[libata] Create internal helper ata_dev_set_feature()
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <linux/io.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
75
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 struct workqueue_struct *ata_aux_wq;
80
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
112
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
117
118
119 /**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
133 {
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161 }
162
163 /**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
175 {
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190 }
191
192 static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
207 0,
208 0,
209 0,
210 0,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
220 };
221
222 /**
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
226 *
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
229 *
230 * LOCKING:
231 * caller.
232 */
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
234 {
235 u8 cmd;
236
237 int index, fua, lba48, write;
238
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
242
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
253 }
254
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
261 }
262
263 /**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279 {
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304 }
305
306 /**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329 {
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427 }
428
429 /**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447 {
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451 }
452
453 /**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467 {
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474 }
475
476 static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479 } ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484 };
485
486 /**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500 {
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508 }
509
510 /**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523 {
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530 }
531
532 /**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
545 {
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552 }
553
554 /**
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
557 *
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
567 */
568 static const char *ata_mode_string(unsigned int xfer_mask)
569 {
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
592 int highbit;
593
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
598 }
599
600 static const char *sata_spd_string(unsigned int spd)
601 {
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610 }
611
612 void ata_dev_disable(struct ata_device *dev)
613 {
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
620 }
621 }
622
623 /**
624 * ata_devchk - PATA device presence detection
625 * @ap: ATA channel to examine
626 * @device: Device to examine (starting at zero)
627 *
628 * This technique was originally described in
629 * Hale Landis's ATADRVR (www.ata-atapi.com), and
630 * later found its way into the ATA/ATAPI spec.
631 *
632 * Write a pattern to the ATA shadow registers,
633 * and if a device is present, it will respond by
634 * correctly storing and echoing back the
635 * ATA shadow register contents.
636 *
637 * LOCKING:
638 * caller.
639 */
640
641 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
642 {
643 struct ata_ioports *ioaddr = &ap->ioaddr;
644 u8 nsect, lbal;
645
646 ap->ops->dev_select(ap, device);
647
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
650
651 iowrite8(0xaa, ioaddr->nsect_addr);
652 iowrite8(0x55, ioaddr->lbal_addr);
653
654 iowrite8(0x55, ioaddr->nsect_addr);
655 iowrite8(0xaa, ioaddr->lbal_addr);
656
657 nsect = ioread8(ioaddr->nsect_addr);
658 lbal = ioread8(ioaddr->lbal_addr);
659
660 if ((nsect == 0x55) && (lbal == 0xaa))
661 return 1; /* we found a device */
662
663 return 0; /* nothing found */
664 }
665
666 /**
667 * ata_dev_classify - determine device type based on ATA-spec signature
668 * @tf: ATA taskfile register set for device to be identified
669 *
670 * Determine from taskfile register contents whether a device is
671 * ATA or ATAPI, as per "Signature and persistence" section
672 * of ATA/PI spec (volume 1, sect 5.14).
673 *
674 * LOCKING:
675 * None.
676 *
677 * RETURNS:
678 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
679 * %ATA_DEV_UNKNOWN the event of failure.
680 */
681 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
682 {
683 /* Apple's open source Darwin code hints that some devices only
684 * put a proper signature into the LBA mid/high registers,
685 * So, we only check those. It's sufficient for uniqueness.
686 *
687 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
688 * signatures for ATA and ATAPI devices attached on SerialATA,
689 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
690 * spec has never mentioned about using different signatures
691 * for ATA/ATAPI devices. Then, Serial ATA II: Port
692 * Multiplier specification began to use 0x69/0x96 to identify
693 * port multpliers and 0x3c/0xc3 to identify SEMB device.
694 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
695 * 0x69/0x96 shortly and described them as reserved for
696 * SerialATA.
697 *
698 * We follow the current spec and consider that 0x69/0x96
699 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
700 */
701 if ((tf->lbam == 0) && (tf->lbah == 0)) {
702 DPRINTK("found ATA device by sig\n");
703 return ATA_DEV_ATA;
704 }
705
706 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
707 DPRINTK("found ATAPI device by sig\n");
708 return ATA_DEV_ATAPI;
709 }
710
711 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
712 DPRINTK("found PMP device by sig\n");
713 return ATA_DEV_PMP;
714 }
715
716 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
717 printk(KERN_INFO "ata: SEMB device ignored\n");
718 return ATA_DEV_SEMB_UNSUP; /* not yet */
719 }
720
721 DPRINTK("unknown device\n");
722 return ATA_DEV_UNKNOWN;
723 }
724
725 /**
726 * ata_dev_try_classify - Parse returned ATA device signature
727 * @dev: ATA device to classify (starting at zero)
728 * @present: device seems present
729 * @r_err: Value of error register on completion
730 *
731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
732 * an ATA/ATAPI-defined set of values is placed in the ATA
733 * shadow registers, indicating the results of device detection
734 * and diagnostics.
735 *
736 * Select the ATA device, and read the values from the ATA shadow
737 * registers. Then parse according to the Error register value,
738 * and the spec-defined values examined by ata_dev_classify().
739 *
740 * LOCKING:
741 * caller.
742 *
743 * RETURNS:
744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
745 */
746 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
747 u8 *r_err)
748 {
749 struct ata_port *ap = dev->link->ap;
750 struct ata_taskfile tf;
751 unsigned int class;
752 u8 err;
753
754 ap->ops->dev_select(ap, dev->devno);
755
756 memset(&tf, 0, sizeof(tf));
757
758 ap->ops->tf_read(ap, &tf);
759 err = tf.feature;
760 if (r_err)
761 *r_err = err;
762
763 /* see if device passed diags: if master then continue and warn later */
764 if (err == 0 && dev->devno == 0)
765 /* diagnostic fail : do nothing _YET_ */
766 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
767 else if (err == 1)
768 /* do nothing */ ;
769 else if ((dev->devno == 0) && (err == 0x81))
770 /* do nothing */ ;
771 else
772 return ATA_DEV_NONE;
773
774 /* determine if device is ATA or ATAPI */
775 class = ata_dev_classify(&tf);
776
777 if (class == ATA_DEV_UNKNOWN) {
778 /* If the device failed diagnostic, it's likely to
779 * have reported incorrect device signature too.
780 * Assume ATA device if the device seems present but
781 * device signature is invalid with diagnostic
782 * failure.
783 */
784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
785 class = ATA_DEV_ATA;
786 else
787 class = ATA_DEV_NONE;
788 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
789 class = ATA_DEV_NONE;
790
791 return class;
792 }
793
794 /**
795 * ata_id_string - Convert IDENTIFY DEVICE page into string
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an even number.
800 *
801 * The strings in the IDENTIFY DEVICE page are broken up into
802 * 16-bit chunks. Run through the string, and output each
803 * 8-bit chunk linearly, regardless of platform.
804 *
805 * LOCKING:
806 * caller.
807 */
808
809 void ata_id_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
811 {
812 unsigned int c;
813
814 while (len > 0) {
815 c = id[ofs] >> 8;
816 *s = c;
817 s++;
818
819 c = id[ofs] & 0xff;
820 *s = c;
821 s++;
822
823 ofs++;
824 len -= 2;
825 }
826 }
827
828 /**
829 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
830 * @id: IDENTIFY DEVICE results we will examine
831 * @s: string into which data is output
832 * @ofs: offset into identify device page
833 * @len: length of string to return. must be an odd number.
834 *
835 * This function is identical to ata_id_string except that it
836 * trims trailing spaces and terminates the resulting string with
837 * null. @len must be actual maximum length (even number) + 1.
838 *
839 * LOCKING:
840 * caller.
841 */
842 void ata_id_c_string(const u16 *id, unsigned char *s,
843 unsigned int ofs, unsigned int len)
844 {
845 unsigned char *p;
846
847 WARN_ON(!(len & 1));
848
849 ata_id_string(id, s, ofs, len - 1);
850
851 p = s + strnlen(s, len - 1);
852 while (p > s && p[-1] == ' ')
853 p--;
854 *p = '\0';
855 }
856
857 static u64 ata_id_n_sectors(const u16 *id)
858 {
859 if (ata_id_has_lba(id)) {
860 if (ata_id_has_lba48(id))
861 return ata_id_u64(id, 100);
862 else
863 return ata_id_u32(id, 60);
864 } else {
865 if (ata_id_current_chs_valid(id))
866 return ata_id_u32(id, 57);
867 else
868 return id[1] * id[3] * id[6];
869 }
870 }
871
872 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
873 {
874 u64 sectors = 0;
875
876 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
877 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
878 sectors |= (tf->hob_lbal & 0xff) << 24;
879 sectors |= (tf->lbah & 0xff) << 16;
880 sectors |= (tf->lbam & 0xff) << 8;
881 sectors |= (tf->lbal & 0xff);
882
883 return ++sectors;
884 }
885
886 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
887 {
888 u64 sectors = 0;
889
890 sectors |= (tf->device & 0x0f) << 24;
891 sectors |= (tf->lbah & 0xff) << 16;
892 sectors |= (tf->lbam & 0xff) << 8;
893 sectors |= (tf->lbal & 0xff);
894
895 return ++sectors;
896 }
897
898 /**
899 * ata_read_native_max_address - Read native max address
900 * @dev: target device
901 * @max_sectors: out parameter for the result native max address
902 *
903 * Perform an LBA48 or LBA28 native size query upon the device in
904 * question.
905 *
906 * RETURNS:
907 * 0 on success, -EACCES if command is aborted by the drive.
908 * -EIO on other errors.
909 */
910 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
911 {
912 unsigned int err_mask;
913 struct ata_taskfile tf;
914 int lba48 = ata_id_has_lba48(dev->id);
915
916 ata_tf_init(dev, &tf);
917
918 /* always clear all address registers */
919 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
920
921 if (lba48) {
922 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
923 tf.flags |= ATA_TFLAG_LBA48;
924 } else
925 tf.command = ATA_CMD_READ_NATIVE_MAX;
926
927 tf.protocol |= ATA_PROT_NODATA;
928 tf.device |= ATA_LBA;
929
930 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
931 if (err_mask) {
932 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
933 "max address (err_mask=0x%x)\n", err_mask);
934 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
935 return -EACCES;
936 return -EIO;
937 }
938
939 if (lba48)
940 *max_sectors = ata_tf_to_lba48(&tf);
941 else
942 *max_sectors = ata_tf_to_lba(&tf);
943 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
944 (*max_sectors)--;
945 return 0;
946 }
947
948 /**
949 * ata_set_max_sectors - Set max sectors
950 * @dev: target device
951 * @new_sectors: new max sectors value to set for the device
952 *
953 * Set max sectors of @dev to @new_sectors.
954 *
955 * RETURNS:
956 * 0 on success, -EACCES if command is aborted or denied (due to
957 * previous non-volatile SET_MAX) by the drive. -EIO on other
958 * errors.
959 */
960 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
961 {
962 unsigned int err_mask;
963 struct ata_taskfile tf;
964 int lba48 = ata_id_has_lba48(dev->id);
965
966 new_sectors--;
967
968 ata_tf_init(dev, &tf);
969
970 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
971
972 if (lba48) {
973 tf.command = ATA_CMD_SET_MAX_EXT;
974 tf.flags |= ATA_TFLAG_LBA48;
975
976 tf.hob_lbal = (new_sectors >> 24) & 0xff;
977 tf.hob_lbam = (new_sectors >> 32) & 0xff;
978 tf.hob_lbah = (new_sectors >> 40) & 0xff;
979 } else {
980 tf.command = ATA_CMD_SET_MAX;
981
982 tf.device |= (new_sectors >> 24) & 0xf;
983 }
984
985 tf.protocol |= ATA_PROT_NODATA;
986 tf.device |= ATA_LBA;
987
988 tf.lbal = (new_sectors >> 0) & 0xff;
989 tf.lbam = (new_sectors >> 8) & 0xff;
990 tf.lbah = (new_sectors >> 16) & 0xff;
991
992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
993 if (err_mask) {
994 ata_dev_printk(dev, KERN_WARNING, "failed to set "
995 "max address (err_mask=0x%x)\n", err_mask);
996 if (err_mask == AC_ERR_DEV &&
997 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
998 return -EACCES;
999 return -EIO;
1000 }
1001
1002 return 0;
1003 }
1004
1005 /**
1006 * ata_hpa_resize - Resize a device with an HPA set
1007 * @dev: Device to resize
1008 *
1009 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1010 * it if required to the full size of the media. The caller must check
1011 * the drive has the HPA feature set enabled.
1012 *
1013 * RETURNS:
1014 * 0 on success, -errno on failure.
1015 */
1016 static int ata_hpa_resize(struct ata_device *dev)
1017 {
1018 struct ata_eh_context *ehc = &dev->link->eh_context;
1019 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1020 u64 sectors = ata_id_n_sectors(dev->id);
1021 u64 native_sectors;
1022 int rc;
1023
1024 /* do we need to do it? */
1025 if (dev->class != ATA_DEV_ATA ||
1026 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1027 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1028 return 0;
1029
1030 /* read native max address */
1031 rc = ata_read_native_max_address(dev, &native_sectors);
1032 if (rc) {
1033 /* If HPA isn't going to be unlocked, skip HPA
1034 * resizing from the next try.
1035 */
1036 if (!ata_ignore_hpa) {
1037 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1038 "broken, will skip HPA handling\n");
1039 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1040
1041 /* we can continue if device aborted the command */
1042 if (rc == -EACCES)
1043 rc = 0;
1044 }
1045
1046 return rc;
1047 }
1048
1049 /* nothing to do? */
1050 if (native_sectors <= sectors || !ata_ignore_hpa) {
1051 if (!print_info || native_sectors == sectors)
1052 return 0;
1053
1054 if (native_sectors > sectors)
1055 ata_dev_printk(dev, KERN_INFO,
1056 "HPA detected: current %llu, native %llu\n",
1057 (unsigned long long)sectors,
1058 (unsigned long long)native_sectors);
1059 else if (native_sectors < sectors)
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "native sectors (%llu) is smaller than "
1062 "sectors (%llu)\n",
1063 (unsigned long long)native_sectors,
1064 (unsigned long long)sectors);
1065 return 0;
1066 }
1067
1068 /* let's unlock HPA */
1069 rc = ata_set_max_sectors(dev, native_sectors);
1070 if (rc == -EACCES) {
1071 /* if device aborted the command, skip HPA resizing */
1072 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1073 "(%llu -> %llu), skipping HPA handling\n",
1074 (unsigned long long)sectors,
1075 (unsigned long long)native_sectors);
1076 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1077 return 0;
1078 } else if (rc)
1079 return rc;
1080
1081 /* re-read IDENTIFY data */
1082 rc = ata_dev_reread_id(dev, 0);
1083 if (rc) {
1084 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1085 "data after HPA resizing\n");
1086 return rc;
1087 }
1088
1089 if (print_info) {
1090 u64 new_sectors = ata_id_n_sectors(dev->id);
1091 ata_dev_printk(dev, KERN_INFO,
1092 "HPA unlocked: %llu -> %llu, native %llu\n",
1093 (unsigned long long)sectors,
1094 (unsigned long long)new_sectors,
1095 (unsigned long long)native_sectors);
1096 }
1097
1098 return 0;
1099 }
1100
1101 /**
1102 * ata_id_to_dma_mode - Identify DMA mode from id block
1103 * @dev: device to identify
1104 * @unknown: mode to assume if we cannot tell
1105 *
1106 * Set up the timing values for the device based upon the identify
1107 * reported values for the DMA mode. This function is used by drivers
1108 * which rely upon firmware configured modes, but wish to report the
1109 * mode correctly when possible.
1110 *
1111 * In addition we emit similarly formatted messages to the default
1112 * ata_dev_set_mode handler, in order to provide consistency of
1113 * presentation.
1114 */
1115
1116 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1117 {
1118 unsigned int mask;
1119 u8 mode;
1120
1121 /* Pack the DMA modes */
1122 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1123 if (dev->id[53] & 0x04)
1124 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1125
1126 /* Select the mode in use */
1127 mode = ata_xfer_mask2mode(mask);
1128
1129 if (mode != 0) {
1130 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1131 ata_mode_string(mask));
1132 } else {
1133 /* SWDMA perhaps ? */
1134 mode = unknown;
1135 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1136 }
1137
1138 /* Configure the device reporting */
1139 dev->xfer_mode = mode;
1140 dev->xfer_shift = ata_xfer_mode2shift(mode);
1141 }
1142
1143 /**
1144 * ata_noop_dev_select - Select device 0/1 on ATA bus
1145 * @ap: ATA channel to manipulate
1146 * @device: ATA device (numbered from zero) to select
1147 *
1148 * This function performs no actual function.
1149 *
1150 * May be used as the dev_select() entry in ata_port_operations.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
1155 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1156 {
1157 }
1158
1159
1160 /**
1161 * ata_std_dev_select - Select device 0/1 on ATA bus
1162 * @ap: ATA channel to manipulate
1163 * @device: ATA device (numbered from zero) to select
1164 *
1165 * Use the method defined in the ATA specification to
1166 * make either device 0, or device 1, active on the
1167 * ATA channel. Works with both PIO and MMIO.
1168 *
1169 * May be used as the dev_select() entry in ata_port_operations.
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
1175 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1176 {
1177 u8 tmp;
1178
1179 if (device == 0)
1180 tmp = ATA_DEVICE_OBS;
1181 else
1182 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1183
1184 iowrite8(tmp, ap->ioaddr.device_addr);
1185 ata_pause(ap); /* needed; also flushes, for mmio */
1186 }
1187
1188 /**
1189 * ata_dev_select - Select device 0/1 on ATA bus
1190 * @ap: ATA channel to manipulate
1191 * @device: ATA device (numbered from zero) to select
1192 * @wait: non-zero to wait for Status register BSY bit to clear
1193 * @can_sleep: non-zero if context allows sleeping
1194 *
1195 * Use the method defined in the ATA specification to
1196 * make either device 0, or device 1, active on the
1197 * ATA channel.
1198 *
1199 * This is a high-level version of ata_std_dev_select(),
1200 * which additionally provides the services of inserting
1201 * the proper pauses and status polling, where needed.
1202 *
1203 * LOCKING:
1204 * caller.
1205 */
1206
1207 void ata_dev_select(struct ata_port *ap, unsigned int device,
1208 unsigned int wait, unsigned int can_sleep)
1209 {
1210 if (ata_msg_probe(ap))
1211 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1212 "device %u, wait %u\n", device, wait);
1213
1214 if (wait)
1215 ata_wait_idle(ap);
1216
1217 ap->ops->dev_select(ap, device);
1218
1219 if (wait) {
1220 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1221 msleep(150);
1222 ata_wait_idle(ap);
1223 }
1224 }
1225
1226 /**
1227 * ata_dump_id - IDENTIFY DEVICE info debugging output
1228 * @id: IDENTIFY DEVICE page to dump
1229 *
1230 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1231 * page.
1232 *
1233 * LOCKING:
1234 * caller.
1235 */
1236
1237 static inline void ata_dump_id(const u16 *id)
1238 {
1239 DPRINTK("49==0x%04x "
1240 "53==0x%04x "
1241 "63==0x%04x "
1242 "64==0x%04x "
1243 "75==0x%04x \n",
1244 id[49],
1245 id[53],
1246 id[63],
1247 id[64],
1248 id[75]);
1249 DPRINTK("80==0x%04x "
1250 "81==0x%04x "
1251 "82==0x%04x "
1252 "83==0x%04x "
1253 "84==0x%04x \n",
1254 id[80],
1255 id[81],
1256 id[82],
1257 id[83],
1258 id[84]);
1259 DPRINTK("88==0x%04x "
1260 "93==0x%04x\n",
1261 id[88],
1262 id[93]);
1263 }
1264
1265 /**
1266 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1267 * @id: IDENTIFY data to compute xfer mask from
1268 *
1269 * Compute the xfermask for this device. This is not as trivial
1270 * as it seems if we must consider early devices correctly.
1271 *
1272 * FIXME: pre IDE drive timing (do we care ?).
1273 *
1274 * LOCKING:
1275 * None.
1276 *
1277 * RETURNS:
1278 * Computed xfermask
1279 */
1280 static unsigned int ata_id_xfermask(const u16 *id)
1281 {
1282 unsigned int pio_mask, mwdma_mask, udma_mask;
1283
1284 /* Usual case. Word 53 indicates word 64 is valid */
1285 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1286 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1287 pio_mask <<= 3;
1288 pio_mask |= 0x7;
1289 } else {
1290 /* If word 64 isn't valid then Word 51 high byte holds
1291 * the PIO timing number for the maximum. Turn it into
1292 * a mask.
1293 */
1294 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1295 if (mode < 5) /* Valid PIO range */
1296 pio_mask = (2 << mode) - 1;
1297 else
1298 pio_mask = 1;
1299
1300 /* But wait.. there's more. Design your standards by
1301 * committee and you too can get a free iordy field to
1302 * process. However its the speeds not the modes that
1303 * are supported... Note drivers using the timing API
1304 * will get this right anyway
1305 */
1306 }
1307
1308 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1309
1310 if (ata_id_is_cfa(id)) {
1311 /*
1312 * Process compact flash extended modes
1313 */
1314 int pio = id[163] & 0x7;
1315 int dma = (id[163] >> 3) & 7;
1316
1317 if (pio)
1318 pio_mask |= (1 << 5);
1319 if (pio > 1)
1320 pio_mask |= (1 << 6);
1321 if (dma)
1322 mwdma_mask |= (1 << 3);
1323 if (dma > 1)
1324 mwdma_mask |= (1 << 4);
1325 }
1326
1327 udma_mask = 0;
1328 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1329 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1330
1331 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1332 }
1333
1334 /**
1335 * ata_port_queue_task - Queue port_task
1336 * @ap: The ata_port to queue port_task for
1337 * @fn: workqueue function to be scheduled
1338 * @data: data for @fn to use
1339 * @delay: delay time for workqueue function
1340 *
1341 * Schedule @fn(@data) for execution after @delay jiffies using
1342 * port_task. There is one port_task per port and it's the
1343 * user(low level driver)'s responsibility to make sure that only
1344 * one task is active at any given time.
1345 *
1346 * libata core layer takes care of synchronization between
1347 * port_task and EH. ata_port_queue_task() may be ignored for EH
1348 * synchronization.
1349 *
1350 * LOCKING:
1351 * Inherited from caller.
1352 */
1353 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1354 unsigned long delay)
1355 {
1356 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1357 ap->port_task_data = data;
1358
1359 /* may fail if ata_port_flush_task() in progress */
1360 queue_delayed_work(ata_wq, &ap->port_task, delay);
1361 }
1362
1363 /**
1364 * ata_port_flush_task - Flush port_task
1365 * @ap: The ata_port to flush port_task for
1366 *
1367 * After this function completes, port_task is guranteed not to
1368 * be running or scheduled.
1369 *
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1372 */
1373 void ata_port_flush_task(struct ata_port *ap)
1374 {
1375 DPRINTK("ENTER\n");
1376
1377 cancel_rearming_delayed_work(&ap->port_task);
1378
1379 if (ata_msg_ctl(ap))
1380 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1381 }
1382
1383 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1384 {
1385 struct completion *waiting = qc->private_data;
1386
1387 complete(waiting);
1388 }
1389
1390 /**
1391 * ata_exec_internal_sg - execute libata internal command
1392 * @dev: Device to which the command is sent
1393 * @tf: Taskfile registers for the command and the result
1394 * @cdb: CDB for packet command
1395 * @dma_dir: Data tranfer direction of the command
1396 * @sgl: sg list for the data buffer of the command
1397 * @n_elem: Number of sg entries
1398 * @timeout: Timeout in msecs (0 for default)
1399 *
1400 * Executes libata internal command with timeout. @tf contains
1401 * command on entry and result on return. Timeout and error
1402 * conditions are reported via return value. No recovery action
1403 * is taken after a command times out. It's caller's duty to
1404 * clean up after timeout.
1405 *
1406 * LOCKING:
1407 * None. Should be called with kernel context, might sleep.
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
1411 */
1412 unsigned ata_exec_internal_sg(struct ata_device *dev,
1413 struct ata_taskfile *tf, const u8 *cdb,
1414 int dma_dir, struct scatterlist *sgl,
1415 unsigned int n_elem, unsigned long timeout)
1416 {
1417 struct ata_link *link = dev->link;
1418 struct ata_port *ap = link->ap;
1419 u8 command = tf->command;
1420 struct ata_queued_cmd *qc;
1421 unsigned int tag, preempted_tag;
1422 u32 preempted_sactive, preempted_qc_active;
1423 int preempted_nr_active_links;
1424 DECLARE_COMPLETION_ONSTACK(wait);
1425 unsigned long flags;
1426 unsigned int err_mask;
1427 int rc;
1428
1429 spin_lock_irqsave(ap->lock, flags);
1430
1431 /* no internal command while frozen */
1432 if (ap->pflags & ATA_PFLAG_FROZEN) {
1433 spin_unlock_irqrestore(ap->lock, flags);
1434 return AC_ERR_SYSTEM;
1435 }
1436
1437 /* initialize internal qc */
1438
1439 /* XXX: Tag 0 is used for drivers with legacy EH as some
1440 * drivers choke if any other tag is given. This breaks
1441 * ata_tag_internal() test for those drivers. Don't use new
1442 * EH stuff without converting to it.
1443 */
1444 if (ap->ops->error_handler)
1445 tag = ATA_TAG_INTERNAL;
1446 else
1447 tag = 0;
1448
1449 if (test_and_set_bit(tag, &ap->qc_allocated))
1450 BUG();
1451 qc = __ata_qc_from_tag(ap, tag);
1452
1453 qc->tag = tag;
1454 qc->scsicmd = NULL;
1455 qc->ap = ap;
1456 qc->dev = dev;
1457 ata_qc_reinit(qc);
1458
1459 preempted_tag = link->active_tag;
1460 preempted_sactive = link->sactive;
1461 preempted_qc_active = ap->qc_active;
1462 preempted_nr_active_links = ap->nr_active_links;
1463 link->active_tag = ATA_TAG_POISON;
1464 link->sactive = 0;
1465 ap->qc_active = 0;
1466 ap->nr_active_links = 0;
1467
1468 /* prepare & issue qc */
1469 qc->tf = *tf;
1470 if (cdb)
1471 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1472 qc->flags |= ATA_QCFLAG_RESULT_TF;
1473 qc->dma_dir = dma_dir;
1474 if (dma_dir != DMA_NONE) {
1475 unsigned int i, buflen = 0;
1476 struct scatterlist *sg;
1477
1478 for_each_sg(sgl, sg, n_elem, i)
1479 buflen += sg->length;
1480
1481 ata_sg_init(qc, sgl, n_elem);
1482 qc->nbytes = buflen;
1483 }
1484
1485 qc->private_data = &wait;
1486 qc->complete_fn = ata_qc_complete_internal;
1487
1488 ata_qc_issue(qc);
1489
1490 spin_unlock_irqrestore(ap->lock, flags);
1491
1492 if (!timeout)
1493 timeout = ata_probe_timeout * 1000 / HZ;
1494
1495 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1496
1497 ata_port_flush_task(ap);
1498
1499 if (!rc) {
1500 spin_lock_irqsave(ap->lock, flags);
1501
1502 /* We're racing with irq here. If we lose, the
1503 * following test prevents us from completing the qc
1504 * twice. If we win, the port is frozen and will be
1505 * cleaned up by ->post_internal_cmd().
1506 */
1507 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1508 qc->err_mask |= AC_ERR_TIMEOUT;
1509
1510 if (ap->ops->error_handler)
1511 ata_port_freeze(ap);
1512 else
1513 ata_qc_complete(qc);
1514
1515 if (ata_msg_warn(ap))
1516 ata_dev_printk(dev, KERN_WARNING,
1517 "qc timeout (cmd 0x%x)\n", command);
1518 }
1519
1520 spin_unlock_irqrestore(ap->lock, flags);
1521 }
1522
1523 /* do post_internal_cmd */
1524 if (ap->ops->post_internal_cmd)
1525 ap->ops->post_internal_cmd(qc);
1526
1527 /* perform minimal error analysis */
1528 if (qc->flags & ATA_QCFLAG_FAILED) {
1529 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1530 qc->err_mask |= AC_ERR_DEV;
1531
1532 if (!qc->err_mask)
1533 qc->err_mask |= AC_ERR_OTHER;
1534
1535 if (qc->err_mask & ~AC_ERR_OTHER)
1536 qc->err_mask &= ~AC_ERR_OTHER;
1537 }
1538
1539 /* finish up */
1540 spin_lock_irqsave(ap->lock, flags);
1541
1542 *tf = qc->result_tf;
1543 err_mask = qc->err_mask;
1544
1545 ata_qc_free(qc);
1546 link->active_tag = preempted_tag;
1547 link->sactive = preempted_sactive;
1548 ap->qc_active = preempted_qc_active;
1549 ap->nr_active_links = preempted_nr_active_links;
1550
1551 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1552 * Until those drivers are fixed, we detect the condition
1553 * here, fail the command with AC_ERR_SYSTEM and reenable the
1554 * port.
1555 *
1556 * Note that this doesn't change any behavior as internal
1557 * command failure results in disabling the device in the
1558 * higher layer for LLDDs without new reset/EH callbacks.
1559 *
1560 * Kill the following code as soon as those drivers are fixed.
1561 */
1562 if (ap->flags & ATA_FLAG_DISABLED) {
1563 err_mask |= AC_ERR_SYSTEM;
1564 ata_port_probe(ap);
1565 }
1566
1567 spin_unlock_irqrestore(ap->lock, flags);
1568
1569 return err_mask;
1570 }
1571
1572 /**
1573 * ata_exec_internal - execute libata internal command
1574 * @dev: Device to which the command is sent
1575 * @tf: Taskfile registers for the command and the result
1576 * @cdb: CDB for packet command
1577 * @dma_dir: Data tranfer direction of the command
1578 * @buf: Data buffer of the command
1579 * @buflen: Length of data buffer
1580 * @timeout: Timeout in msecs (0 for default)
1581 *
1582 * Wrapper around ata_exec_internal_sg() which takes simple
1583 * buffer instead of sg list.
1584 *
1585 * LOCKING:
1586 * None. Should be called with kernel context, might sleep.
1587 *
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1590 */
1591 unsigned ata_exec_internal(struct ata_device *dev,
1592 struct ata_taskfile *tf, const u8 *cdb,
1593 int dma_dir, void *buf, unsigned int buflen,
1594 unsigned long timeout)
1595 {
1596 struct scatterlist *psg = NULL, sg;
1597 unsigned int n_elem = 0;
1598
1599 if (dma_dir != DMA_NONE) {
1600 WARN_ON(!buf);
1601 sg_init_one(&sg, buf, buflen);
1602 psg = &sg;
1603 n_elem++;
1604 }
1605
1606 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1607 timeout);
1608 }
1609
1610 /**
1611 * ata_do_simple_cmd - execute simple internal command
1612 * @dev: Device to which the command is sent
1613 * @cmd: Opcode to execute
1614 *
1615 * Execute a 'simple' command, that only consists of the opcode
1616 * 'cmd' itself, without filling any other registers
1617 *
1618 * LOCKING:
1619 * Kernel thread context (may sleep).
1620 *
1621 * RETURNS:
1622 * Zero on success, AC_ERR_* mask on failure
1623 */
1624 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1625 {
1626 struct ata_taskfile tf;
1627
1628 ata_tf_init(dev, &tf);
1629
1630 tf.command = cmd;
1631 tf.flags |= ATA_TFLAG_DEVICE;
1632 tf.protocol = ATA_PROT_NODATA;
1633
1634 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1635 }
1636
1637 /**
1638 * ata_pio_need_iordy - check if iordy needed
1639 * @adev: ATA device
1640 *
1641 * Check if the current speed of the device requires IORDY. Used
1642 * by various controllers for chip configuration.
1643 */
1644
1645 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1646 {
1647 /* Controller doesn't support IORDY. Probably a pointless check
1648 as the caller should know this */
1649 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1650 return 0;
1651 /* PIO3 and higher it is mandatory */
1652 if (adev->pio_mode > XFER_PIO_2)
1653 return 1;
1654 /* We turn it on when possible */
1655 if (ata_id_has_iordy(adev->id))
1656 return 1;
1657 return 0;
1658 }
1659
1660 /**
1661 * ata_pio_mask_no_iordy - Return the non IORDY mask
1662 * @adev: ATA device
1663 *
1664 * Compute the highest mode possible if we are not using iordy. Return
1665 * -1 if no iordy mode is available.
1666 */
1667
1668 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1669 {
1670 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1671 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1672 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1673 /* Is the speed faster than the drive allows non IORDY ? */
1674 if (pio) {
1675 /* This is cycle times not frequency - watch the logic! */
1676 if (pio > 240) /* PIO2 is 240nS per cycle */
1677 return 3 << ATA_SHIFT_PIO;
1678 return 7 << ATA_SHIFT_PIO;
1679 }
1680 }
1681 return 3 << ATA_SHIFT_PIO;
1682 }
1683
1684 /**
1685 * ata_dev_read_id - Read ID data from the specified device
1686 * @dev: target device
1687 * @p_class: pointer to class of the target device (may be changed)
1688 * @flags: ATA_READID_* flags
1689 * @id: buffer to read IDENTIFY data into
1690 *
1691 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1692 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1693 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1694 * for pre-ATA4 drives.
1695 *
1696 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1697 * now we abort if we hit that case.
1698 *
1699 * LOCKING:
1700 * Kernel thread context (may sleep)
1701 *
1702 * RETURNS:
1703 * 0 on success, -errno otherwise.
1704 */
1705 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1706 unsigned int flags, u16 *id)
1707 {
1708 struct ata_port *ap = dev->link->ap;
1709 unsigned int class = *p_class;
1710 struct ata_taskfile tf;
1711 unsigned int err_mask = 0;
1712 const char *reason;
1713 int may_fallback = 1, tried_spinup = 0;
1714 int rc;
1715
1716 if (ata_msg_ctl(ap))
1717 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1718
1719 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1720 retry:
1721 ata_tf_init(dev, &tf);
1722
1723 switch (class) {
1724 case ATA_DEV_ATA:
1725 tf.command = ATA_CMD_ID_ATA;
1726 break;
1727 case ATA_DEV_ATAPI:
1728 tf.command = ATA_CMD_ID_ATAPI;
1729 break;
1730 default:
1731 rc = -ENODEV;
1732 reason = "unsupported class";
1733 goto err_out;
1734 }
1735
1736 tf.protocol = ATA_PROT_PIO;
1737
1738 /* Some devices choke if TF registers contain garbage. Make
1739 * sure those are properly initialized.
1740 */
1741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1742
1743 /* Device presence detection is unreliable on some
1744 * controllers. Always poll IDENTIFY if available.
1745 */
1746 tf.flags |= ATA_TFLAG_POLLING;
1747
1748 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1749 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1750 if (err_mask) {
1751 if (err_mask & AC_ERR_NODEV_HINT) {
1752 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1753 ap->print_id, dev->devno);
1754 return -ENOENT;
1755 }
1756
1757 /* Device or controller might have reported the wrong
1758 * device class. Give a shot at the other IDENTIFY if
1759 * the current one is aborted by the device.
1760 */
1761 if (may_fallback &&
1762 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1763 may_fallback = 0;
1764
1765 if (class == ATA_DEV_ATA)
1766 class = ATA_DEV_ATAPI;
1767 else
1768 class = ATA_DEV_ATA;
1769 goto retry;
1770 }
1771
1772 rc = -EIO;
1773 reason = "I/O error";
1774 goto err_out;
1775 }
1776
1777 /* Falling back doesn't make sense if ID data was read
1778 * successfully at least once.
1779 */
1780 may_fallback = 0;
1781
1782 swap_buf_le16(id, ATA_ID_WORDS);
1783
1784 /* sanity check */
1785 rc = -EINVAL;
1786 reason = "device reports invalid type";
1787
1788 if (class == ATA_DEV_ATA) {
1789 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1790 goto err_out;
1791 } else {
1792 if (ata_id_is_ata(id))
1793 goto err_out;
1794 }
1795
1796 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1797 tried_spinup = 1;
1798 /*
1799 * Drive powered-up in standby mode, and requires a specific
1800 * SET_FEATURES spin-up subcommand before it will accept
1801 * anything other than the original IDENTIFY command.
1802 */
1803 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1804 if (err_mask && id[2] != 0x738c) {
1805 rc = -EIO;
1806 reason = "SPINUP failed";
1807 goto err_out;
1808 }
1809 /*
1810 * If the drive initially returned incomplete IDENTIFY info,
1811 * we now must reissue the IDENTIFY command.
1812 */
1813 if (id[2] == 0x37c8)
1814 goto retry;
1815 }
1816
1817 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1818 /*
1819 * The exact sequence expected by certain pre-ATA4 drives is:
1820 * SRST RESET
1821 * IDENTIFY (optional in early ATA)
1822 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1823 * anything else..
1824 * Some drives were very specific about that exact sequence.
1825 *
1826 * Note that ATA4 says lba is mandatory so the second check
1827 * shoud never trigger.
1828 */
1829 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1830 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1831 if (err_mask) {
1832 rc = -EIO;
1833 reason = "INIT_DEV_PARAMS failed";
1834 goto err_out;
1835 }
1836
1837 /* current CHS translation info (id[53-58]) might be
1838 * changed. reread the identify device info.
1839 */
1840 flags &= ~ATA_READID_POSTRESET;
1841 goto retry;
1842 }
1843 }
1844
1845 *p_class = class;
1846
1847 return 0;
1848
1849 err_out:
1850 if (ata_msg_warn(ap))
1851 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1852 "(%s, err_mask=0x%x)\n", reason, err_mask);
1853 return rc;
1854 }
1855
1856 static inline u8 ata_dev_knobble(struct ata_device *dev)
1857 {
1858 struct ata_port *ap = dev->link->ap;
1859 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1860 }
1861
1862 static void ata_dev_config_ncq(struct ata_device *dev,
1863 char *desc, size_t desc_sz)
1864 {
1865 struct ata_port *ap = dev->link->ap;
1866 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1867
1868 if (!ata_id_has_ncq(dev->id)) {
1869 desc[0] = '\0';
1870 return;
1871 }
1872 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1873 snprintf(desc, desc_sz, "NCQ (not used)");
1874 return;
1875 }
1876 if (ap->flags & ATA_FLAG_NCQ) {
1877 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1878 dev->flags |= ATA_DFLAG_NCQ;
1879 }
1880
1881 if (hdepth >= ddepth)
1882 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1883 else
1884 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1885 }
1886
1887 /**
1888 * ata_dev_configure - Configure the specified ATA/ATAPI device
1889 * @dev: Target device to configure
1890 *
1891 * Configure @dev according to @dev->id. Generic and low-level
1892 * driver specific fixups are also applied.
1893 *
1894 * LOCKING:
1895 * Kernel thread context (may sleep)
1896 *
1897 * RETURNS:
1898 * 0 on success, -errno otherwise
1899 */
1900 int ata_dev_configure(struct ata_device *dev)
1901 {
1902 struct ata_port *ap = dev->link->ap;
1903 struct ata_eh_context *ehc = &dev->link->eh_context;
1904 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1905 const u16 *id = dev->id;
1906 unsigned int xfer_mask;
1907 char revbuf[7]; /* XYZ-99\0 */
1908 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1909 char modelbuf[ATA_ID_PROD_LEN+1];
1910 int rc;
1911
1912 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1913 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1914 __FUNCTION__);
1915 return 0;
1916 }
1917
1918 if (ata_msg_probe(ap))
1919 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1920
1921 /* set horkage */
1922 dev->horkage |= ata_dev_blacklisted(dev);
1923
1924 /* let ACPI work its magic */
1925 rc = ata_acpi_on_devcfg(dev);
1926 if (rc)
1927 return rc;
1928
1929 /* massage HPA, do it early as it might change IDENTIFY data */
1930 rc = ata_hpa_resize(dev);
1931 if (rc)
1932 return rc;
1933
1934 /* print device capabilities */
1935 if (ata_msg_probe(ap))
1936 ata_dev_printk(dev, KERN_DEBUG,
1937 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1938 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1939 __FUNCTION__,
1940 id[49], id[82], id[83], id[84],
1941 id[85], id[86], id[87], id[88]);
1942
1943 /* initialize to-be-configured parameters */
1944 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1945 dev->max_sectors = 0;
1946 dev->cdb_len = 0;
1947 dev->n_sectors = 0;
1948 dev->cylinders = 0;
1949 dev->heads = 0;
1950 dev->sectors = 0;
1951
1952 /*
1953 * common ATA, ATAPI feature tests
1954 */
1955
1956 /* find max transfer mode; for printk only */
1957 xfer_mask = ata_id_xfermask(id);
1958
1959 if (ata_msg_probe(ap))
1960 ata_dump_id(id);
1961
1962 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1963 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1964 sizeof(fwrevbuf));
1965
1966 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1967 sizeof(modelbuf));
1968
1969 /* ATA-specific feature tests */
1970 if (dev->class == ATA_DEV_ATA) {
1971 if (ata_id_is_cfa(id)) {
1972 if (id[162] & 1) /* CPRM may make this media unusable */
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "supports DRM functions and may "
1975 "not be fully accessable.\n");
1976 snprintf(revbuf, 7, "CFA");
1977 } else
1978 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1979
1980 dev->n_sectors = ata_id_n_sectors(id);
1981
1982 if (dev->id[59] & 0x100)
1983 dev->multi_count = dev->id[59] & 0xff;
1984
1985 if (ata_id_has_lba(id)) {
1986 const char *lba_desc;
1987 char ncq_desc[20];
1988
1989 lba_desc = "LBA";
1990 dev->flags |= ATA_DFLAG_LBA;
1991 if (ata_id_has_lba48(id)) {
1992 dev->flags |= ATA_DFLAG_LBA48;
1993 lba_desc = "LBA48";
1994
1995 if (dev->n_sectors >= (1UL << 28) &&
1996 ata_id_has_flush_ext(id))
1997 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1998 }
1999
2000 /* config NCQ */
2001 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2002
2003 /* print device info to dmesg */
2004 if (ata_msg_drv(ap) && print_info) {
2005 ata_dev_printk(dev, KERN_INFO,
2006 "%s: %s, %s, max %s\n",
2007 revbuf, modelbuf, fwrevbuf,
2008 ata_mode_string(xfer_mask));
2009 ata_dev_printk(dev, KERN_INFO,
2010 "%Lu sectors, multi %u: %s %s\n",
2011 (unsigned long long)dev->n_sectors,
2012 dev->multi_count, lba_desc, ncq_desc);
2013 }
2014 } else {
2015 /* CHS */
2016
2017 /* Default translation */
2018 dev->cylinders = id[1];
2019 dev->heads = id[3];
2020 dev->sectors = id[6];
2021
2022 if (ata_id_current_chs_valid(id)) {
2023 /* Current CHS translation is valid. */
2024 dev->cylinders = id[54];
2025 dev->heads = id[55];
2026 dev->sectors = id[56];
2027 }
2028
2029 /* print device info to dmesg */
2030 if (ata_msg_drv(ap) && print_info) {
2031 ata_dev_printk(dev, KERN_INFO,
2032 "%s: %s, %s, max %s\n",
2033 revbuf, modelbuf, fwrevbuf,
2034 ata_mode_string(xfer_mask));
2035 ata_dev_printk(dev, KERN_INFO,
2036 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2037 (unsigned long long)dev->n_sectors,
2038 dev->multi_count, dev->cylinders,
2039 dev->heads, dev->sectors);
2040 }
2041 }
2042
2043 dev->cdb_len = 16;
2044 }
2045
2046 /* ATAPI-specific feature tests */
2047 else if (dev->class == ATA_DEV_ATAPI) {
2048 const char *cdb_intr_string = "";
2049 const char *atapi_an_string = "";
2050 u32 sntf;
2051
2052 rc = atapi_cdb_len(id);
2053 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2054 if (ata_msg_warn(ap))
2055 ata_dev_printk(dev, KERN_WARNING,
2056 "unsupported CDB len\n");
2057 rc = -EINVAL;
2058 goto err_out_nosup;
2059 }
2060 dev->cdb_len = (unsigned int) rc;
2061
2062 /* Enable ATAPI AN if both the host and device have
2063 * the support. If PMP is attached, SNTF is required
2064 * to enable ATAPI AN to discern between PHY status
2065 * changed notifications and ATAPI ANs.
2066 */
2067 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2068 (!ap->nr_pmp_links ||
2069 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2070 unsigned int err_mask;
2071
2072 /* issue SET feature command to turn this on */
2073 err_mask = ata_dev_set_feature(dev,
2074 SETFEATURES_SATA_ENABLE, SATA_AN);
2075 if (err_mask)
2076 ata_dev_printk(dev, KERN_ERR,
2077 "failed to enable ATAPI AN "
2078 "(err_mask=0x%x)\n", err_mask);
2079 else {
2080 dev->flags |= ATA_DFLAG_AN;
2081 atapi_an_string = ", ATAPI AN";
2082 }
2083 }
2084
2085 if (ata_id_cdb_intr(dev->id)) {
2086 dev->flags |= ATA_DFLAG_CDB_INTR;
2087 cdb_intr_string = ", CDB intr";
2088 }
2089
2090 /* print device info to dmesg */
2091 if (ata_msg_drv(ap) && print_info)
2092 ata_dev_printk(dev, KERN_INFO,
2093 "ATAPI: %s, %s, max %s%s%s\n",
2094 modelbuf, fwrevbuf,
2095 ata_mode_string(xfer_mask),
2096 cdb_intr_string, atapi_an_string);
2097 }
2098
2099 /* determine max_sectors */
2100 dev->max_sectors = ATA_MAX_SECTORS;
2101 if (dev->flags & ATA_DFLAG_LBA48)
2102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2103
2104 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2105 /* Let the user know. We don't want to disallow opens for
2106 rescue purposes, or in case the vendor is just a blithering
2107 idiot */
2108 if (print_info) {
2109 ata_dev_printk(dev, KERN_WARNING,
2110 "Drive reports diagnostics failure. This may indicate a drive\n");
2111 ata_dev_printk(dev, KERN_WARNING,
2112 "fault or invalid emulation. Contact drive vendor for information.\n");
2113 }
2114 }
2115
2116 /* limit bridge transfers to udma5, 200 sectors */
2117 if (ata_dev_knobble(dev)) {
2118 if (ata_msg_drv(ap) && print_info)
2119 ata_dev_printk(dev, KERN_INFO,
2120 "applying bridge limits\n");
2121 dev->udma_mask &= ATA_UDMA5;
2122 dev->max_sectors = ATA_MAX_SECTORS;
2123 }
2124
2125 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2126 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2127 dev->max_sectors);
2128
2129 if (ap->ops->dev_config)
2130 ap->ops->dev_config(dev);
2131
2132 if (ata_msg_probe(ap))
2133 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2134 __FUNCTION__, ata_chk_status(ap));
2135 return 0;
2136
2137 err_out_nosup:
2138 if (ata_msg_probe(ap))
2139 ata_dev_printk(dev, KERN_DEBUG,
2140 "%s: EXIT, err\n", __FUNCTION__);
2141 return rc;
2142 }
2143
2144 /**
2145 * ata_cable_40wire - return 40 wire cable type
2146 * @ap: port
2147 *
2148 * Helper method for drivers which want to hardwire 40 wire cable
2149 * detection.
2150 */
2151
2152 int ata_cable_40wire(struct ata_port *ap)
2153 {
2154 return ATA_CBL_PATA40;
2155 }
2156
2157 /**
2158 * ata_cable_80wire - return 80 wire cable type
2159 * @ap: port
2160 *
2161 * Helper method for drivers which want to hardwire 80 wire cable
2162 * detection.
2163 */
2164
2165 int ata_cable_80wire(struct ata_port *ap)
2166 {
2167 return ATA_CBL_PATA80;
2168 }
2169
2170 /**
2171 * ata_cable_unknown - return unknown PATA cable.
2172 * @ap: port
2173 *
2174 * Helper method for drivers which have no PATA cable detection.
2175 */
2176
2177 int ata_cable_unknown(struct ata_port *ap)
2178 {
2179 return ATA_CBL_PATA_UNK;
2180 }
2181
2182 /**
2183 * ata_cable_sata - return SATA cable type
2184 * @ap: port
2185 *
2186 * Helper method for drivers which have SATA cables
2187 */
2188
2189 int ata_cable_sata(struct ata_port *ap)
2190 {
2191 return ATA_CBL_SATA;
2192 }
2193
2194 /**
2195 * ata_bus_probe - Reset and probe ATA bus
2196 * @ap: Bus to probe
2197 *
2198 * Master ATA bus probing function. Initiates a hardware-dependent
2199 * bus reset, then attempts to identify any devices found on
2200 * the bus.
2201 *
2202 * LOCKING:
2203 * PCI/etc. bus probe sem.
2204 *
2205 * RETURNS:
2206 * Zero on success, negative errno otherwise.
2207 */
2208
2209 int ata_bus_probe(struct ata_port *ap)
2210 {
2211 unsigned int classes[ATA_MAX_DEVICES];
2212 int tries[ATA_MAX_DEVICES];
2213 int rc;
2214 struct ata_device *dev;
2215
2216 ata_port_probe(ap);
2217
2218 ata_link_for_each_dev(dev, &ap->link)
2219 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2220
2221 retry:
2222 /* reset and determine device classes */
2223 ap->ops->phy_reset(ap);
2224
2225 ata_link_for_each_dev(dev, &ap->link) {
2226 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2227 dev->class != ATA_DEV_UNKNOWN)
2228 classes[dev->devno] = dev->class;
2229 else
2230 classes[dev->devno] = ATA_DEV_NONE;
2231
2232 dev->class = ATA_DEV_UNKNOWN;
2233 }
2234
2235 ata_port_probe(ap);
2236
2237 /* after the reset the device state is PIO 0 and the controller
2238 state is undefined. Record the mode */
2239
2240 ata_link_for_each_dev(dev, &ap->link)
2241 dev->pio_mode = XFER_PIO_0;
2242
2243 /* read IDENTIFY page and configure devices. We have to do the identify
2244 specific sequence bass-ackwards so that PDIAG- is released by
2245 the slave device */
2246
2247 ata_link_for_each_dev(dev, &ap->link) {
2248 if (tries[dev->devno])
2249 dev->class = classes[dev->devno];
2250
2251 if (!ata_dev_enabled(dev))
2252 continue;
2253
2254 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2255 dev->id);
2256 if (rc)
2257 goto fail;
2258 }
2259
2260 /* Now ask for the cable type as PDIAG- should have been released */
2261 if (ap->ops->cable_detect)
2262 ap->cbl = ap->ops->cable_detect(ap);
2263
2264 /* We may have SATA bridge glue hiding here irrespective of the
2265 reported cable types and sensed types */
2266 ata_link_for_each_dev(dev, &ap->link) {
2267 if (!ata_dev_enabled(dev))
2268 continue;
2269 /* SATA drives indicate we have a bridge. We don't know which
2270 end of the link the bridge is which is a problem */
2271 if (ata_id_is_sata(dev->id))
2272 ap->cbl = ATA_CBL_SATA;
2273 }
2274
2275 /* After the identify sequence we can now set up the devices. We do
2276 this in the normal order so that the user doesn't get confused */
2277
2278 ata_link_for_each_dev(dev, &ap->link) {
2279 if (!ata_dev_enabled(dev))
2280 continue;
2281
2282 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2283 rc = ata_dev_configure(dev);
2284 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2285 if (rc)
2286 goto fail;
2287 }
2288
2289 /* configure transfer mode */
2290 rc = ata_set_mode(&ap->link, &dev);
2291 if (rc)
2292 goto fail;
2293
2294 ata_link_for_each_dev(dev, &ap->link)
2295 if (ata_dev_enabled(dev))
2296 return 0;
2297
2298 /* no device present, disable port */
2299 ata_port_disable(ap);
2300 return -ENODEV;
2301
2302 fail:
2303 tries[dev->devno]--;
2304
2305 switch (rc) {
2306 case -EINVAL:
2307 /* eeek, something went very wrong, give up */
2308 tries[dev->devno] = 0;
2309 break;
2310
2311 case -ENODEV:
2312 /* give it just one more chance */
2313 tries[dev->devno] = min(tries[dev->devno], 1);
2314 case -EIO:
2315 if (tries[dev->devno] == 1) {
2316 /* This is the last chance, better to slow
2317 * down than lose it.
2318 */
2319 sata_down_spd_limit(&ap->link);
2320 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2321 }
2322 }
2323
2324 if (!tries[dev->devno])
2325 ata_dev_disable(dev);
2326
2327 goto retry;
2328 }
2329
2330 /**
2331 * ata_port_probe - Mark port as enabled
2332 * @ap: Port for which we indicate enablement
2333 *
2334 * Modify @ap data structure such that the system
2335 * thinks that the entire port is enabled.
2336 *
2337 * LOCKING: host lock, or some other form of
2338 * serialization.
2339 */
2340
2341 void ata_port_probe(struct ata_port *ap)
2342 {
2343 ap->flags &= ~ATA_FLAG_DISABLED;
2344 }
2345
2346 /**
2347 * sata_print_link_status - Print SATA link status
2348 * @link: SATA link to printk link status about
2349 *
2350 * This function prints link speed and status of a SATA link.
2351 *
2352 * LOCKING:
2353 * None.
2354 */
2355 void sata_print_link_status(struct ata_link *link)
2356 {
2357 u32 sstatus, scontrol, tmp;
2358
2359 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2360 return;
2361 sata_scr_read(link, SCR_CONTROL, &scontrol);
2362
2363 if (ata_link_online(link)) {
2364 tmp = (sstatus >> 4) & 0xf;
2365 ata_link_printk(link, KERN_INFO,
2366 "SATA link up %s (SStatus %X SControl %X)\n",
2367 sata_spd_string(tmp), sstatus, scontrol);
2368 } else {
2369 ata_link_printk(link, KERN_INFO,
2370 "SATA link down (SStatus %X SControl %X)\n",
2371 sstatus, scontrol);
2372 }
2373 }
2374
2375 /**
2376 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2377 * @ap: SATA port associated with target SATA PHY.
2378 *
2379 * This function issues commands to standard SATA Sxxx
2380 * PHY registers, to wake up the phy (and device), and
2381 * clear any reset condition.
2382 *
2383 * LOCKING:
2384 * PCI/etc. bus probe sem.
2385 *
2386 */
2387 void __sata_phy_reset(struct ata_port *ap)
2388 {
2389 struct ata_link *link = &ap->link;
2390 unsigned long timeout = jiffies + (HZ * 5);
2391 u32 sstatus;
2392
2393 if (ap->flags & ATA_FLAG_SATA_RESET) {
2394 /* issue phy wake/reset */
2395 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2396 /* Couldn't find anything in SATA I/II specs, but
2397 * AHCI-1.1 10.4.2 says at least 1 ms. */
2398 mdelay(1);
2399 }
2400 /* phy wake/clear reset */
2401 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2402
2403 /* wait for phy to become ready, if necessary */
2404 do {
2405 msleep(200);
2406 sata_scr_read(link, SCR_STATUS, &sstatus);
2407 if ((sstatus & 0xf) != 1)
2408 break;
2409 } while (time_before(jiffies, timeout));
2410
2411 /* print link status */
2412 sata_print_link_status(link);
2413
2414 /* TODO: phy layer with polling, timeouts, etc. */
2415 if (!ata_link_offline(link))
2416 ata_port_probe(ap);
2417 else
2418 ata_port_disable(ap);
2419
2420 if (ap->flags & ATA_FLAG_DISABLED)
2421 return;
2422
2423 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2424 ata_port_disable(ap);
2425 return;
2426 }
2427
2428 ap->cbl = ATA_CBL_SATA;
2429 }
2430
2431 /**
2432 * sata_phy_reset - Reset SATA bus.
2433 * @ap: SATA port associated with target SATA PHY.
2434 *
2435 * This function resets the SATA bus, and then probes
2436 * the bus for devices.
2437 *
2438 * LOCKING:
2439 * PCI/etc. bus probe sem.
2440 *
2441 */
2442 void sata_phy_reset(struct ata_port *ap)
2443 {
2444 __sata_phy_reset(ap);
2445 if (ap->flags & ATA_FLAG_DISABLED)
2446 return;
2447 ata_bus_reset(ap);
2448 }
2449
2450 /**
2451 * ata_dev_pair - return other device on cable
2452 * @adev: device
2453 *
2454 * Obtain the other device on the same cable, or if none is
2455 * present NULL is returned
2456 */
2457
2458 struct ata_device *ata_dev_pair(struct ata_device *adev)
2459 {
2460 struct ata_link *link = adev->link;
2461 struct ata_device *pair = &link->device[1 - adev->devno];
2462 if (!ata_dev_enabled(pair))
2463 return NULL;
2464 return pair;
2465 }
2466
2467 /**
2468 * ata_port_disable - Disable port.
2469 * @ap: Port to be disabled.
2470 *
2471 * Modify @ap data structure such that the system
2472 * thinks that the entire port is disabled, and should
2473 * never attempt to probe or communicate with devices
2474 * on this port.
2475 *
2476 * LOCKING: host lock, or some other form of
2477 * serialization.
2478 */
2479
2480 void ata_port_disable(struct ata_port *ap)
2481 {
2482 ap->link.device[0].class = ATA_DEV_NONE;
2483 ap->link.device[1].class = ATA_DEV_NONE;
2484 ap->flags |= ATA_FLAG_DISABLED;
2485 }
2486
2487 /**
2488 * sata_down_spd_limit - adjust SATA spd limit downward
2489 * @link: Link to adjust SATA spd limit for
2490 *
2491 * Adjust SATA spd limit of @link downward. Note that this
2492 * function only adjusts the limit. The change must be applied
2493 * using sata_set_spd().
2494 *
2495 * LOCKING:
2496 * Inherited from caller.
2497 *
2498 * RETURNS:
2499 * 0 on success, negative errno on failure
2500 */
2501 int sata_down_spd_limit(struct ata_link *link)
2502 {
2503 u32 sstatus, spd, mask;
2504 int rc, highbit;
2505
2506 if (!sata_scr_valid(link))
2507 return -EOPNOTSUPP;
2508
2509 /* If SCR can be read, use it to determine the current SPD.
2510 * If not, use cached value in link->sata_spd.
2511 */
2512 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2513 if (rc == 0)
2514 spd = (sstatus >> 4) & 0xf;
2515 else
2516 spd = link->sata_spd;
2517
2518 mask = link->sata_spd_limit;
2519 if (mask <= 1)
2520 return -EINVAL;
2521
2522 /* unconditionally mask off the highest bit */
2523 highbit = fls(mask) - 1;
2524 mask &= ~(1 << highbit);
2525
2526 /* Mask off all speeds higher than or equal to the current
2527 * one. Force 1.5Gbps if current SPD is not available.
2528 */
2529 if (spd > 1)
2530 mask &= (1 << (spd - 1)) - 1;
2531 else
2532 mask &= 1;
2533
2534 /* were we already at the bottom? */
2535 if (!mask)
2536 return -EINVAL;
2537
2538 link->sata_spd_limit = mask;
2539
2540 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2541 sata_spd_string(fls(mask)));
2542
2543 return 0;
2544 }
2545
2546 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2547 {
2548 u32 spd, limit;
2549
2550 if (link->sata_spd_limit == UINT_MAX)
2551 limit = 0;
2552 else
2553 limit = fls(link->sata_spd_limit);
2554
2555 spd = (*scontrol >> 4) & 0xf;
2556 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2557
2558 return spd != limit;
2559 }
2560
2561 /**
2562 * sata_set_spd_needed - is SATA spd configuration needed
2563 * @link: Link in question
2564 *
2565 * Test whether the spd limit in SControl matches
2566 * @link->sata_spd_limit. This function is used to determine
2567 * whether hardreset is necessary to apply SATA spd
2568 * configuration.
2569 *
2570 * LOCKING:
2571 * Inherited from caller.
2572 *
2573 * RETURNS:
2574 * 1 if SATA spd configuration is needed, 0 otherwise.
2575 */
2576 int sata_set_spd_needed(struct ata_link *link)
2577 {
2578 u32 scontrol;
2579
2580 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2581 return 0;
2582
2583 return __sata_set_spd_needed(link, &scontrol);
2584 }
2585
2586 /**
2587 * sata_set_spd - set SATA spd according to spd limit
2588 * @link: Link to set SATA spd for
2589 *
2590 * Set SATA spd of @link according to sata_spd_limit.
2591 *
2592 * LOCKING:
2593 * Inherited from caller.
2594 *
2595 * RETURNS:
2596 * 0 if spd doesn't need to be changed, 1 if spd has been
2597 * changed. Negative errno if SCR registers are inaccessible.
2598 */
2599 int sata_set_spd(struct ata_link *link)
2600 {
2601 u32 scontrol;
2602 int rc;
2603
2604 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2605 return rc;
2606
2607 if (!__sata_set_spd_needed(link, &scontrol))
2608 return 0;
2609
2610 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2611 return rc;
2612
2613 return 1;
2614 }
2615
2616 /*
2617 * This mode timing computation functionality is ported over from
2618 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2619 */
2620 /*
2621 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2622 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2623 * for UDMA6, which is currently supported only by Maxtor drives.
2624 *
2625 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2626 */
2627
2628 static const struct ata_timing ata_timing[] = {
2629
2630 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2631 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2632 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2633 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2634
2635 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2636 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2637 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2638 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2639 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2640
2641 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2642
2643 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2644 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2645 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2646
2647 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2648 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2649 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2650
2651 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2652 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2653 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2654 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2655
2656 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2657 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2658 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2659
2660 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2661
2662 { 0xFF }
2663 };
2664
2665 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2666 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2667
2668 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2669 {
2670 q->setup = EZ(t->setup * 1000, T);
2671 q->act8b = EZ(t->act8b * 1000, T);
2672 q->rec8b = EZ(t->rec8b * 1000, T);
2673 q->cyc8b = EZ(t->cyc8b * 1000, T);
2674 q->active = EZ(t->active * 1000, T);
2675 q->recover = EZ(t->recover * 1000, T);
2676 q->cycle = EZ(t->cycle * 1000, T);
2677 q->udma = EZ(t->udma * 1000, UT);
2678 }
2679
2680 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2681 struct ata_timing *m, unsigned int what)
2682 {
2683 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2684 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2685 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2686 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2687 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2688 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2689 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2690 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2691 }
2692
2693 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2694 {
2695 const struct ata_timing *t;
2696
2697 for (t = ata_timing; t->mode != speed; t++)
2698 if (t->mode == 0xFF)
2699 return NULL;
2700 return t;
2701 }
2702
2703 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2704 struct ata_timing *t, int T, int UT)
2705 {
2706 const struct ata_timing *s;
2707 struct ata_timing p;
2708
2709 /*
2710 * Find the mode.
2711 */
2712
2713 if (!(s = ata_timing_find_mode(speed)))
2714 return -EINVAL;
2715
2716 memcpy(t, s, sizeof(*s));
2717
2718 /*
2719 * If the drive is an EIDE drive, it can tell us it needs extended
2720 * PIO/MW_DMA cycle timing.
2721 */
2722
2723 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2724 memset(&p, 0, sizeof(p));
2725 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2726 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2727 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2728 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2729 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2730 }
2731 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2732 }
2733
2734 /*
2735 * Convert the timing to bus clock counts.
2736 */
2737
2738 ata_timing_quantize(t, t, T, UT);
2739
2740 /*
2741 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2742 * S.M.A.R.T * and some other commands. We have to ensure that the
2743 * DMA cycle timing is slower/equal than the fastest PIO timing.
2744 */
2745
2746 if (speed > XFER_PIO_6) {
2747 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2748 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2749 }
2750
2751 /*
2752 * Lengthen active & recovery time so that cycle time is correct.
2753 */
2754
2755 if (t->act8b + t->rec8b < t->cyc8b) {
2756 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2757 t->rec8b = t->cyc8b - t->act8b;
2758 }
2759
2760 if (t->active + t->recover < t->cycle) {
2761 t->active += (t->cycle - (t->active + t->recover)) / 2;
2762 t->recover = t->cycle - t->active;
2763 }
2764
2765 /* In a few cases quantisation may produce enough errors to
2766 leave t->cycle too low for the sum of active and recovery
2767 if so we must correct this */
2768 if (t->active + t->recover > t->cycle)
2769 t->cycle = t->active + t->recover;
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * ata_down_xfermask_limit - adjust dev xfer masks downward
2776 * @dev: Device to adjust xfer masks
2777 * @sel: ATA_DNXFER_* selector
2778 *
2779 * Adjust xfer masks of @dev downward. Note that this function
2780 * does not apply the change. Invoking ata_set_mode() afterwards
2781 * will apply the limit.
2782 *
2783 * LOCKING:
2784 * Inherited from caller.
2785 *
2786 * RETURNS:
2787 * 0 on success, negative errno on failure
2788 */
2789 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2790 {
2791 char buf[32];
2792 unsigned int orig_mask, xfer_mask;
2793 unsigned int pio_mask, mwdma_mask, udma_mask;
2794 int quiet, highbit;
2795
2796 quiet = !!(sel & ATA_DNXFER_QUIET);
2797 sel &= ~ATA_DNXFER_QUIET;
2798
2799 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2800 dev->mwdma_mask,
2801 dev->udma_mask);
2802 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2803
2804 switch (sel) {
2805 case ATA_DNXFER_PIO:
2806 highbit = fls(pio_mask) - 1;
2807 pio_mask &= ~(1 << highbit);
2808 break;
2809
2810 case ATA_DNXFER_DMA:
2811 if (udma_mask) {
2812 highbit = fls(udma_mask) - 1;
2813 udma_mask &= ~(1 << highbit);
2814 if (!udma_mask)
2815 return -ENOENT;
2816 } else if (mwdma_mask) {
2817 highbit = fls(mwdma_mask) - 1;
2818 mwdma_mask &= ~(1 << highbit);
2819 if (!mwdma_mask)
2820 return -ENOENT;
2821 }
2822 break;
2823
2824 case ATA_DNXFER_40C:
2825 udma_mask &= ATA_UDMA_MASK_40C;
2826 break;
2827
2828 case ATA_DNXFER_FORCE_PIO0:
2829 pio_mask &= 1;
2830 case ATA_DNXFER_FORCE_PIO:
2831 mwdma_mask = 0;
2832 udma_mask = 0;
2833 break;
2834
2835 default:
2836 BUG();
2837 }
2838
2839 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2840
2841 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2842 return -ENOENT;
2843
2844 if (!quiet) {
2845 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2846 snprintf(buf, sizeof(buf), "%s:%s",
2847 ata_mode_string(xfer_mask),
2848 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2849 else
2850 snprintf(buf, sizeof(buf), "%s",
2851 ata_mode_string(xfer_mask));
2852
2853 ata_dev_printk(dev, KERN_WARNING,
2854 "limiting speed to %s\n", buf);
2855 }
2856
2857 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2858 &dev->udma_mask);
2859
2860 return 0;
2861 }
2862
2863 static int ata_dev_set_mode(struct ata_device *dev)
2864 {
2865 struct ata_eh_context *ehc = &dev->link->eh_context;
2866 unsigned int err_mask;
2867 int rc;
2868
2869 dev->flags &= ~ATA_DFLAG_PIO;
2870 if (dev->xfer_shift == ATA_SHIFT_PIO)
2871 dev->flags |= ATA_DFLAG_PIO;
2872
2873 err_mask = ata_dev_set_xfermode(dev);
2874
2875 /* Old CFA may refuse this command, which is just fine */
2876 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2877 err_mask &= ~AC_ERR_DEV;
2878
2879 /* Some very old devices and some bad newer ones fail any kind of
2880 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2881 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2882 dev->pio_mode <= XFER_PIO_2)
2883 err_mask &= ~AC_ERR_DEV;
2884
2885 if (err_mask) {
2886 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2887 "(err_mask=0x%x)\n", err_mask);
2888 return -EIO;
2889 }
2890
2891 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2892 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2893 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2894 if (rc)
2895 return rc;
2896
2897 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2898 dev->xfer_shift, (int)dev->xfer_mode);
2899
2900 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2901 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2902 return 0;
2903 }
2904
2905 /**
2906 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2907 * @link: link on which timings will be programmed
2908 * @r_failed_dev: out paramter for failed device
2909 *
2910 * Standard implementation of the function used to tune and set
2911 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2912 * ata_dev_set_mode() fails, pointer to the failing device is
2913 * returned in @r_failed_dev.
2914 *
2915 * LOCKING:
2916 * PCI/etc. bus probe sem.
2917 *
2918 * RETURNS:
2919 * 0 on success, negative errno otherwise
2920 */
2921
2922 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2923 {
2924 struct ata_port *ap = link->ap;
2925 struct ata_device *dev;
2926 int rc = 0, used_dma = 0, found = 0;
2927
2928 /* step 1: calculate xfer_mask */
2929 ata_link_for_each_dev(dev, link) {
2930 unsigned int pio_mask, dma_mask;
2931 unsigned int mode_mask;
2932
2933 if (!ata_dev_enabled(dev))
2934 continue;
2935
2936 mode_mask = ATA_DMA_MASK_ATA;
2937 if (dev->class == ATA_DEV_ATAPI)
2938 mode_mask = ATA_DMA_MASK_ATAPI;
2939 else if (ata_id_is_cfa(dev->id))
2940 mode_mask = ATA_DMA_MASK_CFA;
2941
2942 ata_dev_xfermask(dev);
2943
2944 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2945 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2946
2947 if (libata_dma_mask & mode_mask)
2948 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2949 else
2950 dma_mask = 0;
2951
2952 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2953 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2954
2955 found = 1;
2956 if (dev->dma_mode)
2957 used_dma = 1;
2958 }
2959 if (!found)
2960 goto out;
2961
2962 /* step 2: always set host PIO timings */
2963 ata_link_for_each_dev(dev, link) {
2964 if (!ata_dev_enabled(dev))
2965 continue;
2966
2967 if (!dev->pio_mode) {
2968 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2969 rc = -EINVAL;
2970 goto out;
2971 }
2972
2973 dev->xfer_mode = dev->pio_mode;
2974 dev->xfer_shift = ATA_SHIFT_PIO;
2975 if (ap->ops->set_piomode)
2976 ap->ops->set_piomode(ap, dev);
2977 }
2978
2979 /* step 3: set host DMA timings */
2980 ata_link_for_each_dev(dev, link) {
2981 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2982 continue;
2983
2984 dev->xfer_mode = dev->dma_mode;
2985 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2986 if (ap->ops->set_dmamode)
2987 ap->ops->set_dmamode(ap, dev);
2988 }
2989
2990 /* step 4: update devices' xfer mode */
2991 ata_link_for_each_dev(dev, link) {
2992 /* don't update suspended devices' xfer mode */
2993 if (!ata_dev_enabled(dev))
2994 continue;
2995
2996 rc = ata_dev_set_mode(dev);
2997 if (rc)
2998 goto out;
2999 }
3000
3001 /* Record simplex status. If we selected DMA then the other
3002 * host channels are not permitted to do so.
3003 */
3004 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3005 ap->host->simplex_claimed = ap;
3006
3007 out:
3008 if (rc)
3009 *r_failed_dev = dev;
3010 return rc;
3011 }
3012
3013 /**
3014 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3015 * @link: link on which timings will be programmed
3016 * @r_failed_dev: out paramter for failed device
3017 *
3018 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3019 * ata_set_mode() fails, pointer to the failing device is
3020 * returned in @r_failed_dev.
3021 *
3022 * LOCKING:
3023 * PCI/etc. bus probe sem.
3024 *
3025 * RETURNS:
3026 * 0 on success, negative errno otherwise
3027 */
3028 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3029 {
3030 struct ata_port *ap = link->ap;
3031
3032 /* has private set_mode? */
3033 if (ap->ops->set_mode)
3034 return ap->ops->set_mode(link, r_failed_dev);
3035 return ata_do_set_mode(link, r_failed_dev);
3036 }
3037
3038 /**
3039 * ata_tf_to_host - issue ATA taskfile to host controller
3040 * @ap: port to which command is being issued
3041 * @tf: ATA taskfile register set
3042 *
3043 * Issues ATA taskfile register set to ATA host controller,
3044 * with proper synchronization with interrupt handler and
3045 * other threads.
3046 *
3047 * LOCKING:
3048 * spin_lock_irqsave(host lock)
3049 */
3050
3051 static inline void ata_tf_to_host(struct ata_port *ap,
3052 const struct ata_taskfile *tf)
3053 {
3054 ap->ops->tf_load(ap, tf);
3055 ap->ops->exec_command(ap, tf);
3056 }
3057
3058 /**
3059 * ata_busy_sleep - sleep until BSY clears, or timeout
3060 * @ap: port containing status register to be polled
3061 * @tmout_pat: impatience timeout
3062 * @tmout: overall timeout
3063 *
3064 * Sleep until ATA Status register bit BSY clears,
3065 * or a timeout occurs.
3066 *
3067 * LOCKING:
3068 * Kernel thread context (may sleep).
3069 *
3070 * RETURNS:
3071 * 0 on success, -errno otherwise.
3072 */
3073 int ata_busy_sleep(struct ata_port *ap,
3074 unsigned long tmout_pat, unsigned long tmout)
3075 {
3076 unsigned long timer_start, timeout;
3077 u8 status;
3078
3079 status = ata_busy_wait(ap, ATA_BUSY, 300);
3080 timer_start = jiffies;
3081 timeout = timer_start + tmout_pat;
3082 while (status != 0xff && (status & ATA_BUSY) &&
3083 time_before(jiffies, timeout)) {
3084 msleep(50);
3085 status = ata_busy_wait(ap, ATA_BUSY, 3);
3086 }
3087
3088 if (status != 0xff && (status & ATA_BUSY))
3089 ata_port_printk(ap, KERN_WARNING,
3090 "port is slow to respond, please be patient "
3091 "(Status 0x%x)\n", status);
3092
3093 timeout = timer_start + tmout;
3094 while (status != 0xff && (status & ATA_BUSY) &&
3095 time_before(jiffies, timeout)) {
3096 msleep(50);
3097 status = ata_chk_status(ap);
3098 }
3099
3100 if (status == 0xff)
3101 return -ENODEV;
3102
3103 if (status & ATA_BUSY) {
3104 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3105 "(%lu secs, Status 0x%x)\n",
3106 tmout / HZ, status);
3107 return -EBUSY;
3108 }
3109
3110 return 0;
3111 }
3112
3113 /**
3114 * ata_wait_ready - sleep until BSY clears, or timeout
3115 * @ap: port containing status register to be polled
3116 * @deadline: deadline jiffies for the operation
3117 *
3118 * Sleep until ATA Status register bit BSY clears, or timeout
3119 * occurs.
3120 *
3121 * LOCKING:
3122 * Kernel thread context (may sleep).
3123 *
3124 * RETURNS:
3125 * 0 on success, -errno otherwise.
3126 */
3127 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3128 {
3129 unsigned long start = jiffies;
3130 int warned = 0;
3131
3132 while (1) {
3133 u8 status = ata_chk_status(ap);
3134 unsigned long now = jiffies;
3135
3136 if (!(status & ATA_BUSY))
3137 return 0;
3138 if (!ata_link_online(&ap->link) && status == 0xff)
3139 return -ENODEV;
3140 if (time_after(now, deadline))
3141 return -EBUSY;
3142
3143 if (!warned && time_after(now, start + 5 * HZ) &&
3144 (deadline - now > 3 * HZ)) {
3145 ata_port_printk(ap, KERN_WARNING,
3146 "port is slow to respond, please be patient "
3147 "(Status 0x%x)\n", status);
3148 warned = 1;
3149 }
3150
3151 msleep(50);
3152 }
3153 }
3154
3155 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3156 unsigned long deadline)
3157 {
3158 struct ata_ioports *ioaddr = &ap->ioaddr;
3159 unsigned int dev0 = devmask & (1 << 0);
3160 unsigned int dev1 = devmask & (1 << 1);
3161 int rc, ret = 0;
3162
3163 /* if device 0 was found in ata_devchk, wait for its
3164 * BSY bit to clear
3165 */
3166 if (dev0) {
3167 rc = ata_wait_ready(ap, deadline);
3168 if (rc) {
3169 if (rc != -ENODEV)
3170 return rc;
3171 ret = rc;
3172 }
3173 }
3174
3175 /* if device 1 was found in ata_devchk, wait for register
3176 * access briefly, then wait for BSY to clear.
3177 */
3178 if (dev1) {
3179 int i;
3180
3181 ap->ops->dev_select(ap, 1);
3182
3183 /* Wait for register access. Some ATAPI devices fail
3184 * to set nsect/lbal after reset, so don't waste too
3185 * much time on it. We're gonna wait for !BSY anyway.
3186 */
3187 for (i = 0; i < 2; i++) {
3188 u8 nsect, lbal;
3189
3190 nsect = ioread8(ioaddr->nsect_addr);
3191 lbal = ioread8(ioaddr->lbal_addr);
3192 if ((nsect == 1) && (lbal == 1))
3193 break;
3194 msleep(50); /* give drive a breather */
3195 }
3196
3197 rc = ata_wait_ready(ap, deadline);
3198 if (rc) {
3199 if (rc != -ENODEV)
3200 return rc;
3201 ret = rc;
3202 }
3203 }
3204
3205 /* is all this really necessary? */
3206 ap->ops->dev_select(ap, 0);
3207 if (dev1)
3208 ap->ops->dev_select(ap, 1);
3209 if (dev0)
3210 ap->ops->dev_select(ap, 0);
3211
3212 return ret;
3213 }
3214
3215 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3216 unsigned long deadline)
3217 {
3218 struct ata_ioports *ioaddr = &ap->ioaddr;
3219 struct ata_device *dev;
3220 int i = 0;
3221
3222 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3223
3224 /* software reset. causes dev0 to be selected */
3225 iowrite8(ap->ctl, ioaddr->ctl_addr);
3226 udelay(20); /* FIXME: flush */
3227 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3228 udelay(20); /* FIXME: flush */
3229 iowrite8(ap->ctl, ioaddr->ctl_addr);
3230
3231 /* If we issued an SRST then an ATA drive (not ATAPI)
3232 * may have changed configuration and be in PIO0 timing. If
3233 * we did a hard reset (or are coming from power on) this is
3234 * true for ATA or ATAPI. Until we've set a suitable controller
3235 * mode we should not touch the bus as we may be talking too fast.
3236 */
3237
3238 ata_link_for_each_dev(dev, &ap->link)
3239 dev->pio_mode = XFER_PIO_0;
3240
3241 /* If the controller has a pio mode setup function then use
3242 it to set the chipset to rights. Don't touch the DMA setup
3243 as that will be dealt with when revalidating */
3244 if (ap->ops->set_piomode) {
3245 ata_link_for_each_dev(dev, &ap->link)
3246 if (devmask & (1 << i++))
3247 ap->ops->set_piomode(ap, dev);
3248 }
3249
3250 /* spec mandates ">= 2ms" before checking status.
3251 * We wait 150ms, because that was the magic delay used for
3252 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3253 * between when the ATA command register is written, and then
3254 * status is checked. Because waiting for "a while" before
3255 * checking status is fine, post SRST, we perform this magic
3256 * delay here as well.
3257 *
3258 * Old drivers/ide uses the 2mS rule and then waits for ready
3259 */
3260 msleep(150);
3261
3262 /* Before we perform post reset processing we want to see if
3263 * the bus shows 0xFF because the odd clown forgets the D7
3264 * pulldown resistor.
3265 */
3266 if (ata_chk_status(ap) == 0xFF)
3267 return -ENODEV;
3268
3269 return ata_bus_post_reset(ap, devmask, deadline);
3270 }
3271
3272 /**
3273 * ata_bus_reset - reset host port and associated ATA channel
3274 * @ap: port to reset
3275 *
3276 * This is typically the first time we actually start issuing
3277 * commands to the ATA channel. We wait for BSY to clear, then
3278 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3279 * result. Determine what devices, if any, are on the channel
3280 * by looking at the device 0/1 error register. Look at the signature
3281 * stored in each device's taskfile registers, to determine if
3282 * the device is ATA or ATAPI.
3283 *
3284 * LOCKING:
3285 * PCI/etc. bus probe sem.
3286 * Obtains host lock.
3287 *
3288 * SIDE EFFECTS:
3289 * Sets ATA_FLAG_DISABLED if bus reset fails.
3290 */
3291
3292 void ata_bus_reset(struct ata_port *ap)
3293 {
3294 struct ata_device *device = ap->link.device;
3295 struct ata_ioports *ioaddr = &ap->ioaddr;
3296 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3297 u8 err;
3298 unsigned int dev0, dev1 = 0, devmask = 0;
3299 int rc;
3300
3301 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3302
3303 /* determine if device 0/1 are present */
3304 if (ap->flags & ATA_FLAG_SATA_RESET)
3305 dev0 = 1;
3306 else {
3307 dev0 = ata_devchk(ap, 0);
3308 if (slave_possible)
3309 dev1 = ata_devchk(ap, 1);
3310 }
3311
3312 if (dev0)
3313 devmask |= (1 << 0);
3314 if (dev1)
3315 devmask |= (1 << 1);
3316
3317 /* select device 0 again */
3318 ap->ops->dev_select(ap, 0);
3319
3320 /* issue bus reset */
3321 if (ap->flags & ATA_FLAG_SRST) {
3322 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3323 if (rc && rc != -ENODEV)
3324 goto err_out;
3325 }
3326
3327 /*
3328 * determine by signature whether we have ATA or ATAPI devices
3329 */
3330 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3331 if ((slave_possible) && (err != 0x81))
3332 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3333
3334 /* is double-select really necessary? */
3335 if (device[1].class != ATA_DEV_NONE)
3336 ap->ops->dev_select(ap, 1);
3337 if (device[0].class != ATA_DEV_NONE)
3338 ap->ops->dev_select(ap, 0);
3339
3340 /* if no devices were detected, disable this port */
3341 if ((device[0].class == ATA_DEV_NONE) &&
3342 (device[1].class == ATA_DEV_NONE))
3343 goto err_out;
3344
3345 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3346 /* set up device control for ATA_FLAG_SATA_RESET */
3347 iowrite8(ap->ctl, ioaddr->ctl_addr);
3348 }
3349
3350 DPRINTK("EXIT\n");
3351 return;
3352
3353 err_out:
3354 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3355 ata_port_disable(ap);
3356
3357 DPRINTK("EXIT\n");
3358 }
3359
3360 /**
3361 * sata_link_debounce - debounce SATA phy status
3362 * @link: ATA link to debounce SATA phy status for
3363 * @params: timing parameters { interval, duratinon, timeout } in msec
3364 * @deadline: deadline jiffies for the operation
3365 *
3366 * Make sure SStatus of @link reaches stable state, determined by
3367 * holding the same value where DET is not 1 for @duration polled
3368 * every @interval, before @timeout. Timeout constraints the
3369 * beginning of the stable state. Because DET gets stuck at 1 on
3370 * some controllers after hot unplugging, this functions waits
3371 * until timeout then returns 0 if DET is stable at 1.
3372 *
3373 * @timeout is further limited by @deadline. The sooner of the
3374 * two is used.
3375 *
3376 * LOCKING:
3377 * Kernel thread context (may sleep)
3378 *
3379 * RETURNS:
3380 * 0 on success, -errno on failure.
3381 */
3382 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3383 unsigned long deadline)
3384 {
3385 unsigned long interval_msec = params[0];
3386 unsigned long duration = msecs_to_jiffies(params[1]);
3387 unsigned long last_jiffies, t;
3388 u32 last, cur;
3389 int rc;
3390
3391 t = jiffies + msecs_to_jiffies(params[2]);
3392 if (time_before(t, deadline))
3393 deadline = t;
3394
3395 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3396 return rc;
3397 cur &= 0xf;
3398
3399 last = cur;
3400 last_jiffies = jiffies;
3401
3402 while (1) {
3403 msleep(interval_msec);
3404 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3405 return rc;
3406 cur &= 0xf;
3407
3408 /* DET stable? */
3409 if (cur == last) {
3410 if (cur == 1 && time_before(jiffies, deadline))
3411 continue;
3412 if (time_after(jiffies, last_jiffies + duration))
3413 return 0;
3414 continue;
3415 }
3416
3417 /* unstable, start over */
3418 last = cur;
3419 last_jiffies = jiffies;
3420
3421 /* Check deadline. If debouncing failed, return
3422 * -EPIPE to tell upper layer to lower link speed.
3423 */
3424 if (time_after(jiffies, deadline))
3425 return -EPIPE;
3426 }
3427 }
3428
3429 /**
3430 * sata_link_resume - resume SATA link
3431 * @link: ATA link to resume SATA
3432 * @params: timing parameters { interval, duratinon, timeout } in msec
3433 * @deadline: deadline jiffies for the operation
3434 *
3435 * Resume SATA phy @link and debounce it.
3436 *
3437 * LOCKING:
3438 * Kernel thread context (may sleep)
3439 *
3440 * RETURNS:
3441 * 0 on success, -errno on failure.
3442 */
3443 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3444 unsigned long deadline)
3445 {
3446 u32 scontrol;
3447 int rc;
3448
3449 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3450 return rc;
3451
3452 scontrol = (scontrol & 0x0f0) | 0x300;
3453
3454 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3455 return rc;
3456
3457 /* Some PHYs react badly if SStatus is pounded immediately
3458 * after resuming. Delay 200ms before debouncing.
3459 */
3460 msleep(200);
3461
3462 return sata_link_debounce(link, params, deadline);
3463 }
3464
3465 /**
3466 * ata_std_prereset - prepare for reset
3467 * @link: ATA link to be reset
3468 * @deadline: deadline jiffies for the operation
3469 *
3470 * @link is about to be reset. Initialize it. Failure from
3471 * prereset makes libata abort whole reset sequence and give up
3472 * that port, so prereset should be best-effort. It does its
3473 * best to prepare for reset sequence but if things go wrong, it
3474 * should just whine, not fail.
3475 *
3476 * LOCKING:
3477 * Kernel thread context (may sleep)
3478 *
3479 * RETURNS:
3480 * 0 on success, -errno otherwise.
3481 */
3482 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3483 {
3484 struct ata_port *ap = link->ap;
3485 struct ata_eh_context *ehc = &link->eh_context;
3486 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3487 int rc;
3488
3489 /* handle link resume */
3490 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3491 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3492 ehc->i.action |= ATA_EH_HARDRESET;
3493
3494 /* Some PMPs don't work with only SRST, force hardreset if PMP
3495 * is supported.
3496 */
3497 if (ap->flags & ATA_FLAG_PMP)
3498 ehc->i.action |= ATA_EH_HARDRESET;
3499
3500 /* if we're about to do hardreset, nothing more to do */
3501 if (ehc->i.action & ATA_EH_HARDRESET)
3502 return 0;
3503
3504 /* if SATA, resume link */
3505 if (ap->flags & ATA_FLAG_SATA) {
3506 rc = sata_link_resume(link, timing, deadline);
3507 /* whine about phy resume failure but proceed */
3508 if (rc && rc != -EOPNOTSUPP)
3509 ata_link_printk(link, KERN_WARNING, "failed to resume "
3510 "link for reset (errno=%d)\n", rc);
3511 }
3512
3513 /* Wait for !BSY if the controller can wait for the first D2H
3514 * Reg FIS and we don't know that no device is attached.
3515 */
3516 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3517 rc = ata_wait_ready(ap, deadline);
3518 if (rc && rc != -ENODEV) {
3519 ata_link_printk(link, KERN_WARNING, "device not ready "
3520 "(errno=%d), forcing hardreset\n", rc);
3521 ehc->i.action |= ATA_EH_HARDRESET;
3522 }
3523 }
3524
3525 return 0;
3526 }
3527
3528 /**
3529 * ata_std_softreset - reset host port via ATA SRST
3530 * @link: ATA link to reset
3531 * @classes: resulting classes of attached devices
3532 * @deadline: deadline jiffies for the operation
3533 *
3534 * Reset host port using ATA SRST.
3535 *
3536 * LOCKING:
3537 * Kernel thread context (may sleep)
3538 *
3539 * RETURNS:
3540 * 0 on success, -errno otherwise.
3541 */
3542 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3543 unsigned long deadline)
3544 {
3545 struct ata_port *ap = link->ap;
3546 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3547 unsigned int devmask = 0;
3548 int rc;
3549 u8 err;
3550
3551 DPRINTK("ENTER\n");
3552
3553 if (ata_link_offline(link)) {
3554 classes[0] = ATA_DEV_NONE;
3555 goto out;
3556 }
3557
3558 /* determine if device 0/1 are present */
3559 if (ata_devchk(ap, 0))
3560 devmask |= (1 << 0);
3561 if (slave_possible && ata_devchk(ap, 1))
3562 devmask |= (1 << 1);
3563
3564 /* select device 0 again */
3565 ap->ops->dev_select(ap, 0);
3566
3567 /* issue bus reset */
3568 DPRINTK("about to softreset, devmask=%x\n", devmask);
3569 rc = ata_bus_softreset(ap, devmask, deadline);
3570 /* if link is occupied, -ENODEV too is an error */
3571 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3572 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3573 return rc;
3574 }
3575
3576 /* determine by signature whether we have ATA or ATAPI devices */
3577 classes[0] = ata_dev_try_classify(&link->device[0],
3578 devmask & (1 << 0), &err);
3579 if (slave_possible && err != 0x81)
3580 classes[1] = ata_dev_try_classify(&link->device[1],
3581 devmask & (1 << 1), &err);
3582
3583 out:
3584 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3585 return 0;
3586 }
3587
3588 /**
3589 * sata_link_hardreset - reset link via SATA phy reset
3590 * @link: link to reset
3591 * @timing: timing parameters { interval, duratinon, timeout } in msec
3592 * @deadline: deadline jiffies for the operation
3593 *
3594 * SATA phy-reset @link using DET bits of SControl register.
3595 *
3596 * LOCKING:
3597 * Kernel thread context (may sleep)
3598 *
3599 * RETURNS:
3600 * 0 on success, -errno otherwise.
3601 */
3602 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3603 unsigned long deadline)
3604 {
3605 u32 scontrol;
3606 int rc;
3607
3608 DPRINTK("ENTER\n");
3609
3610 if (sata_set_spd_needed(link)) {
3611 /* SATA spec says nothing about how to reconfigure
3612 * spd. To be on the safe side, turn off phy during
3613 * reconfiguration. This works for at least ICH7 AHCI
3614 * and Sil3124.
3615 */
3616 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3617 goto out;
3618
3619 scontrol = (scontrol & 0x0f0) | 0x304;
3620
3621 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3622 goto out;
3623
3624 sata_set_spd(link);
3625 }
3626
3627 /* issue phy wake/reset */
3628 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3629 goto out;
3630
3631 scontrol = (scontrol & 0x0f0) | 0x301;
3632
3633 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3634 goto out;
3635
3636 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3637 * 10.4.2 says at least 1 ms.
3638 */
3639 msleep(1);
3640
3641 /* bring link back */
3642 rc = sata_link_resume(link, timing, deadline);
3643 out:
3644 DPRINTK("EXIT, rc=%d\n", rc);
3645 return rc;
3646 }
3647
3648 /**
3649 * sata_std_hardreset - reset host port via SATA phy reset
3650 * @link: link to reset
3651 * @class: resulting class of attached device
3652 * @deadline: deadline jiffies for the operation
3653 *
3654 * SATA phy-reset host port using DET bits of SControl register,
3655 * wait for !BSY and classify the attached device.
3656 *
3657 * LOCKING:
3658 * Kernel thread context (may sleep)
3659 *
3660 * RETURNS:
3661 * 0 on success, -errno otherwise.
3662 */
3663 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3664 unsigned long deadline)
3665 {
3666 struct ata_port *ap = link->ap;
3667 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3668 int rc;
3669
3670 DPRINTK("ENTER\n");
3671
3672 /* do hardreset */
3673 rc = sata_link_hardreset(link, timing, deadline);
3674 if (rc) {
3675 ata_link_printk(link, KERN_ERR,
3676 "COMRESET failed (errno=%d)\n", rc);
3677 return rc;
3678 }
3679
3680 /* TODO: phy layer with polling, timeouts, etc. */
3681 if (ata_link_offline(link)) {
3682 *class = ATA_DEV_NONE;
3683 DPRINTK("EXIT, link offline\n");
3684 return 0;
3685 }
3686
3687 /* wait a while before checking status, see SRST for more info */
3688 msleep(150);
3689
3690 /* If PMP is supported, we have to do follow-up SRST. Note
3691 * that some PMPs don't send D2H Reg FIS after hardreset at
3692 * all if the first port is empty. Wait for it just for a
3693 * second and request follow-up SRST.
3694 */
3695 if (ap->flags & ATA_FLAG_PMP) {
3696 ata_wait_ready(ap, jiffies + HZ);
3697 return -EAGAIN;
3698 }
3699
3700 rc = ata_wait_ready(ap, deadline);
3701 /* link occupied, -ENODEV too is an error */
3702 if (rc) {
3703 ata_link_printk(link, KERN_ERR,
3704 "COMRESET failed (errno=%d)\n", rc);
3705 return rc;
3706 }
3707
3708 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3709
3710 *class = ata_dev_try_classify(link->device, 1, NULL);
3711
3712 DPRINTK("EXIT, class=%u\n", *class);
3713 return 0;
3714 }
3715
3716 /**
3717 * ata_std_postreset - standard postreset callback
3718 * @link: the target ata_link
3719 * @classes: classes of attached devices
3720 *
3721 * This function is invoked after a successful reset. Note that
3722 * the device might have been reset more than once using
3723 * different reset methods before postreset is invoked.
3724 *
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3727 */
3728 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3729 {
3730 struct ata_port *ap = link->ap;
3731 u32 serror;
3732
3733 DPRINTK("ENTER\n");
3734
3735 /* print link status */
3736 sata_print_link_status(link);
3737
3738 /* clear SError */
3739 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3740 sata_scr_write(link, SCR_ERROR, serror);
3741
3742 /* is double-select really necessary? */
3743 if (classes[0] != ATA_DEV_NONE)
3744 ap->ops->dev_select(ap, 1);
3745 if (classes[1] != ATA_DEV_NONE)
3746 ap->ops->dev_select(ap, 0);
3747
3748 /* bail out if no device is present */
3749 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3750 DPRINTK("EXIT, no device\n");
3751 return;
3752 }
3753
3754 /* set up device control */
3755 if (ap->ioaddr.ctl_addr)
3756 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3757
3758 DPRINTK("EXIT\n");
3759 }
3760
3761 /**
3762 * ata_dev_same_device - Determine whether new ID matches configured device
3763 * @dev: device to compare against
3764 * @new_class: class of the new device
3765 * @new_id: IDENTIFY page of the new device
3766 *
3767 * Compare @new_class and @new_id against @dev and determine
3768 * whether @dev is the device indicated by @new_class and
3769 * @new_id.
3770 *
3771 * LOCKING:
3772 * None.
3773 *
3774 * RETURNS:
3775 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3776 */
3777 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3778 const u16 *new_id)
3779 {
3780 const u16 *old_id = dev->id;
3781 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3782 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3783
3784 if (dev->class != new_class) {
3785 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3786 dev->class, new_class);
3787 return 0;
3788 }
3789
3790 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3791 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3792 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3793 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3794
3795 if (strcmp(model[0], model[1])) {
3796 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3797 "'%s' != '%s'\n", model[0], model[1]);
3798 return 0;
3799 }
3800
3801 if (strcmp(serial[0], serial[1])) {
3802 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3803 "'%s' != '%s'\n", serial[0], serial[1]);
3804 return 0;
3805 }
3806
3807 return 1;
3808 }
3809
3810 /**
3811 * ata_dev_reread_id - Re-read IDENTIFY data
3812 * @dev: target ATA device
3813 * @readid_flags: read ID flags
3814 *
3815 * Re-read IDENTIFY page and make sure @dev is still attached to
3816 * the port.
3817 *
3818 * LOCKING:
3819 * Kernel thread context (may sleep)
3820 *
3821 * RETURNS:
3822 * 0 on success, negative errno otherwise
3823 */
3824 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3825 {
3826 unsigned int class = dev->class;
3827 u16 *id = (void *)dev->link->ap->sector_buf;
3828 int rc;
3829
3830 /* read ID data */
3831 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3832 if (rc)
3833 return rc;
3834
3835 /* is the device still there? */
3836 if (!ata_dev_same_device(dev, class, id))
3837 return -ENODEV;
3838
3839 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3840 return 0;
3841 }
3842
3843 /**
3844 * ata_dev_revalidate - Revalidate ATA device
3845 * @dev: device to revalidate
3846 * @new_class: new class code
3847 * @readid_flags: read ID flags
3848 *
3849 * Re-read IDENTIFY page, make sure @dev is still attached to the
3850 * port and reconfigure it according to the new IDENTIFY page.
3851 *
3852 * LOCKING:
3853 * Kernel thread context (may sleep)
3854 *
3855 * RETURNS:
3856 * 0 on success, negative errno otherwise
3857 */
3858 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3859 unsigned int readid_flags)
3860 {
3861 u64 n_sectors = dev->n_sectors;
3862 int rc;
3863
3864 if (!ata_dev_enabled(dev))
3865 return -ENODEV;
3866
3867 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3868 if (ata_class_enabled(new_class) &&
3869 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3870 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3871 dev->class, new_class);
3872 rc = -ENODEV;
3873 goto fail;
3874 }
3875
3876 /* re-read ID */
3877 rc = ata_dev_reread_id(dev, readid_flags);
3878 if (rc)
3879 goto fail;
3880
3881 /* configure device according to the new ID */
3882 rc = ata_dev_configure(dev);
3883 if (rc)
3884 goto fail;
3885
3886 /* verify n_sectors hasn't changed */
3887 if (dev->class == ATA_DEV_ATA && n_sectors &&
3888 dev->n_sectors != n_sectors) {
3889 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3890 "%llu != %llu\n",
3891 (unsigned long long)n_sectors,
3892 (unsigned long long)dev->n_sectors);
3893
3894 /* restore original n_sectors */
3895 dev->n_sectors = n_sectors;
3896
3897 rc = -ENODEV;
3898 goto fail;
3899 }
3900
3901 return 0;
3902
3903 fail:
3904 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3905 return rc;
3906 }
3907
3908 struct ata_blacklist_entry {
3909 const char *model_num;
3910 const char *model_rev;
3911 unsigned long horkage;
3912 };
3913
3914 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3915 /* Devices with DMA related problems under Linux */
3916 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3917 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3918 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3919 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3920 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3921 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3922 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3923 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3924 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3925 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3926 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3927 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3928 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3929 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3930 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3931 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3932 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3933 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3934 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3935 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3936 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3937 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3938 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3939 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3940 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3941 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3942 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3943 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3944 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3945 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3946 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3947 { "IOMEGA ZIP 250 ATAPI Floppy",
3948 NULL, ATA_HORKAGE_NODMA },
3949 /* Odd clown on sil3726/4726 PMPs */
3950 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3951 ATA_HORKAGE_SKIP_PM },
3952
3953 /* Weird ATAPI devices */
3954 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3955
3956 /* Devices we expect to fail diagnostics */
3957
3958 /* Devices where NCQ should be avoided */
3959 /* NCQ is slow */
3960 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3961 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3962 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3963 /* NCQ is broken */
3964 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3965 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3966 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3967 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
3968 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3969
3970 /* Blacklist entries taken from Silicon Image 3124/3132
3971 Windows driver .inf file - also several Linux problem reports */
3972 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3973 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3974 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3975 /* Drives which do spurious command completion */
3976 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3977 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3978 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
3979 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3980 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
3981 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3982 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
3983 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3984 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3985 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3986 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
3987 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
3988 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3989 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
3990 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3991
3992 /* devices which puke on READ_NATIVE_MAX */
3993 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3994 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3995 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3996 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3997
3998 /* Devices which report 1 sector over size HPA */
3999 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4000 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4001
4002 /* End Marker */
4003 { }
4004 };
4005
4006 int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4007 {
4008 const char *p;
4009 int len;
4010
4011 /*
4012 * check for trailing wildcard: *\0
4013 */
4014 p = strchr(patt, wildchar);
4015 if (p && ((*(p + 1)) == 0))
4016 len = p - patt;
4017 else {
4018 len = strlen(name);
4019 if (!len) {
4020 if (!*patt)
4021 return 0;
4022 return -1;
4023 }
4024 }
4025
4026 return strncmp(patt, name, len);
4027 }
4028
4029 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4030 {
4031 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4032 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4033 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4034
4035 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4036 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4037
4038 while (ad->model_num) {
4039 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4040 if (ad->model_rev == NULL)
4041 return ad->horkage;
4042 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4043 return ad->horkage;
4044 }
4045 ad++;
4046 }
4047 return 0;
4048 }
4049
4050 static int ata_dma_blacklisted(const struct ata_device *dev)
4051 {
4052 /* We don't support polling DMA.
4053 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4054 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4055 */
4056 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4057 (dev->flags & ATA_DFLAG_CDB_INTR))
4058 return 1;
4059 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4060 }
4061
4062 /**
4063 * ata_dev_xfermask - Compute supported xfermask of the given device
4064 * @dev: Device to compute xfermask for
4065 *
4066 * Compute supported xfermask of @dev and store it in
4067 * dev->*_mask. This function is responsible for applying all
4068 * known limits including host controller limits, device
4069 * blacklist, etc...
4070 *
4071 * LOCKING:
4072 * None.
4073 */
4074 static void ata_dev_xfermask(struct ata_device *dev)
4075 {
4076 struct ata_link *link = dev->link;
4077 struct ata_port *ap = link->ap;
4078 struct ata_host *host = ap->host;
4079 unsigned long xfer_mask;
4080
4081 /* controller modes available */
4082 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4083 ap->mwdma_mask, ap->udma_mask);
4084
4085 /* drive modes available */
4086 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4087 dev->mwdma_mask, dev->udma_mask);
4088 xfer_mask &= ata_id_xfermask(dev->id);
4089
4090 /*
4091 * CFA Advanced TrueIDE timings are not allowed on a shared
4092 * cable
4093 */
4094 if (ata_dev_pair(dev)) {
4095 /* No PIO5 or PIO6 */
4096 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4097 /* No MWDMA3 or MWDMA 4 */
4098 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4099 }
4100
4101 if (ata_dma_blacklisted(dev)) {
4102 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4103 ata_dev_printk(dev, KERN_WARNING,
4104 "device is on DMA blacklist, disabling DMA\n");
4105 }
4106
4107 if ((host->flags & ATA_HOST_SIMPLEX) &&
4108 host->simplex_claimed && host->simplex_claimed != ap) {
4109 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4110 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4111 "other device, disabling DMA\n");
4112 }
4113
4114 if (ap->flags & ATA_FLAG_NO_IORDY)
4115 xfer_mask &= ata_pio_mask_no_iordy(dev);
4116
4117 if (ap->ops->mode_filter)
4118 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4119
4120 /* Apply cable rule here. Don't apply it early because when
4121 * we handle hot plug the cable type can itself change.
4122 * Check this last so that we know if the transfer rate was
4123 * solely limited by the cable.
4124 * Unknown or 80 wire cables reported host side are checked
4125 * drive side as well. Cases where we know a 40wire cable
4126 * is used safely for 80 are not checked here.
4127 */
4128 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4129 /* UDMA/44 or higher would be available */
4130 if ((ap->cbl == ATA_CBL_PATA40) ||
4131 (ata_drive_40wire(dev->id) &&
4132 (ap->cbl == ATA_CBL_PATA_UNK ||
4133 ap->cbl == ATA_CBL_PATA80))) {
4134 ata_dev_printk(dev, KERN_WARNING,
4135 "limited to UDMA/33 due to 40-wire cable\n");
4136 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4137 }
4138
4139 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4140 &dev->mwdma_mask, &dev->udma_mask);
4141 }
4142
4143 /**
4144 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4145 * @dev: Device to which command will be sent
4146 *
4147 * Issue SET FEATURES - XFER MODE command to device @dev
4148 * on port @ap.
4149 *
4150 * LOCKING:
4151 * PCI/etc. bus probe sem.
4152 *
4153 * RETURNS:
4154 * 0 on success, AC_ERR_* mask otherwise.
4155 */
4156
4157 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4158 {
4159 struct ata_taskfile tf;
4160 unsigned int err_mask;
4161
4162 /* set up set-features taskfile */
4163 DPRINTK("set features - xfer mode\n");
4164
4165 /* Some controllers and ATAPI devices show flaky interrupt
4166 * behavior after setting xfer mode. Use polling instead.
4167 */
4168 ata_tf_init(dev, &tf);
4169 tf.command = ATA_CMD_SET_FEATURES;
4170 tf.feature = SETFEATURES_XFER;
4171 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4172 tf.protocol = ATA_PROT_NODATA;
4173 tf.nsect = dev->xfer_mode;
4174
4175 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4176
4177 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4178 return err_mask;
4179 }
4180 /**
4181 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4182 * @dev: Device to which command will be sent
4183 * @enable: Whether to enable or disable the feature
4184 * @feature: The sector count represents the feature to set
4185 *
4186 * Issue SET FEATURES - SATA FEATURES command to device @dev
4187 * on port @ap with sector count
4188 *
4189 * LOCKING:
4190 * PCI/etc. bus probe sem.
4191 *
4192 * RETURNS:
4193 * 0 on success, AC_ERR_* mask otherwise.
4194 */
4195 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4196 u8 feature)
4197 {
4198 struct ata_taskfile tf;
4199 unsigned int err_mask;
4200
4201 /* set up set-features taskfile */
4202 DPRINTK("set features - SATA features\n");
4203
4204 ata_tf_init(dev, &tf);
4205 tf.command = ATA_CMD_SET_FEATURES;
4206 tf.feature = enable;
4207 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4208 tf.protocol = ATA_PROT_NODATA;
4209 tf.nsect = feature;
4210
4211 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4212
4213 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4214 return err_mask;
4215 }
4216
4217 /**
4218 * ata_dev_init_params - Issue INIT DEV PARAMS command
4219 * @dev: Device to which command will be sent
4220 * @heads: Number of heads (taskfile parameter)
4221 * @sectors: Number of sectors (taskfile parameter)
4222 *
4223 * LOCKING:
4224 * Kernel thread context (may sleep)
4225 *
4226 * RETURNS:
4227 * 0 on success, AC_ERR_* mask otherwise.
4228 */
4229 static unsigned int ata_dev_init_params(struct ata_device *dev,
4230 u16 heads, u16 sectors)
4231 {
4232 struct ata_taskfile tf;
4233 unsigned int err_mask;
4234
4235 /* Number of sectors per track 1-255. Number of heads 1-16 */
4236 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4237 return AC_ERR_INVALID;
4238
4239 /* set up init dev params taskfile */
4240 DPRINTK("init dev params \n");
4241
4242 ata_tf_init(dev, &tf);
4243 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4244 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4245 tf.protocol = ATA_PROT_NODATA;
4246 tf.nsect = sectors;
4247 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4248
4249 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4250 /* A clean abort indicates an original or just out of spec drive
4251 and we should continue as we issue the setup based on the
4252 drive reported working geometry */
4253 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4254 err_mask = 0;
4255
4256 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4257 return err_mask;
4258 }
4259
4260 /**
4261 * ata_sg_clean - Unmap DMA memory associated with command
4262 * @qc: Command containing DMA memory to be released
4263 *
4264 * Unmap all mapped DMA memory associated with this command.
4265 *
4266 * LOCKING:
4267 * spin_lock_irqsave(host lock)
4268 */
4269 void ata_sg_clean(struct ata_queued_cmd *qc)
4270 {
4271 struct ata_port *ap = qc->ap;
4272 struct scatterlist *sg = qc->__sg;
4273 int dir = qc->dma_dir;
4274 void *pad_buf = NULL;
4275
4276 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4277 WARN_ON(sg == NULL);
4278
4279 if (qc->flags & ATA_QCFLAG_SINGLE)
4280 WARN_ON(qc->n_elem > 1);
4281
4282 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4283
4284 /* if we padded the buffer out to 32-bit bound, and data
4285 * xfer direction is from-device, we must copy from the
4286 * pad buffer back into the supplied buffer
4287 */
4288 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4289 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4290
4291 if (qc->flags & ATA_QCFLAG_SG) {
4292 if (qc->n_elem)
4293 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4294 /* restore last sg */
4295 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4296 if (pad_buf) {
4297 struct scatterlist *psg = &qc->pad_sgent;
4298 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4299 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4300 kunmap_atomic(addr, KM_IRQ0);
4301 }
4302 } else {
4303 if (qc->n_elem)
4304 dma_unmap_single(ap->dev,
4305 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4306 dir);
4307 /* restore sg */
4308 sg->length += qc->pad_len;
4309 if (pad_buf)
4310 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4311 pad_buf, qc->pad_len);
4312 }
4313
4314 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4315 qc->__sg = NULL;
4316 }
4317
4318 /**
4319 * ata_fill_sg - Fill PCI IDE PRD table
4320 * @qc: Metadata associated with taskfile to be transferred
4321 *
4322 * Fill PCI IDE PRD (scatter-gather) table with segments
4323 * associated with the current disk command.
4324 *
4325 * LOCKING:
4326 * spin_lock_irqsave(host lock)
4327 *
4328 */
4329 static void ata_fill_sg(struct ata_queued_cmd *qc)
4330 {
4331 struct ata_port *ap = qc->ap;
4332 struct scatterlist *sg;
4333 unsigned int idx;
4334
4335 WARN_ON(qc->__sg == NULL);
4336 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4337
4338 idx = 0;
4339 ata_for_each_sg(sg, qc) {
4340 u32 addr, offset;
4341 u32 sg_len, len;
4342
4343 /* determine if physical DMA addr spans 64K boundary.
4344 * Note h/w doesn't support 64-bit, so we unconditionally
4345 * truncate dma_addr_t to u32.
4346 */
4347 addr = (u32) sg_dma_address(sg);
4348 sg_len = sg_dma_len(sg);
4349
4350 while (sg_len) {
4351 offset = addr & 0xffff;
4352 len = sg_len;
4353 if ((offset + sg_len) > 0x10000)
4354 len = 0x10000 - offset;
4355
4356 ap->prd[idx].addr = cpu_to_le32(addr);
4357 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4358 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4359
4360 idx++;
4361 sg_len -= len;
4362 addr += len;
4363 }
4364 }
4365
4366 if (idx)
4367 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4368 }
4369
4370 /**
4371 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4372 * @qc: Metadata associated with taskfile to be transferred
4373 *
4374 * Fill PCI IDE PRD (scatter-gather) table with segments
4375 * associated with the current disk command. Perform the fill
4376 * so that we avoid writing any length 64K records for
4377 * controllers that don't follow the spec.
4378 *
4379 * LOCKING:
4380 * spin_lock_irqsave(host lock)
4381 *
4382 */
4383 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4384 {
4385 struct ata_port *ap = qc->ap;
4386 struct scatterlist *sg;
4387 unsigned int idx;
4388
4389 WARN_ON(qc->__sg == NULL);
4390 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4391
4392 idx = 0;
4393 ata_for_each_sg(sg, qc) {
4394 u32 addr, offset;
4395 u32 sg_len, len, blen;
4396
4397 /* determine if physical DMA addr spans 64K boundary.
4398 * Note h/w doesn't support 64-bit, so we unconditionally
4399 * truncate dma_addr_t to u32.
4400 */
4401 addr = (u32) sg_dma_address(sg);
4402 sg_len = sg_dma_len(sg);
4403
4404 while (sg_len) {
4405 offset = addr & 0xffff;
4406 len = sg_len;
4407 if ((offset + sg_len) > 0x10000)
4408 len = 0x10000 - offset;
4409
4410 blen = len & 0xffff;
4411 ap->prd[idx].addr = cpu_to_le32(addr);
4412 if (blen == 0) {
4413 /* Some PATA chipsets like the CS5530 can't
4414 cope with 0x0000 meaning 64K as the spec says */
4415 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4416 blen = 0x8000;
4417 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4418 }
4419 ap->prd[idx].flags_len = cpu_to_le32(blen);
4420 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4421
4422 idx++;
4423 sg_len -= len;
4424 addr += len;
4425 }
4426 }
4427
4428 if (idx)
4429 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4430 }
4431
4432 /**
4433 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4434 * @qc: Metadata associated with taskfile to check
4435 *
4436 * Allow low-level driver to filter ATA PACKET commands, returning
4437 * a status indicating whether or not it is OK to use DMA for the
4438 * supplied PACKET command.
4439 *
4440 * LOCKING:
4441 * spin_lock_irqsave(host lock)
4442 *
4443 * RETURNS: 0 when ATAPI DMA can be used
4444 * nonzero otherwise
4445 */
4446 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4447 {
4448 struct ata_port *ap = qc->ap;
4449
4450 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4451 * few ATAPI devices choke on such DMA requests.
4452 */
4453 if (unlikely(qc->nbytes & 15))
4454 return 1;
4455
4456 if (ap->ops->check_atapi_dma)
4457 return ap->ops->check_atapi_dma(qc);
4458
4459 return 0;
4460 }
4461
4462 /**
4463 * ata_std_qc_defer - Check whether a qc needs to be deferred
4464 * @qc: ATA command in question
4465 *
4466 * Non-NCQ commands cannot run with any other command, NCQ or
4467 * not. As upper layer only knows the queue depth, we are
4468 * responsible for maintaining exclusion. This function checks
4469 * whether a new command @qc can be issued.
4470 *
4471 * LOCKING:
4472 * spin_lock_irqsave(host lock)
4473 *
4474 * RETURNS:
4475 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4476 */
4477 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4478 {
4479 struct ata_link *link = qc->dev->link;
4480
4481 if (qc->tf.protocol == ATA_PROT_NCQ) {
4482 if (!ata_tag_valid(link->active_tag))
4483 return 0;
4484 } else {
4485 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4486 return 0;
4487 }
4488
4489 return ATA_DEFER_LINK;
4490 }
4491
4492 /**
4493 * ata_qc_prep - Prepare taskfile for submission
4494 * @qc: Metadata associated with taskfile to be prepared
4495 *
4496 * Prepare ATA taskfile for submission.
4497 *
4498 * LOCKING:
4499 * spin_lock_irqsave(host lock)
4500 */
4501 void ata_qc_prep(struct ata_queued_cmd *qc)
4502 {
4503 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4504 return;
4505
4506 ata_fill_sg(qc);
4507 }
4508
4509 /**
4510 * ata_dumb_qc_prep - Prepare taskfile for submission
4511 * @qc: Metadata associated with taskfile to be prepared
4512 *
4513 * Prepare ATA taskfile for submission.
4514 *
4515 * LOCKING:
4516 * spin_lock_irqsave(host lock)
4517 */
4518 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4519 {
4520 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4521 return;
4522
4523 ata_fill_sg_dumb(qc);
4524 }
4525
4526 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4527
4528 /**
4529 * ata_sg_init_one - Associate command with memory buffer
4530 * @qc: Command to be associated
4531 * @buf: Memory buffer
4532 * @buflen: Length of memory buffer, in bytes.
4533 *
4534 * Initialize the data-related elements of queued_cmd @qc
4535 * to point to a single memory buffer, @buf of byte length @buflen.
4536 *
4537 * LOCKING:
4538 * spin_lock_irqsave(host lock)
4539 */
4540
4541 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4542 {
4543 qc->flags |= ATA_QCFLAG_SINGLE;
4544
4545 qc->__sg = &qc->sgent;
4546 qc->n_elem = 1;
4547 qc->orig_n_elem = 1;
4548 qc->buf_virt = buf;
4549 qc->nbytes = buflen;
4550 qc->cursg = qc->__sg;
4551
4552 sg_init_one(&qc->sgent, buf, buflen);
4553 }
4554
4555 /**
4556 * ata_sg_init - Associate command with scatter-gather table.
4557 * @qc: Command to be associated
4558 * @sg: Scatter-gather table.
4559 * @n_elem: Number of elements in s/g table.
4560 *
4561 * Initialize the data-related elements of queued_cmd @qc
4562 * to point to a scatter-gather table @sg, containing @n_elem
4563 * elements.
4564 *
4565 * LOCKING:
4566 * spin_lock_irqsave(host lock)
4567 */
4568
4569 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4570 unsigned int n_elem)
4571 {
4572 qc->flags |= ATA_QCFLAG_SG;
4573 qc->__sg = sg;
4574 qc->n_elem = n_elem;
4575 qc->orig_n_elem = n_elem;
4576 qc->cursg = qc->__sg;
4577 }
4578
4579 /**
4580 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4581 * @qc: Command with memory buffer to be mapped.
4582 *
4583 * DMA-map the memory buffer associated with queued_cmd @qc.
4584 *
4585 * LOCKING:
4586 * spin_lock_irqsave(host lock)
4587 *
4588 * RETURNS:
4589 * Zero on success, negative on error.
4590 */
4591
4592 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4593 {
4594 struct ata_port *ap = qc->ap;
4595 int dir = qc->dma_dir;
4596 struct scatterlist *sg = qc->__sg;
4597 dma_addr_t dma_address;
4598 int trim_sg = 0;
4599
4600 /* we must lengthen transfers to end on a 32-bit boundary */
4601 qc->pad_len = sg->length & 3;
4602 if (qc->pad_len) {
4603 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4604 struct scatterlist *psg = &qc->pad_sgent;
4605
4606 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4607
4608 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4609
4610 if (qc->tf.flags & ATA_TFLAG_WRITE)
4611 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4612 qc->pad_len);
4613
4614 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4615 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4616 /* trim sg */
4617 sg->length -= qc->pad_len;
4618 if (sg->length == 0)
4619 trim_sg = 1;
4620
4621 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4622 sg->length, qc->pad_len);
4623 }
4624
4625 if (trim_sg) {
4626 qc->n_elem--;
4627 goto skip_map;
4628 }
4629
4630 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4631 sg->length, dir);
4632 if (dma_mapping_error(dma_address)) {
4633 /* restore sg */
4634 sg->length += qc->pad_len;
4635 return -1;
4636 }
4637
4638 sg_dma_address(sg) = dma_address;
4639 sg_dma_len(sg) = sg->length;
4640
4641 skip_map:
4642 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4643 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4644
4645 return 0;
4646 }
4647
4648 /**
4649 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4650 * @qc: Command with scatter-gather table to be mapped.
4651 *
4652 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4653 *
4654 * LOCKING:
4655 * spin_lock_irqsave(host lock)
4656 *
4657 * RETURNS:
4658 * Zero on success, negative on error.
4659 *
4660 */
4661
4662 static int ata_sg_setup(struct ata_queued_cmd *qc)
4663 {
4664 struct ata_port *ap = qc->ap;
4665 struct scatterlist *sg = qc->__sg;
4666 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4667 int n_elem, pre_n_elem, dir, trim_sg = 0;
4668
4669 VPRINTK("ENTER, ata%u\n", ap->print_id);
4670 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4671
4672 /* we must lengthen transfers to end on a 32-bit boundary */
4673 qc->pad_len = lsg->length & 3;
4674 if (qc->pad_len) {
4675 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4676 struct scatterlist *psg = &qc->pad_sgent;
4677 unsigned int offset;
4678
4679 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4680
4681 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4682
4683 /*
4684 * psg->page/offset are used to copy to-be-written
4685 * data in this function or read data in ata_sg_clean.
4686 */
4687 offset = lsg->offset + lsg->length - qc->pad_len;
4688 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT));
4689 psg->offset = offset_in_page(offset);
4690
4691 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4692 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4693 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4694 kunmap_atomic(addr, KM_IRQ0);
4695 }
4696
4697 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4698 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4699 /* trim last sg */
4700 lsg->length -= qc->pad_len;
4701 if (lsg->length == 0)
4702 trim_sg = 1;
4703
4704 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4705 qc->n_elem - 1, lsg->length, qc->pad_len);
4706 }
4707
4708 pre_n_elem = qc->n_elem;
4709 if (trim_sg && pre_n_elem)
4710 pre_n_elem--;
4711
4712 if (!pre_n_elem) {
4713 n_elem = 0;
4714 goto skip_map;
4715 }
4716
4717 dir = qc->dma_dir;
4718 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4719 if (n_elem < 1) {
4720 /* restore last sg */
4721 lsg->length += qc->pad_len;
4722 return -1;
4723 }
4724
4725 DPRINTK("%d sg elements mapped\n", n_elem);
4726
4727 skip_map:
4728 qc->n_elem = n_elem;
4729
4730 return 0;
4731 }
4732
4733 /**
4734 * swap_buf_le16 - swap halves of 16-bit words in place
4735 * @buf: Buffer to swap
4736 * @buf_words: Number of 16-bit words in buffer.
4737 *
4738 * Swap halves of 16-bit words if needed to convert from
4739 * little-endian byte order to native cpu byte order, or
4740 * vice-versa.
4741 *
4742 * LOCKING:
4743 * Inherited from caller.
4744 */
4745 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4746 {
4747 #ifdef __BIG_ENDIAN
4748 unsigned int i;
4749
4750 for (i = 0; i < buf_words; i++)
4751 buf[i] = le16_to_cpu(buf[i]);
4752 #endif /* __BIG_ENDIAN */
4753 }
4754
4755 /**
4756 * ata_data_xfer - Transfer data by PIO
4757 * @adev: device to target
4758 * @buf: data buffer
4759 * @buflen: buffer length
4760 * @write_data: read/write
4761 *
4762 * Transfer data from/to the device data register by PIO.
4763 *
4764 * LOCKING:
4765 * Inherited from caller.
4766 */
4767 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4768 unsigned int buflen, int write_data)
4769 {
4770 struct ata_port *ap = adev->link->ap;
4771 unsigned int words = buflen >> 1;
4772
4773 /* Transfer multiple of 2 bytes */
4774 if (write_data)
4775 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4776 else
4777 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4778
4779 /* Transfer trailing 1 byte, if any. */
4780 if (unlikely(buflen & 0x01)) {
4781 u16 align_buf[1] = { 0 };
4782 unsigned char *trailing_buf = buf + buflen - 1;
4783
4784 if (write_data) {
4785 memcpy(align_buf, trailing_buf, 1);
4786 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4787 } else {
4788 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4789 memcpy(trailing_buf, align_buf, 1);
4790 }
4791 }
4792 }
4793
4794 /**
4795 * ata_data_xfer_noirq - Transfer data by PIO
4796 * @adev: device to target
4797 * @buf: data buffer
4798 * @buflen: buffer length
4799 * @write_data: read/write
4800 *
4801 * Transfer data from/to the device data register by PIO. Do the
4802 * transfer with interrupts disabled.
4803 *
4804 * LOCKING:
4805 * Inherited from caller.
4806 */
4807 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4808 unsigned int buflen, int write_data)
4809 {
4810 unsigned long flags;
4811 local_irq_save(flags);
4812 ata_data_xfer(adev, buf, buflen, write_data);
4813 local_irq_restore(flags);
4814 }
4815
4816
4817 /**
4818 * ata_pio_sector - Transfer a sector of data.
4819 * @qc: Command on going
4820 *
4821 * Transfer qc->sect_size bytes of data from/to the ATA device.
4822 *
4823 * LOCKING:
4824 * Inherited from caller.
4825 */
4826
4827 static void ata_pio_sector(struct ata_queued_cmd *qc)
4828 {
4829 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4830 struct ata_port *ap = qc->ap;
4831 struct page *page;
4832 unsigned int offset;
4833 unsigned char *buf;
4834
4835 if (qc->curbytes == qc->nbytes - qc->sect_size)
4836 ap->hsm_task_state = HSM_ST_LAST;
4837
4838 page = sg_page(qc->cursg);
4839 offset = qc->cursg->offset + qc->cursg_ofs;
4840
4841 /* get the current page and offset */
4842 page = nth_page(page, (offset >> PAGE_SHIFT));
4843 offset %= PAGE_SIZE;
4844
4845 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4846
4847 if (PageHighMem(page)) {
4848 unsigned long flags;
4849
4850 /* FIXME: use a bounce buffer */
4851 local_irq_save(flags);
4852 buf = kmap_atomic(page, KM_IRQ0);
4853
4854 /* do the actual data transfer */
4855 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4856
4857 kunmap_atomic(buf, KM_IRQ0);
4858 local_irq_restore(flags);
4859 } else {
4860 buf = page_address(page);
4861 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4862 }
4863
4864 qc->curbytes += qc->sect_size;
4865 qc->cursg_ofs += qc->sect_size;
4866
4867 if (qc->cursg_ofs == qc->cursg->length) {
4868 qc->cursg = sg_next(qc->cursg);
4869 qc->cursg_ofs = 0;
4870 }
4871 }
4872
4873 /**
4874 * ata_pio_sectors - Transfer one or many sectors.
4875 * @qc: Command on going
4876 *
4877 * Transfer one or many sectors of data from/to the
4878 * ATA device for the DRQ request.
4879 *
4880 * LOCKING:
4881 * Inherited from caller.
4882 */
4883
4884 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4885 {
4886 if (is_multi_taskfile(&qc->tf)) {
4887 /* READ/WRITE MULTIPLE */
4888 unsigned int nsect;
4889
4890 WARN_ON(qc->dev->multi_count == 0);
4891
4892 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4893 qc->dev->multi_count);
4894 while (nsect--)
4895 ata_pio_sector(qc);
4896 } else
4897 ata_pio_sector(qc);
4898
4899 ata_altstatus(qc->ap); /* flush */
4900 }
4901
4902 /**
4903 * atapi_send_cdb - Write CDB bytes to hardware
4904 * @ap: Port to which ATAPI device is attached.
4905 * @qc: Taskfile currently active
4906 *
4907 * When device has indicated its readiness to accept
4908 * a CDB, this function is called. Send the CDB.
4909 *
4910 * LOCKING:
4911 * caller.
4912 */
4913
4914 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4915 {
4916 /* send SCSI cdb */
4917 DPRINTK("send cdb\n");
4918 WARN_ON(qc->dev->cdb_len < 12);
4919
4920 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4921 ata_altstatus(ap); /* flush */
4922
4923 switch (qc->tf.protocol) {
4924 case ATA_PROT_ATAPI:
4925 ap->hsm_task_state = HSM_ST;
4926 break;
4927 case ATA_PROT_ATAPI_NODATA:
4928 ap->hsm_task_state = HSM_ST_LAST;
4929 break;
4930 case ATA_PROT_ATAPI_DMA:
4931 ap->hsm_task_state = HSM_ST_LAST;
4932 /* initiate bmdma */
4933 ap->ops->bmdma_start(qc);
4934 break;
4935 }
4936 }
4937
4938 /**
4939 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4940 * @qc: Command on going
4941 * @bytes: number of bytes
4942 *
4943 * Transfer Transfer data from/to the ATAPI device.
4944 *
4945 * LOCKING:
4946 * Inherited from caller.
4947 *
4948 */
4949
4950 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4951 {
4952 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4953 struct scatterlist *sg = qc->__sg;
4954 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4955 struct ata_port *ap = qc->ap;
4956 struct page *page;
4957 unsigned char *buf;
4958 unsigned int offset, count;
4959 int no_more_sg = 0;
4960
4961 if (qc->curbytes + bytes >= qc->nbytes)
4962 ap->hsm_task_state = HSM_ST_LAST;
4963
4964 next_sg:
4965 if (unlikely(no_more_sg)) {
4966 /*
4967 * The end of qc->sg is reached and the device expects
4968 * more data to transfer. In order not to overrun qc->sg
4969 * and fulfill length specified in the byte count register,
4970 * - for read case, discard trailing data from the device
4971 * - for write case, padding zero data to the device
4972 */
4973 u16 pad_buf[1] = { 0 };
4974 unsigned int words = bytes >> 1;
4975 unsigned int i;
4976
4977 if (words) /* warning if bytes > 1 */
4978 ata_dev_printk(qc->dev, KERN_WARNING,
4979 "%u bytes trailing data\n", bytes);
4980
4981 for (i = 0; i < words; i++)
4982 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
4983
4984 ap->hsm_task_state = HSM_ST_LAST;
4985 return;
4986 }
4987
4988 sg = qc->cursg;
4989
4990 page = sg_page(sg);
4991 offset = sg->offset + qc->cursg_ofs;
4992
4993 /* get the current page and offset */
4994 page = nth_page(page, (offset >> PAGE_SHIFT));
4995 offset %= PAGE_SIZE;
4996
4997 /* don't overrun current sg */
4998 count = min(sg->length - qc->cursg_ofs, bytes);
4999
5000 /* don't cross page boundaries */
5001 count = min(count, (unsigned int)PAGE_SIZE - offset);
5002
5003 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5004
5005 if (PageHighMem(page)) {
5006 unsigned long flags;
5007
5008 /* FIXME: use bounce buffer */
5009 local_irq_save(flags);
5010 buf = kmap_atomic(page, KM_IRQ0);
5011
5012 /* do the actual data transfer */
5013 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5014
5015 kunmap_atomic(buf, KM_IRQ0);
5016 local_irq_restore(flags);
5017 } else {
5018 buf = page_address(page);
5019 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5020 }
5021
5022 bytes -= count;
5023 qc->curbytes += count;
5024 qc->cursg_ofs += count;
5025
5026 if (qc->cursg_ofs == sg->length) {
5027 if (qc->cursg == lsg)
5028 no_more_sg = 1;
5029
5030 qc->cursg = sg_next(qc->cursg);
5031 qc->cursg_ofs = 0;
5032 }
5033
5034 if (bytes)
5035 goto next_sg;
5036 }
5037
5038 /**
5039 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5040 * @qc: Command on going
5041 *
5042 * Transfer Transfer data from/to the ATAPI device.
5043 *
5044 * LOCKING:
5045 * Inherited from caller.
5046 */
5047
5048 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5049 {
5050 struct ata_port *ap = qc->ap;
5051 struct ata_device *dev = qc->dev;
5052 unsigned int ireason, bc_lo, bc_hi, bytes;
5053 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5054
5055 /* Abuse qc->result_tf for temp storage of intermediate TF
5056 * here to save some kernel stack usage.
5057 * For normal completion, qc->result_tf is not relevant. For
5058 * error, qc->result_tf is later overwritten by ata_qc_complete().
5059 * So, the correctness of qc->result_tf is not affected.
5060 */
5061 ap->ops->tf_read(ap, &qc->result_tf);
5062 ireason = qc->result_tf.nsect;
5063 bc_lo = qc->result_tf.lbam;
5064 bc_hi = qc->result_tf.lbah;
5065 bytes = (bc_hi << 8) | bc_lo;
5066
5067 /* shall be cleared to zero, indicating xfer of data */
5068 if (ireason & (1 << 0))
5069 goto err_out;
5070
5071 /* make sure transfer direction matches expected */
5072 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5073 if (do_write != i_write)
5074 goto err_out;
5075
5076 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5077
5078 __atapi_pio_bytes(qc, bytes);
5079 ata_altstatus(ap); /* flush */
5080
5081 return;
5082
5083 err_out:
5084 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5085 qc->err_mask |= AC_ERR_HSM;
5086 ap->hsm_task_state = HSM_ST_ERR;
5087 }
5088
5089 /**
5090 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5091 * @ap: the target ata_port
5092 * @qc: qc on going
5093 *
5094 * RETURNS:
5095 * 1 if ok in workqueue, 0 otherwise.
5096 */
5097
5098 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5099 {
5100 if (qc->tf.flags & ATA_TFLAG_POLLING)
5101 return 1;
5102
5103 if (ap->hsm_task_state == HSM_ST_FIRST) {
5104 if (qc->tf.protocol == ATA_PROT_PIO &&
5105 (qc->tf.flags & ATA_TFLAG_WRITE))
5106 return 1;
5107
5108 if (is_atapi_taskfile(&qc->tf) &&
5109 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5110 return 1;
5111 }
5112
5113 return 0;
5114 }
5115
5116 /**
5117 * ata_hsm_qc_complete - finish a qc running on standard HSM
5118 * @qc: Command to complete
5119 * @in_wq: 1 if called from workqueue, 0 otherwise
5120 *
5121 * Finish @qc which is running on standard HSM.
5122 *
5123 * LOCKING:
5124 * If @in_wq is zero, spin_lock_irqsave(host lock).
5125 * Otherwise, none on entry and grabs host lock.
5126 */
5127 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5128 {
5129 struct ata_port *ap = qc->ap;
5130 unsigned long flags;
5131
5132 if (ap->ops->error_handler) {
5133 if (in_wq) {
5134 spin_lock_irqsave(ap->lock, flags);
5135
5136 /* EH might have kicked in while host lock is
5137 * released.
5138 */
5139 qc = ata_qc_from_tag(ap, qc->tag);
5140 if (qc) {
5141 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5142 ap->ops->irq_on(ap);
5143 ata_qc_complete(qc);
5144 } else
5145 ata_port_freeze(ap);
5146 }
5147
5148 spin_unlock_irqrestore(ap->lock, flags);
5149 } else {
5150 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5151 ata_qc_complete(qc);
5152 else
5153 ata_port_freeze(ap);
5154 }
5155 } else {
5156 if (in_wq) {
5157 spin_lock_irqsave(ap->lock, flags);
5158 ap->ops->irq_on(ap);
5159 ata_qc_complete(qc);
5160 spin_unlock_irqrestore(ap->lock, flags);
5161 } else
5162 ata_qc_complete(qc);
5163 }
5164 }
5165
5166 /**
5167 * ata_hsm_move - move the HSM to the next state.
5168 * @ap: the target ata_port
5169 * @qc: qc on going
5170 * @status: current device status
5171 * @in_wq: 1 if called from workqueue, 0 otherwise
5172 *
5173 * RETURNS:
5174 * 1 when poll next status needed, 0 otherwise.
5175 */
5176 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5177 u8 status, int in_wq)
5178 {
5179 unsigned long flags = 0;
5180 int poll_next;
5181
5182 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5183
5184 /* Make sure ata_qc_issue_prot() does not throw things
5185 * like DMA polling into the workqueue. Notice that
5186 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5187 */
5188 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5189
5190 fsm_start:
5191 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5192 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5193
5194 switch (ap->hsm_task_state) {
5195 case HSM_ST_FIRST:
5196 /* Send first data block or PACKET CDB */
5197
5198 /* If polling, we will stay in the work queue after
5199 * sending the data. Otherwise, interrupt handler
5200 * takes over after sending the data.
5201 */
5202 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5203
5204 /* check device status */
5205 if (unlikely((status & ATA_DRQ) == 0)) {
5206 /* handle BSY=0, DRQ=0 as error */
5207 if (likely(status & (ATA_ERR | ATA_DF)))
5208 /* device stops HSM for abort/error */
5209 qc->err_mask |= AC_ERR_DEV;
5210 else
5211 /* HSM violation. Let EH handle this */
5212 qc->err_mask |= AC_ERR_HSM;
5213
5214 ap->hsm_task_state = HSM_ST_ERR;
5215 goto fsm_start;
5216 }
5217
5218 /* Device should not ask for data transfer (DRQ=1)
5219 * when it finds something wrong.
5220 * We ignore DRQ here and stop the HSM by
5221 * changing hsm_task_state to HSM_ST_ERR and
5222 * let the EH abort the command or reset the device.
5223 */
5224 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5225 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5226 "error, dev_stat 0x%X\n", status);
5227 qc->err_mask |= AC_ERR_HSM;
5228 ap->hsm_task_state = HSM_ST_ERR;
5229 goto fsm_start;
5230 }
5231
5232 /* Send the CDB (atapi) or the first data block (ata pio out).
5233 * During the state transition, interrupt handler shouldn't
5234 * be invoked before the data transfer is complete and
5235 * hsm_task_state is changed. Hence, the following locking.
5236 */
5237 if (in_wq)
5238 spin_lock_irqsave(ap->lock, flags);
5239
5240 if (qc->tf.protocol == ATA_PROT_PIO) {
5241 /* PIO data out protocol.
5242 * send first data block.
5243 */
5244
5245 /* ata_pio_sectors() might change the state
5246 * to HSM_ST_LAST. so, the state is changed here
5247 * before ata_pio_sectors().
5248 */
5249 ap->hsm_task_state = HSM_ST;
5250 ata_pio_sectors(qc);
5251 } else
5252 /* send CDB */
5253 atapi_send_cdb(ap, qc);
5254
5255 if (in_wq)
5256 spin_unlock_irqrestore(ap->lock, flags);
5257
5258 /* if polling, ata_pio_task() handles the rest.
5259 * otherwise, interrupt handler takes over from here.
5260 */
5261 break;
5262
5263 case HSM_ST:
5264 /* complete command or read/write the data register */
5265 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5266 /* ATAPI PIO protocol */
5267 if ((status & ATA_DRQ) == 0) {
5268 /* No more data to transfer or device error.
5269 * Device error will be tagged in HSM_ST_LAST.
5270 */
5271 ap->hsm_task_state = HSM_ST_LAST;
5272 goto fsm_start;
5273 }
5274
5275 /* Device should not ask for data transfer (DRQ=1)
5276 * when it finds something wrong.
5277 * We ignore DRQ here and stop the HSM by
5278 * changing hsm_task_state to HSM_ST_ERR and
5279 * let the EH abort the command or reset the device.
5280 */
5281 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5282 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5283 "device error, dev_stat 0x%X\n",
5284 status);
5285 qc->err_mask |= AC_ERR_HSM;
5286 ap->hsm_task_state = HSM_ST_ERR;
5287 goto fsm_start;
5288 }
5289
5290 atapi_pio_bytes(qc);
5291
5292 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5293 /* bad ireason reported by device */
5294 goto fsm_start;
5295
5296 } else {
5297 /* ATA PIO protocol */
5298 if (unlikely((status & ATA_DRQ) == 0)) {
5299 /* handle BSY=0, DRQ=0 as error */
5300 if (likely(status & (ATA_ERR | ATA_DF)))
5301 /* device stops HSM for abort/error */
5302 qc->err_mask |= AC_ERR_DEV;
5303 else
5304 /* HSM violation. Let EH handle this.
5305 * Phantom devices also trigger this
5306 * condition. Mark hint.
5307 */
5308 qc->err_mask |= AC_ERR_HSM |
5309 AC_ERR_NODEV_HINT;
5310
5311 ap->hsm_task_state = HSM_ST_ERR;
5312 goto fsm_start;
5313 }
5314
5315 /* For PIO reads, some devices may ask for
5316 * data transfer (DRQ=1) alone with ERR=1.
5317 * We respect DRQ here and transfer one
5318 * block of junk data before changing the
5319 * hsm_task_state to HSM_ST_ERR.
5320 *
5321 * For PIO writes, ERR=1 DRQ=1 doesn't make
5322 * sense since the data block has been
5323 * transferred to the device.
5324 */
5325 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5326 /* data might be corrputed */
5327 qc->err_mask |= AC_ERR_DEV;
5328
5329 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5330 ata_pio_sectors(qc);
5331 status = ata_wait_idle(ap);
5332 }
5333
5334 if (status & (ATA_BUSY | ATA_DRQ))
5335 qc->err_mask |= AC_ERR_HSM;
5336
5337 /* ata_pio_sectors() might change the
5338 * state to HSM_ST_LAST. so, the state
5339 * is changed after ata_pio_sectors().
5340 */
5341 ap->hsm_task_state = HSM_ST_ERR;
5342 goto fsm_start;
5343 }
5344
5345 ata_pio_sectors(qc);
5346
5347 if (ap->hsm_task_state == HSM_ST_LAST &&
5348 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5349 /* all data read */
5350 status = ata_wait_idle(ap);
5351 goto fsm_start;
5352 }
5353 }
5354
5355 poll_next = 1;
5356 break;
5357
5358 case HSM_ST_LAST:
5359 if (unlikely(!ata_ok(status))) {
5360 qc->err_mask |= __ac_err_mask(status);
5361 ap->hsm_task_state = HSM_ST_ERR;
5362 goto fsm_start;
5363 }
5364
5365 /* no more data to transfer */
5366 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5367 ap->print_id, qc->dev->devno, status);
5368
5369 WARN_ON(qc->err_mask);
5370
5371 ap->hsm_task_state = HSM_ST_IDLE;
5372
5373 /* complete taskfile transaction */
5374 ata_hsm_qc_complete(qc, in_wq);
5375
5376 poll_next = 0;
5377 break;
5378
5379 case HSM_ST_ERR:
5380 /* make sure qc->err_mask is available to
5381 * know what's wrong and recover
5382 */
5383 WARN_ON(qc->err_mask == 0);
5384
5385 ap->hsm_task_state = HSM_ST_IDLE;
5386
5387 /* complete taskfile transaction */
5388 ata_hsm_qc_complete(qc, in_wq);
5389
5390 poll_next = 0;
5391 break;
5392 default:
5393 poll_next = 0;
5394 BUG();
5395 }
5396
5397 return poll_next;
5398 }
5399
5400 static void ata_pio_task(struct work_struct *work)
5401 {
5402 struct ata_port *ap =
5403 container_of(work, struct ata_port, port_task.work);
5404 struct ata_queued_cmd *qc = ap->port_task_data;
5405 u8 status;
5406 int poll_next;
5407
5408 fsm_start:
5409 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5410
5411 /*
5412 * This is purely heuristic. This is a fast path.
5413 * Sometimes when we enter, BSY will be cleared in
5414 * a chk-status or two. If not, the drive is probably seeking
5415 * or something. Snooze for a couple msecs, then
5416 * chk-status again. If still busy, queue delayed work.
5417 */
5418 status = ata_busy_wait(ap, ATA_BUSY, 5);
5419 if (status & ATA_BUSY) {
5420 msleep(2);
5421 status = ata_busy_wait(ap, ATA_BUSY, 10);
5422 if (status & ATA_BUSY) {
5423 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5424 return;
5425 }
5426 }
5427
5428 /* move the HSM */
5429 poll_next = ata_hsm_move(ap, qc, status, 1);
5430
5431 /* another command or interrupt handler
5432 * may be running at this point.
5433 */
5434 if (poll_next)
5435 goto fsm_start;
5436 }
5437
5438 /**
5439 * ata_qc_new - Request an available ATA command, for queueing
5440 * @ap: Port associated with device @dev
5441 * @dev: Device from whom we request an available command structure
5442 *
5443 * LOCKING:
5444 * None.
5445 */
5446
5447 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5448 {
5449 struct ata_queued_cmd *qc = NULL;
5450 unsigned int i;
5451
5452 /* no command while frozen */
5453 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5454 return NULL;
5455
5456 /* the last tag is reserved for internal command. */
5457 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5458 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5459 qc = __ata_qc_from_tag(ap, i);
5460 break;
5461 }
5462
5463 if (qc)
5464 qc->tag = i;
5465
5466 return qc;
5467 }
5468
5469 /**
5470 * ata_qc_new_init - Request an available ATA command, and initialize it
5471 * @dev: Device from whom we request an available command structure
5472 *
5473 * LOCKING:
5474 * None.
5475 */
5476
5477 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5478 {
5479 struct ata_port *ap = dev->link->ap;
5480 struct ata_queued_cmd *qc;
5481
5482 qc = ata_qc_new(ap);
5483 if (qc) {
5484 qc->scsicmd = NULL;
5485 qc->ap = ap;
5486 qc->dev = dev;
5487
5488 ata_qc_reinit(qc);
5489 }
5490
5491 return qc;
5492 }
5493
5494 /**
5495 * ata_qc_free - free unused ata_queued_cmd
5496 * @qc: Command to complete
5497 *
5498 * Designed to free unused ata_queued_cmd object
5499 * in case something prevents using it.
5500 *
5501 * LOCKING:
5502 * spin_lock_irqsave(host lock)
5503 */
5504 void ata_qc_free(struct ata_queued_cmd *qc)
5505 {
5506 struct ata_port *ap = qc->ap;
5507 unsigned int tag;
5508
5509 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5510
5511 qc->flags = 0;
5512 tag = qc->tag;
5513 if (likely(ata_tag_valid(tag))) {
5514 qc->tag = ATA_TAG_POISON;
5515 clear_bit(tag, &ap->qc_allocated);
5516 }
5517 }
5518
5519 void __ata_qc_complete(struct ata_queued_cmd *qc)
5520 {
5521 struct ata_port *ap = qc->ap;
5522 struct ata_link *link = qc->dev->link;
5523
5524 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5525 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5526
5527 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5528 ata_sg_clean(qc);
5529
5530 /* command should be marked inactive atomically with qc completion */
5531 if (qc->tf.protocol == ATA_PROT_NCQ) {
5532 link->sactive &= ~(1 << qc->tag);
5533 if (!link->sactive)
5534 ap->nr_active_links--;
5535 } else {
5536 link->active_tag = ATA_TAG_POISON;
5537 ap->nr_active_links--;
5538 }
5539
5540 /* clear exclusive status */
5541 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5542 ap->excl_link == link))
5543 ap->excl_link = NULL;
5544
5545 /* atapi: mark qc as inactive to prevent the interrupt handler
5546 * from completing the command twice later, before the error handler
5547 * is called. (when rc != 0 and atapi request sense is needed)
5548 */
5549 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5550 ap->qc_active &= ~(1 << qc->tag);
5551
5552 /* call completion callback */
5553 qc->complete_fn(qc);
5554 }
5555
5556 static void fill_result_tf(struct ata_queued_cmd *qc)
5557 {
5558 struct ata_port *ap = qc->ap;
5559
5560 qc->result_tf.flags = qc->tf.flags;
5561 ap->ops->tf_read(ap, &qc->result_tf);
5562 }
5563
5564 /**
5565 * ata_qc_complete - Complete an active ATA command
5566 * @qc: Command to complete
5567 * @err_mask: ATA Status register contents
5568 *
5569 * Indicate to the mid and upper layers that an ATA
5570 * command has completed, with either an ok or not-ok status.
5571 *
5572 * LOCKING:
5573 * spin_lock_irqsave(host lock)
5574 */
5575 void ata_qc_complete(struct ata_queued_cmd *qc)
5576 {
5577 struct ata_port *ap = qc->ap;
5578
5579 /* XXX: New EH and old EH use different mechanisms to
5580 * synchronize EH with regular execution path.
5581 *
5582 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5583 * Normal execution path is responsible for not accessing a
5584 * failed qc. libata core enforces the rule by returning NULL
5585 * from ata_qc_from_tag() for failed qcs.
5586 *
5587 * Old EH depends on ata_qc_complete() nullifying completion
5588 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5589 * not synchronize with interrupt handler. Only PIO task is
5590 * taken care of.
5591 */
5592 if (ap->ops->error_handler) {
5593 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5594
5595 if (unlikely(qc->err_mask))
5596 qc->flags |= ATA_QCFLAG_FAILED;
5597
5598 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5599 if (!ata_tag_internal(qc->tag)) {
5600 /* always fill result TF for failed qc */
5601 fill_result_tf(qc);
5602 ata_qc_schedule_eh(qc);
5603 return;
5604 }
5605 }
5606
5607 /* read result TF if requested */
5608 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5609 fill_result_tf(qc);
5610
5611 __ata_qc_complete(qc);
5612 } else {
5613 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5614 return;
5615
5616 /* read result TF if failed or requested */
5617 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5618 fill_result_tf(qc);
5619
5620 __ata_qc_complete(qc);
5621 }
5622 }
5623
5624 /**
5625 * ata_qc_complete_multiple - Complete multiple qcs successfully
5626 * @ap: port in question
5627 * @qc_active: new qc_active mask
5628 * @finish_qc: LLDD callback invoked before completing a qc
5629 *
5630 * Complete in-flight commands. This functions is meant to be
5631 * called from low-level driver's interrupt routine to complete
5632 * requests normally. ap->qc_active and @qc_active is compared
5633 * and commands are completed accordingly.
5634 *
5635 * LOCKING:
5636 * spin_lock_irqsave(host lock)
5637 *
5638 * RETURNS:
5639 * Number of completed commands on success, -errno otherwise.
5640 */
5641 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5642 void (*finish_qc)(struct ata_queued_cmd *))
5643 {
5644 int nr_done = 0;
5645 u32 done_mask;
5646 int i;
5647
5648 done_mask = ap->qc_active ^ qc_active;
5649
5650 if (unlikely(done_mask & qc_active)) {
5651 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5652 "(%08x->%08x)\n", ap->qc_active, qc_active);
5653 return -EINVAL;
5654 }
5655
5656 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5657 struct ata_queued_cmd *qc;
5658
5659 if (!(done_mask & (1 << i)))
5660 continue;
5661
5662 if ((qc = ata_qc_from_tag(ap, i))) {
5663 if (finish_qc)
5664 finish_qc(qc);
5665 ata_qc_complete(qc);
5666 nr_done++;
5667 }
5668 }
5669
5670 return nr_done;
5671 }
5672
5673 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5674 {
5675 struct ata_port *ap = qc->ap;
5676
5677 switch (qc->tf.protocol) {
5678 case ATA_PROT_NCQ:
5679 case ATA_PROT_DMA:
5680 case ATA_PROT_ATAPI_DMA:
5681 return 1;
5682
5683 case ATA_PROT_ATAPI:
5684 case ATA_PROT_PIO:
5685 if (ap->flags & ATA_FLAG_PIO_DMA)
5686 return 1;
5687
5688 /* fall through */
5689
5690 default:
5691 return 0;
5692 }
5693
5694 /* never reached */
5695 }
5696
5697 /**
5698 * ata_qc_issue - issue taskfile to device
5699 * @qc: command to issue to device
5700 *
5701 * Prepare an ATA command to submission to device.
5702 * This includes mapping the data into a DMA-able
5703 * area, filling in the S/G table, and finally
5704 * writing the taskfile to hardware, starting the command.
5705 *
5706 * LOCKING:
5707 * spin_lock_irqsave(host lock)
5708 */
5709 void ata_qc_issue(struct ata_queued_cmd *qc)
5710 {
5711 struct ata_port *ap = qc->ap;
5712 struct ata_link *link = qc->dev->link;
5713
5714 /* Make sure only one non-NCQ command is outstanding. The
5715 * check is skipped for old EH because it reuses active qc to
5716 * request ATAPI sense.
5717 */
5718 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5719
5720 if (qc->tf.protocol == ATA_PROT_NCQ) {
5721 WARN_ON(link->sactive & (1 << qc->tag));
5722
5723 if (!link->sactive)
5724 ap->nr_active_links++;
5725 link->sactive |= 1 << qc->tag;
5726 } else {
5727 WARN_ON(link->sactive);
5728
5729 ap->nr_active_links++;
5730 link->active_tag = qc->tag;
5731 }
5732
5733 qc->flags |= ATA_QCFLAG_ACTIVE;
5734 ap->qc_active |= 1 << qc->tag;
5735
5736 if (ata_should_dma_map(qc)) {
5737 if (qc->flags & ATA_QCFLAG_SG) {
5738 if (ata_sg_setup(qc))
5739 goto sg_err;
5740 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5741 if (ata_sg_setup_one(qc))
5742 goto sg_err;
5743 }
5744 } else {
5745 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5746 }
5747
5748 ap->ops->qc_prep(qc);
5749
5750 qc->err_mask |= ap->ops->qc_issue(qc);
5751 if (unlikely(qc->err_mask))
5752 goto err;
5753 return;
5754
5755 sg_err:
5756 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5757 qc->err_mask |= AC_ERR_SYSTEM;
5758 err:
5759 ata_qc_complete(qc);
5760 }
5761
5762 /**
5763 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5764 * @qc: command to issue to device
5765 *
5766 * Using various libata functions and hooks, this function
5767 * starts an ATA command. ATA commands are grouped into
5768 * classes called "protocols", and issuing each type of protocol
5769 * is slightly different.
5770 *
5771 * May be used as the qc_issue() entry in ata_port_operations.
5772 *
5773 * LOCKING:
5774 * spin_lock_irqsave(host lock)
5775 *
5776 * RETURNS:
5777 * Zero on success, AC_ERR_* mask on failure
5778 */
5779
5780 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5781 {
5782 struct ata_port *ap = qc->ap;
5783
5784 /* Use polling pio if the LLD doesn't handle
5785 * interrupt driven pio and atapi CDB interrupt.
5786 */
5787 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5788 switch (qc->tf.protocol) {
5789 case ATA_PROT_PIO:
5790 case ATA_PROT_NODATA:
5791 case ATA_PROT_ATAPI:
5792 case ATA_PROT_ATAPI_NODATA:
5793 qc->tf.flags |= ATA_TFLAG_POLLING;
5794 break;
5795 case ATA_PROT_ATAPI_DMA:
5796 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5797 /* see ata_dma_blacklisted() */
5798 BUG();
5799 break;
5800 default:
5801 break;
5802 }
5803 }
5804
5805 /* select the device */
5806 ata_dev_select(ap, qc->dev->devno, 1, 0);
5807
5808 /* start the command */
5809 switch (qc->tf.protocol) {
5810 case ATA_PROT_NODATA:
5811 if (qc->tf.flags & ATA_TFLAG_POLLING)
5812 ata_qc_set_polling(qc);
5813
5814 ata_tf_to_host(ap, &qc->tf);
5815 ap->hsm_task_state = HSM_ST_LAST;
5816
5817 if (qc->tf.flags & ATA_TFLAG_POLLING)
5818 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5819
5820 break;
5821
5822 case ATA_PROT_DMA:
5823 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5824
5825 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5826 ap->ops->bmdma_setup(qc); /* set up bmdma */
5827 ap->ops->bmdma_start(qc); /* initiate bmdma */
5828 ap->hsm_task_state = HSM_ST_LAST;
5829 break;
5830
5831 case ATA_PROT_PIO:
5832 if (qc->tf.flags & ATA_TFLAG_POLLING)
5833 ata_qc_set_polling(qc);
5834
5835 ata_tf_to_host(ap, &qc->tf);
5836
5837 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5838 /* PIO data out protocol */
5839 ap->hsm_task_state = HSM_ST_FIRST;
5840 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5841
5842 /* always send first data block using
5843 * the ata_pio_task() codepath.
5844 */
5845 } else {
5846 /* PIO data in protocol */
5847 ap->hsm_task_state = HSM_ST;
5848
5849 if (qc->tf.flags & ATA_TFLAG_POLLING)
5850 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5851
5852 /* if polling, ata_pio_task() handles the rest.
5853 * otherwise, interrupt handler takes over from here.
5854 */
5855 }
5856
5857 break;
5858
5859 case ATA_PROT_ATAPI:
5860 case ATA_PROT_ATAPI_NODATA:
5861 if (qc->tf.flags & ATA_TFLAG_POLLING)
5862 ata_qc_set_polling(qc);
5863
5864 ata_tf_to_host(ap, &qc->tf);
5865
5866 ap->hsm_task_state = HSM_ST_FIRST;
5867
5868 /* send cdb by polling if no cdb interrupt */
5869 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5870 (qc->tf.flags & ATA_TFLAG_POLLING))
5871 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5872 break;
5873
5874 case ATA_PROT_ATAPI_DMA:
5875 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5876
5877 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5878 ap->ops->bmdma_setup(qc); /* set up bmdma */
5879 ap->hsm_task_state = HSM_ST_FIRST;
5880
5881 /* send cdb by polling if no cdb interrupt */
5882 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5883 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5884 break;
5885
5886 default:
5887 WARN_ON(1);
5888 return AC_ERR_SYSTEM;
5889 }
5890
5891 return 0;
5892 }
5893
5894 /**
5895 * ata_host_intr - Handle host interrupt for given (port, task)
5896 * @ap: Port on which interrupt arrived (possibly...)
5897 * @qc: Taskfile currently active in engine
5898 *
5899 * Handle host interrupt for given queued command. Currently,
5900 * only DMA interrupts are handled. All other commands are
5901 * handled via polling with interrupts disabled (nIEN bit).
5902 *
5903 * LOCKING:
5904 * spin_lock_irqsave(host lock)
5905 *
5906 * RETURNS:
5907 * One if interrupt was handled, zero if not (shared irq).
5908 */
5909
5910 inline unsigned int ata_host_intr(struct ata_port *ap,
5911 struct ata_queued_cmd *qc)
5912 {
5913 struct ata_eh_info *ehi = &ap->link.eh_info;
5914 u8 status, host_stat = 0;
5915
5916 VPRINTK("ata%u: protocol %d task_state %d\n",
5917 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5918
5919 /* Check whether we are expecting interrupt in this state */
5920 switch (ap->hsm_task_state) {
5921 case HSM_ST_FIRST:
5922 /* Some pre-ATAPI-4 devices assert INTRQ
5923 * at this state when ready to receive CDB.
5924 */
5925
5926 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5927 * The flag was turned on only for atapi devices.
5928 * No need to check is_atapi_taskfile(&qc->tf) again.
5929 */
5930 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5931 goto idle_irq;
5932 break;
5933 case HSM_ST_LAST:
5934 if (qc->tf.protocol == ATA_PROT_DMA ||
5935 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5936 /* check status of DMA engine */
5937 host_stat = ap->ops->bmdma_status(ap);
5938 VPRINTK("ata%u: host_stat 0x%X\n",
5939 ap->print_id, host_stat);
5940
5941 /* if it's not our irq... */
5942 if (!(host_stat & ATA_DMA_INTR))
5943 goto idle_irq;
5944
5945 /* before we do anything else, clear DMA-Start bit */
5946 ap->ops->bmdma_stop(qc);
5947
5948 if (unlikely(host_stat & ATA_DMA_ERR)) {
5949 /* error when transfering data to/from memory */
5950 qc->err_mask |= AC_ERR_HOST_BUS;
5951 ap->hsm_task_state = HSM_ST_ERR;
5952 }
5953 }
5954 break;
5955 case HSM_ST:
5956 break;
5957 default:
5958 goto idle_irq;
5959 }
5960
5961 /* check altstatus */
5962 status = ata_altstatus(ap);
5963 if (status & ATA_BUSY)
5964 goto idle_irq;
5965
5966 /* check main status, clearing INTRQ */
5967 status = ata_chk_status(ap);
5968 if (unlikely(status & ATA_BUSY))
5969 goto idle_irq;
5970
5971 /* ack bmdma irq events */
5972 ap->ops->irq_clear(ap);
5973
5974 ata_hsm_move(ap, qc, status, 0);
5975
5976 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5977 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5978 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5979
5980 return 1; /* irq handled */
5981
5982 idle_irq:
5983 ap->stats.idle_irq++;
5984
5985 #ifdef ATA_IRQ_TRAP
5986 if ((ap->stats.idle_irq % 1000) == 0) {
5987 ata_chk_status(ap);
5988 ap->ops->irq_clear(ap);
5989 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5990 return 1;
5991 }
5992 #endif
5993 return 0; /* irq not handled */
5994 }
5995
5996 /**
5997 * ata_interrupt - Default ATA host interrupt handler
5998 * @irq: irq line (unused)
5999 * @dev_instance: pointer to our ata_host information structure
6000 *
6001 * Default interrupt handler for PCI IDE devices. Calls
6002 * ata_host_intr() for each port that is not disabled.
6003 *
6004 * LOCKING:
6005 * Obtains host lock during operation.
6006 *
6007 * RETURNS:
6008 * IRQ_NONE or IRQ_HANDLED.
6009 */
6010
6011 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6012 {
6013 struct ata_host *host = dev_instance;
6014 unsigned int i;
6015 unsigned int handled = 0;
6016 unsigned long flags;
6017
6018 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6019 spin_lock_irqsave(&host->lock, flags);
6020
6021 for (i = 0; i < host->n_ports; i++) {
6022 struct ata_port *ap;
6023
6024 ap = host->ports[i];
6025 if (ap &&
6026 !(ap->flags & ATA_FLAG_DISABLED)) {
6027 struct ata_queued_cmd *qc;
6028
6029 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6030 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6031 (qc->flags & ATA_QCFLAG_ACTIVE))
6032 handled |= ata_host_intr(ap, qc);
6033 }
6034 }
6035
6036 spin_unlock_irqrestore(&host->lock, flags);
6037
6038 return IRQ_RETVAL(handled);
6039 }
6040
6041 /**
6042 * sata_scr_valid - test whether SCRs are accessible
6043 * @link: ATA link to test SCR accessibility for
6044 *
6045 * Test whether SCRs are accessible for @link.
6046 *
6047 * LOCKING:
6048 * None.
6049 *
6050 * RETURNS:
6051 * 1 if SCRs are accessible, 0 otherwise.
6052 */
6053 int sata_scr_valid(struct ata_link *link)
6054 {
6055 struct ata_port *ap = link->ap;
6056
6057 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6058 }
6059
6060 /**
6061 * sata_scr_read - read SCR register of the specified port
6062 * @link: ATA link to read SCR for
6063 * @reg: SCR to read
6064 * @val: Place to store read value
6065 *
6066 * Read SCR register @reg of @link into *@val. This function is
6067 * guaranteed to succeed if @link is ap->link, the cable type of
6068 * the port is SATA and the port implements ->scr_read.
6069 *
6070 * LOCKING:
6071 * None if @link is ap->link. Kernel thread context otherwise.
6072 *
6073 * RETURNS:
6074 * 0 on success, negative errno on failure.
6075 */
6076 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6077 {
6078 if (ata_is_host_link(link)) {
6079 struct ata_port *ap = link->ap;
6080
6081 if (sata_scr_valid(link))
6082 return ap->ops->scr_read(ap, reg, val);
6083 return -EOPNOTSUPP;
6084 }
6085
6086 return sata_pmp_scr_read(link, reg, val);
6087 }
6088
6089 /**
6090 * sata_scr_write - write SCR register of the specified port
6091 * @link: ATA link to write SCR for
6092 * @reg: SCR to write
6093 * @val: value to write
6094 *
6095 * Write @val to SCR register @reg of @link. This function is
6096 * guaranteed to succeed if @link is ap->link, the cable type of
6097 * the port is SATA and the port implements ->scr_read.
6098 *
6099 * LOCKING:
6100 * None if @link is ap->link. Kernel thread context otherwise.
6101 *
6102 * RETURNS:
6103 * 0 on success, negative errno on failure.
6104 */
6105 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6106 {
6107 if (ata_is_host_link(link)) {
6108 struct ata_port *ap = link->ap;
6109
6110 if (sata_scr_valid(link))
6111 return ap->ops->scr_write(ap, reg, val);
6112 return -EOPNOTSUPP;
6113 }
6114
6115 return sata_pmp_scr_write(link, reg, val);
6116 }
6117
6118 /**
6119 * sata_scr_write_flush - write SCR register of the specified port and flush
6120 * @link: ATA link to write SCR for
6121 * @reg: SCR to write
6122 * @val: value to write
6123 *
6124 * This function is identical to sata_scr_write() except that this
6125 * function performs flush after writing to the register.
6126 *
6127 * LOCKING:
6128 * None if @link is ap->link. Kernel thread context otherwise.
6129 *
6130 * RETURNS:
6131 * 0 on success, negative errno on failure.
6132 */
6133 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6134 {
6135 if (ata_is_host_link(link)) {
6136 struct ata_port *ap = link->ap;
6137 int rc;
6138
6139 if (sata_scr_valid(link)) {
6140 rc = ap->ops->scr_write(ap, reg, val);
6141 if (rc == 0)
6142 rc = ap->ops->scr_read(ap, reg, &val);
6143 return rc;
6144 }
6145 return -EOPNOTSUPP;
6146 }
6147
6148 return sata_pmp_scr_write(link, reg, val);
6149 }
6150
6151 /**
6152 * ata_link_online - test whether the given link is online
6153 * @link: ATA link to test
6154 *
6155 * Test whether @link is online. Note that this function returns
6156 * 0 if online status of @link cannot be obtained, so
6157 * ata_link_online(link) != !ata_link_offline(link).
6158 *
6159 * LOCKING:
6160 * None.
6161 *
6162 * RETURNS:
6163 * 1 if the port online status is available and online.
6164 */
6165 int ata_link_online(struct ata_link *link)
6166 {
6167 u32 sstatus;
6168
6169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6170 (sstatus & 0xf) == 0x3)
6171 return 1;
6172 return 0;
6173 }
6174
6175 /**
6176 * ata_link_offline - test whether the given link is offline
6177 * @link: ATA link to test
6178 *
6179 * Test whether @link is offline. Note that this function
6180 * returns 0 if offline status of @link cannot be obtained, so
6181 * ata_link_online(link) != !ata_link_offline(link).
6182 *
6183 * LOCKING:
6184 * None.
6185 *
6186 * RETURNS:
6187 * 1 if the port offline status is available and offline.
6188 */
6189 int ata_link_offline(struct ata_link *link)
6190 {
6191 u32 sstatus;
6192
6193 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6194 (sstatus & 0xf) != 0x3)
6195 return 1;
6196 return 0;
6197 }
6198
6199 int ata_flush_cache(struct ata_device *dev)
6200 {
6201 unsigned int err_mask;
6202 u8 cmd;
6203
6204 if (!ata_try_flush_cache(dev))
6205 return 0;
6206
6207 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6208 cmd = ATA_CMD_FLUSH_EXT;
6209 else
6210 cmd = ATA_CMD_FLUSH;
6211
6212 /* This is wrong. On a failed flush we get back the LBA of the lost
6213 sector and we should (assuming it wasn't aborted as unknown) issue
6214 a further flush command to continue the writeback until it
6215 does not error */
6216 err_mask = ata_do_simple_cmd(dev, cmd);
6217 if (err_mask) {
6218 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6219 return -EIO;
6220 }
6221
6222 return 0;
6223 }
6224
6225 #ifdef CONFIG_PM
6226 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6227 unsigned int action, unsigned int ehi_flags,
6228 int wait)
6229 {
6230 unsigned long flags;
6231 int i, rc;
6232
6233 for (i = 0; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235 struct ata_link *link;
6236
6237 /* Previous resume operation might still be in
6238 * progress. Wait for PM_PENDING to clear.
6239 */
6240 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6241 ata_port_wait_eh(ap);
6242 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6243 }
6244
6245 /* request PM ops to EH */
6246 spin_lock_irqsave(ap->lock, flags);
6247
6248 ap->pm_mesg = mesg;
6249 if (wait) {
6250 rc = 0;
6251 ap->pm_result = &rc;
6252 }
6253
6254 ap->pflags |= ATA_PFLAG_PM_PENDING;
6255 __ata_port_for_each_link(link, ap) {
6256 link->eh_info.action |= action;
6257 link->eh_info.flags |= ehi_flags;
6258 }
6259
6260 ata_port_schedule_eh(ap);
6261
6262 spin_unlock_irqrestore(ap->lock, flags);
6263
6264 /* wait and check result */
6265 if (wait) {
6266 ata_port_wait_eh(ap);
6267 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6268 if (rc)
6269 return rc;
6270 }
6271 }
6272
6273 return 0;
6274 }
6275
6276 /**
6277 * ata_host_suspend - suspend host
6278 * @host: host to suspend
6279 * @mesg: PM message
6280 *
6281 * Suspend @host. Actual operation is performed by EH. This
6282 * function requests EH to perform PM operations and waits for EH
6283 * to finish.
6284 *
6285 * LOCKING:
6286 * Kernel thread context (may sleep).
6287 *
6288 * RETURNS:
6289 * 0 on success, -errno on failure.
6290 */
6291 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6292 {
6293 int rc;
6294
6295 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6296 if (rc == 0)
6297 host->dev->power.power_state = mesg;
6298 return rc;
6299 }
6300
6301 /**
6302 * ata_host_resume - resume host
6303 * @host: host to resume
6304 *
6305 * Resume @host. Actual operation is performed by EH. This
6306 * function requests EH to perform PM operations and returns.
6307 * Note that all resume operations are performed parallely.
6308 *
6309 * LOCKING:
6310 * Kernel thread context (may sleep).
6311 */
6312 void ata_host_resume(struct ata_host *host)
6313 {
6314 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6315 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6316 host->dev->power.power_state = PMSG_ON;
6317 }
6318 #endif
6319
6320 /**
6321 * ata_port_start - Set port up for dma.
6322 * @ap: Port to initialize
6323 *
6324 * Called just after data structures for each port are
6325 * initialized. Allocates space for PRD table.
6326 *
6327 * May be used as the port_start() entry in ata_port_operations.
6328 *
6329 * LOCKING:
6330 * Inherited from caller.
6331 */
6332 int ata_port_start(struct ata_port *ap)
6333 {
6334 struct device *dev = ap->dev;
6335 int rc;
6336
6337 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6338 GFP_KERNEL);
6339 if (!ap->prd)
6340 return -ENOMEM;
6341
6342 rc = ata_pad_alloc(ap, dev);
6343 if (rc)
6344 return rc;
6345
6346 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6347 (unsigned long long)ap->prd_dma);
6348 return 0;
6349 }
6350
6351 /**
6352 * ata_dev_init - Initialize an ata_device structure
6353 * @dev: Device structure to initialize
6354 *
6355 * Initialize @dev in preparation for probing.
6356 *
6357 * LOCKING:
6358 * Inherited from caller.
6359 */
6360 void ata_dev_init(struct ata_device *dev)
6361 {
6362 struct ata_link *link = dev->link;
6363 struct ata_port *ap = link->ap;
6364 unsigned long flags;
6365
6366 /* SATA spd limit is bound to the first device */
6367 link->sata_spd_limit = link->hw_sata_spd_limit;
6368 link->sata_spd = 0;
6369
6370 /* High bits of dev->flags are used to record warm plug
6371 * requests which occur asynchronously. Synchronize using
6372 * host lock.
6373 */
6374 spin_lock_irqsave(ap->lock, flags);
6375 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6376 dev->horkage = 0;
6377 spin_unlock_irqrestore(ap->lock, flags);
6378
6379 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6380 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6381 dev->pio_mask = UINT_MAX;
6382 dev->mwdma_mask = UINT_MAX;
6383 dev->udma_mask = UINT_MAX;
6384 }
6385
6386 /**
6387 * ata_link_init - Initialize an ata_link structure
6388 * @ap: ATA port link is attached to
6389 * @link: Link structure to initialize
6390 * @pmp: Port multiplier port number
6391 *
6392 * Initialize @link.
6393 *
6394 * LOCKING:
6395 * Kernel thread context (may sleep)
6396 */
6397 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6398 {
6399 int i;
6400
6401 /* clear everything except for devices */
6402 memset(link, 0, offsetof(struct ata_link, device[0]));
6403
6404 link->ap = ap;
6405 link->pmp = pmp;
6406 link->active_tag = ATA_TAG_POISON;
6407 link->hw_sata_spd_limit = UINT_MAX;
6408
6409 /* can't use iterator, ap isn't initialized yet */
6410 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6411 struct ata_device *dev = &link->device[i];
6412
6413 dev->link = link;
6414 dev->devno = dev - link->device;
6415 ata_dev_init(dev);
6416 }
6417 }
6418
6419 /**
6420 * sata_link_init_spd - Initialize link->sata_spd_limit
6421 * @link: Link to configure sata_spd_limit for
6422 *
6423 * Initialize @link->[hw_]sata_spd_limit to the currently
6424 * configured value.
6425 *
6426 * LOCKING:
6427 * Kernel thread context (may sleep).
6428 *
6429 * RETURNS:
6430 * 0 on success, -errno on failure.
6431 */
6432 int sata_link_init_spd(struct ata_link *link)
6433 {
6434 u32 scontrol, spd;
6435 int rc;
6436
6437 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6438 if (rc)
6439 return rc;
6440
6441 spd = (scontrol >> 4) & 0xf;
6442 if (spd)
6443 link->hw_sata_spd_limit &= (1 << spd) - 1;
6444
6445 link->sata_spd_limit = link->hw_sata_spd_limit;
6446
6447 return 0;
6448 }
6449
6450 /**
6451 * ata_port_alloc - allocate and initialize basic ATA port resources
6452 * @host: ATA host this allocated port belongs to
6453 *
6454 * Allocate and initialize basic ATA port resources.
6455 *
6456 * RETURNS:
6457 * Allocate ATA port on success, NULL on failure.
6458 *
6459 * LOCKING:
6460 * Inherited from calling layer (may sleep).
6461 */
6462 struct ata_port *ata_port_alloc(struct ata_host *host)
6463 {
6464 struct ata_port *ap;
6465
6466 DPRINTK("ENTER\n");
6467
6468 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6469 if (!ap)
6470 return NULL;
6471
6472 ap->pflags |= ATA_PFLAG_INITIALIZING;
6473 ap->lock = &host->lock;
6474 ap->flags = ATA_FLAG_DISABLED;
6475 ap->print_id = -1;
6476 ap->ctl = ATA_DEVCTL_OBS;
6477 ap->host = host;
6478 ap->dev = host->dev;
6479 ap->last_ctl = 0xFF;
6480
6481 #if defined(ATA_VERBOSE_DEBUG)
6482 /* turn on all debugging levels */
6483 ap->msg_enable = 0x00FF;
6484 #elif defined(ATA_DEBUG)
6485 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6486 #else
6487 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6488 #endif
6489
6490 INIT_DELAYED_WORK(&ap->port_task, NULL);
6491 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6492 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6493 INIT_LIST_HEAD(&ap->eh_done_q);
6494 init_waitqueue_head(&ap->eh_wait_q);
6495 init_timer_deferrable(&ap->fastdrain_timer);
6496 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6497 ap->fastdrain_timer.data = (unsigned long)ap;
6498
6499 ap->cbl = ATA_CBL_NONE;
6500
6501 ata_link_init(ap, &ap->link, 0);
6502
6503 #ifdef ATA_IRQ_TRAP
6504 ap->stats.unhandled_irq = 1;
6505 ap->stats.idle_irq = 1;
6506 #endif
6507 return ap;
6508 }
6509
6510 static void ata_host_release(struct device *gendev, void *res)
6511 {
6512 struct ata_host *host = dev_get_drvdata(gendev);
6513 int i;
6514
6515 for (i = 0; i < host->n_ports; i++) {
6516 struct ata_port *ap = host->ports[i];
6517
6518 if (!ap)
6519 continue;
6520
6521 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6522 ap->ops->port_stop(ap);
6523 }
6524
6525 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6526 host->ops->host_stop(host);
6527
6528 for (i = 0; i < host->n_ports; i++) {
6529 struct ata_port *ap = host->ports[i];
6530
6531 if (!ap)
6532 continue;
6533
6534 if (ap->scsi_host)
6535 scsi_host_put(ap->scsi_host);
6536
6537 kfree(ap->pmp_link);
6538 kfree(ap);
6539 host->ports[i] = NULL;
6540 }
6541
6542 dev_set_drvdata(gendev, NULL);
6543 }
6544
6545 /**
6546 * ata_host_alloc - allocate and init basic ATA host resources
6547 * @dev: generic device this host is associated with
6548 * @max_ports: maximum number of ATA ports associated with this host
6549 *
6550 * Allocate and initialize basic ATA host resources. LLD calls
6551 * this function to allocate a host, initializes it fully and
6552 * attaches it using ata_host_register().
6553 *
6554 * @max_ports ports are allocated and host->n_ports is
6555 * initialized to @max_ports. The caller is allowed to decrease
6556 * host->n_ports before calling ata_host_register(). The unused
6557 * ports will be automatically freed on registration.
6558 *
6559 * RETURNS:
6560 * Allocate ATA host on success, NULL on failure.
6561 *
6562 * LOCKING:
6563 * Inherited from calling layer (may sleep).
6564 */
6565 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6566 {
6567 struct ata_host *host;
6568 size_t sz;
6569 int i;
6570
6571 DPRINTK("ENTER\n");
6572
6573 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6574 return NULL;
6575
6576 /* alloc a container for our list of ATA ports (buses) */
6577 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6578 /* alloc a container for our list of ATA ports (buses) */
6579 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6580 if (!host)
6581 goto err_out;
6582
6583 devres_add(dev, host);
6584 dev_set_drvdata(dev, host);
6585
6586 spin_lock_init(&host->lock);
6587 host->dev = dev;
6588 host->n_ports = max_ports;
6589
6590 /* allocate ports bound to this host */
6591 for (i = 0; i < max_ports; i++) {
6592 struct ata_port *ap;
6593
6594 ap = ata_port_alloc(host);
6595 if (!ap)
6596 goto err_out;
6597
6598 ap->port_no = i;
6599 host->ports[i] = ap;
6600 }
6601
6602 devres_remove_group(dev, NULL);
6603 return host;
6604
6605 err_out:
6606 devres_release_group(dev, NULL);
6607 return NULL;
6608 }
6609
6610 /**
6611 * ata_host_alloc_pinfo - alloc host and init with port_info array
6612 * @dev: generic device this host is associated with
6613 * @ppi: array of ATA port_info to initialize host with
6614 * @n_ports: number of ATA ports attached to this host
6615 *
6616 * Allocate ATA host and initialize with info from @ppi. If NULL
6617 * terminated, @ppi may contain fewer entries than @n_ports. The
6618 * last entry will be used for the remaining ports.
6619 *
6620 * RETURNS:
6621 * Allocate ATA host on success, NULL on failure.
6622 *
6623 * LOCKING:
6624 * Inherited from calling layer (may sleep).
6625 */
6626 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6627 const struct ata_port_info * const * ppi,
6628 int n_ports)
6629 {
6630 const struct ata_port_info *pi;
6631 struct ata_host *host;
6632 int i, j;
6633
6634 host = ata_host_alloc(dev, n_ports);
6635 if (!host)
6636 return NULL;
6637
6638 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6639 struct ata_port *ap = host->ports[i];
6640
6641 if (ppi[j])
6642 pi = ppi[j++];
6643
6644 ap->pio_mask = pi->pio_mask;
6645 ap->mwdma_mask = pi->mwdma_mask;
6646 ap->udma_mask = pi->udma_mask;
6647 ap->flags |= pi->flags;
6648 ap->link.flags |= pi->link_flags;
6649 ap->ops = pi->port_ops;
6650
6651 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6652 host->ops = pi->port_ops;
6653 if (!host->private_data && pi->private_data)
6654 host->private_data = pi->private_data;
6655 }
6656
6657 return host;
6658 }
6659
6660 /**
6661 * ata_host_start - start and freeze ports of an ATA host
6662 * @host: ATA host to start ports for
6663 *
6664 * Start and then freeze ports of @host. Started status is
6665 * recorded in host->flags, so this function can be called
6666 * multiple times. Ports are guaranteed to get started only
6667 * once. If host->ops isn't initialized yet, its set to the
6668 * first non-dummy port ops.
6669 *
6670 * LOCKING:
6671 * Inherited from calling layer (may sleep).
6672 *
6673 * RETURNS:
6674 * 0 if all ports are started successfully, -errno otherwise.
6675 */
6676 int ata_host_start(struct ata_host *host)
6677 {
6678 int i, rc;
6679
6680 if (host->flags & ATA_HOST_STARTED)
6681 return 0;
6682
6683 for (i = 0; i < host->n_ports; i++) {
6684 struct ata_port *ap = host->ports[i];
6685
6686 if (!host->ops && !ata_port_is_dummy(ap))
6687 host->ops = ap->ops;
6688
6689 if (ap->ops->port_start) {
6690 rc = ap->ops->port_start(ap);
6691 if (rc) {
6692 ata_port_printk(ap, KERN_ERR, "failed to "
6693 "start port (errno=%d)\n", rc);
6694 goto err_out;
6695 }
6696 }
6697
6698 ata_eh_freeze_port(ap);
6699 }
6700
6701 host->flags |= ATA_HOST_STARTED;
6702 return 0;
6703
6704 err_out:
6705 while (--i >= 0) {
6706 struct ata_port *ap = host->ports[i];
6707
6708 if (ap->ops->port_stop)
6709 ap->ops->port_stop(ap);
6710 }
6711 return rc;
6712 }
6713
6714 /**
6715 * ata_sas_host_init - Initialize a host struct
6716 * @host: host to initialize
6717 * @dev: device host is attached to
6718 * @flags: host flags
6719 * @ops: port_ops
6720 *
6721 * LOCKING:
6722 * PCI/etc. bus probe sem.
6723 *
6724 */
6725 /* KILLME - the only user left is ipr */
6726 void ata_host_init(struct ata_host *host, struct device *dev,
6727 unsigned long flags, const struct ata_port_operations *ops)
6728 {
6729 spin_lock_init(&host->lock);
6730 host->dev = dev;
6731 host->flags = flags;
6732 host->ops = ops;
6733 }
6734
6735 /**
6736 * ata_host_register - register initialized ATA host
6737 * @host: ATA host to register
6738 * @sht: template for SCSI host
6739 *
6740 * Register initialized ATA host. @host is allocated using
6741 * ata_host_alloc() and fully initialized by LLD. This function
6742 * starts ports, registers @host with ATA and SCSI layers and
6743 * probe registered devices.
6744 *
6745 * LOCKING:
6746 * Inherited from calling layer (may sleep).
6747 *
6748 * RETURNS:
6749 * 0 on success, -errno otherwise.
6750 */
6751 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6752 {
6753 int i, rc;
6754
6755 /* host must have been started */
6756 if (!(host->flags & ATA_HOST_STARTED)) {
6757 dev_printk(KERN_ERR, host->dev,
6758 "BUG: trying to register unstarted host\n");
6759 WARN_ON(1);
6760 return -EINVAL;
6761 }
6762
6763 /* Blow away unused ports. This happens when LLD can't
6764 * determine the exact number of ports to allocate at
6765 * allocation time.
6766 */
6767 for (i = host->n_ports; host->ports[i]; i++)
6768 kfree(host->ports[i]);
6769
6770 /* give ports names and add SCSI hosts */
6771 for (i = 0; i < host->n_ports; i++)
6772 host->ports[i]->print_id = ata_print_id++;
6773
6774 rc = ata_scsi_add_hosts(host, sht);
6775 if (rc)
6776 return rc;
6777
6778 /* associate with ACPI nodes */
6779 ata_acpi_associate(host);
6780
6781 /* set cable, sata_spd_limit and report */
6782 for (i = 0; i < host->n_ports; i++) {
6783 struct ata_port *ap = host->ports[i];
6784 unsigned long xfer_mask;
6785
6786 /* set SATA cable type if still unset */
6787 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6788 ap->cbl = ATA_CBL_SATA;
6789
6790 /* init sata_spd_limit to the current value */
6791 sata_link_init_spd(&ap->link);
6792
6793 /* print per-port info to dmesg */
6794 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6795 ap->udma_mask);
6796
6797 if (!ata_port_is_dummy(ap)) {
6798 ata_port_printk(ap, KERN_INFO,
6799 "%cATA max %s %s\n",
6800 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6801 ata_mode_string(xfer_mask),
6802 ap->link.eh_info.desc);
6803 ata_ehi_clear_desc(&ap->link.eh_info);
6804 } else
6805 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6806 }
6807
6808 /* perform each probe synchronously */
6809 DPRINTK("probe begin\n");
6810 for (i = 0; i < host->n_ports; i++) {
6811 struct ata_port *ap = host->ports[i];
6812 int rc;
6813
6814 /* probe */
6815 if (ap->ops->error_handler) {
6816 struct ata_eh_info *ehi = &ap->link.eh_info;
6817 unsigned long flags;
6818
6819 ata_port_probe(ap);
6820
6821 /* kick EH for boot probing */
6822 spin_lock_irqsave(ap->lock, flags);
6823
6824 ehi->probe_mask =
6825 (1 << ata_link_max_devices(&ap->link)) - 1;
6826 ehi->action |= ATA_EH_SOFTRESET;
6827 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6828
6829 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6830 ap->pflags |= ATA_PFLAG_LOADING;
6831 ata_port_schedule_eh(ap);
6832
6833 spin_unlock_irqrestore(ap->lock, flags);
6834
6835 /* wait for EH to finish */
6836 ata_port_wait_eh(ap);
6837 } else {
6838 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6839 rc = ata_bus_probe(ap);
6840 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6841
6842 if (rc) {
6843 /* FIXME: do something useful here?
6844 * Current libata behavior will
6845 * tear down everything when
6846 * the module is removed
6847 * or the h/w is unplugged.
6848 */
6849 }
6850 }
6851 }
6852
6853 /* probes are done, now scan each port's disk(s) */
6854 DPRINTK("host probe begin\n");
6855 for (i = 0; i < host->n_ports; i++) {
6856 struct ata_port *ap = host->ports[i];
6857
6858 ata_scsi_scan_host(ap, 1);
6859 }
6860
6861 return 0;
6862 }
6863
6864 /**
6865 * ata_host_activate - start host, request IRQ and register it
6866 * @host: target ATA host
6867 * @irq: IRQ to request
6868 * @irq_handler: irq_handler used when requesting IRQ
6869 * @irq_flags: irq_flags used when requesting IRQ
6870 * @sht: scsi_host_template to use when registering the host
6871 *
6872 * After allocating an ATA host and initializing it, most libata
6873 * LLDs perform three steps to activate the host - start host,
6874 * request IRQ and register it. This helper takes necessasry
6875 * arguments and performs the three steps in one go.
6876 *
6877 * LOCKING:
6878 * Inherited from calling layer (may sleep).
6879 *
6880 * RETURNS:
6881 * 0 on success, -errno otherwise.
6882 */
6883 int ata_host_activate(struct ata_host *host, int irq,
6884 irq_handler_t irq_handler, unsigned long irq_flags,
6885 struct scsi_host_template *sht)
6886 {
6887 int i, rc;
6888
6889 rc = ata_host_start(host);
6890 if (rc)
6891 return rc;
6892
6893 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6894 dev_driver_string(host->dev), host);
6895 if (rc)
6896 return rc;
6897
6898 for (i = 0; i < host->n_ports; i++)
6899 ata_port_desc(host->ports[i], "irq %d", irq);
6900
6901 rc = ata_host_register(host, sht);
6902 /* if failed, just free the IRQ and leave ports alone */
6903 if (rc)
6904 devm_free_irq(host->dev, irq, host);
6905
6906 return rc;
6907 }
6908
6909 /**
6910 * ata_port_detach - Detach ATA port in prepration of device removal
6911 * @ap: ATA port to be detached
6912 *
6913 * Detach all ATA devices and the associated SCSI devices of @ap;
6914 * then, remove the associated SCSI host. @ap is guaranteed to
6915 * be quiescent on return from this function.
6916 *
6917 * LOCKING:
6918 * Kernel thread context (may sleep).
6919 */
6920 void ata_port_detach(struct ata_port *ap)
6921 {
6922 unsigned long flags;
6923 struct ata_link *link;
6924 struct ata_device *dev;
6925
6926 if (!ap->ops->error_handler)
6927 goto skip_eh;
6928
6929 /* tell EH we're leaving & flush EH */
6930 spin_lock_irqsave(ap->lock, flags);
6931 ap->pflags |= ATA_PFLAG_UNLOADING;
6932 spin_unlock_irqrestore(ap->lock, flags);
6933
6934 ata_port_wait_eh(ap);
6935
6936 /* EH is now guaranteed to see UNLOADING, so no new device
6937 * will be attached. Disable all existing devices.
6938 */
6939 spin_lock_irqsave(ap->lock, flags);
6940
6941 ata_port_for_each_link(link, ap) {
6942 ata_link_for_each_dev(dev, link)
6943 ata_dev_disable(dev);
6944 }
6945
6946 spin_unlock_irqrestore(ap->lock, flags);
6947
6948 /* Final freeze & EH. All in-flight commands are aborted. EH
6949 * will be skipped and retrials will be terminated with bad
6950 * target.
6951 */
6952 spin_lock_irqsave(ap->lock, flags);
6953 ata_port_freeze(ap); /* won't be thawed */
6954 spin_unlock_irqrestore(ap->lock, flags);
6955
6956 ata_port_wait_eh(ap);
6957 cancel_rearming_delayed_work(&ap->hotplug_task);
6958
6959 skip_eh:
6960 /* remove the associated SCSI host */
6961 scsi_remove_host(ap->scsi_host);
6962 }
6963
6964 /**
6965 * ata_host_detach - Detach all ports of an ATA host
6966 * @host: Host to detach
6967 *
6968 * Detach all ports of @host.
6969 *
6970 * LOCKING:
6971 * Kernel thread context (may sleep).
6972 */
6973 void ata_host_detach(struct ata_host *host)
6974 {
6975 int i;
6976
6977 for (i = 0; i < host->n_ports; i++)
6978 ata_port_detach(host->ports[i]);
6979 }
6980
6981 /**
6982 * ata_std_ports - initialize ioaddr with standard port offsets.
6983 * @ioaddr: IO address structure to be initialized
6984 *
6985 * Utility function which initializes data_addr, error_addr,
6986 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6987 * device_addr, status_addr, and command_addr to standard offsets
6988 * relative to cmd_addr.
6989 *
6990 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6991 */
6992
6993 void ata_std_ports(struct ata_ioports *ioaddr)
6994 {
6995 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6996 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6997 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6998 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6999 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7000 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7001 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7002 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7003 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7004 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7005 }
7006
7007
7008 #ifdef CONFIG_PCI
7009
7010 /**
7011 * ata_pci_remove_one - PCI layer callback for device removal
7012 * @pdev: PCI device that was removed
7013 *
7014 * PCI layer indicates to libata via this hook that hot-unplug or
7015 * module unload event has occurred. Detach all ports. Resource
7016 * release is handled via devres.
7017 *
7018 * LOCKING:
7019 * Inherited from PCI layer (may sleep).
7020 */
7021 void ata_pci_remove_one(struct pci_dev *pdev)
7022 {
7023 struct device *dev = &pdev->dev;
7024 struct ata_host *host = dev_get_drvdata(dev);
7025
7026 ata_host_detach(host);
7027 }
7028
7029 /* move to PCI subsystem */
7030 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7031 {
7032 unsigned long tmp = 0;
7033
7034 switch (bits->width) {
7035 case 1: {
7036 u8 tmp8 = 0;
7037 pci_read_config_byte(pdev, bits->reg, &tmp8);
7038 tmp = tmp8;
7039 break;
7040 }
7041 case 2: {
7042 u16 tmp16 = 0;
7043 pci_read_config_word(pdev, bits->reg, &tmp16);
7044 tmp = tmp16;
7045 break;
7046 }
7047 case 4: {
7048 u32 tmp32 = 0;
7049 pci_read_config_dword(pdev, bits->reg, &tmp32);
7050 tmp = tmp32;
7051 break;
7052 }
7053
7054 default:
7055 return -EINVAL;
7056 }
7057
7058 tmp &= bits->mask;
7059
7060 return (tmp == bits->val) ? 1 : 0;
7061 }
7062
7063 #ifdef CONFIG_PM
7064 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7065 {
7066 pci_save_state(pdev);
7067 pci_disable_device(pdev);
7068
7069 if (mesg.event == PM_EVENT_SUSPEND)
7070 pci_set_power_state(pdev, PCI_D3hot);
7071 }
7072
7073 int ata_pci_device_do_resume(struct pci_dev *pdev)
7074 {
7075 int rc;
7076
7077 pci_set_power_state(pdev, PCI_D0);
7078 pci_restore_state(pdev);
7079
7080 rc = pcim_enable_device(pdev);
7081 if (rc) {
7082 dev_printk(KERN_ERR, &pdev->dev,
7083 "failed to enable device after resume (%d)\n", rc);
7084 return rc;
7085 }
7086
7087 pci_set_master(pdev);
7088 return 0;
7089 }
7090
7091 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7092 {
7093 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7094 int rc = 0;
7095
7096 rc = ata_host_suspend(host, mesg);
7097 if (rc)
7098 return rc;
7099
7100 ata_pci_device_do_suspend(pdev, mesg);
7101
7102 return 0;
7103 }
7104
7105 int ata_pci_device_resume(struct pci_dev *pdev)
7106 {
7107 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7108 int rc;
7109
7110 rc = ata_pci_device_do_resume(pdev);
7111 if (rc == 0)
7112 ata_host_resume(host);
7113 return rc;
7114 }
7115 #endif /* CONFIG_PM */
7116
7117 #endif /* CONFIG_PCI */
7118
7119
7120 static int __init ata_init(void)
7121 {
7122 ata_probe_timeout *= HZ;
7123 ata_wq = create_workqueue("ata");
7124 if (!ata_wq)
7125 return -ENOMEM;
7126
7127 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7128 if (!ata_aux_wq) {
7129 destroy_workqueue(ata_wq);
7130 return -ENOMEM;
7131 }
7132
7133 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7134 return 0;
7135 }
7136
7137 static void __exit ata_exit(void)
7138 {
7139 destroy_workqueue(ata_wq);
7140 destroy_workqueue(ata_aux_wq);
7141 }
7142
7143 subsys_initcall(ata_init);
7144 module_exit(ata_exit);
7145
7146 static unsigned long ratelimit_time;
7147 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7148
7149 int ata_ratelimit(void)
7150 {
7151 int rc;
7152 unsigned long flags;
7153
7154 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7155
7156 if (time_after(jiffies, ratelimit_time)) {
7157 rc = 1;
7158 ratelimit_time = jiffies + (HZ/5);
7159 } else
7160 rc = 0;
7161
7162 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7163
7164 return rc;
7165 }
7166
7167 /**
7168 * ata_wait_register - wait until register value changes
7169 * @reg: IO-mapped register
7170 * @mask: Mask to apply to read register value
7171 * @val: Wait condition
7172 * @interval_msec: polling interval in milliseconds
7173 * @timeout_msec: timeout in milliseconds
7174 *
7175 * Waiting for some bits of register to change is a common
7176 * operation for ATA controllers. This function reads 32bit LE
7177 * IO-mapped register @reg and tests for the following condition.
7178 *
7179 * (*@reg & mask) != val
7180 *
7181 * If the condition is met, it returns; otherwise, the process is
7182 * repeated after @interval_msec until timeout.
7183 *
7184 * LOCKING:
7185 * Kernel thread context (may sleep)
7186 *
7187 * RETURNS:
7188 * The final register value.
7189 */
7190 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7191 unsigned long interval_msec,
7192 unsigned long timeout_msec)
7193 {
7194 unsigned long timeout;
7195 u32 tmp;
7196
7197 tmp = ioread32(reg);
7198
7199 /* Calculate timeout _after_ the first read to make sure
7200 * preceding writes reach the controller before starting to
7201 * eat away the timeout.
7202 */
7203 timeout = jiffies + (timeout_msec * HZ) / 1000;
7204
7205 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7206 msleep(interval_msec);
7207 tmp = ioread32(reg);
7208 }
7209
7210 return tmp;
7211 }
7212
7213 /*
7214 * Dummy port_ops
7215 */
7216 static void ata_dummy_noret(struct ata_port *ap) { }
7217 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7218 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7219
7220 static u8 ata_dummy_check_status(struct ata_port *ap)
7221 {
7222 return ATA_DRDY;
7223 }
7224
7225 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7226 {
7227 return AC_ERR_SYSTEM;
7228 }
7229
7230 const struct ata_port_operations ata_dummy_port_ops = {
7231 .check_status = ata_dummy_check_status,
7232 .check_altstatus = ata_dummy_check_status,
7233 .dev_select = ata_noop_dev_select,
7234 .qc_prep = ata_noop_qc_prep,
7235 .qc_issue = ata_dummy_qc_issue,
7236 .freeze = ata_dummy_noret,
7237 .thaw = ata_dummy_noret,
7238 .error_handler = ata_dummy_noret,
7239 .post_internal_cmd = ata_dummy_qc_noret,
7240 .irq_clear = ata_dummy_noret,
7241 .port_start = ata_dummy_ret0,
7242 .port_stop = ata_dummy_noret,
7243 };
7244
7245 const struct ata_port_info ata_dummy_port_info = {
7246 .port_ops = &ata_dummy_port_ops,
7247 };
7248
7249 /*
7250 * libata is essentially a library of internal helper functions for
7251 * low-level ATA host controller drivers. As such, the API/ABI is
7252 * likely to change as new drivers are added and updated.
7253 * Do not depend on ABI/API stability.
7254 */
7255
7256 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7257 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7258 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7259 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7260 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7261 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7262 EXPORT_SYMBOL_GPL(ata_std_ports);
7263 EXPORT_SYMBOL_GPL(ata_host_init);
7264 EXPORT_SYMBOL_GPL(ata_host_alloc);
7265 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7266 EXPORT_SYMBOL_GPL(ata_host_start);
7267 EXPORT_SYMBOL_GPL(ata_host_register);
7268 EXPORT_SYMBOL_GPL(ata_host_activate);
7269 EXPORT_SYMBOL_GPL(ata_host_detach);
7270 EXPORT_SYMBOL_GPL(ata_sg_init);
7271 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7272 EXPORT_SYMBOL_GPL(ata_hsm_move);
7273 EXPORT_SYMBOL_GPL(ata_qc_complete);
7274 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7275 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7276 EXPORT_SYMBOL_GPL(ata_tf_load);
7277 EXPORT_SYMBOL_GPL(ata_tf_read);
7278 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7279 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7280 EXPORT_SYMBOL_GPL(sata_print_link_status);
7281 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7282 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7283 EXPORT_SYMBOL_GPL(ata_check_status);
7284 EXPORT_SYMBOL_GPL(ata_altstatus);
7285 EXPORT_SYMBOL_GPL(ata_exec_command);
7286 EXPORT_SYMBOL_GPL(ata_port_start);
7287 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7288 EXPORT_SYMBOL_GPL(ata_interrupt);
7289 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7290 EXPORT_SYMBOL_GPL(ata_data_xfer);
7291 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7292 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7293 EXPORT_SYMBOL_GPL(ata_qc_prep);
7294 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7295 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7296 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7297 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7298 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7299 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7300 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7301 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7302 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7303 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7304 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7305 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7306 EXPORT_SYMBOL_GPL(ata_port_probe);
7307 EXPORT_SYMBOL_GPL(ata_dev_disable);
7308 EXPORT_SYMBOL_GPL(sata_set_spd);
7309 EXPORT_SYMBOL_GPL(sata_link_debounce);
7310 EXPORT_SYMBOL_GPL(sata_link_resume);
7311 EXPORT_SYMBOL_GPL(sata_phy_reset);
7312 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7313 EXPORT_SYMBOL_GPL(ata_bus_reset);
7314 EXPORT_SYMBOL_GPL(ata_std_prereset);
7315 EXPORT_SYMBOL_GPL(ata_std_softreset);
7316 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7317 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7318 EXPORT_SYMBOL_GPL(ata_std_postreset);
7319 EXPORT_SYMBOL_GPL(ata_dev_classify);
7320 EXPORT_SYMBOL_GPL(ata_dev_pair);
7321 EXPORT_SYMBOL_GPL(ata_port_disable);
7322 EXPORT_SYMBOL_GPL(ata_ratelimit);
7323 EXPORT_SYMBOL_GPL(ata_wait_register);
7324 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7325 EXPORT_SYMBOL_GPL(ata_wait_ready);
7326 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7327 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7328 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7329 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7330 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7331 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7332 EXPORT_SYMBOL_GPL(ata_host_intr);
7333 EXPORT_SYMBOL_GPL(sata_scr_valid);
7334 EXPORT_SYMBOL_GPL(sata_scr_read);
7335 EXPORT_SYMBOL_GPL(sata_scr_write);
7336 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7337 EXPORT_SYMBOL_GPL(ata_link_online);
7338 EXPORT_SYMBOL_GPL(ata_link_offline);
7339 #ifdef CONFIG_PM
7340 EXPORT_SYMBOL_GPL(ata_host_suspend);
7341 EXPORT_SYMBOL_GPL(ata_host_resume);
7342 #endif /* CONFIG_PM */
7343 EXPORT_SYMBOL_GPL(ata_id_string);
7344 EXPORT_SYMBOL_GPL(ata_id_c_string);
7345 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7346 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7347
7348 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7349 EXPORT_SYMBOL_GPL(ata_timing_compute);
7350 EXPORT_SYMBOL_GPL(ata_timing_merge);
7351
7352 #ifdef CONFIG_PCI
7353 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7354 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7355 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7356 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7357 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7358 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7359 #ifdef CONFIG_PM
7360 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7362 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7364 #endif /* CONFIG_PM */
7365 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7366 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7367 #endif /* CONFIG_PCI */
7368
7369 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7370 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7371 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7372 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7373 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7374
7375 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7376 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7377 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7378 EXPORT_SYMBOL_GPL(ata_port_desc);
7379 #ifdef CONFIG_PCI
7380 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7381 #endif /* CONFIG_PCI */
7382 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7383 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7384 EXPORT_SYMBOL_GPL(ata_link_abort);
7385 EXPORT_SYMBOL_GPL(ata_port_abort);
7386 EXPORT_SYMBOL_GPL(ata_port_freeze);
7387 EXPORT_SYMBOL_GPL(sata_async_notification);
7388 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7389 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7390 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7391 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7392 EXPORT_SYMBOL_GPL(ata_do_eh);
7393 EXPORT_SYMBOL_GPL(ata_irq_on);
7394 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7395
7396 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7397 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7398 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7399 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.222461 seconds and 5 git commands to generate.