Merge tag 'for-linus-20160801' of git://git.infradead.org/linux-mtd
[deliverable/linux.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
35
36 /*
37 * Include the apic definitions for x86 to have the APIC timer related defines
38 * available also for UP (on SMP it gets magically included via linux/smp.h).
39 * asm/acpi.h is not an option, as it would require more include magic. Also
40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
41 */
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
45
46 #define ACPI_PROCESSOR_CLASS "processor"
47 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
49
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
56
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
59
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
61
62 struct cpuidle_driver acpi_idle_driver = {
63 .name = "acpi_idle",
64 .owner = THIS_MODULE,
65 };
66
67 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
68 static
69 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
70
71 static int disabled_by_idle_boot_param(void)
72 {
73 return boot_option_idle_override == IDLE_POLL ||
74 boot_option_idle_override == IDLE_HALT;
75 }
76
77 /*
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
80 *
81 * To skip this limit, boot/load with a large max_cstate limit.
82 */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
87
88 pr_notice("%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92 max_cstate = (long)id->driver_data;
93
94 return 0;
95 }
96
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98 { set_max_cstate, "Clevo 5600D", {
99 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 (void *)2},
102 { set_max_cstate, "Pavilion zv5000", {
103 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 (void *)1},
106 { set_max_cstate, "Asus L8400B", {
107 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 (void *)1},
110 {},
111 };
112
113
114 /*
115 * Callers should disable interrupts before the call and enable
116 * interrupts after return.
117 */
118 static void acpi_safe_halt(void)
119 {
120 if (!tif_need_resched()) {
121 safe_halt();
122 local_irq_disable();
123 }
124 }
125
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127
128 /*
129 * Some BIOS implementations switch to C3 in the published C2 state.
130 * This seems to be a common problem on AMD boxen, but other vendors
131 * are affected too. We pick the most conservative approach: we assume
132 * that the local APIC stops in both C2 and C3.
133 */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 struct acpi_processor_cx *cx)
136 {
137 struct acpi_processor_power *pwr = &pr->power;
138 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139
140 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 return;
142
143 if (amd_e400_c1e_detected)
144 type = ACPI_STATE_C1;
145
146 /*
147 * Check, if one of the previous states already marked the lapic
148 * unstable
149 */
150 if (pwr->timer_broadcast_on_state < state)
151 return;
152
153 if (cx->type >= type)
154 pr->power.timer_broadcast_on_state = state;
155 }
156
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 struct acpi_processor *pr = (struct acpi_processor *) arg;
160
161 if (pr->power.timer_broadcast_on_state < INT_MAX)
162 tick_broadcast_enable();
163 else
164 tick_broadcast_disable();
165 }
166
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168 {
169 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170 (void *)pr, 1);
171 }
172
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175 struct acpi_processor_cx *cx,
176 int broadcast)
177 {
178 int state = cx - pr->power.states;
179
180 if (state >= pr->power.timer_broadcast_on_state) {
181 if (broadcast)
182 tick_broadcast_enter();
183 else
184 tick_broadcast_exit();
185 }
186 }
187
188 #else
189
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
196 {
197 }
198
199 #endif
200
201 #if defined(CONFIG_X86)
202 static void tsc_check_state(int state)
203 {
204 switch (boot_cpu_data.x86_vendor) {
205 case X86_VENDOR_AMD:
206 case X86_VENDOR_INTEL:
207 /*
208 * AMD Fam10h TSC will tick in all
209 * C/P/S0/S1 states when this bit is set.
210 */
211 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
212 return;
213
214 /*FALL THROUGH*/
215 default:
216 /* TSC could halt in idle, so notify users */
217 if (state > ACPI_STATE_C1)
218 mark_tsc_unstable("TSC halts in idle");
219 }
220 }
221 #else
222 static void tsc_check_state(int state) { return; }
223 #endif
224
225 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
226 {
227
228 if (!pr->pblk)
229 return -ENODEV;
230
231 /* if info is obtained from pblk/fadt, type equals state */
232 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
233 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
234
235 #ifndef CONFIG_HOTPLUG_CPU
236 /*
237 * Check for P_LVL2_UP flag before entering C2 and above on
238 * an SMP system.
239 */
240 if ((num_online_cpus() > 1) &&
241 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
242 return -ENODEV;
243 #endif
244
245 /* determine C2 and C3 address from pblk */
246 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
247 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
248
249 /* determine latencies from FADT */
250 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
251 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
252
253 /*
254 * FADT specified C2 latency must be less than or equal to
255 * 100 microseconds.
256 */
257 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
258 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
260 /* invalidate C2 */
261 pr->power.states[ACPI_STATE_C2].address = 0;
262 }
263
264 /*
265 * FADT supplied C3 latency must be less than or equal to
266 * 1000 microseconds.
267 */
268 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
269 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
271 /* invalidate C3 */
272 pr->power.states[ACPI_STATE_C3].address = 0;
273 }
274
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276 "lvl2[0x%08x] lvl3[0x%08x]\n",
277 pr->power.states[ACPI_STATE_C2].address,
278 pr->power.states[ACPI_STATE_C3].address));
279
280 return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285 if (!pr->power.states[ACPI_STATE_C1].valid) {
286 /* set the first C-State to C1 */
287 /* all processors need to support C1 */
288 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 pr->power.states[ACPI_STATE_C1].valid = 1;
290 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291 }
292 /* the C0 state only exists as a filler in our array */
293 pr->power.states[ACPI_STATE_C0].valid = 1;
294 return 0;
295 }
296
297 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
298 {
299 acpi_status status;
300 u64 count;
301 int current_count;
302 int i, ret = 0;
303 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
304 union acpi_object *cst;
305
306 if (nocst)
307 return -ENODEV;
308
309 current_count = 0;
310
311 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
312 if (ACPI_FAILURE(status)) {
313 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
314 return -ENODEV;
315 }
316
317 cst = buffer.pointer;
318
319 /* There must be at least 2 elements */
320 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
321 pr_err("not enough elements in _CST\n");
322 ret = -EFAULT;
323 goto end;
324 }
325
326 count = cst->package.elements[0].integer.value;
327
328 /* Validate number of power states. */
329 if (count < 1 || count != cst->package.count - 1) {
330 pr_err("count given by _CST is not valid\n");
331 ret = -EFAULT;
332 goto end;
333 }
334
335 /* Tell driver that at least _CST is supported. */
336 pr->flags.has_cst = 1;
337
338 for (i = 1; i <= count; i++) {
339 union acpi_object *element;
340 union acpi_object *obj;
341 struct acpi_power_register *reg;
342 struct acpi_processor_cx cx;
343
344 memset(&cx, 0, sizeof(cx));
345
346 element = &(cst->package.elements[i]);
347 if (element->type != ACPI_TYPE_PACKAGE)
348 continue;
349
350 if (element->package.count != 4)
351 continue;
352
353 obj = &(element->package.elements[0]);
354
355 if (obj->type != ACPI_TYPE_BUFFER)
356 continue;
357
358 reg = (struct acpi_power_register *)obj->buffer.pointer;
359
360 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
361 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
362 continue;
363
364 /* There should be an easy way to extract an integer... */
365 obj = &(element->package.elements[1]);
366 if (obj->type != ACPI_TYPE_INTEGER)
367 continue;
368
369 cx.type = obj->integer.value;
370 /*
371 * Some buggy BIOSes won't list C1 in _CST -
372 * Let acpi_processor_get_power_info_default() handle them later
373 */
374 if (i == 1 && cx.type != ACPI_STATE_C1)
375 current_count++;
376
377 cx.address = reg->address;
378 cx.index = current_count + 1;
379
380 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
381 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
382 if (acpi_processor_ffh_cstate_probe
383 (pr->id, &cx, reg) == 0) {
384 cx.entry_method = ACPI_CSTATE_FFH;
385 } else if (cx.type == ACPI_STATE_C1) {
386 /*
387 * C1 is a special case where FIXED_HARDWARE
388 * can be handled in non-MWAIT way as well.
389 * In that case, save this _CST entry info.
390 * Otherwise, ignore this info and continue.
391 */
392 cx.entry_method = ACPI_CSTATE_HALT;
393 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
394 } else {
395 continue;
396 }
397 if (cx.type == ACPI_STATE_C1 &&
398 (boot_option_idle_override == IDLE_NOMWAIT)) {
399 /*
400 * In most cases the C1 space_id obtained from
401 * _CST object is FIXED_HARDWARE access mode.
402 * But when the option of idle=halt is added,
403 * the entry_method type should be changed from
404 * CSTATE_FFH to CSTATE_HALT.
405 * When the option of idle=nomwait is added,
406 * the C1 entry_method type should be
407 * CSTATE_HALT.
408 */
409 cx.entry_method = ACPI_CSTATE_HALT;
410 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
411 }
412 } else {
413 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
414 cx.address);
415 }
416
417 if (cx.type == ACPI_STATE_C1) {
418 cx.valid = 1;
419 }
420
421 obj = &(element->package.elements[2]);
422 if (obj->type != ACPI_TYPE_INTEGER)
423 continue;
424
425 cx.latency = obj->integer.value;
426
427 obj = &(element->package.elements[3]);
428 if (obj->type != ACPI_TYPE_INTEGER)
429 continue;
430
431 current_count++;
432 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
433
434 /*
435 * We support total ACPI_PROCESSOR_MAX_POWER - 1
436 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
437 */
438 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
439 pr_warn("Limiting number of power states to max (%d)\n",
440 ACPI_PROCESSOR_MAX_POWER);
441 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
442 break;
443 }
444 }
445
446 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
447 current_count));
448
449 /* Validate number of power states discovered */
450 if (current_count < 2)
451 ret = -EFAULT;
452
453 end:
454 kfree(buffer.pointer);
455
456 return ret;
457 }
458
459 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
460 struct acpi_processor_cx *cx)
461 {
462 static int bm_check_flag = -1;
463 static int bm_control_flag = -1;
464
465
466 if (!cx->address)
467 return;
468
469 /*
470 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
471 * DMA transfers are used by any ISA device to avoid livelock.
472 * Note that we could disable Type-F DMA (as recommended by
473 * the erratum), but this is known to disrupt certain ISA
474 * devices thus we take the conservative approach.
475 */
476 else if (errata.piix4.fdma) {
477 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
478 "C3 not supported on PIIX4 with Type-F DMA\n"));
479 return;
480 }
481
482 /* All the logic here assumes flags.bm_check is same across all CPUs */
483 if (bm_check_flag == -1) {
484 /* Determine whether bm_check is needed based on CPU */
485 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
486 bm_check_flag = pr->flags.bm_check;
487 bm_control_flag = pr->flags.bm_control;
488 } else {
489 pr->flags.bm_check = bm_check_flag;
490 pr->flags.bm_control = bm_control_flag;
491 }
492
493 if (pr->flags.bm_check) {
494 if (!pr->flags.bm_control) {
495 if (pr->flags.has_cst != 1) {
496 /* bus mastering control is necessary */
497 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498 "C3 support requires BM control\n"));
499 return;
500 } else {
501 /* Here we enter C3 without bus mastering */
502 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
503 "C3 support without BM control\n"));
504 }
505 }
506 } else {
507 /*
508 * WBINVD should be set in fadt, for C3 state to be
509 * supported on when bm_check is not required.
510 */
511 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
512 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513 "Cache invalidation should work properly"
514 " for C3 to be enabled on SMP systems\n"));
515 return;
516 }
517 }
518
519 /*
520 * Otherwise we've met all of our C3 requirements.
521 * Normalize the C3 latency to expidite policy. Enable
522 * checking of bus mastering status (bm_check) so we can
523 * use this in our C3 policy
524 */
525 cx->valid = 1;
526
527 /*
528 * On older chipsets, BM_RLD needs to be set
529 * in order for Bus Master activity to wake the
530 * system from C3. Newer chipsets handle DMA
531 * during C3 automatically and BM_RLD is a NOP.
532 * In either case, the proper way to
533 * handle BM_RLD is to set it and leave it set.
534 */
535 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
536
537 return;
538 }
539
540 static int acpi_processor_power_verify(struct acpi_processor *pr)
541 {
542 unsigned int i;
543 unsigned int working = 0;
544
545 pr->power.timer_broadcast_on_state = INT_MAX;
546
547 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
548 struct acpi_processor_cx *cx = &pr->power.states[i];
549
550 switch (cx->type) {
551 case ACPI_STATE_C1:
552 cx->valid = 1;
553 break;
554
555 case ACPI_STATE_C2:
556 if (!cx->address)
557 break;
558 cx->valid = 1;
559 break;
560
561 case ACPI_STATE_C3:
562 acpi_processor_power_verify_c3(pr, cx);
563 break;
564 }
565 if (!cx->valid)
566 continue;
567
568 lapic_timer_check_state(i, pr, cx);
569 tsc_check_state(cx->type);
570 working++;
571 }
572
573 lapic_timer_propagate_broadcast(pr);
574
575 return (working);
576 }
577
578 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
579 {
580 unsigned int i;
581 int result;
582
583
584 /* NOTE: the idle thread may not be running while calling
585 * this function */
586
587 /* Zero initialize all the C-states info. */
588 memset(pr->power.states, 0, sizeof(pr->power.states));
589
590 result = acpi_processor_get_power_info_cst(pr);
591 if (result == -ENODEV)
592 result = acpi_processor_get_power_info_fadt(pr);
593
594 if (result)
595 return result;
596
597 acpi_processor_get_power_info_default(pr);
598
599 pr->power.count = acpi_processor_power_verify(pr);
600
601 /*
602 * if one state of type C2 or C3 is available, mark this
603 * CPU as being "idle manageable"
604 */
605 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
606 if (pr->power.states[i].valid) {
607 pr->power.count = i;
608 if (pr->power.states[i].type >= ACPI_STATE_C2)
609 pr->flags.power = 1;
610 }
611 }
612
613 return 0;
614 }
615
616 /**
617 * acpi_idle_bm_check - checks if bus master activity was detected
618 */
619 static int acpi_idle_bm_check(void)
620 {
621 u32 bm_status = 0;
622
623 if (bm_check_disable)
624 return 0;
625
626 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
627 if (bm_status)
628 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
629 /*
630 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
631 * the true state of bus mastering activity; forcing us to
632 * manually check the BMIDEA bit of each IDE channel.
633 */
634 else if (errata.piix4.bmisx) {
635 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
636 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
637 bm_status = 1;
638 }
639 return bm_status;
640 }
641
642 /**
643 * acpi_idle_do_entry - enter idle state using the appropriate method
644 * @cx: cstate data
645 *
646 * Caller disables interrupt before call and enables interrupt after return.
647 */
648 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
649 {
650 if (cx->entry_method == ACPI_CSTATE_FFH) {
651 /* Call into architectural FFH based C-state */
652 acpi_processor_ffh_cstate_enter(cx);
653 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
654 acpi_safe_halt();
655 } else {
656 /* IO port based C-state */
657 inb(cx->address);
658 /* Dummy wait op - must do something useless after P_LVL2 read
659 because chipsets cannot guarantee that STPCLK# signal
660 gets asserted in time to freeze execution properly. */
661 inl(acpi_gbl_FADT.xpm_timer_block.address);
662 }
663 }
664
665 /**
666 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
667 * @dev: the target CPU
668 * @index: the index of suggested state
669 */
670 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
671 {
672 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
673
674 ACPI_FLUSH_CPU_CACHE();
675
676 while (1) {
677
678 if (cx->entry_method == ACPI_CSTATE_HALT)
679 safe_halt();
680 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
681 inb(cx->address);
682 /* See comment in acpi_idle_do_entry() */
683 inl(acpi_gbl_FADT.xpm_timer_block.address);
684 } else
685 return -ENODEV;
686 }
687
688 /* Never reached */
689 return 0;
690 }
691
692 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
693 {
694 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
695 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
696 }
697
698 static int c3_cpu_count;
699 static DEFINE_RAW_SPINLOCK(c3_lock);
700
701 /**
702 * acpi_idle_enter_bm - enters C3 with proper BM handling
703 * @pr: Target processor
704 * @cx: Target state context
705 * @timer_bc: Whether or not to change timer mode to broadcast
706 */
707 static void acpi_idle_enter_bm(struct acpi_processor *pr,
708 struct acpi_processor_cx *cx, bool timer_bc)
709 {
710 acpi_unlazy_tlb(smp_processor_id());
711
712 /*
713 * Must be done before busmaster disable as we might need to
714 * access HPET !
715 */
716 if (timer_bc)
717 lapic_timer_state_broadcast(pr, cx, 1);
718
719 /*
720 * disable bus master
721 * bm_check implies we need ARB_DIS
722 * bm_control implies whether we can do ARB_DIS
723 *
724 * That leaves a case where bm_check is set and bm_control is
725 * not set. In that case we cannot do much, we enter C3
726 * without doing anything.
727 */
728 if (pr->flags.bm_control) {
729 raw_spin_lock(&c3_lock);
730 c3_cpu_count++;
731 /* Disable bus master arbitration when all CPUs are in C3 */
732 if (c3_cpu_count == num_online_cpus())
733 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
734 raw_spin_unlock(&c3_lock);
735 }
736
737 acpi_idle_do_entry(cx);
738
739 /* Re-enable bus master arbitration */
740 if (pr->flags.bm_control) {
741 raw_spin_lock(&c3_lock);
742 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
743 c3_cpu_count--;
744 raw_spin_unlock(&c3_lock);
745 }
746
747 if (timer_bc)
748 lapic_timer_state_broadcast(pr, cx, 0);
749 }
750
751 static int acpi_idle_enter(struct cpuidle_device *dev,
752 struct cpuidle_driver *drv, int index)
753 {
754 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
755 struct acpi_processor *pr;
756
757 pr = __this_cpu_read(processors);
758 if (unlikely(!pr))
759 return -EINVAL;
760
761 if (cx->type != ACPI_STATE_C1) {
762 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
763 index = CPUIDLE_DRIVER_STATE_START;
764 cx = per_cpu(acpi_cstate[index], dev->cpu);
765 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
766 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
767 acpi_idle_enter_bm(pr, cx, true);
768 return index;
769 } else if (drv->safe_state_index >= 0) {
770 index = drv->safe_state_index;
771 cx = per_cpu(acpi_cstate[index], dev->cpu);
772 } else {
773 acpi_safe_halt();
774 return -EBUSY;
775 }
776 }
777 }
778
779 lapic_timer_state_broadcast(pr, cx, 1);
780
781 if (cx->type == ACPI_STATE_C3)
782 ACPI_FLUSH_CPU_CACHE();
783
784 acpi_idle_do_entry(cx);
785
786 lapic_timer_state_broadcast(pr, cx, 0);
787
788 return index;
789 }
790
791 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
792 struct cpuidle_driver *drv, int index)
793 {
794 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
795
796 if (cx->type == ACPI_STATE_C3) {
797 struct acpi_processor *pr = __this_cpu_read(processors);
798
799 if (unlikely(!pr))
800 return;
801
802 if (pr->flags.bm_check) {
803 acpi_idle_enter_bm(pr, cx, false);
804 return;
805 } else {
806 ACPI_FLUSH_CPU_CACHE();
807 }
808 }
809 acpi_idle_do_entry(cx);
810 }
811
812 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
813 struct cpuidle_device *dev)
814 {
815 int i, count = CPUIDLE_DRIVER_STATE_START;
816 struct acpi_processor_cx *cx;
817
818 if (max_cstate == 0)
819 max_cstate = 1;
820
821 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
822 cx = &pr->power.states[i];
823
824 if (!cx->valid)
825 continue;
826
827 per_cpu(acpi_cstate[count], dev->cpu) = cx;
828
829 count++;
830 if (count == CPUIDLE_STATE_MAX)
831 break;
832 }
833
834 if (!count)
835 return -EINVAL;
836
837 return 0;
838 }
839
840 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
841 {
842 int i, count = CPUIDLE_DRIVER_STATE_START;
843 struct acpi_processor_cx *cx;
844 struct cpuidle_state *state;
845 struct cpuidle_driver *drv = &acpi_idle_driver;
846
847 if (max_cstate == 0)
848 max_cstate = 1;
849
850 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
851 cx = &pr->power.states[i];
852
853 if (!cx->valid)
854 continue;
855
856 state = &drv->states[count];
857 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
858 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
859 state->exit_latency = cx->latency;
860 state->target_residency = cx->latency * latency_factor;
861 state->enter = acpi_idle_enter;
862
863 state->flags = 0;
864 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
865 state->enter_dead = acpi_idle_play_dead;
866 drv->safe_state_index = count;
867 }
868 /*
869 * Halt-induced C1 is not good for ->enter_freeze, because it
870 * re-enables interrupts on exit. Moreover, C1 is generally not
871 * particularly interesting from the suspend-to-idle angle, so
872 * avoid C1 and the situations in which we may need to fall back
873 * to it altogether.
874 */
875 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
876 state->enter_freeze = acpi_idle_enter_freeze;
877
878 count++;
879 if (count == CPUIDLE_STATE_MAX)
880 break;
881 }
882
883 drv->state_count = count;
884
885 if (!count)
886 return -EINVAL;
887
888 return 0;
889 }
890
891 static inline void acpi_processor_cstate_first_run_checks(void)
892 {
893 acpi_status status;
894 static int first_run;
895
896 if (first_run)
897 return;
898 dmi_check_system(processor_power_dmi_table);
899 max_cstate = acpi_processor_cstate_check(max_cstate);
900 if (max_cstate < ACPI_C_STATES_MAX)
901 pr_notice("ACPI: processor limited to max C-state %d\n",
902 max_cstate);
903 first_run++;
904
905 if (acpi_gbl_FADT.cst_control && !nocst) {
906 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
907 acpi_gbl_FADT.cst_control, 8);
908 if (ACPI_FAILURE(status))
909 ACPI_EXCEPTION((AE_INFO, status,
910 "Notifying BIOS of _CST ability failed"));
911 }
912 }
913 #else
914
915 static inline int disabled_by_idle_boot_param(void) { return 0; }
916 static inline void acpi_processor_cstate_first_run_checks(void) { }
917 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
918 {
919 return -ENODEV;
920 }
921
922 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
923 struct cpuidle_device *dev)
924 {
925 return -EINVAL;
926 }
927
928 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
929 {
930 return -EINVAL;
931 }
932
933 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
934
935 struct acpi_lpi_states_array {
936 unsigned int size;
937 unsigned int composite_states_size;
938 struct acpi_lpi_state *entries;
939 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
940 };
941
942 static int obj_get_integer(union acpi_object *obj, u32 *value)
943 {
944 if (obj->type != ACPI_TYPE_INTEGER)
945 return -EINVAL;
946
947 *value = obj->integer.value;
948 return 0;
949 }
950
951 static int acpi_processor_evaluate_lpi(acpi_handle handle,
952 struct acpi_lpi_states_array *info)
953 {
954 acpi_status status;
955 int ret = 0;
956 int pkg_count, state_idx = 1, loop;
957 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
958 union acpi_object *lpi_data;
959 struct acpi_lpi_state *lpi_state;
960
961 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
962 if (ACPI_FAILURE(status)) {
963 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
964 return -ENODEV;
965 }
966
967 lpi_data = buffer.pointer;
968
969 /* There must be at least 4 elements = 3 elements + 1 package */
970 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
971 lpi_data->package.count < 4) {
972 pr_debug("not enough elements in _LPI\n");
973 ret = -ENODATA;
974 goto end;
975 }
976
977 pkg_count = lpi_data->package.elements[2].integer.value;
978
979 /* Validate number of power states. */
980 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
981 pr_debug("count given by _LPI is not valid\n");
982 ret = -ENODATA;
983 goto end;
984 }
985
986 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
987 if (!lpi_state) {
988 ret = -ENOMEM;
989 goto end;
990 }
991
992 info->size = pkg_count;
993 info->entries = lpi_state;
994
995 /* LPI States start at index 3 */
996 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
997 union acpi_object *element, *pkg_elem, *obj;
998
999 element = &lpi_data->package.elements[loop];
1000 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1001 continue;
1002
1003 pkg_elem = element->package.elements;
1004
1005 obj = pkg_elem + 6;
1006 if (obj->type == ACPI_TYPE_BUFFER) {
1007 struct acpi_power_register *reg;
1008
1009 reg = (struct acpi_power_register *)obj->buffer.pointer;
1010 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1011 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1012 continue;
1013
1014 lpi_state->address = reg->address;
1015 lpi_state->entry_method =
1016 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1017 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1018 } else if (obj->type == ACPI_TYPE_INTEGER) {
1019 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1020 lpi_state->address = obj->integer.value;
1021 } else {
1022 continue;
1023 }
1024
1025 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1026
1027 obj = pkg_elem + 9;
1028 if (obj->type == ACPI_TYPE_STRING)
1029 strlcpy(lpi_state->desc, obj->string.pointer,
1030 ACPI_CX_DESC_LEN);
1031
1032 lpi_state->index = state_idx;
1033 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1034 pr_debug("No min. residency found, assuming 10 us\n");
1035 lpi_state->min_residency = 10;
1036 }
1037
1038 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1039 pr_debug("No wakeup residency found, assuming 10 us\n");
1040 lpi_state->wake_latency = 10;
1041 }
1042
1043 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1044 lpi_state->flags = 0;
1045
1046 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1047 lpi_state->arch_flags = 0;
1048
1049 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1050 lpi_state->res_cnt_freq = 1;
1051
1052 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1053 lpi_state->enable_parent_state = 0;
1054 }
1055
1056 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1057 end:
1058 kfree(buffer.pointer);
1059 return ret;
1060 }
1061
1062 /*
1063 * flat_state_cnt - the number of composite LPI states after the process of flattening
1064 */
1065 static int flat_state_cnt;
1066
1067 /**
1068 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1069 *
1070 * @local: local LPI state
1071 * @parent: parent LPI state
1072 * @result: composite LPI state
1073 */
1074 static bool combine_lpi_states(struct acpi_lpi_state *local,
1075 struct acpi_lpi_state *parent,
1076 struct acpi_lpi_state *result)
1077 {
1078 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1079 if (!parent->address) /* 0 means autopromotable */
1080 return false;
1081 result->address = local->address + parent->address;
1082 } else {
1083 result->address = parent->address;
1084 }
1085
1086 result->min_residency = max(local->min_residency, parent->min_residency);
1087 result->wake_latency = local->wake_latency + parent->wake_latency;
1088 result->enable_parent_state = parent->enable_parent_state;
1089 result->entry_method = local->entry_method;
1090
1091 result->flags = parent->flags;
1092 result->arch_flags = parent->arch_flags;
1093 result->index = parent->index;
1094
1095 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1096 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1097 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1098 return true;
1099 }
1100
1101 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1102
1103 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1104 struct acpi_lpi_state *t)
1105 {
1106 curr_level->composite_states[curr_level->composite_states_size++] = t;
1107 }
1108
1109 static int flatten_lpi_states(struct acpi_processor *pr,
1110 struct acpi_lpi_states_array *curr_level,
1111 struct acpi_lpi_states_array *prev_level)
1112 {
1113 int i, j, state_count = curr_level->size;
1114 struct acpi_lpi_state *p, *t = curr_level->entries;
1115
1116 curr_level->composite_states_size = 0;
1117 for (j = 0; j < state_count; j++, t++) {
1118 struct acpi_lpi_state *flpi;
1119
1120 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1121 continue;
1122
1123 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1124 pr_warn("Limiting number of LPI states to max (%d)\n",
1125 ACPI_PROCESSOR_MAX_POWER);
1126 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1127 break;
1128 }
1129
1130 flpi = &pr->power.lpi_states[flat_state_cnt];
1131
1132 if (!prev_level) { /* leaf/processor node */
1133 memcpy(flpi, t, sizeof(*t));
1134 stash_composite_state(curr_level, flpi);
1135 flat_state_cnt++;
1136 continue;
1137 }
1138
1139 for (i = 0; i < prev_level->composite_states_size; i++) {
1140 p = prev_level->composite_states[i];
1141 if (t->index <= p->enable_parent_state &&
1142 combine_lpi_states(p, t, flpi)) {
1143 stash_composite_state(curr_level, flpi);
1144 flat_state_cnt++;
1145 flpi++;
1146 }
1147 }
1148 }
1149
1150 kfree(curr_level->entries);
1151 return 0;
1152 }
1153
1154 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1155 {
1156 int ret, i;
1157 acpi_status status;
1158 acpi_handle handle = pr->handle, pr_ahandle;
1159 struct acpi_device *d = NULL;
1160 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1161
1162 if (!osc_pc_lpi_support_confirmed)
1163 return -EOPNOTSUPP;
1164
1165 if (!acpi_has_method(handle, "_LPI"))
1166 return -EINVAL;
1167
1168 flat_state_cnt = 0;
1169 prev = &info[0];
1170 curr = &info[1];
1171 handle = pr->handle;
1172 ret = acpi_processor_evaluate_lpi(handle, prev);
1173 if (ret)
1174 return ret;
1175 flatten_lpi_states(pr, prev, NULL);
1176
1177 status = acpi_get_parent(handle, &pr_ahandle);
1178 while (ACPI_SUCCESS(status)) {
1179 acpi_bus_get_device(pr_ahandle, &d);
1180 handle = pr_ahandle;
1181
1182 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1183 break;
1184
1185 /* can be optional ? */
1186 if (!acpi_has_method(handle, "_LPI"))
1187 break;
1188
1189 ret = acpi_processor_evaluate_lpi(handle, curr);
1190 if (ret)
1191 break;
1192
1193 /* flatten all the LPI states in this level of hierarchy */
1194 flatten_lpi_states(pr, curr, prev);
1195
1196 tmp = prev, prev = curr, curr = tmp;
1197
1198 status = acpi_get_parent(handle, &pr_ahandle);
1199 }
1200
1201 pr->power.count = flat_state_cnt;
1202 /* reset the index after flattening */
1203 for (i = 0; i < pr->power.count; i++)
1204 pr->power.lpi_states[i].index = i;
1205
1206 /* Tell driver that _LPI is supported. */
1207 pr->flags.has_lpi = 1;
1208 pr->flags.power = 1;
1209
1210 return 0;
1211 }
1212
1213 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1214 {
1215 return -ENODEV;
1216 }
1217
1218 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1219 {
1220 return -ENODEV;
1221 }
1222
1223 /**
1224 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1225 * @dev: the target CPU
1226 * @drv: cpuidle driver containing cpuidle state info
1227 * @index: index of target state
1228 *
1229 * Return: 0 for success or negative value for error
1230 */
1231 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1232 struct cpuidle_driver *drv, int index)
1233 {
1234 struct acpi_processor *pr;
1235 struct acpi_lpi_state *lpi;
1236
1237 pr = __this_cpu_read(processors);
1238
1239 if (unlikely(!pr))
1240 return -EINVAL;
1241
1242 lpi = &pr->power.lpi_states[index];
1243 if (lpi->entry_method == ACPI_CSTATE_FFH)
1244 return acpi_processor_ffh_lpi_enter(lpi);
1245
1246 return -EINVAL;
1247 }
1248
1249 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1250 {
1251 int i;
1252 struct acpi_lpi_state *lpi;
1253 struct cpuidle_state *state;
1254 struct cpuidle_driver *drv = &acpi_idle_driver;
1255
1256 if (!pr->flags.has_lpi)
1257 return -EOPNOTSUPP;
1258
1259 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1260 lpi = &pr->power.lpi_states[i];
1261
1262 state = &drv->states[i];
1263 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1264 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1265 state->exit_latency = lpi->wake_latency;
1266 state->target_residency = lpi->min_residency;
1267 if (lpi->arch_flags)
1268 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1269 state->enter = acpi_idle_lpi_enter;
1270 drv->safe_state_index = i;
1271 }
1272
1273 drv->state_count = i;
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1280 * global state data i.e. idle routines
1281 *
1282 * @pr: the ACPI processor
1283 */
1284 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1285 {
1286 int i;
1287 struct cpuidle_driver *drv = &acpi_idle_driver;
1288
1289 if (!pr->flags.power_setup_done || !pr->flags.power)
1290 return -EINVAL;
1291
1292 drv->safe_state_index = -1;
1293 for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1294 drv->states[i].name[0] = '\0';
1295 drv->states[i].desc[0] = '\0';
1296 }
1297
1298 if (pr->flags.has_lpi)
1299 return acpi_processor_setup_lpi_states(pr);
1300
1301 return acpi_processor_setup_cstates(pr);
1302 }
1303
1304 /**
1305 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1306 * device i.e. per-cpu data
1307 *
1308 * @pr: the ACPI processor
1309 * @dev : the cpuidle device
1310 */
1311 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1312 struct cpuidle_device *dev)
1313 {
1314 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1315 return -EINVAL;
1316
1317 dev->cpu = pr->id;
1318 if (pr->flags.has_lpi)
1319 return acpi_processor_ffh_lpi_probe(pr->id);
1320
1321 return acpi_processor_setup_cpuidle_cx(pr, dev);
1322 }
1323
1324 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1325 {
1326 int ret;
1327
1328 ret = acpi_processor_get_lpi_info(pr);
1329 if (ret)
1330 ret = acpi_processor_get_cstate_info(pr);
1331
1332 return ret;
1333 }
1334
1335 int acpi_processor_hotplug(struct acpi_processor *pr)
1336 {
1337 int ret = 0;
1338 struct cpuidle_device *dev;
1339
1340 if (disabled_by_idle_boot_param())
1341 return 0;
1342
1343 if (!pr->flags.power_setup_done)
1344 return -ENODEV;
1345
1346 dev = per_cpu(acpi_cpuidle_device, pr->id);
1347 cpuidle_pause_and_lock();
1348 cpuidle_disable_device(dev);
1349 ret = acpi_processor_get_power_info(pr);
1350 if (!ret && pr->flags.power) {
1351 acpi_processor_setup_cpuidle_dev(pr, dev);
1352 ret = cpuidle_enable_device(dev);
1353 }
1354 cpuidle_resume_and_unlock();
1355
1356 return ret;
1357 }
1358
1359 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1360 {
1361 int cpu;
1362 struct acpi_processor *_pr;
1363 struct cpuidle_device *dev;
1364
1365 if (disabled_by_idle_boot_param())
1366 return 0;
1367
1368 if (!pr->flags.power_setup_done)
1369 return -ENODEV;
1370
1371 /*
1372 * FIXME: Design the ACPI notification to make it once per
1373 * system instead of once per-cpu. This condition is a hack
1374 * to make the code that updates C-States be called once.
1375 */
1376
1377 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1378
1379 /* Protect against cpu-hotplug */
1380 get_online_cpus();
1381 cpuidle_pause_and_lock();
1382
1383 /* Disable all cpuidle devices */
1384 for_each_online_cpu(cpu) {
1385 _pr = per_cpu(processors, cpu);
1386 if (!_pr || !_pr->flags.power_setup_done)
1387 continue;
1388 dev = per_cpu(acpi_cpuidle_device, cpu);
1389 cpuidle_disable_device(dev);
1390 }
1391
1392 /* Populate Updated C-state information */
1393 acpi_processor_get_power_info(pr);
1394 acpi_processor_setup_cpuidle_states(pr);
1395
1396 /* Enable all cpuidle devices */
1397 for_each_online_cpu(cpu) {
1398 _pr = per_cpu(processors, cpu);
1399 if (!_pr || !_pr->flags.power_setup_done)
1400 continue;
1401 acpi_processor_get_power_info(_pr);
1402 if (_pr->flags.power) {
1403 dev = per_cpu(acpi_cpuidle_device, cpu);
1404 acpi_processor_setup_cpuidle_dev(_pr, dev);
1405 cpuidle_enable_device(dev);
1406 }
1407 }
1408 cpuidle_resume_and_unlock();
1409 put_online_cpus();
1410 }
1411
1412 return 0;
1413 }
1414
1415 static int acpi_processor_registered;
1416
1417 int acpi_processor_power_init(struct acpi_processor *pr)
1418 {
1419 int retval;
1420 struct cpuidle_device *dev;
1421
1422 if (disabled_by_idle_boot_param())
1423 return 0;
1424
1425 acpi_processor_cstate_first_run_checks();
1426
1427 if (!acpi_processor_get_power_info(pr))
1428 pr->flags.power_setup_done = 1;
1429
1430 /*
1431 * Install the idle handler if processor power management is supported.
1432 * Note that we use previously set idle handler will be used on
1433 * platforms that only support C1.
1434 */
1435 if (pr->flags.power) {
1436 /* Register acpi_idle_driver if not already registered */
1437 if (!acpi_processor_registered) {
1438 acpi_processor_setup_cpuidle_states(pr);
1439 retval = cpuidle_register_driver(&acpi_idle_driver);
1440 if (retval)
1441 return retval;
1442 pr_debug("%s registered with cpuidle\n",
1443 acpi_idle_driver.name);
1444 }
1445
1446 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1447 if (!dev)
1448 return -ENOMEM;
1449 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1450
1451 acpi_processor_setup_cpuidle_dev(pr, dev);
1452
1453 /* Register per-cpu cpuidle_device. Cpuidle driver
1454 * must already be registered before registering device
1455 */
1456 retval = cpuidle_register_device(dev);
1457 if (retval) {
1458 if (acpi_processor_registered == 0)
1459 cpuidle_unregister_driver(&acpi_idle_driver);
1460 return retval;
1461 }
1462 acpi_processor_registered++;
1463 }
1464 return 0;
1465 }
1466
1467 int acpi_processor_power_exit(struct acpi_processor *pr)
1468 {
1469 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1470
1471 if (disabled_by_idle_boot_param())
1472 return 0;
1473
1474 if (pr->flags.power) {
1475 cpuidle_unregister_device(dev);
1476 acpi_processor_registered--;
1477 if (acpi_processor_registered == 0)
1478 cpuidle_unregister_driver(&acpi_idle_driver);
1479 }
1480
1481 pr->flags.power_setup_done = 0;
1482 return 0;
1483 }
This page took 0.083594 seconds and 5 git commands to generate.