
635 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
636
637 current_thread_info()->status |= TS_POLLING;
638 acpi_state_timer_broadcast(pr, cx, 0);
639 break;
640
641 default:
642 local_irq_enable();
643 return;
644 }
645 cx->usage++;
646 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
647 cx->time += sleep_ticks;
648
649 next_state = pr->power.state;
650
651 #ifdef CONFIG_HOTPLUG_CPU
652 /* Don't do promotion/demotion */
653 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
654 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
655 next_state = cx;
656 goto end;
657 }
658 #endif
659
660 /*
661 * Promotion?
662 * ----------
663 * Track the number of longs (time asleep is greater than threshold)
664 * and promote when the count threshold is reached. Note that bus
665 * mastering activity may prevent promotions.
666 * Do not promote above max_cstate.
667 */
668 if (cx->promotion.state &&
669 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
670 if (sleep_ticks > cx->promotion.threshold.ticks &&
671 cx->promotion.state->latency <=
672 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
673 cx->promotion.count++;
674 cx->demotion.count = 0;
675 if (cx->promotion.count >=
676 cx->promotion.threshold.count) {
677 if (pr->flags.bm_check) {
678 if (!
679 (pr->power.bm_activity & cx->
680 promotion.threshold.bm)) {
681 next_state =
682 cx->promotion.state;
683 goto end;
684 }
685 } else {
686 next_state = cx->promotion.state;
687 goto end;
688 }
689 }
690 }
691 }
692
693 /*
694 * Demotion?
695 * ---------
696 * Track the number of shorts (time asleep is less than time threshold)
697 * and demote when the usage threshold is reached.
698 */
699 if (cx->demotion.state) {
700 if (sleep_ticks < cx->demotion.threshold.ticks) {
701 cx->demotion.count++;
702 cx->promotion.count = 0;
703 if (cx->demotion.count >= cx->demotion.threshold.count) {
704 next_state = cx->demotion.state;
705 goto end;
706 }
707 }
708 }
709
710 end:
711 /*
712 * Demote if current state exceeds max_cstate
713 * or if the latency of the current state is unacceptable
714 */
715 if ((pr->power.state - pr->power.states) > max_cstate ||
716 pr->power.state->latency >
717 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
718 if (cx->demotion.state)
719 next_state = cx->demotion.state;
720 }
721
722 /*
723 * New Cx State?
724 * -------------
725 * If we're going to start using a new Cx state we must clean up
726 * from the previous and prepare to use the new.
727 */
728 if (next_state != pr->power.state)
729 acpi_processor_power_activate(pr, next_state);
730 }
731
732 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
733 {
734 unsigned int i;
735 unsigned int state_is_set = 0;
736 struct acpi_processor_cx *lower = NULL;
737 struct acpi_processor_cx *higher = NULL;
738 struct acpi_processor_cx *cx;
739
740
741 if (!pr)
742 return -EINVAL;
743
744 /*
745 * This function sets the default Cx state policy (OS idle handler).
746 * Our scheme is to promote quickly to C2 but more conservatively
747 * to C3. We're favoring C2 for its characteristics of low latency
748 * (quick response), good power savings, and ability to allow bus
749 * mastering activity. Note that the Cx state policy is completely
750 * customizable and can be altered dynamically.
751 */
752
753 /* startup state */
754 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
755 cx = &pr->power.states[i];
756 if (!cx->valid)
757 continue;
758
759 if (!state_is_set)
760 pr->power.state = cx;
761 state_is_set++;
762 break;
763 }
764
765 if (!state_is_set)
766 return -ENODEV;
767
768 /* demotion */
769 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
770 cx = &pr->power.states[i];
771 if (!cx->valid)
772 continue;
773
774 if (lower) {
775 cx->demotion.state = lower;
776 cx->demotion.threshold.ticks = cx->latency_ticks;
777 cx->demotion.threshold.count = 1;
778 if (cx->type == ACPI_STATE_C3)
779 cx->demotion.threshold.bm = bm_history;
780 }
781
782 lower = cx;
783 }
784
785 /* promotion */
786 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
787 cx = &pr->power.states[i];
788 if (!cx->valid)
789 continue;
790
791 if (higher) {
792 cx->promotion.state = higher;
793 cx->promotion.threshold.ticks = cx->latency_ticks;
794 if (cx->type >= ACPI_STATE_C2)
795 cx->promotion.threshold.count = 4;
796 else
797 cx->promotion.threshold.count = 10;
798 if (higher->type == ACPI_STATE_C3)
799 cx->promotion.threshold.bm = bm_history;
800 }
801
802 higher = cx;
803 }
804
805 return 0;
806 }
807 #endif /* !CONFIG_CPU_IDLE */
808
809 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
810 {
811
812 if (!pr)
813 return -EINVAL;
814
815 if (!pr->pblk)
816 return -ENODEV;
817
818 /* if info is obtained from pblk/fadt, type equals state */
819 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
820 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
821
822 #ifndef CONFIG_HOTPLUG_CPU
823 /*
824 * Check for P_LVL2_UP flag before entering C2 and above on
825 * an SMP system.
826 */
827 if ((num_online_cpus() > 1) &&
828 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
829 return -ENODEV;
830 #endif
831
832 /* determine C2 and C3 address from pblk */
833 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
834 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
835
836 /* determine latencies from FADT */
837 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
838 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
839
840 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
841 "lvl2[0x%08x] lvl3[0x%08x]\n",
842 pr->power.states[ACPI_STATE_C2].address,
843 pr->power.states[ACPI_STATE_C3].address));
844
845 return 0;
846 }
847
848 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
849 {
850 if (!pr->power.states[ACPI_STATE_C1].valid) {
851 /* set the first C-State to C1 */
852 /* all processors need to support C1 */
853 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
854 pr->power.states[ACPI_STATE_C1].valid = 1;
855 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
856 }
857 /* the C0 state only exists as a filler in our array */
858 pr->power.states[ACPI_STATE_C0].valid = 1;
859 return 0;
860 }
861
862 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
863 {
864 acpi_status status = 0;
865 acpi_integer count;
866 int current_count;
867 int i;
868 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
869 union acpi_object *cst;
870
871
872 if (nocst)
873 return -ENODEV;
874
875 current_count = 0;
876
877 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
878 if (ACPI_FAILURE(status)) {
879 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
880 return -ENODEV;
881 }
882
883 cst = buffer.pointer;
884
885 /* There must be at least 2 elements */
886 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
887 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
888 status = -EFAULT;
889 goto end;
890 }
891
892 count = cst->package.elements[0].integer.value;
893
894 /* Validate number of power states. */
895 if (count < 1 || count != cst->package.count - 1) {
896 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
897 status = -EFAULT;
898 goto end;
899 }
900
901 /* Tell driver that at least _CST is supported. */
902 pr->flags.has_cst = 1;
903
904 for (i = 1; i <= count; i++) {
905 union acpi_object *element;
906 union acpi_object *obj;
907 struct acpi_power_register *reg;
908 struct acpi_processor_cx cx;
909
910 memset(&cx, 0, sizeof(cx));
911
912 element = &(cst->package.elements[i]);
913 if (element->type != ACPI_TYPE_PACKAGE)
914 continue;
915
916 if (element->package.count != 4)
917 continue;
918
919 obj = &(element->package.elements[0]);
920
921 if (obj->type != ACPI_TYPE_BUFFER)
922 continue;
923
924 reg = (struct acpi_power_register *)obj->buffer.pointer;
925
926 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
927 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
928 continue;
929
930 /* There should be an easy way to extract an integer... */
931 obj = &(element->package.elements[1]);
932 if (obj->type != ACPI_TYPE_INTEGER)
933 continue;
934
935 cx.type = obj->integer.value;
936 /*
937 * Some buggy BIOSes won't list C1 in _CST -
938 * Let acpi_processor_get_power_info_default() handle them later
939 */
940 if (i == 1 && cx.type != ACPI_STATE_C1)
941 current_count++;
942
943 cx.address = reg->address;
944 cx.index = current_count + 1;
945
946 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
947 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
948 if (acpi_processor_ffh_cstate_probe
949 (pr->id, &cx, reg) == 0) {
950 cx.entry_method = ACPI_CSTATE_FFH;
951 } else if (cx.type == ACPI_STATE_C1) {
952 /*
953 * C1 is a special case where FIXED_HARDWARE
954 * can be handled in non-MWAIT way as well.
955 * In that case, save this _CST entry info.
956 * Otherwise, ignore this info and continue.
957 */
958 cx.entry_method = ACPI_CSTATE_HALT;
959 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
960 } else {
961 continue;
962 }
963 if (cx.type == ACPI_STATE_C1 &&
964 (idle_halt || idle_nomwait)) {
965 /*
966 * In most cases the C1 space_id obtained from
967 * _CST object is FIXED_HARDWARE access mode.
968 * But when the option of idle=halt is added,
969 * the entry_method type should be changed from
970 * CSTATE_FFH to CSTATE_HALT.
971 * When the option of idle=nomwait is added,
972 * the C1 entry_method type should be
973 * CSTATE_HALT.
974 */
975 cx.entry_method = ACPI_CSTATE_HALT;
976 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
977 }
978 } else {
979 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
980 cx.address);
981 }
982
983 if (cx.type == ACPI_STATE_C1) {
984 cx.valid = 1;
985 }
986
987 obj = &(element->package.elements[2]);
988 if (obj->type != ACPI_TYPE_INTEGER)
989 continue;
990
991 cx.latency = obj->integer.value;
992
993 obj = &(element->package.elements[3]);
994 if (obj->type != ACPI_TYPE_INTEGER)
995 continue;
996
997 cx.power = obj->integer.value;
998
999 current_count++;
1000 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
1001
1002 /*
1003 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1004 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1005 */
1006 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1007 printk(KERN_WARNING
1008 "Limiting number of power states to max (%d)\n",
1009 ACPI_PROCESSOR_MAX_POWER);
1010 printk(KERN_WARNING
1011 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1012 break;
1013 }
1014 }
1015
1016 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1017 current_count));
1018
1019 /* Validate number of power states discovered */
1020 if (current_count < 2)
1021 status = -EFAULT;
1022
1023 end:
1024 kfree(buffer.pointer);
1025
1026 return status;
1027 }
1028
1029 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1030 {
1031
1032 if (!cx->address)
1033 return;
1034
1035 /*
1036 * C2 latency must be less than or equal to 100
1037 * microseconds.
1038 */
1039 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1040 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1041 "latency too large [%d]\n", cx->latency));
1042 return;
1043 }
1044
1045 /*
1046 * Otherwise we've met all of our C2 requirements.
1047 * Normalize the C2 latency to expidite policy
1048 */
1049 cx->valid = 1;
1050
1051 #ifndef CONFIG_CPU_IDLE
1052 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1053 #else
1054 cx->latency_ticks = cx->latency;
1055 #endif
1056
1057 return;
1058 }
1059
1060 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1061 struct acpi_processor_cx *cx)
1062 {
1063 static int bm_check_flag;
1064
1065
1066 if (!cx->address)
1067 return;
1068
1069 /*
1070 * C3 latency must be less than or equal to 1000
1071 * microseconds.
1072 */
1073 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1074 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1075 "latency too large [%d]\n", cx->latency));
1076 return;
1077 }
1078
1079 /*
1080 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1081 * DMA transfers are used by any ISA device to avoid livelock.
1082 * Note that we could disable Type-F DMA (as recommended by
1083 * the erratum), but this is known to disrupt certain ISA
1084 * devices thus we take the conservative approach.
1085 */
1086 else if (errata.piix4.fdma) {
1087 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1088 "C3 not supported on PIIX4 with Type-F DMA\n"));
1089 return;
1090 }
1091
1092 /* All the logic here assumes flags.bm_check is same across all CPUs */
1093 if (!bm_check_flag) {
1094 /* Determine whether bm_check is needed based on CPU */
1095 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1096 bm_check_flag = pr->flags.bm_check;
1097 } else {
1098 pr->flags.bm_check = bm_check_flag;
1099 }
1100
1101 if (pr->flags.bm_check) {
1102 if (!pr->flags.bm_control) {
1103 if (pr->flags.has_cst != 1) {
1104 /* bus mastering control is necessary */
1105 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1106 "C3 support requires BM control\n"));
1107 return;
1108 } else {
1109 /* Here we enter C3 without bus mastering */
1110 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1111 "C3 support without BM control\n"));
1112 }
1113 }
1114 } else {
1115 /*
1116 * WBINVD should be set in fadt, for C3 state to be
1117 * supported on when bm_check is not required.
1118 */
1119 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1120 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1121 "Cache invalidation should work properly"
1122 " for C3 to be enabled on SMP systems\n"));
1123 return;
1124 }
1125 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1126 }
1127
1128 /*
1129 * Otherwise we've met all of our C3 requirements.
1130 * Normalize the C3 latency to expidite policy. Enable
1131 * checking of bus mastering status (bm_check) so we can
1132 * use this in our C3 policy
1133 */
1134 cx->valid = 1;
1135
1136 #ifndef CONFIG_CPU_IDLE
1137 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1138 #else
1139 cx->latency_ticks = cx->latency;
1140 #endif
1141
1142 return;
1143 }
1144
1145 static int acpi_processor_power_verify(struct acpi_processor *pr)
1146 {
1147 unsigned int i;
1148 unsigned int working = 0;
1149
1150 pr->power.timer_broadcast_on_state = INT_MAX;
1151
1152 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1153 struct acpi_processor_cx *cx = &pr->power.states[i];
1154
1155 switch (cx->type) {
1156 case ACPI_STATE_C1:
1157 cx->valid = 1;
1158 break;
1159
1160 case ACPI_STATE_C2:
1161 acpi_processor_power_verify_c2(cx);
1162 if (cx->valid)
1163 acpi_timer_check_state(i, pr, cx);
1164 break;
1165
1166 case ACPI_STATE_C3:
1167 acpi_processor_power_verify_c3(pr, cx);
1168 if (cx->valid)
1169 acpi_timer_check_state(i, pr, cx);
1170 break;
1171 }
1172
1173 if (cx->valid)
1174 working++;
1175 }
1176
1177 acpi_propagate_timer_broadcast(pr);
1178
1179 return (working);
1180 }
1181
1182 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1183 {
1184 unsigned int i;
1185 int result;
1186
1187
1188 /* NOTE: the idle thread may not be running while calling
1189 * this function */
1190
1191 /* Zero initialize all the C-states info. */
1192 memset(pr->power.states, 0, sizeof(pr->power.states));
1193
1194 result = acpi_processor_get_power_info_cst(pr);
1195 if (result == -ENODEV)
1196 result = acpi_processor_get_power_info_fadt(pr);
1197
1198 if (result)
1199 return result;
1200
1201 acpi_processor_get_power_info_default(pr);
1202
1203 pr->power.count = acpi_processor_power_verify(pr);
1204
1205 #ifndef CONFIG_CPU_IDLE
1206 /*
1207 * Set Default Policy
1208 * ------------------
1209 * Now that we know which states are supported, set the default
1210 * policy. Note that this policy can be changed dynamically
1211 * (e.g. encourage deeper sleeps to conserve battery life when
1212 * not on AC).
1213 */
1214 result = acpi_processor_set_power_policy(pr);
1215 if (result)
1216 return result;
1217 #endif
1218
1219 /*
1220 * if one state of type C2 or C3 is available, mark this
1221 * CPU as being "idle manageable"
1222 */
1223 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1224 if (pr->power.states[i].valid) {
1225 pr->power.count = i;
1226 if (pr->power.states[i].type >= ACPI_STATE_C2)
1227 pr->flags.power = 1;
1228 }
1229 }
1230
1231 return 0;
1232 }
1233
1234 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1235 {
1236 struct acpi_processor *pr = seq->private;
1237 unsigned int i;
1238
1239
1240 if (!pr)
1241 goto end;
1242
1243 seq_printf(seq, "active state: C%zd\n"
1244 "max_cstate: C%d\n"
1245 "bus master activity: %08x\n"
1246 "maximum allowed latency: %d usec\n",
1247 pr->power.state ? pr->power.state - pr->power.states : 0,
1248 max_cstate, (unsigned)pr->power.bm_activity,
1249 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1250
1251 seq_puts(seq, "states:\n");
1252
1253 for (i = 1; i <= pr->power.count; i++) {
1254 seq_printf(seq, " %cC%d: ",
1255 (&pr->power.states[i] ==
1256 pr->power.state ? '*' : ' '), i);
1257
1258 if (!pr->power.states[i].valid) {
1259 seq_puts(seq, "<not supported>\n");
1260 continue;
1261 }
1262
1263 switch (pr->power.states[i].type) {
1264 case ACPI_STATE_C1:
1265 seq_printf(seq, "type[C1] ");
1266 break;
1267 case ACPI_STATE_C2:
1268 seq_printf(seq, "type[C2] ");
1269 break;
1270 case ACPI_STATE_C3:
1271 seq_printf(seq, "type[C3] ");
1272 break;
1273 default:
1274 seq_printf(seq, "type[--] ");
1275 break;
1276 }
1277
1278 if (pr->power.states[i].promotion.state)
1279 seq_printf(seq, "promotion[C%zd] ",
1280 (pr->power.states[i].promotion.state -
1281 pr->power.states));
1282 else
1283 seq_puts(seq, "promotion[--] ");
1284
1285 if (pr->power.states[i].demotion.state)
1286 seq_printf(seq, "demotion[C%zd] ",
1287 (pr->power.states[i].demotion.state -
1288 pr->power.states));
1289 else
1290 seq_puts(seq, "demotion[--] ");
1291
1292 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1293 pr->power.states[i].latency,
1294 pr->power.states[i].usage,
1295 (unsigned long long)pr->power.states[i].time);
1296 }
1297
1298 end:
1299 return 0;
1300 }
1301
1302 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1303 {
1304 return single_open(file, acpi_processor_power_seq_show,
1305 PDE(inode)->data);
1306 }
1307
1308 static const struct file_operations acpi_processor_power_fops = {
1309 .owner = THIS_MODULE,
1310 .open = acpi_processor_power_open_fs,
1311 .read = seq_read,
1312 .llseek = seq_lseek,
1313 .release = single_release,
1314 };
1315
1316 #ifndef CONFIG_CPU_IDLE
1317
1318 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1319 {
1320 int result = 0;
1321
1322 if (boot_option_idle_override)
1323 return 0;
1324
1325 if (!pr)
1326 return -EINVAL;
1327
1328 if (nocst) {
1329 return -ENODEV;
1330 }
1331
1332 if (!pr->flags.power_setup_done)
1333 return -ENODEV;
1334
1335 /* Fall back to the default idle loop */
1336 pm_idle = pm_idle_save;
1337 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1338
1339 pr->flags.power = 0;
1340 result = acpi_processor_get_power_info(pr);
1341 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1342 pm_idle = acpi_processor_idle;
1343
1344 return result;
1345 }
1346
1347 #ifdef CONFIG_SMP
1348 static void smp_callback(void *v)
1349 {
1350 /* we already woke the CPU up, nothing more to do */
1351 }
1352
1353 /*
1354 * This function gets called when a part of the kernel has a new latency
1355 * requirement. This means we need to get all processors out of their C-state,
1356 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1357 * wakes them all right up.
1358 */
1359 static int acpi_processor_latency_notify(struct notifier_block *b,
1360 unsigned long l, void *v)
1361 {
1362 smp_call_function(smp_callback, NULL, 1);
1363 return NOTIFY_OK;
1364 }
1365
1366 static struct notifier_block acpi_processor_latency_notifier = {
1367 .notifier_call = acpi_processor_latency_notify,
1368 };
1369
1370 #endif
1371
1372 #else /* CONFIG_CPU_IDLE */
1373
1374 /**
1375 * acpi_idle_bm_check - checks if bus master activity was detected
1376 */
1377 static int acpi_idle_bm_check(void)
1378 {
1379 u32 bm_status = 0;
1380
1381 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1382 if (bm_status)
1383 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1384 /*
1385 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1386 * the true state of bus mastering activity; forcing us to
1387 * manually check the BMIDEA bit of each IDE channel.
1388 */
1389 else if (errata.piix4.bmisx) {
1390 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1391 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1392 bm_status = 1;
1393 }
1394 return bm_status;
1395 }
1396
1397 /**
1398 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1399 * @pr: the processor
1400 * @target: the new target state
1401 */
1402 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1403 struct acpi_processor_cx *target)
1404 {
1405 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1406 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1407 pr->flags.bm_rld_set = 0;
1408 }
1409
1410 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1411 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1412 pr->flags.bm_rld_set = 1;
1413 }
1414 }
1415
1416 /**
1417 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1418 * @cx: cstate data
1419 *
1420 * Caller disables interrupt before call and enables interrupt after return.
1421 */
1422 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1423 {
1424 /* Don't trace irqs off for idle */
1425 stop_critical_timings();
1426 if (cx->entry_method == ACPI_CSTATE_FFH) {
1427 /* Call into architectural FFH based C-state */
1428 acpi_processor_ffh_cstate_enter(cx);
1429 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1430 acpi_safe_halt();
1431 } else {
1432 int unused;
1433 /* IO port based C-state */
1434 inb(cx->address);
1435 /* Dummy wait op - must do something useless after P_LVL2 read
1436 because chipsets cannot guarantee that STPCLK# signal
1437 gets asserted in time to freeze execution properly. */
1438 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1439 }
1440 start_critical_timings();
1441 }
1442
1443 /**
1444 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1445 * @dev: the target CPU
1446 * @state: the state data
1447 *
1448 * This is equivalent to the HALT instruction.
1449 */
1450 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1451 struct cpuidle_state *state)
1452 {
1453 u32 t1, t2;
1454 struct acpi_processor *pr;
1455 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1456
1457 pr = __get_cpu_var(processors);
1458
1459 if (unlikely(!pr))
1460 return 0;
1461
1462 local_irq_disable();
1463
1464 /* Do not access any ACPI IO ports in suspend path */
1465 if (acpi_idle_suspend) {
1466 acpi_safe_halt();
1467 local_irq_enable();
1468 return 0;
1469 }
1470
1471 if (pr->flags.bm_check)
1472 acpi_idle_update_bm_rld(pr, cx);
1473
1474 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1475 acpi_idle_do_entry(cx);
1476 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1477
1478 local_irq_enable();
1479 cx->usage++;
1480
1481 return ticks_elapsed_in_us(t1, t2);
1482 }
1483
1484 /**
1485 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1486 * @dev: the target CPU
1487 * @state: the state data
1488 */
1489 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1490 struct cpuidle_state *state)
1491 {
1492 struct acpi_processor *pr;
1493 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1494 u32 t1, t2;
1495 int sleep_ticks = 0;
1496
1497 pr = __get_cpu_var(processors);
1498
1499 if (unlikely(!pr))
1500 return 0;
1501
1502 if (acpi_idle_suspend)
1503 return(acpi_idle_enter_c1(dev, state));
1504
1505 local_irq_disable();
1506 current_thread_info()->status &= ~TS_POLLING;
1507 /*
1508 * TS_POLLING-cleared state must be visible before we test
1509 * NEED_RESCHED:
1510 */
1511 smp_mb();
1512
1513 if (unlikely(need_resched())) {
1514 current_thread_info()->status |= TS_POLLING;
1515 local_irq_enable();
1516 return 0;
1517 }
1518
1519 /*
1520 * Must be done before busmaster disable as we might need to
1521 * access HPET !
1522 */
1523 acpi_state_timer_broadcast(pr, cx, 1);
1524
1525 if (pr->flags.bm_check)
1526 acpi_idle_update_bm_rld(pr, cx);
1527
1528 if (cx->type == ACPI_STATE_C3)
1529 ACPI_FLUSH_CPU_CACHE();
1530
1531 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1532 /* Tell the scheduler that we are going deep-idle: */
1533 sched_clock_idle_sleep_event();
1534 acpi_idle_do_entry(cx);
1535 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1536
1537 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1538 /* TSC could halt in idle, so notify users */
1539 if (tsc_halts_in_c(cx->type))
1540 mark_tsc_unstable("TSC halts in idle");;
1541 #endif
1542 sleep_ticks = ticks_elapsed(t1, t2);
1543
1544 /* Tell the scheduler how much we idled: */
1545 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1546
1547 local_irq_enable();
1548 current_thread_info()->status |= TS_POLLING;
1549
1550 cx->usage++;
1551
1552 acpi_state_timer_broadcast(pr, cx, 0);
1553 cx->time += sleep_ticks;
1554 return ticks_elapsed_in_us(t1, t2);
1555 }
1556
1557 static int c3_cpu_count;
1558 static DEFINE_SPINLOCK(c3_lock);
1559
1560 /**
1561 * acpi_idle_enter_bm - enters C3 with proper BM handling
1562 * @dev: the target CPU
1563 * @state: the state data
1564 *
1565 * If BM is detected, the deepest non-C3 idle state is entered instead.
1566 */
1567 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1568 struct cpuidle_state *state)
1569 {
1570 struct acpi_processor *pr;
1571 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1572 u32 t1, t2;
1573 int sleep_ticks = 0;
1574
1575 pr = __get_cpu_var(processors);
1576
1577 if (unlikely(!pr))
1578 return 0;
1579
1580 if (acpi_idle_suspend)
1581 return(acpi_idle_enter_c1(dev, state));
1582
1583 if (acpi_idle_bm_check()) {
1584 if (dev->safe_state) {
1585 return dev->safe_state->enter(dev, dev->safe_state);
1586 } else {
1587 local_irq_disable();
1588 acpi_safe_halt();
1589 local_irq_enable();
1590 return 0;
1591 }
1592 }
1593
1594 local_irq_disable();
1595 current_thread_info()->status &= ~TS_POLLING;
1596 /*
1597 * TS_POLLING-cleared state must be visible before we test
1598 * NEED_RESCHED:
1599 */
1600 smp_mb();
1601
1602 if (unlikely(need_resched())) {
1603 current_thread_info()->status |= TS_POLLING;
1604 local_irq_enable();
1605 return 0;
1606 }
1607
1608 acpi_unlazy_tlb(smp_processor_id());
1609
1610 /* Tell the scheduler that we are going deep-idle: */
1611 sched_clock_idle_sleep_event();
1612 /*
1613 * Must be done before busmaster disable as we might need to
1614 * access HPET !
1615 */
1616 acpi_state_timer_broadcast(pr, cx, 1);
1617
1618 acpi_idle_update_bm_rld(pr, cx);
1619
1620 /*
1621 * disable bus master
1622 * bm_check implies we need ARB_DIS
1623 * !bm_check implies we need cache flush
1624 * bm_control implies whether we can do ARB_DIS
1625 *
1626 * That leaves a case where bm_check is set and bm_control is
1627 * not set. In that case we cannot do much, we enter C3
1628 * without doing anything.
1629 */
1630 if (pr->flags.bm_check && pr->flags.bm_control) {
1631 spin_lock(&c3_lock);
1632 c3_cpu_count++;
1633 /* Disable bus master arbitration when all CPUs are in C3 */
1634 if (c3_cpu_count == num_online_cpus())
1635 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1636 spin_unlock(&c3_lock);
1637 } else if (!pr->flags.bm_check) {
1638 ACPI_FLUSH_CPU_CACHE();
1639 }
1640
1641 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1642 acpi_idle_do_entry(cx);
1643 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1644
1645 /* Re-enable bus master arbitration */
1646 if (pr->flags.bm_check && pr->flags.bm_control) {
1647 spin_lock(&c3_lock);
1648 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1649 c3_cpu_count--;
1650 spin_unlock(&c3_lock);
1651 }
1652
1653 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1654 /* TSC could halt in idle, so notify users */
1655 if (tsc_halts_in_c(ACPI_STATE_C3))
1656 mark_tsc_unstable("TSC halts in idle");
1657 #endif
1658 sleep_ticks = ticks_elapsed(t1, t2);
1659 /* Tell the scheduler how much we idled: */
1660 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1661
1662 local_irq_enable();
1663 current_thread_info()->status |= TS_POLLING;
1664
1665 cx->usage++;
1666
1667 acpi_state_timer_broadcast(pr, cx, 0);
1668 cx->time += sleep_ticks;
1669 return ticks_elapsed_in_us(t1, t2);
1670 }
1671
1672 struct cpuidle_driver acpi_idle_driver = {
1673 .name = "acpi_idle",
1674 .owner = THIS_MODULE,
1675 };
1676
1677 /**
1678 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1679 * @pr: the ACPI processor
1680 */
1681 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1682 {
1683 int i, count = CPUIDLE_DRIVER_STATE_START;
1684 struct acpi_processor_cx *cx;
1685 struct cpuidle_state *state;
1686 struct cpuidle_device *dev = &pr->power.dev;
1687
1688 if (!pr->flags.power_setup_done)
1689 return -EINVAL;
1690
1691 if (pr->flags.power == 0) {
1692 return -EINVAL;
1693 }
1694
1695 dev->cpu = pr->id;
1696 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1697 dev->states[i].name[0] = '\0';
1698 dev->states[i].desc[0] = '\0';
1699 }
1700
1701 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1702 cx = &pr->power.states[i];
1703 state = &dev->states[count];
1704
1705 if (!cx->valid)
1706 continue;
1707
1708 #ifdef CONFIG_HOTPLUG_CPU
1709 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1710 !pr->flags.has_cst &&
1711 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1712 continue;
1713 #endif
1714 cpuidle_set_statedata(state, cx);
1715
1716 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1717 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1718 state->exit_latency = cx->latency;
1719 state->target_residency = cx->latency * latency_factor;
1720 state->power_usage = cx->power;
1721
1722 state->flags = 0;
1723 switch (cx->type) {
1724 case ACPI_STATE_C1:
1725 state->flags |= CPUIDLE_FLAG_SHALLOW;
1726 if (cx->entry_method == ACPI_CSTATE_FFH)
1727 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1728
1729 state->enter = acpi_idle_enter_c1;
1730 dev->safe_state = state;
1731 break;
1732
1733 case ACPI_STATE_C2:
1734 state->flags |= CPUIDLE_FLAG_BALANCED;
1735 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1736 state->enter = acpi_idle_enter_simple;
1737 dev->safe_state = state;
1738 break;
1739
1740 case ACPI_STATE_C3:
1741 state->flags |= CPUIDLE_FLAG_DEEP;
1742 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1743 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1744 state->enter = pr->flags.bm_check ?
1745 acpi_idle_enter_bm :
1746 acpi_idle_enter_simple;
1747 break;
1748 }
1749
1750 count++;
1751 if (count == CPUIDLE_STATE_MAX)
1752 break;
1753 }
1754
1755 dev->state_count = count;
1756
1757 if (!count)
1758 return -EINVAL;
1759
1760 return 0;
1761 }
1762
1763 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1764 {
1765 int ret = 0;
1766
1767 if (boot_option_idle_override)
1768 return 0;
1769
1770 if (!pr)
1771 return -EINVAL;
1772
1773 if (nocst) {
1774 return -ENODEV;
1775 }
1776
1777 if (!pr->flags.power_setup_done)
1778 return -ENODEV;
1779
1780 cpuidle_pause_and_lock();
1781 cpuidle_disable_device(&pr->power.dev);
1782 acpi_processor_get_power_info(pr);
1783 if (pr->flags.power) {
1784 acpi_processor_setup_cpuidle(pr);
1785 ret = cpuidle_enable_device(&pr->power.dev);
1786 }
1787 cpuidle_resume_and_unlock();
1788
1789 return ret;
1790 }
1791
1792 #endif /* CONFIG_CPU_IDLE */
1793
1794 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1795 struct acpi_device *device)
1796 {
1797 acpi_status status = 0;
1798 static int first_run;
1799 struct proc_dir_entry *entry = NULL;
1800 unsigned int i;
1801
1802 if (boot_option_idle_override)
1803 return 0;
1804
1805 if (!first_run) {
1806 if (idle_halt) {
1807 /*
1808 * When the boot option of "idle=halt" is added, halt
1809 * is used for CPU IDLE.
1810 * In such case C2/C3 is meaningless. So the max_cstate
1811 * is set to one.
1812 */
1813 max_cstate = 1;
1814 }
1815 dmi_check_system(processor_power_dmi_table);
1816 max_cstate = acpi_processor_cstate_check(max_cstate);
1817 if (max_cstate < ACPI_C_STATES_MAX)
1818 printk(KERN_NOTICE
1819 "ACPI: processor limited to max C-state %d\n",
1820 max_cstate);
1821 first_run++;
1822 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1823 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1824 &acpi_processor_latency_notifier);
1825 #endif
1826 }
1827
1828 if (!pr)
1829 return -EINVAL;
1830
1831 if (acpi_gbl_FADT.cst_control && !nocst) {
1832 status =
1833 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1834 if (ACPI_FAILURE(status)) {
1835 ACPI_EXCEPTION((AE_INFO, status,
1836 "Notifying BIOS of _CST ability failed"));
1837 }
1838 }
1839
1840 acpi_processor_get_power_info(pr);
1841 pr->flags.power_setup_done = 1;
1842
1843 /*
1844 * Install the idle handler if processor power management is supported.
1845 * Note that we use previously set idle handler will be used on
1846 * platforms that only support C1.
1847 */
1848 if (pr->flags.power) {
1849 #ifdef CONFIG_CPU_IDLE
1850 acpi_processor_setup_cpuidle(pr);
1851 if (cpuidle_register_device(&pr->power.dev))
1852 return -EIO;
1853 #endif
1854
1855 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1856 for (i = 1; i <= pr->power.count; i++)
1857 if (pr->power.states[i].valid)
1858 printk(" C%d[C%d]", i,
1859 pr->power.states[i].type);
1860 printk(")\n");
1861
1862 #ifndef CONFIG_CPU_IDLE
1863 if (pr->id == 0) {
1864 pm_idle_save = pm_idle;
1865 pm_idle = acpi_processor_idle;
1866 }
1867 #endif
1868 }
1869
1870 /* 'power' [R] */
1871 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1872 S_IRUGO, acpi_device_dir(device),
1873 &acpi_processor_power_fops,
1874 acpi_driver_data(device));
1875 if (!entry)
1876 return -EIO;
1877 return 0;
1878 }
1879
1880 int acpi_processor_power_exit(struct acpi_processor *pr,
1881 struct acpi_device *device)
1882 {
1883 if (boot_option_idle_override)
1884 return 0;
1885
1886 #ifdef CONFIG_CPU_IDLE
1887 cpuidle_unregister_device(&pr->power.dev);
1888 #endif
1889 pr->flags.power_setup_done = 0;
1890
1891 if (acpi_device_dir(device))
1892 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1893 acpi_device_dir(device));
1894
1895 #ifndef CONFIG_CPU_IDLE
1896
1897 /* Unregister the idle handler when processor #0 is removed. */
1898 if (pr->id == 0) {
1899 pm_idle = pm_idle_save;
1900
1901 /*
1902 * We are about to unload the current idle thread pm callback
1903 * (pm_idle), Wait for all processors to update cached/local
1904 * copies of pm_idle before proceeding.
1905 */
1906 cpu_idle_wait();
1907 #ifdef CONFIG_SMP
1908 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1909 &acpi_processor_latency_notifier);
1910 #endif
1911 }
1912 #endif
1913
1914 return 0;
1915 }
This page took 0.073166 seconds and 5 git commands to generate.