libata: implement ATA_DFLAG_DUBIOUS_XFER
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
87
88 struct workqueue_struct *ata_aux_wq;
89
90 int atapi_enabled = 1;
91 module_param(atapi_enabled, int, 0444);
92 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
94 int atapi_dmadir = 0;
95 module_param(atapi_dmadir, int, 0444);
96 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
98 int atapi_passthru16 = 1;
99 module_param(atapi_passthru16, int, 0444);
100 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
102 int libata_fua = 0;
103 module_param_named(fua, libata_fua, int, 0444);
104 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
106 static int ata_ignore_hpa;
107 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
110 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111 module_param_named(dma, libata_dma_mask, int, 0444);
112 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
114 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115 module_param(ata_probe_timeout, int, 0444);
116 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
118 int libata_noacpi = 0;
119 module_param_named(noacpi, libata_noacpi, int, 0444);
120 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
121
122 int libata_allow_tpm = 0;
123 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
126 MODULE_AUTHOR("Jeff Garzik");
127 MODULE_DESCRIPTION("Library module for ATA devices");
128 MODULE_LICENSE("GPL");
129 MODULE_VERSION(DRV_VERSION);
130
131
132 /**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
135 * @pmp: Port multiplier port
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
146 {
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174 }
175
176 /**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
187 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
188 {
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203 }
204
205 static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
220 0,
221 0,
222 0,
223 0,
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
233 };
234
235 /**
236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
239 *
240 * Examine the device configuration and tf->flags to calculate
241 * the proper read/write commands and protocol to use.
242 *
243 * LOCKING:
244 * caller.
245 */
246 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
247 {
248 u8 cmd;
249
250 int index, fua, lba48, write;
251
252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
255
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
258 index = dev->multi_count ? 0 : 8;
259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
262 index = dev->multi_count ? 0 : 8;
263 } else {
264 tf->protocol = ATA_PROT_DMA;
265 index = 16;
266 }
267
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
274 }
275
276 /**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292 {
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317 }
318
319 /**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342 {
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440 }
441
442 /**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
457 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
458 unsigned int mwdma_mask,
459 unsigned int udma_mask)
460 {
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464 }
465
466 /**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
476 static void ata_unpack_xfermask(unsigned int xfer_mask,
477 unsigned int *pio_mask,
478 unsigned int *mwdma_mask,
479 unsigned int *udma_mask)
480 {
481 if (pio_mask)
482 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
483 if (mwdma_mask)
484 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
485 if (udma_mask)
486 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
487 }
488
489 static const struct ata_xfer_ent {
490 int shift, bits;
491 u8 base;
492 } ata_xfer_tbl[] = {
493 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
494 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
495 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
496 { -1, },
497 };
498
499 /**
500 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
501 * @xfer_mask: xfer_mask of interest
502 *
503 * Return matching XFER_* value for @xfer_mask. Only the highest
504 * bit of @xfer_mask is considered.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * Matching XFER_* value, 0 if no match found.
511 */
512 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
513 {
514 int highbit = fls(xfer_mask) - 1;
515 const struct ata_xfer_ent *ent;
516
517 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
518 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
519 return ent->base + highbit - ent->shift;
520 return 0;
521 }
522
523 /**
524 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
525 * @xfer_mode: XFER_* of interest
526 *
527 * Return matching xfer_mask for @xfer_mode.
528 *
529 * LOCKING:
530 * None.
531 *
532 * RETURNS:
533 * Matching xfer_mask, 0 if no match found.
534 */
535 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
536 {
537 const struct ata_xfer_ent *ent;
538
539 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
540 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
541 return 1 << (ent->shift + xfer_mode - ent->base);
542 return 0;
543 }
544
545 /**
546 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
547 * @xfer_mode: XFER_* of interest
548 *
549 * Return matching xfer_shift for @xfer_mode.
550 *
551 * LOCKING:
552 * None.
553 *
554 * RETURNS:
555 * Matching xfer_shift, -1 if no match found.
556 */
557 static int ata_xfer_mode2shift(unsigned int xfer_mode)
558 {
559 const struct ata_xfer_ent *ent;
560
561 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
562 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
563 return ent->shift;
564 return -1;
565 }
566
567 /**
568 * ata_mode_string - convert xfer_mask to string
569 * @xfer_mask: mask of bits supported; only highest bit counts.
570 *
571 * Determine string which represents the highest speed
572 * (highest bit in @modemask).
573 *
574 * LOCKING:
575 * None.
576 *
577 * RETURNS:
578 * Constant C string representing highest speed listed in
579 * @mode_mask, or the constant C string "<n/a>".
580 */
581 static const char *ata_mode_string(unsigned int xfer_mask)
582 {
583 static const char * const xfer_mode_str[] = {
584 "PIO0",
585 "PIO1",
586 "PIO2",
587 "PIO3",
588 "PIO4",
589 "PIO5",
590 "PIO6",
591 "MWDMA0",
592 "MWDMA1",
593 "MWDMA2",
594 "MWDMA3",
595 "MWDMA4",
596 "UDMA/16",
597 "UDMA/25",
598 "UDMA/33",
599 "UDMA/44",
600 "UDMA/66",
601 "UDMA/100",
602 "UDMA/133",
603 "UDMA7",
604 };
605 int highbit;
606
607 highbit = fls(xfer_mask) - 1;
608 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
609 return xfer_mode_str[highbit];
610 return "<n/a>";
611 }
612
613 static const char *sata_spd_string(unsigned int spd)
614 {
615 static const char * const spd_str[] = {
616 "1.5 Gbps",
617 "3.0 Gbps",
618 };
619
620 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
621 return "<unknown>";
622 return spd_str[spd - 1];
623 }
624
625 void ata_dev_disable(struct ata_device *dev)
626 {
627 if (ata_dev_enabled(dev)) {
628 if (ata_msg_drv(dev->link->ap))
629 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
630 ata_acpi_on_disable(dev);
631 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
632 ATA_DNXFER_QUIET);
633 dev->class++;
634 }
635 }
636
637 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
638 {
639 struct ata_link *link = dev->link;
640 struct ata_port *ap = link->ap;
641 u32 scontrol;
642 unsigned int err_mask;
643 int rc;
644
645 /*
646 * disallow DIPM for drivers which haven't set
647 * ATA_FLAG_IPM. This is because when DIPM is enabled,
648 * phy ready will be set in the interrupt status on
649 * state changes, which will cause some drivers to
650 * think there are errors - additionally drivers will
651 * need to disable hot plug.
652 */
653 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
654 ap->pm_policy = NOT_AVAILABLE;
655 return -EINVAL;
656 }
657
658 /*
659 * For DIPM, we will only enable it for the
660 * min_power setting.
661 *
662 * Why? Because Disks are too stupid to know that
663 * If the host rejects a request to go to SLUMBER
664 * they should retry at PARTIAL, and instead it
665 * just would give up. So, for medium_power to
666 * work at all, we need to only allow HIPM.
667 */
668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
669 if (rc)
670 return rc;
671
672 switch (policy) {
673 case MIN_POWER:
674 /* no restrictions on IPM transitions */
675 scontrol &= ~(0x3 << 8);
676 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
677 if (rc)
678 return rc;
679
680 /* enable DIPM */
681 if (dev->flags & ATA_DFLAG_DIPM)
682 err_mask = ata_dev_set_feature(dev,
683 SETFEATURES_SATA_ENABLE, SATA_DIPM);
684 break;
685 case MEDIUM_POWER:
686 /* allow IPM to PARTIAL */
687 scontrol &= ~(0x1 << 8);
688 scontrol |= (0x2 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow transitions to SLUMBER, which effectively
696 * disable DIPM if it does not support PARTIAL
697 */
698 break;
699 case NOT_AVAILABLE:
700 case MAX_PERFORMANCE:
701 /* disable all IPM transitions */
702 scontrol |= (0x3 << 8);
703 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
704 if (rc)
705 return rc;
706
707 /*
708 * we don't have to disable DIPM since IPM flags
709 * disallow all transitions which effectively
710 * disable DIPM anyway.
711 */
712 break;
713 }
714
715 /* FIXME: handle SET FEATURES failure */
716 (void) err_mask;
717
718 return 0;
719 }
720
721 /**
722 * ata_dev_enable_pm - enable SATA interface power management
723 * @dev: device to enable power management
724 * @policy: the link power management policy
725 *
726 * Enable SATA Interface power management. This will enable
727 * Device Interface Power Management (DIPM) for min_power
728 * policy, and then call driver specific callbacks for
729 * enabling Host Initiated Power management.
730 *
731 * Locking: Caller.
732 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
733 */
734 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
735 {
736 int rc = 0;
737 struct ata_port *ap = dev->link->ap;
738
739 /* set HIPM first, then DIPM */
740 if (ap->ops->enable_pm)
741 rc = ap->ops->enable_pm(ap, policy);
742 if (rc)
743 goto enable_pm_out;
744 rc = ata_dev_set_dipm(dev, policy);
745
746 enable_pm_out:
747 if (rc)
748 ap->pm_policy = MAX_PERFORMANCE;
749 else
750 ap->pm_policy = policy;
751 return /* rc */; /* hopefully we can use 'rc' eventually */
752 }
753
754 #ifdef CONFIG_PM
755 /**
756 * ata_dev_disable_pm - disable SATA interface power management
757 * @dev: device to disable power management
758 *
759 * Disable SATA Interface power management. This will disable
760 * Device Interface Power Management (DIPM) without changing
761 * policy, call driver specific callbacks for disabling Host
762 * Initiated Power management.
763 *
764 * Locking: Caller.
765 * Returns: void
766 */
767 static void ata_dev_disable_pm(struct ata_device *dev)
768 {
769 struct ata_port *ap = dev->link->ap;
770
771 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
772 if (ap->ops->disable_pm)
773 ap->ops->disable_pm(ap);
774 }
775 #endif /* CONFIG_PM */
776
777 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
778 {
779 ap->pm_policy = policy;
780 ap->link.eh_info.action |= ATA_EHI_LPM;
781 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
782 ata_port_schedule_eh(ap);
783 }
784
785 #ifdef CONFIG_PM
786 static void ata_lpm_enable(struct ata_host *host)
787 {
788 struct ata_link *link;
789 struct ata_port *ap;
790 struct ata_device *dev;
791 int i;
792
793 for (i = 0; i < host->n_ports; i++) {
794 ap = host->ports[i];
795 ata_port_for_each_link(link, ap) {
796 ata_link_for_each_dev(dev, link)
797 ata_dev_disable_pm(dev);
798 }
799 }
800 }
801
802 static void ata_lpm_disable(struct ata_host *host)
803 {
804 int i;
805
806 for (i = 0; i < host->n_ports; i++) {
807 struct ata_port *ap = host->ports[i];
808 ata_lpm_schedule(ap, ap->pm_policy);
809 }
810 }
811 #endif /* CONFIG_PM */
812
813
814 /**
815 * ata_devchk - PATA device presence detection
816 * @ap: ATA channel to examine
817 * @device: Device to examine (starting at zero)
818 *
819 * This technique was originally described in
820 * Hale Landis's ATADRVR (www.ata-atapi.com), and
821 * later found its way into the ATA/ATAPI spec.
822 *
823 * Write a pattern to the ATA shadow registers,
824 * and if a device is present, it will respond by
825 * correctly storing and echoing back the
826 * ATA shadow register contents.
827 *
828 * LOCKING:
829 * caller.
830 */
831
832 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
833 {
834 struct ata_ioports *ioaddr = &ap->ioaddr;
835 u8 nsect, lbal;
836
837 ap->ops->dev_select(ap, device);
838
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
841
842 iowrite8(0xaa, ioaddr->nsect_addr);
843 iowrite8(0x55, ioaddr->lbal_addr);
844
845 iowrite8(0x55, ioaddr->nsect_addr);
846 iowrite8(0xaa, ioaddr->lbal_addr);
847
848 nsect = ioread8(ioaddr->nsect_addr);
849 lbal = ioread8(ioaddr->lbal_addr);
850
851 if ((nsect == 0x55) && (lbal == 0xaa))
852 return 1; /* we found a device */
853
854 return 0; /* nothing found */
855 }
856
857 /**
858 * ata_dev_classify - determine device type based on ATA-spec signature
859 * @tf: ATA taskfile register set for device to be identified
860 *
861 * Determine from taskfile register contents whether a device is
862 * ATA or ATAPI, as per "Signature and persistence" section
863 * of ATA/PI spec (volume 1, sect 5.14).
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
869 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
870 * %ATA_DEV_UNKNOWN the event of failure.
871 */
872 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
873 {
874 /* Apple's open source Darwin code hints that some devices only
875 * put a proper signature into the LBA mid/high registers,
876 * So, we only check those. It's sufficient for uniqueness.
877 *
878 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
879 * signatures for ATA and ATAPI devices attached on SerialATA,
880 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
881 * spec has never mentioned about using different signatures
882 * for ATA/ATAPI devices. Then, Serial ATA II: Port
883 * Multiplier specification began to use 0x69/0x96 to identify
884 * port multpliers and 0x3c/0xc3 to identify SEMB device.
885 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
886 * 0x69/0x96 shortly and described them as reserved for
887 * SerialATA.
888 *
889 * We follow the current spec and consider that 0x69/0x96
890 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
891 */
892 if ((tf->lbam == 0) && (tf->lbah == 0)) {
893 DPRINTK("found ATA device by sig\n");
894 return ATA_DEV_ATA;
895 }
896
897 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
898 DPRINTK("found ATAPI device by sig\n");
899 return ATA_DEV_ATAPI;
900 }
901
902 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
903 DPRINTK("found PMP device by sig\n");
904 return ATA_DEV_PMP;
905 }
906
907 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
908 printk(KERN_INFO "ata: SEMB device ignored\n");
909 return ATA_DEV_SEMB_UNSUP; /* not yet */
910 }
911
912 DPRINTK("unknown device\n");
913 return ATA_DEV_UNKNOWN;
914 }
915
916 /**
917 * ata_dev_try_classify - Parse returned ATA device signature
918 * @dev: ATA device to classify (starting at zero)
919 * @present: device seems present
920 * @r_err: Value of error register on completion
921 *
922 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
923 * an ATA/ATAPI-defined set of values is placed in the ATA
924 * shadow registers, indicating the results of device detection
925 * and diagnostics.
926 *
927 * Select the ATA device, and read the values from the ATA shadow
928 * registers. Then parse according to the Error register value,
929 * and the spec-defined values examined by ata_dev_classify().
930 *
931 * LOCKING:
932 * caller.
933 *
934 * RETURNS:
935 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
936 */
937 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
938 u8 *r_err)
939 {
940 struct ata_port *ap = dev->link->ap;
941 struct ata_taskfile tf;
942 unsigned int class;
943 u8 err;
944
945 ap->ops->dev_select(ap, dev->devno);
946
947 memset(&tf, 0, sizeof(tf));
948
949 ap->ops->tf_read(ap, &tf);
950 err = tf.feature;
951 if (r_err)
952 *r_err = err;
953
954 /* see if device passed diags: if master then continue and warn later */
955 if (err == 0 && dev->devno == 0)
956 /* diagnostic fail : do nothing _YET_ */
957 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
958 else if (err == 1)
959 /* do nothing */ ;
960 else if ((dev->devno == 0) && (err == 0x81))
961 /* do nothing */ ;
962 else
963 return ATA_DEV_NONE;
964
965 /* determine if device is ATA or ATAPI */
966 class = ata_dev_classify(&tf);
967
968 if (class == ATA_DEV_UNKNOWN) {
969 /* If the device failed diagnostic, it's likely to
970 * have reported incorrect device signature too.
971 * Assume ATA device if the device seems present but
972 * device signature is invalid with diagnostic
973 * failure.
974 */
975 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
976 class = ATA_DEV_ATA;
977 else
978 class = ATA_DEV_NONE;
979 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
980 class = ATA_DEV_NONE;
981
982 return class;
983 }
984
985 /**
986 * ata_id_string - Convert IDENTIFY DEVICE page into string
987 * @id: IDENTIFY DEVICE results we will examine
988 * @s: string into which data is output
989 * @ofs: offset into identify device page
990 * @len: length of string to return. must be an even number.
991 *
992 * The strings in the IDENTIFY DEVICE page are broken up into
993 * 16-bit chunks. Run through the string, and output each
994 * 8-bit chunk linearly, regardless of platform.
995 *
996 * LOCKING:
997 * caller.
998 */
999
1000 void ata_id_string(const u16 *id, unsigned char *s,
1001 unsigned int ofs, unsigned int len)
1002 {
1003 unsigned int c;
1004
1005 while (len > 0) {
1006 c = id[ofs] >> 8;
1007 *s = c;
1008 s++;
1009
1010 c = id[ofs] & 0xff;
1011 *s = c;
1012 s++;
1013
1014 ofs++;
1015 len -= 2;
1016 }
1017 }
1018
1019 /**
1020 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1021 * @id: IDENTIFY DEVICE results we will examine
1022 * @s: string into which data is output
1023 * @ofs: offset into identify device page
1024 * @len: length of string to return. must be an odd number.
1025 *
1026 * This function is identical to ata_id_string except that it
1027 * trims trailing spaces and terminates the resulting string with
1028 * null. @len must be actual maximum length (even number) + 1.
1029 *
1030 * LOCKING:
1031 * caller.
1032 */
1033 void ata_id_c_string(const u16 *id, unsigned char *s,
1034 unsigned int ofs, unsigned int len)
1035 {
1036 unsigned char *p;
1037
1038 WARN_ON(!(len & 1));
1039
1040 ata_id_string(id, s, ofs, len - 1);
1041
1042 p = s + strnlen(s, len - 1);
1043 while (p > s && p[-1] == ' ')
1044 p--;
1045 *p = '\0';
1046 }
1047
1048 static u64 ata_id_n_sectors(const u16 *id)
1049 {
1050 if (ata_id_has_lba(id)) {
1051 if (ata_id_has_lba48(id))
1052 return ata_id_u64(id, 100);
1053 else
1054 return ata_id_u32(id, 60);
1055 } else {
1056 if (ata_id_current_chs_valid(id))
1057 return ata_id_u32(id, 57);
1058 else
1059 return id[1] * id[3] * id[6];
1060 }
1061 }
1062
1063 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1064 {
1065 u64 sectors = 0;
1066
1067 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1068 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1069 sectors |= (tf->hob_lbal & 0xff) << 24;
1070 sectors |= (tf->lbah & 0xff) << 16;
1071 sectors |= (tf->lbam & 0xff) << 8;
1072 sectors |= (tf->lbal & 0xff);
1073
1074 return ++sectors;
1075 }
1076
1077 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1078 {
1079 u64 sectors = 0;
1080
1081 sectors |= (tf->device & 0x0f) << 24;
1082 sectors |= (tf->lbah & 0xff) << 16;
1083 sectors |= (tf->lbam & 0xff) << 8;
1084 sectors |= (tf->lbal & 0xff);
1085
1086 return ++sectors;
1087 }
1088
1089 /**
1090 * ata_read_native_max_address - Read native max address
1091 * @dev: target device
1092 * @max_sectors: out parameter for the result native max address
1093 *
1094 * Perform an LBA48 or LBA28 native size query upon the device in
1095 * question.
1096 *
1097 * RETURNS:
1098 * 0 on success, -EACCES if command is aborted by the drive.
1099 * -EIO on other errors.
1100 */
1101 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1102 {
1103 unsigned int err_mask;
1104 struct ata_taskfile tf;
1105 int lba48 = ata_id_has_lba48(dev->id);
1106
1107 ata_tf_init(dev, &tf);
1108
1109 /* always clear all address registers */
1110 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1111
1112 if (lba48) {
1113 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1114 tf.flags |= ATA_TFLAG_LBA48;
1115 } else
1116 tf.command = ATA_CMD_READ_NATIVE_MAX;
1117
1118 tf.protocol |= ATA_PROT_NODATA;
1119 tf.device |= ATA_LBA;
1120
1121 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1122 if (err_mask) {
1123 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1124 "max address (err_mask=0x%x)\n", err_mask);
1125 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1126 return -EACCES;
1127 return -EIO;
1128 }
1129
1130 if (lba48)
1131 *max_sectors = ata_tf_to_lba48(&tf);
1132 else
1133 *max_sectors = ata_tf_to_lba(&tf);
1134 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1135 (*max_sectors)--;
1136 return 0;
1137 }
1138
1139 /**
1140 * ata_set_max_sectors - Set max sectors
1141 * @dev: target device
1142 * @new_sectors: new max sectors value to set for the device
1143 *
1144 * Set max sectors of @dev to @new_sectors.
1145 *
1146 * RETURNS:
1147 * 0 on success, -EACCES if command is aborted or denied (due to
1148 * previous non-volatile SET_MAX) by the drive. -EIO on other
1149 * errors.
1150 */
1151 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1152 {
1153 unsigned int err_mask;
1154 struct ata_taskfile tf;
1155 int lba48 = ata_id_has_lba48(dev->id);
1156
1157 new_sectors--;
1158
1159 ata_tf_init(dev, &tf);
1160
1161 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1162
1163 if (lba48) {
1164 tf.command = ATA_CMD_SET_MAX_EXT;
1165 tf.flags |= ATA_TFLAG_LBA48;
1166
1167 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1168 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1169 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1170 } else {
1171 tf.command = ATA_CMD_SET_MAX;
1172
1173 tf.device |= (new_sectors >> 24) & 0xf;
1174 }
1175
1176 tf.protocol |= ATA_PROT_NODATA;
1177 tf.device |= ATA_LBA;
1178
1179 tf.lbal = (new_sectors >> 0) & 0xff;
1180 tf.lbam = (new_sectors >> 8) & 0xff;
1181 tf.lbah = (new_sectors >> 16) & 0xff;
1182
1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 if (err_mask) {
1185 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1186 "max address (err_mask=0x%x)\n", err_mask);
1187 if (err_mask == AC_ERR_DEV &&
1188 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1189 return -EACCES;
1190 return -EIO;
1191 }
1192
1193 return 0;
1194 }
1195
1196 /**
1197 * ata_hpa_resize - Resize a device with an HPA set
1198 * @dev: Device to resize
1199 *
1200 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1201 * it if required to the full size of the media. The caller must check
1202 * the drive has the HPA feature set enabled.
1203 *
1204 * RETURNS:
1205 * 0 on success, -errno on failure.
1206 */
1207 static int ata_hpa_resize(struct ata_device *dev)
1208 {
1209 struct ata_eh_context *ehc = &dev->link->eh_context;
1210 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1211 u64 sectors = ata_id_n_sectors(dev->id);
1212 u64 native_sectors;
1213 int rc;
1214
1215 /* do we need to do it? */
1216 if (dev->class != ATA_DEV_ATA ||
1217 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1218 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1219 return 0;
1220
1221 /* read native max address */
1222 rc = ata_read_native_max_address(dev, &native_sectors);
1223 if (rc) {
1224 /* If HPA isn't going to be unlocked, skip HPA
1225 * resizing from the next try.
1226 */
1227 if (!ata_ignore_hpa) {
1228 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1229 "broken, will skip HPA handling\n");
1230 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1231
1232 /* we can continue if device aborted the command */
1233 if (rc == -EACCES)
1234 rc = 0;
1235 }
1236
1237 return rc;
1238 }
1239
1240 /* nothing to do? */
1241 if (native_sectors <= sectors || !ata_ignore_hpa) {
1242 if (!print_info || native_sectors == sectors)
1243 return 0;
1244
1245 if (native_sectors > sectors)
1246 ata_dev_printk(dev, KERN_INFO,
1247 "HPA detected: current %llu, native %llu\n",
1248 (unsigned long long)sectors,
1249 (unsigned long long)native_sectors);
1250 else if (native_sectors < sectors)
1251 ata_dev_printk(dev, KERN_WARNING,
1252 "native sectors (%llu) is smaller than "
1253 "sectors (%llu)\n",
1254 (unsigned long long)native_sectors,
1255 (unsigned long long)sectors);
1256 return 0;
1257 }
1258
1259 /* let's unlock HPA */
1260 rc = ata_set_max_sectors(dev, native_sectors);
1261 if (rc == -EACCES) {
1262 /* if device aborted the command, skip HPA resizing */
1263 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1264 "(%llu -> %llu), skipping HPA handling\n",
1265 (unsigned long long)sectors,
1266 (unsigned long long)native_sectors);
1267 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1268 return 0;
1269 } else if (rc)
1270 return rc;
1271
1272 /* re-read IDENTIFY data */
1273 rc = ata_dev_reread_id(dev, 0);
1274 if (rc) {
1275 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1276 "data after HPA resizing\n");
1277 return rc;
1278 }
1279
1280 if (print_info) {
1281 u64 new_sectors = ata_id_n_sectors(dev->id);
1282 ata_dev_printk(dev, KERN_INFO,
1283 "HPA unlocked: %llu -> %llu, native %llu\n",
1284 (unsigned long long)sectors,
1285 (unsigned long long)new_sectors,
1286 (unsigned long long)native_sectors);
1287 }
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * ata_id_to_dma_mode - Identify DMA mode from id block
1294 * @dev: device to identify
1295 * @unknown: mode to assume if we cannot tell
1296 *
1297 * Set up the timing values for the device based upon the identify
1298 * reported values for the DMA mode. This function is used by drivers
1299 * which rely upon firmware configured modes, but wish to report the
1300 * mode correctly when possible.
1301 *
1302 * In addition we emit similarly formatted messages to the default
1303 * ata_dev_set_mode handler, in order to provide consistency of
1304 * presentation.
1305 */
1306
1307 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1308 {
1309 unsigned int mask;
1310 u8 mode;
1311
1312 /* Pack the DMA modes */
1313 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1314 if (dev->id[53] & 0x04)
1315 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1316
1317 /* Select the mode in use */
1318 mode = ata_xfer_mask2mode(mask);
1319
1320 if (mode != 0) {
1321 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1322 ata_mode_string(mask));
1323 } else {
1324 /* SWDMA perhaps ? */
1325 mode = unknown;
1326 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1327 }
1328
1329 /* Configure the device reporting */
1330 dev->xfer_mode = mode;
1331 dev->xfer_shift = ata_xfer_mode2shift(mode);
1332 }
1333
1334 /**
1335 * ata_noop_dev_select - Select device 0/1 on ATA bus
1336 * @ap: ATA channel to manipulate
1337 * @device: ATA device (numbered from zero) to select
1338 *
1339 * This function performs no actual function.
1340 *
1341 * May be used as the dev_select() entry in ata_port_operations.
1342 *
1343 * LOCKING:
1344 * caller.
1345 */
1346 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1347 {
1348 }
1349
1350
1351 /**
1352 * ata_std_dev_select - Select device 0/1 on ATA bus
1353 * @ap: ATA channel to manipulate
1354 * @device: ATA device (numbered from zero) to select
1355 *
1356 * Use the method defined in the ATA specification to
1357 * make either device 0, or device 1, active on the
1358 * ATA channel. Works with both PIO and MMIO.
1359 *
1360 * May be used as the dev_select() entry in ata_port_operations.
1361 *
1362 * LOCKING:
1363 * caller.
1364 */
1365
1366 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1367 {
1368 u8 tmp;
1369
1370 if (device == 0)
1371 tmp = ATA_DEVICE_OBS;
1372 else
1373 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1374
1375 iowrite8(tmp, ap->ioaddr.device_addr);
1376 ata_pause(ap); /* needed; also flushes, for mmio */
1377 }
1378
1379 /**
1380 * ata_dev_select - Select device 0/1 on ATA bus
1381 * @ap: ATA channel to manipulate
1382 * @device: ATA device (numbered from zero) to select
1383 * @wait: non-zero to wait for Status register BSY bit to clear
1384 * @can_sleep: non-zero if context allows sleeping
1385 *
1386 * Use the method defined in the ATA specification to
1387 * make either device 0, or device 1, active on the
1388 * ATA channel.
1389 *
1390 * This is a high-level version of ata_std_dev_select(),
1391 * which additionally provides the services of inserting
1392 * the proper pauses and status polling, where needed.
1393 *
1394 * LOCKING:
1395 * caller.
1396 */
1397
1398 void ata_dev_select(struct ata_port *ap, unsigned int device,
1399 unsigned int wait, unsigned int can_sleep)
1400 {
1401 if (ata_msg_probe(ap))
1402 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1403 "device %u, wait %u\n", device, wait);
1404
1405 if (wait)
1406 ata_wait_idle(ap);
1407
1408 ap->ops->dev_select(ap, device);
1409
1410 if (wait) {
1411 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1412 msleep(150);
1413 ata_wait_idle(ap);
1414 }
1415 }
1416
1417 /**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
1419 * @id: IDENTIFY DEVICE page to dump
1420 *
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
1428 static inline void ata_dump_id(const u16 *id)
1429 {
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
1452 id[88],
1453 id[93]);
1454 }
1455
1456 /**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
1471 static unsigned int ata_id_xfermask(const u16 *id)
1472 {
1473 unsigned int pio_mask, mwdma_mask, udma_mask;
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1486 if (mode < 5) /* Valid PIO range */
1487 pio_mask = (2 << mode) - 1;
1488 else
1489 pio_mask = 1;
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1500
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
1505 int pio = id[163] & 0x7;
1506 int dma = (id[163] >> 3) & 7;
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523 }
1524
1525 /**
1526 * ata_port_queue_task - Queue port_task
1527 * @ap: The ata_port to queue port_task for
1528 * @fn: workqueue function to be scheduled
1529 * @data: data for @fn to use
1530 * @delay: delay time for workqueue function
1531 *
1532 * Schedule @fn(@data) for execution after @delay jiffies using
1533 * port_task. There is one port_task per port and it's the
1534 * user(low level driver)'s responsibility to make sure that only
1535 * one task is active at any given time.
1536 *
1537 * libata core layer takes care of synchronization between
1538 * port_task and EH. ata_port_queue_task() may be ignored for EH
1539 * synchronization.
1540 *
1541 * LOCKING:
1542 * Inherited from caller.
1543 */
1544 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1545 unsigned long delay)
1546 {
1547 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1548 ap->port_task_data = data;
1549
1550 /* may fail if ata_port_flush_task() in progress */
1551 queue_delayed_work(ata_wq, &ap->port_task, delay);
1552 }
1553
1554 /**
1555 * ata_port_flush_task - Flush port_task
1556 * @ap: The ata_port to flush port_task for
1557 *
1558 * After this function completes, port_task is guranteed not to
1559 * be running or scheduled.
1560 *
1561 * LOCKING:
1562 * Kernel thread context (may sleep)
1563 */
1564 void ata_port_flush_task(struct ata_port *ap)
1565 {
1566 DPRINTK("ENTER\n");
1567
1568 cancel_rearming_delayed_work(&ap->port_task);
1569
1570 if (ata_msg_ctl(ap))
1571 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1572 }
1573
1574 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1575 {
1576 struct completion *waiting = qc->private_data;
1577
1578 complete(waiting);
1579 }
1580
1581 /**
1582 * ata_exec_internal_sg - execute libata internal command
1583 * @dev: Device to which the command is sent
1584 * @tf: Taskfile registers for the command and the result
1585 * @cdb: CDB for packet command
1586 * @dma_dir: Data tranfer direction of the command
1587 * @sgl: sg list for the data buffer of the command
1588 * @n_elem: Number of sg entries
1589 * @timeout: Timeout in msecs (0 for default)
1590 *
1591 * Executes libata internal command with timeout. @tf contains
1592 * command on entry and result on return. Timeout and error
1593 * conditions are reported via return value. No recovery action
1594 * is taken after a command times out. It's caller's duty to
1595 * clean up after timeout.
1596 *
1597 * LOCKING:
1598 * None. Should be called with kernel context, might sleep.
1599 *
1600 * RETURNS:
1601 * Zero on success, AC_ERR_* mask on failure
1602 */
1603 unsigned ata_exec_internal_sg(struct ata_device *dev,
1604 struct ata_taskfile *tf, const u8 *cdb,
1605 int dma_dir, struct scatterlist *sgl,
1606 unsigned int n_elem, unsigned long timeout)
1607 {
1608 struct ata_link *link = dev->link;
1609 struct ata_port *ap = link->ap;
1610 u8 command = tf->command;
1611 struct ata_queued_cmd *qc;
1612 unsigned int tag, preempted_tag;
1613 u32 preempted_sactive, preempted_qc_active;
1614 int preempted_nr_active_links;
1615 DECLARE_COMPLETION_ONSTACK(wait);
1616 unsigned long flags;
1617 unsigned int err_mask;
1618 int rc;
1619
1620 spin_lock_irqsave(ap->lock, flags);
1621
1622 /* no internal command while frozen */
1623 if (ap->pflags & ATA_PFLAG_FROZEN) {
1624 spin_unlock_irqrestore(ap->lock, flags);
1625 return AC_ERR_SYSTEM;
1626 }
1627
1628 /* initialize internal qc */
1629
1630 /* XXX: Tag 0 is used for drivers with legacy EH as some
1631 * drivers choke if any other tag is given. This breaks
1632 * ata_tag_internal() test for those drivers. Don't use new
1633 * EH stuff without converting to it.
1634 */
1635 if (ap->ops->error_handler)
1636 tag = ATA_TAG_INTERNAL;
1637 else
1638 tag = 0;
1639
1640 if (test_and_set_bit(tag, &ap->qc_allocated))
1641 BUG();
1642 qc = __ata_qc_from_tag(ap, tag);
1643
1644 qc->tag = tag;
1645 qc->scsicmd = NULL;
1646 qc->ap = ap;
1647 qc->dev = dev;
1648 ata_qc_reinit(qc);
1649
1650 preempted_tag = link->active_tag;
1651 preempted_sactive = link->sactive;
1652 preempted_qc_active = ap->qc_active;
1653 preempted_nr_active_links = ap->nr_active_links;
1654 link->active_tag = ATA_TAG_POISON;
1655 link->sactive = 0;
1656 ap->qc_active = 0;
1657 ap->nr_active_links = 0;
1658
1659 /* prepare & issue qc */
1660 qc->tf = *tf;
1661 if (cdb)
1662 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1663 qc->flags |= ATA_QCFLAG_RESULT_TF;
1664 qc->dma_dir = dma_dir;
1665 if (dma_dir != DMA_NONE) {
1666 unsigned int i, buflen = 0;
1667 struct scatterlist *sg;
1668
1669 for_each_sg(sgl, sg, n_elem, i)
1670 buflen += sg->length;
1671
1672 ata_sg_init(qc, sgl, n_elem);
1673 qc->nbytes = buflen;
1674 }
1675
1676 qc->private_data = &wait;
1677 qc->complete_fn = ata_qc_complete_internal;
1678
1679 ata_qc_issue(qc);
1680
1681 spin_unlock_irqrestore(ap->lock, flags);
1682
1683 if (!timeout)
1684 timeout = ata_probe_timeout * 1000 / HZ;
1685
1686 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1687
1688 ata_port_flush_task(ap);
1689
1690 if (!rc) {
1691 spin_lock_irqsave(ap->lock, flags);
1692
1693 /* We're racing with irq here. If we lose, the
1694 * following test prevents us from completing the qc
1695 * twice. If we win, the port is frozen and will be
1696 * cleaned up by ->post_internal_cmd().
1697 */
1698 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1699 qc->err_mask |= AC_ERR_TIMEOUT;
1700
1701 if (ap->ops->error_handler)
1702 ata_port_freeze(ap);
1703 else
1704 ata_qc_complete(qc);
1705
1706 if (ata_msg_warn(ap))
1707 ata_dev_printk(dev, KERN_WARNING,
1708 "qc timeout (cmd 0x%x)\n", command);
1709 }
1710
1711 spin_unlock_irqrestore(ap->lock, flags);
1712 }
1713
1714 /* do post_internal_cmd */
1715 if (ap->ops->post_internal_cmd)
1716 ap->ops->post_internal_cmd(qc);
1717
1718 /* perform minimal error analysis */
1719 if (qc->flags & ATA_QCFLAG_FAILED) {
1720 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1721 qc->err_mask |= AC_ERR_DEV;
1722
1723 if (!qc->err_mask)
1724 qc->err_mask |= AC_ERR_OTHER;
1725
1726 if (qc->err_mask & ~AC_ERR_OTHER)
1727 qc->err_mask &= ~AC_ERR_OTHER;
1728 }
1729
1730 /* finish up */
1731 spin_lock_irqsave(ap->lock, flags);
1732
1733 *tf = qc->result_tf;
1734 err_mask = qc->err_mask;
1735
1736 ata_qc_free(qc);
1737 link->active_tag = preempted_tag;
1738 link->sactive = preempted_sactive;
1739 ap->qc_active = preempted_qc_active;
1740 ap->nr_active_links = preempted_nr_active_links;
1741
1742 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1743 * Until those drivers are fixed, we detect the condition
1744 * here, fail the command with AC_ERR_SYSTEM and reenable the
1745 * port.
1746 *
1747 * Note that this doesn't change any behavior as internal
1748 * command failure results in disabling the device in the
1749 * higher layer for LLDDs without new reset/EH callbacks.
1750 *
1751 * Kill the following code as soon as those drivers are fixed.
1752 */
1753 if (ap->flags & ATA_FLAG_DISABLED) {
1754 err_mask |= AC_ERR_SYSTEM;
1755 ata_port_probe(ap);
1756 }
1757
1758 spin_unlock_irqrestore(ap->lock, flags);
1759
1760 return err_mask;
1761 }
1762
1763 /**
1764 * ata_exec_internal - execute libata internal command
1765 * @dev: Device to which the command is sent
1766 * @tf: Taskfile registers for the command and the result
1767 * @cdb: CDB for packet command
1768 * @dma_dir: Data tranfer direction of the command
1769 * @buf: Data buffer of the command
1770 * @buflen: Length of data buffer
1771 * @timeout: Timeout in msecs (0 for default)
1772 *
1773 * Wrapper around ata_exec_internal_sg() which takes simple
1774 * buffer instead of sg list.
1775 *
1776 * LOCKING:
1777 * None. Should be called with kernel context, might sleep.
1778 *
1779 * RETURNS:
1780 * Zero on success, AC_ERR_* mask on failure
1781 */
1782 unsigned ata_exec_internal(struct ata_device *dev,
1783 struct ata_taskfile *tf, const u8 *cdb,
1784 int dma_dir, void *buf, unsigned int buflen,
1785 unsigned long timeout)
1786 {
1787 struct scatterlist *psg = NULL, sg;
1788 unsigned int n_elem = 0;
1789
1790 if (dma_dir != DMA_NONE) {
1791 WARN_ON(!buf);
1792 sg_init_one(&sg, buf, buflen);
1793 psg = &sg;
1794 n_elem++;
1795 }
1796
1797 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1798 timeout);
1799 }
1800
1801 /**
1802 * ata_do_simple_cmd - execute simple internal command
1803 * @dev: Device to which the command is sent
1804 * @cmd: Opcode to execute
1805 *
1806 * Execute a 'simple' command, that only consists of the opcode
1807 * 'cmd' itself, without filling any other registers
1808 *
1809 * LOCKING:
1810 * Kernel thread context (may sleep).
1811 *
1812 * RETURNS:
1813 * Zero on success, AC_ERR_* mask on failure
1814 */
1815 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1816 {
1817 struct ata_taskfile tf;
1818
1819 ata_tf_init(dev, &tf);
1820
1821 tf.command = cmd;
1822 tf.flags |= ATA_TFLAG_DEVICE;
1823 tf.protocol = ATA_PROT_NODATA;
1824
1825 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1826 }
1827
1828 /**
1829 * ata_pio_need_iordy - check if iordy needed
1830 * @adev: ATA device
1831 *
1832 * Check if the current speed of the device requires IORDY. Used
1833 * by various controllers for chip configuration.
1834 */
1835
1836 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1837 {
1838 /* Controller doesn't support IORDY. Probably a pointless check
1839 as the caller should know this */
1840 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1841 return 0;
1842 /* PIO3 and higher it is mandatory */
1843 if (adev->pio_mode > XFER_PIO_2)
1844 return 1;
1845 /* We turn it on when possible */
1846 if (ata_id_has_iordy(adev->id))
1847 return 1;
1848 return 0;
1849 }
1850
1851 /**
1852 * ata_pio_mask_no_iordy - Return the non IORDY mask
1853 * @adev: ATA device
1854 *
1855 * Compute the highest mode possible if we are not using iordy. Return
1856 * -1 if no iordy mode is available.
1857 */
1858
1859 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1860 {
1861 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1862 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1863 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1864 /* Is the speed faster than the drive allows non IORDY ? */
1865 if (pio) {
1866 /* This is cycle times not frequency - watch the logic! */
1867 if (pio > 240) /* PIO2 is 240nS per cycle */
1868 return 3 << ATA_SHIFT_PIO;
1869 return 7 << ATA_SHIFT_PIO;
1870 }
1871 }
1872 return 3 << ATA_SHIFT_PIO;
1873 }
1874
1875 /**
1876 * ata_dev_read_id - Read ID data from the specified device
1877 * @dev: target device
1878 * @p_class: pointer to class of the target device (may be changed)
1879 * @flags: ATA_READID_* flags
1880 * @id: buffer to read IDENTIFY data into
1881 *
1882 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1883 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1884 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1885 * for pre-ATA4 drives.
1886 *
1887 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1888 * now we abort if we hit that case.
1889 *
1890 * LOCKING:
1891 * Kernel thread context (may sleep)
1892 *
1893 * RETURNS:
1894 * 0 on success, -errno otherwise.
1895 */
1896 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1897 unsigned int flags, u16 *id)
1898 {
1899 struct ata_port *ap = dev->link->ap;
1900 unsigned int class = *p_class;
1901 struct ata_taskfile tf;
1902 unsigned int err_mask = 0;
1903 const char *reason;
1904 int may_fallback = 1, tried_spinup = 0;
1905 int rc;
1906
1907 if (ata_msg_ctl(ap))
1908 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1909
1910 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1911 retry:
1912 ata_tf_init(dev, &tf);
1913
1914 switch (class) {
1915 case ATA_DEV_ATA:
1916 tf.command = ATA_CMD_ID_ATA;
1917 break;
1918 case ATA_DEV_ATAPI:
1919 tf.command = ATA_CMD_ID_ATAPI;
1920 break;
1921 default:
1922 rc = -ENODEV;
1923 reason = "unsupported class";
1924 goto err_out;
1925 }
1926
1927 tf.protocol = ATA_PROT_PIO;
1928
1929 /* Some devices choke if TF registers contain garbage. Make
1930 * sure those are properly initialized.
1931 */
1932 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1933
1934 /* Device presence detection is unreliable on some
1935 * controllers. Always poll IDENTIFY if available.
1936 */
1937 tf.flags |= ATA_TFLAG_POLLING;
1938
1939 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1940 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1941 if (err_mask) {
1942 if (err_mask & AC_ERR_NODEV_HINT) {
1943 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1944 ap->print_id, dev->devno);
1945 return -ENOENT;
1946 }
1947
1948 /* Device or controller might have reported the wrong
1949 * device class. Give a shot at the other IDENTIFY if
1950 * the current one is aborted by the device.
1951 */
1952 if (may_fallback &&
1953 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1954 may_fallback = 0;
1955
1956 if (class == ATA_DEV_ATA)
1957 class = ATA_DEV_ATAPI;
1958 else
1959 class = ATA_DEV_ATA;
1960 goto retry;
1961 }
1962
1963 rc = -EIO;
1964 reason = "I/O error";
1965 goto err_out;
1966 }
1967
1968 /* Falling back doesn't make sense if ID data was read
1969 * successfully at least once.
1970 */
1971 may_fallback = 0;
1972
1973 swap_buf_le16(id, ATA_ID_WORDS);
1974
1975 /* sanity check */
1976 rc = -EINVAL;
1977 reason = "device reports invalid type";
1978
1979 if (class == ATA_DEV_ATA) {
1980 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1981 goto err_out;
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
1985 }
1986
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 if (err_mask && id[2] != 0x738c) {
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
2008 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009 /*
2010 * The exact sequence expected by certain pre-ATA4 drives is:
2011 * SRST RESET
2012 * IDENTIFY (optional in early ATA)
2013 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014 * anything else..
2015 * Some drives were very specific about that exact sequence.
2016 *
2017 * Note that ATA4 says lba is mandatory so the second check
2018 * shoud never trigger.
2019 */
2020 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022 if (err_mask) {
2023 rc = -EIO;
2024 reason = "INIT_DEV_PARAMS failed";
2025 goto err_out;
2026 }
2027
2028 /* current CHS translation info (id[53-58]) might be
2029 * changed. reread the identify device info.
2030 */
2031 flags &= ~ATA_READID_POSTRESET;
2032 goto retry;
2033 }
2034 }
2035
2036 *p_class = class;
2037
2038 return 0;
2039
2040 err_out:
2041 if (ata_msg_warn(ap))
2042 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2043 "(%s, err_mask=0x%x)\n", reason, err_mask);
2044 return rc;
2045 }
2046
2047 static inline u8 ata_dev_knobble(struct ata_device *dev)
2048 {
2049 struct ata_port *ap = dev->link->ap;
2050 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2051 }
2052
2053 static void ata_dev_config_ncq(struct ata_device *dev,
2054 char *desc, size_t desc_sz)
2055 {
2056 struct ata_port *ap = dev->link->ap;
2057 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2058
2059 if (!ata_id_has_ncq(dev->id)) {
2060 desc[0] = '\0';
2061 return;
2062 }
2063 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2064 snprintf(desc, desc_sz, "NCQ (not used)");
2065 return;
2066 }
2067 if (ap->flags & ATA_FLAG_NCQ) {
2068 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2069 dev->flags |= ATA_DFLAG_NCQ;
2070 }
2071
2072 if (hdepth >= ddepth)
2073 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2074 else
2075 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2076 }
2077
2078 /**
2079 * ata_dev_configure - Configure the specified ATA/ATAPI device
2080 * @dev: Target device to configure
2081 *
2082 * Configure @dev according to @dev->id. Generic and low-level
2083 * driver specific fixups are also applied.
2084 *
2085 * LOCKING:
2086 * Kernel thread context (may sleep)
2087 *
2088 * RETURNS:
2089 * 0 on success, -errno otherwise
2090 */
2091 int ata_dev_configure(struct ata_device *dev)
2092 {
2093 struct ata_port *ap = dev->link->ap;
2094 struct ata_eh_context *ehc = &dev->link->eh_context;
2095 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2096 const u16 *id = dev->id;
2097 unsigned int xfer_mask;
2098 char revbuf[7]; /* XYZ-99\0 */
2099 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2100 char modelbuf[ATA_ID_PROD_LEN+1];
2101 int rc;
2102
2103 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2104 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2105 __FUNCTION__);
2106 return 0;
2107 }
2108
2109 if (ata_msg_probe(ap))
2110 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2111
2112 /* set horkage */
2113 dev->horkage |= ata_dev_blacklisted(dev);
2114
2115 /* let ACPI work its magic */
2116 rc = ata_acpi_on_devcfg(dev);
2117 if (rc)
2118 return rc;
2119
2120 /* massage HPA, do it early as it might change IDENTIFY data */
2121 rc = ata_hpa_resize(dev);
2122 if (rc)
2123 return rc;
2124
2125 /* print device capabilities */
2126 if (ata_msg_probe(ap))
2127 ata_dev_printk(dev, KERN_DEBUG,
2128 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2129 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2130 __FUNCTION__,
2131 id[49], id[82], id[83], id[84],
2132 id[85], id[86], id[87], id[88]);
2133
2134 /* initialize to-be-configured parameters */
2135 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2136 dev->max_sectors = 0;
2137 dev->cdb_len = 0;
2138 dev->n_sectors = 0;
2139 dev->cylinders = 0;
2140 dev->heads = 0;
2141 dev->sectors = 0;
2142
2143 /*
2144 * common ATA, ATAPI feature tests
2145 */
2146
2147 /* find max transfer mode; for printk only */
2148 xfer_mask = ata_id_xfermask(id);
2149
2150 if (ata_msg_probe(ap))
2151 ata_dump_id(id);
2152
2153 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2154 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2155 sizeof(fwrevbuf));
2156
2157 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2158 sizeof(modelbuf));
2159
2160 /* ATA-specific feature tests */
2161 if (dev->class == ATA_DEV_ATA) {
2162 if (ata_id_is_cfa(id)) {
2163 if (id[162] & 1) /* CPRM may make this media unusable */
2164 ata_dev_printk(dev, KERN_WARNING,
2165 "supports DRM functions and may "
2166 "not be fully accessable.\n");
2167 snprintf(revbuf, 7, "CFA");
2168 } else {
2169 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2170 /* Warn the user if the device has TPM extensions */
2171 if (ata_id_has_tpm(id))
2172 ata_dev_printk(dev, KERN_WARNING,
2173 "supports DRM functions and may "
2174 "not be fully accessable.\n");
2175 }
2176
2177 dev->n_sectors = ata_id_n_sectors(id);
2178
2179 if (dev->id[59] & 0x100)
2180 dev->multi_count = dev->id[59] & 0xff;
2181
2182 if (ata_id_has_lba(id)) {
2183 const char *lba_desc;
2184 char ncq_desc[20];
2185
2186 lba_desc = "LBA";
2187 dev->flags |= ATA_DFLAG_LBA;
2188 if (ata_id_has_lba48(id)) {
2189 dev->flags |= ATA_DFLAG_LBA48;
2190 lba_desc = "LBA48";
2191
2192 if (dev->n_sectors >= (1UL << 28) &&
2193 ata_id_has_flush_ext(id))
2194 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2195 }
2196
2197 /* config NCQ */
2198 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2199
2200 /* print device info to dmesg */
2201 if (ata_msg_drv(ap) && print_info) {
2202 ata_dev_printk(dev, KERN_INFO,
2203 "%s: %s, %s, max %s\n",
2204 revbuf, modelbuf, fwrevbuf,
2205 ata_mode_string(xfer_mask));
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%Lu sectors, multi %u: %s %s\n",
2208 (unsigned long long)dev->n_sectors,
2209 dev->multi_count, lba_desc, ncq_desc);
2210 }
2211 } else {
2212 /* CHS */
2213
2214 /* Default translation */
2215 dev->cylinders = id[1];
2216 dev->heads = id[3];
2217 dev->sectors = id[6];
2218
2219 if (ata_id_current_chs_valid(id)) {
2220 /* Current CHS translation is valid. */
2221 dev->cylinders = id[54];
2222 dev->heads = id[55];
2223 dev->sectors = id[56];
2224 }
2225
2226 /* print device info to dmesg */
2227 if (ata_msg_drv(ap) && print_info) {
2228 ata_dev_printk(dev, KERN_INFO,
2229 "%s: %s, %s, max %s\n",
2230 revbuf, modelbuf, fwrevbuf,
2231 ata_mode_string(xfer_mask));
2232 ata_dev_printk(dev, KERN_INFO,
2233 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2234 (unsigned long long)dev->n_sectors,
2235 dev->multi_count, dev->cylinders,
2236 dev->heads, dev->sectors);
2237 }
2238 }
2239
2240 dev->cdb_len = 16;
2241 }
2242
2243 /* ATAPI-specific feature tests */
2244 else if (dev->class == ATA_DEV_ATAPI) {
2245 const char *cdb_intr_string = "";
2246 const char *atapi_an_string = "";
2247 u32 sntf;
2248
2249 rc = atapi_cdb_len(id);
2250 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2251 if (ata_msg_warn(ap))
2252 ata_dev_printk(dev, KERN_WARNING,
2253 "unsupported CDB len\n");
2254 rc = -EINVAL;
2255 goto err_out_nosup;
2256 }
2257 dev->cdb_len = (unsigned int) rc;
2258
2259 /* Enable ATAPI AN if both the host and device have
2260 * the support. If PMP is attached, SNTF is required
2261 * to enable ATAPI AN to discern between PHY status
2262 * changed notifications and ATAPI ANs.
2263 */
2264 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2265 (!ap->nr_pmp_links ||
2266 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2267 unsigned int err_mask;
2268
2269 /* issue SET feature command to turn this on */
2270 err_mask = ata_dev_set_feature(dev,
2271 SETFEATURES_SATA_ENABLE, SATA_AN);
2272 if (err_mask)
2273 ata_dev_printk(dev, KERN_ERR,
2274 "failed to enable ATAPI AN "
2275 "(err_mask=0x%x)\n", err_mask);
2276 else {
2277 dev->flags |= ATA_DFLAG_AN;
2278 atapi_an_string = ", ATAPI AN";
2279 }
2280 }
2281
2282 if (ata_id_cdb_intr(dev->id)) {
2283 dev->flags |= ATA_DFLAG_CDB_INTR;
2284 cdb_intr_string = ", CDB intr";
2285 }
2286
2287 /* print device info to dmesg */
2288 if (ata_msg_drv(ap) && print_info)
2289 ata_dev_printk(dev, KERN_INFO,
2290 "ATAPI: %s, %s, max %s%s%s\n",
2291 modelbuf, fwrevbuf,
2292 ata_mode_string(xfer_mask),
2293 cdb_intr_string, atapi_an_string);
2294 }
2295
2296 /* determine max_sectors */
2297 dev->max_sectors = ATA_MAX_SECTORS;
2298 if (dev->flags & ATA_DFLAG_LBA48)
2299 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2300
2301 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2302 if (ata_id_has_hipm(dev->id))
2303 dev->flags |= ATA_DFLAG_HIPM;
2304 if (ata_id_has_dipm(dev->id))
2305 dev->flags |= ATA_DFLAG_DIPM;
2306 }
2307
2308 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2309 /* Let the user know. We don't want to disallow opens for
2310 rescue purposes, or in case the vendor is just a blithering
2311 idiot */
2312 if (print_info) {
2313 ata_dev_printk(dev, KERN_WARNING,
2314 "Drive reports diagnostics failure. This may indicate a drive\n");
2315 ata_dev_printk(dev, KERN_WARNING,
2316 "fault or invalid emulation. Contact drive vendor for information.\n");
2317 }
2318 }
2319
2320 /* limit bridge transfers to udma5, 200 sectors */
2321 if (ata_dev_knobble(dev)) {
2322 if (ata_msg_drv(ap) && print_info)
2323 ata_dev_printk(dev, KERN_INFO,
2324 "applying bridge limits\n");
2325 dev->udma_mask &= ATA_UDMA5;
2326 dev->max_sectors = ATA_MAX_SECTORS;
2327 }
2328
2329 if ((dev->class == ATA_DEV_ATAPI) &&
2330 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2331 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2332 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2333 }
2334
2335 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2336 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2337 dev->max_sectors);
2338
2339 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2340 dev->horkage |= ATA_HORKAGE_IPM;
2341
2342 /* reset link pm_policy for this port to no pm */
2343 ap->pm_policy = MAX_PERFORMANCE;
2344 }
2345
2346 if (ap->ops->dev_config)
2347 ap->ops->dev_config(dev);
2348
2349 if (ata_msg_probe(ap))
2350 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2351 __FUNCTION__, ata_chk_status(ap));
2352 return 0;
2353
2354 err_out_nosup:
2355 if (ata_msg_probe(ap))
2356 ata_dev_printk(dev, KERN_DEBUG,
2357 "%s: EXIT, err\n", __FUNCTION__);
2358 return rc;
2359 }
2360
2361 /**
2362 * ata_cable_40wire - return 40 wire cable type
2363 * @ap: port
2364 *
2365 * Helper method for drivers which want to hardwire 40 wire cable
2366 * detection.
2367 */
2368
2369 int ata_cable_40wire(struct ata_port *ap)
2370 {
2371 return ATA_CBL_PATA40;
2372 }
2373
2374 /**
2375 * ata_cable_80wire - return 80 wire cable type
2376 * @ap: port
2377 *
2378 * Helper method for drivers which want to hardwire 80 wire cable
2379 * detection.
2380 */
2381
2382 int ata_cable_80wire(struct ata_port *ap)
2383 {
2384 return ATA_CBL_PATA80;
2385 }
2386
2387 /**
2388 * ata_cable_unknown - return unknown PATA cable.
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have no PATA cable detection.
2392 */
2393
2394 int ata_cable_unknown(struct ata_port *ap)
2395 {
2396 return ATA_CBL_PATA_UNK;
2397 }
2398
2399 /**
2400 * ata_cable_sata - return SATA cable type
2401 * @ap: port
2402 *
2403 * Helper method for drivers which have SATA cables
2404 */
2405
2406 int ata_cable_sata(struct ata_port *ap)
2407 {
2408 return ATA_CBL_SATA;
2409 }
2410
2411 /**
2412 * ata_bus_probe - Reset and probe ATA bus
2413 * @ap: Bus to probe
2414 *
2415 * Master ATA bus probing function. Initiates a hardware-dependent
2416 * bus reset, then attempts to identify any devices found on
2417 * the bus.
2418 *
2419 * LOCKING:
2420 * PCI/etc. bus probe sem.
2421 *
2422 * RETURNS:
2423 * Zero on success, negative errno otherwise.
2424 */
2425
2426 int ata_bus_probe(struct ata_port *ap)
2427 {
2428 unsigned int classes[ATA_MAX_DEVICES];
2429 int tries[ATA_MAX_DEVICES];
2430 int rc;
2431 struct ata_device *dev;
2432
2433 ata_port_probe(ap);
2434
2435 ata_link_for_each_dev(dev, &ap->link)
2436 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2437
2438 retry:
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 /* If we issue an SRST then an ATA drive (not ATAPI)
2441 * may change configuration and be in PIO0 timing. If
2442 * we do a hard reset (or are coming from power on)
2443 * this is true for ATA or ATAPI. Until we've set a
2444 * suitable controller mode we should not touch the
2445 * bus as we may be talking too fast.
2446 */
2447 dev->pio_mode = XFER_PIO_0;
2448
2449 /* If the controller has a pio mode setup function
2450 * then use it to set the chipset to rights. Don't
2451 * touch the DMA setup as that will be dealt with when
2452 * configuring devices.
2453 */
2454 if (ap->ops->set_piomode)
2455 ap->ops->set_piomode(ap, dev);
2456 }
2457
2458 /* reset and determine device classes */
2459 ap->ops->phy_reset(ap);
2460
2461 ata_link_for_each_dev(dev, &ap->link) {
2462 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2463 dev->class != ATA_DEV_UNKNOWN)
2464 classes[dev->devno] = dev->class;
2465 else
2466 classes[dev->devno] = ATA_DEV_NONE;
2467
2468 dev->class = ATA_DEV_UNKNOWN;
2469 }
2470
2471 ata_port_probe(ap);
2472
2473 /* read IDENTIFY page and configure devices. We have to do the identify
2474 specific sequence bass-ackwards so that PDIAG- is released by
2475 the slave device */
2476
2477 ata_link_for_each_dev(dev, &ap->link) {
2478 if (tries[dev->devno])
2479 dev->class = classes[dev->devno];
2480
2481 if (!ata_dev_enabled(dev))
2482 continue;
2483
2484 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2485 dev->id);
2486 if (rc)
2487 goto fail;
2488 }
2489
2490 /* Now ask for the cable type as PDIAG- should have been released */
2491 if (ap->ops->cable_detect)
2492 ap->cbl = ap->ops->cable_detect(ap);
2493
2494 /* We may have SATA bridge glue hiding here irrespective of the
2495 reported cable types and sensed types */
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!ata_dev_enabled(dev))
2498 continue;
2499 /* SATA drives indicate we have a bridge. We don't know which
2500 end of the link the bridge is which is a problem */
2501 if (ata_id_is_sata(dev->id))
2502 ap->cbl = ATA_CBL_SATA;
2503 }
2504
2505 /* After the identify sequence we can now set up the devices. We do
2506 this in the normal order so that the user doesn't get confused */
2507
2508 ata_link_for_each_dev(dev, &ap->link) {
2509 if (!ata_dev_enabled(dev))
2510 continue;
2511
2512 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2513 rc = ata_dev_configure(dev);
2514 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2515 if (rc)
2516 goto fail;
2517 }
2518
2519 /* configure transfer mode */
2520 rc = ata_set_mode(&ap->link, &dev);
2521 if (rc)
2522 goto fail;
2523
2524 ata_link_for_each_dev(dev, &ap->link)
2525 if (ata_dev_enabled(dev))
2526 return 0;
2527
2528 /* no device present, disable port */
2529 ata_port_disable(ap);
2530 return -ENODEV;
2531
2532 fail:
2533 tries[dev->devno]--;
2534
2535 switch (rc) {
2536 case -EINVAL:
2537 /* eeek, something went very wrong, give up */
2538 tries[dev->devno] = 0;
2539 break;
2540
2541 case -ENODEV:
2542 /* give it just one more chance */
2543 tries[dev->devno] = min(tries[dev->devno], 1);
2544 case -EIO:
2545 if (tries[dev->devno] == 1) {
2546 /* This is the last chance, better to slow
2547 * down than lose it.
2548 */
2549 sata_down_spd_limit(&ap->link);
2550 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2551 }
2552 }
2553
2554 if (!tries[dev->devno])
2555 ata_dev_disable(dev);
2556
2557 goto retry;
2558 }
2559
2560 /**
2561 * ata_port_probe - Mark port as enabled
2562 * @ap: Port for which we indicate enablement
2563 *
2564 * Modify @ap data structure such that the system
2565 * thinks that the entire port is enabled.
2566 *
2567 * LOCKING: host lock, or some other form of
2568 * serialization.
2569 */
2570
2571 void ata_port_probe(struct ata_port *ap)
2572 {
2573 ap->flags &= ~ATA_FLAG_DISABLED;
2574 }
2575
2576 /**
2577 * sata_print_link_status - Print SATA link status
2578 * @link: SATA link to printk link status about
2579 *
2580 * This function prints link speed and status of a SATA link.
2581 *
2582 * LOCKING:
2583 * None.
2584 */
2585 void sata_print_link_status(struct ata_link *link)
2586 {
2587 u32 sstatus, scontrol, tmp;
2588
2589 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2590 return;
2591 sata_scr_read(link, SCR_CONTROL, &scontrol);
2592
2593 if (ata_link_online(link)) {
2594 tmp = (sstatus >> 4) & 0xf;
2595 ata_link_printk(link, KERN_INFO,
2596 "SATA link up %s (SStatus %X SControl %X)\n",
2597 sata_spd_string(tmp), sstatus, scontrol);
2598 } else {
2599 ata_link_printk(link, KERN_INFO,
2600 "SATA link down (SStatus %X SControl %X)\n",
2601 sstatus, scontrol);
2602 }
2603 }
2604
2605 /**
2606 * ata_dev_pair - return other device on cable
2607 * @adev: device
2608 *
2609 * Obtain the other device on the same cable, or if none is
2610 * present NULL is returned
2611 */
2612
2613 struct ata_device *ata_dev_pair(struct ata_device *adev)
2614 {
2615 struct ata_link *link = adev->link;
2616 struct ata_device *pair = &link->device[1 - adev->devno];
2617 if (!ata_dev_enabled(pair))
2618 return NULL;
2619 return pair;
2620 }
2621
2622 /**
2623 * ata_port_disable - Disable port.
2624 * @ap: Port to be disabled.
2625 *
2626 * Modify @ap data structure such that the system
2627 * thinks that the entire port is disabled, and should
2628 * never attempt to probe or communicate with devices
2629 * on this port.
2630 *
2631 * LOCKING: host lock, or some other form of
2632 * serialization.
2633 */
2634
2635 void ata_port_disable(struct ata_port *ap)
2636 {
2637 ap->link.device[0].class = ATA_DEV_NONE;
2638 ap->link.device[1].class = ATA_DEV_NONE;
2639 ap->flags |= ATA_FLAG_DISABLED;
2640 }
2641
2642 /**
2643 * sata_down_spd_limit - adjust SATA spd limit downward
2644 * @link: Link to adjust SATA spd limit for
2645 *
2646 * Adjust SATA spd limit of @link downward. Note that this
2647 * function only adjusts the limit. The change must be applied
2648 * using sata_set_spd().
2649 *
2650 * LOCKING:
2651 * Inherited from caller.
2652 *
2653 * RETURNS:
2654 * 0 on success, negative errno on failure
2655 */
2656 int sata_down_spd_limit(struct ata_link *link)
2657 {
2658 u32 sstatus, spd, mask;
2659 int rc, highbit;
2660
2661 if (!sata_scr_valid(link))
2662 return -EOPNOTSUPP;
2663
2664 /* If SCR can be read, use it to determine the current SPD.
2665 * If not, use cached value in link->sata_spd.
2666 */
2667 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2668 if (rc == 0)
2669 spd = (sstatus >> 4) & 0xf;
2670 else
2671 spd = link->sata_spd;
2672
2673 mask = link->sata_spd_limit;
2674 if (mask <= 1)
2675 return -EINVAL;
2676
2677 /* unconditionally mask off the highest bit */
2678 highbit = fls(mask) - 1;
2679 mask &= ~(1 << highbit);
2680
2681 /* Mask off all speeds higher than or equal to the current
2682 * one. Force 1.5Gbps if current SPD is not available.
2683 */
2684 if (spd > 1)
2685 mask &= (1 << (spd - 1)) - 1;
2686 else
2687 mask &= 1;
2688
2689 /* were we already at the bottom? */
2690 if (!mask)
2691 return -EINVAL;
2692
2693 link->sata_spd_limit = mask;
2694
2695 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2696 sata_spd_string(fls(mask)));
2697
2698 return 0;
2699 }
2700
2701 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2702 {
2703 struct ata_link *host_link = &link->ap->link;
2704 u32 limit, target, spd;
2705
2706 limit = link->sata_spd_limit;
2707
2708 /* Don't configure downstream link faster than upstream link.
2709 * It doesn't speed up anything and some PMPs choke on such
2710 * configuration.
2711 */
2712 if (!ata_is_host_link(link) && host_link->sata_spd)
2713 limit &= (1 << host_link->sata_spd) - 1;
2714
2715 if (limit == UINT_MAX)
2716 target = 0;
2717 else
2718 target = fls(limit);
2719
2720 spd = (*scontrol >> 4) & 0xf;
2721 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2722
2723 return spd != target;
2724 }
2725
2726 /**
2727 * sata_set_spd_needed - is SATA spd configuration needed
2728 * @link: Link in question
2729 *
2730 * Test whether the spd limit in SControl matches
2731 * @link->sata_spd_limit. This function is used to determine
2732 * whether hardreset is necessary to apply SATA spd
2733 * configuration.
2734 *
2735 * LOCKING:
2736 * Inherited from caller.
2737 *
2738 * RETURNS:
2739 * 1 if SATA spd configuration is needed, 0 otherwise.
2740 */
2741 int sata_set_spd_needed(struct ata_link *link)
2742 {
2743 u32 scontrol;
2744
2745 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2746 return 1;
2747
2748 return __sata_set_spd_needed(link, &scontrol);
2749 }
2750
2751 /**
2752 * sata_set_spd - set SATA spd according to spd limit
2753 * @link: Link to set SATA spd for
2754 *
2755 * Set SATA spd of @link according to sata_spd_limit.
2756 *
2757 * LOCKING:
2758 * Inherited from caller.
2759 *
2760 * RETURNS:
2761 * 0 if spd doesn't need to be changed, 1 if spd has been
2762 * changed. Negative errno if SCR registers are inaccessible.
2763 */
2764 int sata_set_spd(struct ata_link *link)
2765 {
2766 u32 scontrol;
2767 int rc;
2768
2769 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2770 return rc;
2771
2772 if (!__sata_set_spd_needed(link, &scontrol))
2773 return 0;
2774
2775 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2776 return rc;
2777
2778 return 1;
2779 }
2780
2781 /*
2782 * This mode timing computation functionality is ported over from
2783 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2784 */
2785 /*
2786 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2787 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2788 * for UDMA6, which is currently supported only by Maxtor drives.
2789 *
2790 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2791 */
2792
2793 static const struct ata_timing ata_timing[] = {
2794
2795 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2796 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2797 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2798 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2799
2800 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2801 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2802 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2803 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2804 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2805
2806 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2807
2808 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2809 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2810 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2811
2812 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2813 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2814 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2815
2816 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2817 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2818 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2819 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2820
2821 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2822 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2823 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2824
2825 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2826
2827 { 0xFF }
2828 };
2829
2830 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2831 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2832
2833 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2834 {
2835 q->setup = EZ(t->setup * 1000, T);
2836 q->act8b = EZ(t->act8b * 1000, T);
2837 q->rec8b = EZ(t->rec8b * 1000, T);
2838 q->cyc8b = EZ(t->cyc8b * 1000, T);
2839 q->active = EZ(t->active * 1000, T);
2840 q->recover = EZ(t->recover * 1000, T);
2841 q->cycle = EZ(t->cycle * 1000, T);
2842 q->udma = EZ(t->udma * 1000, UT);
2843 }
2844
2845 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2846 struct ata_timing *m, unsigned int what)
2847 {
2848 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2849 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2850 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2851 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2852 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2853 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2854 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2855 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2856 }
2857
2858 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2859 {
2860 const struct ata_timing *t;
2861
2862 for (t = ata_timing; t->mode != speed; t++)
2863 if (t->mode == 0xFF)
2864 return NULL;
2865 return t;
2866 }
2867
2868 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2869 struct ata_timing *t, int T, int UT)
2870 {
2871 const struct ata_timing *s;
2872 struct ata_timing p;
2873
2874 /*
2875 * Find the mode.
2876 */
2877
2878 if (!(s = ata_timing_find_mode(speed)))
2879 return -EINVAL;
2880
2881 memcpy(t, s, sizeof(*s));
2882
2883 /*
2884 * If the drive is an EIDE drive, it can tell us it needs extended
2885 * PIO/MW_DMA cycle timing.
2886 */
2887
2888 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2889 memset(&p, 0, sizeof(p));
2890 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2891 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2892 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2893 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2894 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2895 }
2896 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2897 }
2898
2899 /*
2900 * Convert the timing to bus clock counts.
2901 */
2902
2903 ata_timing_quantize(t, t, T, UT);
2904
2905 /*
2906 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2907 * S.M.A.R.T * and some other commands. We have to ensure that the
2908 * DMA cycle timing is slower/equal than the fastest PIO timing.
2909 */
2910
2911 if (speed > XFER_PIO_6) {
2912 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2913 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2914 }
2915
2916 /*
2917 * Lengthen active & recovery time so that cycle time is correct.
2918 */
2919
2920 if (t->act8b + t->rec8b < t->cyc8b) {
2921 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2922 t->rec8b = t->cyc8b - t->act8b;
2923 }
2924
2925 if (t->active + t->recover < t->cycle) {
2926 t->active += (t->cycle - (t->active + t->recover)) / 2;
2927 t->recover = t->cycle - t->active;
2928 }
2929
2930 /* In a few cases quantisation may produce enough errors to
2931 leave t->cycle too low for the sum of active and recovery
2932 if so we must correct this */
2933 if (t->active + t->recover > t->cycle)
2934 t->cycle = t->active + t->recover;
2935
2936 return 0;
2937 }
2938
2939 /**
2940 * ata_down_xfermask_limit - adjust dev xfer masks downward
2941 * @dev: Device to adjust xfer masks
2942 * @sel: ATA_DNXFER_* selector
2943 *
2944 * Adjust xfer masks of @dev downward. Note that this function
2945 * does not apply the change. Invoking ata_set_mode() afterwards
2946 * will apply the limit.
2947 *
2948 * LOCKING:
2949 * Inherited from caller.
2950 *
2951 * RETURNS:
2952 * 0 on success, negative errno on failure
2953 */
2954 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2955 {
2956 char buf[32];
2957 unsigned int orig_mask, xfer_mask;
2958 unsigned int pio_mask, mwdma_mask, udma_mask;
2959 int quiet, highbit;
2960
2961 quiet = !!(sel & ATA_DNXFER_QUIET);
2962 sel &= ~ATA_DNXFER_QUIET;
2963
2964 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2965 dev->mwdma_mask,
2966 dev->udma_mask);
2967 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2968
2969 switch (sel) {
2970 case ATA_DNXFER_PIO:
2971 highbit = fls(pio_mask) - 1;
2972 pio_mask &= ~(1 << highbit);
2973 break;
2974
2975 case ATA_DNXFER_DMA:
2976 if (udma_mask) {
2977 highbit = fls(udma_mask) - 1;
2978 udma_mask &= ~(1 << highbit);
2979 if (!udma_mask)
2980 return -ENOENT;
2981 } else if (mwdma_mask) {
2982 highbit = fls(mwdma_mask) - 1;
2983 mwdma_mask &= ~(1 << highbit);
2984 if (!mwdma_mask)
2985 return -ENOENT;
2986 }
2987 break;
2988
2989 case ATA_DNXFER_40C:
2990 udma_mask &= ATA_UDMA_MASK_40C;
2991 break;
2992
2993 case ATA_DNXFER_FORCE_PIO0:
2994 pio_mask &= 1;
2995 case ATA_DNXFER_FORCE_PIO:
2996 mwdma_mask = 0;
2997 udma_mask = 0;
2998 break;
2999
3000 default:
3001 BUG();
3002 }
3003
3004 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3005
3006 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3007 return -ENOENT;
3008
3009 if (!quiet) {
3010 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3011 snprintf(buf, sizeof(buf), "%s:%s",
3012 ata_mode_string(xfer_mask),
3013 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3014 else
3015 snprintf(buf, sizeof(buf), "%s",
3016 ata_mode_string(xfer_mask));
3017
3018 ata_dev_printk(dev, KERN_WARNING,
3019 "limiting speed to %s\n", buf);
3020 }
3021
3022 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3023 &dev->udma_mask);
3024
3025 return 0;
3026 }
3027
3028 static int ata_dev_set_mode(struct ata_device *dev)
3029 {
3030 struct ata_eh_context *ehc = &dev->link->eh_context;
3031 unsigned int err_mask;
3032 int rc;
3033
3034 dev->flags &= ~ATA_DFLAG_PIO;
3035 if (dev->xfer_shift == ATA_SHIFT_PIO)
3036 dev->flags |= ATA_DFLAG_PIO;
3037
3038 err_mask = ata_dev_set_xfermode(dev);
3039
3040 /* Old CFA may refuse this command, which is just fine */
3041 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3042 err_mask &= ~AC_ERR_DEV;
3043
3044 /* Some very old devices and some bad newer ones fail any kind of
3045 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3046 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3047 dev->pio_mode <= XFER_PIO_2)
3048 err_mask &= ~AC_ERR_DEV;
3049
3050 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3051 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3052 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3053 dev->dma_mode == XFER_MW_DMA_0 &&
3054 (dev->id[63] >> 8) & 1)
3055 err_mask &= ~AC_ERR_DEV;
3056
3057 if (err_mask) {
3058 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3059 "(err_mask=0x%x)\n", err_mask);
3060 return -EIO;
3061 }
3062
3063 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3064 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3065 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3066 if (rc)
3067 return rc;
3068
3069 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3070 dev->xfer_shift, (int)dev->xfer_mode);
3071
3072 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3073 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3074 return 0;
3075 }
3076
3077 /**
3078 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3079 * @link: link on which timings will be programmed
3080 * @r_failed_dev: out paramter for failed device
3081 *
3082 * Standard implementation of the function used to tune and set
3083 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3084 * ata_dev_set_mode() fails, pointer to the failing device is
3085 * returned in @r_failed_dev.
3086 *
3087 * LOCKING:
3088 * PCI/etc. bus probe sem.
3089 *
3090 * RETURNS:
3091 * 0 on success, negative errno otherwise
3092 */
3093
3094 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3095 {
3096 struct ata_port *ap = link->ap;
3097 struct ata_device *dev;
3098 int rc = 0, used_dma = 0, found = 0;
3099
3100 /* step 1: calculate xfer_mask */
3101 ata_link_for_each_dev(dev, link) {
3102 unsigned int pio_mask, dma_mask;
3103 unsigned int mode_mask;
3104
3105 if (!ata_dev_enabled(dev))
3106 continue;
3107
3108 mode_mask = ATA_DMA_MASK_ATA;
3109 if (dev->class == ATA_DEV_ATAPI)
3110 mode_mask = ATA_DMA_MASK_ATAPI;
3111 else if (ata_id_is_cfa(dev->id))
3112 mode_mask = ATA_DMA_MASK_CFA;
3113
3114 ata_dev_xfermask(dev);
3115
3116 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3117 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3118
3119 if (libata_dma_mask & mode_mask)
3120 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3121 else
3122 dma_mask = 0;
3123
3124 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3125 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3126
3127 found = 1;
3128 if (dev->dma_mode)
3129 used_dma = 1;
3130 }
3131 if (!found)
3132 goto out;
3133
3134 /* step 2: always set host PIO timings */
3135 ata_link_for_each_dev(dev, link) {
3136 if (!ata_dev_enabled(dev))
3137 continue;
3138
3139 if (!dev->pio_mode) {
3140 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3141 rc = -EINVAL;
3142 goto out;
3143 }
3144
3145 dev->xfer_mode = dev->pio_mode;
3146 dev->xfer_shift = ATA_SHIFT_PIO;
3147 if (ap->ops->set_piomode)
3148 ap->ops->set_piomode(ap, dev);
3149 }
3150
3151 /* step 3: set host DMA timings */
3152 ata_link_for_each_dev(dev, link) {
3153 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3154 continue;
3155
3156 dev->xfer_mode = dev->dma_mode;
3157 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3158 if (ap->ops->set_dmamode)
3159 ap->ops->set_dmamode(ap, dev);
3160 }
3161
3162 /* step 4: update devices' xfer mode */
3163 ata_link_for_each_dev(dev, link) {
3164 /* don't update suspended devices' xfer mode */
3165 if (!ata_dev_enabled(dev))
3166 continue;
3167
3168 rc = ata_dev_set_mode(dev);
3169 if (rc)
3170 goto out;
3171 }
3172
3173 /* Record simplex status. If we selected DMA then the other
3174 * host channels are not permitted to do so.
3175 */
3176 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3177 ap->host->simplex_claimed = ap;
3178
3179 out:
3180 if (rc)
3181 *r_failed_dev = dev;
3182 return rc;
3183 }
3184
3185 /**
3186 * ata_tf_to_host - issue ATA taskfile to host controller
3187 * @ap: port to which command is being issued
3188 * @tf: ATA taskfile register set
3189 *
3190 * Issues ATA taskfile register set to ATA host controller,
3191 * with proper synchronization with interrupt handler and
3192 * other threads.
3193 *
3194 * LOCKING:
3195 * spin_lock_irqsave(host lock)
3196 */
3197
3198 static inline void ata_tf_to_host(struct ata_port *ap,
3199 const struct ata_taskfile *tf)
3200 {
3201 ap->ops->tf_load(ap, tf);
3202 ap->ops->exec_command(ap, tf);
3203 }
3204
3205 /**
3206 * ata_busy_sleep - sleep until BSY clears, or timeout
3207 * @ap: port containing status register to be polled
3208 * @tmout_pat: impatience timeout
3209 * @tmout: overall timeout
3210 *
3211 * Sleep until ATA Status register bit BSY clears,
3212 * or a timeout occurs.
3213 *
3214 * LOCKING:
3215 * Kernel thread context (may sleep).
3216 *
3217 * RETURNS:
3218 * 0 on success, -errno otherwise.
3219 */
3220 int ata_busy_sleep(struct ata_port *ap,
3221 unsigned long tmout_pat, unsigned long tmout)
3222 {
3223 unsigned long timer_start, timeout;
3224 u8 status;
3225
3226 status = ata_busy_wait(ap, ATA_BUSY, 300);
3227 timer_start = jiffies;
3228 timeout = timer_start + tmout_pat;
3229 while (status != 0xff && (status & ATA_BUSY) &&
3230 time_before(jiffies, timeout)) {
3231 msleep(50);
3232 status = ata_busy_wait(ap, ATA_BUSY, 3);
3233 }
3234
3235 if (status != 0xff && (status & ATA_BUSY))
3236 ata_port_printk(ap, KERN_WARNING,
3237 "port is slow to respond, please be patient "
3238 "(Status 0x%x)\n", status);
3239
3240 timeout = timer_start + tmout;
3241 while (status != 0xff && (status & ATA_BUSY) &&
3242 time_before(jiffies, timeout)) {
3243 msleep(50);
3244 status = ata_chk_status(ap);
3245 }
3246
3247 if (status == 0xff)
3248 return -ENODEV;
3249
3250 if (status & ATA_BUSY) {
3251 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3252 "(%lu secs, Status 0x%x)\n",
3253 tmout / HZ, status);
3254 return -EBUSY;
3255 }
3256
3257 return 0;
3258 }
3259
3260 /**
3261 * ata_wait_after_reset - wait before checking status after reset
3262 * @ap: port containing status register to be polled
3263 * @deadline: deadline jiffies for the operation
3264 *
3265 * After reset, we need to pause a while before reading status.
3266 * Also, certain combination of controller and device report 0xff
3267 * for some duration (e.g. until SATA PHY is up and running)
3268 * which is interpreted as empty port in ATA world. This
3269 * function also waits for such devices to get out of 0xff
3270 * status.
3271 *
3272 * LOCKING:
3273 * Kernel thread context (may sleep).
3274 */
3275 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3276 {
3277 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3278
3279 if (time_before(until, deadline))
3280 deadline = until;
3281
3282 /* Spec mandates ">= 2ms" before checking status. We wait
3283 * 150ms, because that was the magic delay used for ATAPI
3284 * devices in Hale Landis's ATADRVR, for the period of time
3285 * between when the ATA command register is written, and then
3286 * status is checked. Because waiting for "a while" before
3287 * checking status is fine, post SRST, we perform this magic
3288 * delay here as well.
3289 *
3290 * Old drivers/ide uses the 2mS rule and then waits for ready.
3291 */
3292 msleep(150);
3293
3294 /* Wait for 0xff to clear. Some SATA devices take a long time
3295 * to clear 0xff after reset. For example, HHD424020F7SV00
3296 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3297 * than that.
3298 *
3299 * Note that some PATA controllers (pata_ali) explode if
3300 * status register is read more than once when there's no
3301 * device attached.
3302 */
3303 if (ap->flags & ATA_FLAG_SATA) {
3304 while (1) {
3305 u8 status = ata_chk_status(ap);
3306
3307 if (status != 0xff || time_after(jiffies, deadline))
3308 return;
3309
3310 msleep(50);
3311 }
3312 }
3313 }
3314
3315 /**
3316 * ata_wait_ready - sleep until BSY clears, or timeout
3317 * @ap: port containing status register to be polled
3318 * @deadline: deadline jiffies for the operation
3319 *
3320 * Sleep until ATA Status register bit BSY clears, or timeout
3321 * occurs.
3322 *
3323 * LOCKING:
3324 * Kernel thread context (may sleep).
3325 *
3326 * RETURNS:
3327 * 0 on success, -errno otherwise.
3328 */
3329 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3330 {
3331 unsigned long start = jiffies;
3332 int warned = 0;
3333
3334 while (1) {
3335 u8 status = ata_chk_status(ap);
3336 unsigned long now = jiffies;
3337
3338 if (!(status & ATA_BUSY))
3339 return 0;
3340 if (!ata_link_online(&ap->link) && status == 0xff)
3341 return -ENODEV;
3342 if (time_after(now, deadline))
3343 return -EBUSY;
3344
3345 if (!warned && time_after(now, start + 5 * HZ) &&
3346 (deadline - now > 3 * HZ)) {
3347 ata_port_printk(ap, KERN_WARNING,
3348 "port is slow to respond, please be patient "
3349 "(Status 0x%x)\n", status);
3350 warned = 1;
3351 }
3352
3353 msleep(50);
3354 }
3355 }
3356
3357 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3358 unsigned long deadline)
3359 {
3360 struct ata_ioports *ioaddr = &ap->ioaddr;
3361 unsigned int dev0 = devmask & (1 << 0);
3362 unsigned int dev1 = devmask & (1 << 1);
3363 int rc, ret = 0;
3364
3365 /* if device 0 was found in ata_devchk, wait for its
3366 * BSY bit to clear
3367 */
3368 if (dev0) {
3369 rc = ata_wait_ready(ap, deadline);
3370 if (rc) {
3371 if (rc != -ENODEV)
3372 return rc;
3373 ret = rc;
3374 }
3375 }
3376
3377 /* if device 1 was found in ata_devchk, wait for register
3378 * access briefly, then wait for BSY to clear.
3379 */
3380 if (dev1) {
3381 int i;
3382
3383 ap->ops->dev_select(ap, 1);
3384
3385 /* Wait for register access. Some ATAPI devices fail
3386 * to set nsect/lbal after reset, so don't waste too
3387 * much time on it. We're gonna wait for !BSY anyway.
3388 */
3389 for (i = 0; i < 2; i++) {
3390 u8 nsect, lbal;
3391
3392 nsect = ioread8(ioaddr->nsect_addr);
3393 lbal = ioread8(ioaddr->lbal_addr);
3394 if ((nsect == 1) && (lbal == 1))
3395 break;
3396 msleep(50); /* give drive a breather */
3397 }
3398
3399 rc = ata_wait_ready(ap, deadline);
3400 if (rc) {
3401 if (rc != -ENODEV)
3402 return rc;
3403 ret = rc;
3404 }
3405 }
3406
3407 /* is all this really necessary? */
3408 ap->ops->dev_select(ap, 0);
3409 if (dev1)
3410 ap->ops->dev_select(ap, 1);
3411 if (dev0)
3412 ap->ops->dev_select(ap, 0);
3413
3414 return ret;
3415 }
3416
3417 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3418 unsigned long deadline)
3419 {
3420 struct ata_ioports *ioaddr = &ap->ioaddr;
3421
3422 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3423
3424 /* software reset. causes dev0 to be selected */
3425 iowrite8(ap->ctl, ioaddr->ctl_addr);
3426 udelay(20); /* FIXME: flush */
3427 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3428 udelay(20); /* FIXME: flush */
3429 iowrite8(ap->ctl, ioaddr->ctl_addr);
3430
3431 /* wait a while before checking status */
3432 ata_wait_after_reset(ap, deadline);
3433
3434 /* Before we perform post reset processing we want to see if
3435 * the bus shows 0xFF because the odd clown forgets the D7
3436 * pulldown resistor.
3437 */
3438 if (ata_chk_status(ap) == 0xFF)
3439 return -ENODEV;
3440
3441 return ata_bus_post_reset(ap, devmask, deadline);
3442 }
3443
3444 /**
3445 * ata_bus_reset - reset host port and associated ATA channel
3446 * @ap: port to reset
3447 *
3448 * This is typically the first time we actually start issuing
3449 * commands to the ATA channel. We wait for BSY to clear, then
3450 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3451 * result. Determine what devices, if any, are on the channel
3452 * by looking at the device 0/1 error register. Look at the signature
3453 * stored in each device's taskfile registers, to determine if
3454 * the device is ATA or ATAPI.
3455 *
3456 * LOCKING:
3457 * PCI/etc. bus probe sem.
3458 * Obtains host lock.
3459 *
3460 * SIDE EFFECTS:
3461 * Sets ATA_FLAG_DISABLED if bus reset fails.
3462 */
3463
3464 void ata_bus_reset(struct ata_port *ap)
3465 {
3466 struct ata_device *device = ap->link.device;
3467 struct ata_ioports *ioaddr = &ap->ioaddr;
3468 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3469 u8 err;
3470 unsigned int dev0, dev1 = 0, devmask = 0;
3471 int rc;
3472
3473 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3474
3475 /* determine if device 0/1 are present */
3476 if (ap->flags & ATA_FLAG_SATA_RESET)
3477 dev0 = 1;
3478 else {
3479 dev0 = ata_devchk(ap, 0);
3480 if (slave_possible)
3481 dev1 = ata_devchk(ap, 1);
3482 }
3483
3484 if (dev0)
3485 devmask |= (1 << 0);
3486 if (dev1)
3487 devmask |= (1 << 1);
3488
3489 /* select device 0 again */
3490 ap->ops->dev_select(ap, 0);
3491
3492 /* issue bus reset */
3493 if (ap->flags & ATA_FLAG_SRST) {
3494 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3495 if (rc && rc != -ENODEV)
3496 goto err_out;
3497 }
3498
3499 /*
3500 * determine by signature whether we have ATA or ATAPI devices
3501 */
3502 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3503 if ((slave_possible) && (err != 0x81))
3504 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3505
3506 /* is double-select really necessary? */
3507 if (device[1].class != ATA_DEV_NONE)
3508 ap->ops->dev_select(ap, 1);
3509 if (device[0].class != ATA_DEV_NONE)
3510 ap->ops->dev_select(ap, 0);
3511
3512 /* if no devices were detected, disable this port */
3513 if ((device[0].class == ATA_DEV_NONE) &&
3514 (device[1].class == ATA_DEV_NONE))
3515 goto err_out;
3516
3517 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3518 /* set up device control for ATA_FLAG_SATA_RESET */
3519 iowrite8(ap->ctl, ioaddr->ctl_addr);
3520 }
3521
3522 DPRINTK("EXIT\n");
3523 return;
3524
3525 err_out:
3526 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3527 ata_port_disable(ap);
3528
3529 DPRINTK("EXIT\n");
3530 }
3531
3532 /**
3533 * sata_link_debounce - debounce SATA phy status
3534 * @link: ATA link to debounce SATA phy status for
3535 * @params: timing parameters { interval, duratinon, timeout } in msec
3536 * @deadline: deadline jiffies for the operation
3537 *
3538 * Make sure SStatus of @link reaches stable state, determined by
3539 * holding the same value where DET is not 1 for @duration polled
3540 * every @interval, before @timeout. Timeout constraints the
3541 * beginning of the stable state. Because DET gets stuck at 1 on
3542 * some controllers after hot unplugging, this functions waits
3543 * until timeout then returns 0 if DET is stable at 1.
3544 *
3545 * @timeout is further limited by @deadline. The sooner of the
3546 * two is used.
3547 *
3548 * LOCKING:
3549 * Kernel thread context (may sleep)
3550 *
3551 * RETURNS:
3552 * 0 on success, -errno on failure.
3553 */
3554 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3555 unsigned long deadline)
3556 {
3557 unsigned long interval_msec = params[0];
3558 unsigned long duration = msecs_to_jiffies(params[1]);
3559 unsigned long last_jiffies, t;
3560 u32 last, cur;
3561 int rc;
3562
3563 t = jiffies + msecs_to_jiffies(params[2]);
3564 if (time_before(t, deadline))
3565 deadline = t;
3566
3567 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3568 return rc;
3569 cur &= 0xf;
3570
3571 last = cur;
3572 last_jiffies = jiffies;
3573
3574 while (1) {
3575 msleep(interval_msec);
3576 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3577 return rc;
3578 cur &= 0xf;
3579
3580 /* DET stable? */
3581 if (cur == last) {
3582 if (cur == 1 && time_before(jiffies, deadline))
3583 continue;
3584 if (time_after(jiffies, last_jiffies + duration))
3585 return 0;
3586 continue;
3587 }
3588
3589 /* unstable, start over */
3590 last = cur;
3591 last_jiffies = jiffies;
3592
3593 /* Check deadline. If debouncing failed, return
3594 * -EPIPE to tell upper layer to lower link speed.
3595 */
3596 if (time_after(jiffies, deadline))
3597 return -EPIPE;
3598 }
3599 }
3600
3601 /**
3602 * sata_link_resume - resume SATA link
3603 * @link: ATA link to resume SATA
3604 * @params: timing parameters { interval, duratinon, timeout } in msec
3605 * @deadline: deadline jiffies for the operation
3606 *
3607 * Resume SATA phy @link and debounce it.
3608 *
3609 * LOCKING:
3610 * Kernel thread context (may sleep)
3611 *
3612 * RETURNS:
3613 * 0 on success, -errno on failure.
3614 */
3615 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3616 unsigned long deadline)
3617 {
3618 u32 scontrol;
3619 int rc;
3620
3621 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3622 return rc;
3623
3624 scontrol = (scontrol & 0x0f0) | 0x300;
3625
3626 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3627 return rc;
3628
3629 /* Some PHYs react badly if SStatus is pounded immediately
3630 * after resuming. Delay 200ms before debouncing.
3631 */
3632 msleep(200);
3633
3634 return sata_link_debounce(link, params, deadline);
3635 }
3636
3637 /**
3638 * ata_std_prereset - prepare for reset
3639 * @link: ATA link to be reset
3640 * @deadline: deadline jiffies for the operation
3641 *
3642 * @link is about to be reset. Initialize it. Failure from
3643 * prereset makes libata abort whole reset sequence and give up
3644 * that port, so prereset should be best-effort. It does its
3645 * best to prepare for reset sequence but if things go wrong, it
3646 * should just whine, not fail.
3647 *
3648 * LOCKING:
3649 * Kernel thread context (may sleep)
3650 *
3651 * RETURNS:
3652 * 0 on success, -errno otherwise.
3653 */
3654 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3655 {
3656 struct ata_port *ap = link->ap;
3657 struct ata_eh_context *ehc = &link->eh_context;
3658 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3659 int rc;
3660
3661 /* handle link resume */
3662 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3663 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3664 ehc->i.action |= ATA_EH_HARDRESET;
3665
3666 /* Some PMPs don't work with only SRST, force hardreset if PMP
3667 * is supported.
3668 */
3669 if (ap->flags & ATA_FLAG_PMP)
3670 ehc->i.action |= ATA_EH_HARDRESET;
3671
3672 /* if we're about to do hardreset, nothing more to do */
3673 if (ehc->i.action & ATA_EH_HARDRESET)
3674 return 0;
3675
3676 /* if SATA, resume link */
3677 if (ap->flags & ATA_FLAG_SATA) {
3678 rc = sata_link_resume(link, timing, deadline);
3679 /* whine about phy resume failure but proceed */
3680 if (rc && rc != -EOPNOTSUPP)
3681 ata_link_printk(link, KERN_WARNING, "failed to resume "
3682 "link for reset (errno=%d)\n", rc);
3683 }
3684
3685 /* Wait for !BSY if the controller can wait for the first D2H
3686 * Reg FIS and we don't know that no device is attached.
3687 */
3688 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3689 rc = ata_wait_ready(ap, deadline);
3690 if (rc && rc != -ENODEV) {
3691 ata_link_printk(link, KERN_WARNING, "device not ready "
3692 "(errno=%d), forcing hardreset\n", rc);
3693 ehc->i.action |= ATA_EH_HARDRESET;
3694 }
3695 }
3696
3697 return 0;
3698 }
3699
3700 /**
3701 * ata_std_softreset - reset host port via ATA SRST
3702 * @link: ATA link to reset
3703 * @classes: resulting classes of attached devices
3704 * @deadline: deadline jiffies for the operation
3705 *
3706 * Reset host port using ATA SRST.
3707 *
3708 * LOCKING:
3709 * Kernel thread context (may sleep)
3710 *
3711 * RETURNS:
3712 * 0 on success, -errno otherwise.
3713 */
3714 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3715 unsigned long deadline)
3716 {
3717 struct ata_port *ap = link->ap;
3718 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3719 unsigned int devmask = 0;
3720 int rc;
3721 u8 err;
3722
3723 DPRINTK("ENTER\n");
3724
3725 if (ata_link_offline(link)) {
3726 classes[0] = ATA_DEV_NONE;
3727 goto out;
3728 }
3729
3730 /* determine if device 0/1 are present */
3731 if (ata_devchk(ap, 0))
3732 devmask |= (1 << 0);
3733 if (slave_possible && ata_devchk(ap, 1))
3734 devmask |= (1 << 1);
3735
3736 /* select device 0 again */
3737 ap->ops->dev_select(ap, 0);
3738
3739 /* issue bus reset */
3740 DPRINTK("about to softreset, devmask=%x\n", devmask);
3741 rc = ata_bus_softreset(ap, devmask, deadline);
3742 /* if link is occupied, -ENODEV too is an error */
3743 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3744 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3745 return rc;
3746 }
3747
3748 /* determine by signature whether we have ATA or ATAPI devices */
3749 classes[0] = ata_dev_try_classify(&link->device[0],
3750 devmask & (1 << 0), &err);
3751 if (slave_possible && err != 0x81)
3752 classes[1] = ata_dev_try_classify(&link->device[1],
3753 devmask & (1 << 1), &err);
3754
3755 out:
3756 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3757 return 0;
3758 }
3759
3760 /**
3761 * sata_link_hardreset - reset link via SATA phy reset
3762 * @link: link to reset
3763 * @timing: timing parameters { interval, duratinon, timeout } in msec
3764 * @deadline: deadline jiffies for the operation
3765 *
3766 * SATA phy-reset @link using DET bits of SControl register.
3767 *
3768 * LOCKING:
3769 * Kernel thread context (may sleep)
3770 *
3771 * RETURNS:
3772 * 0 on success, -errno otherwise.
3773 */
3774 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3775 unsigned long deadline)
3776 {
3777 u32 scontrol;
3778 int rc;
3779
3780 DPRINTK("ENTER\n");
3781
3782 if (sata_set_spd_needed(link)) {
3783 /* SATA spec says nothing about how to reconfigure
3784 * spd. To be on the safe side, turn off phy during
3785 * reconfiguration. This works for at least ICH7 AHCI
3786 * and Sil3124.
3787 */
3788 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3789 goto out;
3790
3791 scontrol = (scontrol & 0x0f0) | 0x304;
3792
3793 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3794 goto out;
3795
3796 sata_set_spd(link);
3797 }
3798
3799 /* issue phy wake/reset */
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3802
3803 scontrol = (scontrol & 0x0f0) | 0x301;
3804
3805 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3806 goto out;
3807
3808 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3809 * 10.4.2 says at least 1 ms.
3810 */
3811 msleep(1);
3812
3813 /* bring link back */
3814 rc = sata_link_resume(link, timing, deadline);
3815 out:
3816 DPRINTK("EXIT, rc=%d\n", rc);
3817 return rc;
3818 }
3819
3820 /**
3821 * sata_std_hardreset - reset host port via SATA phy reset
3822 * @link: link to reset
3823 * @class: resulting class of attached device
3824 * @deadline: deadline jiffies for the operation
3825 *
3826 * SATA phy-reset host port using DET bits of SControl register,
3827 * wait for !BSY and classify the attached device.
3828 *
3829 * LOCKING:
3830 * Kernel thread context (may sleep)
3831 *
3832 * RETURNS:
3833 * 0 on success, -errno otherwise.
3834 */
3835 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3836 unsigned long deadline)
3837 {
3838 struct ata_port *ap = link->ap;
3839 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3840 int rc;
3841
3842 DPRINTK("ENTER\n");
3843
3844 /* do hardreset */
3845 rc = sata_link_hardreset(link, timing, deadline);
3846 if (rc) {
3847 ata_link_printk(link, KERN_ERR,
3848 "COMRESET failed (errno=%d)\n", rc);
3849 return rc;
3850 }
3851
3852 /* TODO: phy layer with polling, timeouts, etc. */
3853 if (ata_link_offline(link)) {
3854 *class = ATA_DEV_NONE;
3855 DPRINTK("EXIT, link offline\n");
3856 return 0;
3857 }
3858
3859 /* wait a while before checking status */
3860 ata_wait_after_reset(ap, deadline);
3861
3862 /* If PMP is supported, we have to do follow-up SRST. Note
3863 * that some PMPs don't send D2H Reg FIS after hardreset at
3864 * all if the first port is empty. Wait for it just for a
3865 * second and request follow-up SRST.
3866 */
3867 if (ap->flags & ATA_FLAG_PMP) {
3868 ata_wait_ready(ap, jiffies + HZ);
3869 return -EAGAIN;
3870 }
3871
3872 rc = ata_wait_ready(ap, deadline);
3873 /* link occupied, -ENODEV too is an error */
3874 if (rc) {
3875 ata_link_printk(link, KERN_ERR,
3876 "COMRESET failed (errno=%d)\n", rc);
3877 return rc;
3878 }
3879
3880 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3881
3882 *class = ata_dev_try_classify(link->device, 1, NULL);
3883
3884 DPRINTK("EXIT, class=%u\n", *class);
3885 return 0;
3886 }
3887
3888 /**
3889 * ata_std_postreset - standard postreset callback
3890 * @link: the target ata_link
3891 * @classes: classes of attached devices
3892 *
3893 * This function is invoked after a successful reset. Note that
3894 * the device might have been reset more than once using
3895 * different reset methods before postreset is invoked.
3896 *
3897 * LOCKING:
3898 * Kernel thread context (may sleep)
3899 */
3900 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3901 {
3902 struct ata_port *ap = link->ap;
3903 u32 serror;
3904
3905 DPRINTK("ENTER\n");
3906
3907 /* print link status */
3908 sata_print_link_status(link);
3909
3910 /* clear SError */
3911 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3912 sata_scr_write(link, SCR_ERROR, serror);
3913 link->eh_info.serror = 0;
3914
3915 /* is double-select really necessary? */
3916 if (classes[0] != ATA_DEV_NONE)
3917 ap->ops->dev_select(ap, 1);
3918 if (classes[1] != ATA_DEV_NONE)
3919 ap->ops->dev_select(ap, 0);
3920
3921 /* bail out if no device is present */
3922 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3923 DPRINTK("EXIT, no device\n");
3924 return;
3925 }
3926
3927 /* set up device control */
3928 if (ap->ioaddr.ctl_addr)
3929 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3930
3931 DPRINTK("EXIT\n");
3932 }
3933
3934 /**
3935 * ata_dev_same_device - Determine whether new ID matches configured device
3936 * @dev: device to compare against
3937 * @new_class: class of the new device
3938 * @new_id: IDENTIFY page of the new device
3939 *
3940 * Compare @new_class and @new_id against @dev and determine
3941 * whether @dev is the device indicated by @new_class and
3942 * @new_id.
3943 *
3944 * LOCKING:
3945 * None.
3946 *
3947 * RETURNS:
3948 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3949 */
3950 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3951 const u16 *new_id)
3952 {
3953 const u16 *old_id = dev->id;
3954 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3955 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3956
3957 if (dev->class != new_class) {
3958 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3959 dev->class, new_class);
3960 return 0;
3961 }
3962
3963 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3964 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3965 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3966 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3967
3968 if (strcmp(model[0], model[1])) {
3969 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3970 "'%s' != '%s'\n", model[0], model[1]);
3971 return 0;
3972 }
3973
3974 if (strcmp(serial[0], serial[1])) {
3975 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3976 "'%s' != '%s'\n", serial[0], serial[1]);
3977 return 0;
3978 }
3979
3980 return 1;
3981 }
3982
3983 /**
3984 * ata_dev_reread_id - Re-read IDENTIFY data
3985 * @dev: target ATA device
3986 * @readid_flags: read ID flags
3987 *
3988 * Re-read IDENTIFY page and make sure @dev is still attached to
3989 * the port.
3990 *
3991 * LOCKING:
3992 * Kernel thread context (may sleep)
3993 *
3994 * RETURNS:
3995 * 0 on success, negative errno otherwise
3996 */
3997 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3998 {
3999 unsigned int class = dev->class;
4000 u16 *id = (void *)dev->link->ap->sector_buf;
4001 int rc;
4002
4003 /* read ID data */
4004 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4005 if (rc)
4006 return rc;
4007
4008 /* is the device still there? */
4009 if (!ata_dev_same_device(dev, class, id))
4010 return -ENODEV;
4011
4012 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4013 return 0;
4014 }
4015
4016 /**
4017 * ata_dev_revalidate - Revalidate ATA device
4018 * @dev: device to revalidate
4019 * @new_class: new class code
4020 * @readid_flags: read ID flags
4021 *
4022 * Re-read IDENTIFY page, make sure @dev is still attached to the
4023 * port and reconfigure it according to the new IDENTIFY page.
4024 *
4025 * LOCKING:
4026 * Kernel thread context (may sleep)
4027 *
4028 * RETURNS:
4029 * 0 on success, negative errno otherwise
4030 */
4031 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4032 unsigned int readid_flags)
4033 {
4034 u64 n_sectors = dev->n_sectors;
4035 int rc;
4036
4037 if (!ata_dev_enabled(dev))
4038 return -ENODEV;
4039
4040 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4041 if (ata_class_enabled(new_class) &&
4042 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4043 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4044 dev->class, new_class);
4045 rc = -ENODEV;
4046 goto fail;
4047 }
4048
4049 /* re-read ID */
4050 rc = ata_dev_reread_id(dev, readid_flags);
4051 if (rc)
4052 goto fail;
4053
4054 /* configure device according to the new ID */
4055 rc = ata_dev_configure(dev);
4056 if (rc)
4057 goto fail;
4058
4059 /* verify n_sectors hasn't changed */
4060 if (dev->class == ATA_DEV_ATA && n_sectors &&
4061 dev->n_sectors != n_sectors) {
4062 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4063 "%llu != %llu\n",
4064 (unsigned long long)n_sectors,
4065 (unsigned long long)dev->n_sectors);
4066
4067 /* restore original n_sectors */
4068 dev->n_sectors = n_sectors;
4069
4070 rc = -ENODEV;
4071 goto fail;
4072 }
4073
4074 return 0;
4075
4076 fail:
4077 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4078 return rc;
4079 }
4080
4081 struct ata_blacklist_entry {
4082 const char *model_num;
4083 const char *model_rev;
4084 unsigned long horkage;
4085 };
4086
4087 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4088 /* Devices with DMA related problems under Linux */
4089 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4090 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4091 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4092 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4093 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4095 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4096 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4097 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4098 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4099 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4100 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4101 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4102 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4103 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4104 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4105 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4106 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4107 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4108 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4109 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4110 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4111 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4112 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4113 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4114 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4115 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4116 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4117 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4118 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4119 /* Odd clown on sil3726/4726 PMPs */
4120 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4121 ATA_HORKAGE_SKIP_PM },
4122
4123 /* Weird ATAPI devices */
4124 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4125
4126 /* Devices we expect to fail diagnostics */
4127
4128 /* Devices where NCQ should be avoided */
4129 /* NCQ is slow */
4130 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4131 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4132 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4133 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4134 /* NCQ is broken */
4135 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4136 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4137 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4138 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4139 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4140 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4141
4142 /* Blacklist entries taken from Silicon Image 3124/3132
4143 Windows driver .inf file - also several Linux problem reports */
4144 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4145 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4146 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4147
4148 /* devices which puke on READ_NATIVE_MAX */
4149 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4150 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4151 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4152 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4153
4154 /* Devices which report 1 sector over size HPA */
4155 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4156 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4157
4158 /* Devices which get the IVB wrong */
4159 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4160 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4161 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4162 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4163 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4164
4165 /* End Marker */
4166 { }
4167 };
4168
4169 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4170 {
4171 const char *p;
4172 int len;
4173
4174 /*
4175 * check for trailing wildcard: *\0
4176 */
4177 p = strchr(patt, wildchar);
4178 if (p && ((*(p + 1)) == 0))
4179 len = p - patt;
4180 else {
4181 len = strlen(name);
4182 if (!len) {
4183 if (!*patt)
4184 return 0;
4185 return -1;
4186 }
4187 }
4188
4189 return strncmp(patt, name, len);
4190 }
4191
4192 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4193 {
4194 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4195 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4196 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4197
4198 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4199 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4200
4201 while (ad->model_num) {
4202 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4203 if (ad->model_rev == NULL)
4204 return ad->horkage;
4205 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4206 return ad->horkage;
4207 }
4208 ad++;
4209 }
4210 return 0;
4211 }
4212
4213 static int ata_dma_blacklisted(const struct ata_device *dev)
4214 {
4215 /* We don't support polling DMA.
4216 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4217 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4218 */
4219 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4220 (dev->flags & ATA_DFLAG_CDB_INTR))
4221 return 1;
4222 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4223 }
4224
4225 /**
4226 * ata_is_40wire - check drive side detection
4227 * @dev: device
4228 *
4229 * Perform drive side detection decoding, allowing for device vendors
4230 * who can't follow the documentation.
4231 */
4232
4233 static int ata_is_40wire(struct ata_device *dev)
4234 {
4235 if (dev->horkage & ATA_HORKAGE_IVB)
4236 return ata_drive_40wire_relaxed(dev->id);
4237 return ata_drive_40wire(dev->id);
4238 }
4239
4240 /**
4241 * ata_dev_xfermask - Compute supported xfermask of the given device
4242 * @dev: Device to compute xfermask for
4243 *
4244 * Compute supported xfermask of @dev and store it in
4245 * dev->*_mask. This function is responsible for applying all
4246 * known limits including host controller limits, device
4247 * blacklist, etc...
4248 *
4249 * LOCKING:
4250 * None.
4251 */
4252 static void ata_dev_xfermask(struct ata_device *dev)
4253 {
4254 struct ata_link *link = dev->link;
4255 struct ata_port *ap = link->ap;
4256 struct ata_host *host = ap->host;
4257 unsigned long xfer_mask;
4258
4259 /* controller modes available */
4260 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4261 ap->mwdma_mask, ap->udma_mask);
4262
4263 /* drive modes available */
4264 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4265 dev->mwdma_mask, dev->udma_mask);
4266 xfer_mask &= ata_id_xfermask(dev->id);
4267
4268 /*
4269 * CFA Advanced TrueIDE timings are not allowed on a shared
4270 * cable
4271 */
4272 if (ata_dev_pair(dev)) {
4273 /* No PIO5 or PIO6 */
4274 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4275 /* No MWDMA3 or MWDMA 4 */
4276 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4277 }
4278
4279 if (ata_dma_blacklisted(dev)) {
4280 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4281 ata_dev_printk(dev, KERN_WARNING,
4282 "device is on DMA blacklist, disabling DMA\n");
4283 }
4284
4285 if ((host->flags & ATA_HOST_SIMPLEX) &&
4286 host->simplex_claimed && host->simplex_claimed != ap) {
4287 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4288 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4289 "other device, disabling DMA\n");
4290 }
4291
4292 if (ap->flags & ATA_FLAG_NO_IORDY)
4293 xfer_mask &= ata_pio_mask_no_iordy(dev);
4294
4295 if (ap->ops->mode_filter)
4296 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4297
4298 /* Apply cable rule here. Don't apply it early because when
4299 * we handle hot plug the cable type can itself change.
4300 * Check this last so that we know if the transfer rate was
4301 * solely limited by the cable.
4302 * Unknown or 80 wire cables reported host side are checked
4303 * drive side as well. Cases where we know a 40wire cable
4304 * is used safely for 80 are not checked here.
4305 */
4306 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4307 /* UDMA/44 or higher would be available */
4308 if ((ap->cbl == ATA_CBL_PATA40) ||
4309 (ata_is_40wire(dev) &&
4310 (ap->cbl == ATA_CBL_PATA_UNK ||
4311 ap->cbl == ATA_CBL_PATA80))) {
4312 ata_dev_printk(dev, KERN_WARNING,
4313 "limited to UDMA/33 due to 40-wire cable\n");
4314 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4315 }
4316
4317 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4318 &dev->mwdma_mask, &dev->udma_mask);
4319 }
4320
4321 /**
4322 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4323 * @dev: Device to which command will be sent
4324 *
4325 * Issue SET FEATURES - XFER MODE command to device @dev
4326 * on port @ap.
4327 *
4328 * LOCKING:
4329 * PCI/etc. bus probe sem.
4330 *
4331 * RETURNS:
4332 * 0 on success, AC_ERR_* mask otherwise.
4333 */
4334
4335 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4336 {
4337 struct ata_taskfile tf;
4338 unsigned int err_mask;
4339
4340 /* set up set-features taskfile */
4341 DPRINTK("set features - xfer mode\n");
4342
4343 /* Some controllers and ATAPI devices show flaky interrupt
4344 * behavior after setting xfer mode. Use polling instead.
4345 */
4346 ata_tf_init(dev, &tf);
4347 tf.command = ATA_CMD_SET_FEATURES;
4348 tf.feature = SETFEATURES_XFER;
4349 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4350 tf.protocol = ATA_PROT_NODATA;
4351 /* If we are using IORDY we must send the mode setting command */
4352 if (ata_pio_need_iordy(dev))
4353 tf.nsect = dev->xfer_mode;
4354 /* If the device has IORDY and the controller does not - turn it off */
4355 else if (ata_id_has_iordy(dev->id))
4356 tf.nsect = 0x01;
4357 else /* In the ancient relic department - skip all of this */
4358 return 0;
4359
4360 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4361
4362 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4363 return err_mask;
4364 }
4365 /**
4366 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4367 * @dev: Device to which command will be sent
4368 * @enable: Whether to enable or disable the feature
4369 * @feature: The sector count represents the feature to set
4370 *
4371 * Issue SET FEATURES - SATA FEATURES command to device @dev
4372 * on port @ap with sector count
4373 *
4374 * LOCKING:
4375 * PCI/etc. bus probe sem.
4376 *
4377 * RETURNS:
4378 * 0 on success, AC_ERR_* mask otherwise.
4379 */
4380 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4381 u8 feature)
4382 {
4383 struct ata_taskfile tf;
4384 unsigned int err_mask;
4385
4386 /* set up set-features taskfile */
4387 DPRINTK("set features - SATA features\n");
4388
4389 ata_tf_init(dev, &tf);
4390 tf.command = ATA_CMD_SET_FEATURES;
4391 tf.feature = enable;
4392 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4393 tf.protocol = ATA_PROT_NODATA;
4394 tf.nsect = feature;
4395
4396 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4397
4398 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4399 return err_mask;
4400 }
4401
4402 /**
4403 * ata_dev_init_params - Issue INIT DEV PARAMS command
4404 * @dev: Device to which command will be sent
4405 * @heads: Number of heads (taskfile parameter)
4406 * @sectors: Number of sectors (taskfile parameter)
4407 *
4408 * LOCKING:
4409 * Kernel thread context (may sleep)
4410 *
4411 * RETURNS:
4412 * 0 on success, AC_ERR_* mask otherwise.
4413 */
4414 static unsigned int ata_dev_init_params(struct ata_device *dev,
4415 u16 heads, u16 sectors)
4416 {
4417 struct ata_taskfile tf;
4418 unsigned int err_mask;
4419
4420 /* Number of sectors per track 1-255. Number of heads 1-16 */
4421 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4422 return AC_ERR_INVALID;
4423
4424 /* set up init dev params taskfile */
4425 DPRINTK("init dev params \n");
4426
4427 ata_tf_init(dev, &tf);
4428 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4429 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4430 tf.protocol = ATA_PROT_NODATA;
4431 tf.nsect = sectors;
4432 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4433
4434 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4435 /* A clean abort indicates an original or just out of spec drive
4436 and we should continue as we issue the setup based on the
4437 drive reported working geometry */
4438 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4439 err_mask = 0;
4440
4441 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4442 return err_mask;
4443 }
4444
4445 /**
4446 * ata_sg_clean - Unmap DMA memory associated with command
4447 * @qc: Command containing DMA memory to be released
4448 *
4449 * Unmap all mapped DMA memory associated with this command.
4450 *
4451 * LOCKING:
4452 * spin_lock_irqsave(host lock)
4453 */
4454 void ata_sg_clean(struct ata_queued_cmd *qc)
4455 {
4456 struct ata_port *ap = qc->ap;
4457 struct scatterlist *sg = qc->__sg;
4458 int dir = qc->dma_dir;
4459 void *pad_buf = NULL;
4460
4461 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4462 WARN_ON(sg == NULL);
4463
4464 if (qc->flags & ATA_QCFLAG_SINGLE)
4465 WARN_ON(qc->n_elem > 1);
4466
4467 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4468
4469 /* if we padded the buffer out to 32-bit bound, and data
4470 * xfer direction is from-device, we must copy from the
4471 * pad buffer back into the supplied buffer
4472 */
4473 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4474 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4475
4476 if (qc->flags & ATA_QCFLAG_SG) {
4477 if (qc->n_elem)
4478 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4479 /* restore last sg */
4480 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4481 if (pad_buf) {
4482 struct scatterlist *psg = &qc->pad_sgent;
4483 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4484 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4485 kunmap_atomic(addr, KM_IRQ0);
4486 }
4487 } else {
4488 if (qc->n_elem)
4489 dma_unmap_single(ap->dev,
4490 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4491 dir);
4492 /* restore sg */
4493 sg->length += qc->pad_len;
4494 if (pad_buf)
4495 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4496 pad_buf, qc->pad_len);
4497 }
4498
4499 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4500 qc->__sg = NULL;
4501 }
4502
4503 /**
4504 * ata_fill_sg - Fill PCI IDE PRD table
4505 * @qc: Metadata associated with taskfile to be transferred
4506 *
4507 * Fill PCI IDE PRD (scatter-gather) table with segments
4508 * associated with the current disk command.
4509 *
4510 * LOCKING:
4511 * spin_lock_irqsave(host lock)
4512 *
4513 */
4514 static void ata_fill_sg(struct ata_queued_cmd *qc)
4515 {
4516 struct ata_port *ap = qc->ap;
4517 struct scatterlist *sg;
4518 unsigned int idx;
4519
4520 WARN_ON(qc->__sg == NULL);
4521 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4522
4523 idx = 0;
4524 ata_for_each_sg(sg, qc) {
4525 u32 addr, offset;
4526 u32 sg_len, len;
4527
4528 /* determine if physical DMA addr spans 64K boundary.
4529 * Note h/w doesn't support 64-bit, so we unconditionally
4530 * truncate dma_addr_t to u32.
4531 */
4532 addr = (u32) sg_dma_address(sg);
4533 sg_len = sg_dma_len(sg);
4534
4535 while (sg_len) {
4536 offset = addr & 0xffff;
4537 len = sg_len;
4538 if ((offset + sg_len) > 0x10000)
4539 len = 0x10000 - offset;
4540
4541 ap->prd[idx].addr = cpu_to_le32(addr);
4542 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4543 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4544
4545 idx++;
4546 sg_len -= len;
4547 addr += len;
4548 }
4549 }
4550
4551 if (idx)
4552 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4553 }
4554
4555 /**
4556 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4557 * @qc: Metadata associated with taskfile to be transferred
4558 *
4559 * Fill PCI IDE PRD (scatter-gather) table with segments
4560 * associated with the current disk command. Perform the fill
4561 * so that we avoid writing any length 64K records for
4562 * controllers that don't follow the spec.
4563 *
4564 * LOCKING:
4565 * spin_lock_irqsave(host lock)
4566 *
4567 */
4568 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4569 {
4570 struct ata_port *ap = qc->ap;
4571 struct scatterlist *sg;
4572 unsigned int idx;
4573
4574 WARN_ON(qc->__sg == NULL);
4575 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4576
4577 idx = 0;
4578 ata_for_each_sg(sg, qc) {
4579 u32 addr, offset;
4580 u32 sg_len, len, blen;
4581
4582 /* determine if physical DMA addr spans 64K boundary.
4583 * Note h/w doesn't support 64-bit, so we unconditionally
4584 * truncate dma_addr_t to u32.
4585 */
4586 addr = (u32) sg_dma_address(sg);
4587 sg_len = sg_dma_len(sg);
4588
4589 while (sg_len) {
4590 offset = addr & 0xffff;
4591 len = sg_len;
4592 if ((offset + sg_len) > 0x10000)
4593 len = 0x10000 - offset;
4594
4595 blen = len & 0xffff;
4596 ap->prd[idx].addr = cpu_to_le32(addr);
4597 if (blen == 0) {
4598 /* Some PATA chipsets like the CS5530 can't
4599 cope with 0x0000 meaning 64K as the spec says */
4600 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4601 blen = 0x8000;
4602 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4603 }
4604 ap->prd[idx].flags_len = cpu_to_le32(blen);
4605 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4606
4607 idx++;
4608 sg_len -= len;
4609 addr += len;
4610 }
4611 }
4612
4613 if (idx)
4614 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4615 }
4616
4617 /**
4618 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4619 * @qc: Metadata associated with taskfile to check
4620 *
4621 * Allow low-level driver to filter ATA PACKET commands, returning
4622 * a status indicating whether or not it is OK to use DMA for the
4623 * supplied PACKET command.
4624 *
4625 * LOCKING:
4626 * spin_lock_irqsave(host lock)
4627 *
4628 * RETURNS: 0 when ATAPI DMA can be used
4629 * nonzero otherwise
4630 */
4631 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4632 {
4633 struct ata_port *ap = qc->ap;
4634
4635 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4636 * few ATAPI devices choke on such DMA requests.
4637 */
4638 if (unlikely(qc->nbytes & 15))
4639 return 1;
4640
4641 if (ap->ops->check_atapi_dma)
4642 return ap->ops->check_atapi_dma(qc);
4643
4644 return 0;
4645 }
4646
4647 /**
4648 * atapi_qc_may_overflow - Check whether data transfer may overflow
4649 * @qc: ATA command in question
4650 *
4651 * ATAPI commands which transfer variable length data to host
4652 * might overflow due to application error or hardare bug. This
4653 * function checks whether overflow should be drained and ignored
4654 * for @qc.
4655 *
4656 * LOCKING:
4657 * None.
4658 *
4659 * RETURNS:
4660 * 1 if @qc may overflow; otherwise, 0.
4661 */
4662 static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4663 {
4664 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4665 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4666 return 0;
4667
4668 if (qc->tf.flags & ATA_TFLAG_WRITE)
4669 return 0;
4670
4671 switch (qc->cdb[0]) {
4672 case READ_10:
4673 case READ_12:
4674 case WRITE_10:
4675 case WRITE_12:
4676 case GPCMD_READ_CD:
4677 case GPCMD_READ_CD_MSF:
4678 return 0;
4679 }
4680
4681 return 1;
4682 }
4683
4684 /**
4685 * ata_std_qc_defer - Check whether a qc needs to be deferred
4686 * @qc: ATA command in question
4687 *
4688 * Non-NCQ commands cannot run with any other command, NCQ or
4689 * not. As upper layer only knows the queue depth, we are
4690 * responsible for maintaining exclusion. This function checks
4691 * whether a new command @qc can be issued.
4692 *
4693 * LOCKING:
4694 * spin_lock_irqsave(host lock)
4695 *
4696 * RETURNS:
4697 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4698 */
4699 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4700 {
4701 struct ata_link *link = qc->dev->link;
4702
4703 if (qc->tf.protocol == ATA_PROT_NCQ) {
4704 if (!ata_tag_valid(link->active_tag))
4705 return 0;
4706 } else {
4707 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4708 return 0;
4709 }
4710
4711 return ATA_DEFER_LINK;
4712 }
4713
4714 /**
4715 * ata_qc_prep - Prepare taskfile for submission
4716 * @qc: Metadata associated with taskfile to be prepared
4717 *
4718 * Prepare ATA taskfile for submission.
4719 *
4720 * LOCKING:
4721 * spin_lock_irqsave(host lock)
4722 */
4723 void ata_qc_prep(struct ata_queued_cmd *qc)
4724 {
4725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4726 return;
4727
4728 ata_fill_sg(qc);
4729 }
4730
4731 /**
4732 * ata_dumb_qc_prep - Prepare taskfile for submission
4733 * @qc: Metadata associated with taskfile to be prepared
4734 *
4735 * Prepare ATA taskfile for submission.
4736 *
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4739 */
4740 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4741 {
4742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4743 return;
4744
4745 ata_fill_sg_dumb(qc);
4746 }
4747
4748 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4749
4750 /**
4751 * ata_sg_init_one - Associate command with memory buffer
4752 * @qc: Command to be associated
4753 * @buf: Memory buffer
4754 * @buflen: Length of memory buffer, in bytes.
4755 *
4756 * Initialize the data-related elements of queued_cmd @qc
4757 * to point to a single memory buffer, @buf of byte length @buflen.
4758 *
4759 * LOCKING:
4760 * spin_lock_irqsave(host lock)
4761 */
4762
4763 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4764 {
4765 qc->flags |= ATA_QCFLAG_SINGLE;
4766
4767 qc->__sg = &qc->sgent;
4768 qc->n_elem = 1;
4769 qc->orig_n_elem = 1;
4770 qc->buf_virt = buf;
4771 qc->nbytes = buflen;
4772 qc->cursg = qc->__sg;
4773
4774 sg_init_one(&qc->sgent, buf, buflen);
4775 }
4776
4777 /**
4778 * ata_sg_init - Associate command with scatter-gather table.
4779 * @qc: Command to be associated
4780 * @sg: Scatter-gather table.
4781 * @n_elem: Number of elements in s/g table.
4782 *
4783 * Initialize the data-related elements of queued_cmd @qc
4784 * to point to a scatter-gather table @sg, containing @n_elem
4785 * elements.
4786 *
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4789 */
4790
4791 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4792 unsigned int n_elem)
4793 {
4794 qc->flags |= ATA_QCFLAG_SG;
4795 qc->__sg = sg;
4796 qc->n_elem = n_elem;
4797 qc->orig_n_elem = n_elem;
4798 qc->cursg = qc->__sg;
4799 }
4800
4801 /**
4802 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4803 * @qc: Command with memory buffer to be mapped.
4804 *
4805 * DMA-map the memory buffer associated with queued_cmd @qc.
4806 *
4807 * LOCKING:
4808 * spin_lock_irqsave(host lock)
4809 *
4810 * RETURNS:
4811 * Zero on success, negative on error.
4812 */
4813
4814 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4815 {
4816 struct ata_port *ap = qc->ap;
4817 int dir = qc->dma_dir;
4818 struct scatterlist *sg = qc->__sg;
4819 dma_addr_t dma_address;
4820 int trim_sg = 0;
4821
4822 /* we must lengthen transfers to end on a 32-bit boundary */
4823 qc->pad_len = sg->length & 3;
4824 if (qc->pad_len) {
4825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4826 struct scatterlist *psg = &qc->pad_sgent;
4827
4828 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4829
4830 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4831
4832 if (qc->tf.flags & ATA_TFLAG_WRITE)
4833 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4834 qc->pad_len);
4835
4836 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4837 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4838 /* trim sg */
4839 sg->length -= qc->pad_len;
4840 if (sg->length == 0)
4841 trim_sg = 1;
4842
4843 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4844 sg->length, qc->pad_len);
4845 }
4846
4847 if (trim_sg) {
4848 qc->n_elem--;
4849 goto skip_map;
4850 }
4851
4852 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4853 sg->length, dir);
4854 if (dma_mapping_error(dma_address)) {
4855 /* restore sg */
4856 sg->length += qc->pad_len;
4857 return -1;
4858 }
4859
4860 sg_dma_address(sg) = dma_address;
4861 sg_dma_len(sg) = sg->length;
4862
4863 skip_map:
4864 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4865 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4866
4867 return 0;
4868 }
4869
4870 /**
4871 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4872 * @qc: Command with scatter-gather table to be mapped.
4873 *
4874 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4875 *
4876 * LOCKING:
4877 * spin_lock_irqsave(host lock)
4878 *
4879 * RETURNS:
4880 * Zero on success, negative on error.
4881 *
4882 */
4883
4884 static int ata_sg_setup(struct ata_queued_cmd *qc)
4885 {
4886 struct ata_port *ap = qc->ap;
4887 struct scatterlist *sg = qc->__sg;
4888 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4889 int n_elem, pre_n_elem, dir, trim_sg = 0;
4890
4891 VPRINTK("ENTER, ata%u\n", ap->print_id);
4892 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4893
4894 /* we must lengthen transfers to end on a 32-bit boundary */
4895 qc->pad_len = lsg->length & 3;
4896 if (qc->pad_len) {
4897 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4898 struct scatterlist *psg = &qc->pad_sgent;
4899 unsigned int offset;
4900
4901 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4902
4903 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4904
4905 /*
4906 * psg->page/offset are used to copy to-be-written
4907 * data in this function or read data in ata_sg_clean.
4908 */
4909 offset = lsg->offset + lsg->length - qc->pad_len;
4910 sg_init_table(psg, 1);
4911 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4912 qc->pad_len, offset_in_page(offset));
4913
4914 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4915 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4916 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4917 kunmap_atomic(addr, KM_IRQ0);
4918 }
4919
4920 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4921 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4922 /* trim last sg */
4923 lsg->length -= qc->pad_len;
4924 if (lsg->length == 0)
4925 trim_sg = 1;
4926
4927 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4928 qc->n_elem - 1, lsg->length, qc->pad_len);
4929 }
4930
4931 pre_n_elem = qc->n_elem;
4932 if (trim_sg && pre_n_elem)
4933 pre_n_elem--;
4934
4935 if (!pre_n_elem) {
4936 n_elem = 0;
4937 goto skip_map;
4938 }
4939
4940 dir = qc->dma_dir;
4941 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4942 if (n_elem < 1) {
4943 /* restore last sg */
4944 lsg->length += qc->pad_len;
4945 return -1;
4946 }
4947
4948 DPRINTK("%d sg elements mapped\n", n_elem);
4949
4950 skip_map:
4951 qc->n_elem = n_elem;
4952
4953 return 0;
4954 }
4955
4956 /**
4957 * swap_buf_le16 - swap halves of 16-bit words in place
4958 * @buf: Buffer to swap
4959 * @buf_words: Number of 16-bit words in buffer.
4960 *
4961 * Swap halves of 16-bit words if needed to convert from
4962 * little-endian byte order to native cpu byte order, or
4963 * vice-versa.
4964 *
4965 * LOCKING:
4966 * Inherited from caller.
4967 */
4968 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4969 {
4970 #ifdef __BIG_ENDIAN
4971 unsigned int i;
4972
4973 for (i = 0; i < buf_words; i++)
4974 buf[i] = le16_to_cpu(buf[i]);
4975 #endif /* __BIG_ENDIAN */
4976 }
4977
4978 /**
4979 * ata_data_xfer - Transfer data by PIO
4980 * @adev: device to target
4981 * @buf: data buffer
4982 * @buflen: buffer length
4983 * @write_data: read/write
4984 *
4985 * Transfer data from/to the device data register by PIO.
4986 *
4987 * LOCKING:
4988 * Inherited from caller.
4989 */
4990 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4991 unsigned int buflen, int write_data)
4992 {
4993 struct ata_port *ap = adev->link->ap;
4994 unsigned int words = buflen >> 1;
4995
4996 /* Transfer multiple of 2 bytes */
4997 if (write_data)
4998 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4999 else
5000 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5001
5002 /* Transfer trailing 1 byte, if any. */
5003 if (unlikely(buflen & 0x01)) {
5004 u16 align_buf[1] = { 0 };
5005 unsigned char *trailing_buf = buf + buflen - 1;
5006
5007 if (write_data) {
5008 memcpy(align_buf, trailing_buf, 1);
5009 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5010 } else {
5011 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5012 memcpy(trailing_buf, align_buf, 1);
5013 }
5014 }
5015 }
5016
5017 /**
5018 * ata_data_xfer_noirq - Transfer data by PIO
5019 * @adev: device to target
5020 * @buf: data buffer
5021 * @buflen: buffer length
5022 * @write_data: read/write
5023 *
5024 * Transfer data from/to the device data register by PIO. Do the
5025 * transfer with interrupts disabled.
5026 *
5027 * LOCKING:
5028 * Inherited from caller.
5029 */
5030 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5031 unsigned int buflen, int write_data)
5032 {
5033 unsigned long flags;
5034 local_irq_save(flags);
5035 ata_data_xfer(adev, buf, buflen, write_data);
5036 local_irq_restore(flags);
5037 }
5038
5039
5040 /**
5041 * ata_pio_sector - Transfer a sector of data.
5042 * @qc: Command on going
5043 *
5044 * Transfer qc->sect_size bytes of data from/to the ATA device.
5045 *
5046 * LOCKING:
5047 * Inherited from caller.
5048 */
5049
5050 static void ata_pio_sector(struct ata_queued_cmd *qc)
5051 {
5052 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5053 struct ata_port *ap = qc->ap;
5054 struct page *page;
5055 unsigned int offset;
5056 unsigned char *buf;
5057
5058 if (qc->curbytes == qc->nbytes - qc->sect_size)
5059 ap->hsm_task_state = HSM_ST_LAST;
5060
5061 page = sg_page(qc->cursg);
5062 offset = qc->cursg->offset + qc->cursg_ofs;
5063
5064 /* get the current page and offset */
5065 page = nth_page(page, (offset >> PAGE_SHIFT));
5066 offset %= PAGE_SIZE;
5067
5068 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5069
5070 if (PageHighMem(page)) {
5071 unsigned long flags;
5072
5073 /* FIXME: use a bounce buffer */
5074 local_irq_save(flags);
5075 buf = kmap_atomic(page, KM_IRQ0);
5076
5077 /* do the actual data transfer */
5078 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5079
5080 kunmap_atomic(buf, KM_IRQ0);
5081 local_irq_restore(flags);
5082 } else {
5083 buf = page_address(page);
5084 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5085 }
5086
5087 qc->curbytes += qc->sect_size;
5088 qc->cursg_ofs += qc->sect_size;
5089
5090 if (qc->cursg_ofs == qc->cursg->length) {
5091 qc->cursg = sg_next(qc->cursg);
5092 qc->cursg_ofs = 0;
5093 }
5094 }
5095
5096 /**
5097 * ata_pio_sectors - Transfer one or many sectors.
5098 * @qc: Command on going
5099 *
5100 * Transfer one or many sectors of data from/to the
5101 * ATA device for the DRQ request.
5102 *
5103 * LOCKING:
5104 * Inherited from caller.
5105 */
5106
5107 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5108 {
5109 if (is_multi_taskfile(&qc->tf)) {
5110 /* READ/WRITE MULTIPLE */
5111 unsigned int nsect;
5112
5113 WARN_ON(qc->dev->multi_count == 0);
5114
5115 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5116 qc->dev->multi_count);
5117 while (nsect--)
5118 ata_pio_sector(qc);
5119 } else
5120 ata_pio_sector(qc);
5121
5122 ata_altstatus(qc->ap); /* flush */
5123 }
5124
5125 /**
5126 * atapi_send_cdb - Write CDB bytes to hardware
5127 * @ap: Port to which ATAPI device is attached.
5128 * @qc: Taskfile currently active
5129 *
5130 * When device has indicated its readiness to accept
5131 * a CDB, this function is called. Send the CDB.
5132 *
5133 * LOCKING:
5134 * caller.
5135 */
5136
5137 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5138 {
5139 /* send SCSI cdb */
5140 DPRINTK("send cdb\n");
5141 WARN_ON(qc->dev->cdb_len < 12);
5142
5143 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5144 ata_altstatus(ap); /* flush */
5145
5146 switch (qc->tf.protocol) {
5147 case ATA_PROT_ATAPI:
5148 ap->hsm_task_state = HSM_ST;
5149 break;
5150 case ATA_PROT_ATAPI_NODATA:
5151 ap->hsm_task_state = HSM_ST_LAST;
5152 break;
5153 case ATA_PROT_ATAPI_DMA:
5154 ap->hsm_task_state = HSM_ST_LAST;
5155 /* initiate bmdma */
5156 ap->ops->bmdma_start(qc);
5157 break;
5158 }
5159 }
5160
5161 /**
5162 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5163 * @qc: Command on going
5164 * @bytes: number of bytes
5165 *
5166 * Transfer Transfer data from/to the ATAPI device.
5167 *
5168 * LOCKING:
5169 * Inherited from caller.
5170 *
5171 */
5172 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5173 {
5174 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5175 struct ata_port *ap = qc->ap;
5176 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5177 struct scatterlist *sg;
5178 struct page *page;
5179 unsigned char *buf;
5180 unsigned int offset, count;
5181
5182 next_sg:
5183 sg = qc->cursg;
5184 if (unlikely(!sg)) {
5185 /*
5186 * The end of qc->sg is reached and the device expects
5187 * more data to transfer. In order not to overrun qc->sg
5188 * and fulfill length specified in the byte count register,
5189 * - for read case, discard trailing data from the device
5190 * - for write case, padding zero data to the device
5191 */
5192 u16 pad_buf[1] = { 0 };
5193 unsigned int i;
5194
5195 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5196 ata_ehi_push_desc(ehi, "too much trailing data "
5197 "buf=%u cur=%u bytes=%u",
5198 qc->nbytes, qc->curbytes, bytes);
5199 return -1;
5200 }
5201
5202 /* overflow is exptected for misc ATAPI commands */
5203 if (bytes && !atapi_qc_may_overflow(qc))
5204 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5205 "trailing data (cdb=%02x nbytes=%u)\n",
5206 bytes, qc->cdb[0], qc->nbytes);
5207
5208 for (i = 0; i < (bytes + 1) / 2; i++)
5209 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5210
5211 qc->curbytes += bytes;
5212
5213 return 0;
5214 }
5215
5216 page = sg_page(sg);
5217 offset = sg->offset + qc->cursg_ofs;
5218
5219 /* get the current page and offset */
5220 page = nth_page(page, (offset >> PAGE_SHIFT));
5221 offset %= PAGE_SIZE;
5222
5223 /* don't overrun current sg */
5224 count = min(sg->length - qc->cursg_ofs, bytes);
5225
5226 /* don't cross page boundaries */
5227 count = min(count, (unsigned int)PAGE_SIZE - offset);
5228
5229 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5230
5231 if (PageHighMem(page)) {
5232 unsigned long flags;
5233
5234 /* FIXME: use bounce buffer */
5235 local_irq_save(flags);
5236 buf = kmap_atomic(page, KM_IRQ0);
5237
5238 /* do the actual data transfer */
5239 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5240
5241 kunmap_atomic(buf, KM_IRQ0);
5242 local_irq_restore(flags);
5243 } else {
5244 buf = page_address(page);
5245 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5246 }
5247
5248 bytes -= count;
5249 if ((count & 1) && bytes)
5250 bytes--;
5251 qc->curbytes += count;
5252 qc->cursg_ofs += count;
5253
5254 if (qc->cursg_ofs == sg->length) {
5255 qc->cursg = sg_next(qc->cursg);
5256 qc->cursg_ofs = 0;
5257 }
5258
5259 if (bytes)
5260 goto next_sg;
5261
5262 return 0;
5263 }
5264
5265 /**
5266 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5267 * @qc: Command on going
5268 *
5269 * Transfer Transfer data from/to the ATAPI device.
5270 *
5271 * LOCKING:
5272 * Inherited from caller.
5273 */
5274
5275 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5276 {
5277 struct ata_port *ap = qc->ap;
5278 struct ata_device *dev = qc->dev;
5279 unsigned int ireason, bc_lo, bc_hi, bytes;
5280 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5281
5282 /* Abuse qc->result_tf for temp storage of intermediate TF
5283 * here to save some kernel stack usage.
5284 * For normal completion, qc->result_tf is not relevant. For
5285 * error, qc->result_tf is later overwritten by ata_qc_complete().
5286 * So, the correctness of qc->result_tf is not affected.
5287 */
5288 ap->ops->tf_read(ap, &qc->result_tf);
5289 ireason = qc->result_tf.nsect;
5290 bc_lo = qc->result_tf.lbam;
5291 bc_hi = qc->result_tf.lbah;
5292 bytes = (bc_hi << 8) | bc_lo;
5293
5294 /* shall be cleared to zero, indicating xfer of data */
5295 if (ireason & (1 << 0))
5296 goto err_out;
5297
5298 /* make sure transfer direction matches expected */
5299 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5300 if (do_write != i_write)
5301 goto err_out;
5302
5303 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5304
5305 if (__atapi_pio_bytes(qc, bytes))
5306 goto err_out;
5307 ata_altstatus(ap); /* flush */
5308
5309 return;
5310
5311 err_out:
5312 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5313 qc->err_mask |= AC_ERR_HSM;
5314 ap->hsm_task_state = HSM_ST_ERR;
5315 }
5316
5317 /**
5318 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5319 * @ap: the target ata_port
5320 * @qc: qc on going
5321 *
5322 * RETURNS:
5323 * 1 if ok in workqueue, 0 otherwise.
5324 */
5325
5326 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5327 {
5328 if (qc->tf.flags & ATA_TFLAG_POLLING)
5329 return 1;
5330
5331 if (ap->hsm_task_state == HSM_ST_FIRST) {
5332 if (qc->tf.protocol == ATA_PROT_PIO &&
5333 (qc->tf.flags & ATA_TFLAG_WRITE))
5334 return 1;
5335
5336 if (ata_is_atapi(qc->tf.protocol) &&
5337 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5338 return 1;
5339 }
5340
5341 return 0;
5342 }
5343
5344 /**
5345 * ata_hsm_qc_complete - finish a qc running on standard HSM
5346 * @qc: Command to complete
5347 * @in_wq: 1 if called from workqueue, 0 otherwise
5348 *
5349 * Finish @qc which is running on standard HSM.
5350 *
5351 * LOCKING:
5352 * If @in_wq is zero, spin_lock_irqsave(host lock).
5353 * Otherwise, none on entry and grabs host lock.
5354 */
5355 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5356 {
5357 struct ata_port *ap = qc->ap;
5358 unsigned long flags;
5359
5360 if (ap->ops->error_handler) {
5361 if (in_wq) {
5362 spin_lock_irqsave(ap->lock, flags);
5363
5364 /* EH might have kicked in while host lock is
5365 * released.
5366 */
5367 qc = ata_qc_from_tag(ap, qc->tag);
5368 if (qc) {
5369 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5370 ap->ops->irq_on(ap);
5371 ata_qc_complete(qc);
5372 } else
5373 ata_port_freeze(ap);
5374 }
5375
5376 spin_unlock_irqrestore(ap->lock, flags);
5377 } else {
5378 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5379 ata_qc_complete(qc);
5380 else
5381 ata_port_freeze(ap);
5382 }
5383 } else {
5384 if (in_wq) {
5385 spin_lock_irqsave(ap->lock, flags);
5386 ap->ops->irq_on(ap);
5387 ata_qc_complete(qc);
5388 spin_unlock_irqrestore(ap->lock, flags);
5389 } else
5390 ata_qc_complete(qc);
5391 }
5392 }
5393
5394 /**
5395 * ata_hsm_move - move the HSM to the next state.
5396 * @ap: the target ata_port
5397 * @qc: qc on going
5398 * @status: current device status
5399 * @in_wq: 1 if called from workqueue, 0 otherwise
5400 *
5401 * RETURNS:
5402 * 1 when poll next status needed, 0 otherwise.
5403 */
5404 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5405 u8 status, int in_wq)
5406 {
5407 unsigned long flags = 0;
5408 int poll_next;
5409
5410 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5411
5412 /* Make sure ata_qc_issue_prot() does not throw things
5413 * like DMA polling into the workqueue. Notice that
5414 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5415 */
5416 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5417
5418 fsm_start:
5419 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5420 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5421
5422 switch (ap->hsm_task_state) {
5423 case HSM_ST_FIRST:
5424 /* Send first data block or PACKET CDB */
5425
5426 /* If polling, we will stay in the work queue after
5427 * sending the data. Otherwise, interrupt handler
5428 * takes over after sending the data.
5429 */
5430 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5431
5432 /* check device status */
5433 if (unlikely((status & ATA_DRQ) == 0)) {
5434 /* handle BSY=0, DRQ=0 as error */
5435 if (likely(status & (ATA_ERR | ATA_DF)))
5436 /* device stops HSM for abort/error */
5437 qc->err_mask |= AC_ERR_DEV;
5438 else
5439 /* HSM violation. Let EH handle this */
5440 qc->err_mask |= AC_ERR_HSM;
5441
5442 ap->hsm_task_state = HSM_ST_ERR;
5443 goto fsm_start;
5444 }
5445
5446 /* Device should not ask for data transfer (DRQ=1)
5447 * when it finds something wrong.
5448 * We ignore DRQ here and stop the HSM by
5449 * changing hsm_task_state to HSM_ST_ERR and
5450 * let the EH abort the command or reset the device.
5451 */
5452 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5453 /* Some ATAPI tape drives forget to clear the ERR bit
5454 * when doing the next command (mostly request sense).
5455 * We ignore ERR here to workaround and proceed sending
5456 * the CDB.
5457 */
5458 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5459 ata_port_printk(ap, KERN_WARNING,
5460 "DRQ=1 with device error, "
5461 "dev_stat 0x%X\n", status);
5462 qc->err_mask |= AC_ERR_HSM;
5463 ap->hsm_task_state = HSM_ST_ERR;
5464 goto fsm_start;
5465 }
5466 }
5467
5468 /* Send the CDB (atapi) or the first data block (ata pio out).
5469 * During the state transition, interrupt handler shouldn't
5470 * be invoked before the data transfer is complete and
5471 * hsm_task_state is changed. Hence, the following locking.
5472 */
5473 if (in_wq)
5474 spin_lock_irqsave(ap->lock, flags);
5475
5476 if (qc->tf.protocol == ATA_PROT_PIO) {
5477 /* PIO data out protocol.
5478 * send first data block.
5479 */
5480
5481 /* ata_pio_sectors() might change the state
5482 * to HSM_ST_LAST. so, the state is changed here
5483 * before ata_pio_sectors().
5484 */
5485 ap->hsm_task_state = HSM_ST;
5486 ata_pio_sectors(qc);
5487 } else
5488 /* send CDB */
5489 atapi_send_cdb(ap, qc);
5490
5491 if (in_wq)
5492 spin_unlock_irqrestore(ap->lock, flags);
5493
5494 /* if polling, ata_pio_task() handles the rest.
5495 * otherwise, interrupt handler takes over from here.
5496 */
5497 break;
5498
5499 case HSM_ST:
5500 /* complete command or read/write the data register */
5501 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5502 /* ATAPI PIO protocol */
5503 if ((status & ATA_DRQ) == 0) {
5504 /* No more data to transfer or device error.
5505 * Device error will be tagged in HSM_ST_LAST.
5506 */
5507 ap->hsm_task_state = HSM_ST_LAST;
5508 goto fsm_start;
5509 }
5510
5511 /* Device should not ask for data transfer (DRQ=1)
5512 * when it finds something wrong.
5513 * We ignore DRQ here and stop the HSM by
5514 * changing hsm_task_state to HSM_ST_ERR and
5515 * let the EH abort the command or reset the device.
5516 */
5517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5518 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5519 "device error, dev_stat 0x%X\n",
5520 status);
5521 qc->err_mask |= AC_ERR_HSM;
5522 ap->hsm_task_state = HSM_ST_ERR;
5523 goto fsm_start;
5524 }
5525
5526 atapi_pio_bytes(qc);
5527
5528 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5529 /* bad ireason reported by device */
5530 goto fsm_start;
5531
5532 } else {
5533 /* ATA PIO protocol */
5534 if (unlikely((status & ATA_DRQ) == 0)) {
5535 /* handle BSY=0, DRQ=0 as error */
5536 if (likely(status & (ATA_ERR | ATA_DF)))
5537 /* device stops HSM for abort/error */
5538 qc->err_mask |= AC_ERR_DEV;
5539 else
5540 /* HSM violation. Let EH handle this.
5541 * Phantom devices also trigger this
5542 * condition. Mark hint.
5543 */
5544 qc->err_mask |= AC_ERR_HSM |
5545 AC_ERR_NODEV_HINT;
5546
5547 ap->hsm_task_state = HSM_ST_ERR;
5548 goto fsm_start;
5549 }
5550
5551 /* For PIO reads, some devices may ask for
5552 * data transfer (DRQ=1) alone with ERR=1.
5553 * We respect DRQ here and transfer one
5554 * block of junk data before changing the
5555 * hsm_task_state to HSM_ST_ERR.
5556 *
5557 * For PIO writes, ERR=1 DRQ=1 doesn't make
5558 * sense since the data block has been
5559 * transferred to the device.
5560 */
5561 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5562 /* data might be corrputed */
5563 qc->err_mask |= AC_ERR_DEV;
5564
5565 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5566 ata_pio_sectors(qc);
5567 status = ata_wait_idle(ap);
5568 }
5569
5570 if (status & (ATA_BUSY | ATA_DRQ))
5571 qc->err_mask |= AC_ERR_HSM;
5572
5573 /* ata_pio_sectors() might change the
5574 * state to HSM_ST_LAST. so, the state
5575 * is changed after ata_pio_sectors().
5576 */
5577 ap->hsm_task_state = HSM_ST_ERR;
5578 goto fsm_start;
5579 }
5580
5581 ata_pio_sectors(qc);
5582
5583 if (ap->hsm_task_state == HSM_ST_LAST &&
5584 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5585 /* all data read */
5586 status = ata_wait_idle(ap);
5587 goto fsm_start;
5588 }
5589 }
5590
5591 poll_next = 1;
5592 break;
5593
5594 case HSM_ST_LAST:
5595 if (unlikely(!ata_ok(status))) {
5596 qc->err_mask |= __ac_err_mask(status);
5597 ap->hsm_task_state = HSM_ST_ERR;
5598 goto fsm_start;
5599 }
5600
5601 /* no more data to transfer */
5602 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5603 ap->print_id, qc->dev->devno, status);
5604
5605 WARN_ON(qc->err_mask);
5606
5607 ap->hsm_task_state = HSM_ST_IDLE;
5608
5609 /* complete taskfile transaction */
5610 ata_hsm_qc_complete(qc, in_wq);
5611
5612 poll_next = 0;
5613 break;
5614
5615 case HSM_ST_ERR:
5616 /* make sure qc->err_mask is available to
5617 * know what's wrong and recover
5618 */
5619 WARN_ON(qc->err_mask == 0);
5620
5621 ap->hsm_task_state = HSM_ST_IDLE;
5622
5623 /* complete taskfile transaction */
5624 ata_hsm_qc_complete(qc, in_wq);
5625
5626 poll_next = 0;
5627 break;
5628 default:
5629 poll_next = 0;
5630 BUG();
5631 }
5632
5633 return poll_next;
5634 }
5635
5636 static void ata_pio_task(struct work_struct *work)
5637 {
5638 struct ata_port *ap =
5639 container_of(work, struct ata_port, port_task.work);
5640 struct ata_queued_cmd *qc = ap->port_task_data;
5641 u8 status;
5642 int poll_next;
5643
5644 fsm_start:
5645 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5646
5647 /*
5648 * This is purely heuristic. This is a fast path.
5649 * Sometimes when we enter, BSY will be cleared in
5650 * a chk-status or two. If not, the drive is probably seeking
5651 * or something. Snooze for a couple msecs, then
5652 * chk-status again. If still busy, queue delayed work.
5653 */
5654 status = ata_busy_wait(ap, ATA_BUSY, 5);
5655 if (status & ATA_BUSY) {
5656 msleep(2);
5657 status = ata_busy_wait(ap, ATA_BUSY, 10);
5658 if (status & ATA_BUSY) {
5659 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5660 return;
5661 }
5662 }
5663
5664 /* move the HSM */
5665 poll_next = ata_hsm_move(ap, qc, status, 1);
5666
5667 /* another command or interrupt handler
5668 * may be running at this point.
5669 */
5670 if (poll_next)
5671 goto fsm_start;
5672 }
5673
5674 /**
5675 * ata_qc_new - Request an available ATA command, for queueing
5676 * @ap: Port associated with device @dev
5677 * @dev: Device from whom we request an available command structure
5678 *
5679 * LOCKING:
5680 * None.
5681 */
5682
5683 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5684 {
5685 struct ata_queued_cmd *qc = NULL;
5686 unsigned int i;
5687
5688 /* no command while frozen */
5689 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5690 return NULL;
5691
5692 /* the last tag is reserved for internal command. */
5693 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5694 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5695 qc = __ata_qc_from_tag(ap, i);
5696 break;
5697 }
5698
5699 if (qc)
5700 qc->tag = i;
5701
5702 return qc;
5703 }
5704
5705 /**
5706 * ata_qc_new_init - Request an available ATA command, and initialize it
5707 * @dev: Device from whom we request an available command structure
5708 *
5709 * LOCKING:
5710 * None.
5711 */
5712
5713 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5714 {
5715 struct ata_port *ap = dev->link->ap;
5716 struct ata_queued_cmd *qc;
5717
5718 qc = ata_qc_new(ap);
5719 if (qc) {
5720 qc->scsicmd = NULL;
5721 qc->ap = ap;
5722 qc->dev = dev;
5723
5724 ata_qc_reinit(qc);
5725 }
5726
5727 return qc;
5728 }
5729
5730 /**
5731 * ata_qc_free - free unused ata_queued_cmd
5732 * @qc: Command to complete
5733 *
5734 * Designed to free unused ata_queued_cmd object
5735 * in case something prevents using it.
5736 *
5737 * LOCKING:
5738 * spin_lock_irqsave(host lock)
5739 */
5740 void ata_qc_free(struct ata_queued_cmd *qc)
5741 {
5742 struct ata_port *ap = qc->ap;
5743 unsigned int tag;
5744
5745 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5746
5747 qc->flags = 0;
5748 tag = qc->tag;
5749 if (likely(ata_tag_valid(tag))) {
5750 qc->tag = ATA_TAG_POISON;
5751 clear_bit(tag, &ap->qc_allocated);
5752 }
5753 }
5754
5755 void __ata_qc_complete(struct ata_queued_cmd *qc)
5756 {
5757 struct ata_port *ap = qc->ap;
5758 struct ata_link *link = qc->dev->link;
5759
5760 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5761 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5762
5763 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5764 ata_sg_clean(qc);
5765
5766 /* command should be marked inactive atomically with qc completion */
5767 if (qc->tf.protocol == ATA_PROT_NCQ) {
5768 link->sactive &= ~(1 << qc->tag);
5769 if (!link->sactive)
5770 ap->nr_active_links--;
5771 } else {
5772 link->active_tag = ATA_TAG_POISON;
5773 ap->nr_active_links--;
5774 }
5775
5776 /* clear exclusive status */
5777 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5778 ap->excl_link == link))
5779 ap->excl_link = NULL;
5780
5781 /* atapi: mark qc as inactive to prevent the interrupt handler
5782 * from completing the command twice later, before the error handler
5783 * is called. (when rc != 0 and atapi request sense is needed)
5784 */
5785 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5786 ap->qc_active &= ~(1 << qc->tag);
5787
5788 /* call completion callback */
5789 qc->complete_fn(qc);
5790 }
5791
5792 static void fill_result_tf(struct ata_queued_cmd *qc)
5793 {
5794 struct ata_port *ap = qc->ap;
5795
5796 qc->result_tf.flags = qc->tf.flags;
5797 ap->ops->tf_read(ap, &qc->result_tf);
5798 }
5799
5800 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5801 {
5802 struct ata_device *dev = qc->dev;
5803
5804 if (ata_tag_internal(qc->tag))
5805 return;
5806
5807 if (ata_is_nodata(qc->tf.protocol))
5808 return;
5809
5810 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5811 return;
5812
5813 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5814 }
5815
5816 /**
5817 * ata_qc_complete - Complete an active ATA command
5818 * @qc: Command to complete
5819 * @err_mask: ATA Status register contents
5820 *
5821 * Indicate to the mid and upper layers that an ATA
5822 * command has completed, with either an ok or not-ok status.
5823 *
5824 * LOCKING:
5825 * spin_lock_irqsave(host lock)
5826 */
5827 void ata_qc_complete(struct ata_queued_cmd *qc)
5828 {
5829 struct ata_port *ap = qc->ap;
5830
5831 /* XXX: New EH and old EH use different mechanisms to
5832 * synchronize EH with regular execution path.
5833 *
5834 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5835 * Normal execution path is responsible for not accessing a
5836 * failed qc. libata core enforces the rule by returning NULL
5837 * from ata_qc_from_tag() for failed qcs.
5838 *
5839 * Old EH depends on ata_qc_complete() nullifying completion
5840 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5841 * not synchronize with interrupt handler. Only PIO task is
5842 * taken care of.
5843 */
5844 if (ap->ops->error_handler) {
5845 struct ata_device *dev = qc->dev;
5846 struct ata_eh_info *ehi = &dev->link->eh_info;
5847
5848 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5849
5850 if (unlikely(qc->err_mask))
5851 qc->flags |= ATA_QCFLAG_FAILED;
5852
5853 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5854 if (!ata_tag_internal(qc->tag)) {
5855 /* always fill result TF for failed qc */
5856 fill_result_tf(qc);
5857 ata_qc_schedule_eh(qc);
5858 return;
5859 }
5860 }
5861
5862 /* read result TF if requested */
5863 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5864 fill_result_tf(qc);
5865
5866 /* Some commands need post-processing after successful
5867 * completion.
5868 */
5869 switch (qc->tf.command) {
5870 case ATA_CMD_SET_FEATURES:
5871 if (qc->tf.feature != SETFEATURES_WC_ON &&
5872 qc->tf.feature != SETFEATURES_WC_OFF)
5873 break;
5874 /* fall through */
5875 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5876 case ATA_CMD_SET_MULTI: /* multi_count changed */
5877 /* revalidate device */
5878 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5879 ata_port_schedule_eh(ap);
5880 break;
5881
5882 case ATA_CMD_SLEEP:
5883 dev->flags |= ATA_DFLAG_SLEEPING;
5884 break;
5885 }
5886
5887 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5888 ata_verify_xfer(qc);
5889
5890 __ata_qc_complete(qc);
5891 } else {
5892 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5893 return;
5894
5895 /* read result TF if failed or requested */
5896 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5897 fill_result_tf(qc);
5898
5899 __ata_qc_complete(qc);
5900 }
5901 }
5902
5903 /**
5904 * ata_qc_complete_multiple - Complete multiple qcs successfully
5905 * @ap: port in question
5906 * @qc_active: new qc_active mask
5907 * @finish_qc: LLDD callback invoked before completing a qc
5908 *
5909 * Complete in-flight commands. This functions is meant to be
5910 * called from low-level driver's interrupt routine to complete
5911 * requests normally. ap->qc_active and @qc_active is compared
5912 * and commands are completed accordingly.
5913 *
5914 * LOCKING:
5915 * spin_lock_irqsave(host lock)
5916 *
5917 * RETURNS:
5918 * Number of completed commands on success, -errno otherwise.
5919 */
5920 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5921 void (*finish_qc)(struct ata_queued_cmd *))
5922 {
5923 int nr_done = 0;
5924 u32 done_mask;
5925 int i;
5926
5927 done_mask = ap->qc_active ^ qc_active;
5928
5929 if (unlikely(done_mask & qc_active)) {
5930 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5931 "(%08x->%08x)\n", ap->qc_active, qc_active);
5932 return -EINVAL;
5933 }
5934
5935 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5936 struct ata_queued_cmd *qc;
5937
5938 if (!(done_mask & (1 << i)))
5939 continue;
5940
5941 if ((qc = ata_qc_from_tag(ap, i))) {
5942 if (finish_qc)
5943 finish_qc(qc);
5944 ata_qc_complete(qc);
5945 nr_done++;
5946 }
5947 }
5948
5949 return nr_done;
5950 }
5951
5952 /**
5953 * ata_qc_issue - issue taskfile to device
5954 * @qc: command to issue to device
5955 *
5956 * Prepare an ATA command to submission to device.
5957 * This includes mapping the data into a DMA-able
5958 * area, filling in the S/G table, and finally
5959 * writing the taskfile to hardware, starting the command.
5960 *
5961 * LOCKING:
5962 * spin_lock_irqsave(host lock)
5963 */
5964 void ata_qc_issue(struct ata_queued_cmd *qc)
5965 {
5966 struct ata_port *ap = qc->ap;
5967 struct ata_link *link = qc->dev->link;
5968 u8 prot = qc->tf.protocol;
5969
5970 /* Make sure only one non-NCQ command is outstanding. The
5971 * check is skipped for old EH because it reuses active qc to
5972 * request ATAPI sense.
5973 */
5974 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5975
5976 if (prot == ATA_PROT_NCQ) {
5977 WARN_ON(link->sactive & (1 << qc->tag));
5978
5979 if (!link->sactive)
5980 ap->nr_active_links++;
5981 link->sactive |= 1 << qc->tag;
5982 } else {
5983 WARN_ON(link->sactive);
5984
5985 ap->nr_active_links++;
5986 link->active_tag = qc->tag;
5987 }
5988
5989 qc->flags |= ATA_QCFLAG_ACTIVE;
5990 ap->qc_active |= 1 << qc->tag;
5991
5992 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5993 (ap->flags & ATA_FLAG_PIO_DMA))) {
5994 if (qc->flags & ATA_QCFLAG_SG) {
5995 if (ata_sg_setup(qc))
5996 goto sg_err;
5997 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5998 if (ata_sg_setup_one(qc))
5999 goto sg_err;
6000 }
6001 } else {
6002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6003 }
6004
6005 /* if device is sleeping, schedule softreset and abort the link */
6006 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6007 link->eh_info.action |= ATA_EH_SOFTRESET;
6008 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6009 ata_link_abort(link);
6010 return;
6011 }
6012
6013 ap->ops->qc_prep(qc);
6014
6015 qc->err_mask |= ap->ops->qc_issue(qc);
6016 if (unlikely(qc->err_mask))
6017 goto err;
6018 return;
6019
6020 sg_err:
6021 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6022 qc->err_mask |= AC_ERR_SYSTEM;
6023 err:
6024 ata_qc_complete(qc);
6025 }
6026
6027 /**
6028 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6029 * @qc: command to issue to device
6030 *
6031 * Using various libata functions and hooks, this function
6032 * starts an ATA command. ATA commands are grouped into
6033 * classes called "protocols", and issuing each type of protocol
6034 * is slightly different.
6035 *
6036 * May be used as the qc_issue() entry in ata_port_operations.
6037 *
6038 * LOCKING:
6039 * spin_lock_irqsave(host lock)
6040 *
6041 * RETURNS:
6042 * Zero on success, AC_ERR_* mask on failure
6043 */
6044
6045 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6046 {
6047 struct ata_port *ap = qc->ap;
6048
6049 /* Use polling pio if the LLD doesn't handle
6050 * interrupt driven pio and atapi CDB interrupt.
6051 */
6052 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6053 switch (qc->tf.protocol) {
6054 case ATA_PROT_PIO:
6055 case ATA_PROT_NODATA:
6056 case ATA_PROT_ATAPI:
6057 case ATA_PROT_ATAPI_NODATA:
6058 qc->tf.flags |= ATA_TFLAG_POLLING;
6059 break;
6060 case ATA_PROT_ATAPI_DMA:
6061 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6062 /* see ata_dma_blacklisted() */
6063 BUG();
6064 break;
6065 default:
6066 break;
6067 }
6068 }
6069
6070 /* select the device */
6071 ata_dev_select(ap, qc->dev->devno, 1, 0);
6072
6073 /* start the command */
6074 switch (qc->tf.protocol) {
6075 case ATA_PROT_NODATA:
6076 if (qc->tf.flags & ATA_TFLAG_POLLING)
6077 ata_qc_set_polling(qc);
6078
6079 ata_tf_to_host(ap, &qc->tf);
6080 ap->hsm_task_state = HSM_ST_LAST;
6081
6082 if (qc->tf.flags & ATA_TFLAG_POLLING)
6083 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6084
6085 break;
6086
6087 case ATA_PROT_DMA:
6088 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6089
6090 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6091 ap->ops->bmdma_setup(qc); /* set up bmdma */
6092 ap->ops->bmdma_start(qc); /* initiate bmdma */
6093 ap->hsm_task_state = HSM_ST_LAST;
6094 break;
6095
6096 case ATA_PROT_PIO:
6097 if (qc->tf.flags & ATA_TFLAG_POLLING)
6098 ata_qc_set_polling(qc);
6099
6100 ata_tf_to_host(ap, &qc->tf);
6101
6102 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6103 /* PIO data out protocol */
6104 ap->hsm_task_state = HSM_ST_FIRST;
6105 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6106
6107 /* always send first data block using
6108 * the ata_pio_task() codepath.
6109 */
6110 } else {
6111 /* PIO data in protocol */
6112 ap->hsm_task_state = HSM_ST;
6113
6114 if (qc->tf.flags & ATA_TFLAG_POLLING)
6115 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6116
6117 /* if polling, ata_pio_task() handles the rest.
6118 * otherwise, interrupt handler takes over from here.
6119 */
6120 }
6121
6122 break;
6123
6124 case ATA_PROT_ATAPI:
6125 case ATA_PROT_ATAPI_NODATA:
6126 if (qc->tf.flags & ATA_TFLAG_POLLING)
6127 ata_qc_set_polling(qc);
6128
6129 ata_tf_to_host(ap, &qc->tf);
6130
6131 ap->hsm_task_state = HSM_ST_FIRST;
6132
6133 /* send cdb by polling if no cdb interrupt */
6134 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6135 (qc->tf.flags & ATA_TFLAG_POLLING))
6136 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6137 break;
6138
6139 case ATA_PROT_ATAPI_DMA:
6140 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6141
6142 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6143 ap->ops->bmdma_setup(qc); /* set up bmdma */
6144 ap->hsm_task_state = HSM_ST_FIRST;
6145
6146 /* send cdb by polling if no cdb interrupt */
6147 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6148 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6149 break;
6150
6151 default:
6152 WARN_ON(1);
6153 return AC_ERR_SYSTEM;
6154 }
6155
6156 return 0;
6157 }
6158
6159 /**
6160 * ata_host_intr - Handle host interrupt for given (port, task)
6161 * @ap: Port on which interrupt arrived (possibly...)
6162 * @qc: Taskfile currently active in engine
6163 *
6164 * Handle host interrupt for given queued command. Currently,
6165 * only DMA interrupts are handled. All other commands are
6166 * handled via polling with interrupts disabled (nIEN bit).
6167 *
6168 * LOCKING:
6169 * spin_lock_irqsave(host lock)
6170 *
6171 * RETURNS:
6172 * One if interrupt was handled, zero if not (shared irq).
6173 */
6174
6175 inline unsigned int ata_host_intr(struct ata_port *ap,
6176 struct ata_queued_cmd *qc)
6177 {
6178 struct ata_eh_info *ehi = &ap->link.eh_info;
6179 u8 status, host_stat = 0;
6180
6181 VPRINTK("ata%u: protocol %d task_state %d\n",
6182 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6183
6184 /* Check whether we are expecting interrupt in this state */
6185 switch (ap->hsm_task_state) {
6186 case HSM_ST_FIRST:
6187 /* Some pre-ATAPI-4 devices assert INTRQ
6188 * at this state when ready to receive CDB.
6189 */
6190
6191 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6192 * The flag was turned on only for atapi devices. No
6193 * need to check ata_is_atapi(qc->tf.protocol) again.
6194 */
6195 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6196 goto idle_irq;
6197 break;
6198 case HSM_ST_LAST:
6199 if (qc->tf.protocol == ATA_PROT_DMA ||
6200 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6201 /* check status of DMA engine */
6202 host_stat = ap->ops->bmdma_status(ap);
6203 VPRINTK("ata%u: host_stat 0x%X\n",
6204 ap->print_id, host_stat);
6205
6206 /* if it's not our irq... */
6207 if (!(host_stat & ATA_DMA_INTR))
6208 goto idle_irq;
6209
6210 /* before we do anything else, clear DMA-Start bit */
6211 ap->ops->bmdma_stop(qc);
6212
6213 if (unlikely(host_stat & ATA_DMA_ERR)) {
6214 /* error when transfering data to/from memory */
6215 qc->err_mask |= AC_ERR_HOST_BUS;
6216 ap->hsm_task_state = HSM_ST_ERR;
6217 }
6218 }
6219 break;
6220 case HSM_ST:
6221 break;
6222 default:
6223 goto idle_irq;
6224 }
6225
6226 /* check altstatus */
6227 status = ata_altstatus(ap);
6228 if (status & ATA_BUSY)
6229 goto idle_irq;
6230
6231 /* check main status, clearing INTRQ */
6232 status = ata_chk_status(ap);
6233 if (unlikely(status & ATA_BUSY))
6234 goto idle_irq;
6235
6236 /* ack bmdma irq events */
6237 ap->ops->irq_clear(ap);
6238
6239 ata_hsm_move(ap, qc, status, 0);
6240
6241 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6242 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6243 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6244
6245 return 1; /* irq handled */
6246
6247 idle_irq:
6248 ap->stats.idle_irq++;
6249
6250 #ifdef ATA_IRQ_TRAP
6251 if ((ap->stats.idle_irq % 1000) == 0) {
6252 ata_chk_status(ap);
6253 ap->ops->irq_clear(ap);
6254 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6255 return 1;
6256 }
6257 #endif
6258 return 0; /* irq not handled */
6259 }
6260
6261 /**
6262 * ata_interrupt - Default ATA host interrupt handler
6263 * @irq: irq line (unused)
6264 * @dev_instance: pointer to our ata_host information structure
6265 *
6266 * Default interrupt handler for PCI IDE devices. Calls
6267 * ata_host_intr() for each port that is not disabled.
6268 *
6269 * LOCKING:
6270 * Obtains host lock during operation.
6271 *
6272 * RETURNS:
6273 * IRQ_NONE or IRQ_HANDLED.
6274 */
6275
6276 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6277 {
6278 struct ata_host *host = dev_instance;
6279 unsigned int i;
6280 unsigned int handled = 0;
6281 unsigned long flags;
6282
6283 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6284 spin_lock_irqsave(&host->lock, flags);
6285
6286 for (i = 0; i < host->n_ports; i++) {
6287 struct ata_port *ap;
6288
6289 ap = host->ports[i];
6290 if (ap &&
6291 !(ap->flags & ATA_FLAG_DISABLED)) {
6292 struct ata_queued_cmd *qc;
6293
6294 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6295 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6296 (qc->flags & ATA_QCFLAG_ACTIVE))
6297 handled |= ata_host_intr(ap, qc);
6298 }
6299 }
6300
6301 spin_unlock_irqrestore(&host->lock, flags);
6302
6303 return IRQ_RETVAL(handled);
6304 }
6305
6306 /**
6307 * sata_scr_valid - test whether SCRs are accessible
6308 * @link: ATA link to test SCR accessibility for
6309 *
6310 * Test whether SCRs are accessible for @link.
6311 *
6312 * LOCKING:
6313 * None.
6314 *
6315 * RETURNS:
6316 * 1 if SCRs are accessible, 0 otherwise.
6317 */
6318 int sata_scr_valid(struct ata_link *link)
6319 {
6320 struct ata_port *ap = link->ap;
6321
6322 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6323 }
6324
6325 /**
6326 * sata_scr_read - read SCR register of the specified port
6327 * @link: ATA link to read SCR for
6328 * @reg: SCR to read
6329 * @val: Place to store read value
6330 *
6331 * Read SCR register @reg of @link into *@val. This function is
6332 * guaranteed to succeed if @link is ap->link, the cable type of
6333 * the port is SATA and the port implements ->scr_read.
6334 *
6335 * LOCKING:
6336 * None if @link is ap->link. Kernel thread context otherwise.
6337 *
6338 * RETURNS:
6339 * 0 on success, negative errno on failure.
6340 */
6341 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6342 {
6343 if (ata_is_host_link(link)) {
6344 struct ata_port *ap = link->ap;
6345
6346 if (sata_scr_valid(link))
6347 return ap->ops->scr_read(ap, reg, val);
6348 return -EOPNOTSUPP;
6349 }
6350
6351 return sata_pmp_scr_read(link, reg, val);
6352 }
6353
6354 /**
6355 * sata_scr_write - write SCR register of the specified port
6356 * @link: ATA link to write SCR for
6357 * @reg: SCR to write
6358 * @val: value to write
6359 *
6360 * Write @val to SCR register @reg of @link. This function is
6361 * guaranteed to succeed if @link is ap->link, the cable type of
6362 * the port is SATA and the port implements ->scr_read.
6363 *
6364 * LOCKING:
6365 * None if @link is ap->link. Kernel thread context otherwise.
6366 *
6367 * RETURNS:
6368 * 0 on success, negative errno on failure.
6369 */
6370 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6371 {
6372 if (ata_is_host_link(link)) {
6373 struct ata_port *ap = link->ap;
6374
6375 if (sata_scr_valid(link))
6376 return ap->ops->scr_write(ap, reg, val);
6377 return -EOPNOTSUPP;
6378 }
6379
6380 return sata_pmp_scr_write(link, reg, val);
6381 }
6382
6383 /**
6384 * sata_scr_write_flush - write SCR register of the specified port and flush
6385 * @link: ATA link to write SCR for
6386 * @reg: SCR to write
6387 * @val: value to write
6388 *
6389 * This function is identical to sata_scr_write() except that this
6390 * function performs flush after writing to the register.
6391 *
6392 * LOCKING:
6393 * None if @link is ap->link. Kernel thread context otherwise.
6394 *
6395 * RETURNS:
6396 * 0 on success, negative errno on failure.
6397 */
6398 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6399 {
6400 if (ata_is_host_link(link)) {
6401 struct ata_port *ap = link->ap;
6402 int rc;
6403
6404 if (sata_scr_valid(link)) {
6405 rc = ap->ops->scr_write(ap, reg, val);
6406 if (rc == 0)
6407 rc = ap->ops->scr_read(ap, reg, &val);
6408 return rc;
6409 }
6410 return -EOPNOTSUPP;
6411 }
6412
6413 return sata_pmp_scr_write(link, reg, val);
6414 }
6415
6416 /**
6417 * ata_link_online - test whether the given link is online
6418 * @link: ATA link to test
6419 *
6420 * Test whether @link is online. Note that this function returns
6421 * 0 if online status of @link cannot be obtained, so
6422 * ata_link_online(link) != !ata_link_offline(link).
6423 *
6424 * LOCKING:
6425 * None.
6426 *
6427 * RETURNS:
6428 * 1 if the port online status is available and online.
6429 */
6430 int ata_link_online(struct ata_link *link)
6431 {
6432 u32 sstatus;
6433
6434 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6435 (sstatus & 0xf) == 0x3)
6436 return 1;
6437 return 0;
6438 }
6439
6440 /**
6441 * ata_link_offline - test whether the given link is offline
6442 * @link: ATA link to test
6443 *
6444 * Test whether @link is offline. Note that this function
6445 * returns 0 if offline status of @link cannot be obtained, so
6446 * ata_link_online(link) != !ata_link_offline(link).
6447 *
6448 * LOCKING:
6449 * None.
6450 *
6451 * RETURNS:
6452 * 1 if the port offline status is available and offline.
6453 */
6454 int ata_link_offline(struct ata_link *link)
6455 {
6456 u32 sstatus;
6457
6458 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6459 (sstatus & 0xf) != 0x3)
6460 return 1;
6461 return 0;
6462 }
6463
6464 int ata_flush_cache(struct ata_device *dev)
6465 {
6466 unsigned int err_mask;
6467 u8 cmd;
6468
6469 if (!ata_try_flush_cache(dev))
6470 return 0;
6471
6472 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6473 cmd = ATA_CMD_FLUSH_EXT;
6474 else
6475 cmd = ATA_CMD_FLUSH;
6476
6477 /* This is wrong. On a failed flush we get back the LBA of the lost
6478 sector and we should (assuming it wasn't aborted as unknown) issue
6479 a further flush command to continue the writeback until it
6480 does not error */
6481 err_mask = ata_do_simple_cmd(dev, cmd);
6482 if (err_mask) {
6483 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6484 return -EIO;
6485 }
6486
6487 return 0;
6488 }
6489
6490 #ifdef CONFIG_PM
6491 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6492 unsigned int action, unsigned int ehi_flags,
6493 int wait)
6494 {
6495 unsigned long flags;
6496 int i, rc;
6497
6498 for (i = 0; i < host->n_ports; i++) {
6499 struct ata_port *ap = host->ports[i];
6500 struct ata_link *link;
6501
6502 /* Previous resume operation might still be in
6503 * progress. Wait for PM_PENDING to clear.
6504 */
6505 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6506 ata_port_wait_eh(ap);
6507 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6508 }
6509
6510 /* request PM ops to EH */
6511 spin_lock_irqsave(ap->lock, flags);
6512
6513 ap->pm_mesg = mesg;
6514 if (wait) {
6515 rc = 0;
6516 ap->pm_result = &rc;
6517 }
6518
6519 ap->pflags |= ATA_PFLAG_PM_PENDING;
6520 __ata_port_for_each_link(link, ap) {
6521 link->eh_info.action |= action;
6522 link->eh_info.flags |= ehi_flags;
6523 }
6524
6525 ata_port_schedule_eh(ap);
6526
6527 spin_unlock_irqrestore(ap->lock, flags);
6528
6529 /* wait and check result */
6530 if (wait) {
6531 ata_port_wait_eh(ap);
6532 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6533 if (rc)
6534 return rc;
6535 }
6536 }
6537
6538 return 0;
6539 }
6540
6541 /**
6542 * ata_host_suspend - suspend host
6543 * @host: host to suspend
6544 * @mesg: PM message
6545 *
6546 * Suspend @host. Actual operation is performed by EH. This
6547 * function requests EH to perform PM operations and waits for EH
6548 * to finish.
6549 *
6550 * LOCKING:
6551 * Kernel thread context (may sleep).
6552 *
6553 * RETURNS:
6554 * 0 on success, -errno on failure.
6555 */
6556 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6557 {
6558 int rc;
6559
6560 /*
6561 * disable link pm on all ports before requesting
6562 * any pm activity
6563 */
6564 ata_lpm_enable(host);
6565
6566 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6567 if (rc == 0)
6568 host->dev->power.power_state = mesg;
6569 return rc;
6570 }
6571
6572 /**
6573 * ata_host_resume - resume host
6574 * @host: host to resume
6575 *
6576 * Resume @host. Actual operation is performed by EH. This
6577 * function requests EH to perform PM operations and returns.
6578 * Note that all resume operations are performed parallely.
6579 *
6580 * LOCKING:
6581 * Kernel thread context (may sleep).
6582 */
6583 void ata_host_resume(struct ata_host *host)
6584 {
6585 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6586 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6587 host->dev->power.power_state = PMSG_ON;
6588
6589 /* reenable link pm */
6590 ata_lpm_disable(host);
6591 }
6592 #endif
6593
6594 /**
6595 * ata_port_start - Set port up for dma.
6596 * @ap: Port to initialize
6597 *
6598 * Called just after data structures for each port are
6599 * initialized. Allocates space for PRD table.
6600 *
6601 * May be used as the port_start() entry in ata_port_operations.
6602 *
6603 * LOCKING:
6604 * Inherited from caller.
6605 */
6606 int ata_port_start(struct ata_port *ap)
6607 {
6608 struct device *dev = ap->dev;
6609 int rc;
6610
6611 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6612 GFP_KERNEL);
6613 if (!ap->prd)
6614 return -ENOMEM;
6615
6616 rc = ata_pad_alloc(ap, dev);
6617 if (rc)
6618 return rc;
6619
6620 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6621 (unsigned long long)ap->prd_dma);
6622 return 0;
6623 }
6624
6625 /**
6626 * ata_dev_init - Initialize an ata_device structure
6627 * @dev: Device structure to initialize
6628 *
6629 * Initialize @dev in preparation for probing.
6630 *
6631 * LOCKING:
6632 * Inherited from caller.
6633 */
6634 void ata_dev_init(struct ata_device *dev)
6635 {
6636 struct ata_link *link = dev->link;
6637 struct ata_port *ap = link->ap;
6638 unsigned long flags;
6639
6640 /* SATA spd limit is bound to the first device */
6641 link->sata_spd_limit = link->hw_sata_spd_limit;
6642 link->sata_spd = 0;
6643
6644 /* High bits of dev->flags are used to record warm plug
6645 * requests which occur asynchronously. Synchronize using
6646 * host lock.
6647 */
6648 spin_lock_irqsave(ap->lock, flags);
6649 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6650 dev->horkage = 0;
6651 spin_unlock_irqrestore(ap->lock, flags);
6652
6653 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6654 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6655 dev->pio_mask = UINT_MAX;
6656 dev->mwdma_mask = UINT_MAX;
6657 dev->udma_mask = UINT_MAX;
6658 }
6659
6660 /**
6661 * ata_link_init - Initialize an ata_link structure
6662 * @ap: ATA port link is attached to
6663 * @link: Link structure to initialize
6664 * @pmp: Port multiplier port number
6665 *
6666 * Initialize @link.
6667 *
6668 * LOCKING:
6669 * Kernel thread context (may sleep)
6670 */
6671 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6672 {
6673 int i;
6674
6675 /* clear everything except for devices */
6676 memset(link, 0, offsetof(struct ata_link, device[0]));
6677
6678 link->ap = ap;
6679 link->pmp = pmp;
6680 link->active_tag = ATA_TAG_POISON;
6681 link->hw_sata_spd_limit = UINT_MAX;
6682
6683 /* can't use iterator, ap isn't initialized yet */
6684 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6685 struct ata_device *dev = &link->device[i];
6686
6687 dev->link = link;
6688 dev->devno = dev - link->device;
6689 ata_dev_init(dev);
6690 }
6691 }
6692
6693 /**
6694 * sata_link_init_spd - Initialize link->sata_spd_limit
6695 * @link: Link to configure sata_spd_limit for
6696 *
6697 * Initialize @link->[hw_]sata_spd_limit to the currently
6698 * configured value.
6699 *
6700 * LOCKING:
6701 * Kernel thread context (may sleep).
6702 *
6703 * RETURNS:
6704 * 0 on success, -errno on failure.
6705 */
6706 int sata_link_init_spd(struct ata_link *link)
6707 {
6708 u32 scontrol, spd;
6709 int rc;
6710
6711 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6712 if (rc)
6713 return rc;
6714
6715 spd = (scontrol >> 4) & 0xf;
6716 if (spd)
6717 link->hw_sata_spd_limit &= (1 << spd) - 1;
6718
6719 link->sata_spd_limit = link->hw_sata_spd_limit;
6720
6721 return 0;
6722 }
6723
6724 /**
6725 * ata_port_alloc - allocate and initialize basic ATA port resources
6726 * @host: ATA host this allocated port belongs to
6727 *
6728 * Allocate and initialize basic ATA port resources.
6729 *
6730 * RETURNS:
6731 * Allocate ATA port on success, NULL on failure.
6732 *
6733 * LOCKING:
6734 * Inherited from calling layer (may sleep).
6735 */
6736 struct ata_port *ata_port_alloc(struct ata_host *host)
6737 {
6738 struct ata_port *ap;
6739
6740 DPRINTK("ENTER\n");
6741
6742 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6743 if (!ap)
6744 return NULL;
6745
6746 ap->pflags |= ATA_PFLAG_INITIALIZING;
6747 ap->lock = &host->lock;
6748 ap->flags = ATA_FLAG_DISABLED;
6749 ap->print_id = -1;
6750 ap->ctl = ATA_DEVCTL_OBS;
6751 ap->host = host;
6752 ap->dev = host->dev;
6753 ap->last_ctl = 0xFF;
6754
6755 #if defined(ATA_VERBOSE_DEBUG)
6756 /* turn on all debugging levels */
6757 ap->msg_enable = 0x00FF;
6758 #elif defined(ATA_DEBUG)
6759 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6760 #else
6761 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6762 #endif
6763
6764 INIT_DELAYED_WORK(&ap->port_task, NULL);
6765 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6766 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6767 INIT_LIST_HEAD(&ap->eh_done_q);
6768 init_waitqueue_head(&ap->eh_wait_q);
6769 init_timer_deferrable(&ap->fastdrain_timer);
6770 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6771 ap->fastdrain_timer.data = (unsigned long)ap;
6772
6773 ap->cbl = ATA_CBL_NONE;
6774
6775 ata_link_init(ap, &ap->link, 0);
6776
6777 #ifdef ATA_IRQ_TRAP
6778 ap->stats.unhandled_irq = 1;
6779 ap->stats.idle_irq = 1;
6780 #endif
6781 return ap;
6782 }
6783
6784 static void ata_host_release(struct device *gendev, void *res)
6785 {
6786 struct ata_host *host = dev_get_drvdata(gendev);
6787 int i;
6788
6789 for (i = 0; i < host->n_ports; i++) {
6790 struct ata_port *ap = host->ports[i];
6791
6792 if (!ap)
6793 continue;
6794
6795 if (ap->scsi_host)
6796 scsi_host_put(ap->scsi_host);
6797
6798 kfree(ap->pmp_link);
6799 kfree(ap);
6800 host->ports[i] = NULL;
6801 }
6802
6803 dev_set_drvdata(gendev, NULL);
6804 }
6805
6806 /**
6807 * ata_host_alloc - allocate and init basic ATA host resources
6808 * @dev: generic device this host is associated with
6809 * @max_ports: maximum number of ATA ports associated with this host
6810 *
6811 * Allocate and initialize basic ATA host resources. LLD calls
6812 * this function to allocate a host, initializes it fully and
6813 * attaches it using ata_host_register().
6814 *
6815 * @max_ports ports are allocated and host->n_ports is
6816 * initialized to @max_ports. The caller is allowed to decrease
6817 * host->n_ports before calling ata_host_register(). The unused
6818 * ports will be automatically freed on registration.
6819 *
6820 * RETURNS:
6821 * Allocate ATA host on success, NULL on failure.
6822 *
6823 * LOCKING:
6824 * Inherited from calling layer (may sleep).
6825 */
6826 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6827 {
6828 struct ata_host *host;
6829 size_t sz;
6830 int i;
6831
6832 DPRINTK("ENTER\n");
6833
6834 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6835 return NULL;
6836
6837 /* alloc a container for our list of ATA ports (buses) */
6838 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6839 /* alloc a container for our list of ATA ports (buses) */
6840 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6841 if (!host)
6842 goto err_out;
6843
6844 devres_add(dev, host);
6845 dev_set_drvdata(dev, host);
6846
6847 spin_lock_init(&host->lock);
6848 host->dev = dev;
6849 host->n_ports = max_ports;
6850
6851 /* allocate ports bound to this host */
6852 for (i = 0; i < max_ports; i++) {
6853 struct ata_port *ap;
6854
6855 ap = ata_port_alloc(host);
6856 if (!ap)
6857 goto err_out;
6858
6859 ap->port_no = i;
6860 host->ports[i] = ap;
6861 }
6862
6863 devres_remove_group(dev, NULL);
6864 return host;
6865
6866 err_out:
6867 devres_release_group(dev, NULL);
6868 return NULL;
6869 }
6870
6871 /**
6872 * ata_host_alloc_pinfo - alloc host and init with port_info array
6873 * @dev: generic device this host is associated with
6874 * @ppi: array of ATA port_info to initialize host with
6875 * @n_ports: number of ATA ports attached to this host
6876 *
6877 * Allocate ATA host and initialize with info from @ppi. If NULL
6878 * terminated, @ppi may contain fewer entries than @n_ports. The
6879 * last entry will be used for the remaining ports.
6880 *
6881 * RETURNS:
6882 * Allocate ATA host on success, NULL on failure.
6883 *
6884 * LOCKING:
6885 * Inherited from calling layer (may sleep).
6886 */
6887 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6888 const struct ata_port_info * const * ppi,
6889 int n_ports)
6890 {
6891 const struct ata_port_info *pi;
6892 struct ata_host *host;
6893 int i, j;
6894
6895 host = ata_host_alloc(dev, n_ports);
6896 if (!host)
6897 return NULL;
6898
6899 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6900 struct ata_port *ap = host->ports[i];
6901
6902 if (ppi[j])
6903 pi = ppi[j++];
6904
6905 ap->pio_mask = pi->pio_mask;
6906 ap->mwdma_mask = pi->mwdma_mask;
6907 ap->udma_mask = pi->udma_mask;
6908 ap->flags |= pi->flags;
6909 ap->link.flags |= pi->link_flags;
6910 ap->ops = pi->port_ops;
6911
6912 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6913 host->ops = pi->port_ops;
6914 if (!host->private_data && pi->private_data)
6915 host->private_data = pi->private_data;
6916 }
6917
6918 return host;
6919 }
6920
6921 static void ata_host_stop(struct device *gendev, void *res)
6922 {
6923 struct ata_host *host = dev_get_drvdata(gendev);
6924 int i;
6925
6926 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6927
6928 for (i = 0; i < host->n_ports; i++) {
6929 struct ata_port *ap = host->ports[i];
6930
6931 if (ap->ops->port_stop)
6932 ap->ops->port_stop(ap);
6933 }
6934
6935 if (host->ops->host_stop)
6936 host->ops->host_stop(host);
6937 }
6938
6939 /**
6940 * ata_host_start - start and freeze ports of an ATA host
6941 * @host: ATA host to start ports for
6942 *
6943 * Start and then freeze ports of @host. Started status is
6944 * recorded in host->flags, so this function can be called
6945 * multiple times. Ports are guaranteed to get started only
6946 * once. If host->ops isn't initialized yet, its set to the
6947 * first non-dummy port ops.
6948 *
6949 * LOCKING:
6950 * Inherited from calling layer (may sleep).
6951 *
6952 * RETURNS:
6953 * 0 if all ports are started successfully, -errno otherwise.
6954 */
6955 int ata_host_start(struct ata_host *host)
6956 {
6957 int have_stop = 0;
6958 void *start_dr = NULL;
6959 int i, rc;
6960
6961 if (host->flags & ATA_HOST_STARTED)
6962 return 0;
6963
6964 for (i = 0; i < host->n_ports; i++) {
6965 struct ata_port *ap = host->ports[i];
6966
6967 if (!host->ops && !ata_port_is_dummy(ap))
6968 host->ops = ap->ops;
6969
6970 if (ap->ops->port_stop)
6971 have_stop = 1;
6972 }
6973
6974 if (host->ops->host_stop)
6975 have_stop = 1;
6976
6977 if (have_stop) {
6978 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6979 if (!start_dr)
6980 return -ENOMEM;
6981 }
6982
6983 for (i = 0; i < host->n_ports; i++) {
6984 struct ata_port *ap = host->ports[i];
6985
6986 if (ap->ops->port_start) {
6987 rc = ap->ops->port_start(ap);
6988 if (rc) {
6989 if (rc != -ENODEV)
6990 dev_printk(KERN_ERR, host->dev,
6991 "failed to start port %d "
6992 "(errno=%d)\n", i, rc);
6993 goto err_out;
6994 }
6995 }
6996 ata_eh_freeze_port(ap);
6997 }
6998
6999 if (start_dr)
7000 devres_add(host->dev, start_dr);
7001 host->flags |= ATA_HOST_STARTED;
7002 return 0;
7003
7004 err_out:
7005 while (--i >= 0) {
7006 struct ata_port *ap = host->ports[i];
7007
7008 if (ap->ops->port_stop)
7009 ap->ops->port_stop(ap);
7010 }
7011 devres_free(start_dr);
7012 return rc;
7013 }
7014
7015 /**
7016 * ata_sas_host_init - Initialize a host struct
7017 * @host: host to initialize
7018 * @dev: device host is attached to
7019 * @flags: host flags
7020 * @ops: port_ops
7021 *
7022 * LOCKING:
7023 * PCI/etc. bus probe sem.
7024 *
7025 */
7026 /* KILLME - the only user left is ipr */
7027 void ata_host_init(struct ata_host *host, struct device *dev,
7028 unsigned long flags, const struct ata_port_operations *ops)
7029 {
7030 spin_lock_init(&host->lock);
7031 host->dev = dev;
7032 host->flags = flags;
7033 host->ops = ops;
7034 }
7035
7036 /**
7037 * ata_host_register - register initialized ATA host
7038 * @host: ATA host to register
7039 * @sht: template for SCSI host
7040 *
7041 * Register initialized ATA host. @host is allocated using
7042 * ata_host_alloc() and fully initialized by LLD. This function
7043 * starts ports, registers @host with ATA and SCSI layers and
7044 * probe registered devices.
7045 *
7046 * LOCKING:
7047 * Inherited from calling layer (may sleep).
7048 *
7049 * RETURNS:
7050 * 0 on success, -errno otherwise.
7051 */
7052 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7053 {
7054 int i, rc;
7055
7056 /* host must have been started */
7057 if (!(host->flags & ATA_HOST_STARTED)) {
7058 dev_printk(KERN_ERR, host->dev,
7059 "BUG: trying to register unstarted host\n");
7060 WARN_ON(1);
7061 return -EINVAL;
7062 }
7063
7064 /* Blow away unused ports. This happens when LLD can't
7065 * determine the exact number of ports to allocate at
7066 * allocation time.
7067 */
7068 for (i = host->n_ports; host->ports[i]; i++)
7069 kfree(host->ports[i]);
7070
7071 /* give ports names and add SCSI hosts */
7072 for (i = 0; i < host->n_ports; i++)
7073 host->ports[i]->print_id = ata_print_id++;
7074
7075 rc = ata_scsi_add_hosts(host, sht);
7076 if (rc)
7077 return rc;
7078
7079 /* associate with ACPI nodes */
7080 ata_acpi_associate(host);
7081
7082 /* set cable, sata_spd_limit and report */
7083 for (i = 0; i < host->n_ports; i++) {
7084 struct ata_port *ap = host->ports[i];
7085 unsigned long xfer_mask;
7086
7087 /* set SATA cable type if still unset */
7088 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7089 ap->cbl = ATA_CBL_SATA;
7090
7091 /* init sata_spd_limit to the current value */
7092 sata_link_init_spd(&ap->link);
7093
7094 /* print per-port info to dmesg */
7095 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7096 ap->udma_mask);
7097
7098 if (!ata_port_is_dummy(ap)) {
7099 ata_port_printk(ap, KERN_INFO,
7100 "%cATA max %s %s\n",
7101 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7102 ata_mode_string(xfer_mask),
7103 ap->link.eh_info.desc);
7104 ata_ehi_clear_desc(&ap->link.eh_info);
7105 } else
7106 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7107 }
7108
7109 /* perform each probe synchronously */
7110 DPRINTK("probe begin\n");
7111 for (i = 0; i < host->n_ports; i++) {
7112 struct ata_port *ap = host->ports[i];
7113 int rc;
7114
7115 /* probe */
7116 if (ap->ops->error_handler) {
7117 struct ata_eh_info *ehi = &ap->link.eh_info;
7118 unsigned long flags;
7119
7120 ata_port_probe(ap);
7121
7122 /* kick EH for boot probing */
7123 spin_lock_irqsave(ap->lock, flags);
7124
7125 ehi->probe_mask =
7126 (1 << ata_link_max_devices(&ap->link)) - 1;
7127 ehi->action |= ATA_EH_SOFTRESET;
7128 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7129
7130 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7131 ap->pflags |= ATA_PFLAG_LOADING;
7132 ata_port_schedule_eh(ap);
7133
7134 spin_unlock_irqrestore(ap->lock, flags);
7135
7136 /* wait for EH to finish */
7137 ata_port_wait_eh(ap);
7138 } else {
7139 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7140 rc = ata_bus_probe(ap);
7141 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7142
7143 if (rc) {
7144 /* FIXME: do something useful here?
7145 * Current libata behavior will
7146 * tear down everything when
7147 * the module is removed
7148 * or the h/w is unplugged.
7149 */
7150 }
7151 }
7152 }
7153
7154 /* probes are done, now scan each port's disk(s) */
7155 DPRINTK("host probe begin\n");
7156 for (i = 0; i < host->n_ports; i++) {
7157 struct ata_port *ap = host->ports[i];
7158
7159 ata_scsi_scan_host(ap, 1);
7160 ata_lpm_schedule(ap, ap->pm_policy);
7161 }
7162
7163 return 0;
7164 }
7165
7166 /**
7167 * ata_host_activate - start host, request IRQ and register it
7168 * @host: target ATA host
7169 * @irq: IRQ to request
7170 * @irq_handler: irq_handler used when requesting IRQ
7171 * @irq_flags: irq_flags used when requesting IRQ
7172 * @sht: scsi_host_template to use when registering the host
7173 *
7174 * After allocating an ATA host and initializing it, most libata
7175 * LLDs perform three steps to activate the host - start host,
7176 * request IRQ and register it. This helper takes necessasry
7177 * arguments and performs the three steps in one go.
7178 *
7179 * An invalid IRQ skips the IRQ registration and expects the host to
7180 * have set polling mode on the port. In this case, @irq_handler
7181 * should be NULL.
7182 *
7183 * LOCKING:
7184 * Inherited from calling layer (may sleep).
7185 *
7186 * RETURNS:
7187 * 0 on success, -errno otherwise.
7188 */
7189 int ata_host_activate(struct ata_host *host, int irq,
7190 irq_handler_t irq_handler, unsigned long irq_flags,
7191 struct scsi_host_template *sht)
7192 {
7193 int i, rc;
7194
7195 rc = ata_host_start(host);
7196 if (rc)
7197 return rc;
7198
7199 /* Special case for polling mode */
7200 if (!irq) {
7201 WARN_ON(irq_handler);
7202 return ata_host_register(host, sht);
7203 }
7204
7205 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7206 dev_driver_string(host->dev), host);
7207 if (rc)
7208 return rc;
7209
7210 for (i = 0; i < host->n_ports; i++)
7211 ata_port_desc(host->ports[i], "irq %d", irq);
7212
7213 rc = ata_host_register(host, sht);
7214 /* if failed, just free the IRQ and leave ports alone */
7215 if (rc)
7216 devm_free_irq(host->dev, irq, host);
7217
7218 return rc;
7219 }
7220
7221 /**
7222 * ata_port_detach - Detach ATA port in prepration of device removal
7223 * @ap: ATA port to be detached
7224 *
7225 * Detach all ATA devices and the associated SCSI devices of @ap;
7226 * then, remove the associated SCSI host. @ap is guaranteed to
7227 * be quiescent on return from this function.
7228 *
7229 * LOCKING:
7230 * Kernel thread context (may sleep).
7231 */
7232 static void ata_port_detach(struct ata_port *ap)
7233 {
7234 unsigned long flags;
7235 struct ata_link *link;
7236 struct ata_device *dev;
7237
7238 if (!ap->ops->error_handler)
7239 goto skip_eh;
7240
7241 /* tell EH we're leaving & flush EH */
7242 spin_lock_irqsave(ap->lock, flags);
7243 ap->pflags |= ATA_PFLAG_UNLOADING;
7244 spin_unlock_irqrestore(ap->lock, flags);
7245
7246 ata_port_wait_eh(ap);
7247
7248 /* EH is now guaranteed to see UNLOADING - EH context belongs
7249 * to us. Disable all existing devices.
7250 */
7251 ata_port_for_each_link(link, ap) {
7252 ata_link_for_each_dev(dev, link)
7253 ata_dev_disable(dev);
7254 }
7255
7256 /* Final freeze & EH. All in-flight commands are aborted. EH
7257 * will be skipped and retrials will be terminated with bad
7258 * target.
7259 */
7260 spin_lock_irqsave(ap->lock, flags);
7261 ata_port_freeze(ap); /* won't be thawed */
7262 spin_unlock_irqrestore(ap->lock, flags);
7263
7264 ata_port_wait_eh(ap);
7265 cancel_rearming_delayed_work(&ap->hotplug_task);
7266
7267 skip_eh:
7268 /* remove the associated SCSI host */
7269 scsi_remove_host(ap->scsi_host);
7270 }
7271
7272 /**
7273 * ata_host_detach - Detach all ports of an ATA host
7274 * @host: Host to detach
7275 *
7276 * Detach all ports of @host.
7277 *
7278 * LOCKING:
7279 * Kernel thread context (may sleep).
7280 */
7281 void ata_host_detach(struct ata_host *host)
7282 {
7283 int i;
7284
7285 for (i = 0; i < host->n_ports; i++)
7286 ata_port_detach(host->ports[i]);
7287
7288 /* the host is dead now, dissociate ACPI */
7289 ata_acpi_dissociate(host);
7290 }
7291
7292 /**
7293 * ata_std_ports - initialize ioaddr with standard port offsets.
7294 * @ioaddr: IO address structure to be initialized
7295 *
7296 * Utility function which initializes data_addr, error_addr,
7297 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7298 * device_addr, status_addr, and command_addr to standard offsets
7299 * relative to cmd_addr.
7300 *
7301 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7302 */
7303
7304 void ata_std_ports(struct ata_ioports *ioaddr)
7305 {
7306 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7307 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7308 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7309 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7310 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7311 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7312 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7313 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7314 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7315 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7316 }
7317
7318
7319 #ifdef CONFIG_PCI
7320
7321 /**
7322 * ata_pci_remove_one - PCI layer callback for device removal
7323 * @pdev: PCI device that was removed
7324 *
7325 * PCI layer indicates to libata via this hook that hot-unplug or
7326 * module unload event has occurred. Detach all ports. Resource
7327 * release is handled via devres.
7328 *
7329 * LOCKING:
7330 * Inherited from PCI layer (may sleep).
7331 */
7332 void ata_pci_remove_one(struct pci_dev *pdev)
7333 {
7334 struct device *dev = &pdev->dev;
7335 struct ata_host *host = dev_get_drvdata(dev);
7336
7337 ata_host_detach(host);
7338 }
7339
7340 /* move to PCI subsystem */
7341 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7342 {
7343 unsigned long tmp = 0;
7344
7345 switch (bits->width) {
7346 case 1: {
7347 u8 tmp8 = 0;
7348 pci_read_config_byte(pdev, bits->reg, &tmp8);
7349 tmp = tmp8;
7350 break;
7351 }
7352 case 2: {
7353 u16 tmp16 = 0;
7354 pci_read_config_word(pdev, bits->reg, &tmp16);
7355 tmp = tmp16;
7356 break;
7357 }
7358 case 4: {
7359 u32 tmp32 = 0;
7360 pci_read_config_dword(pdev, bits->reg, &tmp32);
7361 tmp = tmp32;
7362 break;
7363 }
7364
7365 default:
7366 return -EINVAL;
7367 }
7368
7369 tmp &= bits->mask;
7370
7371 return (tmp == bits->val) ? 1 : 0;
7372 }
7373
7374 #ifdef CONFIG_PM
7375 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7376 {
7377 pci_save_state(pdev);
7378 pci_disable_device(pdev);
7379
7380 if (mesg.event == PM_EVENT_SUSPEND)
7381 pci_set_power_state(pdev, PCI_D3hot);
7382 }
7383
7384 int ata_pci_device_do_resume(struct pci_dev *pdev)
7385 {
7386 int rc;
7387
7388 pci_set_power_state(pdev, PCI_D0);
7389 pci_restore_state(pdev);
7390
7391 rc = pcim_enable_device(pdev);
7392 if (rc) {
7393 dev_printk(KERN_ERR, &pdev->dev,
7394 "failed to enable device after resume (%d)\n", rc);
7395 return rc;
7396 }
7397
7398 pci_set_master(pdev);
7399 return 0;
7400 }
7401
7402 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7403 {
7404 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7405 int rc = 0;
7406
7407 rc = ata_host_suspend(host, mesg);
7408 if (rc)
7409 return rc;
7410
7411 ata_pci_device_do_suspend(pdev, mesg);
7412
7413 return 0;
7414 }
7415
7416 int ata_pci_device_resume(struct pci_dev *pdev)
7417 {
7418 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7419 int rc;
7420
7421 rc = ata_pci_device_do_resume(pdev);
7422 if (rc == 0)
7423 ata_host_resume(host);
7424 return rc;
7425 }
7426 #endif /* CONFIG_PM */
7427
7428 #endif /* CONFIG_PCI */
7429
7430
7431 static int __init ata_init(void)
7432 {
7433 ata_probe_timeout *= HZ;
7434 ata_wq = create_workqueue("ata");
7435 if (!ata_wq)
7436 return -ENOMEM;
7437
7438 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7439 if (!ata_aux_wq) {
7440 destroy_workqueue(ata_wq);
7441 return -ENOMEM;
7442 }
7443
7444 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7445 return 0;
7446 }
7447
7448 static void __exit ata_exit(void)
7449 {
7450 destroy_workqueue(ata_wq);
7451 destroy_workqueue(ata_aux_wq);
7452 }
7453
7454 subsys_initcall(ata_init);
7455 module_exit(ata_exit);
7456
7457 static unsigned long ratelimit_time;
7458 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7459
7460 int ata_ratelimit(void)
7461 {
7462 int rc;
7463 unsigned long flags;
7464
7465 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7466
7467 if (time_after(jiffies, ratelimit_time)) {
7468 rc = 1;
7469 ratelimit_time = jiffies + (HZ/5);
7470 } else
7471 rc = 0;
7472
7473 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7474
7475 return rc;
7476 }
7477
7478 /**
7479 * ata_wait_register - wait until register value changes
7480 * @reg: IO-mapped register
7481 * @mask: Mask to apply to read register value
7482 * @val: Wait condition
7483 * @interval_msec: polling interval in milliseconds
7484 * @timeout_msec: timeout in milliseconds
7485 *
7486 * Waiting for some bits of register to change is a common
7487 * operation for ATA controllers. This function reads 32bit LE
7488 * IO-mapped register @reg and tests for the following condition.
7489 *
7490 * (*@reg & mask) != val
7491 *
7492 * If the condition is met, it returns; otherwise, the process is
7493 * repeated after @interval_msec until timeout.
7494 *
7495 * LOCKING:
7496 * Kernel thread context (may sleep)
7497 *
7498 * RETURNS:
7499 * The final register value.
7500 */
7501 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7502 unsigned long interval_msec,
7503 unsigned long timeout_msec)
7504 {
7505 unsigned long timeout;
7506 u32 tmp;
7507
7508 tmp = ioread32(reg);
7509
7510 /* Calculate timeout _after_ the first read to make sure
7511 * preceding writes reach the controller before starting to
7512 * eat away the timeout.
7513 */
7514 timeout = jiffies + (timeout_msec * HZ) / 1000;
7515
7516 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7517 msleep(interval_msec);
7518 tmp = ioread32(reg);
7519 }
7520
7521 return tmp;
7522 }
7523
7524 /*
7525 * Dummy port_ops
7526 */
7527 static void ata_dummy_noret(struct ata_port *ap) { }
7528 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7529 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7530
7531 static u8 ata_dummy_check_status(struct ata_port *ap)
7532 {
7533 return ATA_DRDY;
7534 }
7535
7536 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7537 {
7538 return AC_ERR_SYSTEM;
7539 }
7540
7541 const struct ata_port_operations ata_dummy_port_ops = {
7542 .check_status = ata_dummy_check_status,
7543 .check_altstatus = ata_dummy_check_status,
7544 .dev_select = ata_noop_dev_select,
7545 .qc_prep = ata_noop_qc_prep,
7546 .qc_issue = ata_dummy_qc_issue,
7547 .freeze = ata_dummy_noret,
7548 .thaw = ata_dummy_noret,
7549 .error_handler = ata_dummy_noret,
7550 .post_internal_cmd = ata_dummy_qc_noret,
7551 .irq_clear = ata_dummy_noret,
7552 .port_start = ata_dummy_ret0,
7553 .port_stop = ata_dummy_noret,
7554 };
7555
7556 const struct ata_port_info ata_dummy_port_info = {
7557 .port_ops = &ata_dummy_port_ops,
7558 };
7559
7560 /*
7561 * libata is essentially a library of internal helper functions for
7562 * low-level ATA host controller drivers. As such, the API/ABI is
7563 * likely to change as new drivers are added and updated.
7564 * Do not depend on ABI/API stability.
7565 */
7566 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7567 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7568 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7569 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7570 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7571 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7572 EXPORT_SYMBOL_GPL(ata_std_ports);
7573 EXPORT_SYMBOL_GPL(ata_host_init);
7574 EXPORT_SYMBOL_GPL(ata_host_alloc);
7575 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7576 EXPORT_SYMBOL_GPL(ata_host_start);
7577 EXPORT_SYMBOL_GPL(ata_host_register);
7578 EXPORT_SYMBOL_GPL(ata_host_activate);
7579 EXPORT_SYMBOL_GPL(ata_host_detach);
7580 EXPORT_SYMBOL_GPL(ata_sg_init);
7581 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7582 EXPORT_SYMBOL_GPL(ata_hsm_move);
7583 EXPORT_SYMBOL_GPL(ata_qc_complete);
7584 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7585 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7586 EXPORT_SYMBOL_GPL(ata_tf_load);
7587 EXPORT_SYMBOL_GPL(ata_tf_read);
7588 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7589 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7590 EXPORT_SYMBOL_GPL(sata_print_link_status);
7591 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7592 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7593 EXPORT_SYMBOL_GPL(ata_check_status);
7594 EXPORT_SYMBOL_GPL(ata_altstatus);
7595 EXPORT_SYMBOL_GPL(ata_exec_command);
7596 EXPORT_SYMBOL_GPL(ata_port_start);
7597 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7598 EXPORT_SYMBOL_GPL(ata_interrupt);
7599 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7600 EXPORT_SYMBOL_GPL(ata_data_xfer);
7601 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7602 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7603 EXPORT_SYMBOL_GPL(ata_qc_prep);
7604 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7605 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7606 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7607 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7608 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7609 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7610 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7611 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7612 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7613 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7614 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7615 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7616 EXPORT_SYMBOL_GPL(ata_port_probe);
7617 EXPORT_SYMBOL_GPL(ata_dev_disable);
7618 EXPORT_SYMBOL_GPL(sata_set_spd);
7619 EXPORT_SYMBOL_GPL(sata_link_debounce);
7620 EXPORT_SYMBOL_GPL(sata_link_resume);
7621 EXPORT_SYMBOL_GPL(ata_bus_reset);
7622 EXPORT_SYMBOL_GPL(ata_std_prereset);
7623 EXPORT_SYMBOL_GPL(ata_std_softreset);
7624 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7625 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7626 EXPORT_SYMBOL_GPL(ata_std_postreset);
7627 EXPORT_SYMBOL_GPL(ata_dev_classify);
7628 EXPORT_SYMBOL_GPL(ata_dev_pair);
7629 EXPORT_SYMBOL_GPL(ata_port_disable);
7630 EXPORT_SYMBOL_GPL(ata_ratelimit);
7631 EXPORT_SYMBOL_GPL(ata_wait_register);
7632 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7633 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7634 EXPORT_SYMBOL_GPL(ata_wait_ready);
7635 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7636 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7637 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7638 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7639 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7640 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7641 EXPORT_SYMBOL_GPL(ata_host_intr);
7642 EXPORT_SYMBOL_GPL(sata_scr_valid);
7643 EXPORT_SYMBOL_GPL(sata_scr_read);
7644 EXPORT_SYMBOL_GPL(sata_scr_write);
7645 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7646 EXPORT_SYMBOL_GPL(ata_link_online);
7647 EXPORT_SYMBOL_GPL(ata_link_offline);
7648 #ifdef CONFIG_PM
7649 EXPORT_SYMBOL_GPL(ata_host_suspend);
7650 EXPORT_SYMBOL_GPL(ata_host_resume);
7651 #endif /* CONFIG_PM */
7652 EXPORT_SYMBOL_GPL(ata_id_string);
7653 EXPORT_SYMBOL_GPL(ata_id_c_string);
7654 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7655 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7656
7657 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7658 EXPORT_SYMBOL_GPL(ata_timing_compute);
7659 EXPORT_SYMBOL_GPL(ata_timing_merge);
7660
7661 #ifdef CONFIG_PCI
7662 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7663 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7664 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7665 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7666 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7667 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7668 #ifdef CONFIG_PM
7669 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7670 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7671 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7672 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7673 #endif /* CONFIG_PM */
7674 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7675 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7676 #endif /* CONFIG_PCI */
7677
7678 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7679 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7680 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7681 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7682 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7683
7684 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7685 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7686 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7687 EXPORT_SYMBOL_GPL(ata_port_desc);
7688 #ifdef CONFIG_PCI
7689 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7690 #endif /* CONFIG_PCI */
7691 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7692 EXPORT_SYMBOL_GPL(ata_link_abort);
7693 EXPORT_SYMBOL_GPL(ata_port_abort);
7694 EXPORT_SYMBOL_GPL(ata_port_freeze);
7695 EXPORT_SYMBOL_GPL(sata_async_notification);
7696 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7697 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7698 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7699 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7700 EXPORT_SYMBOL_GPL(ata_do_eh);
7701 EXPORT_SYMBOL_GPL(ata_irq_on);
7702 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7703
7704 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7705 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7706 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7707 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.214026 seconds and 5 git commands to generate.