libata-pmp-prep: implement qc_defer helpers
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
72 static void ata_dev_xfermask(struct ata_device *dev);
73 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int atapi_passthru16 = 1;
89 module_param(atapi_passthru16, int, 0444);
90 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
92 int libata_fua = 0;
93 module_param_named(fua, libata_fua, int, 0444);
94 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
96 static int ata_ignore_hpa = 0;
97 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
100 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
101 module_param(ata_probe_timeout, int, 0444);
102 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
103
104 int libata_noacpi = 1;
105 module_param_named(noacpi, libata_noacpi, int, 0444);
106 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
107
108 MODULE_AUTHOR("Jeff Garzik");
109 MODULE_DESCRIPTION("Library module for ATA devices");
110 MODULE_LICENSE("GPL");
111 MODULE_VERSION(DRV_VERSION);
112
113
114 /**
115 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
116 * @tf: Taskfile to convert
117 * @pmp: Port multiplier port
118 * @is_cmd: This FIS is for command
119 * @fis: Buffer into which data will output
120 *
121 * Converts a standard ATA taskfile to a Serial ATA
122 * FIS structure (Register - Host to Device).
123 *
124 * LOCKING:
125 * Inherited from caller.
126 */
127 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
128 {
129 fis[0] = 0x27; /* Register - Host to Device FIS */
130 fis[1] = pmp & 0xf; /* Port multiplier number*/
131 if (is_cmd)
132 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
133
134 fis[2] = tf->command;
135 fis[3] = tf->feature;
136
137 fis[4] = tf->lbal;
138 fis[5] = tf->lbam;
139 fis[6] = tf->lbah;
140 fis[7] = tf->device;
141
142 fis[8] = tf->hob_lbal;
143 fis[9] = tf->hob_lbam;
144 fis[10] = tf->hob_lbah;
145 fis[11] = tf->hob_feature;
146
147 fis[12] = tf->nsect;
148 fis[13] = tf->hob_nsect;
149 fis[14] = 0;
150 fis[15] = tf->ctl;
151
152 fis[16] = 0;
153 fis[17] = 0;
154 fis[18] = 0;
155 fis[19] = 0;
156 }
157
158 /**
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
162 *
163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
169 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
170 {
171 tf->command = fis[2]; /* status */
172 tf->feature = fis[3]; /* error */
173
174 tf->lbal = fis[4];
175 tf->lbam = fis[5];
176 tf->lbah = fis[6];
177 tf->device = fis[7];
178
179 tf->hob_lbal = fis[8];
180 tf->hob_lbam = fis[9];
181 tf->hob_lbah = fis[10];
182
183 tf->nsect = fis[12];
184 tf->hob_nsect = fis[13];
185 }
186
187 static const u8 ata_rw_cmds[] = {
188 /* pio multi */
189 ATA_CMD_READ_MULTI,
190 ATA_CMD_WRITE_MULTI,
191 ATA_CMD_READ_MULTI_EXT,
192 ATA_CMD_WRITE_MULTI_EXT,
193 0,
194 0,
195 0,
196 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 /* pio */
198 ATA_CMD_PIO_READ,
199 ATA_CMD_PIO_WRITE,
200 ATA_CMD_PIO_READ_EXT,
201 ATA_CMD_PIO_WRITE_EXT,
202 0,
203 0,
204 0,
205 0,
206 /* dma */
207 ATA_CMD_READ,
208 ATA_CMD_WRITE,
209 ATA_CMD_READ_EXT,
210 ATA_CMD_WRITE_EXT,
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_FUA_EXT
215 };
216
217 /**
218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
221 *
222 * Examine the device configuration and tf->flags to calculate
223 * the proper read/write commands and protocol to use.
224 *
225 * LOCKING:
226 * caller.
227 */
228 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
229 {
230 u8 cmd;
231
232 int index, fua, lba48, write;
233
234 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
235 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
236 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
237
238 if (dev->flags & ATA_DFLAG_PIO) {
239 tf->protocol = ATA_PROT_PIO;
240 index = dev->multi_count ? 0 : 8;
241 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
242 /* Unable to use DMA due to host limitation */
243 tf->protocol = ATA_PROT_PIO;
244 index = dev->multi_count ? 0 : 8;
245 } else {
246 tf->protocol = ATA_PROT_DMA;
247 index = 16;
248 }
249
250 cmd = ata_rw_cmds[index + fua + lba48 + write];
251 if (cmd) {
252 tf->command = cmd;
253 return 0;
254 }
255 return -1;
256 }
257
258 /**
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
262 *
263 * LOCKING:
264 * None.
265 *
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
269 *
270 * RETURNS:
271 * Block address read from @tf.
272 */
273 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
274 {
275 u64 block = 0;
276
277 if (tf->flags & ATA_TFLAG_LBA) {
278 if (tf->flags & ATA_TFLAG_LBA48) {
279 block |= (u64)tf->hob_lbah << 40;
280 block |= (u64)tf->hob_lbam << 32;
281 block |= tf->hob_lbal << 24;
282 } else
283 block |= (tf->device & 0xf) << 24;
284
285 block |= tf->lbah << 16;
286 block |= tf->lbam << 8;
287 block |= tf->lbal;
288 } else {
289 u32 cyl, head, sect;
290
291 cyl = tf->lbam | (tf->lbah << 8);
292 head = tf->device & 0xf;
293 sect = tf->lbal;
294
295 block = (cyl * dev->heads + head) * dev->sectors + sect;
296 }
297
298 return block;
299 }
300
301 /**
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
308 * @tag: tag
309 *
310 * LOCKING:
311 * None.
312 *
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
315 *
316 * RETURNS:
317 *
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
320 */
321 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
322 u64 block, u32 n_block, unsigned int tf_flags,
323 unsigned int tag)
324 {
325 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
326 tf->flags |= tf_flags;
327
328 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
329 /* yay, NCQ */
330 if (!lba_48_ok(block, n_block))
331 return -ERANGE;
332
333 tf->protocol = ATA_PROT_NCQ;
334 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
335
336 if (tf->flags & ATA_TFLAG_WRITE)
337 tf->command = ATA_CMD_FPDMA_WRITE;
338 else
339 tf->command = ATA_CMD_FPDMA_READ;
340
341 tf->nsect = tag << 3;
342 tf->hob_feature = (n_block >> 8) & 0xff;
343 tf->feature = n_block & 0xff;
344
345 tf->hob_lbah = (block >> 40) & 0xff;
346 tf->hob_lbam = (block >> 32) & 0xff;
347 tf->hob_lbal = (block >> 24) & 0xff;
348 tf->lbah = (block >> 16) & 0xff;
349 tf->lbam = (block >> 8) & 0xff;
350 tf->lbal = block & 0xff;
351
352 tf->device = 1 << 6;
353 if (tf->flags & ATA_TFLAG_FUA)
354 tf->device |= 1 << 7;
355 } else if (dev->flags & ATA_DFLAG_LBA) {
356 tf->flags |= ATA_TFLAG_LBA;
357
358 if (lba_28_ok(block, n_block)) {
359 /* use LBA28 */
360 tf->device |= (block >> 24) & 0xf;
361 } else if (lba_48_ok(block, n_block)) {
362 if (!(dev->flags & ATA_DFLAG_LBA48))
363 return -ERANGE;
364
365 /* use LBA48 */
366 tf->flags |= ATA_TFLAG_LBA48;
367
368 tf->hob_nsect = (n_block >> 8) & 0xff;
369
370 tf->hob_lbah = (block >> 40) & 0xff;
371 tf->hob_lbam = (block >> 32) & 0xff;
372 tf->hob_lbal = (block >> 24) & 0xff;
373 } else
374 /* request too large even for LBA48 */
375 return -ERANGE;
376
377 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
378 return -EINVAL;
379
380 tf->nsect = n_block & 0xff;
381
382 tf->lbah = (block >> 16) & 0xff;
383 tf->lbam = (block >> 8) & 0xff;
384 tf->lbal = block & 0xff;
385
386 tf->device |= ATA_LBA;
387 } else {
388 /* CHS */
389 u32 sect, head, cyl, track;
390
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block, n_block))
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 /* Convert LBA to CHS */
399 track = (u32)block / dev->sectors;
400 cyl = track / dev->heads;
401 head = track % dev->heads;
402 sect = (u32)block % dev->sectors + 1;
403
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32)block, track, cyl, head, sect);
406
407 /* Check whether the converted CHS can fit.
408 Cylinder: 0-65535
409 Head: 0-15
410 Sector: 1-255*/
411 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
412 return -ERANGE;
413
414 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 tf->lbal = sect;
416 tf->lbam = cyl;
417 tf->lbah = cyl >> 8;
418 tf->device |= head;
419 }
420
421 return 0;
422 }
423
424 /**
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
429 *
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
432 *
433 * LOCKING:
434 * None.
435 *
436 * RETURNS:
437 * Packed xfer_mask.
438 */
439 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
440 unsigned int mwdma_mask,
441 unsigned int udma_mask)
442 {
443 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
444 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
445 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446 }
447
448 /**
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
454 *
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
457 */
458 static void ata_unpack_xfermask(unsigned int xfer_mask,
459 unsigned int *pio_mask,
460 unsigned int *mwdma_mask,
461 unsigned int *udma_mask)
462 {
463 if (pio_mask)
464 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
465 if (mwdma_mask)
466 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
467 if (udma_mask)
468 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
469 }
470
471 static const struct ata_xfer_ent {
472 int shift, bits;
473 u8 base;
474 } ata_xfer_tbl[] = {
475 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
476 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
477 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
478 { -1, },
479 };
480
481 /**
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
484 *
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
487 *
488 * LOCKING:
489 * None.
490 *
491 * RETURNS:
492 * Matching XFER_* value, 0 if no match found.
493 */
494 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
495 {
496 int highbit = fls(xfer_mask) - 1;
497 const struct ata_xfer_ent *ent;
498
499 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
500 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
501 return ent->base + highbit - ent->shift;
502 return 0;
503 }
504
505 /**
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
508 *
509 * Return matching xfer_mask for @xfer_mode.
510 *
511 * LOCKING:
512 * None.
513 *
514 * RETURNS:
515 * Matching xfer_mask, 0 if no match found.
516 */
517 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
518 {
519 const struct ata_xfer_ent *ent;
520
521 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
522 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
523 return 1 << (ent->shift + xfer_mode - ent->base);
524 return 0;
525 }
526
527 /**
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
530 *
531 * Return matching xfer_shift for @xfer_mode.
532 *
533 * LOCKING:
534 * None.
535 *
536 * RETURNS:
537 * Matching xfer_shift, -1 if no match found.
538 */
539 static int ata_xfer_mode2shift(unsigned int xfer_mode)
540 {
541 const struct ata_xfer_ent *ent;
542
543 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
544 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 return ent->shift;
546 return -1;
547 }
548
549 /**
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
552 *
553 * Determine string which represents the highest speed
554 * (highest bit in @modemask).
555 *
556 * LOCKING:
557 * None.
558 *
559 * RETURNS:
560 * Constant C string representing highest speed listed in
561 * @mode_mask, or the constant C string "<n/a>".
562 */
563 static const char *ata_mode_string(unsigned int xfer_mask)
564 {
565 static const char * const xfer_mode_str[] = {
566 "PIO0",
567 "PIO1",
568 "PIO2",
569 "PIO3",
570 "PIO4",
571 "PIO5",
572 "PIO6",
573 "MWDMA0",
574 "MWDMA1",
575 "MWDMA2",
576 "MWDMA3",
577 "MWDMA4",
578 "UDMA/16",
579 "UDMA/25",
580 "UDMA/33",
581 "UDMA/44",
582 "UDMA/66",
583 "UDMA/100",
584 "UDMA/133",
585 "UDMA7",
586 };
587 int highbit;
588
589 highbit = fls(xfer_mask) - 1;
590 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
591 return xfer_mode_str[highbit];
592 return "<n/a>";
593 }
594
595 static const char *sata_spd_string(unsigned int spd)
596 {
597 static const char * const spd_str[] = {
598 "1.5 Gbps",
599 "3.0 Gbps",
600 };
601
602 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
603 return "<unknown>";
604 return spd_str[spd - 1];
605 }
606
607 void ata_dev_disable(struct ata_device *dev)
608 {
609 if (ata_dev_enabled(dev)) {
610 if (ata_msg_drv(dev->link->ap))
611 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
612 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
613 ATA_DNXFER_QUIET);
614 dev->class++;
615 }
616 }
617
618 /**
619 * ata_devchk - PATA device presence detection
620 * @ap: ATA channel to examine
621 * @device: Device to examine (starting at zero)
622 *
623 * This technique was originally described in
624 * Hale Landis's ATADRVR (www.ata-atapi.com), and
625 * later found its way into the ATA/ATAPI spec.
626 *
627 * Write a pattern to the ATA shadow registers,
628 * and if a device is present, it will respond by
629 * correctly storing and echoing back the
630 * ATA shadow register contents.
631 *
632 * LOCKING:
633 * caller.
634 */
635
636 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
637 {
638 struct ata_ioports *ioaddr = &ap->ioaddr;
639 u8 nsect, lbal;
640
641 ap->ops->dev_select(ap, device);
642
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
645
646 iowrite8(0xaa, ioaddr->nsect_addr);
647 iowrite8(0x55, ioaddr->lbal_addr);
648
649 iowrite8(0x55, ioaddr->nsect_addr);
650 iowrite8(0xaa, ioaddr->lbal_addr);
651
652 nsect = ioread8(ioaddr->nsect_addr);
653 lbal = ioread8(ioaddr->lbal_addr);
654
655 if ((nsect == 0x55) && (lbal == 0xaa))
656 return 1; /* we found a device */
657
658 return 0; /* nothing found */
659 }
660
661 /**
662 * ata_dev_classify - determine device type based on ATA-spec signature
663 * @tf: ATA taskfile register set for device to be identified
664 *
665 * Determine from taskfile register contents whether a device is
666 * ATA or ATAPI, as per "Signature and persistence" section
667 * of ATA/PI spec (volume 1, sect 5.14).
668 *
669 * LOCKING:
670 * None.
671 *
672 * RETURNS:
673 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
674 * the event of failure.
675 */
676
677 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
678 {
679 /* Apple's open source Darwin code hints that some devices only
680 * put a proper signature into the LBA mid/high registers,
681 * So, we only check those. It's sufficient for uniqueness.
682 */
683
684 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
685 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
686 DPRINTK("found ATA device by sig\n");
687 return ATA_DEV_ATA;
688 }
689
690 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
691 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
692 DPRINTK("found ATAPI device by sig\n");
693 return ATA_DEV_ATAPI;
694 }
695
696 DPRINTK("unknown device\n");
697 return ATA_DEV_UNKNOWN;
698 }
699
700 /**
701 * ata_dev_try_classify - Parse returned ATA device signature
702 * @dev: ATA device to classify (starting at zero)
703 * @present: device seems present
704 * @r_err: Value of error register on completion
705 *
706 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
707 * an ATA/ATAPI-defined set of values is placed in the ATA
708 * shadow registers, indicating the results of device detection
709 * and diagnostics.
710 *
711 * Select the ATA device, and read the values from the ATA shadow
712 * registers. Then parse according to the Error register value,
713 * and the spec-defined values examined by ata_dev_classify().
714 *
715 * LOCKING:
716 * caller.
717 *
718 * RETURNS:
719 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
720 */
721 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
722 u8 *r_err)
723 {
724 struct ata_port *ap = dev->link->ap;
725 struct ata_taskfile tf;
726 unsigned int class;
727 u8 err;
728
729 ap->ops->dev_select(ap, dev->devno);
730
731 memset(&tf, 0, sizeof(tf));
732
733 ap->ops->tf_read(ap, &tf);
734 err = tf.feature;
735 if (r_err)
736 *r_err = err;
737
738 /* see if device passed diags: if master then continue and warn later */
739 if (err == 0 && dev->devno == 0)
740 /* diagnostic fail : do nothing _YET_ */
741 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
742 else if (err == 1)
743 /* do nothing */ ;
744 else if ((dev->devno == 0) && (err == 0x81))
745 /* do nothing */ ;
746 else
747 return ATA_DEV_NONE;
748
749 /* determine if device is ATA or ATAPI */
750 class = ata_dev_classify(&tf);
751
752 if (class == ATA_DEV_UNKNOWN) {
753 /* If the device failed diagnostic, it's likely to
754 * have reported incorrect device signature too.
755 * Assume ATA device if the device seems present but
756 * device signature is invalid with diagnostic
757 * failure.
758 */
759 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
760 class = ATA_DEV_ATA;
761 else
762 class = ATA_DEV_NONE;
763 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
764 class = ATA_DEV_NONE;
765
766 return class;
767 }
768
769 /**
770 * ata_id_string - Convert IDENTIFY DEVICE page into string
771 * @id: IDENTIFY DEVICE results we will examine
772 * @s: string into which data is output
773 * @ofs: offset into identify device page
774 * @len: length of string to return. must be an even number.
775 *
776 * The strings in the IDENTIFY DEVICE page are broken up into
777 * 16-bit chunks. Run through the string, and output each
778 * 8-bit chunk linearly, regardless of platform.
779 *
780 * LOCKING:
781 * caller.
782 */
783
784 void ata_id_string(const u16 *id, unsigned char *s,
785 unsigned int ofs, unsigned int len)
786 {
787 unsigned int c;
788
789 while (len > 0) {
790 c = id[ofs] >> 8;
791 *s = c;
792 s++;
793
794 c = id[ofs] & 0xff;
795 *s = c;
796 s++;
797
798 ofs++;
799 len -= 2;
800 }
801 }
802
803 /**
804 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
805 * @id: IDENTIFY DEVICE results we will examine
806 * @s: string into which data is output
807 * @ofs: offset into identify device page
808 * @len: length of string to return. must be an odd number.
809 *
810 * This function is identical to ata_id_string except that it
811 * trims trailing spaces and terminates the resulting string with
812 * null. @len must be actual maximum length (even number) + 1.
813 *
814 * LOCKING:
815 * caller.
816 */
817 void ata_id_c_string(const u16 *id, unsigned char *s,
818 unsigned int ofs, unsigned int len)
819 {
820 unsigned char *p;
821
822 WARN_ON(!(len & 1));
823
824 ata_id_string(id, s, ofs, len - 1);
825
826 p = s + strnlen(s, len - 1);
827 while (p > s && p[-1] == ' ')
828 p--;
829 *p = '\0';
830 }
831
832 static u64 ata_id_n_sectors(const u16 *id)
833 {
834 if (ata_id_has_lba(id)) {
835 if (ata_id_has_lba48(id))
836 return ata_id_u64(id, 100);
837 else
838 return ata_id_u32(id, 60);
839 } else {
840 if (ata_id_current_chs_valid(id))
841 return ata_id_u32(id, 57);
842 else
843 return id[1] * id[3] * id[6];
844 }
845 }
846
847 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
848 {
849 u64 sectors = 0;
850
851 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
852 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
853 sectors |= (tf->hob_lbal & 0xff) << 24;
854 sectors |= (tf->lbah & 0xff) << 16;
855 sectors |= (tf->lbam & 0xff) << 8;
856 sectors |= (tf->lbal & 0xff);
857
858 return ++sectors;
859 }
860
861 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
862 {
863 u64 sectors = 0;
864
865 sectors |= (tf->device & 0x0f) << 24;
866 sectors |= (tf->lbah & 0xff) << 16;
867 sectors |= (tf->lbam & 0xff) << 8;
868 sectors |= (tf->lbal & 0xff);
869
870 return ++sectors;
871 }
872
873 /**
874 * ata_read_native_max_address - Read native max address
875 * @dev: target device
876 * @max_sectors: out parameter for the result native max address
877 *
878 * Perform an LBA48 or LBA28 native size query upon the device in
879 * question.
880 *
881 * RETURNS:
882 * 0 on success, -EACCES if command is aborted by the drive.
883 * -EIO on other errors.
884 */
885 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
886 {
887 unsigned int err_mask;
888 struct ata_taskfile tf;
889 int lba48 = ata_id_has_lba48(dev->id);
890
891 ata_tf_init(dev, &tf);
892
893 /* always clear all address registers */
894 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
895
896 if (lba48) {
897 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
898 tf.flags |= ATA_TFLAG_LBA48;
899 } else
900 tf.command = ATA_CMD_READ_NATIVE_MAX;
901
902 tf.protocol |= ATA_PROT_NODATA;
903 tf.device |= ATA_LBA;
904
905 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
906 if (err_mask) {
907 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
908 "max address (err_mask=0x%x)\n", err_mask);
909 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
910 return -EACCES;
911 return -EIO;
912 }
913
914 if (lba48)
915 *max_sectors = ata_tf_to_lba48(&tf);
916 else
917 *max_sectors = ata_tf_to_lba(&tf);
918
919 return 0;
920 }
921
922 /**
923 * ata_set_max_sectors - Set max sectors
924 * @dev: target device
925 * @new_sectors: new max sectors value to set for the device
926 *
927 * Set max sectors of @dev to @new_sectors.
928 *
929 * RETURNS:
930 * 0 on success, -EACCES if command is aborted or denied (due to
931 * previous non-volatile SET_MAX) by the drive. -EIO on other
932 * errors.
933 */
934 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
935 {
936 unsigned int err_mask;
937 struct ata_taskfile tf;
938 int lba48 = ata_id_has_lba48(dev->id);
939
940 new_sectors--;
941
942 ata_tf_init(dev, &tf);
943
944 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
945
946 if (lba48) {
947 tf.command = ATA_CMD_SET_MAX_EXT;
948 tf.flags |= ATA_TFLAG_LBA48;
949
950 tf.hob_lbal = (new_sectors >> 24) & 0xff;
951 tf.hob_lbam = (new_sectors >> 32) & 0xff;
952 tf.hob_lbah = (new_sectors >> 40) & 0xff;
953 } else
954 tf.command = ATA_CMD_SET_MAX;
955
956 tf.protocol |= ATA_PROT_NODATA;
957 tf.device |= ATA_LBA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962
963 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
964 if (err_mask) {
965 ata_dev_printk(dev, KERN_WARNING, "failed to set "
966 "max address (err_mask=0x%x)\n", err_mask);
967 if (err_mask == AC_ERR_DEV &&
968 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
969 return -EACCES;
970 return -EIO;
971 }
972
973 return 0;
974 }
975
976 /**
977 * ata_hpa_resize - Resize a device with an HPA set
978 * @dev: Device to resize
979 *
980 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
981 * it if required to the full size of the media. The caller must check
982 * the drive has the HPA feature set enabled.
983 *
984 * RETURNS:
985 * 0 on success, -errno on failure.
986 */
987 static int ata_hpa_resize(struct ata_device *dev)
988 {
989 struct ata_eh_context *ehc = &dev->link->eh_context;
990 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
991 u64 sectors = ata_id_n_sectors(dev->id);
992 u64 native_sectors;
993 int rc;
994
995 /* do we need to do it? */
996 if (dev->class != ATA_DEV_ATA ||
997 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
998 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
999 return 0;
1000
1001 /* read native max address */
1002 rc = ata_read_native_max_address(dev, &native_sectors);
1003 if (rc) {
1004 /* If HPA isn't going to be unlocked, skip HPA
1005 * resizing from the next try.
1006 */
1007 if (!ata_ignore_hpa) {
1008 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1009 "broken, will skip HPA handling\n");
1010 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1011
1012 /* we can continue if device aborted the command */
1013 if (rc == -EACCES)
1014 rc = 0;
1015 }
1016
1017 return rc;
1018 }
1019
1020 /* nothing to do? */
1021 if (native_sectors <= sectors || !ata_ignore_hpa) {
1022 if (!print_info || native_sectors == sectors)
1023 return 0;
1024
1025 if (native_sectors > sectors)
1026 ata_dev_printk(dev, KERN_INFO,
1027 "HPA detected: current %llu, native %llu\n",
1028 (unsigned long long)sectors,
1029 (unsigned long long)native_sectors);
1030 else if (native_sectors < sectors)
1031 ata_dev_printk(dev, KERN_WARNING,
1032 "native sectors (%llu) is smaller than "
1033 "sectors (%llu)\n",
1034 (unsigned long long)native_sectors,
1035 (unsigned long long)sectors);
1036 return 0;
1037 }
1038
1039 /* let's unlock HPA */
1040 rc = ata_set_max_sectors(dev, native_sectors);
1041 if (rc == -EACCES) {
1042 /* if device aborted the command, skip HPA resizing */
1043 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1044 "(%llu -> %llu), skipping HPA handling\n",
1045 (unsigned long long)sectors,
1046 (unsigned long long)native_sectors);
1047 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1048 return 0;
1049 } else if (rc)
1050 return rc;
1051
1052 /* re-read IDENTIFY data */
1053 rc = ata_dev_reread_id(dev, 0);
1054 if (rc) {
1055 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1056 "data after HPA resizing\n");
1057 return rc;
1058 }
1059
1060 if (print_info) {
1061 u64 new_sectors = ata_id_n_sectors(dev->id);
1062 ata_dev_printk(dev, KERN_INFO,
1063 "HPA unlocked: %llu -> %llu, native %llu\n",
1064 (unsigned long long)sectors,
1065 (unsigned long long)new_sectors,
1066 (unsigned long long)native_sectors);
1067 }
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * ata_id_to_dma_mode - Identify DMA mode from id block
1074 * @dev: device to identify
1075 * @unknown: mode to assume if we cannot tell
1076 *
1077 * Set up the timing values for the device based upon the identify
1078 * reported values for the DMA mode. This function is used by drivers
1079 * which rely upon firmware configured modes, but wish to report the
1080 * mode correctly when possible.
1081 *
1082 * In addition we emit similarly formatted messages to the default
1083 * ata_dev_set_mode handler, in order to provide consistency of
1084 * presentation.
1085 */
1086
1087 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1088 {
1089 unsigned int mask;
1090 u8 mode;
1091
1092 /* Pack the DMA modes */
1093 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1094 if (dev->id[53] & 0x04)
1095 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1096
1097 /* Select the mode in use */
1098 mode = ata_xfer_mask2mode(mask);
1099
1100 if (mode != 0) {
1101 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1102 ata_mode_string(mask));
1103 } else {
1104 /* SWDMA perhaps ? */
1105 mode = unknown;
1106 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1107 }
1108
1109 /* Configure the device reporting */
1110 dev->xfer_mode = mode;
1111 dev->xfer_shift = ata_xfer_mode2shift(mode);
1112 }
1113
1114 /**
1115 * ata_noop_dev_select - Select device 0/1 on ATA bus
1116 * @ap: ATA channel to manipulate
1117 * @device: ATA device (numbered from zero) to select
1118 *
1119 * This function performs no actual function.
1120 *
1121 * May be used as the dev_select() entry in ata_port_operations.
1122 *
1123 * LOCKING:
1124 * caller.
1125 */
1126 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1127 {
1128 }
1129
1130
1131 /**
1132 * ata_std_dev_select - Select device 0/1 on ATA bus
1133 * @ap: ATA channel to manipulate
1134 * @device: ATA device (numbered from zero) to select
1135 *
1136 * Use the method defined in the ATA specification to
1137 * make either device 0, or device 1, active on the
1138 * ATA channel. Works with both PIO and MMIO.
1139 *
1140 * May be used as the dev_select() entry in ata_port_operations.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145
1146 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1147 {
1148 u8 tmp;
1149
1150 if (device == 0)
1151 tmp = ATA_DEVICE_OBS;
1152 else
1153 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1154
1155 iowrite8(tmp, ap->ioaddr.device_addr);
1156 ata_pause(ap); /* needed; also flushes, for mmio */
1157 }
1158
1159 /**
1160 * ata_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 * @wait: non-zero to wait for Status register BSY bit to clear
1164 * @can_sleep: non-zero if context allows sleeping
1165 *
1166 * Use the method defined in the ATA specification to
1167 * make either device 0, or device 1, active on the
1168 * ATA channel.
1169 *
1170 * This is a high-level version of ata_std_dev_select(),
1171 * which additionally provides the services of inserting
1172 * the proper pauses and status polling, where needed.
1173 *
1174 * LOCKING:
1175 * caller.
1176 */
1177
1178 void ata_dev_select(struct ata_port *ap, unsigned int device,
1179 unsigned int wait, unsigned int can_sleep)
1180 {
1181 if (ata_msg_probe(ap))
1182 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1183 "device %u, wait %u\n", device, wait);
1184
1185 if (wait)
1186 ata_wait_idle(ap);
1187
1188 ap->ops->dev_select(ap, device);
1189
1190 if (wait) {
1191 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1192 msleep(150);
1193 ata_wait_idle(ap);
1194 }
1195 }
1196
1197 /**
1198 * ata_dump_id - IDENTIFY DEVICE info debugging output
1199 * @id: IDENTIFY DEVICE page to dump
1200 *
1201 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1202 * page.
1203 *
1204 * LOCKING:
1205 * caller.
1206 */
1207
1208 static inline void ata_dump_id(const u16 *id)
1209 {
1210 DPRINTK("49==0x%04x "
1211 "53==0x%04x "
1212 "63==0x%04x "
1213 "64==0x%04x "
1214 "75==0x%04x \n",
1215 id[49],
1216 id[53],
1217 id[63],
1218 id[64],
1219 id[75]);
1220 DPRINTK("80==0x%04x "
1221 "81==0x%04x "
1222 "82==0x%04x "
1223 "83==0x%04x "
1224 "84==0x%04x \n",
1225 id[80],
1226 id[81],
1227 id[82],
1228 id[83],
1229 id[84]);
1230 DPRINTK("88==0x%04x "
1231 "93==0x%04x\n",
1232 id[88],
1233 id[93]);
1234 }
1235
1236 /**
1237 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1238 * @id: IDENTIFY data to compute xfer mask from
1239 *
1240 * Compute the xfermask for this device. This is not as trivial
1241 * as it seems if we must consider early devices correctly.
1242 *
1243 * FIXME: pre IDE drive timing (do we care ?).
1244 *
1245 * LOCKING:
1246 * None.
1247 *
1248 * RETURNS:
1249 * Computed xfermask
1250 */
1251 static unsigned int ata_id_xfermask(const u16 *id)
1252 {
1253 unsigned int pio_mask, mwdma_mask, udma_mask;
1254
1255 /* Usual case. Word 53 indicates word 64 is valid */
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1257 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1258 pio_mask <<= 3;
1259 pio_mask |= 0x7;
1260 } else {
1261 /* If word 64 isn't valid then Word 51 high byte holds
1262 * the PIO timing number for the maximum. Turn it into
1263 * a mask.
1264 */
1265 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1266 if (mode < 5) /* Valid PIO range */
1267 pio_mask = (2 << mode) - 1;
1268 else
1269 pio_mask = 1;
1270
1271 /* But wait.. there's more. Design your standards by
1272 * committee and you too can get a free iordy field to
1273 * process. However its the speeds not the modes that
1274 * are supported... Note drivers using the timing API
1275 * will get this right anyway
1276 */
1277 }
1278
1279 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1280
1281 if (ata_id_is_cfa(id)) {
1282 /*
1283 * Process compact flash extended modes
1284 */
1285 int pio = id[163] & 0x7;
1286 int dma = (id[163] >> 3) & 7;
1287
1288 if (pio)
1289 pio_mask |= (1 << 5);
1290 if (pio > 1)
1291 pio_mask |= (1 << 6);
1292 if (dma)
1293 mwdma_mask |= (1 << 3);
1294 if (dma > 1)
1295 mwdma_mask |= (1 << 4);
1296 }
1297
1298 udma_mask = 0;
1299 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1300 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1301
1302 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1303 }
1304
1305 /**
1306 * ata_port_queue_task - Queue port_task
1307 * @ap: The ata_port to queue port_task for
1308 * @fn: workqueue function to be scheduled
1309 * @data: data for @fn to use
1310 * @delay: delay time for workqueue function
1311 *
1312 * Schedule @fn(@data) for execution after @delay jiffies using
1313 * port_task. There is one port_task per port and it's the
1314 * user(low level driver)'s responsibility to make sure that only
1315 * one task is active at any given time.
1316 *
1317 * libata core layer takes care of synchronization between
1318 * port_task and EH. ata_port_queue_task() may be ignored for EH
1319 * synchronization.
1320 *
1321 * LOCKING:
1322 * Inherited from caller.
1323 */
1324 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1325 unsigned long delay)
1326 {
1327 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1328 ap->port_task_data = data;
1329
1330 /* may fail if ata_port_flush_task() in progress */
1331 queue_delayed_work(ata_wq, &ap->port_task, delay);
1332 }
1333
1334 /**
1335 * ata_port_flush_task - Flush port_task
1336 * @ap: The ata_port to flush port_task for
1337 *
1338 * After this function completes, port_task is guranteed not to
1339 * be running or scheduled.
1340 *
1341 * LOCKING:
1342 * Kernel thread context (may sleep)
1343 */
1344 void ata_port_flush_task(struct ata_port *ap)
1345 {
1346 DPRINTK("ENTER\n");
1347
1348 cancel_rearming_delayed_work(&ap->port_task);
1349
1350 if (ata_msg_ctl(ap))
1351 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1352 }
1353
1354 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1355 {
1356 struct completion *waiting = qc->private_data;
1357
1358 complete(waiting);
1359 }
1360
1361 /**
1362 * ata_exec_internal_sg - execute libata internal command
1363 * @dev: Device to which the command is sent
1364 * @tf: Taskfile registers for the command and the result
1365 * @cdb: CDB for packet command
1366 * @dma_dir: Data tranfer direction of the command
1367 * @sg: sg list for the data buffer of the command
1368 * @n_elem: Number of sg entries
1369 *
1370 * Executes libata internal command with timeout. @tf contains
1371 * command on entry and result on return. Timeout and error
1372 * conditions are reported via return value. No recovery action
1373 * is taken after a command times out. It's caller's duty to
1374 * clean up after timeout.
1375 *
1376 * LOCKING:
1377 * None. Should be called with kernel context, might sleep.
1378 *
1379 * RETURNS:
1380 * Zero on success, AC_ERR_* mask on failure
1381 */
1382 unsigned ata_exec_internal_sg(struct ata_device *dev,
1383 struct ata_taskfile *tf, const u8 *cdb,
1384 int dma_dir, struct scatterlist *sg,
1385 unsigned int n_elem)
1386 {
1387 struct ata_link *link = dev->link;
1388 struct ata_port *ap = link->ap;
1389 u8 command = tf->command;
1390 struct ata_queued_cmd *qc;
1391 unsigned int tag, preempted_tag;
1392 u32 preempted_sactive, preempted_qc_active;
1393 int preempted_nr_active_links;
1394 DECLARE_COMPLETION_ONSTACK(wait);
1395 unsigned long flags;
1396 unsigned int err_mask;
1397 int rc;
1398
1399 spin_lock_irqsave(ap->lock, flags);
1400
1401 /* no internal command while frozen */
1402 if (ap->pflags & ATA_PFLAG_FROZEN) {
1403 spin_unlock_irqrestore(ap->lock, flags);
1404 return AC_ERR_SYSTEM;
1405 }
1406
1407 /* initialize internal qc */
1408
1409 /* XXX: Tag 0 is used for drivers with legacy EH as some
1410 * drivers choke if any other tag is given. This breaks
1411 * ata_tag_internal() test for those drivers. Don't use new
1412 * EH stuff without converting to it.
1413 */
1414 if (ap->ops->error_handler)
1415 tag = ATA_TAG_INTERNAL;
1416 else
1417 tag = 0;
1418
1419 if (test_and_set_bit(tag, &ap->qc_allocated))
1420 BUG();
1421 qc = __ata_qc_from_tag(ap, tag);
1422
1423 qc->tag = tag;
1424 qc->scsicmd = NULL;
1425 qc->ap = ap;
1426 qc->dev = dev;
1427 ata_qc_reinit(qc);
1428
1429 preempted_tag = link->active_tag;
1430 preempted_sactive = link->sactive;
1431 preempted_qc_active = ap->qc_active;
1432 preempted_nr_active_links = ap->nr_active_links;
1433 link->active_tag = ATA_TAG_POISON;
1434 link->sactive = 0;
1435 ap->qc_active = 0;
1436 ap->nr_active_links = 0;
1437
1438 /* prepare & issue qc */
1439 qc->tf = *tf;
1440 if (cdb)
1441 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1442 qc->flags |= ATA_QCFLAG_RESULT_TF;
1443 qc->dma_dir = dma_dir;
1444 if (dma_dir != DMA_NONE) {
1445 unsigned int i, buflen = 0;
1446
1447 for (i = 0; i < n_elem; i++)
1448 buflen += sg[i].length;
1449
1450 ata_sg_init(qc, sg, n_elem);
1451 qc->nbytes = buflen;
1452 }
1453
1454 qc->private_data = &wait;
1455 qc->complete_fn = ata_qc_complete_internal;
1456
1457 ata_qc_issue(qc);
1458
1459 spin_unlock_irqrestore(ap->lock, flags);
1460
1461 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1462
1463 ata_port_flush_task(ap);
1464
1465 if (!rc) {
1466 spin_lock_irqsave(ap->lock, flags);
1467
1468 /* We're racing with irq here. If we lose, the
1469 * following test prevents us from completing the qc
1470 * twice. If we win, the port is frozen and will be
1471 * cleaned up by ->post_internal_cmd().
1472 */
1473 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1474 qc->err_mask |= AC_ERR_TIMEOUT;
1475
1476 if (ap->ops->error_handler)
1477 ata_port_freeze(ap);
1478 else
1479 ata_qc_complete(qc);
1480
1481 if (ata_msg_warn(ap))
1482 ata_dev_printk(dev, KERN_WARNING,
1483 "qc timeout (cmd 0x%x)\n", command);
1484 }
1485
1486 spin_unlock_irqrestore(ap->lock, flags);
1487 }
1488
1489 /* do post_internal_cmd */
1490 if (ap->ops->post_internal_cmd)
1491 ap->ops->post_internal_cmd(qc);
1492
1493 /* perform minimal error analysis */
1494 if (qc->flags & ATA_QCFLAG_FAILED) {
1495 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1496 qc->err_mask |= AC_ERR_DEV;
1497
1498 if (!qc->err_mask)
1499 qc->err_mask |= AC_ERR_OTHER;
1500
1501 if (qc->err_mask & ~AC_ERR_OTHER)
1502 qc->err_mask &= ~AC_ERR_OTHER;
1503 }
1504
1505 /* finish up */
1506 spin_lock_irqsave(ap->lock, flags);
1507
1508 *tf = qc->result_tf;
1509 err_mask = qc->err_mask;
1510
1511 ata_qc_free(qc);
1512 link->active_tag = preempted_tag;
1513 link->sactive = preempted_sactive;
1514 ap->qc_active = preempted_qc_active;
1515 ap->nr_active_links = preempted_nr_active_links;
1516
1517 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1518 * Until those drivers are fixed, we detect the condition
1519 * here, fail the command with AC_ERR_SYSTEM and reenable the
1520 * port.
1521 *
1522 * Note that this doesn't change any behavior as internal
1523 * command failure results in disabling the device in the
1524 * higher layer for LLDDs without new reset/EH callbacks.
1525 *
1526 * Kill the following code as soon as those drivers are fixed.
1527 */
1528 if (ap->flags & ATA_FLAG_DISABLED) {
1529 err_mask |= AC_ERR_SYSTEM;
1530 ata_port_probe(ap);
1531 }
1532
1533 spin_unlock_irqrestore(ap->lock, flags);
1534
1535 return err_mask;
1536 }
1537
1538 /**
1539 * ata_exec_internal - execute libata internal command
1540 * @dev: Device to which the command is sent
1541 * @tf: Taskfile registers for the command and the result
1542 * @cdb: CDB for packet command
1543 * @dma_dir: Data tranfer direction of the command
1544 * @buf: Data buffer of the command
1545 * @buflen: Length of data buffer
1546 *
1547 * Wrapper around ata_exec_internal_sg() which takes simple
1548 * buffer instead of sg list.
1549 *
1550 * LOCKING:
1551 * None. Should be called with kernel context, might sleep.
1552 *
1553 * RETURNS:
1554 * Zero on success, AC_ERR_* mask on failure
1555 */
1556 unsigned ata_exec_internal(struct ata_device *dev,
1557 struct ata_taskfile *tf, const u8 *cdb,
1558 int dma_dir, void *buf, unsigned int buflen)
1559 {
1560 struct scatterlist *psg = NULL, sg;
1561 unsigned int n_elem = 0;
1562
1563 if (dma_dir != DMA_NONE) {
1564 WARN_ON(!buf);
1565 sg_init_one(&sg, buf, buflen);
1566 psg = &sg;
1567 n_elem++;
1568 }
1569
1570 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1571 }
1572
1573 /**
1574 * ata_do_simple_cmd - execute simple internal command
1575 * @dev: Device to which the command is sent
1576 * @cmd: Opcode to execute
1577 *
1578 * Execute a 'simple' command, that only consists of the opcode
1579 * 'cmd' itself, without filling any other registers
1580 *
1581 * LOCKING:
1582 * Kernel thread context (may sleep).
1583 *
1584 * RETURNS:
1585 * Zero on success, AC_ERR_* mask on failure
1586 */
1587 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1588 {
1589 struct ata_taskfile tf;
1590
1591 ata_tf_init(dev, &tf);
1592
1593 tf.command = cmd;
1594 tf.flags |= ATA_TFLAG_DEVICE;
1595 tf.protocol = ATA_PROT_NODATA;
1596
1597 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1598 }
1599
1600 /**
1601 * ata_pio_need_iordy - check if iordy needed
1602 * @adev: ATA device
1603 *
1604 * Check if the current speed of the device requires IORDY. Used
1605 * by various controllers for chip configuration.
1606 */
1607
1608 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1609 {
1610 /* Controller doesn't support IORDY. Probably a pointless check
1611 as the caller should know this */
1612 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1613 return 0;
1614 /* PIO3 and higher it is mandatory */
1615 if (adev->pio_mode > XFER_PIO_2)
1616 return 1;
1617 /* We turn it on when possible */
1618 if (ata_id_has_iordy(adev->id))
1619 return 1;
1620 return 0;
1621 }
1622
1623 /**
1624 * ata_pio_mask_no_iordy - Return the non IORDY mask
1625 * @adev: ATA device
1626 *
1627 * Compute the highest mode possible if we are not using iordy. Return
1628 * -1 if no iordy mode is available.
1629 */
1630
1631 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1632 {
1633 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1634 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1635 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1636 /* Is the speed faster than the drive allows non IORDY ? */
1637 if (pio) {
1638 /* This is cycle times not frequency - watch the logic! */
1639 if (pio > 240) /* PIO2 is 240nS per cycle */
1640 return 3 << ATA_SHIFT_PIO;
1641 return 7 << ATA_SHIFT_PIO;
1642 }
1643 }
1644 return 3 << ATA_SHIFT_PIO;
1645 }
1646
1647 /**
1648 * ata_dev_read_id - Read ID data from the specified device
1649 * @dev: target device
1650 * @p_class: pointer to class of the target device (may be changed)
1651 * @flags: ATA_READID_* flags
1652 * @id: buffer to read IDENTIFY data into
1653 *
1654 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1655 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1656 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1657 * for pre-ATA4 drives.
1658 *
1659 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1660 * now we abort if we hit that case.
1661 *
1662 * LOCKING:
1663 * Kernel thread context (may sleep)
1664 *
1665 * RETURNS:
1666 * 0 on success, -errno otherwise.
1667 */
1668 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1669 unsigned int flags, u16 *id)
1670 {
1671 struct ata_port *ap = dev->link->ap;
1672 unsigned int class = *p_class;
1673 struct ata_taskfile tf;
1674 unsigned int err_mask = 0;
1675 const char *reason;
1676 int may_fallback = 1, tried_spinup = 0;
1677 int rc;
1678
1679 if (ata_msg_ctl(ap))
1680 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1681
1682 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1683 retry:
1684 ata_tf_init(dev, &tf);
1685
1686 switch (class) {
1687 case ATA_DEV_ATA:
1688 tf.command = ATA_CMD_ID_ATA;
1689 break;
1690 case ATA_DEV_ATAPI:
1691 tf.command = ATA_CMD_ID_ATAPI;
1692 break;
1693 default:
1694 rc = -ENODEV;
1695 reason = "unsupported class";
1696 goto err_out;
1697 }
1698
1699 tf.protocol = ATA_PROT_PIO;
1700
1701 /* Some devices choke if TF registers contain garbage. Make
1702 * sure those are properly initialized.
1703 */
1704 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1705
1706 /* Device presence detection is unreliable on some
1707 * controllers. Always poll IDENTIFY if available.
1708 */
1709 tf.flags |= ATA_TFLAG_POLLING;
1710
1711 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1712 id, sizeof(id[0]) * ATA_ID_WORDS);
1713 if (err_mask) {
1714 if (err_mask & AC_ERR_NODEV_HINT) {
1715 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1716 ap->print_id, dev->devno);
1717 return -ENOENT;
1718 }
1719
1720 /* Device or controller might have reported the wrong
1721 * device class. Give a shot at the other IDENTIFY if
1722 * the current one is aborted by the device.
1723 */
1724 if (may_fallback &&
1725 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1726 may_fallback = 0;
1727
1728 if (class == ATA_DEV_ATA)
1729 class = ATA_DEV_ATAPI;
1730 else
1731 class = ATA_DEV_ATA;
1732 goto retry;
1733 }
1734
1735 rc = -EIO;
1736 reason = "I/O error";
1737 goto err_out;
1738 }
1739
1740 /* Falling back doesn't make sense if ID data was read
1741 * successfully at least once.
1742 */
1743 may_fallback = 0;
1744
1745 swap_buf_le16(id, ATA_ID_WORDS);
1746
1747 /* sanity check */
1748 rc = -EINVAL;
1749 reason = "device reports invalid type";
1750
1751 if (class == ATA_DEV_ATA) {
1752 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1753 goto err_out;
1754 } else {
1755 if (ata_id_is_ata(id))
1756 goto err_out;
1757 }
1758
1759 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1760 tried_spinup = 1;
1761 /*
1762 * Drive powered-up in standby mode, and requires a specific
1763 * SET_FEATURES spin-up subcommand before it will accept
1764 * anything other than the original IDENTIFY command.
1765 */
1766 ata_tf_init(dev, &tf);
1767 tf.command = ATA_CMD_SET_FEATURES;
1768 tf.feature = SETFEATURES_SPINUP;
1769 tf.protocol = ATA_PROT_NODATA;
1770 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1771 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1772 if (err_mask && id[2] != 0x738c) {
1773 rc = -EIO;
1774 reason = "SPINUP failed";
1775 goto err_out;
1776 }
1777 /*
1778 * If the drive initially returned incomplete IDENTIFY info,
1779 * we now must reissue the IDENTIFY command.
1780 */
1781 if (id[2] == 0x37c8)
1782 goto retry;
1783 }
1784
1785 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1786 /*
1787 * The exact sequence expected by certain pre-ATA4 drives is:
1788 * SRST RESET
1789 * IDENTIFY (optional in early ATA)
1790 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1791 * anything else..
1792 * Some drives were very specific about that exact sequence.
1793 *
1794 * Note that ATA4 says lba is mandatory so the second check
1795 * shoud never trigger.
1796 */
1797 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1798 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1799 if (err_mask) {
1800 rc = -EIO;
1801 reason = "INIT_DEV_PARAMS failed";
1802 goto err_out;
1803 }
1804
1805 /* current CHS translation info (id[53-58]) might be
1806 * changed. reread the identify device info.
1807 */
1808 flags &= ~ATA_READID_POSTRESET;
1809 goto retry;
1810 }
1811 }
1812
1813 *p_class = class;
1814
1815 return 0;
1816
1817 err_out:
1818 if (ata_msg_warn(ap))
1819 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1820 "(%s, err_mask=0x%x)\n", reason, err_mask);
1821 return rc;
1822 }
1823
1824 static inline u8 ata_dev_knobble(struct ata_device *dev)
1825 {
1826 struct ata_port *ap = dev->link->ap;
1827 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1828 }
1829
1830 static void ata_dev_config_ncq(struct ata_device *dev,
1831 char *desc, size_t desc_sz)
1832 {
1833 struct ata_port *ap = dev->link->ap;
1834 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1835
1836 if (!ata_id_has_ncq(dev->id)) {
1837 desc[0] = '\0';
1838 return;
1839 }
1840 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1841 snprintf(desc, desc_sz, "NCQ (not used)");
1842 return;
1843 }
1844 if (ap->flags & ATA_FLAG_NCQ) {
1845 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1846 dev->flags |= ATA_DFLAG_NCQ;
1847 }
1848
1849 if (hdepth >= ddepth)
1850 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1851 else
1852 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1853 }
1854
1855 /**
1856 * ata_dev_configure - Configure the specified ATA/ATAPI device
1857 * @dev: Target device to configure
1858 *
1859 * Configure @dev according to @dev->id. Generic and low-level
1860 * driver specific fixups are also applied.
1861 *
1862 * LOCKING:
1863 * Kernel thread context (may sleep)
1864 *
1865 * RETURNS:
1866 * 0 on success, -errno otherwise
1867 */
1868 int ata_dev_configure(struct ata_device *dev)
1869 {
1870 struct ata_port *ap = dev->link->ap;
1871 struct ata_eh_context *ehc = &dev->link->eh_context;
1872 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1873 const u16 *id = dev->id;
1874 unsigned int xfer_mask;
1875 char revbuf[7]; /* XYZ-99\0 */
1876 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1877 char modelbuf[ATA_ID_PROD_LEN+1];
1878 int rc;
1879
1880 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1881 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1882 __FUNCTION__);
1883 return 0;
1884 }
1885
1886 if (ata_msg_probe(ap))
1887 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1888
1889 /* set horkage */
1890 dev->horkage |= ata_dev_blacklisted(dev);
1891
1892 /* let ACPI work its magic */
1893 rc = ata_acpi_on_devcfg(dev);
1894 if (rc)
1895 return rc;
1896
1897 /* massage HPA, do it early as it might change IDENTIFY data */
1898 rc = ata_hpa_resize(dev);
1899 if (rc)
1900 return rc;
1901
1902 /* print device capabilities */
1903 if (ata_msg_probe(ap))
1904 ata_dev_printk(dev, KERN_DEBUG,
1905 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1906 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1907 __FUNCTION__,
1908 id[49], id[82], id[83], id[84],
1909 id[85], id[86], id[87], id[88]);
1910
1911 /* initialize to-be-configured parameters */
1912 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1913 dev->max_sectors = 0;
1914 dev->cdb_len = 0;
1915 dev->n_sectors = 0;
1916 dev->cylinders = 0;
1917 dev->heads = 0;
1918 dev->sectors = 0;
1919
1920 /*
1921 * common ATA, ATAPI feature tests
1922 */
1923
1924 /* find max transfer mode; for printk only */
1925 xfer_mask = ata_id_xfermask(id);
1926
1927 if (ata_msg_probe(ap))
1928 ata_dump_id(id);
1929
1930 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1931 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1932 sizeof(fwrevbuf));
1933
1934 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1935 sizeof(modelbuf));
1936
1937 /* ATA-specific feature tests */
1938 if (dev->class == ATA_DEV_ATA) {
1939 if (ata_id_is_cfa(id)) {
1940 if (id[162] & 1) /* CPRM may make this media unusable */
1941 ata_dev_printk(dev, KERN_WARNING,
1942 "supports DRM functions and may "
1943 "not be fully accessable.\n");
1944 snprintf(revbuf, 7, "CFA");
1945 }
1946 else
1947 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1948
1949 dev->n_sectors = ata_id_n_sectors(id);
1950
1951 if (dev->id[59] & 0x100)
1952 dev->multi_count = dev->id[59] & 0xff;
1953
1954 if (ata_id_has_lba(id)) {
1955 const char *lba_desc;
1956 char ncq_desc[20];
1957
1958 lba_desc = "LBA";
1959 dev->flags |= ATA_DFLAG_LBA;
1960 if (ata_id_has_lba48(id)) {
1961 dev->flags |= ATA_DFLAG_LBA48;
1962 lba_desc = "LBA48";
1963
1964 if (dev->n_sectors >= (1UL << 28) &&
1965 ata_id_has_flush_ext(id))
1966 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1967 }
1968
1969 /* config NCQ */
1970 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1971
1972 /* print device info to dmesg */
1973 if (ata_msg_drv(ap) && print_info) {
1974 ata_dev_printk(dev, KERN_INFO,
1975 "%s: %s, %s, max %s\n",
1976 revbuf, modelbuf, fwrevbuf,
1977 ata_mode_string(xfer_mask));
1978 ata_dev_printk(dev, KERN_INFO,
1979 "%Lu sectors, multi %u: %s %s\n",
1980 (unsigned long long)dev->n_sectors,
1981 dev->multi_count, lba_desc, ncq_desc);
1982 }
1983 } else {
1984 /* CHS */
1985
1986 /* Default translation */
1987 dev->cylinders = id[1];
1988 dev->heads = id[3];
1989 dev->sectors = id[6];
1990
1991 if (ata_id_current_chs_valid(id)) {
1992 /* Current CHS translation is valid. */
1993 dev->cylinders = id[54];
1994 dev->heads = id[55];
1995 dev->sectors = id[56];
1996 }
1997
1998 /* print device info to dmesg */
1999 if (ata_msg_drv(ap) && print_info) {
2000 ata_dev_printk(dev, KERN_INFO,
2001 "%s: %s, %s, max %s\n",
2002 revbuf, modelbuf, fwrevbuf,
2003 ata_mode_string(xfer_mask));
2004 ata_dev_printk(dev, KERN_INFO,
2005 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2006 (unsigned long long)dev->n_sectors,
2007 dev->multi_count, dev->cylinders,
2008 dev->heads, dev->sectors);
2009 }
2010 }
2011
2012 dev->cdb_len = 16;
2013 }
2014
2015 /* ATAPI-specific feature tests */
2016 else if (dev->class == ATA_DEV_ATAPI) {
2017 const char *cdb_intr_string = "";
2018 const char *atapi_an_string = "";
2019
2020 rc = atapi_cdb_len(id);
2021 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2022 if (ata_msg_warn(ap))
2023 ata_dev_printk(dev, KERN_WARNING,
2024 "unsupported CDB len\n");
2025 rc = -EINVAL;
2026 goto err_out_nosup;
2027 }
2028 dev->cdb_len = (unsigned int) rc;
2029
2030 /*
2031 * check to see if this ATAPI device supports
2032 * Asynchronous Notification
2033 */
2034 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id)) {
2035 unsigned int err_mask;
2036
2037 /* issue SET feature command to turn this on */
2038 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2039 if (err_mask)
2040 ata_dev_printk(dev, KERN_ERR,
2041 "failed to enable ATAPI AN "
2042 "(err_mask=0x%x)\n", err_mask);
2043 else {
2044 dev->flags |= ATA_DFLAG_AN;
2045 atapi_an_string = ", ATAPI AN";
2046 }
2047 }
2048
2049 if (ata_id_cdb_intr(dev->id)) {
2050 dev->flags |= ATA_DFLAG_CDB_INTR;
2051 cdb_intr_string = ", CDB intr";
2052 }
2053
2054 /* print device info to dmesg */
2055 if (ata_msg_drv(ap) && print_info)
2056 ata_dev_printk(dev, KERN_INFO,
2057 "ATAPI: %s, %s, max %s%s%s\n",
2058 modelbuf, fwrevbuf,
2059 ata_mode_string(xfer_mask),
2060 cdb_intr_string, atapi_an_string);
2061 }
2062
2063 /* determine max_sectors */
2064 dev->max_sectors = ATA_MAX_SECTORS;
2065 if (dev->flags & ATA_DFLAG_LBA48)
2066 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2067
2068 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2069 /* Let the user know. We don't want to disallow opens for
2070 rescue purposes, or in case the vendor is just a blithering
2071 idiot */
2072 if (print_info) {
2073 ata_dev_printk(dev, KERN_WARNING,
2074 "Drive reports diagnostics failure. This may indicate a drive\n");
2075 ata_dev_printk(dev, KERN_WARNING,
2076 "fault or invalid emulation. Contact drive vendor for information.\n");
2077 }
2078 }
2079
2080 /* limit bridge transfers to udma5, 200 sectors */
2081 if (ata_dev_knobble(dev)) {
2082 if (ata_msg_drv(ap) && print_info)
2083 ata_dev_printk(dev, KERN_INFO,
2084 "applying bridge limits\n");
2085 dev->udma_mask &= ATA_UDMA5;
2086 dev->max_sectors = ATA_MAX_SECTORS;
2087 }
2088
2089 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2090 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2091 dev->max_sectors);
2092
2093 if (ap->ops->dev_config)
2094 ap->ops->dev_config(dev);
2095
2096 if (ata_msg_probe(ap))
2097 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2098 __FUNCTION__, ata_chk_status(ap));
2099 return 0;
2100
2101 err_out_nosup:
2102 if (ata_msg_probe(ap))
2103 ata_dev_printk(dev, KERN_DEBUG,
2104 "%s: EXIT, err\n", __FUNCTION__);
2105 return rc;
2106 }
2107
2108 /**
2109 * ata_cable_40wire - return 40 wire cable type
2110 * @ap: port
2111 *
2112 * Helper method for drivers which want to hardwire 40 wire cable
2113 * detection.
2114 */
2115
2116 int ata_cable_40wire(struct ata_port *ap)
2117 {
2118 return ATA_CBL_PATA40;
2119 }
2120
2121 /**
2122 * ata_cable_80wire - return 80 wire cable type
2123 * @ap: port
2124 *
2125 * Helper method for drivers which want to hardwire 80 wire cable
2126 * detection.
2127 */
2128
2129 int ata_cable_80wire(struct ata_port *ap)
2130 {
2131 return ATA_CBL_PATA80;
2132 }
2133
2134 /**
2135 * ata_cable_unknown - return unknown PATA cable.
2136 * @ap: port
2137 *
2138 * Helper method for drivers which have no PATA cable detection.
2139 */
2140
2141 int ata_cable_unknown(struct ata_port *ap)
2142 {
2143 return ATA_CBL_PATA_UNK;
2144 }
2145
2146 /**
2147 * ata_cable_sata - return SATA cable type
2148 * @ap: port
2149 *
2150 * Helper method for drivers which have SATA cables
2151 */
2152
2153 int ata_cable_sata(struct ata_port *ap)
2154 {
2155 return ATA_CBL_SATA;
2156 }
2157
2158 /**
2159 * ata_bus_probe - Reset and probe ATA bus
2160 * @ap: Bus to probe
2161 *
2162 * Master ATA bus probing function. Initiates a hardware-dependent
2163 * bus reset, then attempts to identify any devices found on
2164 * the bus.
2165 *
2166 * LOCKING:
2167 * PCI/etc. bus probe sem.
2168 *
2169 * RETURNS:
2170 * Zero on success, negative errno otherwise.
2171 */
2172
2173 int ata_bus_probe(struct ata_port *ap)
2174 {
2175 unsigned int classes[ATA_MAX_DEVICES];
2176 int tries[ATA_MAX_DEVICES];
2177 int rc;
2178 struct ata_device *dev;
2179
2180 ata_port_probe(ap);
2181
2182 ata_link_for_each_dev(dev, &ap->link)
2183 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2184
2185 retry:
2186 /* reset and determine device classes */
2187 ap->ops->phy_reset(ap);
2188
2189 ata_link_for_each_dev(dev, &ap->link) {
2190 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2191 dev->class != ATA_DEV_UNKNOWN)
2192 classes[dev->devno] = dev->class;
2193 else
2194 classes[dev->devno] = ATA_DEV_NONE;
2195
2196 dev->class = ATA_DEV_UNKNOWN;
2197 }
2198
2199 ata_port_probe(ap);
2200
2201 /* after the reset the device state is PIO 0 and the controller
2202 state is undefined. Record the mode */
2203
2204 ata_link_for_each_dev(dev, &ap->link)
2205 dev->pio_mode = XFER_PIO_0;
2206
2207 /* read IDENTIFY page and configure devices. We have to do the identify
2208 specific sequence bass-ackwards so that PDIAG- is released by
2209 the slave device */
2210
2211 ata_link_for_each_dev(dev, &ap->link) {
2212 if (tries[dev->devno])
2213 dev->class = classes[dev->devno];
2214
2215 if (!ata_dev_enabled(dev))
2216 continue;
2217
2218 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2219 dev->id);
2220 if (rc)
2221 goto fail;
2222 }
2223
2224 /* Now ask for the cable type as PDIAG- should have been released */
2225 if (ap->ops->cable_detect)
2226 ap->cbl = ap->ops->cable_detect(ap);
2227
2228 /* We may have SATA bridge glue hiding here irrespective of the
2229 reported cable types and sensed types */
2230 ata_link_for_each_dev(dev, &ap->link) {
2231 if (!ata_dev_enabled(dev))
2232 continue;
2233 /* SATA drives indicate we have a bridge. We don't know which
2234 end of the link the bridge is which is a problem */
2235 if (ata_id_is_sata(dev->id))
2236 ap->cbl = ATA_CBL_SATA;
2237 }
2238
2239 /* After the identify sequence we can now set up the devices. We do
2240 this in the normal order so that the user doesn't get confused */
2241
2242 ata_link_for_each_dev(dev, &ap->link) {
2243 if (!ata_dev_enabled(dev))
2244 continue;
2245
2246 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2247 rc = ata_dev_configure(dev);
2248 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2249 if (rc)
2250 goto fail;
2251 }
2252
2253 /* configure transfer mode */
2254 rc = ata_set_mode(&ap->link, &dev);
2255 if (rc)
2256 goto fail;
2257
2258 ata_link_for_each_dev(dev, &ap->link)
2259 if (ata_dev_enabled(dev))
2260 return 0;
2261
2262 /* no device present, disable port */
2263 ata_port_disable(ap);
2264 return -ENODEV;
2265
2266 fail:
2267 tries[dev->devno]--;
2268
2269 switch (rc) {
2270 case -EINVAL:
2271 /* eeek, something went very wrong, give up */
2272 tries[dev->devno] = 0;
2273 break;
2274
2275 case -ENODEV:
2276 /* give it just one more chance */
2277 tries[dev->devno] = min(tries[dev->devno], 1);
2278 case -EIO:
2279 if (tries[dev->devno] == 1) {
2280 /* This is the last chance, better to slow
2281 * down than lose it.
2282 */
2283 sata_down_spd_limit(&ap->link);
2284 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2285 }
2286 }
2287
2288 if (!tries[dev->devno])
2289 ata_dev_disable(dev);
2290
2291 goto retry;
2292 }
2293
2294 /**
2295 * ata_port_probe - Mark port as enabled
2296 * @ap: Port for which we indicate enablement
2297 *
2298 * Modify @ap data structure such that the system
2299 * thinks that the entire port is enabled.
2300 *
2301 * LOCKING: host lock, or some other form of
2302 * serialization.
2303 */
2304
2305 void ata_port_probe(struct ata_port *ap)
2306 {
2307 ap->flags &= ~ATA_FLAG_DISABLED;
2308 }
2309
2310 /**
2311 * sata_print_link_status - Print SATA link status
2312 * @link: SATA link to printk link status about
2313 *
2314 * This function prints link speed and status of a SATA link.
2315 *
2316 * LOCKING:
2317 * None.
2318 */
2319 void sata_print_link_status(struct ata_link *link)
2320 {
2321 u32 sstatus, scontrol, tmp;
2322
2323 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2324 return;
2325 sata_scr_read(link, SCR_CONTROL, &scontrol);
2326
2327 if (ata_link_online(link)) {
2328 tmp = (sstatus >> 4) & 0xf;
2329 ata_link_printk(link, KERN_INFO,
2330 "SATA link up %s (SStatus %X SControl %X)\n",
2331 sata_spd_string(tmp), sstatus, scontrol);
2332 } else {
2333 ata_link_printk(link, KERN_INFO,
2334 "SATA link down (SStatus %X SControl %X)\n",
2335 sstatus, scontrol);
2336 }
2337 }
2338
2339 /**
2340 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2341 * @ap: SATA port associated with target SATA PHY.
2342 *
2343 * This function issues commands to standard SATA Sxxx
2344 * PHY registers, to wake up the phy (and device), and
2345 * clear any reset condition.
2346 *
2347 * LOCKING:
2348 * PCI/etc. bus probe sem.
2349 *
2350 */
2351 void __sata_phy_reset(struct ata_port *ap)
2352 {
2353 struct ata_link *link = &ap->link;
2354 unsigned long timeout = jiffies + (HZ * 5);
2355 u32 sstatus;
2356
2357 if (ap->flags & ATA_FLAG_SATA_RESET) {
2358 /* issue phy wake/reset */
2359 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2360 /* Couldn't find anything in SATA I/II specs, but
2361 * AHCI-1.1 10.4.2 says at least 1 ms. */
2362 mdelay(1);
2363 }
2364 /* phy wake/clear reset */
2365 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2366
2367 /* wait for phy to become ready, if necessary */
2368 do {
2369 msleep(200);
2370 sata_scr_read(link, SCR_STATUS, &sstatus);
2371 if ((sstatus & 0xf) != 1)
2372 break;
2373 } while (time_before(jiffies, timeout));
2374
2375 /* print link status */
2376 sata_print_link_status(link);
2377
2378 /* TODO: phy layer with polling, timeouts, etc. */
2379 if (!ata_link_offline(link))
2380 ata_port_probe(ap);
2381 else
2382 ata_port_disable(ap);
2383
2384 if (ap->flags & ATA_FLAG_DISABLED)
2385 return;
2386
2387 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2388 ata_port_disable(ap);
2389 return;
2390 }
2391
2392 ap->cbl = ATA_CBL_SATA;
2393 }
2394
2395 /**
2396 * sata_phy_reset - Reset SATA bus.
2397 * @ap: SATA port associated with target SATA PHY.
2398 *
2399 * This function resets the SATA bus, and then probes
2400 * the bus for devices.
2401 *
2402 * LOCKING:
2403 * PCI/etc. bus probe sem.
2404 *
2405 */
2406 void sata_phy_reset(struct ata_port *ap)
2407 {
2408 __sata_phy_reset(ap);
2409 if (ap->flags & ATA_FLAG_DISABLED)
2410 return;
2411 ata_bus_reset(ap);
2412 }
2413
2414 /**
2415 * ata_dev_pair - return other device on cable
2416 * @adev: device
2417 *
2418 * Obtain the other device on the same cable, or if none is
2419 * present NULL is returned
2420 */
2421
2422 struct ata_device *ata_dev_pair(struct ata_device *adev)
2423 {
2424 struct ata_link *link = adev->link;
2425 struct ata_device *pair = &link->device[1 - adev->devno];
2426 if (!ata_dev_enabled(pair))
2427 return NULL;
2428 return pair;
2429 }
2430
2431 /**
2432 * ata_port_disable - Disable port.
2433 * @ap: Port to be disabled.
2434 *
2435 * Modify @ap data structure such that the system
2436 * thinks that the entire port is disabled, and should
2437 * never attempt to probe or communicate with devices
2438 * on this port.
2439 *
2440 * LOCKING: host lock, or some other form of
2441 * serialization.
2442 */
2443
2444 void ata_port_disable(struct ata_port *ap)
2445 {
2446 ap->link.device[0].class = ATA_DEV_NONE;
2447 ap->link.device[1].class = ATA_DEV_NONE;
2448 ap->flags |= ATA_FLAG_DISABLED;
2449 }
2450
2451 /**
2452 * sata_down_spd_limit - adjust SATA spd limit downward
2453 * @link: Link to adjust SATA spd limit for
2454 *
2455 * Adjust SATA spd limit of @link downward. Note that this
2456 * function only adjusts the limit. The change must be applied
2457 * using sata_set_spd().
2458 *
2459 * LOCKING:
2460 * Inherited from caller.
2461 *
2462 * RETURNS:
2463 * 0 on success, negative errno on failure
2464 */
2465 int sata_down_spd_limit(struct ata_link *link)
2466 {
2467 u32 sstatus, spd, mask;
2468 int rc, highbit;
2469
2470 if (!sata_scr_valid(link))
2471 return -EOPNOTSUPP;
2472
2473 /* If SCR can be read, use it to determine the current SPD.
2474 * If not, use cached value in link->sata_spd.
2475 */
2476 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2477 if (rc == 0)
2478 spd = (sstatus >> 4) & 0xf;
2479 else
2480 spd = link->sata_spd;
2481
2482 mask = link->sata_spd_limit;
2483 if (mask <= 1)
2484 return -EINVAL;
2485
2486 /* unconditionally mask off the highest bit */
2487 highbit = fls(mask) - 1;
2488 mask &= ~(1 << highbit);
2489
2490 /* Mask off all speeds higher than or equal to the current
2491 * one. Force 1.5Gbps if current SPD is not available.
2492 */
2493 if (spd > 1)
2494 mask &= (1 << (spd - 1)) - 1;
2495 else
2496 mask &= 1;
2497
2498 /* were we already at the bottom? */
2499 if (!mask)
2500 return -EINVAL;
2501
2502 link->sata_spd_limit = mask;
2503
2504 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2505 sata_spd_string(fls(mask)));
2506
2507 return 0;
2508 }
2509
2510 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2511 {
2512 u32 spd, limit;
2513
2514 if (link->sata_spd_limit == UINT_MAX)
2515 limit = 0;
2516 else
2517 limit = fls(link->sata_spd_limit);
2518
2519 spd = (*scontrol >> 4) & 0xf;
2520 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2521
2522 return spd != limit;
2523 }
2524
2525 /**
2526 * sata_set_spd_needed - is SATA spd configuration needed
2527 * @link: Link in question
2528 *
2529 * Test whether the spd limit in SControl matches
2530 * @link->sata_spd_limit. This function is used to determine
2531 * whether hardreset is necessary to apply SATA spd
2532 * configuration.
2533 *
2534 * LOCKING:
2535 * Inherited from caller.
2536 *
2537 * RETURNS:
2538 * 1 if SATA spd configuration is needed, 0 otherwise.
2539 */
2540 int sata_set_spd_needed(struct ata_link *link)
2541 {
2542 u32 scontrol;
2543
2544 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2545 return 0;
2546
2547 return __sata_set_spd_needed(link, &scontrol);
2548 }
2549
2550 /**
2551 * sata_set_spd - set SATA spd according to spd limit
2552 * @link: Link to set SATA spd for
2553 *
2554 * Set SATA spd of @link according to sata_spd_limit.
2555 *
2556 * LOCKING:
2557 * Inherited from caller.
2558 *
2559 * RETURNS:
2560 * 0 if spd doesn't need to be changed, 1 if spd has been
2561 * changed. Negative errno if SCR registers are inaccessible.
2562 */
2563 int sata_set_spd(struct ata_link *link)
2564 {
2565 u32 scontrol;
2566 int rc;
2567
2568 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2569 return rc;
2570
2571 if (!__sata_set_spd_needed(link, &scontrol))
2572 return 0;
2573
2574 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2575 return rc;
2576
2577 return 1;
2578 }
2579
2580 /*
2581 * This mode timing computation functionality is ported over from
2582 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2583 */
2584 /*
2585 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2586 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2587 * for UDMA6, which is currently supported only by Maxtor drives.
2588 *
2589 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2590 */
2591
2592 static const struct ata_timing ata_timing[] = {
2593
2594 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2595 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2596 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2597 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2598
2599 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2600 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2601 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2602 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2603 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2604
2605 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2606
2607 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2608 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2609 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2610
2611 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2612 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2613 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2614
2615 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2616 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2617 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2618 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2619
2620 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2621 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2622 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2623
2624 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2625
2626 { 0xFF }
2627 };
2628
2629 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2630 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2631
2632 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2633 {
2634 q->setup = EZ(t->setup * 1000, T);
2635 q->act8b = EZ(t->act8b * 1000, T);
2636 q->rec8b = EZ(t->rec8b * 1000, T);
2637 q->cyc8b = EZ(t->cyc8b * 1000, T);
2638 q->active = EZ(t->active * 1000, T);
2639 q->recover = EZ(t->recover * 1000, T);
2640 q->cycle = EZ(t->cycle * 1000, T);
2641 q->udma = EZ(t->udma * 1000, UT);
2642 }
2643
2644 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2645 struct ata_timing *m, unsigned int what)
2646 {
2647 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2648 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2649 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2650 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2651 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2652 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2653 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2654 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2655 }
2656
2657 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2658 {
2659 const struct ata_timing *t;
2660
2661 for (t = ata_timing; t->mode != speed; t++)
2662 if (t->mode == 0xFF)
2663 return NULL;
2664 return t;
2665 }
2666
2667 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2668 struct ata_timing *t, int T, int UT)
2669 {
2670 const struct ata_timing *s;
2671 struct ata_timing p;
2672
2673 /*
2674 * Find the mode.
2675 */
2676
2677 if (!(s = ata_timing_find_mode(speed)))
2678 return -EINVAL;
2679
2680 memcpy(t, s, sizeof(*s));
2681
2682 /*
2683 * If the drive is an EIDE drive, it can tell us it needs extended
2684 * PIO/MW_DMA cycle timing.
2685 */
2686
2687 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2688 memset(&p, 0, sizeof(p));
2689 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2690 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2691 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2692 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2693 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2694 }
2695 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2696 }
2697
2698 /*
2699 * Convert the timing to bus clock counts.
2700 */
2701
2702 ata_timing_quantize(t, t, T, UT);
2703
2704 /*
2705 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2706 * S.M.A.R.T * and some other commands. We have to ensure that the
2707 * DMA cycle timing is slower/equal than the fastest PIO timing.
2708 */
2709
2710 if (speed > XFER_PIO_6) {
2711 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2712 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2713 }
2714
2715 /*
2716 * Lengthen active & recovery time so that cycle time is correct.
2717 */
2718
2719 if (t->act8b + t->rec8b < t->cyc8b) {
2720 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2721 t->rec8b = t->cyc8b - t->act8b;
2722 }
2723
2724 if (t->active + t->recover < t->cycle) {
2725 t->active += (t->cycle - (t->active + t->recover)) / 2;
2726 t->recover = t->cycle - t->active;
2727 }
2728
2729 /* In a few cases quantisation may produce enough errors to
2730 leave t->cycle too low for the sum of active and recovery
2731 if so we must correct this */
2732 if (t->active + t->recover > t->cycle)
2733 t->cycle = t->active + t->recover;
2734
2735 return 0;
2736 }
2737
2738 /**
2739 * ata_down_xfermask_limit - adjust dev xfer masks downward
2740 * @dev: Device to adjust xfer masks
2741 * @sel: ATA_DNXFER_* selector
2742 *
2743 * Adjust xfer masks of @dev downward. Note that this function
2744 * does not apply the change. Invoking ata_set_mode() afterwards
2745 * will apply the limit.
2746 *
2747 * LOCKING:
2748 * Inherited from caller.
2749 *
2750 * RETURNS:
2751 * 0 on success, negative errno on failure
2752 */
2753 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2754 {
2755 char buf[32];
2756 unsigned int orig_mask, xfer_mask;
2757 unsigned int pio_mask, mwdma_mask, udma_mask;
2758 int quiet, highbit;
2759
2760 quiet = !!(sel & ATA_DNXFER_QUIET);
2761 sel &= ~ATA_DNXFER_QUIET;
2762
2763 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2764 dev->mwdma_mask,
2765 dev->udma_mask);
2766 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2767
2768 switch (sel) {
2769 case ATA_DNXFER_PIO:
2770 highbit = fls(pio_mask) - 1;
2771 pio_mask &= ~(1 << highbit);
2772 break;
2773
2774 case ATA_DNXFER_DMA:
2775 if (udma_mask) {
2776 highbit = fls(udma_mask) - 1;
2777 udma_mask &= ~(1 << highbit);
2778 if (!udma_mask)
2779 return -ENOENT;
2780 } else if (mwdma_mask) {
2781 highbit = fls(mwdma_mask) - 1;
2782 mwdma_mask &= ~(1 << highbit);
2783 if (!mwdma_mask)
2784 return -ENOENT;
2785 }
2786 break;
2787
2788 case ATA_DNXFER_40C:
2789 udma_mask &= ATA_UDMA_MASK_40C;
2790 break;
2791
2792 case ATA_DNXFER_FORCE_PIO0:
2793 pio_mask &= 1;
2794 case ATA_DNXFER_FORCE_PIO:
2795 mwdma_mask = 0;
2796 udma_mask = 0;
2797 break;
2798
2799 default:
2800 BUG();
2801 }
2802
2803 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2804
2805 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2806 return -ENOENT;
2807
2808 if (!quiet) {
2809 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2810 snprintf(buf, sizeof(buf), "%s:%s",
2811 ata_mode_string(xfer_mask),
2812 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2813 else
2814 snprintf(buf, sizeof(buf), "%s",
2815 ata_mode_string(xfer_mask));
2816
2817 ata_dev_printk(dev, KERN_WARNING,
2818 "limiting speed to %s\n", buf);
2819 }
2820
2821 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2822 &dev->udma_mask);
2823
2824 return 0;
2825 }
2826
2827 static int ata_dev_set_mode(struct ata_device *dev)
2828 {
2829 struct ata_eh_context *ehc = &dev->link->eh_context;
2830 unsigned int err_mask;
2831 int rc;
2832
2833 dev->flags &= ~ATA_DFLAG_PIO;
2834 if (dev->xfer_shift == ATA_SHIFT_PIO)
2835 dev->flags |= ATA_DFLAG_PIO;
2836
2837 err_mask = ata_dev_set_xfermode(dev);
2838 /* Old CFA may refuse this command, which is just fine */
2839 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2840 err_mask &= ~AC_ERR_DEV;
2841 /* Some very old devices and some bad newer ones fail any kind of
2842 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2843 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2844 dev->pio_mode <= XFER_PIO_2)
2845 err_mask &= ~AC_ERR_DEV;
2846 if (err_mask) {
2847 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2848 "(err_mask=0x%x)\n", err_mask);
2849 return -EIO;
2850 }
2851
2852 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2853 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2854 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2855 if (rc)
2856 return rc;
2857
2858 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2859 dev->xfer_shift, (int)dev->xfer_mode);
2860
2861 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2862 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2863 return 0;
2864 }
2865
2866 /**
2867 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2868 * @link: link on which timings will be programmed
2869 * @r_failed_dev: out paramter for failed device
2870 *
2871 * Standard implementation of the function used to tune and set
2872 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2873 * ata_dev_set_mode() fails, pointer to the failing device is
2874 * returned in @r_failed_dev.
2875 *
2876 * LOCKING:
2877 * PCI/etc. bus probe sem.
2878 *
2879 * RETURNS:
2880 * 0 on success, negative errno otherwise
2881 */
2882
2883 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2884 {
2885 struct ata_port *ap = link->ap;
2886 struct ata_device *dev;
2887 int rc = 0, used_dma = 0, found = 0;
2888
2889 /* step 1: calculate xfer_mask */
2890 ata_link_for_each_dev(dev, link) {
2891 unsigned int pio_mask, dma_mask;
2892
2893 if (!ata_dev_enabled(dev))
2894 continue;
2895
2896 ata_dev_xfermask(dev);
2897
2898 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2899 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2900 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2901 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2902
2903 found = 1;
2904 if (dev->dma_mode)
2905 used_dma = 1;
2906 }
2907 if (!found)
2908 goto out;
2909
2910 /* step 2: always set host PIO timings */
2911 ata_link_for_each_dev(dev, link) {
2912 if (!ata_dev_enabled(dev))
2913 continue;
2914
2915 if (!dev->pio_mode) {
2916 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2917 rc = -EINVAL;
2918 goto out;
2919 }
2920
2921 dev->xfer_mode = dev->pio_mode;
2922 dev->xfer_shift = ATA_SHIFT_PIO;
2923 if (ap->ops->set_piomode)
2924 ap->ops->set_piomode(ap, dev);
2925 }
2926
2927 /* step 3: set host DMA timings */
2928 ata_link_for_each_dev(dev, link) {
2929 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2930 continue;
2931
2932 dev->xfer_mode = dev->dma_mode;
2933 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2934 if (ap->ops->set_dmamode)
2935 ap->ops->set_dmamode(ap, dev);
2936 }
2937
2938 /* step 4: update devices' xfer mode */
2939 ata_link_for_each_dev(dev, link) {
2940 /* don't update suspended devices' xfer mode */
2941 if (!ata_dev_enabled(dev))
2942 continue;
2943
2944 rc = ata_dev_set_mode(dev);
2945 if (rc)
2946 goto out;
2947 }
2948
2949 /* Record simplex status. If we selected DMA then the other
2950 * host channels are not permitted to do so.
2951 */
2952 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2953 ap->host->simplex_claimed = ap;
2954
2955 out:
2956 if (rc)
2957 *r_failed_dev = dev;
2958 return rc;
2959 }
2960
2961 /**
2962 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2963 * @link: link on which timings will be programmed
2964 * @r_failed_dev: out paramter for failed device
2965 *
2966 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2967 * ata_set_mode() fails, pointer to the failing device is
2968 * returned in @r_failed_dev.
2969 *
2970 * LOCKING:
2971 * PCI/etc. bus probe sem.
2972 *
2973 * RETURNS:
2974 * 0 on success, negative errno otherwise
2975 */
2976 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2977 {
2978 struct ata_port *ap = link->ap;
2979
2980 /* has private set_mode? */
2981 if (ap->ops->set_mode)
2982 return ap->ops->set_mode(link, r_failed_dev);
2983 return ata_do_set_mode(link, r_failed_dev);
2984 }
2985
2986 /**
2987 * ata_tf_to_host - issue ATA taskfile to host controller
2988 * @ap: port to which command is being issued
2989 * @tf: ATA taskfile register set
2990 *
2991 * Issues ATA taskfile register set to ATA host controller,
2992 * with proper synchronization with interrupt handler and
2993 * other threads.
2994 *
2995 * LOCKING:
2996 * spin_lock_irqsave(host lock)
2997 */
2998
2999 static inline void ata_tf_to_host(struct ata_port *ap,
3000 const struct ata_taskfile *tf)
3001 {
3002 ap->ops->tf_load(ap, tf);
3003 ap->ops->exec_command(ap, tf);
3004 }
3005
3006 /**
3007 * ata_busy_sleep - sleep until BSY clears, or timeout
3008 * @ap: port containing status register to be polled
3009 * @tmout_pat: impatience timeout
3010 * @tmout: overall timeout
3011 *
3012 * Sleep until ATA Status register bit BSY clears,
3013 * or a timeout occurs.
3014 *
3015 * LOCKING:
3016 * Kernel thread context (may sleep).
3017 *
3018 * RETURNS:
3019 * 0 on success, -errno otherwise.
3020 */
3021 int ata_busy_sleep(struct ata_port *ap,
3022 unsigned long tmout_pat, unsigned long tmout)
3023 {
3024 unsigned long timer_start, timeout;
3025 u8 status;
3026
3027 status = ata_busy_wait(ap, ATA_BUSY, 300);
3028 timer_start = jiffies;
3029 timeout = timer_start + tmout_pat;
3030 while (status != 0xff && (status & ATA_BUSY) &&
3031 time_before(jiffies, timeout)) {
3032 msleep(50);
3033 status = ata_busy_wait(ap, ATA_BUSY, 3);
3034 }
3035
3036 if (status != 0xff && (status & ATA_BUSY))
3037 ata_port_printk(ap, KERN_WARNING,
3038 "port is slow to respond, please be patient "
3039 "(Status 0x%x)\n", status);
3040
3041 timeout = timer_start + tmout;
3042 while (status != 0xff && (status & ATA_BUSY) &&
3043 time_before(jiffies, timeout)) {
3044 msleep(50);
3045 status = ata_chk_status(ap);
3046 }
3047
3048 if (status == 0xff)
3049 return -ENODEV;
3050
3051 if (status & ATA_BUSY) {
3052 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3053 "(%lu secs, Status 0x%x)\n",
3054 tmout / HZ, status);
3055 return -EBUSY;
3056 }
3057
3058 return 0;
3059 }
3060
3061 /**
3062 * ata_wait_ready - sleep until BSY clears, or timeout
3063 * @ap: port containing status register to be polled
3064 * @deadline: deadline jiffies for the operation
3065 *
3066 * Sleep until ATA Status register bit BSY clears, or timeout
3067 * occurs.
3068 *
3069 * LOCKING:
3070 * Kernel thread context (may sleep).
3071 *
3072 * RETURNS:
3073 * 0 on success, -errno otherwise.
3074 */
3075 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3076 {
3077 unsigned long start = jiffies;
3078 int warned = 0;
3079
3080 while (1) {
3081 u8 status = ata_chk_status(ap);
3082 unsigned long now = jiffies;
3083
3084 if (!(status & ATA_BUSY))
3085 return 0;
3086 if (!ata_link_online(&ap->link) && status == 0xff)
3087 return -ENODEV;
3088 if (time_after(now, deadline))
3089 return -EBUSY;
3090
3091 if (!warned && time_after(now, start + 5 * HZ) &&
3092 (deadline - now > 3 * HZ)) {
3093 ata_port_printk(ap, KERN_WARNING,
3094 "port is slow to respond, please be patient "
3095 "(Status 0x%x)\n", status);
3096 warned = 1;
3097 }
3098
3099 msleep(50);
3100 }
3101 }
3102
3103 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3104 unsigned long deadline)
3105 {
3106 struct ata_ioports *ioaddr = &ap->ioaddr;
3107 unsigned int dev0 = devmask & (1 << 0);
3108 unsigned int dev1 = devmask & (1 << 1);
3109 int rc, ret = 0;
3110
3111 /* if device 0 was found in ata_devchk, wait for its
3112 * BSY bit to clear
3113 */
3114 if (dev0) {
3115 rc = ata_wait_ready(ap, deadline);
3116 if (rc) {
3117 if (rc != -ENODEV)
3118 return rc;
3119 ret = rc;
3120 }
3121 }
3122
3123 /* if device 1 was found in ata_devchk, wait for register
3124 * access briefly, then wait for BSY to clear.
3125 */
3126 if (dev1) {
3127 int i;
3128
3129 ap->ops->dev_select(ap, 1);
3130
3131 /* Wait for register access. Some ATAPI devices fail
3132 * to set nsect/lbal after reset, so don't waste too
3133 * much time on it. We're gonna wait for !BSY anyway.
3134 */
3135 for (i = 0; i < 2; i++) {
3136 u8 nsect, lbal;
3137
3138 nsect = ioread8(ioaddr->nsect_addr);
3139 lbal = ioread8(ioaddr->lbal_addr);
3140 if ((nsect == 1) && (lbal == 1))
3141 break;
3142 msleep(50); /* give drive a breather */
3143 }
3144
3145 rc = ata_wait_ready(ap, deadline);
3146 if (rc) {
3147 if (rc != -ENODEV)
3148 return rc;
3149 ret = rc;
3150 }
3151 }
3152
3153 /* is all this really necessary? */
3154 ap->ops->dev_select(ap, 0);
3155 if (dev1)
3156 ap->ops->dev_select(ap, 1);
3157 if (dev0)
3158 ap->ops->dev_select(ap, 0);
3159
3160 return ret;
3161 }
3162
3163 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3164 unsigned long deadline)
3165 {
3166 struct ata_ioports *ioaddr = &ap->ioaddr;
3167
3168 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3169
3170 /* software reset. causes dev0 to be selected */
3171 iowrite8(ap->ctl, ioaddr->ctl_addr);
3172 udelay(20); /* FIXME: flush */
3173 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3174 udelay(20); /* FIXME: flush */
3175 iowrite8(ap->ctl, ioaddr->ctl_addr);
3176
3177 /* spec mandates ">= 2ms" before checking status.
3178 * We wait 150ms, because that was the magic delay used for
3179 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3180 * between when the ATA command register is written, and then
3181 * status is checked. Because waiting for "a while" before
3182 * checking status is fine, post SRST, we perform this magic
3183 * delay here as well.
3184 *
3185 * Old drivers/ide uses the 2mS rule and then waits for ready
3186 */
3187 msleep(150);
3188
3189 /* Before we perform post reset processing we want to see if
3190 * the bus shows 0xFF because the odd clown forgets the D7
3191 * pulldown resistor.
3192 */
3193 if (ata_check_status(ap) == 0xFF)
3194 return -ENODEV;
3195
3196 return ata_bus_post_reset(ap, devmask, deadline);
3197 }
3198
3199 /**
3200 * ata_bus_reset - reset host port and associated ATA channel
3201 * @ap: port to reset
3202 *
3203 * This is typically the first time we actually start issuing
3204 * commands to the ATA channel. We wait for BSY to clear, then
3205 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3206 * result. Determine what devices, if any, are on the channel
3207 * by looking at the device 0/1 error register. Look at the signature
3208 * stored in each device's taskfile registers, to determine if
3209 * the device is ATA or ATAPI.
3210 *
3211 * LOCKING:
3212 * PCI/etc. bus probe sem.
3213 * Obtains host lock.
3214 *
3215 * SIDE EFFECTS:
3216 * Sets ATA_FLAG_DISABLED if bus reset fails.
3217 */
3218
3219 void ata_bus_reset(struct ata_port *ap)
3220 {
3221 struct ata_device *device = ap->link.device;
3222 struct ata_ioports *ioaddr = &ap->ioaddr;
3223 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3224 u8 err;
3225 unsigned int dev0, dev1 = 0, devmask = 0;
3226 int rc;
3227
3228 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3229
3230 /* determine if device 0/1 are present */
3231 if (ap->flags & ATA_FLAG_SATA_RESET)
3232 dev0 = 1;
3233 else {
3234 dev0 = ata_devchk(ap, 0);
3235 if (slave_possible)
3236 dev1 = ata_devchk(ap, 1);
3237 }
3238
3239 if (dev0)
3240 devmask |= (1 << 0);
3241 if (dev1)
3242 devmask |= (1 << 1);
3243
3244 /* select device 0 again */
3245 ap->ops->dev_select(ap, 0);
3246
3247 /* issue bus reset */
3248 if (ap->flags & ATA_FLAG_SRST) {
3249 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3250 if (rc && rc != -ENODEV)
3251 goto err_out;
3252 }
3253
3254 /*
3255 * determine by signature whether we have ATA or ATAPI devices
3256 */
3257 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3258 if ((slave_possible) && (err != 0x81))
3259 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3260
3261 /* is double-select really necessary? */
3262 if (device[1].class != ATA_DEV_NONE)
3263 ap->ops->dev_select(ap, 1);
3264 if (device[0].class != ATA_DEV_NONE)
3265 ap->ops->dev_select(ap, 0);
3266
3267 /* if no devices were detected, disable this port */
3268 if ((device[0].class == ATA_DEV_NONE) &&
3269 (device[1].class == ATA_DEV_NONE))
3270 goto err_out;
3271
3272 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3273 /* set up device control for ATA_FLAG_SATA_RESET */
3274 iowrite8(ap->ctl, ioaddr->ctl_addr);
3275 }
3276
3277 DPRINTK("EXIT\n");
3278 return;
3279
3280 err_out:
3281 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3282 ata_port_disable(ap);
3283
3284 DPRINTK("EXIT\n");
3285 }
3286
3287 /**
3288 * sata_link_debounce - debounce SATA phy status
3289 * @link: ATA link to debounce SATA phy status for
3290 * @params: timing parameters { interval, duratinon, timeout } in msec
3291 * @deadline: deadline jiffies for the operation
3292 *
3293 * Make sure SStatus of @link reaches stable state, determined by
3294 * holding the same value where DET is not 1 for @duration polled
3295 * every @interval, before @timeout. Timeout constraints the
3296 * beginning of the stable state. Because DET gets stuck at 1 on
3297 * some controllers after hot unplugging, this functions waits
3298 * until timeout then returns 0 if DET is stable at 1.
3299 *
3300 * @timeout is further limited by @deadline. The sooner of the
3301 * two is used.
3302 *
3303 * LOCKING:
3304 * Kernel thread context (may sleep)
3305 *
3306 * RETURNS:
3307 * 0 on success, -errno on failure.
3308 */
3309 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3310 unsigned long deadline)
3311 {
3312 unsigned long interval_msec = params[0];
3313 unsigned long duration = msecs_to_jiffies(params[1]);
3314 unsigned long last_jiffies, t;
3315 u32 last, cur;
3316 int rc;
3317
3318 t = jiffies + msecs_to_jiffies(params[2]);
3319 if (time_before(t, deadline))
3320 deadline = t;
3321
3322 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3323 return rc;
3324 cur &= 0xf;
3325
3326 last = cur;
3327 last_jiffies = jiffies;
3328
3329 while (1) {
3330 msleep(interval_msec);
3331 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3332 return rc;
3333 cur &= 0xf;
3334
3335 /* DET stable? */
3336 if (cur == last) {
3337 if (cur == 1 && time_before(jiffies, deadline))
3338 continue;
3339 if (time_after(jiffies, last_jiffies + duration))
3340 return 0;
3341 continue;
3342 }
3343
3344 /* unstable, start over */
3345 last = cur;
3346 last_jiffies = jiffies;
3347
3348 /* Check deadline. If debouncing failed, return
3349 * -EPIPE to tell upper layer to lower link speed.
3350 */
3351 if (time_after(jiffies, deadline))
3352 return -EPIPE;
3353 }
3354 }
3355
3356 /**
3357 * sata_link_resume - resume SATA link
3358 * @link: ATA link to resume SATA
3359 * @params: timing parameters { interval, duratinon, timeout } in msec
3360 * @deadline: deadline jiffies for the operation
3361 *
3362 * Resume SATA phy @link and debounce it.
3363 *
3364 * LOCKING:
3365 * Kernel thread context (may sleep)
3366 *
3367 * RETURNS:
3368 * 0 on success, -errno on failure.
3369 */
3370 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3371 unsigned long deadline)
3372 {
3373 u32 scontrol;
3374 int rc;
3375
3376 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3377 return rc;
3378
3379 scontrol = (scontrol & 0x0f0) | 0x300;
3380
3381 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3382 return rc;
3383
3384 /* Some PHYs react badly if SStatus is pounded immediately
3385 * after resuming. Delay 200ms before debouncing.
3386 */
3387 msleep(200);
3388
3389 return sata_link_debounce(link, params, deadline);
3390 }
3391
3392 /**
3393 * ata_std_prereset - prepare for reset
3394 * @link: ATA link to be reset
3395 * @deadline: deadline jiffies for the operation
3396 *
3397 * @link is about to be reset. Initialize it. Failure from
3398 * prereset makes libata abort whole reset sequence and give up
3399 * that port, so prereset should be best-effort. It does its
3400 * best to prepare for reset sequence but if things go wrong, it
3401 * should just whine, not fail.
3402 *
3403 * LOCKING:
3404 * Kernel thread context (may sleep)
3405 *
3406 * RETURNS:
3407 * 0 on success, -errno otherwise.
3408 */
3409 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3410 {
3411 struct ata_port *ap = link->ap;
3412 struct ata_eh_context *ehc = &link->eh_context;
3413 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3414 int rc;
3415
3416 /* handle link resume */
3417 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3418 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3419 ehc->i.action |= ATA_EH_HARDRESET;
3420
3421 /* if we're about to do hardreset, nothing more to do */
3422 if (ehc->i.action & ATA_EH_HARDRESET)
3423 return 0;
3424
3425 /* if SATA, resume link */
3426 if (ap->flags & ATA_FLAG_SATA) {
3427 rc = sata_link_resume(link, timing, deadline);
3428 /* whine about phy resume failure but proceed */
3429 if (rc && rc != -EOPNOTSUPP)
3430 ata_link_printk(link, KERN_WARNING, "failed to resume "
3431 "link for reset (errno=%d)\n", rc);
3432 }
3433
3434 /* Wait for !BSY if the controller can wait for the first D2H
3435 * Reg FIS and we don't know that no device is attached.
3436 */
3437 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3438 rc = ata_wait_ready(ap, deadline);
3439 if (rc && rc != -ENODEV) {
3440 ata_link_printk(link, KERN_WARNING, "device not ready "
3441 "(errno=%d), forcing hardreset\n", rc);
3442 ehc->i.action |= ATA_EH_HARDRESET;
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
3449 /**
3450 * ata_std_softreset - reset host port via ATA SRST
3451 * @link: ATA link to reset
3452 * @classes: resulting classes of attached devices
3453 * @deadline: deadline jiffies for the operation
3454 *
3455 * Reset host port using ATA SRST.
3456 *
3457 * LOCKING:
3458 * Kernel thread context (may sleep)
3459 *
3460 * RETURNS:
3461 * 0 on success, -errno otherwise.
3462 */
3463 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3464 unsigned long deadline)
3465 {
3466 struct ata_port *ap = link->ap;
3467 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3468 unsigned int devmask = 0;
3469 int rc;
3470 u8 err;
3471
3472 DPRINTK("ENTER\n");
3473
3474 if (ata_link_offline(link)) {
3475 classes[0] = ATA_DEV_NONE;
3476 goto out;
3477 }
3478
3479 /* determine if device 0/1 are present */
3480 if (ata_devchk(ap, 0))
3481 devmask |= (1 << 0);
3482 if (slave_possible && ata_devchk(ap, 1))
3483 devmask |= (1 << 1);
3484
3485 /* select device 0 again */
3486 ap->ops->dev_select(ap, 0);
3487
3488 /* issue bus reset */
3489 DPRINTK("about to softreset, devmask=%x\n", devmask);
3490 rc = ata_bus_softreset(ap, devmask, deadline);
3491 /* if link is occupied, -ENODEV too is an error */
3492 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3493 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3494 return rc;
3495 }
3496
3497 /* determine by signature whether we have ATA or ATAPI devices */
3498 classes[0] = ata_dev_try_classify(&link->device[0],
3499 devmask & (1 << 0), &err);
3500 if (slave_possible && err != 0x81)
3501 classes[1] = ata_dev_try_classify(&link->device[1],
3502 devmask & (1 << 1), &err);
3503
3504 out:
3505 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3506 return 0;
3507 }
3508
3509 /**
3510 * sata_link_hardreset - reset link via SATA phy reset
3511 * @link: link to reset
3512 * @timing: timing parameters { interval, duratinon, timeout } in msec
3513 * @deadline: deadline jiffies for the operation
3514 *
3515 * SATA phy-reset @link using DET bits of SControl register.
3516 *
3517 * LOCKING:
3518 * Kernel thread context (may sleep)
3519 *
3520 * RETURNS:
3521 * 0 on success, -errno otherwise.
3522 */
3523 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3524 unsigned long deadline)
3525 {
3526 u32 scontrol;
3527 int rc;
3528
3529 DPRINTK("ENTER\n");
3530
3531 if (sata_set_spd_needed(link)) {
3532 /* SATA spec says nothing about how to reconfigure
3533 * spd. To be on the safe side, turn off phy during
3534 * reconfiguration. This works for at least ICH7 AHCI
3535 * and Sil3124.
3536 */
3537 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3538 goto out;
3539
3540 scontrol = (scontrol & 0x0f0) | 0x304;
3541
3542 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3543 goto out;
3544
3545 sata_set_spd(link);
3546 }
3547
3548 /* issue phy wake/reset */
3549 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3550 goto out;
3551
3552 scontrol = (scontrol & 0x0f0) | 0x301;
3553
3554 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3555 goto out;
3556
3557 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3558 * 10.4.2 says at least 1 ms.
3559 */
3560 msleep(1);
3561
3562 /* bring link back */
3563 rc = sata_link_resume(link, timing, deadline);
3564 out:
3565 DPRINTK("EXIT, rc=%d\n", rc);
3566 return rc;
3567 }
3568
3569 /**
3570 * sata_std_hardreset - reset host port via SATA phy reset
3571 * @link: link to reset
3572 * @class: resulting class of attached device
3573 * @deadline: deadline jiffies for the operation
3574 *
3575 * SATA phy-reset host port using DET bits of SControl register,
3576 * wait for !BSY and classify the attached device.
3577 *
3578 * LOCKING:
3579 * Kernel thread context (may sleep)
3580 *
3581 * RETURNS:
3582 * 0 on success, -errno otherwise.
3583 */
3584 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3585 unsigned long deadline)
3586 {
3587 struct ata_port *ap = link->ap;
3588 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3589 int rc;
3590
3591 DPRINTK("ENTER\n");
3592
3593 /* do hardreset */
3594 rc = sata_link_hardreset(link, timing, deadline);
3595 if (rc) {
3596 ata_link_printk(link, KERN_ERR,
3597 "COMRESET failed (errno=%d)\n", rc);
3598 return rc;
3599 }
3600
3601 /* TODO: phy layer with polling, timeouts, etc. */
3602 if (ata_link_offline(link)) {
3603 *class = ATA_DEV_NONE;
3604 DPRINTK("EXIT, link offline\n");
3605 return 0;
3606 }
3607
3608 /* wait a while before checking status, see SRST for more info */
3609 msleep(150);
3610
3611 rc = ata_wait_ready(ap, deadline);
3612 /* link occupied, -ENODEV too is an error */
3613 if (rc) {
3614 ata_link_printk(link, KERN_ERR,
3615 "COMRESET failed (errno=%d)\n", rc);
3616 return rc;
3617 }
3618
3619 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3620
3621 *class = ata_dev_try_classify(link->device, 1, NULL);
3622
3623 DPRINTK("EXIT, class=%u\n", *class);
3624 return 0;
3625 }
3626
3627 /**
3628 * ata_std_postreset - standard postreset callback
3629 * @link: the target ata_link
3630 * @classes: classes of attached devices
3631 *
3632 * This function is invoked after a successful reset. Note that
3633 * the device might have been reset more than once using
3634 * different reset methods before postreset is invoked.
3635 *
3636 * LOCKING:
3637 * Kernel thread context (may sleep)
3638 */
3639 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3640 {
3641 struct ata_port *ap = link->ap;
3642 u32 serror;
3643
3644 DPRINTK("ENTER\n");
3645
3646 /* print link status */
3647 sata_print_link_status(link);
3648
3649 /* clear SError */
3650 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3651 sata_scr_write(link, SCR_ERROR, serror);
3652
3653 /* is double-select really necessary? */
3654 if (classes[0] != ATA_DEV_NONE)
3655 ap->ops->dev_select(ap, 1);
3656 if (classes[1] != ATA_DEV_NONE)
3657 ap->ops->dev_select(ap, 0);
3658
3659 /* bail out if no device is present */
3660 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3661 DPRINTK("EXIT, no device\n");
3662 return;
3663 }
3664
3665 /* set up device control */
3666 if (ap->ioaddr.ctl_addr)
3667 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3668
3669 DPRINTK("EXIT\n");
3670 }
3671
3672 /**
3673 * ata_dev_same_device - Determine whether new ID matches configured device
3674 * @dev: device to compare against
3675 * @new_class: class of the new device
3676 * @new_id: IDENTIFY page of the new device
3677 *
3678 * Compare @new_class and @new_id against @dev and determine
3679 * whether @dev is the device indicated by @new_class and
3680 * @new_id.
3681 *
3682 * LOCKING:
3683 * None.
3684 *
3685 * RETURNS:
3686 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3687 */
3688 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3689 const u16 *new_id)
3690 {
3691 const u16 *old_id = dev->id;
3692 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3693 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3694
3695 if (dev->class != new_class) {
3696 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3697 dev->class, new_class);
3698 return 0;
3699 }
3700
3701 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3702 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3703 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3704 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3705
3706 if (strcmp(model[0], model[1])) {
3707 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3708 "'%s' != '%s'\n", model[0], model[1]);
3709 return 0;
3710 }
3711
3712 if (strcmp(serial[0], serial[1])) {
3713 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3714 "'%s' != '%s'\n", serial[0], serial[1]);
3715 return 0;
3716 }
3717
3718 return 1;
3719 }
3720
3721 /**
3722 * ata_dev_reread_id - Re-read IDENTIFY data
3723 * @dev: target ATA device
3724 * @readid_flags: read ID flags
3725 *
3726 * Re-read IDENTIFY page and make sure @dev is still attached to
3727 * the port.
3728 *
3729 * LOCKING:
3730 * Kernel thread context (may sleep)
3731 *
3732 * RETURNS:
3733 * 0 on success, negative errno otherwise
3734 */
3735 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3736 {
3737 unsigned int class = dev->class;
3738 u16 *id = (void *)dev->link->ap->sector_buf;
3739 int rc;
3740
3741 /* read ID data */
3742 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3743 if (rc)
3744 return rc;
3745
3746 /* is the device still there? */
3747 if (!ata_dev_same_device(dev, class, id))
3748 return -ENODEV;
3749
3750 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3751 return 0;
3752 }
3753
3754 /**
3755 * ata_dev_revalidate - Revalidate ATA device
3756 * @dev: device to revalidate
3757 * @new_class: new class code
3758 * @readid_flags: read ID flags
3759 *
3760 * Re-read IDENTIFY page, make sure @dev is still attached to the
3761 * port and reconfigure it according to the new IDENTIFY page.
3762 *
3763 * LOCKING:
3764 * Kernel thread context (may sleep)
3765 *
3766 * RETURNS:
3767 * 0 on success, negative errno otherwise
3768 */
3769 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3770 unsigned int readid_flags)
3771 {
3772 u64 n_sectors = dev->n_sectors;
3773 int rc;
3774
3775 if (!ata_dev_enabled(dev))
3776 return -ENODEV;
3777
3778 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3779 if (ata_class_enabled(new_class) &&
3780 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3781 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3782 dev->class, new_class);
3783 rc = -ENODEV;
3784 goto fail;
3785 }
3786
3787 /* re-read ID */
3788 rc = ata_dev_reread_id(dev, readid_flags);
3789 if (rc)
3790 goto fail;
3791
3792 /* configure device according to the new ID */
3793 rc = ata_dev_configure(dev);
3794 if (rc)
3795 goto fail;
3796
3797 /* verify n_sectors hasn't changed */
3798 if (dev->class == ATA_DEV_ATA && n_sectors &&
3799 dev->n_sectors != n_sectors) {
3800 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3801 "%llu != %llu\n",
3802 (unsigned long long)n_sectors,
3803 (unsigned long long)dev->n_sectors);
3804
3805 /* restore original n_sectors */
3806 dev->n_sectors = n_sectors;
3807
3808 rc = -ENODEV;
3809 goto fail;
3810 }
3811
3812 return 0;
3813
3814 fail:
3815 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3816 return rc;
3817 }
3818
3819 struct ata_blacklist_entry {
3820 const char *model_num;
3821 const char *model_rev;
3822 unsigned long horkage;
3823 };
3824
3825 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3826 /* Devices with DMA related problems under Linux */
3827 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3828 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3829 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3830 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3831 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3832 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3833 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3834 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3835 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3836 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3837 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3838 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3839 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3840 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3841 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3842 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3843 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3844 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3845 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3846 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3847 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3848 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3849 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3850 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3851 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3852 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3853 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3854 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3855 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3856 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3857 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3858 { "IOMEGA ZIP 250 ATAPI Floppy",
3859 NULL, ATA_HORKAGE_NODMA },
3860
3861 /* Weird ATAPI devices */
3862 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3863
3864 /* Devices we expect to fail diagnostics */
3865
3866 /* Devices where NCQ should be avoided */
3867 /* NCQ is slow */
3868 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3869 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3870 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3871 /* NCQ is broken */
3872 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3873 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3874 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3875 ATA_HORKAGE_NONCQ },
3876
3877 /* Blacklist entries taken from Silicon Image 3124/3132
3878 Windows driver .inf file - also several Linux problem reports */
3879 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3880 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3881 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3882 /* Drives which do spurious command completion */
3883 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3884 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3885 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3886 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3887 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3888 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3889 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
3890 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3891
3892 /* devices which puke on READ_NATIVE_MAX */
3893 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3894 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3895 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3896 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3897
3898 /* End Marker */
3899 { }
3900 };
3901
3902 int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3903 {
3904 const char *p;
3905 int len;
3906
3907 /*
3908 * check for trailing wildcard: *\0
3909 */
3910 p = strchr(patt, wildchar);
3911 if (p && ((*(p + 1)) == 0))
3912 len = p - patt;
3913 else
3914 len = strlen(name);
3915
3916 return strncmp(patt, name, len);
3917 }
3918
3919 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3920 {
3921 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3922 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3923 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3924
3925 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3926 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3927
3928 while (ad->model_num) {
3929 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3930 if (ad->model_rev == NULL)
3931 return ad->horkage;
3932 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3933 return ad->horkage;
3934 }
3935 ad++;
3936 }
3937 return 0;
3938 }
3939
3940 static int ata_dma_blacklisted(const struct ata_device *dev)
3941 {
3942 /* We don't support polling DMA.
3943 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3944 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3945 */
3946 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3947 (dev->flags & ATA_DFLAG_CDB_INTR))
3948 return 1;
3949 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3950 }
3951
3952 /**
3953 * ata_dev_xfermask - Compute supported xfermask of the given device
3954 * @dev: Device to compute xfermask for
3955 *
3956 * Compute supported xfermask of @dev and store it in
3957 * dev->*_mask. This function is responsible for applying all
3958 * known limits including host controller limits, device
3959 * blacklist, etc...
3960 *
3961 * LOCKING:
3962 * None.
3963 */
3964 static void ata_dev_xfermask(struct ata_device *dev)
3965 {
3966 struct ata_link *link = dev->link;
3967 struct ata_port *ap = link->ap;
3968 struct ata_host *host = ap->host;
3969 unsigned long xfer_mask;
3970
3971 /* controller modes available */
3972 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3973 ap->mwdma_mask, ap->udma_mask);
3974
3975 /* drive modes available */
3976 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3977 dev->mwdma_mask, dev->udma_mask);
3978 xfer_mask &= ata_id_xfermask(dev->id);
3979
3980 /*
3981 * CFA Advanced TrueIDE timings are not allowed on a shared
3982 * cable
3983 */
3984 if (ata_dev_pair(dev)) {
3985 /* No PIO5 or PIO6 */
3986 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3987 /* No MWDMA3 or MWDMA 4 */
3988 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3989 }
3990
3991 if (ata_dma_blacklisted(dev)) {
3992 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3993 ata_dev_printk(dev, KERN_WARNING,
3994 "device is on DMA blacklist, disabling DMA\n");
3995 }
3996
3997 if ((host->flags & ATA_HOST_SIMPLEX) &&
3998 host->simplex_claimed && host->simplex_claimed != ap) {
3999 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4000 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4001 "other device, disabling DMA\n");
4002 }
4003
4004 if (ap->flags & ATA_FLAG_NO_IORDY)
4005 xfer_mask &= ata_pio_mask_no_iordy(dev);
4006
4007 if (ap->ops->mode_filter)
4008 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4009
4010 /* Apply cable rule here. Don't apply it early because when
4011 * we handle hot plug the cable type can itself change.
4012 * Check this last so that we know if the transfer rate was
4013 * solely limited by the cable.
4014 * Unknown or 80 wire cables reported host side are checked
4015 * drive side as well. Cases where we know a 40wire cable
4016 * is used safely for 80 are not checked here.
4017 */
4018 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4019 /* UDMA/44 or higher would be available */
4020 if((ap->cbl == ATA_CBL_PATA40) ||
4021 (ata_drive_40wire(dev->id) &&
4022 (ap->cbl == ATA_CBL_PATA_UNK ||
4023 ap->cbl == ATA_CBL_PATA80))) {
4024 ata_dev_printk(dev, KERN_WARNING,
4025 "limited to UDMA/33 due to 40-wire cable\n");
4026 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4027 }
4028
4029 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4030 &dev->mwdma_mask, &dev->udma_mask);
4031 }
4032
4033 /**
4034 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4035 * @dev: Device to which command will be sent
4036 *
4037 * Issue SET FEATURES - XFER MODE command to device @dev
4038 * on port @ap.
4039 *
4040 * LOCKING:
4041 * PCI/etc. bus probe sem.
4042 *
4043 * RETURNS:
4044 * 0 on success, AC_ERR_* mask otherwise.
4045 */
4046
4047 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4048 {
4049 struct ata_taskfile tf;
4050 unsigned int err_mask;
4051
4052 /* set up set-features taskfile */
4053 DPRINTK("set features - xfer mode\n");
4054
4055 /* Some controllers and ATAPI devices show flaky interrupt
4056 * behavior after setting xfer mode. Use polling instead.
4057 */
4058 ata_tf_init(dev, &tf);
4059 tf.command = ATA_CMD_SET_FEATURES;
4060 tf.feature = SETFEATURES_XFER;
4061 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4062 tf.protocol = ATA_PROT_NODATA;
4063 tf.nsect = dev->xfer_mode;
4064
4065 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4066
4067 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4068 return err_mask;
4069 }
4070
4071 /**
4072 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4073 * @dev: Device to which command will be sent
4074 * @enable: Whether to enable or disable the feature
4075 *
4076 * Issue SET FEATURES - SATA FEATURES command to device @dev
4077 * on port @ap with sector count set to indicate Asynchronous
4078 * Notification feature
4079 *
4080 * LOCKING:
4081 * PCI/etc. bus probe sem.
4082 *
4083 * RETURNS:
4084 * 0 on success, AC_ERR_* mask otherwise.
4085 */
4086 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4087 {
4088 struct ata_taskfile tf;
4089 unsigned int err_mask;
4090
4091 /* set up set-features taskfile */
4092 DPRINTK("set features - SATA features\n");
4093
4094 ata_tf_init(dev, &tf);
4095 tf.command = ATA_CMD_SET_FEATURES;
4096 tf.feature = enable;
4097 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4098 tf.protocol = ATA_PROT_NODATA;
4099 tf.nsect = SATA_AN;
4100
4101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4102
4103 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4104 return err_mask;
4105 }
4106
4107 /**
4108 * ata_dev_init_params - Issue INIT DEV PARAMS command
4109 * @dev: Device to which command will be sent
4110 * @heads: Number of heads (taskfile parameter)
4111 * @sectors: Number of sectors (taskfile parameter)
4112 *
4113 * LOCKING:
4114 * Kernel thread context (may sleep)
4115 *
4116 * RETURNS:
4117 * 0 on success, AC_ERR_* mask otherwise.
4118 */
4119 static unsigned int ata_dev_init_params(struct ata_device *dev,
4120 u16 heads, u16 sectors)
4121 {
4122 struct ata_taskfile tf;
4123 unsigned int err_mask;
4124
4125 /* Number of sectors per track 1-255. Number of heads 1-16 */
4126 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4127 return AC_ERR_INVALID;
4128
4129 /* set up init dev params taskfile */
4130 DPRINTK("init dev params \n");
4131
4132 ata_tf_init(dev, &tf);
4133 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4134 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4135 tf.protocol = ATA_PROT_NODATA;
4136 tf.nsect = sectors;
4137 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4138
4139 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4140 /* A clean abort indicates an original or just out of spec drive
4141 and we should continue as we issue the setup based on the
4142 drive reported working geometry */
4143 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4144 err_mask = 0;
4145
4146 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4147 return err_mask;
4148 }
4149
4150 /**
4151 * ata_sg_clean - Unmap DMA memory associated with command
4152 * @qc: Command containing DMA memory to be released
4153 *
4154 * Unmap all mapped DMA memory associated with this command.
4155 *
4156 * LOCKING:
4157 * spin_lock_irqsave(host lock)
4158 */
4159 void ata_sg_clean(struct ata_queued_cmd *qc)
4160 {
4161 struct ata_port *ap = qc->ap;
4162 struct scatterlist *sg = qc->__sg;
4163 int dir = qc->dma_dir;
4164 void *pad_buf = NULL;
4165
4166 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4167 WARN_ON(sg == NULL);
4168
4169 if (qc->flags & ATA_QCFLAG_SINGLE)
4170 WARN_ON(qc->n_elem > 1);
4171
4172 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4173
4174 /* if we padded the buffer out to 32-bit bound, and data
4175 * xfer direction is from-device, we must copy from the
4176 * pad buffer back into the supplied buffer
4177 */
4178 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4179 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4180
4181 if (qc->flags & ATA_QCFLAG_SG) {
4182 if (qc->n_elem)
4183 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4184 /* restore last sg */
4185 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4186 if (pad_buf) {
4187 struct scatterlist *psg = &qc->pad_sgent;
4188 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4189 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4190 kunmap_atomic(addr, KM_IRQ0);
4191 }
4192 } else {
4193 if (qc->n_elem)
4194 dma_unmap_single(ap->dev,
4195 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4196 dir);
4197 /* restore sg */
4198 sg->length += qc->pad_len;
4199 if (pad_buf)
4200 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4201 pad_buf, qc->pad_len);
4202 }
4203
4204 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4205 qc->__sg = NULL;
4206 }
4207
4208 /**
4209 * ata_fill_sg - Fill PCI IDE PRD table
4210 * @qc: Metadata associated with taskfile to be transferred
4211 *
4212 * Fill PCI IDE PRD (scatter-gather) table with segments
4213 * associated with the current disk command.
4214 *
4215 * LOCKING:
4216 * spin_lock_irqsave(host lock)
4217 *
4218 */
4219 static void ata_fill_sg(struct ata_queued_cmd *qc)
4220 {
4221 struct ata_port *ap = qc->ap;
4222 struct scatterlist *sg;
4223 unsigned int idx;
4224
4225 WARN_ON(qc->__sg == NULL);
4226 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4227
4228 idx = 0;
4229 ata_for_each_sg(sg, qc) {
4230 u32 addr, offset;
4231 u32 sg_len, len;
4232
4233 /* determine if physical DMA addr spans 64K boundary.
4234 * Note h/w doesn't support 64-bit, so we unconditionally
4235 * truncate dma_addr_t to u32.
4236 */
4237 addr = (u32) sg_dma_address(sg);
4238 sg_len = sg_dma_len(sg);
4239
4240 while (sg_len) {
4241 offset = addr & 0xffff;
4242 len = sg_len;
4243 if ((offset + sg_len) > 0x10000)
4244 len = 0x10000 - offset;
4245
4246 ap->prd[idx].addr = cpu_to_le32(addr);
4247 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4248 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4249
4250 idx++;
4251 sg_len -= len;
4252 addr += len;
4253 }
4254 }
4255
4256 if (idx)
4257 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4258 }
4259
4260 /**
4261 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4262 * @qc: Metadata associated with taskfile to be transferred
4263 *
4264 * Fill PCI IDE PRD (scatter-gather) table with segments
4265 * associated with the current disk command. Perform the fill
4266 * so that we avoid writing any length 64K records for
4267 * controllers that don't follow the spec.
4268 *
4269 * LOCKING:
4270 * spin_lock_irqsave(host lock)
4271 *
4272 */
4273 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4274 {
4275 struct ata_port *ap = qc->ap;
4276 struct scatterlist *sg;
4277 unsigned int idx;
4278
4279 WARN_ON(qc->__sg == NULL);
4280 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4281
4282 idx = 0;
4283 ata_for_each_sg(sg, qc) {
4284 u32 addr, offset;
4285 u32 sg_len, len, blen;
4286
4287 /* determine if physical DMA addr spans 64K boundary.
4288 * Note h/w doesn't support 64-bit, so we unconditionally
4289 * truncate dma_addr_t to u32.
4290 */
4291 addr = (u32) sg_dma_address(sg);
4292 sg_len = sg_dma_len(sg);
4293
4294 while (sg_len) {
4295 offset = addr & 0xffff;
4296 len = sg_len;
4297 if ((offset + sg_len) > 0x10000)
4298 len = 0x10000 - offset;
4299
4300 blen = len & 0xffff;
4301 ap->prd[idx].addr = cpu_to_le32(addr);
4302 if (blen == 0) {
4303 /* Some PATA chipsets like the CS5530 can't
4304 cope with 0x0000 meaning 64K as the spec says */
4305 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4306 blen = 0x8000;
4307 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4308 }
4309 ap->prd[idx].flags_len = cpu_to_le32(blen);
4310 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4311
4312 idx++;
4313 sg_len -= len;
4314 addr += len;
4315 }
4316 }
4317
4318 if (idx)
4319 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4320 }
4321
4322 /**
4323 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4324 * @qc: Metadata associated with taskfile to check
4325 *
4326 * Allow low-level driver to filter ATA PACKET commands, returning
4327 * a status indicating whether or not it is OK to use DMA for the
4328 * supplied PACKET command.
4329 *
4330 * LOCKING:
4331 * spin_lock_irqsave(host lock)
4332 *
4333 * RETURNS: 0 when ATAPI DMA can be used
4334 * nonzero otherwise
4335 */
4336 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4337 {
4338 struct ata_port *ap = qc->ap;
4339
4340 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4341 * few ATAPI devices choke on such DMA requests.
4342 */
4343 if (unlikely(qc->nbytes & 15))
4344 return 1;
4345
4346 if (ap->ops->check_atapi_dma)
4347 return ap->ops->check_atapi_dma(qc);
4348
4349 return 0;
4350 }
4351
4352 /**
4353 * ata_std_qc_defer - Check whether a qc needs to be deferred
4354 * @qc: ATA command in question
4355 *
4356 * Non-NCQ commands cannot run with any other command, NCQ or
4357 * not. As upper layer only knows the queue depth, we are
4358 * responsible for maintaining exclusion. This function checks
4359 * whether a new command @qc can be issued.
4360 *
4361 * LOCKING:
4362 * spin_lock_irqsave(host lock)
4363 *
4364 * RETURNS:
4365 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4366 */
4367 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4368 {
4369 struct ata_link *link = qc->dev->link;
4370
4371 if (qc->tf.protocol == ATA_PROT_NCQ) {
4372 if (!ata_tag_valid(link->active_tag))
4373 return 0;
4374 } else {
4375 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4376 return 0;
4377 }
4378
4379 return ATA_DEFER_LINK;
4380 }
4381
4382 /**
4383 * ata_qc_prep - Prepare taskfile for submission
4384 * @qc: Metadata associated with taskfile to be prepared
4385 *
4386 * Prepare ATA taskfile for submission.
4387 *
4388 * LOCKING:
4389 * spin_lock_irqsave(host lock)
4390 */
4391 void ata_qc_prep(struct ata_queued_cmd *qc)
4392 {
4393 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4394 return;
4395
4396 ata_fill_sg(qc);
4397 }
4398
4399 /**
4400 * ata_dumb_qc_prep - Prepare taskfile for submission
4401 * @qc: Metadata associated with taskfile to be prepared
4402 *
4403 * Prepare ATA taskfile for submission.
4404 *
4405 * LOCKING:
4406 * spin_lock_irqsave(host lock)
4407 */
4408 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4409 {
4410 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4411 return;
4412
4413 ata_fill_sg_dumb(qc);
4414 }
4415
4416 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4417
4418 /**
4419 * ata_sg_init_one - Associate command with memory buffer
4420 * @qc: Command to be associated
4421 * @buf: Memory buffer
4422 * @buflen: Length of memory buffer, in bytes.
4423 *
4424 * Initialize the data-related elements of queued_cmd @qc
4425 * to point to a single memory buffer, @buf of byte length @buflen.
4426 *
4427 * LOCKING:
4428 * spin_lock_irqsave(host lock)
4429 */
4430
4431 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4432 {
4433 qc->flags |= ATA_QCFLAG_SINGLE;
4434
4435 qc->__sg = &qc->sgent;
4436 qc->n_elem = 1;
4437 qc->orig_n_elem = 1;
4438 qc->buf_virt = buf;
4439 qc->nbytes = buflen;
4440
4441 sg_init_one(&qc->sgent, buf, buflen);
4442 }
4443
4444 /**
4445 * ata_sg_init - Associate command with scatter-gather table.
4446 * @qc: Command to be associated
4447 * @sg: Scatter-gather table.
4448 * @n_elem: Number of elements in s/g table.
4449 *
4450 * Initialize the data-related elements of queued_cmd @qc
4451 * to point to a scatter-gather table @sg, containing @n_elem
4452 * elements.
4453 *
4454 * LOCKING:
4455 * spin_lock_irqsave(host lock)
4456 */
4457
4458 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4459 unsigned int n_elem)
4460 {
4461 qc->flags |= ATA_QCFLAG_SG;
4462 qc->__sg = sg;
4463 qc->n_elem = n_elem;
4464 qc->orig_n_elem = n_elem;
4465 }
4466
4467 /**
4468 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4469 * @qc: Command with memory buffer to be mapped.
4470 *
4471 * DMA-map the memory buffer associated with queued_cmd @qc.
4472 *
4473 * LOCKING:
4474 * spin_lock_irqsave(host lock)
4475 *
4476 * RETURNS:
4477 * Zero on success, negative on error.
4478 */
4479
4480 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4481 {
4482 struct ata_port *ap = qc->ap;
4483 int dir = qc->dma_dir;
4484 struct scatterlist *sg = qc->__sg;
4485 dma_addr_t dma_address;
4486 int trim_sg = 0;
4487
4488 /* we must lengthen transfers to end on a 32-bit boundary */
4489 qc->pad_len = sg->length & 3;
4490 if (qc->pad_len) {
4491 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4492 struct scatterlist *psg = &qc->pad_sgent;
4493
4494 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4495
4496 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4497
4498 if (qc->tf.flags & ATA_TFLAG_WRITE)
4499 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4500 qc->pad_len);
4501
4502 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4503 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4504 /* trim sg */
4505 sg->length -= qc->pad_len;
4506 if (sg->length == 0)
4507 trim_sg = 1;
4508
4509 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4510 sg->length, qc->pad_len);
4511 }
4512
4513 if (trim_sg) {
4514 qc->n_elem--;
4515 goto skip_map;
4516 }
4517
4518 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4519 sg->length, dir);
4520 if (dma_mapping_error(dma_address)) {
4521 /* restore sg */
4522 sg->length += qc->pad_len;
4523 return -1;
4524 }
4525
4526 sg_dma_address(sg) = dma_address;
4527 sg_dma_len(sg) = sg->length;
4528
4529 skip_map:
4530 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4531 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4532
4533 return 0;
4534 }
4535
4536 /**
4537 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4538 * @qc: Command with scatter-gather table to be mapped.
4539 *
4540 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4541 *
4542 * LOCKING:
4543 * spin_lock_irqsave(host lock)
4544 *
4545 * RETURNS:
4546 * Zero on success, negative on error.
4547 *
4548 */
4549
4550 static int ata_sg_setup(struct ata_queued_cmd *qc)
4551 {
4552 struct ata_port *ap = qc->ap;
4553 struct scatterlist *sg = qc->__sg;
4554 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4555 int n_elem, pre_n_elem, dir, trim_sg = 0;
4556
4557 VPRINTK("ENTER, ata%u\n", ap->print_id);
4558 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4559
4560 /* we must lengthen transfers to end on a 32-bit boundary */
4561 qc->pad_len = lsg->length & 3;
4562 if (qc->pad_len) {
4563 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4564 struct scatterlist *psg = &qc->pad_sgent;
4565 unsigned int offset;
4566
4567 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4568
4569 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4570
4571 /*
4572 * psg->page/offset are used to copy to-be-written
4573 * data in this function or read data in ata_sg_clean.
4574 */
4575 offset = lsg->offset + lsg->length - qc->pad_len;
4576 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4577 psg->offset = offset_in_page(offset);
4578
4579 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4580 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4581 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4582 kunmap_atomic(addr, KM_IRQ0);
4583 }
4584
4585 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4586 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4587 /* trim last sg */
4588 lsg->length -= qc->pad_len;
4589 if (lsg->length == 0)
4590 trim_sg = 1;
4591
4592 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4593 qc->n_elem - 1, lsg->length, qc->pad_len);
4594 }
4595
4596 pre_n_elem = qc->n_elem;
4597 if (trim_sg && pre_n_elem)
4598 pre_n_elem--;
4599
4600 if (!pre_n_elem) {
4601 n_elem = 0;
4602 goto skip_map;
4603 }
4604
4605 dir = qc->dma_dir;
4606 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4607 if (n_elem < 1) {
4608 /* restore last sg */
4609 lsg->length += qc->pad_len;
4610 return -1;
4611 }
4612
4613 DPRINTK("%d sg elements mapped\n", n_elem);
4614
4615 skip_map:
4616 qc->n_elem = n_elem;
4617
4618 return 0;
4619 }
4620
4621 /**
4622 * swap_buf_le16 - swap halves of 16-bit words in place
4623 * @buf: Buffer to swap
4624 * @buf_words: Number of 16-bit words in buffer.
4625 *
4626 * Swap halves of 16-bit words if needed to convert from
4627 * little-endian byte order to native cpu byte order, or
4628 * vice-versa.
4629 *
4630 * LOCKING:
4631 * Inherited from caller.
4632 */
4633 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4634 {
4635 #ifdef __BIG_ENDIAN
4636 unsigned int i;
4637
4638 for (i = 0; i < buf_words; i++)
4639 buf[i] = le16_to_cpu(buf[i]);
4640 #endif /* __BIG_ENDIAN */
4641 }
4642
4643 /**
4644 * ata_data_xfer - Transfer data by PIO
4645 * @adev: device to target
4646 * @buf: data buffer
4647 * @buflen: buffer length
4648 * @write_data: read/write
4649 *
4650 * Transfer data from/to the device data register by PIO.
4651 *
4652 * LOCKING:
4653 * Inherited from caller.
4654 */
4655 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4656 unsigned int buflen, int write_data)
4657 {
4658 struct ata_port *ap = adev->link->ap;
4659 unsigned int words = buflen >> 1;
4660
4661 /* Transfer multiple of 2 bytes */
4662 if (write_data)
4663 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4664 else
4665 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4666
4667 /* Transfer trailing 1 byte, if any. */
4668 if (unlikely(buflen & 0x01)) {
4669 u16 align_buf[1] = { 0 };
4670 unsigned char *trailing_buf = buf + buflen - 1;
4671
4672 if (write_data) {
4673 memcpy(align_buf, trailing_buf, 1);
4674 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4675 } else {
4676 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4677 memcpy(trailing_buf, align_buf, 1);
4678 }
4679 }
4680 }
4681
4682 /**
4683 * ata_data_xfer_noirq - Transfer data by PIO
4684 * @adev: device to target
4685 * @buf: data buffer
4686 * @buflen: buffer length
4687 * @write_data: read/write
4688 *
4689 * Transfer data from/to the device data register by PIO. Do the
4690 * transfer with interrupts disabled.
4691 *
4692 * LOCKING:
4693 * Inherited from caller.
4694 */
4695 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4696 unsigned int buflen, int write_data)
4697 {
4698 unsigned long flags;
4699 local_irq_save(flags);
4700 ata_data_xfer(adev, buf, buflen, write_data);
4701 local_irq_restore(flags);
4702 }
4703
4704
4705 /**
4706 * ata_pio_sector - Transfer a sector of data.
4707 * @qc: Command on going
4708 *
4709 * Transfer qc->sect_size bytes of data from/to the ATA device.
4710 *
4711 * LOCKING:
4712 * Inherited from caller.
4713 */
4714
4715 static void ata_pio_sector(struct ata_queued_cmd *qc)
4716 {
4717 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4718 struct scatterlist *sg = qc->__sg;
4719 struct ata_port *ap = qc->ap;
4720 struct page *page;
4721 unsigned int offset;
4722 unsigned char *buf;
4723
4724 if (qc->curbytes == qc->nbytes - qc->sect_size)
4725 ap->hsm_task_state = HSM_ST_LAST;
4726
4727 page = sg[qc->cursg].page;
4728 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4729
4730 /* get the current page and offset */
4731 page = nth_page(page, (offset >> PAGE_SHIFT));
4732 offset %= PAGE_SIZE;
4733
4734 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4735
4736 if (PageHighMem(page)) {
4737 unsigned long flags;
4738
4739 /* FIXME: use a bounce buffer */
4740 local_irq_save(flags);
4741 buf = kmap_atomic(page, KM_IRQ0);
4742
4743 /* do the actual data transfer */
4744 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4745
4746 kunmap_atomic(buf, KM_IRQ0);
4747 local_irq_restore(flags);
4748 } else {
4749 buf = page_address(page);
4750 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4751 }
4752
4753 qc->curbytes += qc->sect_size;
4754 qc->cursg_ofs += qc->sect_size;
4755
4756 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4757 qc->cursg++;
4758 qc->cursg_ofs = 0;
4759 }
4760 }
4761
4762 /**
4763 * ata_pio_sectors - Transfer one or many sectors.
4764 * @qc: Command on going
4765 *
4766 * Transfer one or many sectors of data from/to the
4767 * ATA device for the DRQ request.
4768 *
4769 * LOCKING:
4770 * Inherited from caller.
4771 */
4772
4773 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4774 {
4775 if (is_multi_taskfile(&qc->tf)) {
4776 /* READ/WRITE MULTIPLE */
4777 unsigned int nsect;
4778
4779 WARN_ON(qc->dev->multi_count == 0);
4780
4781 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4782 qc->dev->multi_count);
4783 while (nsect--)
4784 ata_pio_sector(qc);
4785 } else
4786 ata_pio_sector(qc);
4787
4788 ata_altstatus(qc->ap); /* flush */
4789 }
4790
4791 /**
4792 * atapi_send_cdb - Write CDB bytes to hardware
4793 * @ap: Port to which ATAPI device is attached.
4794 * @qc: Taskfile currently active
4795 *
4796 * When device has indicated its readiness to accept
4797 * a CDB, this function is called. Send the CDB.
4798 *
4799 * LOCKING:
4800 * caller.
4801 */
4802
4803 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4804 {
4805 /* send SCSI cdb */
4806 DPRINTK("send cdb\n");
4807 WARN_ON(qc->dev->cdb_len < 12);
4808
4809 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4810 ata_altstatus(ap); /* flush */
4811
4812 switch (qc->tf.protocol) {
4813 case ATA_PROT_ATAPI:
4814 ap->hsm_task_state = HSM_ST;
4815 break;
4816 case ATA_PROT_ATAPI_NODATA:
4817 ap->hsm_task_state = HSM_ST_LAST;
4818 break;
4819 case ATA_PROT_ATAPI_DMA:
4820 ap->hsm_task_state = HSM_ST_LAST;
4821 /* initiate bmdma */
4822 ap->ops->bmdma_start(qc);
4823 break;
4824 }
4825 }
4826
4827 /**
4828 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4829 * @qc: Command on going
4830 * @bytes: number of bytes
4831 *
4832 * Transfer Transfer data from/to the ATAPI device.
4833 *
4834 * LOCKING:
4835 * Inherited from caller.
4836 *
4837 */
4838
4839 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4840 {
4841 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4842 struct scatterlist *sg = qc->__sg;
4843 struct ata_port *ap = qc->ap;
4844 struct page *page;
4845 unsigned char *buf;
4846 unsigned int offset, count;
4847
4848 if (qc->curbytes + bytes >= qc->nbytes)
4849 ap->hsm_task_state = HSM_ST_LAST;
4850
4851 next_sg:
4852 if (unlikely(qc->cursg >= qc->n_elem)) {
4853 /*
4854 * The end of qc->sg is reached and the device expects
4855 * more data to transfer. In order not to overrun qc->sg
4856 * and fulfill length specified in the byte count register,
4857 * - for read case, discard trailing data from the device
4858 * - for write case, padding zero data to the device
4859 */
4860 u16 pad_buf[1] = { 0 };
4861 unsigned int words = bytes >> 1;
4862 unsigned int i;
4863
4864 if (words) /* warning if bytes > 1 */
4865 ata_dev_printk(qc->dev, KERN_WARNING,
4866 "%u bytes trailing data\n", bytes);
4867
4868 for (i = 0; i < words; i++)
4869 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4870
4871 ap->hsm_task_state = HSM_ST_LAST;
4872 return;
4873 }
4874
4875 sg = &qc->__sg[qc->cursg];
4876
4877 page = sg->page;
4878 offset = sg->offset + qc->cursg_ofs;
4879
4880 /* get the current page and offset */
4881 page = nth_page(page, (offset >> PAGE_SHIFT));
4882 offset %= PAGE_SIZE;
4883
4884 /* don't overrun current sg */
4885 count = min(sg->length - qc->cursg_ofs, bytes);
4886
4887 /* don't cross page boundaries */
4888 count = min(count, (unsigned int)PAGE_SIZE - offset);
4889
4890 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4891
4892 if (PageHighMem(page)) {
4893 unsigned long flags;
4894
4895 /* FIXME: use bounce buffer */
4896 local_irq_save(flags);
4897 buf = kmap_atomic(page, KM_IRQ0);
4898
4899 /* do the actual data transfer */
4900 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4901
4902 kunmap_atomic(buf, KM_IRQ0);
4903 local_irq_restore(flags);
4904 } else {
4905 buf = page_address(page);
4906 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4907 }
4908
4909 bytes -= count;
4910 qc->curbytes += count;
4911 qc->cursg_ofs += count;
4912
4913 if (qc->cursg_ofs == sg->length) {
4914 qc->cursg++;
4915 qc->cursg_ofs = 0;
4916 }
4917
4918 if (bytes)
4919 goto next_sg;
4920 }
4921
4922 /**
4923 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4924 * @qc: Command on going
4925 *
4926 * Transfer Transfer data from/to the ATAPI device.
4927 *
4928 * LOCKING:
4929 * Inherited from caller.
4930 */
4931
4932 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4933 {
4934 struct ata_port *ap = qc->ap;
4935 struct ata_device *dev = qc->dev;
4936 unsigned int ireason, bc_lo, bc_hi, bytes;
4937 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4938
4939 /* Abuse qc->result_tf for temp storage of intermediate TF
4940 * here to save some kernel stack usage.
4941 * For normal completion, qc->result_tf is not relevant. For
4942 * error, qc->result_tf is later overwritten by ata_qc_complete().
4943 * So, the correctness of qc->result_tf is not affected.
4944 */
4945 ap->ops->tf_read(ap, &qc->result_tf);
4946 ireason = qc->result_tf.nsect;
4947 bc_lo = qc->result_tf.lbam;
4948 bc_hi = qc->result_tf.lbah;
4949 bytes = (bc_hi << 8) | bc_lo;
4950
4951 /* shall be cleared to zero, indicating xfer of data */
4952 if (ireason & (1 << 0))
4953 goto err_out;
4954
4955 /* make sure transfer direction matches expected */
4956 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4957 if (do_write != i_write)
4958 goto err_out;
4959
4960 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4961
4962 __atapi_pio_bytes(qc, bytes);
4963 ata_altstatus(ap); /* flush */
4964
4965 return;
4966
4967 err_out:
4968 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4969 qc->err_mask |= AC_ERR_HSM;
4970 ap->hsm_task_state = HSM_ST_ERR;
4971 }
4972
4973 /**
4974 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4975 * @ap: the target ata_port
4976 * @qc: qc on going
4977 *
4978 * RETURNS:
4979 * 1 if ok in workqueue, 0 otherwise.
4980 */
4981
4982 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4983 {
4984 if (qc->tf.flags & ATA_TFLAG_POLLING)
4985 return 1;
4986
4987 if (ap->hsm_task_state == HSM_ST_FIRST) {
4988 if (qc->tf.protocol == ATA_PROT_PIO &&
4989 (qc->tf.flags & ATA_TFLAG_WRITE))
4990 return 1;
4991
4992 if (is_atapi_taskfile(&qc->tf) &&
4993 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4994 return 1;
4995 }
4996
4997 return 0;
4998 }
4999
5000 /**
5001 * ata_hsm_qc_complete - finish a qc running on standard HSM
5002 * @qc: Command to complete
5003 * @in_wq: 1 if called from workqueue, 0 otherwise
5004 *
5005 * Finish @qc which is running on standard HSM.
5006 *
5007 * LOCKING:
5008 * If @in_wq is zero, spin_lock_irqsave(host lock).
5009 * Otherwise, none on entry and grabs host lock.
5010 */
5011 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5012 {
5013 struct ata_port *ap = qc->ap;
5014 unsigned long flags;
5015
5016 if (ap->ops->error_handler) {
5017 if (in_wq) {
5018 spin_lock_irqsave(ap->lock, flags);
5019
5020 /* EH might have kicked in while host lock is
5021 * released.
5022 */
5023 qc = ata_qc_from_tag(ap, qc->tag);
5024 if (qc) {
5025 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5026 ap->ops->irq_on(ap);
5027 ata_qc_complete(qc);
5028 } else
5029 ata_port_freeze(ap);
5030 }
5031
5032 spin_unlock_irqrestore(ap->lock, flags);
5033 } else {
5034 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5035 ata_qc_complete(qc);
5036 else
5037 ata_port_freeze(ap);
5038 }
5039 } else {
5040 if (in_wq) {
5041 spin_lock_irqsave(ap->lock, flags);
5042 ap->ops->irq_on(ap);
5043 ata_qc_complete(qc);
5044 spin_unlock_irqrestore(ap->lock, flags);
5045 } else
5046 ata_qc_complete(qc);
5047 }
5048 }
5049
5050 /**
5051 * ata_hsm_move - move the HSM to the next state.
5052 * @ap: the target ata_port
5053 * @qc: qc on going
5054 * @status: current device status
5055 * @in_wq: 1 if called from workqueue, 0 otherwise
5056 *
5057 * RETURNS:
5058 * 1 when poll next status needed, 0 otherwise.
5059 */
5060 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5061 u8 status, int in_wq)
5062 {
5063 unsigned long flags = 0;
5064 int poll_next;
5065
5066 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5067
5068 /* Make sure ata_qc_issue_prot() does not throw things
5069 * like DMA polling into the workqueue. Notice that
5070 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5071 */
5072 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5073
5074 fsm_start:
5075 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5076 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5077
5078 switch (ap->hsm_task_state) {
5079 case HSM_ST_FIRST:
5080 /* Send first data block or PACKET CDB */
5081
5082 /* If polling, we will stay in the work queue after
5083 * sending the data. Otherwise, interrupt handler
5084 * takes over after sending the data.
5085 */
5086 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5087
5088 /* check device status */
5089 if (unlikely((status & ATA_DRQ) == 0)) {
5090 /* handle BSY=0, DRQ=0 as error */
5091 if (likely(status & (ATA_ERR | ATA_DF)))
5092 /* device stops HSM for abort/error */
5093 qc->err_mask |= AC_ERR_DEV;
5094 else
5095 /* HSM violation. Let EH handle this */
5096 qc->err_mask |= AC_ERR_HSM;
5097
5098 ap->hsm_task_state = HSM_ST_ERR;
5099 goto fsm_start;
5100 }
5101
5102 /* Device should not ask for data transfer (DRQ=1)
5103 * when it finds something wrong.
5104 * We ignore DRQ here and stop the HSM by
5105 * changing hsm_task_state to HSM_ST_ERR and
5106 * let the EH abort the command or reset the device.
5107 */
5108 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5109 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5110 "error, dev_stat 0x%X\n", status);
5111 qc->err_mask |= AC_ERR_HSM;
5112 ap->hsm_task_state = HSM_ST_ERR;
5113 goto fsm_start;
5114 }
5115
5116 /* Send the CDB (atapi) or the first data block (ata pio out).
5117 * During the state transition, interrupt handler shouldn't
5118 * be invoked before the data transfer is complete and
5119 * hsm_task_state is changed. Hence, the following locking.
5120 */
5121 if (in_wq)
5122 spin_lock_irqsave(ap->lock, flags);
5123
5124 if (qc->tf.protocol == ATA_PROT_PIO) {
5125 /* PIO data out protocol.
5126 * send first data block.
5127 */
5128
5129 /* ata_pio_sectors() might change the state
5130 * to HSM_ST_LAST. so, the state is changed here
5131 * before ata_pio_sectors().
5132 */
5133 ap->hsm_task_state = HSM_ST;
5134 ata_pio_sectors(qc);
5135 } else
5136 /* send CDB */
5137 atapi_send_cdb(ap, qc);
5138
5139 if (in_wq)
5140 spin_unlock_irqrestore(ap->lock, flags);
5141
5142 /* if polling, ata_pio_task() handles the rest.
5143 * otherwise, interrupt handler takes over from here.
5144 */
5145 break;
5146
5147 case HSM_ST:
5148 /* complete command or read/write the data register */
5149 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5150 /* ATAPI PIO protocol */
5151 if ((status & ATA_DRQ) == 0) {
5152 /* No more data to transfer or device error.
5153 * Device error will be tagged in HSM_ST_LAST.
5154 */
5155 ap->hsm_task_state = HSM_ST_LAST;
5156 goto fsm_start;
5157 }
5158
5159 /* Device should not ask for data transfer (DRQ=1)
5160 * when it finds something wrong.
5161 * We ignore DRQ here and stop the HSM by
5162 * changing hsm_task_state to HSM_ST_ERR and
5163 * let the EH abort the command or reset the device.
5164 */
5165 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5166 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5167 "device error, dev_stat 0x%X\n",
5168 status);
5169 qc->err_mask |= AC_ERR_HSM;
5170 ap->hsm_task_state = HSM_ST_ERR;
5171 goto fsm_start;
5172 }
5173
5174 atapi_pio_bytes(qc);
5175
5176 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5177 /* bad ireason reported by device */
5178 goto fsm_start;
5179
5180 } else {
5181 /* ATA PIO protocol */
5182 if (unlikely((status & ATA_DRQ) == 0)) {
5183 /* handle BSY=0, DRQ=0 as error */
5184 if (likely(status & (ATA_ERR | ATA_DF)))
5185 /* device stops HSM for abort/error */
5186 qc->err_mask |= AC_ERR_DEV;
5187 else
5188 /* HSM violation. Let EH handle this.
5189 * Phantom devices also trigger this
5190 * condition. Mark hint.
5191 */
5192 qc->err_mask |= AC_ERR_HSM |
5193 AC_ERR_NODEV_HINT;
5194
5195 ap->hsm_task_state = HSM_ST_ERR;
5196 goto fsm_start;
5197 }
5198
5199 /* For PIO reads, some devices may ask for
5200 * data transfer (DRQ=1) alone with ERR=1.
5201 * We respect DRQ here and transfer one
5202 * block of junk data before changing the
5203 * hsm_task_state to HSM_ST_ERR.
5204 *
5205 * For PIO writes, ERR=1 DRQ=1 doesn't make
5206 * sense since the data block has been
5207 * transferred to the device.
5208 */
5209 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5210 /* data might be corrputed */
5211 qc->err_mask |= AC_ERR_DEV;
5212
5213 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5214 ata_pio_sectors(qc);
5215 status = ata_wait_idle(ap);
5216 }
5217
5218 if (status & (ATA_BUSY | ATA_DRQ))
5219 qc->err_mask |= AC_ERR_HSM;
5220
5221 /* ata_pio_sectors() might change the
5222 * state to HSM_ST_LAST. so, the state
5223 * is changed after ata_pio_sectors().
5224 */
5225 ap->hsm_task_state = HSM_ST_ERR;
5226 goto fsm_start;
5227 }
5228
5229 ata_pio_sectors(qc);
5230
5231 if (ap->hsm_task_state == HSM_ST_LAST &&
5232 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5233 /* all data read */
5234 status = ata_wait_idle(ap);
5235 goto fsm_start;
5236 }
5237 }
5238
5239 poll_next = 1;
5240 break;
5241
5242 case HSM_ST_LAST:
5243 if (unlikely(!ata_ok(status))) {
5244 qc->err_mask |= __ac_err_mask(status);
5245 ap->hsm_task_state = HSM_ST_ERR;
5246 goto fsm_start;
5247 }
5248
5249 /* no more data to transfer */
5250 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5251 ap->print_id, qc->dev->devno, status);
5252
5253 WARN_ON(qc->err_mask);
5254
5255 ap->hsm_task_state = HSM_ST_IDLE;
5256
5257 /* complete taskfile transaction */
5258 ata_hsm_qc_complete(qc, in_wq);
5259
5260 poll_next = 0;
5261 break;
5262
5263 case HSM_ST_ERR:
5264 /* make sure qc->err_mask is available to
5265 * know what's wrong and recover
5266 */
5267 WARN_ON(qc->err_mask == 0);
5268
5269 ap->hsm_task_state = HSM_ST_IDLE;
5270
5271 /* complete taskfile transaction */
5272 ata_hsm_qc_complete(qc, in_wq);
5273
5274 poll_next = 0;
5275 break;
5276 default:
5277 poll_next = 0;
5278 BUG();
5279 }
5280
5281 return poll_next;
5282 }
5283
5284 static void ata_pio_task(struct work_struct *work)
5285 {
5286 struct ata_port *ap =
5287 container_of(work, struct ata_port, port_task.work);
5288 struct ata_queued_cmd *qc = ap->port_task_data;
5289 u8 status;
5290 int poll_next;
5291
5292 fsm_start:
5293 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5294
5295 /*
5296 * This is purely heuristic. This is a fast path.
5297 * Sometimes when we enter, BSY will be cleared in
5298 * a chk-status or two. If not, the drive is probably seeking
5299 * or something. Snooze for a couple msecs, then
5300 * chk-status again. If still busy, queue delayed work.
5301 */
5302 status = ata_busy_wait(ap, ATA_BUSY, 5);
5303 if (status & ATA_BUSY) {
5304 msleep(2);
5305 status = ata_busy_wait(ap, ATA_BUSY, 10);
5306 if (status & ATA_BUSY) {
5307 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5308 return;
5309 }
5310 }
5311
5312 /* move the HSM */
5313 poll_next = ata_hsm_move(ap, qc, status, 1);
5314
5315 /* another command or interrupt handler
5316 * may be running at this point.
5317 */
5318 if (poll_next)
5319 goto fsm_start;
5320 }
5321
5322 /**
5323 * ata_qc_new - Request an available ATA command, for queueing
5324 * @ap: Port associated with device @dev
5325 * @dev: Device from whom we request an available command structure
5326 *
5327 * LOCKING:
5328 * None.
5329 */
5330
5331 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5332 {
5333 struct ata_queued_cmd *qc = NULL;
5334 unsigned int i;
5335
5336 /* no command while frozen */
5337 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5338 return NULL;
5339
5340 /* the last tag is reserved for internal command. */
5341 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5342 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5343 qc = __ata_qc_from_tag(ap, i);
5344 break;
5345 }
5346
5347 if (qc)
5348 qc->tag = i;
5349
5350 return qc;
5351 }
5352
5353 /**
5354 * ata_qc_new_init - Request an available ATA command, and initialize it
5355 * @dev: Device from whom we request an available command structure
5356 *
5357 * LOCKING:
5358 * None.
5359 */
5360
5361 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5362 {
5363 struct ata_port *ap = dev->link->ap;
5364 struct ata_queued_cmd *qc;
5365
5366 qc = ata_qc_new(ap);
5367 if (qc) {
5368 qc->scsicmd = NULL;
5369 qc->ap = ap;
5370 qc->dev = dev;
5371
5372 ata_qc_reinit(qc);
5373 }
5374
5375 return qc;
5376 }
5377
5378 /**
5379 * ata_qc_free - free unused ata_queued_cmd
5380 * @qc: Command to complete
5381 *
5382 * Designed to free unused ata_queued_cmd object
5383 * in case something prevents using it.
5384 *
5385 * LOCKING:
5386 * spin_lock_irqsave(host lock)
5387 */
5388 void ata_qc_free(struct ata_queued_cmd *qc)
5389 {
5390 struct ata_port *ap = qc->ap;
5391 unsigned int tag;
5392
5393 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5394
5395 qc->flags = 0;
5396 tag = qc->tag;
5397 if (likely(ata_tag_valid(tag))) {
5398 qc->tag = ATA_TAG_POISON;
5399 clear_bit(tag, &ap->qc_allocated);
5400 }
5401 }
5402
5403 void __ata_qc_complete(struct ata_queued_cmd *qc)
5404 {
5405 struct ata_port *ap = qc->ap;
5406 struct ata_link *link = qc->dev->link;
5407
5408 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5409 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5410
5411 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5412 ata_sg_clean(qc);
5413
5414 /* command should be marked inactive atomically with qc completion */
5415 if (qc->tf.protocol == ATA_PROT_NCQ) {
5416 link->sactive &= ~(1 << qc->tag);
5417 if (!link->sactive)
5418 ap->nr_active_links--;
5419 } else {
5420 link->active_tag = ATA_TAG_POISON;
5421 ap->nr_active_links--;
5422 }
5423
5424 /* clear exclusive status */
5425 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5426 ap->excl_link == link))
5427 ap->excl_link = NULL;
5428
5429 /* atapi: mark qc as inactive to prevent the interrupt handler
5430 * from completing the command twice later, before the error handler
5431 * is called. (when rc != 0 and atapi request sense is needed)
5432 */
5433 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5434 ap->qc_active &= ~(1 << qc->tag);
5435
5436 /* call completion callback */
5437 qc->complete_fn(qc);
5438 }
5439
5440 static void fill_result_tf(struct ata_queued_cmd *qc)
5441 {
5442 struct ata_port *ap = qc->ap;
5443
5444 qc->result_tf.flags = qc->tf.flags;
5445 ap->ops->tf_read(ap, &qc->result_tf);
5446 }
5447
5448 /**
5449 * ata_qc_complete - Complete an active ATA command
5450 * @qc: Command to complete
5451 * @err_mask: ATA Status register contents
5452 *
5453 * Indicate to the mid and upper layers that an ATA
5454 * command has completed, with either an ok or not-ok status.
5455 *
5456 * LOCKING:
5457 * spin_lock_irqsave(host lock)
5458 */
5459 void ata_qc_complete(struct ata_queued_cmd *qc)
5460 {
5461 struct ata_port *ap = qc->ap;
5462
5463 /* XXX: New EH and old EH use different mechanisms to
5464 * synchronize EH with regular execution path.
5465 *
5466 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5467 * Normal execution path is responsible for not accessing a
5468 * failed qc. libata core enforces the rule by returning NULL
5469 * from ata_qc_from_tag() for failed qcs.
5470 *
5471 * Old EH depends on ata_qc_complete() nullifying completion
5472 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5473 * not synchronize with interrupt handler. Only PIO task is
5474 * taken care of.
5475 */
5476 if (ap->ops->error_handler) {
5477 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5478
5479 if (unlikely(qc->err_mask))
5480 qc->flags |= ATA_QCFLAG_FAILED;
5481
5482 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5483 if (!ata_tag_internal(qc->tag)) {
5484 /* always fill result TF for failed qc */
5485 fill_result_tf(qc);
5486 ata_qc_schedule_eh(qc);
5487 return;
5488 }
5489 }
5490
5491 /* read result TF if requested */
5492 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5493 fill_result_tf(qc);
5494
5495 __ata_qc_complete(qc);
5496 } else {
5497 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5498 return;
5499
5500 /* read result TF if failed or requested */
5501 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5502 fill_result_tf(qc);
5503
5504 __ata_qc_complete(qc);
5505 }
5506 }
5507
5508 /**
5509 * ata_qc_complete_multiple - Complete multiple qcs successfully
5510 * @ap: port in question
5511 * @qc_active: new qc_active mask
5512 * @finish_qc: LLDD callback invoked before completing a qc
5513 *
5514 * Complete in-flight commands. This functions is meant to be
5515 * called from low-level driver's interrupt routine to complete
5516 * requests normally. ap->qc_active and @qc_active is compared
5517 * and commands are completed accordingly.
5518 *
5519 * LOCKING:
5520 * spin_lock_irqsave(host lock)
5521 *
5522 * RETURNS:
5523 * Number of completed commands on success, -errno otherwise.
5524 */
5525 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5526 void (*finish_qc)(struct ata_queued_cmd *))
5527 {
5528 int nr_done = 0;
5529 u32 done_mask;
5530 int i;
5531
5532 done_mask = ap->qc_active ^ qc_active;
5533
5534 if (unlikely(done_mask & qc_active)) {
5535 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5536 "(%08x->%08x)\n", ap->qc_active, qc_active);
5537 return -EINVAL;
5538 }
5539
5540 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5541 struct ata_queued_cmd *qc;
5542
5543 if (!(done_mask & (1 << i)))
5544 continue;
5545
5546 if ((qc = ata_qc_from_tag(ap, i))) {
5547 if (finish_qc)
5548 finish_qc(qc);
5549 ata_qc_complete(qc);
5550 nr_done++;
5551 }
5552 }
5553
5554 return nr_done;
5555 }
5556
5557 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5558 {
5559 struct ata_port *ap = qc->ap;
5560
5561 switch (qc->tf.protocol) {
5562 case ATA_PROT_NCQ:
5563 case ATA_PROT_DMA:
5564 case ATA_PROT_ATAPI_DMA:
5565 return 1;
5566
5567 case ATA_PROT_ATAPI:
5568 case ATA_PROT_PIO:
5569 if (ap->flags & ATA_FLAG_PIO_DMA)
5570 return 1;
5571
5572 /* fall through */
5573
5574 default:
5575 return 0;
5576 }
5577
5578 /* never reached */
5579 }
5580
5581 /**
5582 * ata_qc_issue - issue taskfile to device
5583 * @qc: command to issue to device
5584 *
5585 * Prepare an ATA command to submission to device.
5586 * This includes mapping the data into a DMA-able
5587 * area, filling in the S/G table, and finally
5588 * writing the taskfile to hardware, starting the command.
5589 *
5590 * LOCKING:
5591 * spin_lock_irqsave(host lock)
5592 */
5593 void ata_qc_issue(struct ata_queued_cmd *qc)
5594 {
5595 struct ata_port *ap = qc->ap;
5596 struct ata_link *link = qc->dev->link;
5597
5598 /* Make sure only one non-NCQ command is outstanding. The
5599 * check is skipped for old EH because it reuses active qc to
5600 * request ATAPI sense.
5601 */
5602 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5603
5604 if (qc->tf.protocol == ATA_PROT_NCQ) {
5605 WARN_ON(link->sactive & (1 << qc->tag));
5606
5607 if (!link->sactive)
5608 ap->nr_active_links++;
5609 link->sactive |= 1 << qc->tag;
5610 } else {
5611 WARN_ON(link->sactive);
5612
5613 ap->nr_active_links++;
5614 link->active_tag = qc->tag;
5615 }
5616
5617 qc->flags |= ATA_QCFLAG_ACTIVE;
5618 ap->qc_active |= 1 << qc->tag;
5619
5620 if (ata_should_dma_map(qc)) {
5621 if (qc->flags & ATA_QCFLAG_SG) {
5622 if (ata_sg_setup(qc))
5623 goto sg_err;
5624 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5625 if (ata_sg_setup_one(qc))
5626 goto sg_err;
5627 }
5628 } else {
5629 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5630 }
5631
5632 ap->ops->qc_prep(qc);
5633
5634 qc->err_mask |= ap->ops->qc_issue(qc);
5635 if (unlikely(qc->err_mask))
5636 goto err;
5637 return;
5638
5639 sg_err:
5640 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5641 qc->err_mask |= AC_ERR_SYSTEM;
5642 err:
5643 ata_qc_complete(qc);
5644 }
5645
5646 /**
5647 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5648 * @qc: command to issue to device
5649 *
5650 * Using various libata functions and hooks, this function
5651 * starts an ATA command. ATA commands are grouped into
5652 * classes called "protocols", and issuing each type of protocol
5653 * is slightly different.
5654 *
5655 * May be used as the qc_issue() entry in ata_port_operations.
5656 *
5657 * LOCKING:
5658 * spin_lock_irqsave(host lock)
5659 *
5660 * RETURNS:
5661 * Zero on success, AC_ERR_* mask on failure
5662 */
5663
5664 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5665 {
5666 struct ata_port *ap = qc->ap;
5667
5668 /* Use polling pio if the LLD doesn't handle
5669 * interrupt driven pio and atapi CDB interrupt.
5670 */
5671 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5672 switch (qc->tf.protocol) {
5673 case ATA_PROT_PIO:
5674 case ATA_PROT_NODATA:
5675 case ATA_PROT_ATAPI:
5676 case ATA_PROT_ATAPI_NODATA:
5677 qc->tf.flags |= ATA_TFLAG_POLLING;
5678 break;
5679 case ATA_PROT_ATAPI_DMA:
5680 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5681 /* see ata_dma_blacklisted() */
5682 BUG();
5683 break;
5684 default:
5685 break;
5686 }
5687 }
5688
5689 /* select the device */
5690 ata_dev_select(ap, qc->dev->devno, 1, 0);
5691
5692 /* start the command */
5693 switch (qc->tf.protocol) {
5694 case ATA_PROT_NODATA:
5695 if (qc->tf.flags & ATA_TFLAG_POLLING)
5696 ata_qc_set_polling(qc);
5697
5698 ata_tf_to_host(ap, &qc->tf);
5699 ap->hsm_task_state = HSM_ST_LAST;
5700
5701 if (qc->tf.flags & ATA_TFLAG_POLLING)
5702 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5703
5704 break;
5705
5706 case ATA_PROT_DMA:
5707 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5708
5709 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5710 ap->ops->bmdma_setup(qc); /* set up bmdma */
5711 ap->ops->bmdma_start(qc); /* initiate bmdma */
5712 ap->hsm_task_state = HSM_ST_LAST;
5713 break;
5714
5715 case ATA_PROT_PIO:
5716 if (qc->tf.flags & ATA_TFLAG_POLLING)
5717 ata_qc_set_polling(qc);
5718
5719 ata_tf_to_host(ap, &qc->tf);
5720
5721 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5722 /* PIO data out protocol */
5723 ap->hsm_task_state = HSM_ST_FIRST;
5724 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5725
5726 /* always send first data block using
5727 * the ata_pio_task() codepath.
5728 */
5729 } else {
5730 /* PIO data in protocol */
5731 ap->hsm_task_state = HSM_ST;
5732
5733 if (qc->tf.flags & ATA_TFLAG_POLLING)
5734 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5735
5736 /* if polling, ata_pio_task() handles the rest.
5737 * otherwise, interrupt handler takes over from here.
5738 */
5739 }
5740
5741 break;
5742
5743 case ATA_PROT_ATAPI:
5744 case ATA_PROT_ATAPI_NODATA:
5745 if (qc->tf.flags & ATA_TFLAG_POLLING)
5746 ata_qc_set_polling(qc);
5747
5748 ata_tf_to_host(ap, &qc->tf);
5749
5750 ap->hsm_task_state = HSM_ST_FIRST;
5751
5752 /* send cdb by polling if no cdb interrupt */
5753 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5754 (qc->tf.flags & ATA_TFLAG_POLLING))
5755 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5756 break;
5757
5758 case ATA_PROT_ATAPI_DMA:
5759 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5760
5761 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5762 ap->ops->bmdma_setup(qc); /* set up bmdma */
5763 ap->hsm_task_state = HSM_ST_FIRST;
5764
5765 /* send cdb by polling if no cdb interrupt */
5766 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5767 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5768 break;
5769
5770 default:
5771 WARN_ON(1);
5772 return AC_ERR_SYSTEM;
5773 }
5774
5775 return 0;
5776 }
5777
5778 /**
5779 * ata_host_intr - Handle host interrupt for given (port, task)
5780 * @ap: Port on which interrupt arrived (possibly...)
5781 * @qc: Taskfile currently active in engine
5782 *
5783 * Handle host interrupt for given queued command. Currently,
5784 * only DMA interrupts are handled. All other commands are
5785 * handled via polling with interrupts disabled (nIEN bit).
5786 *
5787 * LOCKING:
5788 * spin_lock_irqsave(host lock)
5789 *
5790 * RETURNS:
5791 * One if interrupt was handled, zero if not (shared irq).
5792 */
5793
5794 inline unsigned int ata_host_intr (struct ata_port *ap,
5795 struct ata_queued_cmd *qc)
5796 {
5797 struct ata_eh_info *ehi = &ap->link.eh_info;
5798 u8 status, host_stat = 0;
5799
5800 VPRINTK("ata%u: protocol %d task_state %d\n",
5801 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5802
5803 /* Check whether we are expecting interrupt in this state */
5804 switch (ap->hsm_task_state) {
5805 case HSM_ST_FIRST:
5806 /* Some pre-ATAPI-4 devices assert INTRQ
5807 * at this state when ready to receive CDB.
5808 */
5809
5810 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5811 * The flag was turned on only for atapi devices.
5812 * No need to check is_atapi_taskfile(&qc->tf) again.
5813 */
5814 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5815 goto idle_irq;
5816 break;
5817 case HSM_ST_LAST:
5818 if (qc->tf.protocol == ATA_PROT_DMA ||
5819 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5820 /* check status of DMA engine */
5821 host_stat = ap->ops->bmdma_status(ap);
5822 VPRINTK("ata%u: host_stat 0x%X\n",
5823 ap->print_id, host_stat);
5824
5825 /* if it's not our irq... */
5826 if (!(host_stat & ATA_DMA_INTR))
5827 goto idle_irq;
5828
5829 /* before we do anything else, clear DMA-Start bit */
5830 ap->ops->bmdma_stop(qc);
5831
5832 if (unlikely(host_stat & ATA_DMA_ERR)) {
5833 /* error when transfering data to/from memory */
5834 qc->err_mask |= AC_ERR_HOST_BUS;
5835 ap->hsm_task_state = HSM_ST_ERR;
5836 }
5837 }
5838 break;
5839 case HSM_ST:
5840 break;
5841 default:
5842 goto idle_irq;
5843 }
5844
5845 /* check altstatus */
5846 status = ata_altstatus(ap);
5847 if (status & ATA_BUSY)
5848 goto idle_irq;
5849
5850 /* check main status, clearing INTRQ */
5851 status = ata_chk_status(ap);
5852 if (unlikely(status & ATA_BUSY))
5853 goto idle_irq;
5854
5855 /* ack bmdma irq events */
5856 ap->ops->irq_clear(ap);
5857
5858 ata_hsm_move(ap, qc, status, 0);
5859
5860 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5861 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5862 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5863
5864 return 1; /* irq handled */
5865
5866 idle_irq:
5867 ap->stats.idle_irq++;
5868
5869 #ifdef ATA_IRQ_TRAP
5870 if ((ap->stats.idle_irq % 1000) == 0) {
5871 ata_chk_status(ap);
5872 ap->ops->irq_clear(ap);
5873 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5874 return 1;
5875 }
5876 #endif
5877 return 0; /* irq not handled */
5878 }
5879
5880 /**
5881 * ata_interrupt - Default ATA host interrupt handler
5882 * @irq: irq line (unused)
5883 * @dev_instance: pointer to our ata_host information structure
5884 *
5885 * Default interrupt handler for PCI IDE devices. Calls
5886 * ata_host_intr() for each port that is not disabled.
5887 *
5888 * LOCKING:
5889 * Obtains host lock during operation.
5890 *
5891 * RETURNS:
5892 * IRQ_NONE or IRQ_HANDLED.
5893 */
5894
5895 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5896 {
5897 struct ata_host *host = dev_instance;
5898 unsigned int i;
5899 unsigned int handled = 0;
5900 unsigned long flags;
5901
5902 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5903 spin_lock_irqsave(&host->lock, flags);
5904
5905 for (i = 0; i < host->n_ports; i++) {
5906 struct ata_port *ap;
5907
5908 ap = host->ports[i];
5909 if (ap &&
5910 !(ap->flags & ATA_FLAG_DISABLED)) {
5911 struct ata_queued_cmd *qc;
5912
5913 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5914 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5915 (qc->flags & ATA_QCFLAG_ACTIVE))
5916 handled |= ata_host_intr(ap, qc);
5917 }
5918 }
5919
5920 spin_unlock_irqrestore(&host->lock, flags);
5921
5922 return IRQ_RETVAL(handled);
5923 }
5924
5925 /**
5926 * sata_scr_valid - test whether SCRs are accessible
5927 * @link: ATA link to test SCR accessibility for
5928 *
5929 * Test whether SCRs are accessible for @link.
5930 *
5931 * LOCKING:
5932 * None.
5933 *
5934 * RETURNS:
5935 * 1 if SCRs are accessible, 0 otherwise.
5936 */
5937 int sata_scr_valid(struct ata_link *link)
5938 {
5939 struct ata_port *ap = link->ap;
5940
5941 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5942 }
5943
5944 /**
5945 * sata_scr_read - read SCR register of the specified port
5946 * @link: ATA link to read SCR for
5947 * @reg: SCR to read
5948 * @val: Place to store read value
5949 *
5950 * Read SCR register @reg of @link into *@val. This function is
5951 * guaranteed to succeed if the cable type of the port is SATA
5952 * and the port implements ->scr_read.
5953 *
5954 * LOCKING:
5955 * None.
5956 *
5957 * RETURNS:
5958 * 0 on success, negative errno on failure.
5959 */
5960 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5961 {
5962 struct ata_port *ap = link->ap;
5963
5964 if (sata_scr_valid(link))
5965 return ap->ops->scr_read(ap, reg, val);
5966 return -EOPNOTSUPP;
5967 }
5968
5969 /**
5970 * sata_scr_write - write SCR register of the specified port
5971 * @link: ATA link to write SCR for
5972 * @reg: SCR to write
5973 * @val: value to write
5974 *
5975 * Write @val to SCR register @reg of @link. This function is
5976 * guaranteed to succeed if the cable type of the port is SATA
5977 * and the port implements ->scr_read.
5978 *
5979 * LOCKING:
5980 * None.
5981 *
5982 * RETURNS:
5983 * 0 on success, negative errno on failure.
5984 */
5985 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5986 {
5987 struct ata_port *ap = link->ap;
5988
5989 if (sata_scr_valid(link))
5990 return ap->ops->scr_write(ap, reg, val);
5991 return -EOPNOTSUPP;
5992 }
5993
5994 /**
5995 * sata_scr_write_flush - write SCR register of the specified port and flush
5996 * @link: ATA link to write SCR for
5997 * @reg: SCR to write
5998 * @val: value to write
5999 *
6000 * This function is identical to sata_scr_write() except that this
6001 * function performs flush after writing to the register.
6002 *
6003 * LOCKING:
6004 * None.
6005 *
6006 * RETURNS:
6007 * 0 on success, negative errno on failure.
6008 */
6009 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6010 {
6011 struct ata_port *ap = link->ap;
6012 int rc;
6013
6014 if (sata_scr_valid(link)) {
6015 rc = ap->ops->scr_write(ap, reg, val);
6016 if (rc == 0)
6017 rc = ap->ops->scr_read(ap, reg, &val);
6018 return rc;
6019 }
6020 return -EOPNOTSUPP;
6021 }
6022
6023 /**
6024 * ata_link_online - test whether the given link is online
6025 * @link: ATA link to test
6026 *
6027 * Test whether @link is online. Note that this function returns
6028 * 0 if online status of @link cannot be obtained, so
6029 * ata_link_online(link) != !ata_link_offline(link).
6030 *
6031 * LOCKING:
6032 * None.
6033 *
6034 * RETURNS:
6035 * 1 if the port online status is available and online.
6036 */
6037 int ata_link_online(struct ata_link *link)
6038 {
6039 u32 sstatus;
6040
6041 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6042 (sstatus & 0xf) == 0x3)
6043 return 1;
6044 return 0;
6045 }
6046
6047 /**
6048 * ata_link_offline - test whether the given link is offline
6049 * @link: ATA link to test
6050 *
6051 * Test whether @link is offline. Note that this function
6052 * returns 0 if offline status of @link cannot be obtained, so
6053 * ata_link_online(link) != !ata_link_offline(link).
6054 *
6055 * LOCKING:
6056 * None.
6057 *
6058 * RETURNS:
6059 * 1 if the port offline status is available and offline.
6060 */
6061 int ata_link_offline(struct ata_link *link)
6062 {
6063 u32 sstatus;
6064
6065 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6066 (sstatus & 0xf) != 0x3)
6067 return 1;
6068 return 0;
6069 }
6070
6071 int ata_flush_cache(struct ata_device *dev)
6072 {
6073 unsigned int err_mask;
6074 u8 cmd;
6075
6076 if (!ata_try_flush_cache(dev))
6077 return 0;
6078
6079 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6080 cmd = ATA_CMD_FLUSH_EXT;
6081 else
6082 cmd = ATA_CMD_FLUSH;
6083
6084 /* This is wrong. On a failed flush we get back the LBA of the lost
6085 sector and we should (assuming it wasn't aborted as unknown) issue
6086 a further flush command to continue the writeback until it
6087 does not error */
6088 err_mask = ata_do_simple_cmd(dev, cmd);
6089 if (err_mask) {
6090 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6091 return -EIO;
6092 }
6093
6094 return 0;
6095 }
6096
6097 #ifdef CONFIG_PM
6098 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6099 unsigned int action, unsigned int ehi_flags,
6100 int wait)
6101 {
6102 unsigned long flags;
6103 int i, rc;
6104
6105 for (i = 0; i < host->n_ports; i++) {
6106 struct ata_port *ap = host->ports[i];
6107 struct ata_link *link;
6108
6109 /* Previous resume operation might still be in
6110 * progress. Wait for PM_PENDING to clear.
6111 */
6112 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6113 ata_port_wait_eh(ap);
6114 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6115 }
6116
6117 /* request PM ops to EH */
6118 spin_lock_irqsave(ap->lock, flags);
6119
6120 ap->pm_mesg = mesg;
6121 if (wait) {
6122 rc = 0;
6123 ap->pm_result = &rc;
6124 }
6125
6126 ap->pflags |= ATA_PFLAG_PM_PENDING;
6127 __ata_port_for_each_link(link, ap) {
6128 link->eh_info.action |= action;
6129 link->eh_info.flags |= ehi_flags;
6130 }
6131
6132 ata_port_schedule_eh(ap);
6133
6134 spin_unlock_irqrestore(ap->lock, flags);
6135
6136 /* wait and check result */
6137 if (wait) {
6138 ata_port_wait_eh(ap);
6139 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6140 if (rc)
6141 return rc;
6142 }
6143 }
6144
6145 return 0;
6146 }
6147
6148 /**
6149 * ata_host_suspend - suspend host
6150 * @host: host to suspend
6151 * @mesg: PM message
6152 *
6153 * Suspend @host. Actual operation is performed by EH. This
6154 * function requests EH to perform PM operations and waits for EH
6155 * to finish.
6156 *
6157 * LOCKING:
6158 * Kernel thread context (may sleep).
6159 *
6160 * RETURNS:
6161 * 0 on success, -errno on failure.
6162 */
6163 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6164 {
6165 int rc;
6166
6167 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6168 if (rc == 0)
6169 host->dev->power.power_state = mesg;
6170 return rc;
6171 }
6172
6173 /**
6174 * ata_host_resume - resume host
6175 * @host: host to resume
6176 *
6177 * Resume @host. Actual operation is performed by EH. This
6178 * function requests EH to perform PM operations and returns.
6179 * Note that all resume operations are performed parallely.
6180 *
6181 * LOCKING:
6182 * Kernel thread context (may sleep).
6183 */
6184 void ata_host_resume(struct ata_host *host)
6185 {
6186 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6187 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6188 host->dev->power.power_state = PMSG_ON;
6189 }
6190 #endif
6191
6192 /**
6193 * ata_port_start - Set port up for dma.
6194 * @ap: Port to initialize
6195 *
6196 * Called just after data structures for each port are
6197 * initialized. Allocates space for PRD table.
6198 *
6199 * May be used as the port_start() entry in ata_port_operations.
6200 *
6201 * LOCKING:
6202 * Inherited from caller.
6203 */
6204 int ata_port_start(struct ata_port *ap)
6205 {
6206 struct device *dev = ap->dev;
6207 int rc;
6208
6209 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6210 GFP_KERNEL);
6211 if (!ap->prd)
6212 return -ENOMEM;
6213
6214 rc = ata_pad_alloc(ap, dev);
6215 if (rc)
6216 return rc;
6217
6218 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6219 (unsigned long long)ap->prd_dma);
6220 return 0;
6221 }
6222
6223 /**
6224 * ata_dev_init - Initialize an ata_device structure
6225 * @dev: Device structure to initialize
6226 *
6227 * Initialize @dev in preparation for probing.
6228 *
6229 * LOCKING:
6230 * Inherited from caller.
6231 */
6232 void ata_dev_init(struct ata_device *dev)
6233 {
6234 struct ata_link *link = dev->link;
6235 struct ata_port *ap = link->ap;
6236 unsigned long flags;
6237
6238 /* SATA spd limit is bound to the first device */
6239 link->sata_spd_limit = link->hw_sata_spd_limit;
6240 link->sata_spd = 0;
6241
6242 /* High bits of dev->flags are used to record warm plug
6243 * requests which occur asynchronously. Synchronize using
6244 * host lock.
6245 */
6246 spin_lock_irqsave(ap->lock, flags);
6247 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6248 dev->horkage = 0;
6249 spin_unlock_irqrestore(ap->lock, flags);
6250
6251 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6252 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6253 dev->pio_mask = UINT_MAX;
6254 dev->mwdma_mask = UINT_MAX;
6255 dev->udma_mask = UINT_MAX;
6256 }
6257
6258 /**
6259 * ata_link_init - Initialize an ata_link structure
6260 * @ap: ATA port link is attached to
6261 * @link: Link structure to initialize
6262 * @pmp: Port multiplier port number
6263 *
6264 * Initialize @link.
6265 *
6266 * LOCKING:
6267 * Kernel thread context (may sleep)
6268 */
6269 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6270 {
6271 int i;
6272
6273 /* clear everything except for devices */
6274 memset(link, 0, offsetof(struct ata_link, device[0]));
6275
6276 link->ap = ap;
6277 link->pmp = pmp;
6278 link->active_tag = ATA_TAG_POISON;
6279 link->hw_sata_spd_limit = UINT_MAX;
6280
6281 /* can't use iterator, ap isn't initialized yet */
6282 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6283 struct ata_device *dev = &link->device[i];
6284
6285 dev->link = link;
6286 dev->devno = dev - link->device;
6287 ata_dev_init(dev);
6288 }
6289 }
6290
6291 /**
6292 * sata_link_init_spd - Initialize link->sata_spd_limit
6293 * @link: Link to configure sata_spd_limit for
6294 *
6295 * Initialize @link->[hw_]sata_spd_limit to the currently
6296 * configured value.
6297 *
6298 * LOCKING:
6299 * Kernel thread context (may sleep).
6300 *
6301 * RETURNS:
6302 * 0 on success, -errno on failure.
6303 */
6304 int sata_link_init_spd(struct ata_link *link)
6305 {
6306 u32 scontrol, spd;
6307 int rc;
6308
6309 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6310 if (rc)
6311 return rc;
6312
6313 spd = (scontrol >> 4) & 0xf;
6314 if (spd)
6315 link->hw_sata_spd_limit &= (1 << spd) - 1;
6316
6317 link->sata_spd_limit = link->hw_sata_spd_limit;
6318
6319 return 0;
6320 }
6321
6322 /**
6323 * ata_port_alloc - allocate and initialize basic ATA port resources
6324 * @host: ATA host this allocated port belongs to
6325 *
6326 * Allocate and initialize basic ATA port resources.
6327 *
6328 * RETURNS:
6329 * Allocate ATA port on success, NULL on failure.
6330 *
6331 * LOCKING:
6332 * Inherited from calling layer (may sleep).
6333 */
6334 struct ata_port *ata_port_alloc(struct ata_host *host)
6335 {
6336 struct ata_port *ap;
6337
6338 DPRINTK("ENTER\n");
6339
6340 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6341 if (!ap)
6342 return NULL;
6343
6344 ap->pflags |= ATA_PFLAG_INITIALIZING;
6345 ap->lock = &host->lock;
6346 ap->flags = ATA_FLAG_DISABLED;
6347 ap->print_id = -1;
6348 ap->ctl = ATA_DEVCTL_OBS;
6349 ap->host = host;
6350 ap->dev = host->dev;
6351 ap->last_ctl = 0xFF;
6352
6353 #if defined(ATA_VERBOSE_DEBUG)
6354 /* turn on all debugging levels */
6355 ap->msg_enable = 0x00FF;
6356 #elif defined(ATA_DEBUG)
6357 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6358 #else
6359 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6360 #endif
6361
6362 INIT_DELAYED_WORK(&ap->port_task, NULL);
6363 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6364 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6365 INIT_LIST_HEAD(&ap->eh_done_q);
6366 init_waitqueue_head(&ap->eh_wait_q);
6367 init_timer_deferrable(&ap->fastdrain_timer);
6368 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6369 ap->fastdrain_timer.data = (unsigned long)ap;
6370
6371 ap->cbl = ATA_CBL_NONE;
6372
6373 ata_link_init(ap, &ap->link, 0);
6374
6375 #ifdef ATA_IRQ_TRAP
6376 ap->stats.unhandled_irq = 1;
6377 ap->stats.idle_irq = 1;
6378 #endif
6379 return ap;
6380 }
6381
6382 static void ata_host_release(struct device *gendev, void *res)
6383 {
6384 struct ata_host *host = dev_get_drvdata(gendev);
6385 int i;
6386
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6389
6390 if (!ap)
6391 continue;
6392
6393 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6394 ap->ops->port_stop(ap);
6395 }
6396
6397 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6398 host->ops->host_stop(host);
6399
6400 for (i = 0; i < host->n_ports; i++) {
6401 struct ata_port *ap = host->ports[i];
6402
6403 if (!ap)
6404 continue;
6405
6406 if (ap->scsi_host)
6407 scsi_host_put(ap->scsi_host);
6408
6409 kfree(ap);
6410 host->ports[i] = NULL;
6411 }
6412
6413 dev_set_drvdata(gendev, NULL);
6414 }
6415
6416 /**
6417 * ata_host_alloc - allocate and init basic ATA host resources
6418 * @dev: generic device this host is associated with
6419 * @max_ports: maximum number of ATA ports associated with this host
6420 *
6421 * Allocate and initialize basic ATA host resources. LLD calls
6422 * this function to allocate a host, initializes it fully and
6423 * attaches it using ata_host_register().
6424 *
6425 * @max_ports ports are allocated and host->n_ports is
6426 * initialized to @max_ports. The caller is allowed to decrease
6427 * host->n_ports before calling ata_host_register(). The unused
6428 * ports will be automatically freed on registration.
6429 *
6430 * RETURNS:
6431 * Allocate ATA host on success, NULL on failure.
6432 *
6433 * LOCKING:
6434 * Inherited from calling layer (may sleep).
6435 */
6436 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6437 {
6438 struct ata_host *host;
6439 size_t sz;
6440 int i;
6441
6442 DPRINTK("ENTER\n");
6443
6444 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6445 return NULL;
6446
6447 /* alloc a container for our list of ATA ports (buses) */
6448 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6449 /* alloc a container for our list of ATA ports (buses) */
6450 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6451 if (!host)
6452 goto err_out;
6453
6454 devres_add(dev, host);
6455 dev_set_drvdata(dev, host);
6456
6457 spin_lock_init(&host->lock);
6458 host->dev = dev;
6459 host->n_ports = max_ports;
6460
6461 /* allocate ports bound to this host */
6462 for (i = 0; i < max_ports; i++) {
6463 struct ata_port *ap;
6464
6465 ap = ata_port_alloc(host);
6466 if (!ap)
6467 goto err_out;
6468
6469 ap->port_no = i;
6470 host->ports[i] = ap;
6471 }
6472
6473 devres_remove_group(dev, NULL);
6474 return host;
6475
6476 err_out:
6477 devres_release_group(dev, NULL);
6478 return NULL;
6479 }
6480
6481 /**
6482 * ata_host_alloc_pinfo - alloc host and init with port_info array
6483 * @dev: generic device this host is associated with
6484 * @ppi: array of ATA port_info to initialize host with
6485 * @n_ports: number of ATA ports attached to this host
6486 *
6487 * Allocate ATA host and initialize with info from @ppi. If NULL
6488 * terminated, @ppi may contain fewer entries than @n_ports. The
6489 * last entry will be used for the remaining ports.
6490 *
6491 * RETURNS:
6492 * Allocate ATA host on success, NULL on failure.
6493 *
6494 * LOCKING:
6495 * Inherited from calling layer (may sleep).
6496 */
6497 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6498 const struct ata_port_info * const * ppi,
6499 int n_ports)
6500 {
6501 const struct ata_port_info *pi;
6502 struct ata_host *host;
6503 int i, j;
6504
6505 host = ata_host_alloc(dev, n_ports);
6506 if (!host)
6507 return NULL;
6508
6509 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6510 struct ata_port *ap = host->ports[i];
6511
6512 if (ppi[j])
6513 pi = ppi[j++];
6514
6515 ap->pio_mask = pi->pio_mask;
6516 ap->mwdma_mask = pi->mwdma_mask;
6517 ap->udma_mask = pi->udma_mask;
6518 ap->flags |= pi->flags;
6519 ap->link.flags |= pi->link_flags;
6520 ap->ops = pi->port_ops;
6521
6522 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6523 host->ops = pi->port_ops;
6524 if (!host->private_data && pi->private_data)
6525 host->private_data = pi->private_data;
6526 }
6527
6528 return host;
6529 }
6530
6531 /**
6532 * ata_host_start - start and freeze ports of an ATA host
6533 * @host: ATA host to start ports for
6534 *
6535 * Start and then freeze ports of @host. Started status is
6536 * recorded in host->flags, so this function can be called
6537 * multiple times. Ports are guaranteed to get started only
6538 * once. If host->ops isn't initialized yet, its set to the
6539 * first non-dummy port ops.
6540 *
6541 * LOCKING:
6542 * Inherited from calling layer (may sleep).
6543 *
6544 * RETURNS:
6545 * 0 if all ports are started successfully, -errno otherwise.
6546 */
6547 int ata_host_start(struct ata_host *host)
6548 {
6549 int i, rc;
6550
6551 if (host->flags & ATA_HOST_STARTED)
6552 return 0;
6553
6554 for (i = 0; i < host->n_ports; i++) {
6555 struct ata_port *ap = host->ports[i];
6556
6557 if (!host->ops && !ata_port_is_dummy(ap))
6558 host->ops = ap->ops;
6559
6560 if (ap->ops->port_start) {
6561 rc = ap->ops->port_start(ap);
6562 if (rc) {
6563 ata_port_printk(ap, KERN_ERR, "failed to "
6564 "start port (errno=%d)\n", rc);
6565 goto err_out;
6566 }
6567 }
6568
6569 ata_eh_freeze_port(ap);
6570 }
6571
6572 host->flags |= ATA_HOST_STARTED;
6573 return 0;
6574
6575 err_out:
6576 while (--i >= 0) {
6577 struct ata_port *ap = host->ports[i];
6578
6579 if (ap->ops->port_stop)
6580 ap->ops->port_stop(ap);
6581 }
6582 return rc;
6583 }
6584
6585 /**
6586 * ata_sas_host_init - Initialize a host struct
6587 * @host: host to initialize
6588 * @dev: device host is attached to
6589 * @flags: host flags
6590 * @ops: port_ops
6591 *
6592 * LOCKING:
6593 * PCI/etc. bus probe sem.
6594 *
6595 */
6596 /* KILLME - the only user left is ipr */
6597 void ata_host_init(struct ata_host *host, struct device *dev,
6598 unsigned long flags, const struct ata_port_operations *ops)
6599 {
6600 spin_lock_init(&host->lock);
6601 host->dev = dev;
6602 host->flags = flags;
6603 host->ops = ops;
6604 }
6605
6606 /**
6607 * ata_host_register - register initialized ATA host
6608 * @host: ATA host to register
6609 * @sht: template for SCSI host
6610 *
6611 * Register initialized ATA host. @host is allocated using
6612 * ata_host_alloc() and fully initialized by LLD. This function
6613 * starts ports, registers @host with ATA and SCSI layers and
6614 * probe registered devices.
6615 *
6616 * LOCKING:
6617 * Inherited from calling layer (may sleep).
6618 *
6619 * RETURNS:
6620 * 0 on success, -errno otherwise.
6621 */
6622 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6623 {
6624 int i, rc;
6625
6626 /* host must have been started */
6627 if (!(host->flags & ATA_HOST_STARTED)) {
6628 dev_printk(KERN_ERR, host->dev,
6629 "BUG: trying to register unstarted host\n");
6630 WARN_ON(1);
6631 return -EINVAL;
6632 }
6633
6634 /* Blow away unused ports. This happens when LLD can't
6635 * determine the exact number of ports to allocate at
6636 * allocation time.
6637 */
6638 for (i = host->n_ports; host->ports[i]; i++)
6639 kfree(host->ports[i]);
6640
6641 /* give ports names and add SCSI hosts */
6642 for (i = 0; i < host->n_ports; i++)
6643 host->ports[i]->print_id = ata_print_id++;
6644
6645 rc = ata_scsi_add_hosts(host, sht);
6646 if (rc)
6647 return rc;
6648
6649 /* associate with ACPI nodes */
6650 ata_acpi_associate(host);
6651
6652 /* set cable, sata_spd_limit and report */
6653 for (i = 0; i < host->n_ports; i++) {
6654 struct ata_port *ap = host->ports[i];
6655 unsigned long xfer_mask;
6656
6657 /* set SATA cable type if still unset */
6658 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6659 ap->cbl = ATA_CBL_SATA;
6660
6661 /* init sata_spd_limit to the current value */
6662 sata_link_init_spd(&ap->link);
6663
6664 /* print per-port info to dmesg */
6665 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6666 ap->udma_mask);
6667
6668 if (!ata_port_is_dummy(ap))
6669 ata_port_printk(ap, KERN_INFO,
6670 "%cATA max %s %s\n",
6671 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6672 ata_mode_string(xfer_mask),
6673 ap->link.eh_info.desc);
6674 else
6675 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6676 }
6677
6678 /* perform each probe synchronously */
6679 DPRINTK("probe begin\n");
6680 for (i = 0; i < host->n_ports; i++) {
6681 struct ata_port *ap = host->ports[i];
6682 int rc;
6683
6684 /* probe */
6685 if (ap->ops->error_handler) {
6686 struct ata_eh_info *ehi = &ap->link.eh_info;
6687 unsigned long flags;
6688
6689 ata_port_probe(ap);
6690
6691 /* kick EH for boot probing */
6692 spin_lock_irqsave(ap->lock, flags);
6693
6694 ehi->probe_mask =
6695 (1 << ata_link_max_devices(&ap->link)) - 1;
6696 ehi->action |= ATA_EH_SOFTRESET;
6697 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6698
6699 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6700 ap->pflags |= ATA_PFLAG_LOADING;
6701 ata_port_schedule_eh(ap);
6702
6703 spin_unlock_irqrestore(ap->lock, flags);
6704
6705 /* wait for EH to finish */
6706 ata_port_wait_eh(ap);
6707 } else {
6708 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6709 rc = ata_bus_probe(ap);
6710 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6711
6712 if (rc) {
6713 /* FIXME: do something useful here?
6714 * Current libata behavior will
6715 * tear down everything when
6716 * the module is removed
6717 * or the h/w is unplugged.
6718 */
6719 }
6720 }
6721 }
6722
6723 /* probes are done, now scan each port's disk(s) */
6724 DPRINTK("host probe begin\n");
6725 for (i = 0; i < host->n_ports; i++) {
6726 struct ata_port *ap = host->ports[i];
6727
6728 ata_scsi_scan_host(ap, 1);
6729 }
6730
6731 return 0;
6732 }
6733
6734 /**
6735 * ata_host_activate - start host, request IRQ and register it
6736 * @host: target ATA host
6737 * @irq: IRQ to request
6738 * @irq_handler: irq_handler used when requesting IRQ
6739 * @irq_flags: irq_flags used when requesting IRQ
6740 * @sht: scsi_host_template to use when registering the host
6741 *
6742 * After allocating an ATA host and initializing it, most libata
6743 * LLDs perform three steps to activate the host - start host,
6744 * request IRQ and register it. This helper takes necessasry
6745 * arguments and performs the three steps in one go.
6746 *
6747 * LOCKING:
6748 * Inherited from calling layer (may sleep).
6749 *
6750 * RETURNS:
6751 * 0 on success, -errno otherwise.
6752 */
6753 int ata_host_activate(struct ata_host *host, int irq,
6754 irq_handler_t irq_handler, unsigned long irq_flags,
6755 struct scsi_host_template *sht)
6756 {
6757 int i, rc;
6758
6759 rc = ata_host_start(host);
6760 if (rc)
6761 return rc;
6762
6763 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6764 dev_driver_string(host->dev), host);
6765 if (rc)
6766 return rc;
6767
6768 for (i = 0; i < host->n_ports; i++)
6769 ata_port_desc(host->ports[i], "irq %d", irq);
6770
6771 rc = ata_host_register(host, sht);
6772 /* if failed, just free the IRQ and leave ports alone */
6773 if (rc)
6774 devm_free_irq(host->dev, irq, host);
6775
6776 return rc;
6777 }
6778
6779 /**
6780 * ata_port_detach - Detach ATA port in prepration of device removal
6781 * @ap: ATA port to be detached
6782 *
6783 * Detach all ATA devices and the associated SCSI devices of @ap;
6784 * then, remove the associated SCSI host. @ap is guaranteed to
6785 * be quiescent on return from this function.
6786 *
6787 * LOCKING:
6788 * Kernel thread context (may sleep).
6789 */
6790 void ata_port_detach(struct ata_port *ap)
6791 {
6792 unsigned long flags;
6793 struct ata_link *link;
6794 struct ata_device *dev;
6795
6796 if (!ap->ops->error_handler)
6797 goto skip_eh;
6798
6799 /* tell EH we're leaving & flush EH */
6800 spin_lock_irqsave(ap->lock, flags);
6801 ap->pflags |= ATA_PFLAG_UNLOADING;
6802 spin_unlock_irqrestore(ap->lock, flags);
6803
6804 ata_port_wait_eh(ap);
6805
6806 /* EH is now guaranteed to see UNLOADING, so no new device
6807 * will be attached. Disable all existing devices.
6808 */
6809 spin_lock_irqsave(ap->lock, flags);
6810
6811 ata_port_for_each_link(link, ap) {
6812 ata_link_for_each_dev(dev, link)
6813 ata_dev_disable(dev);
6814 }
6815
6816 spin_unlock_irqrestore(ap->lock, flags);
6817
6818 /* Final freeze & EH. All in-flight commands are aborted. EH
6819 * will be skipped and retrials will be terminated with bad
6820 * target.
6821 */
6822 spin_lock_irqsave(ap->lock, flags);
6823 ata_port_freeze(ap); /* won't be thawed */
6824 spin_unlock_irqrestore(ap->lock, flags);
6825
6826 ata_port_wait_eh(ap);
6827 cancel_rearming_delayed_work(&ap->hotplug_task);
6828
6829 skip_eh:
6830 /* remove the associated SCSI host */
6831 scsi_remove_host(ap->scsi_host);
6832 }
6833
6834 /**
6835 * ata_host_detach - Detach all ports of an ATA host
6836 * @host: Host to detach
6837 *
6838 * Detach all ports of @host.
6839 *
6840 * LOCKING:
6841 * Kernel thread context (may sleep).
6842 */
6843 void ata_host_detach(struct ata_host *host)
6844 {
6845 int i;
6846
6847 for (i = 0; i < host->n_ports; i++)
6848 ata_port_detach(host->ports[i]);
6849 }
6850
6851 /**
6852 * ata_std_ports - initialize ioaddr with standard port offsets.
6853 * @ioaddr: IO address structure to be initialized
6854 *
6855 * Utility function which initializes data_addr, error_addr,
6856 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6857 * device_addr, status_addr, and command_addr to standard offsets
6858 * relative to cmd_addr.
6859 *
6860 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6861 */
6862
6863 void ata_std_ports(struct ata_ioports *ioaddr)
6864 {
6865 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6866 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6867 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6868 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6869 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6870 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6871 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6872 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6873 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6874 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6875 }
6876
6877
6878 #ifdef CONFIG_PCI
6879
6880 /**
6881 * ata_pci_remove_one - PCI layer callback for device removal
6882 * @pdev: PCI device that was removed
6883 *
6884 * PCI layer indicates to libata via this hook that hot-unplug or
6885 * module unload event has occurred. Detach all ports. Resource
6886 * release is handled via devres.
6887 *
6888 * LOCKING:
6889 * Inherited from PCI layer (may sleep).
6890 */
6891 void ata_pci_remove_one(struct pci_dev *pdev)
6892 {
6893 struct device *dev = pci_dev_to_dev(pdev);
6894 struct ata_host *host = dev_get_drvdata(dev);
6895
6896 ata_host_detach(host);
6897 }
6898
6899 /* move to PCI subsystem */
6900 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6901 {
6902 unsigned long tmp = 0;
6903
6904 switch (bits->width) {
6905 case 1: {
6906 u8 tmp8 = 0;
6907 pci_read_config_byte(pdev, bits->reg, &tmp8);
6908 tmp = tmp8;
6909 break;
6910 }
6911 case 2: {
6912 u16 tmp16 = 0;
6913 pci_read_config_word(pdev, bits->reg, &tmp16);
6914 tmp = tmp16;
6915 break;
6916 }
6917 case 4: {
6918 u32 tmp32 = 0;
6919 pci_read_config_dword(pdev, bits->reg, &tmp32);
6920 tmp = tmp32;
6921 break;
6922 }
6923
6924 default:
6925 return -EINVAL;
6926 }
6927
6928 tmp &= bits->mask;
6929
6930 return (tmp == bits->val) ? 1 : 0;
6931 }
6932
6933 #ifdef CONFIG_PM
6934 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6935 {
6936 pci_save_state(pdev);
6937 pci_disable_device(pdev);
6938
6939 if (mesg.event == PM_EVENT_SUSPEND)
6940 pci_set_power_state(pdev, PCI_D3hot);
6941 }
6942
6943 int ata_pci_device_do_resume(struct pci_dev *pdev)
6944 {
6945 int rc;
6946
6947 pci_set_power_state(pdev, PCI_D0);
6948 pci_restore_state(pdev);
6949
6950 rc = pcim_enable_device(pdev);
6951 if (rc) {
6952 dev_printk(KERN_ERR, &pdev->dev,
6953 "failed to enable device after resume (%d)\n", rc);
6954 return rc;
6955 }
6956
6957 pci_set_master(pdev);
6958 return 0;
6959 }
6960
6961 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6962 {
6963 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6964 int rc = 0;
6965
6966 rc = ata_host_suspend(host, mesg);
6967 if (rc)
6968 return rc;
6969
6970 ata_pci_device_do_suspend(pdev, mesg);
6971
6972 return 0;
6973 }
6974
6975 int ata_pci_device_resume(struct pci_dev *pdev)
6976 {
6977 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6978 int rc;
6979
6980 rc = ata_pci_device_do_resume(pdev);
6981 if (rc == 0)
6982 ata_host_resume(host);
6983 return rc;
6984 }
6985 #endif /* CONFIG_PM */
6986
6987 #endif /* CONFIG_PCI */
6988
6989
6990 static int __init ata_init(void)
6991 {
6992 ata_probe_timeout *= HZ;
6993 ata_wq = create_workqueue("ata");
6994 if (!ata_wq)
6995 return -ENOMEM;
6996
6997 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6998 if (!ata_aux_wq) {
6999 destroy_workqueue(ata_wq);
7000 return -ENOMEM;
7001 }
7002
7003 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7004 return 0;
7005 }
7006
7007 static void __exit ata_exit(void)
7008 {
7009 destroy_workqueue(ata_wq);
7010 destroy_workqueue(ata_aux_wq);
7011 }
7012
7013 subsys_initcall(ata_init);
7014 module_exit(ata_exit);
7015
7016 static unsigned long ratelimit_time;
7017 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7018
7019 int ata_ratelimit(void)
7020 {
7021 int rc;
7022 unsigned long flags;
7023
7024 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7025
7026 if (time_after(jiffies, ratelimit_time)) {
7027 rc = 1;
7028 ratelimit_time = jiffies + (HZ/5);
7029 } else
7030 rc = 0;
7031
7032 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7033
7034 return rc;
7035 }
7036
7037 /**
7038 * ata_wait_register - wait until register value changes
7039 * @reg: IO-mapped register
7040 * @mask: Mask to apply to read register value
7041 * @val: Wait condition
7042 * @interval_msec: polling interval in milliseconds
7043 * @timeout_msec: timeout in milliseconds
7044 *
7045 * Waiting for some bits of register to change is a common
7046 * operation for ATA controllers. This function reads 32bit LE
7047 * IO-mapped register @reg and tests for the following condition.
7048 *
7049 * (*@reg & mask) != val
7050 *
7051 * If the condition is met, it returns; otherwise, the process is
7052 * repeated after @interval_msec until timeout.
7053 *
7054 * LOCKING:
7055 * Kernel thread context (may sleep)
7056 *
7057 * RETURNS:
7058 * The final register value.
7059 */
7060 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7061 unsigned long interval_msec,
7062 unsigned long timeout_msec)
7063 {
7064 unsigned long timeout;
7065 u32 tmp;
7066
7067 tmp = ioread32(reg);
7068
7069 /* Calculate timeout _after_ the first read to make sure
7070 * preceding writes reach the controller before starting to
7071 * eat away the timeout.
7072 */
7073 timeout = jiffies + (timeout_msec * HZ) / 1000;
7074
7075 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7076 msleep(interval_msec);
7077 tmp = ioread32(reg);
7078 }
7079
7080 return tmp;
7081 }
7082
7083 /*
7084 * Dummy port_ops
7085 */
7086 static void ata_dummy_noret(struct ata_port *ap) { }
7087 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7088 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7089
7090 static u8 ata_dummy_check_status(struct ata_port *ap)
7091 {
7092 return ATA_DRDY;
7093 }
7094
7095 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7096 {
7097 return AC_ERR_SYSTEM;
7098 }
7099
7100 const struct ata_port_operations ata_dummy_port_ops = {
7101 .check_status = ata_dummy_check_status,
7102 .check_altstatus = ata_dummy_check_status,
7103 .dev_select = ata_noop_dev_select,
7104 .qc_prep = ata_noop_qc_prep,
7105 .qc_issue = ata_dummy_qc_issue,
7106 .freeze = ata_dummy_noret,
7107 .thaw = ata_dummy_noret,
7108 .error_handler = ata_dummy_noret,
7109 .post_internal_cmd = ata_dummy_qc_noret,
7110 .irq_clear = ata_dummy_noret,
7111 .port_start = ata_dummy_ret0,
7112 .port_stop = ata_dummy_noret,
7113 };
7114
7115 const struct ata_port_info ata_dummy_port_info = {
7116 .port_ops = &ata_dummy_port_ops,
7117 };
7118
7119 /*
7120 * libata is essentially a library of internal helper functions for
7121 * low-level ATA host controller drivers. As such, the API/ABI is
7122 * likely to change as new drivers are added and updated.
7123 * Do not depend on ABI/API stability.
7124 */
7125
7126 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7127 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7128 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7129 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7130 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7131 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7132 EXPORT_SYMBOL_GPL(ata_std_ports);
7133 EXPORT_SYMBOL_GPL(ata_host_init);
7134 EXPORT_SYMBOL_GPL(ata_host_alloc);
7135 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7136 EXPORT_SYMBOL_GPL(ata_host_start);
7137 EXPORT_SYMBOL_GPL(ata_host_register);
7138 EXPORT_SYMBOL_GPL(ata_host_activate);
7139 EXPORT_SYMBOL_GPL(ata_host_detach);
7140 EXPORT_SYMBOL_GPL(ata_sg_init);
7141 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7142 EXPORT_SYMBOL_GPL(ata_hsm_move);
7143 EXPORT_SYMBOL_GPL(ata_qc_complete);
7144 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7145 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7146 EXPORT_SYMBOL_GPL(ata_tf_load);
7147 EXPORT_SYMBOL_GPL(ata_tf_read);
7148 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7149 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7150 EXPORT_SYMBOL_GPL(sata_print_link_status);
7151 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7152 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7153 EXPORT_SYMBOL_GPL(ata_check_status);
7154 EXPORT_SYMBOL_GPL(ata_altstatus);
7155 EXPORT_SYMBOL_GPL(ata_exec_command);
7156 EXPORT_SYMBOL_GPL(ata_port_start);
7157 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7158 EXPORT_SYMBOL_GPL(ata_interrupt);
7159 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7160 EXPORT_SYMBOL_GPL(ata_data_xfer);
7161 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7162 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7163 EXPORT_SYMBOL_GPL(ata_qc_prep);
7164 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7165 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7166 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7167 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7168 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7169 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7170 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7171 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7172 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7173 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7174 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7175 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7176 EXPORT_SYMBOL_GPL(ata_port_probe);
7177 EXPORT_SYMBOL_GPL(ata_dev_disable);
7178 EXPORT_SYMBOL_GPL(sata_set_spd);
7179 EXPORT_SYMBOL_GPL(sata_link_debounce);
7180 EXPORT_SYMBOL_GPL(sata_link_resume);
7181 EXPORT_SYMBOL_GPL(sata_phy_reset);
7182 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7183 EXPORT_SYMBOL_GPL(ata_bus_reset);
7184 EXPORT_SYMBOL_GPL(ata_std_prereset);
7185 EXPORT_SYMBOL_GPL(ata_std_softreset);
7186 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7187 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7188 EXPORT_SYMBOL_GPL(ata_std_postreset);
7189 EXPORT_SYMBOL_GPL(ata_dev_classify);
7190 EXPORT_SYMBOL_GPL(ata_dev_pair);
7191 EXPORT_SYMBOL_GPL(ata_port_disable);
7192 EXPORT_SYMBOL_GPL(ata_ratelimit);
7193 EXPORT_SYMBOL_GPL(ata_wait_register);
7194 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7195 EXPORT_SYMBOL_GPL(ata_wait_ready);
7196 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7197 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7198 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7199 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7200 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7201 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7202 EXPORT_SYMBOL_GPL(ata_host_intr);
7203 EXPORT_SYMBOL_GPL(sata_scr_valid);
7204 EXPORT_SYMBOL_GPL(sata_scr_read);
7205 EXPORT_SYMBOL_GPL(sata_scr_write);
7206 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7207 EXPORT_SYMBOL_GPL(ata_link_online);
7208 EXPORT_SYMBOL_GPL(ata_link_offline);
7209 #ifdef CONFIG_PM
7210 EXPORT_SYMBOL_GPL(ata_host_suspend);
7211 EXPORT_SYMBOL_GPL(ata_host_resume);
7212 #endif /* CONFIG_PM */
7213 EXPORT_SYMBOL_GPL(ata_id_string);
7214 EXPORT_SYMBOL_GPL(ata_id_c_string);
7215 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7216 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7217
7218 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7219 EXPORT_SYMBOL_GPL(ata_timing_compute);
7220 EXPORT_SYMBOL_GPL(ata_timing_merge);
7221
7222 #ifdef CONFIG_PCI
7223 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7224 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7225 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7226 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7227 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7228 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7229 #ifdef CONFIG_PM
7230 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7231 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7232 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7233 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7234 #endif /* CONFIG_PM */
7235 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7236 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7237 #endif /* CONFIG_PCI */
7238
7239 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7240 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7241 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7242 EXPORT_SYMBOL_GPL(ata_port_desc);
7243 #ifdef CONFIG_PCI
7244 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7245 #endif /* CONFIG_PCI */
7246 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7247 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7248 EXPORT_SYMBOL_GPL(ata_link_abort);
7249 EXPORT_SYMBOL_GPL(ata_port_abort);
7250 EXPORT_SYMBOL_GPL(ata_port_freeze);
7251 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7252 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7253 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7254 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7255 EXPORT_SYMBOL_GPL(ata_do_eh);
7256 EXPORT_SYMBOL_GPL(ata_irq_on);
7257 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7258
7259 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7260 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7261 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7262 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.220652 seconds and 5 git commands to generate.