libata: Be a bit more slack about early devices
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/jiffies.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/semaphore.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67
68 #include "libata.h"
69
70
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
80 };
81
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
84
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
87 };
88
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99
100 struct workqueue_struct *ata_aux_wq;
101
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 };
110
111 struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
115 };
116
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
119
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124
125 int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148
149 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
165
166
167 /**
168 * ata_force_cbl - force cable type according to libata.force
169 * @ap: ATA port of interest
170 *
171 * Force cable type according to libata.force and whine about it.
172 * The last entry which has matching port number is used, so it
173 * can be specified as part of device force parameters. For
174 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
175 * same effect.
176 *
177 * LOCKING:
178 * EH context.
179 */
180 void ata_force_cbl(struct ata_port *ap)
181 {
182 int i;
183
184 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
185 const struct ata_force_ent *fe = &ata_force_tbl[i];
186
187 if (fe->port != -1 && fe->port != ap->print_id)
188 continue;
189
190 if (fe->param.cbl == ATA_CBL_NONE)
191 continue;
192
193 ap->cbl = fe->param.cbl;
194 ata_port_printk(ap, KERN_NOTICE,
195 "FORCE: cable set to %s\n", fe->param.name);
196 return;
197 }
198 }
199
200 /**
201 * ata_force_spd_limit - force SATA spd limit according to libata.force
202 * @link: ATA link of interest
203 *
204 * Force SATA spd limit according to libata.force and whine about
205 * it. When only the port part is specified (e.g. 1:), the limit
206 * applies to all links connected to both the host link and all
207 * fan-out ports connected via PMP. If the device part is
208 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
209 * link not the host link. Device number 15 always points to the
210 * host link whether PMP is attached or not.
211 *
212 * LOCKING:
213 * EH context.
214 */
215 static void ata_force_spd_limit(struct ata_link *link)
216 {
217 int linkno, i;
218
219 if (ata_is_host_link(link))
220 linkno = 15;
221 else
222 linkno = link->pmp;
223
224 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
225 const struct ata_force_ent *fe = &ata_force_tbl[i];
226
227 if (fe->port != -1 && fe->port != link->ap->print_id)
228 continue;
229
230 if (fe->device != -1 && fe->device != linkno)
231 continue;
232
233 if (!fe->param.spd_limit)
234 continue;
235
236 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
237 ata_link_printk(link, KERN_NOTICE,
238 "FORCE: PHY spd limit set to %s\n", fe->param.name);
239 return;
240 }
241 }
242
243 /**
244 * ata_force_xfermask - force xfermask according to libata.force
245 * @dev: ATA device of interest
246 *
247 * Force xfer_mask according to libata.force and whine about it.
248 * For consistency with link selection, device number 15 selects
249 * the first device connected to the host link.
250 *
251 * LOCKING:
252 * EH context.
253 */
254 static void ata_force_xfermask(struct ata_device *dev)
255 {
256 int devno = dev->link->pmp + dev->devno;
257 int alt_devno = devno;
258 int i;
259
260 /* allow n.15 for the first device attached to host port */
261 if (ata_is_host_link(dev->link) && devno == 0)
262 alt_devno = 15;
263
264 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
265 const struct ata_force_ent *fe = &ata_force_tbl[i];
266 unsigned long pio_mask, mwdma_mask, udma_mask;
267
268 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
269 continue;
270
271 if (fe->device != -1 && fe->device != devno &&
272 fe->device != alt_devno)
273 continue;
274
275 if (!fe->param.xfer_mask)
276 continue;
277
278 ata_unpack_xfermask(fe->param.xfer_mask,
279 &pio_mask, &mwdma_mask, &udma_mask);
280 if (udma_mask)
281 dev->udma_mask = udma_mask;
282 else if (mwdma_mask) {
283 dev->udma_mask = 0;
284 dev->mwdma_mask = mwdma_mask;
285 } else {
286 dev->udma_mask = 0;
287 dev->mwdma_mask = 0;
288 dev->pio_mask = pio_mask;
289 }
290
291 ata_dev_printk(dev, KERN_NOTICE,
292 "FORCE: xfer_mask set to %s\n", fe->param.name);
293 return;
294 }
295 }
296
297 /**
298 * ata_force_horkage - force horkage according to libata.force
299 * @dev: ATA device of interest
300 *
301 * Force horkage according to libata.force and whine about it.
302 * For consistency with link selection, device number 15 selects
303 * the first device connected to the host link.
304 *
305 * LOCKING:
306 * EH context.
307 */
308 static void ata_force_horkage(struct ata_device *dev)
309 {
310 int devno = dev->link->pmp + dev->devno;
311 int alt_devno = devno;
312 int i;
313
314 /* allow n.15 for the first device attached to host port */
315 if (ata_is_host_link(dev->link) && devno == 0)
316 alt_devno = 15;
317
318 for (i = 0; i < ata_force_tbl_size; i++) {
319 const struct ata_force_ent *fe = &ata_force_tbl[i];
320
321 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
322 continue;
323
324 if (fe->device != -1 && fe->device != devno &&
325 fe->device != alt_devno)
326 continue;
327
328 if (!(~dev->horkage & fe->param.horkage_on) &&
329 !(dev->horkage & fe->param.horkage_off))
330 continue;
331
332 dev->horkage |= fe->param.horkage_on;
333 dev->horkage &= ~fe->param.horkage_off;
334
335 ata_dev_printk(dev, KERN_NOTICE,
336 "FORCE: horkage modified (%s)\n", fe->param.name);
337 }
338 }
339
340 /**
341 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
342 * @opcode: SCSI opcode
343 *
344 * Determine ATAPI command type from @opcode.
345 *
346 * LOCKING:
347 * None.
348 *
349 * RETURNS:
350 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
351 */
352 int atapi_cmd_type(u8 opcode)
353 {
354 switch (opcode) {
355 case GPCMD_READ_10:
356 case GPCMD_READ_12:
357 return ATAPI_READ;
358
359 case GPCMD_WRITE_10:
360 case GPCMD_WRITE_12:
361 case GPCMD_WRITE_AND_VERIFY_10:
362 return ATAPI_WRITE;
363
364 case GPCMD_READ_CD:
365 case GPCMD_READ_CD_MSF:
366 return ATAPI_READ_CD;
367
368 case ATA_16:
369 case ATA_12:
370 if (atapi_passthru16)
371 return ATAPI_PASS_THRU;
372 /* fall thru */
373 default:
374 return ATAPI_MISC;
375 }
376 }
377
378 /**
379 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
380 * @tf: Taskfile to convert
381 * @pmp: Port multiplier port
382 * @is_cmd: This FIS is for command
383 * @fis: Buffer into which data will output
384 *
385 * Converts a standard ATA taskfile to a Serial ATA
386 * FIS structure (Register - Host to Device).
387 *
388 * LOCKING:
389 * Inherited from caller.
390 */
391 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
392 {
393 fis[0] = 0x27; /* Register - Host to Device FIS */
394 fis[1] = pmp & 0xf; /* Port multiplier number*/
395 if (is_cmd)
396 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
397
398 fis[2] = tf->command;
399 fis[3] = tf->feature;
400
401 fis[4] = tf->lbal;
402 fis[5] = tf->lbam;
403 fis[6] = tf->lbah;
404 fis[7] = tf->device;
405
406 fis[8] = tf->hob_lbal;
407 fis[9] = tf->hob_lbam;
408 fis[10] = tf->hob_lbah;
409 fis[11] = tf->hob_feature;
410
411 fis[12] = tf->nsect;
412 fis[13] = tf->hob_nsect;
413 fis[14] = 0;
414 fis[15] = tf->ctl;
415
416 fis[16] = 0;
417 fis[17] = 0;
418 fis[18] = 0;
419 fis[19] = 0;
420 }
421
422 /**
423 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
424 * @fis: Buffer from which data will be input
425 * @tf: Taskfile to output
426 *
427 * Converts a serial ATA FIS structure to a standard ATA taskfile.
428 *
429 * LOCKING:
430 * Inherited from caller.
431 */
432
433 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
434 {
435 tf->command = fis[2]; /* status */
436 tf->feature = fis[3]; /* error */
437
438 tf->lbal = fis[4];
439 tf->lbam = fis[5];
440 tf->lbah = fis[6];
441 tf->device = fis[7];
442
443 tf->hob_lbal = fis[8];
444 tf->hob_lbam = fis[9];
445 tf->hob_lbah = fis[10];
446
447 tf->nsect = fis[12];
448 tf->hob_nsect = fis[13];
449 }
450
451 static const u8 ata_rw_cmds[] = {
452 /* pio multi */
453 ATA_CMD_READ_MULTI,
454 ATA_CMD_WRITE_MULTI,
455 ATA_CMD_READ_MULTI_EXT,
456 ATA_CMD_WRITE_MULTI_EXT,
457 0,
458 0,
459 0,
460 ATA_CMD_WRITE_MULTI_FUA_EXT,
461 /* pio */
462 ATA_CMD_PIO_READ,
463 ATA_CMD_PIO_WRITE,
464 ATA_CMD_PIO_READ_EXT,
465 ATA_CMD_PIO_WRITE_EXT,
466 0,
467 0,
468 0,
469 0,
470 /* dma */
471 ATA_CMD_READ,
472 ATA_CMD_WRITE,
473 ATA_CMD_READ_EXT,
474 ATA_CMD_WRITE_EXT,
475 0,
476 0,
477 0,
478 ATA_CMD_WRITE_FUA_EXT
479 };
480
481 /**
482 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
483 * @tf: command to examine and configure
484 * @dev: device tf belongs to
485 *
486 * Examine the device configuration and tf->flags to calculate
487 * the proper read/write commands and protocol to use.
488 *
489 * LOCKING:
490 * caller.
491 */
492 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
493 {
494 u8 cmd;
495
496 int index, fua, lba48, write;
497
498 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
499 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
500 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
501
502 if (dev->flags & ATA_DFLAG_PIO) {
503 tf->protocol = ATA_PROT_PIO;
504 index = dev->multi_count ? 0 : 8;
505 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
506 /* Unable to use DMA due to host limitation */
507 tf->protocol = ATA_PROT_PIO;
508 index = dev->multi_count ? 0 : 8;
509 } else {
510 tf->protocol = ATA_PROT_DMA;
511 index = 16;
512 }
513
514 cmd = ata_rw_cmds[index + fua + lba48 + write];
515 if (cmd) {
516 tf->command = cmd;
517 return 0;
518 }
519 return -1;
520 }
521
522 /**
523 * ata_tf_read_block - Read block address from ATA taskfile
524 * @tf: ATA taskfile of interest
525 * @dev: ATA device @tf belongs to
526 *
527 * LOCKING:
528 * None.
529 *
530 * Read block address from @tf. This function can handle all
531 * three address formats - LBA, LBA48 and CHS. tf->protocol and
532 * flags select the address format to use.
533 *
534 * RETURNS:
535 * Block address read from @tf.
536 */
537 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
538 {
539 u64 block = 0;
540
541 if (tf->flags & ATA_TFLAG_LBA) {
542 if (tf->flags & ATA_TFLAG_LBA48) {
543 block |= (u64)tf->hob_lbah << 40;
544 block |= (u64)tf->hob_lbam << 32;
545 block |= tf->hob_lbal << 24;
546 } else
547 block |= (tf->device & 0xf) << 24;
548
549 block |= tf->lbah << 16;
550 block |= tf->lbam << 8;
551 block |= tf->lbal;
552 } else {
553 u32 cyl, head, sect;
554
555 cyl = tf->lbam | (tf->lbah << 8);
556 head = tf->device & 0xf;
557 sect = tf->lbal;
558
559 block = (cyl * dev->heads + head) * dev->sectors + sect;
560 }
561
562 return block;
563 }
564
565 /**
566 * ata_build_rw_tf - Build ATA taskfile for given read/write request
567 * @tf: Target ATA taskfile
568 * @dev: ATA device @tf belongs to
569 * @block: Block address
570 * @n_block: Number of blocks
571 * @tf_flags: RW/FUA etc...
572 * @tag: tag
573 *
574 * LOCKING:
575 * None.
576 *
577 * Build ATA taskfile @tf for read/write request described by
578 * @block, @n_block, @tf_flags and @tag on @dev.
579 *
580 * RETURNS:
581 *
582 * 0 on success, -ERANGE if the request is too large for @dev,
583 * -EINVAL if the request is invalid.
584 */
585 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
586 u64 block, u32 n_block, unsigned int tf_flags,
587 unsigned int tag)
588 {
589 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
590 tf->flags |= tf_flags;
591
592 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
593 /* yay, NCQ */
594 if (!lba_48_ok(block, n_block))
595 return -ERANGE;
596
597 tf->protocol = ATA_PROT_NCQ;
598 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
599
600 if (tf->flags & ATA_TFLAG_WRITE)
601 tf->command = ATA_CMD_FPDMA_WRITE;
602 else
603 tf->command = ATA_CMD_FPDMA_READ;
604
605 tf->nsect = tag << 3;
606 tf->hob_feature = (n_block >> 8) & 0xff;
607 tf->feature = n_block & 0xff;
608
609 tf->hob_lbah = (block >> 40) & 0xff;
610 tf->hob_lbam = (block >> 32) & 0xff;
611 tf->hob_lbal = (block >> 24) & 0xff;
612 tf->lbah = (block >> 16) & 0xff;
613 tf->lbam = (block >> 8) & 0xff;
614 tf->lbal = block & 0xff;
615
616 tf->device = 1 << 6;
617 if (tf->flags & ATA_TFLAG_FUA)
618 tf->device |= 1 << 7;
619 } else if (dev->flags & ATA_DFLAG_LBA) {
620 tf->flags |= ATA_TFLAG_LBA;
621
622 if (lba_28_ok(block, n_block)) {
623 /* use LBA28 */
624 tf->device |= (block >> 24) & 0xf;
625 } else if (lba_48_ok(block, n_block)) {
626 if (!(dev->flags & ATA_DFLAG_LBA48))
627 return -ERANGE;
628
629 /* use LBA48 */
630 tf->flags |= ATA_TFLAG_LBA48;
631
632 tf->hob_nsect = (n_block >> 8) & 0xff;
633
634 tf->hob_lbah = (block >> 40) & 0xff;
635 tf->hob_lbam = (block >> 32) & 0xff;
636 tf->hob_lbal = (block >> 24) & 0xff;
637 } else
638 /* request too large even for LBA48 */
639 return -ERANGE;
640
641 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
642 return -EINVAL;
643
644 tf->nsect = n_block & 0xff;
645
646 tf->lbah = (block >> 16) & 0xff;
647 tf->lbam = (block >> 8) & 0xff;
648 tf->lbal = block & 0xff;
649
650 tf->device |= ATA_LBA;
651 } else {
652 /* CHS */
653 u32 sect, head, cyl, track;
654
655 /* The request -may- be too large for CHS addressing. */
656 if (!lba_28_ok(block, n_block))
657 return -ERANGE;
658
659 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
660 return -EINVAL;
661
662 /* Convert LBA to CHS */
663 track = (u32)block / dev->sectors;
664 cyl = track / dev->heads;
665 head = track % dev->heads;
666 sect = (u32)block % dev->sectors + 1;
667
668 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
669 (u32)block, track, cyl, head, sect);
670
671 /* Check whether the converted CHS can fit.
672 Cylinder: 0-65535
673 Head: 0-15
674 Sector: 1-255*/
675 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
676 return -ERANGE;
677
678 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
679 tf->lbal = sect;
680 tf->lbam = cyl;
681 tf->lbah = cyl >> 8;
682 tf->device |= head;
683 }
684
685 return 0;
686 }
687
688 /**
689 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
690 * @pio_mask: pio_mask
691 * @mwdma_mask: mwdma_mask
692 * @udma_mask: udma_mask
693 *
694 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
695 * unsigned int xfer_mask.
696 *
697 * LOCKING:
698 * None.
699 *
700 * RETURNS:
701 * Packed xfer_mask.
702 */
703 unsigned long ata_pack_xfermask(unsigned long pio_mask,
704 unsigned long mwdma_mask,
705 unsigned long udma_mask)
706 {
707 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
708 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
709 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
710 }
711
712 /**
713 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
714 * @xfer_mask: xfer_mask to unpack
715 * @pio_mask: resulting pio_mask
716 * @mwdma_mask: resulting mwdma_mask
717 * @udma_mask: resulting udma_mask
718 *
719 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
720 * Any NULL distination masks will be ignored.
721 */
722 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
723 unsigned long *mwdma_mask, unsigned long *udma_mask)
724 {
725 if (pio_mask)
726 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
727 if (mwdma_mask)
728 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
729 if (udma_mask)
730 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
731 }
732
733 static const struct ata_xfer_ent {
734 int shift, bits;
735 u8 base;
736 } ata_xfer_tbl[] = {
737 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
738 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
739 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
740 { -1, },
741 };
742
743 /**
744 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
745 * @xfer_mask: xfer_mask of interest
746 *
747 * Return matching XFER_* value for @xfer_mask. Only the highest
748 * bit of @xfer_mask is considered.
749 *
750 * LOCKING:
751 * None.
752 *
753 * RETURNS:
754 * Matching XFER_* value, 0xff if no match found.
755 */
756 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
757 {
758 int highbit = fls(xfer_mask) - 1;
759 const struct ata_xfer_ent *ent;
760
761 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
762 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
763 return ent->base + highbit - ent->shift;
764 return 0xff;
765 }
766
767 /**
768 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
769 * @xfer_mode: XFER_* of interest
770 *
771 * Return matching xfer_mask for @xfer_mode.
772 *
773 * LOCKING:
774 * None.
775 *
776 * RETURNS:
777 * Matching xfer_mask, 0 if no match found.
778 */
779 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
780 {
781 const struct ata_xfer_ent *ent;
782
783 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
784 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
785 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
786 & ~((1 << ent->shift) - 1);
787 return 0;
788 }
789
790 /**
791 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
792 * @xfer_mode: XFER_* of interest
793 *
794 * Return matching xfer_shift for @xfer_mode.
795 *
796 * LOCKING:
797 * None.
798 *
799 * RETURNS:
800 * Matching xfer_shift, -1 if no match found.
801 */
802 int ata_xfer_mode2shift(unsigned long xfer_mode)
803 {
804 const struct ata_xfer_ent *ent;
805
806 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
807 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
808 return ent->shift;
809 return -1;
810 }
811
812 /**
813 * ata_mode_string - convert xfer_mask to string
814 * @xfer_mask: mask of bits supported; only highest bit counts.
815 *
816 * Determine string which represents the highest speed
817 * (highest bit in @modemask).
818 *
819 * LOCKING:
820 * None.
821 *
822 * RETURNS:
823 * Constant C string representing highest speed listed in
824 * @mode_mask, or the constant C string "<n/a>".
825 */
826 const char *ata_mode_string(unsigned long xfer_mask)
827 {
828 static const char * const xfer_mode_str[] = {
829 "PIO0",
830 "PIO1",
831 "PIO2",
832 "PIO3",
833 "PIO4",
834 "PIO5",
835 "PIO6",
836 "MWDMA0",
837 "MWDMA1",
838 "MWDMA2",
839 "MWDMA3",
840 "MWDMA4",
841 "UDMA/16",
842 "UDMA/25",
843 "UDMA/33",
844 "UDMA/44",
845 "UDMA/66",
846 "UDMA/100",
847 "UDMA/133",
848 "UDMA7",
849 };
850 int highbit;
851
852 highbit = fls(xfer_mask) - 1;
853 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
854 return xfer_mode_str[highbit];
855 return "<n/a>";
856 }
857
858 static const char *sata_spd_string(unsigned int spd)
859 {
860 static const char * const spd_str[] = {
861 "1.5 Gbps",
862 "3.0 Gbps",
863 };
864
865 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
866 return "<unknown>";
867 return spd_str[spd - 1];
868 }
869
870 void ata_dev_disable(struct ata_device *dev)
871 {
872 if (ata_dev_enabled(dev)) {
873 if (ata_msg_drv(dev->link->ap))
874 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
875 ata_acpi_on_disable(dev);
876 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
877 ATA_DNXFER_QUIET);
878 dev->class++;
879 }
880 }
881
882 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
883 {
884 struct ata_link *link = dev->link;
885 struct ata_port *ap = link->ap;
886 u32 scontrol;
887 unsigned int err_mask;
888 int rc;
889
890 /*
891 * disallow DIPM for drivers which haven't set
892 * ATA_FLAG_IPM. This is because when DIPM is enabled,
893 * phy ready will be set in the interrupt status on
894 * state changes, which will cause some drivers to
895 * think there are errors - additionally drivers will
896 * need to disable hot plug.
897 */
898 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
899 ap->pm_policy = NOT_AVAILABLE;
900 return -EINVAL;
901 }
902
903 /*
904 * For DIPM, we will only enable it for the
905 * min_power setting.
906 *
907 * Why? Because Disks are too stupid to know that
908 * If the host rejects a request to go to SLUMBER
909 * they should retry at PARTIAL, and instead it
910 * just would give up. So, for medium_power to
911 * work at all, we need to only allow HIPM.
912 */
913 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
914 if (rc)
915 return rc;
916
917 switch (policy) {
918 case MIN_POWER:
919 /* no restrictions on IPM transitions */
920 scontrol &= ~(0x3 << 8);
921 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
922 if (rc)
923 return rc;
924
925 /* enable DIPM */
926 if (dev->flags & ATA_DFLAG_DIPM)
927 err_mask = ata_dev_set_feature(dev,
928 SETFEATURES_SATA_ENABLE, SATA_DIPM);
929 break;
930 case MEDIUM_POWER:
931 /* allow IPM to PARTIAL */
932 scontrol &= ~(0x1 << 8);
933 scontrol |= (0x2 << 8);
934 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
935 if (rc)
936 return rc;
937
938 /*
939 * we don't have to disable DIPM since IPM flags
940 * disallow transitions to SLUMBER, which effectively
941 * disable DIPM if it does not support PARTIAL
942 */
943 break;
944 case NOT_AVAILABLE:
945 case MAX_PERFORMANCE:
946 /* disable all IPM transitions */
947 scontrol |= (0x3 << 8);
948 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
949 if (rc)
950 return rc;
951
952 /*
953 * we don't have to disable DIPM since IPM flags
954 * disallow all transitions which effectively
955 * disable DIPM anyway.
956 */
957 break;
958 }
959
960 /* FIXME: handle SET FEATURES failure */
961 (void) err_mask;
962
963 return 0;
964 }
965
966 /**
967 * ata_dev_enable_pm - enable SATA interface power management
968 * @dev: device to enable power management
969 * @policy: the link power management policy
970 *
971 * Enable SATA Interface power management. This will enable
972 * Device Interface Power Management (DIPM) for min_power
973 * policy, and then call driver specific callbacks for
974 * enabling Host Initiated Power management.
975 *
976 * Locking: Caller.
977 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
978 */
979 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
980 {
981 int rc = 0;
982 struct ata_port *ap = dev->link->ap;
983
984 /* set HIPM first, then DIPM */
985 if (ap->ops->enable_pm)
986 rc = ap->ops->enable_pm(ap, policy);
987 if (rc)
988 goto enable_pm_out;
989 rc = ata_dev_set_dipm(dev, policy);
990
991 enable_pm_out:
992 if (rc)
993 ap->pm_policy = MAX_PERFORMANCE;
994 else
995 ap->pm_policy = policy;
996 return /* rc */; /* hopefully we can use 'rc' eventually */
997 }
998
999 #ifdef CONFIG_PM
1000 /**
1001 * ata_dev_disable_pm - disable SATA interface power management
1002 * @dev: device to disable power management
1003 *
1004 * Disable SATA Interface power management. This will disable
1005 * Device Interface Power Management (DIPM) without changing
1006 * policy, call driver specific callbacks for disabling Host
1007 * Initiated Power management.
1008 *
1009 * Locking: Caller.
1010 * Returns: void
1011 */
1012 static void ata_dev_disable_pm(struct ata_device *dev)
1013 {
1014 struct ata_port *ap = dev->link->ap;
1015
1016 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1017 if (ap->ops->disable_pm)
1018 ap->ops->disable_pm(ap);
1019 }
1020 #endif /* CONFIG_PM */
1021
1022 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1023 {
1024 ap->pm_policy = policy;
1025 ap->link.eh_info.action |= ATA_EH_LPM;
1026 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1027 ata_port_schedule_eh(ap);
1028 }
1029
1030 #ifdef CONFIG_PM
1031 static void ata_lpm_enable(struct ata_host *host)
1032 {
1033 struct ata_link *link;
1034 struct ata_port *ap;
1035 struct ata_device *dev;
1036 int i;
1037
1038 for (i = 0; i < host->n_ports; i++) {
1039 ap = host->ports[i];
1040 ata_port_for_each_link(link, ap) {
1041 ata_link_for_each_dev(dev, link)
1042 ata_dev_disable_pm(dev);
1043 }
1044 }
1045 }
1046
1047 static void ata_lpm_disable(struct ata_host *host)
1048 {
1049 int i;
1050
1051 for (i = 0; i < host->n_ports; i++) {
1052 struct ata_port *ap = host->ports[i];
1053 ata_lpm_schedule(ap, ap->pm_policy);
1054 }
1055 }
1056 #endif /* CONFIG_PM */
1057
1058 /**
1059 * ata_dev_classify - determine device type based on ATA-spec signature
1060 * @tf: ATA taskfile register set for device to be identified
1061 *
1062 * Determine from taskfile register contents whether a device is
1063 * ATA or ATAPI, as per "Signature and persistence" section
1064 * of ATA/PI spec (volume 1, sect 5.14).
1065 *
1066 * LOCKING:
1067 * None.
1068 *
1069 * RETURNS:
1070 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1071 * %ATA_DEV_UNKNOWN the event of failure.
1072 */
1073 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1074 {
1075 /* Apple's open source Darwin code hints that some devices only
1076 * put a proper signature into the LBA mid/high registers,
1077 * So, we only check those. It's sufficient for uniqueness.
1078 *
1079 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1080 * signatures for ATA and ATAPI devices attached on SerialATA,
1081 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1082 * spec has never mentioned about using different signatures
1083 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1084 * Multiplier specification began to use 0x69/0x96 to identify
1085 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1086 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1087 * 0x69/0x96 shortly and described them as reserved for
1088 * SerialATA.
1089 *
1090 * We follow the current spec and consider that 0x69/0x96
1091 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1092 */
1093 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1094 DPRINTK("found ATA device by sig\n");
1095 return ATA_DEV_ATA;
1096 }
1097
1098 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1099 DPRINTK("found ATAPI device by sig\n");
1100 return ATA_DEV_ATAPI;
1101 }
1102
1103 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1104 DPRINTK("found PMP device by sig\n");
1105 return ATA_DEV_PMP;
1106 }
1107
1108 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1109 printk(KERN_INFO "ata: SEMB device ignored\n");
1110 return ATA_DEV_SEMB_UNSUP; /* not yet */
1111 }
1112
1113 DPRINTK("unknown device\n");
1114 return ATA_DEV_UNKNOWN;
1115 }
1116
1117 /**
1118 * ata_id_string - Convert IDENTIFY DEVICE page into string
1119 * @id: IDENTIFY DEVICE results we will examine
1120 * @s: string into which data is output
1121 * @ofs: offset into identify device page
1122 * @len: length of string to return. must be an even number.
1123 *
1124 * The strings in the IDENTIFY DEVICE page are broken up into
1125 * 16-bit chunks. Run through the string, and output each
1126 * 8-bit chunk linearly, regardless of platform.
1127 *
1128 * LOCKING:
1129 * caller.
1130 */
1131
1132 void ata_id_string(const u16 *id, unsigned char *s,
1133 unsigned int ofs, unsigned int len)
1134 {
1135 unsigned int c;
1136
1137 while (len > 0) {
1138 c = id[ofs] >> 8;
1139 *s = c;
1140 s++;
1141
1142 c = id[ofs] & 0xff;
1143 *s = c;
1144 s++;
1145
1146 ofs++;
1147 len -= 2;
1148 }
1149 }
1150
1151 /**
1152 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1153 * @id: IDENTIFY DEVICE results we will examine
1154 * @s: string into which data is output
1155 * @ofs: offset into identify device page
1156 * @len: length of string to return. must be an odd number.
1157 *
1158 * This function is identical to ata_id_string except that it
1159 * trims trailing spaces and terminates the resulting string with
1160 * null. @len must be actual maximum length (even number) + 1.
1161 *
1162 * LOCKING:
1163 * caller.
1164 */
1165 void ata_id_c_string(const u16 *id, unsigned char *s,
1166 unsigned int ofs, unsigned int len)
1167 {
1168 unsigned char *p;
1169
1170 WARN_ON(!(len & 1));
1171
1172 ata_id_string(id, s, ofs, len - 1);
1173
1174 p = s + strnlen(s, len - 1);
1175 while (p > s && p[-1] == ' ')
1176 p--;
1177 *p = '\0';
1178 }
1179
1180 static u64 ata_id_n_sectors(const u16 *id)
1181 {
1182 if (ata_id_has_lba(id)) {
1183 if (ata_id_has_lba48(id))
1184 return ata_id_u64(id, 100);
1185 else
1186 return ata_id_u32(id, 60);
1187 } else {
1188 if (ata_id_current_chs_valid(id))
1189 return ata_id_u32(id, 57);
1190 else
1191 return id[1] * id[3] * id[6];
1192 }
1193 }
1194
1195 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1196 {
1197 u64 sectors = 0;
1198
1199 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1200 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1201 sectors |= (tf->hob_lbal & 0xff) << 24;
1202 sectors |= (tf->lbah & 0xff) << 16;
1203 sectors |= (tf->lbam & 0xff) << 8;
1204 sectors |= (tf->lbal & 0xff);
1205
1206 return sectors;
1207 }
1208
1209 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1210 {
1211 u64 sectors = 0;
1212
1213 sectors |= (tf->device & 0x0f) << 24;
1214 sectors |= (tf->lbah & 0xff) << 16;
1215 sectors |= (tf->lbam & 0xff) << 8;
1216 sectors |= (tf->lbal & 0xff);
1217
1218 return sectors;
1219 }
1220
1221 /**
1222 * ata_read_native_max_address - Read native max address
1223 * @dev: target device
1224 * @max_sectors: out parameter for the result native max address
1225 *
1226 * Perform an LBA48 or LBA28 native size query upon the device in
1227 * question.
1228 *
1229 * RETURNS:
1230 * 0 on success, -EACCES if command is aborted by the drive.
1231 * -EIO on other errors.
1232 */
1233 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1234 {
1235 unsigned int err_mask;
1236 struct ata_taskfile tf;
1237 int lba48 = ata_id_has_lba48(dev->id);
1238
1239 ata_tf_init(dev, &tf);
1240
1241 /* always clear all address registers */
1242 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1243
1244 if (lba48) {
1245 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1246 tf.flags |= ATA_TFLAG_LBA48;
1247 } else
1248 tf.command = ATA_CMD_READ_NATIVE_MAX;
1249
1250 tf.protocol |= ATA_PROT_NODATA;
1251 tf.device |= ATA_LBA;
1252
1253 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1254 if (err_mask) {
1255 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1256 "max address (err_mask=0x%x)\n", err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol |= ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1318 "max address (err_mask=0x%x)\n", err_mask);
1319 if (err_mask == AC_ERR_DEV &&
1320 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1321 return -EACCES;
1322 return -EIO;
1323 }
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * ata_hpa_resize - Resize a device with an HPA set
1330 * @dev: Device to resize
1331 *
1332 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1333 * it if required to the full size of the media. The caller must check
1334 * the drive has the HPA feature set enabled.
1335 *
1336 * RETURNS:
1337 * 0 on success, -errno on failure.
1338 */
1339 static int ata_hpa_resize(struct ata_device *dev)
1340 {
1341 struct ata_eh_context *ehc = &dev->link->eh_context;
1342 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1343 u64 sectors = ata_id_n_sectors(dev->id);
1344 u64 native_sectors;
1345 int rc;
1346
1347 /* do we need to do it? */
1348 if (dev->class != ATA_DEV_ATA ||
1349 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1350 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1351 return 0;
1352
1353 /* read native max address */
1354 rc = ata_read_native_max_address(dev, &native_sectors);
1355 if (rc) {
1356 /* If device aborted the command or HPA isn't going to
1357 * be unlocked, skip HPA resizing.
1358 */
1359 if (rc == -EACCES || !ata_ignore_hpa) {
1360 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1361 "broken, skipping HPA handling\n");
1362 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1363
1364 /* we can continue if device aborted the command */
1365 if (rc == -EACCES)
1366 rc = 0;
1367 }
1368
1369 return rc;
1370 }
1371
1372 /* nothing to do? */
1373 if (native_sectors <= sectors || !ata_ignore_hpa) {
1374 if (!print_info || native_sectors == sectors)
1375 return 0;
1376
1377 if (native_sectors > sectors)
1378 ata_dev_printk(dev, KERN_INFO,
1379 "HPA detected: current %llu, native %llu\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 else if (native_sectors < sectors)
1383 ata_dev_printk(dev, KERN_WARNING,
1384 "native sectors (%llu) is smaller than "
1385 "sectors (%llu)\n",
1386 (unsigned long long)native_sectors,
1387 (unsigned long long)sectors);
1388 return 0;
1389 }
1390
1391 /* let's unlock HPA */
1392 rc = ata_set_max_sectors(dev, native_sectors);
1393 if (rc == -EACCES) {
1394 /* if device aborted the command, skip HPA resizing */
1395 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1396 "(%llu -> %llu), skipping HPA handling\n",
1397 (unsigned long long)sectors,
1398 (unsigned long long)native_sectors);
1399 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1400 return 0;
1401 } else if (rc)
1402 return rc;
1403
1404 /* re-read IDENTIFY data */
1405 rc = ata_dev_reread_id(dev, 0);
1406 if (rc) {
1407 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1408 "data after HPA resizing\n");
1409 return rc;
1410 }
1411
1412 if (print_info) {
1413 u64 new_sectors = ata_id_n_sectors(dev->id);
1414 ata_dev_printk(dev, KERN_INFO,
1415 "HPA unlocked: %llu -> %llu, native %llu\n",
1416 (unsigned long long)sectors,
1417 (unsigned long long)new_sectors,
1418 (unsigned long long)native_sectors);
1419 }
1420
1421 return 0;
1422 }
1423
1424 /**
1425 * ata_dump_id - IDENTIFY DEVICE info debugging output
1426 * @id: IDENTIFY DEVICE page to dump
1427 *
1428 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1429 * page.
1430 *
1431 * LOCKING:
1432 * caller.
1433 */
1434
1435 static inline void ata_dump_id(const u16 *id)
1436 {
1437 DPRINTK("49==0x%04x "
1438 "53==0x%04x "
1439 "63==0x%04x "
1440 "64==0x%04x "
1441 "75==0x%04x \n",
1442 id[49],
1443 id[53],
1444 id[63],
1445 id[64],
1446 id[75]);
1447 DPRINTK("80==0x%04x "
1448 "81==0x%04x "
1449 "82==0x%04x "
1450 "83==0x%04x "
1451 "84==0x%04x \n",
1452 id[80],
1453 id[81],
1454 id[82],
1455 id[83],
1456 id[84]);
1457 DPRINTK("88==0x%04x "
1458 "93==0x%04x\n",
1459 id[88],
1460 id[93]);
1461 }
1462
1463 /**
1464 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1465 * @id: IDENTIFY data to compute xfer mask from
1466 *
1467 * Compute the xfermask for this device. This is not as trivial
1468 * as it seems if we must consider early devices correctly.
1469 *
1470 * FIXME: pre IDE drive timing (do we care ?).
1471 *
1472 * LOCKING:
1473 * None.
1474 *
1475 * RETURNS:
1476 * Computed xfermask
1477 */
1478 unsigned long ata_id_xfermask(const u16 *id)
1479 {
1480 unsigned long pio_mask, mwdma_mask, udma_mask;
1481
1482 /* Usual case. Word 53 indicates word 64 is valid */
1483 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1484 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1485 pio_mask <<= 3;
1486 pio_mask |= 0x7;
1487 } else {
1488 /* If word 64 isn't valid then Word 51 high byte holds
1489 * the PIO timing number for the maximum. Turn it into
1490 * a mask.
1491 */
1492 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1493 if (mode < 5) /* Valid PIO range */
1494 pio_mask = (2 << mode) - 1;
1495 else
1496 pio_mask = 1;
1497
1498 /* But wait.. there's more. Design your standards by
1499 * committee and you too can get a free iordy field to
1500 * process. However its the speeds not the modes that
1501 * are supported... Note drivers using the timing API
1502 * will get this right anyway
1503 */
1504 }
1505
1506 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1507
1508 if (ata_id_is_cfa(id)) {
1509 /*
1510 * Process compact flash extended modes
1511 */
1512 int pio = id[163] & 0x7;
1513 int dma = (id[163] >> 3) & 7;
1514
1515 if (pio)
1516 pio_mask |= (1 << 5);
1517 if (pio > 1)
1518 pio_mask |= (1 << 6);
1519 if (dma)
1520 mwdma_mask |= (1 << 3);
1521 if (dma > 1)
1522 mwdma_mask |= (1 << 4);
1523 }
1524
1525 udma_mask = 0;
1526 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1527 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1528
1529 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1530 }
1531
1532 /**
1533 * ata_pio_queue_task - Queue port_task
1534 * @ap: The ata_port to queue port_task for
1535 * @fn: workqueue function to be scheduled
1536 * @data: data for @fn to use
1537 * @delay: delay time for workqueue function
1538 *
1539 * Schedule @fn(@data) for execution after @delay jiffies using
1540 * port_task. There is one port_task per port and it's the
1541 * user(low level driver)'s responsibility to make sure that only
1542 * one task is active at any given time.
1543 *
1544 * libata core layer takes care of synchronization between
1545 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1546 * synchronization.
1547 *
1548 * LOCKING:
1549 * Inherited from caller.
1550 */
1551 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1552 {
1553 ap->port_task_data = data;
1554
1555 /* may fail if ata_port_flush_task() in progress */
1556 queue_delayed_work(ata_wq, &ap->port_task, delay);
1557 }
1558
1559 /**
1560 * ata_port_flush_task - Flush port_task
1561 * @ap: The ata_port to flush port_task for
1562 *
1563 * After this function completes, port_task is guranteed not to
1564 * be running or scheduled.
1565 *
1566 * LOCKING:
1567 * Kernel thread context (may sleep)
1568 */
1569 void ata_port_flush_task(struct ata_port *ap)
1570 {
1571 DPRINTK("ENTER\n");
1572
1573 cancel_rearming_delayed_work(&ap->port_task);
1574
1575 if (ata_msg_ctl(ap))
1576 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1577 }
1578
1579 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1580 {
1581 struct completion *waiting = qc->private_data;
1582
1583 complete(waiting);
1584 }
1585
1586 /**
1587 * ata_exec_internal_sg - execute libata internal command
1588 * @dev: Device to which the command is sent
1589 * @tf: Taskfile registers for the command and the result
1590 * @cdb: CDB for packet command
1591 * @dma_dir: Data tranfer direction of the command
1592 * @sgl: sg list for the data buffer of the command
1593 * @n_elem: Number of sg entries
1594 * @timeout: Timeout in msecs (0 for default)
1595 *
1596 * Executes libata internal command with timeout. @tf contains
1597 * command on entry and result on return. Timeout and error
1598 * conditions are reported via return value. No recovery action
1599 * is taken after a command times out. It's caller's duty to
1600 * clean up after timeout.
1601 *
1602 * LOCKING:
1603 * None. Should be called with kernel context, might sleep.
1604 *
1605 * RETURNS:
1606 * Zero on success, AC_ERR_* mask on failure
1607 */
1608 unsigned ata_exec_internal_sg(struct ata_device *dev,
1609 struct ata_taskfile *tf, const u8 *cdb,
1610 int dma_dir, struct scatterlist *sgl,
1611 unsigned int n_elem, unsigned long timeout)
1612 {
1613 struct ata_link *link = dev->link;
1614 struct ata_port *ap = link->ap;
1615 u8 command = tf->command;
1616 struct ata_queued_cmd *qc;
1617 unsigned int tag, preempted_tag;
1618 u32 preempted_sactive, preempted_qc_active;
1619 int preempted_nr_active_links;
1620 DECLARE_COMPLETION_ONSTACK(wait);
1621 unsigned long flags;
1622 unsigned int err_mask;
1623 int rc;
1624
1625 spin_lock_irqsave(ap->lock, flags);
1626
1627 /* no internal command while frozen */
1628 if (ap->pflags & ATA_PFLAG_FROZEN) {
1629 spin_unlock_irqrestore(ap->lock, flags);
1630 return AC_ERR_SYSTEM;
1631 }
1632
1633 /* initialize internal qc */
1634
1635 /* XXX: Tag 0 is used for drivers with legacy EH as some
1636 * drivers choke if any other tag is given. This breaks
1637 * ata_tag_internal() test for those drivers. Don't use new
1638 * EH stuff without converting to it.
1639 */
1640 if (ap->ops->error_handler)
1641 tag = ATA_TAG_INTERNAL;
1642 else
1643 tag = 0;
1644
1645 if (test_and_set_bit(tag, &ap->qc_allocated))
1646 BUG();
1647 qc = __ata_qc_from_tag(ap, tag);
1648
1649 qc->tag = tag;
1650 qc->scsicmd = NULL;
1651 qc->ap = ap;
1652 qc->dev = dev;
1653 ata_qc_reinit(qc);
1654
1655 preempted_tag = link->active_tag;
1656 preempted_sactive = link->sactive;
1657 preempted_qc_active = ap->qc_active;
1658 preempted_nr_active_links = ap->nr_active_links;
1659 link->active_tag = ATA_TAG_POISON;
1660 link->sactive = 0;
1661 ap->qc_active = 0;
1662 ap->nr_active_links = 0;
1663
1664 /* prepare & issue qc */
1665 qc->tf = *tf;
1666 if (cdb)
1667 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1668 qc->flags |= ATA_QCFLAG_RESULT_TF;
1669 qc->dma_dir = dma_dir;
1670 if (dma_dir != DMA_NONE) {
1671 unsigned int i, buflen = 0;
1672 struct scatterlist *sg;
1673
1674 for_each_sg(sgl, sg, n_elem, i)
1675 buflen += sg->length;
1676
1677 ata_sg_init(qc, sgl, n_elem);
1678 qc->nbytes = buflen;
1679 }
1680
1681 qc->private_data = &wait;
1682 qc->complete_fn = ata_qc_complete_internal;
1683
1684 ata_qc_issue(qc);
1685
1686 spin_unlock_irqrestore(ap->lock, flags);
1687
1688 if (!timeout)
1689 timeout = ata_probe_timeout * 1000 / HZ;
1690
1691 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1692
1693 ata_port_flush_task(ap);
1694
1695 if (!rc) {
1696 spin_lock_irqsave(ap->lock, flags);
1697
1698 /* We're racing with irq here. If we lose, the
1699 * following test prevents us from completing the qc
1700 * twice. If we win, the port is frozen and will be
1701 * cleaned up by ->post_internal_cmd().
1702 */
1703 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1704 qc->err_mask |= AC_ERR_TIMEOUT;
1705
1706 if (ap->ops->error_handler)
1707 ata_port_freeze(ap);
1708 else
1709 ata_qc_complete(qc);
1710
1711 if (ata_msg_warn(ap))
1712 ata_dev_printk(dev, KERN_WARNING,
1713 "qc timeout (cmd 0x%x)\n", command);
1714 }
1715
1716 spin_unlock_irqrestore(ap->lock, flags);
1717 }
1718
1719 /* do post_internal_cmd */
1720 if (ap->ops->post_internal_cmd)
1721 ap->ops->post_internal_cmd(qc);
1722
1723 /* perform minimal error analysis */
1724 if (qc->flags & ATA_QCFLAG_FAILED) {
1725 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1726 qc->err_mask |= AC_ERR_DEV;
1727
1728 if (!qc->err_mask)
1729 qc->err_mask |= AC_ERR_OTHER;
1730
1731 if (qc->err_mask & ~AC_ERR_OTHER)
1732 qc->err_mask &= ~AC_ERR_OTHER;
1733 }
1734
1735 /* finish up */
1736 spin_lock_irqsave(ap->lock, flags);
1737
1738 *tf = qc->result_tf;
1739 err_mask = qc->err_mask;
1740
1741 ata_qc_free(qc);
1742 link->active_tag = preempted_tag;
1743 link->sactive = preempted_sactive;
1744 ap->qc_active = preempted_qc_active;
1745 ap->nr_active_links = preempted_nr_active_links;
1746
1747 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1748 * Until those drivers are fixed, we detect the condition
1749 * here, fail the command with AC_ERR_SYSTEM and reenable the
1750 * port.
1751 *
1752 * Note that this doesn't change any behavior as internal
1753 * command failure results in disabling the device in the
1754 * higher layer for LLDDs without new reset/EH callbacks.
1755 *
1756 * Kill the following code as soon as those drivers are fixed.
1757 */
1758 if (ap->flags & ATA_FLAG_DISABLED) {
1759 err_mask |= AC_ERR_SYSTEM;
1760 ata_port_probe(ap);
1761 }
1762
1763 spin_unlock_irqrestore(ap->lock, flags);
1764
1765 return err_mask;
1766 }
1767
1768 /**
1769 * ata_exec_internal - execute libata internal command
1770 * @dev: Device to which the command is sent
1771 * @tf: Taskfile registers for the command and the result
1772 * @cdb: CDB for packet command
1773 * @dma_dir: Data tranfer direction of the command
1774 * @buf: Data buffer of the command
1775 * @buflen: Length of data buffer
1776 * @timeout: Timeout in msecs (0 for default)
1777 *
1778 * Wrapper around ata_exec_internal_sg() which takes simple
1779 * buffer instead of sg list.
1780 *
1781 * LOCKING:
1782 * None. Should be called with kernel context, might sleep.
1783 *
1784 * RETURNS:
1785 * Zero on success, AC_ERR_* mask on failure
1786 */
1787 unsigned ata_exec_internal(struct ata_device *dev,
1788 struct ata_taskfile *tf, const u8 *cdb,
1789 int dma_dir, void *buf, unsigned int buflen,
1790 unsigned long timeout)
1791 {
1792 struct scatterlist *psg = NULL, sg;
1793 unsigned int n_elem = 0;
1794
1795 if (dma_dir != DMA_NONE) {
1796 WARN_ON(!buf);
1797 sg_init_one(&sg, buf, buflen);
1798 psg = &sg;
1799 n_elem++;
1800 }
1801
1802 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1803 timeout);
1804 }
1805
1806 /**
1807 * ata_do_simple_cmd - execute simple internal command
1808 * @dev: Device to which the command is sent
1809 * @cmd: Opcode to execute
1810 *
1811 * Execute a 'simple' command, that only consists of the opcode
1812 * 'cmd' itself, without filling any other registers
1813 *
1814 * LOCKING:
1815 * Kernel thread context (may sleep).
1816 *
1817 * RETURNS:
1818 * Zero on success, AC_ERR_* mask on failure
1819 */
1820 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1821 {
1822 struct ata_taskfile tf;
1823
1824 ata_tf_init(dev, &tf);
1825
1826 tf.command = cmd;
1827 tf.flags |= ATA_TFLAG_DEVICE;
1828 tf.protocol = ATA_PROT_NODATA;
1829
1830 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1831 }
1832
1833 /**
1834 * ata_pio_need_iordy - check if iordy needed
1835 * @adev: ATA device
1836 *
1837 * Check if the current speed of the device requires IORDY. Used
1838 * by various controllers for chip configuration.
1839 */
1840
1841 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1842 {
1843 /* Controller doesn't support IORDY. Probably a pointless check
1844 as the caller should know this */
1845 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1846 return 0;
1847 /* PIO3 and higher it is mandatory */
1848 if (adev->pio_mode > XFER_PIO_2)
1849 return 1;
1850 /* We turn it on when possible */
1851 if (ata_id_has_iordy(adev->id))
1852 return 1;
1853 return 0;
1854 }
1855
1856 /**
1857 * ata_pio_mask_no_iordy - Return the non IORDY mask
1858 * @adev: ATA device
1859 *
1860 * Compute the highest mode possible if we are not using iordy. Return
1861 * -1 if no iordy mode is available.
1862 */
1863
1864 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1865 {
1866 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1867 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1868 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1869 /* Is the speed faster than the drive allows non IORDY ? */
1870 if (pio) {
1871 /* This is cycle times not frequency - watch the logic! */
1872 if (pio > 240) /* PIO2 is 240nS per cycle */
1873 return 3 << ATA_SHIFT_PIO;
1874 return 7 << ATA_SHIFT_PIO;
1875 }
1876 }
1877 return 3 << ATA_SHIFT_PIO;
1878 }
1879
1880 /**
1881 * ata_dev_read_id - Read ID data from the specified device
1882 * @dev: target device
1883 * @p_class: pointer to class of the target device (may be changed)
1884 * @flags: ATA_READID_* flags
1885 * @id: buffer to read IDENTIFY data into
1886 *
1887 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1888 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1889 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1890 * for pre-ATA4 drives.
1891 *
1892 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1893 * now we abort if we hit that case.
1894 *
1895 * LOCKING:
1896 * Kernel thread context (may sleep)
1897 *
1898 * RETURNS:
1899 * 0 on success, -errno otherwise.
1900 */
1901 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1902 unsigned int flags, u16 *id)
1903 {
1904 struct ata_port *ap = dev->link->ap;
1905 unsigned int class = *p_class;
1906 struct ata_taskfile tf;
1907 unsigned int err_mask = 0;
1908 const char *reason;
1909 int may_fallback = 1, tried_spinup = 0;
1910 int rc;
1911
1912 if (ata_msg_ctl(ap))
1913 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1914
1915 retry:
1916 ata_tf_init(dev, &tf);
1917
1918 switch (class) {
1919 case ATA_DEV_ATA:
1920 tf.command = ATA_CMD_ID_ATA;
1921 break;
1922 case ATA_DEV_ATAPI:
1923 tf.command = ATA_CMD_ID_ATAPI;
1924 break;
1925 default:
1926 rc = -ENODEV;
1927 reason = "unsupported class";
1928 goto err_out;
1929 }
1930
1931 tf.protocol = ATA_PROT_PIO;
1932
1933 /* Some devices choke if TF registers contain garbage. Make
1934 * sure those are properly initialized.
1935 */
1936 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1937
1938 /* Device presence detection is unreliable on some
1939 * controllers. Always poll IDENTIFY if available.
1940 */
1941 tf.flags |= ATA_TFLAG_POLLING;
1942
1943 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1944 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1945 if (err_mask) {
1946 if (err_mask & AC_ERR_NODEV_HINT) {
1947 ata_dev_printk(dev, KERN_DEBUG,
1948 "NODEV after polling detection\n");
1949 return -ENOENT;
1950 }
1951
1952 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1953 /* Device or controller might have reported
1954 * the wrong device class. Give a shot at the
1955 * other IDENTIFY if the current one is
1956 * aborted by the device.
1957 */
1958 if (may_fallback) {
1959 may_fallback = 0;
1960
1961 if (class == ATA_DEV_ATA)
1962 class = ATA_DEV_ATAPI;
1963 else
1964 class = ATA_DEV_ATA;
1965 goto retry;
1966 }
1967
1968 /* Control reaches here iff the device aborted
1969 * both flavors of IDENTIFYs which happens
1970 * sometimes with phantom devices.
1971 */
1972 ata_dev_printk(dev, KERN_DEBUG,
1973 "both IDENTIFYs aborted, assuming NODEV\n");
1974 return -ENOENT;
1975 }
1976
1977 rc = -EIO;
1978 reason = "I/O error";
1979 goto err_out;
1980 }
1981
1982 /* Falling back doesn't make sense if ID data was read
1983 * successfully at least once.
1984 */
1985 may_fallback = 0;
1986
1987 swap_buf_le16(id, ATA_ID_WORDS);
1988
1989 /* sanity check */
1990 rc = -EINVAL;
1991 reason = "device reports invalid type";
1992
1993 if (class == ATA_DEV_ATA) {
1994 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1995 goto err_out;
1996 } else {
1997 if (ata_id_is_ata(id))
1998 goto err_out;
1999 }
2000
2001 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2002 tried_spinup = 1;
2003 /*
2004 * Drive powered-up in standby mode, and requires a specific
2005 * SET_FEATURES spin-up subcommand before it will accept
2006 * anything other than the original IDENTIFY command.
2007 */
2008 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2009 if (err_mask && id[2] != 0x738c) {
2010 rc = -EIO;
2011 reason = "SPINUP failed";
2012 goto err_out;
2013 }
2014 /*
2015 * If the drive initially returned incomplete IDENTIFY info,
2016 * we now must reissue the IDENTIFY command.
2017 */
2018 if (id[2] == 0x37c8)
2019 goto retry;
2020 }
2021
2022 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2023 /*
2024 * The exact sequence expected by certain pre-ATA4 drives is:
2025 * SRST RESET
2026 * IDENTIFY (optional in early ATA)
2027 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2028 * anything else..
2029 * Some drives were very specific about that exact sequence.
2030 *
2031 * Note that ATA4 says lba is mandatory so the second check
2032 * shoud never trigger.
2033 */
2034 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2035 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2036 if (err_mask) {
2037 rc = -EIO;
2038 reason = "INIT_DEV_PARAMS failed";
2039 goto err_out;
2040 }
2041
2042 /* current CHS translation info (id[53-58]) might be
2043 * changed. reread the identify device info.
2044 */
2045 flags &= ~ATA_READID_POSTRESET;
2046 goto retry;
2047 }
2048 }
2049
2050 *p_class = class;
2051
2052 return 0;
2053
2054 err_out:
2055 if (ata_msg_warn(ap))
2056 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2057 "(%s, err_mask=0x%x)\n", reason, err_mask);
2058 return rc;
2059 }
2060
2061 static inline u8 ata_dev_knobble(struct ata_device *dev)
2062 {
2063 struct ata_port *ap = dev->link->ap;
2064 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2065 }
2066
2067 static void ata_dev_config_ncq(struct ata_device *dev,
2068 char *desc, size_t desc_sz)
2069 {
2070 struct ata_port *ap = dev->link->ap;
2071 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2072
2073 if (!ata_id_has_ncq(dev->id)) {
2074 desc[0] = '\0';
2075 return;
2076 }
2077 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2078 snprintf(desc, desc_sz, "NCQ (not used)");
2079 return;
2080 }
2081 if (ap->flags & ATA_FLAG_NCQ) {
2082 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2083 dev->flags |= ATA_DFLAG_NCQ;
2084 }
2085
2086 if (hdepth >= ddepth)
2087 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2088 else
2089 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2090 }
2091
2092 /**
2093 * ata_dev_configure - Configure the specified ATA/ATAPI device
2094 * @dev: Target device to configure
2095 *
2096 * Configure @dev according to @dev->id. Generic and low-level
2097 * driver specific fixups are also applied.
2098 *
2099 * LOCKING:
2100 * Kernel thread context (may sleep)
2101 *
2102 * RETURNS:
2103 * 0 on success, -errno otherwise
2104 */
2105 int ata_dev_configure(struct ata_device *dev)
2106 {
2107 struct ata_port *ap = dev->link->ap;
2108 struct ata_eh_context *ehc = &dev->link->eh_context;
2109 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2110 const u16 *id = dev->id;
2111 unsigned long xfer_mask;
2112 char revbuf[7]; /* XYZ-99\0 */
2113 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2114 char modelbuf[ATA_ID_PROD_LEN+1];
2115 int rc;
2116
2117 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2118 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2119 __func__);
2120 return 0;
2121 }
2122
2123 if (ata_msg_probe(ap))
2124 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2125
2126 /* set horkage */
2127 dev->horkage |= ata_dev_blacklisted(dev);
2128 ata_force_horkage(dev);
2129
2130 /* let ACPI work its magic */
2131 rc = ata_acpi_on_devcfg(dev);
2132 if (rc)
2133 return rc;
2134
2135 /* massage HPA, do it early as it might change IDENTIFY data */
2136 rc = ata_hpa_resize(dev);
2137 if (rc)
2138 return rc;
2139
2140 /* print device capabilities */
2141 if (ata_msg_probe(ap))
2142 ata_dev_printk(dev, KERN_DEBUG,
2143 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2144 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2145 __func__,
2146 id[49], id[82], id[83], id[84],
2147 id[85], id[86], id[87], id[88]);
2148
2149 /* initialize to-be-configured parameters */
2150 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2151 dev->max_sectors = 0;
2152 dev->cdb_len = 0;
2153 dev->n_sectors = 0;
2154 dev->cylinders = 0;
2155 dev->heads = 0;
2156 dev->sectors = 0;
2157
2158 /*
2159 * common ATA, ATAPI feature tests
2160 */
2161
2162 /* find max transfer mode; for printk only */
2163 xfer_mask = ata_id_xfermask(id);
2164
2165 if (ata_msg_probe(ap))
2166 ata_dump_id(id);
2167
2168 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2169 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2170 sizeof(fwrevbuf));
2171
2172 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2173 sizeof(modelbuf));
2174
2175 /* ATA-specific feature tests */
2176 if (dev->class == ATA_DEV_ATA) {
2177 if (ata_id_is_cfa(id)) {
2178 if (id[162] & 1) /* CPRM may make this media unusable */
2179 ata_dev_printk(dev, KERN_WARNING,
2180 "supports DRM functions and may "
2181 "not be fully accessable.\n");
2182 snprintf(revbuf, 7, "CFA");
2183 } else {
2184 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2185 /* Warn the user if the device has TPM extensions */
2186 if (ata_id_has_tpm(id))
2187 ata_dev_printk(dev, KERN_WARNING,
2188 "supports DRM functions and may "
2189 "not be fully accessable.\n");
2190 }
2191
2192 dev->n_sectors = ata_id_n_sectors(id);
2193
2194 if (dev->id[59] & 0x100)
2195 dev->multi_count = dev->id[59] & 0xff;
2196
2197 if (ata_id_has_lba(id)) {
2198 const char *lba_desc;
2199 char ncq_desc[20];
2200
2201 lba_desc = "LBA";
2202 dev->flags |= ATA_DFLAG_LBA;
2203 if (ata_id_has_lba48(id)) {
2204 dev->flags |= ATA_DFLAG_LBA48;
2205 lba_desc = "LBA48";
2206
2207 if (dev->n_sectors >= (1UL << 28) &&
2208 ata_id_has_flush_ext(id))
2209 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2210 }
2211
2212 /* config NCQ */
2213 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2214
2215 /* print device info to dmesg */
2216 if (ata_msg_drv(ap) && print_info) {
2217 ata_dev_printk(dev, KERN_INFO,
2218 "%s: %s, %s, max %s\n",
2219 revbuf, modelbuf, fwrevbuf,
2220 ata_mode_string(xfer_mask));
2221 ata_dev_printk(dev, KERN_INFO,
2222 "%Lu sectors, multi %u: %s %s\n",
2223 (unsigned long long)dev->n_sectors,
2224 dev->multi_count, lba_desc, ncq_desc);
2225 }
2226 } else {
2227 /* CHS */
2228
2229 /* Default translation */
2230 dev->cylinders = id[1];
2231 dev->heads = id[3];
2232 dev->sectors = id[6];
2233
2234 if (ata_id_current_chs_valid(id)) {
2235 /* Current CHS translation is valid. */
2236 dev->cylinders = id[54];
2237 dev->heads = id[55];
2238 dev->sectors = id[56];
2239 }
2240
2241 /* print device info to dmesg */
2242 if (ata_msg_drv(ap) && print_info) {
2243 ata_dev_printk(dev, KERN_INFO,
2244 "%s: %s, %s, max %s\n",
2245 revbuf, modelbuf, fwrevbuf,
2246 ata_mode_string(xfer_mask));
2247 ata_dev_printk(dev, KERN_INFO,
2248 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2249 (unsigned long long)dev->n_sectors,
2250 dev->multi_count, dev->cylinders,
2251 dev->heads, dev->sectors);
2252 }
2253 }
2254
2255 dev->cdb_len = 16;
2256 }
2257
2258 /* ATAPI-specific feature tests */
2259 else if (dev->class == ATA_DEV_ATAPI) {
2260 const char *cdb_intr_string = "";
2261 const char *atapi_an_string = "";
2262 const char *dma_dir_string = "";
2263 u32 sntf;
2264
2265 rc = atapi_cdb_len(id);
2266 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2267 if (ata_msg_warn(ap))
2268 ata_dev_printk(dev, KERN_WARNING,
2269 "unsupported CDB len\n");
2270 rc = -EINVAL;
2271 goto err_out_nosup;
2272 }
2273 dev->cdb_len = (unsigned int) rc;
2274
2275 /* Enable ATAPI AN if both the host and device have
2276 * the support. If PMP is attached, SNTF is required
2277 * to enable ATAPI AN to discern between PHY status
2278 * changed notifications and ATAPI ANs.
2279 */
2280 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2281 (!sata_pmp_attached(ap) ||
2282 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2283 unsigned int err_mask;
2284
2285 /* issue SET feature command to turn this on */
2286 err_mask = ata_dev_set_feature(dev,
2287 SETFEATURES_SATA_ENABLE, SATA_AN);
2288 if (err_mask)
2289 ata_dev_printk(dev, KERN_ERR,
2290 "failed to enable ATAPI AN "
2291 "(err_mask=0x%x)\n", err_mask);
2292 else {
2293 dev->flags |= ATA_DFLAG_AN;
2294 atapi_an_string = ", ATAPI AN";
2295 }
2296 }
2297
2298 if (ata_id_cdb_intr(dev->id)) {
2299 dev->flags |= ATA_DFLAG_CDB_INTR;
2300 cdb_intr_string = ", CDB intr";
2301 }
2302
2303 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2304 dev->flags |= ATA_DFLAG_DMADIR;
2305 dma_dir_string = ", DMADIR";
2306 }
2307
2308 /* print device info to dmesg */
2309 if (ata_msg_drv(ap) && print_info)
2310 ata_dev_printk(dev, KERN_INFO,
2311 "ATAPI: %s, %s, max %s%s%s%s\n",
2312 modelbuf, fwrevbuf,
2313 ata_mode_string(xfer_mask),
2314 cdb_intr_string, atapi_an_string,
2315 dma_dir_string);
2316 }
2317
2318 /* determine max_sectors */
2319 dev->max_sectors = ATA_MAX_SECTORS;
2320 if (dev->flags & ATA_DFLAG_LBA48)
2321 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2322
2323 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2324 if (ata_id_has_hipm(dev->id))
2325 dev->flags |= ATA_DFLAG_HIPM;
2326 if (ata_id_has_dipm(dev->id))
2327 dev->flags |= ATA_DFLAG_DIPM;
2328 }
2329
2330 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2331 200 sectors */
2332 if (ata_dev_knobble(dev)) {
2333 if (ata_msg_drv(ap) && print_info)
2334 ata_dev_printk(dev, KERN_INFO,
2335 "applying bridge limits\n");
2336 dev->udma_mask &= ATA_UDMA5;
2337 dev->max_sectors = ATA_MAX_SECTORS;
2338 }
2339
2340 if ((dev->class == ATA_DEV_ATAPI) &&
2341 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2342 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2343 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2344 }
2345
2346 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2347 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2348 dev->max_sectors);
2349
2350 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2351 dev->horkage |= ATA_HORKAGE_IPM;
2352
2353 /* reset link pm_policy for this port to no pm */
2354 ap->pm_policy = MAX_PERFORMANCE;
2355 }
2356
2357 if (ap->ops->dev_config)
2358 ap->ops->dev_config(dev);
2359
2360 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2361 /* Let the user know. We don't want to disallow opens for
2362 rescue purposes, or in case the vendor is just a blithering
2363 idiot. Do this after the dev_config call as some controllers
2364 with buggy firmware may want to avoid reporting false device
2365 bugs */
2366
2367 if (print_info) {
2368 ata_dev_printk(dev, KERN_WARNING,
2369 "Drive reports diagnostics failure. This may indicate a drive\n");
2370 ata_dev_printk(dev, KERN_WARNING,
2371 "fault or invalid emulation. Contact drive vendor for information.\n");
2372 }
2373 }
2374
2375 return 0;
2376
2377 err_out_nosup:
2378 if (ata_msg_probe(ap))
2379 ata_dev_printk(dev, KERN_DEBUG,
2380 "%s: EXIT, err\n", __func__);
2381 return rc;
2382 }
2383
2384 /**
2385 * ata_cable_40wire - return 40 wire cable type
2386 * @ap: port
2387 *
2388 * Helper method for drivers which want to hardwire 40 wire cable
2389 * detection.
2390 */
2391
2392 int ata_cable_40wire(struct ata_port *ap)
2393 {
2394 return ATA_CBL_PATA40;
2395 }
2396
2397 /**
2398 * ata_cable_80wire - return 80 wire cable type
2399 * @ap: port
2400 *
2401 * Helper method for drivers which want to hardwire 80 wire cable
2402 * detection.
2403 */
2404
2405 int ata_cable_80wire(struct ata_port *ap)
2406 {
2407 return ATA_CBL_PATA80;
2408 }
2409
2410 /**
2411 * ata_cable_unknown - return unknown PATA cable.
2412 * @ap: port
2413 *
2414 * Helper method for drivers which have no PATA cable detection.
2415 */
2416
2417 int ata_cable_unknown(struct ata_port *ap)
2418 {
2419 return ATA_CBL_PATA_UNK;
2420 }
2421
2422 /**
2423 * ata_cable_ignore - return ignored PATA cable.
2424 * @ap: port
2425 *
2426 * Helper method for drivers which don't use cable type to limit
2427 * transfer mode.
2428 */
2429 int ata_cable_ignore(struct ata_port *ap)
2430 {
2431 return ATA_CBL_PATA_IGN;
2432 }
2433
2434 /**
2435 * ata_cable_sata - return SATA cable type
2436 * @ap: port
2437 *
2438 * Helper method for drivers which have SATA cables
2439 */
2440
2441 int ata_cable_sata(struct ata_port *ap)
2442 {
2443 return ATA_CBL_SATA;
2444 }
2445
2446 /**
2447 * ata_bus_probe - Reset and probe ATA bus
2448 * @ap: Bus to probe
2449 *
2450 * Master ATA bus probing function. Initiates a hardware-dependent
2451 * bus reset, then attempts to identify any devices found on
2452 * the bus.
2453 *
2454 * LOCKING:
2455 * PCI/etc. bus probe sem.
2456 *
2457 * RETURNS:
2458 * Zero on success, negative errno otherwise.
2459 */
2460
2461 int ata_bus_probe(struct ata_port *ap)
2462 {
2463 unsigned int classes[ATA_MAX_DEVICES];
2464 int tries[ATA_MAX_DEVICES];
2465 int rc;
2466 struct ata_device *dev;
2467
2468 ata_port_probe(ap);
2469
2470 ata_link_for_each_dev(dev, &ap->link)
2471 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2472
2473 retry:
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 /* If we issue an SRST then an ATA drive (not ATAPI)
2476 * may change configuration and be in PIO0 timing. If
2477 * we do a hard reset (or are coming from power on)
2478 * this is true for ATA or ATAPI. Until we've set a
2479 * suitable controller mode we should not touch the
2480 * bus as we may be talking too fast.
2481 */
2482 dev->pio_mode = XFER_PIO_0;
2483
2484 /* If the controller has a pio mode setup function
2485 * then use it to set the chipset to rights. Don't
2486 * touch the DMA setup as that will be dealt with when
2487 * configuring devices.
2488 */
2489 if (ap->ops->set_piomode)
2490 ap->ops->set_piomode(ap, dev);
2491 }
2492
2493 /* reset and determine device classes */
2494 ap->ops->phy_reset(ap);
2495
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2498 dev->class != ATA_DEV_UNKNOWN)
2499 classes[dev->devno] = dev->class;
2500 else
2501 classes[dev->devno] = ATA_DEV_NONE;
2502
2503 dev->class = ATA_DEV_UNKNOWN;
2504 }
2505
2506 ata_port_probe(ap);
2507
2508 /* read IDENTIFY page and configure devices. We have to do the identify
2509 specific sequence bass-ackwards so that PDIAG- is released by
2510 the slave device */
2511
2512 ata_link_for_each_dev_reverse(dev, &ap->link) {
2513 if (tries[dev->devno])
2514 dev->class = classes[dev->devno];
2515
2516 if (!ata_dev_enabled(dev))
2517 continue;
2518
2519 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2520 dev->id);
2521 if (rc)
2522 goto fail;
2523 }
2524
2525 /* Now ask for the cable type as PDIAG- should have been released */
2526 if (ap->ops->cable_detect)
2527 ap->cbl = ap->ops->cable_detect(ap);
2528
2529 /* We may have SATA bridge glue hiding here irrespective of the
2530 reported cable types and sensed types */
2531 ata_link_for_each_dev(dev, &ap->link) {
2532 if (!ata_dev_enabled(dev))
2533 continue;
2534 /* SATA drives indicate we have a bridge. We don't know which
2535 end of the link the bridge is which is a problem */
2536 if (ata_id_is_sata(dev->id))
2537 ap->cbl = ATA_CBL_SATA;
2538 }
2539
2540 /* After the identify sequence we can now set up the devices. We do
2541 this in the normal order so that the user doesn't get confused */
2542
2543 ata_link_for_each_dev(dev, &ap->link) {
2544 if (!ata_dev_enabled(dev))
2545 continue;
2546
2547 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2548 rc = ata_dev_configure(dev);
2549 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2550 if (rc)
2551 goto fail;
2552 }
2553
2554 /* configure transfer mode */
2555 rc = ata_set_mode(&ap->link, &dev);
2556 if (rc)
2557 goto fail;
2558
2559 ata_link_for_each_dev(dev, &ap->link)
2560 if (ata_dev_enabled(dev))
2561 return 0;
2562
2563 /* no device present, disable port */
2564 ata_port_disable(ap);
2565 return -ENODEV;
2566
2567 fail:
2568 tries[dev->devno]--;
2569
2570 switch (rc) {
2571 case -EINVAL:
2572 /* eeek, something went very wrong, give up */
2573 tries[dev->devno] = 0;
2574 break;
2575
2576 case -ENODEV:
2577 /* give it just one more chance */
2578 tries[dev->devno] = min(tries[dev->devno], 1);
2579 case -EIO:
2580 if (tries[dev->devno] == 1) {
2581 /* This is the last chance, better to slow
2582 * down than lose it.
2583 */
2584 sata_down_spd_limit(&ap->link);
2585 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2586 }
2587 }
2588
2589 if (!tries[dev->devno])
2590 ata_dev_disable(dev);
2591
2592 goto retry;
2593 }
2594
2595 /**
2596 * ata_port_probe - Mark port as enabled
2597 * @ap: Port for which we indicate enablement
2598 *
2599 * Modify @ap data structure such that the system
2600 * thinks that the entire port is enabled.
2601 *
2602 * LOCKING: host lock, or some other form of
2603 * serialization.
2604 */
2605
2606 void ata_port_probe(struct ata_port *ap)
2607 {
2608 ap->flags &= ~ATA_FLAG_DISABLED;
2609 }
2610
2611 /**
2612 * sata_print_link_status - Print SATA link status
2613 * @link: SATA link to printk link status about
2614 *
2615 * This function prints link speed and status of a SATA link.
2616 *
2617 * LOCKING:
2618 * None.
2619 */
2620 void sata_print_link_status(struct ata_link *link)
2621 {
2622 u32 sstatus, scontrol, tmp;
2623
2624 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2625 return;
2626 sata_scr_read(link, SCR_CONTROL, &scontrol);
2627
2628 if (ata_link_online(link)) {
2629 tmp = (sstatus >> 4) & 0xf;
2630 ata_link_printk(link, KERN_INFO,
2631 "SATA link up %s (SStatus %X SControl %X)\n",
2632 sata_spd_string(tmp), sstatus, scontrol);
2633 } else {
2634 ata_link_printk(link, KERN_INFO,
2635 "SATA link down (SStatus %X SControl %X)\n",
2636 sstatus, scontrol);
2637 }
2638 }
2639
2640 /**
2641 * ata_dev_pair - return other device on cable
2642 * @adev: device
2643 *
2644 * Obtain the other device on the same cable, or if none is
2645 * present NULL is returned
2646 */
2647
2648 struct ata_device *ata_dev_pair(struct ata_device *adev)
2649 {
2650 struct ata_link *link = adev->link;
2651 struct ata_device *pair = &link->device[1 - adev->devno];
2652 if (!ata_dev_enabled(pair))
2653 return NULL;
2654 return pair;
2655 }
2656
2657 /**
2658 * ata_port_disable - Disable port.
2659 * @ap: Port to be disabled.
2660 *
2661 * Modify @ap data structure such that the system
2662 * thinks that the entire port is disabled, and should
2663 * never attempt to probe or communicate with devices
2664 * on this port.
2665 *
2666 * LOCKING: host lock, or some other form of
2667 * serialization.
2668 */
2669
2670 void ata_port_disable(struct ata_port *ap)
2671 {
2672 ap->link.device[0].class = ATA_DEV_NONE;
2673 ap->link.device[1].class = ATA_DEV_NONE;
2674 ap->flags |= ATA_FLAG_DISABLED;
2675 }
2676
2677 /**
2678 * sata_down_spd_limit - adjust SATA spd limit downward
2679 * @link: Link to adjust SATA spd limit for
2680 *
2681 * Adjust SATA spd limit of @link downward. Note that this
2682 * function only adjusts the limit. The change must be applied
2683 * using sata_set_spd().
2684 *
2685 * LOCKING:
2686 * Inherited from caller.
2687 *
2688 * RETURNS:
2689 * 0 on success, negative errno on failure
2690 */
2691 int sata_down_spd_limit(struct ata_link *link)
2692 {
2693 u32 sstatus, spd, mask;
2694 int rc, highbit;
2695
2696 if (!sata_scr_valid(link))
2697 return -EOPNOTSUPP;
2698
2699 /* If SCR can be read, use it to determine the current SPD.
2700 * If not, use cached value in link->sata_spd.
2701 */
2702 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2703 if (rc == 0)
2704 spd = (sstatus >> 4) & 0xf;
2705 else
2706 spd = link->sata_spd;
2707
2708 mask = link->sata_spd_limit;
2709 if (mask <= 1)
2710 return -EINVAL;
2711
2712 /* unconditionally mask off the highest bit */
2713 highbit = fls(mask) - 1;
2714 mask &= ~(1 << highbit);
2715
2716 /* Mask off all speeds higher than or equal to the current
2717 * one. Force 1.5Gbps if current SPD is not available.
2718 */
2719 if (spd > 1)
2720 mask &= (1 << (spd - 1)) - 1;
2721 else
2722 mask &= 1;
2723
2724 /* were we already at the bottom? */
2725 if (!mask)
2726 return -EINVAL;
2727
2728 link->sata_spd_limit = mask;
2729
2730 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2731 sata_spd_string(fls(mask)));
2732
2733 return 0;
2734 }
2735
2736 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2737 {
2738 struct ata_link *host_link = &link->ap->link;
2739 u32 limit, target, spd;
2740
2741 limit = link->sata_spd_limit;
2742
2743 /* Don't configure downstream link faster than upstream link.
2744 * It doesn't speed up anything and some PMPs choke on such
2745 * configuration.
2746 */
2747 if (!ata_is_host_link(link) && host_link->sata_spd)
2748 limit &= (1 << host_link->sata_spd) - 1;
2749
2750 if (limit == UINT_MAX)
2751 target = 0;
2752 else
2753 target = fls(limit);
2754
2755 spd = (*scontrol >> 4) & 0xf;
2756 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2757
2758 return spd != target;
2759 }
2760
2761 /**
2762 * sata_set_spd_needed - is SATA spd configuration needed
2763 * @link: Link in question
2764 *
2765 * Test whether the spd limit in SControl matches
2766 * @link->sata_spd_limit. This function is used to determine
2767 * whether hardreset is necessary to apply SATA spd
2768 * configuration.
2769 *
2770 * LOCKING:
2771 * Inherited from caller.
2772 *
2773 * RETURNS:
2774 * 1 if SATA spd configuration is needed, 0 otherwise.
2775 */
2776 int sata_set_spd_needed(struct ata_link *link)
2777 {
2778 u32 scontrol;
2779
2780 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2781 return 1;
2782
2783 return __sata_set_spd_needed(link, &scontrol);
2784 }
2785
2786 /**
2787 * sata_set_spd - set SATA spd according to spd limit
2788 * @link: Link to set SATA spd for
2789 *
2790 * Set SATA spd of @link according to sata_spd_limit.
2791 *
2792 * LOCKING:
2793 * Inherited from caller.
2794 *
2795 * RETURNS:
2796 * 0 if spd doesn't need to be changed, 1 if spd has been
2797 * changed. Negative errno if SCR registers are inaccessible.
2798 */
2799 int sata_set_spd(struct ata_link *link)
2800 {
2801 u32 scontrol;
2802 int rc;
2803
2804 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2805 return rc;
2806
2807 if (!__sata_set_spd_needed(link, &scontrol))
2808 return 0;
2809
2810 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2811 return rc;
2812
2813 return 1;
2814 }
2815
2816 /*
2817 * This mode timing computation functionality is ported over from
2818 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2819 */
2820 /*
2821 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2822 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2823 * for UDMA6, which is currently supported only by Maxtor drives.
2824 *
2825 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2826 */
2827
2828 static const struct ata_timing ata_timing[] = {
2829 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2830 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2831 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2832 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2833 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2834 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2835 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2836 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2837
2838 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2839 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2840 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2841
2842 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2843 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2844 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2845 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2846 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2847
2848 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2849 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2850 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2851 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2852 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2853 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2854 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2855 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2856
2857 { 0xFF }
2858 };
2859
2860 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2861 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2862
2863 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2864 {
2865 q->setup = EZ(t->setup * 1000, T);
2866 q->act8b = EZ(t->act8b * 1000, T);
2867 q->rec8b = EZ(t->rec8b * 1000, T);
2868 q->cyc8b = EZ(t->cyc8b * 1000, T);
2869 q->active = EZ(t->active * 1000, T);
2870 q->recover = EZ(t->recover * 1000, T);
2871 q->cycle = EZ(t->cycle * 1000, T);
2872 q->udma = EZ(t->udma * 1000, UT);
2873 }
2874
2875 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2876 struct ata_timing *m, unsigned int what)
2877 {
2878 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2879 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2880 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2881 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2882 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2883 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2884 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2885 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2886 }
2887
2888 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2889 {
2890 const struct ata_timing *t = ata_timing;
2891
2892 while (xfer_mode > t->mode)
2893 t++;
2894
2895 if (xfer_mode == t->mode)
2896 return t;
2897 return NULL;
2898 }
2899
2900 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2901 struct ata_timing *t, int T, int UT)
2902 {
2903 const struct ata_timing *s;
2904 struct ata_timing p;
2905
2906 /*
2907 * Find the mode.
2908 */
2909
2910 if (!(s = ata_timing_find_mode(speed)))
2911 return -EINVAL;
2912
2913 memcpy(t, s, sizeof(*s));
2914
2915 /*
2916 * If the drive is an EIDE drive, it can tell us it needs extended
2917 * PIO/MW_DMA cycle timing.
2918 */
2919
2920 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2921 memset(&p, 0, sizeof(p));
2922 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2923 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2924 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2925 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2926 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2927 }
2928 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2929 }
2930
2931 /*
2932 * Convert the timing to bus clock counts.
2933 */
2934
2935 ata_timing_quantize(t, t, T, UT);
2936
2937 /*
2938 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2939 * S.M.A.R.T * and some other commands. We have to ensure that the
2940 * DMA cycle timing is slower/equal than the fastest PIO timing.
2941 */
2942
2943 if (speed > XFER_PIO_6) {
2944 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2945 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2946 }
2947
2948 /*
2949 * Lengthen active & recovery time so that cycle time is correct.
2950 */
2951
2952 if (t->act8b + t->rec8b < t->cyc8b) {
2953 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2954 t->rec8b = t->cyc8b - t->act8b;
2955 }
2956
2957 if (t->active + t->recover < t->cycle) {
2958 t->active += (t->cycle - (t->active + t->recover)) / 2;
2959 t->recover = t->cycle - t->active;
2960 }
2961
2962 /* In a few cases quantisation may produce enough errors to
2963 leave t->cycle too low for the sum of active and recovery
2964 if so we must correct this */
2965 if (t->active + t->recover > t->cycle)
2966 t->cycle = t->active + t->recover;
2967
2968 return 0;
2969 }
2970
2971 /**
2972 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2973 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2974 * @cycle: cycle duration in ns
2975 *
2976 * Return matching xfer mode for @cycle. The returned mode is of
2977 * the transfer type specified by @xfer_shift. If @cycle is too
2978 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2979 * than the fastest known mode, the fasted mode is returned.
2980 *
2981 * LOCKING:
2982 * None.
2983 *
2984 * RETURNS:
2985 * Matching xfer_mode, 0xff if no match found.
2986 */
2987 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2988 {
2989 u8 base_mode = 0xff, last_mode = 0xff;
2990 const struct ata_xfer_ent *ent;
2991 const struct ata_timing *t;
2992
2993 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2994 if (ent->shift == xfer_shift)
2995 base_mode = ent->base;
2996
2997 for (t = ata_timing_find_mode(base_mode);
2998 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2999 unsigned short this_cycle;
3000
3001 switch (xfer_shift) {
3002 case ATA_SHIFT_PIO:
3003 case ATA_SHIFT_MWDMA:
3004 this_cycle = t->cycle;
3005 break;
3006 case ATA_SHIFT_UDMA:
3007 this_cycle = t->udma;
3008 break;
3009 default:
3010 return 0xff;
3011 }
3012
3013 if (cycle > this_cycle)
3014 break;
3015
3016 last_mode = t->mode;
3017 }
3018
3019 return last_mode;
3020 }
3021
3022 /**
3023 * ata_down_xfermask_limit - adjust dev xfer masks downward
3024 * @dev: Device to adjust xfer masks
3025 * @sel: ATA_DNXFER_* selector
3026 *
3027 * Adjust xfer masks of @dev downward. Note that this function
3028 * does not apply the change. Invoking ata_set_mode() afterwards
3029 * will apply the limit.
3030 *
3031 * LOCKING:
3032 * Inherited from caller.
3033 *
3034 * RETURNS:
3035 * 0 on success, negative errno on failure
3036 */
3037 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3038 {
3039 char buf[32];
3040 unsigned long orig_mask, xfer_mask;
3041 unsigned long pio_mask, mwdma_mask, udma_mask;
3042 int quiet, highbit;
3043
3044 quiet = !!(sel & ATA_DNXFER_QUIET);
3045 sel &= ~ATA_DNXFER_QUIET;
3046
3047 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3048 dev->mwdma_mask,
3049 dev->udma_mask);
3050 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3051
3052 switch (sel) {
3053 case ATA_DNXFER_PIO:
3054 highbit = fls(pio_mask) - 1;
3055 pio_mask &= ~(1 << highbit);
3056 break;
3057
3058 case ATA_DNXFER_DMA:
3059 if (udma_mask) {
3060 highbit = fls(udma_mask) - 1;
3061 udma_mask &= ~(1 << highbit);
3062 if (!udma_mask)
3063 return -ENOENT;
3064 } else if (mwdma_mask) {
3065 highbit = fls(mwdma_mask) - 1;
3066 mwdma_mask &= ~(1 << highbit);
3067 if (!mwdma_mask)
3068 return -ENOENT;
3069 }
3070 break;
3071
3072 case ATA_DNXFER_40C:
3073 udma_mask &= ATA_UDMA_MASK_40C;
3074 break;
3075
3076 case ATA_DNXFER_FORCE_PIO0:
3077 pio_mask &= 1;
3078 case ATA_DNXFER_FORCE_PIO:
3079 mwdma_mask = 0;
3080 udma_mask = 0;
3081 break;
3082
3083 default:
3084 BUG();
3085 }
3086
3087 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3088
3089 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3090 return -ENOENT;
3091
3092 if (!quiet) {
3093 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3094 snprintf(buf, sizeof(buf), "%s:%s",
3095 ata_mode_string(xfer_mask),
3096 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3097 else
3098 snprintf(buf, sizeof(buf), "%s",
3099 ata_mode_string(xfer_mask));
3100
3101 ata_dev_printk(dev, KERN_WARNING,
3102 "limiting speed to %s\n", buf);
3103 }
3104
3105 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3106 &dev->udma_mask);
3107
3108 return 0;
3109 }
3110
3111 static int ata_dev_set_mode(struct ata_device *dev)
3112 {
3113 struct ata_eh_context *ehc = &dev->link->eh_context;
3114 const char *dev_err_whine = "";
3115 int ign_dev_err = 0;
3116 unsigned int err_mask;
3117 int rc;
3118
3119 dev->flags &= ~ATA_DFLAG_PIO;
3120 if (dev->xfer_shift == ATA_SHIFT_PIO)
3121 dev->flags |= ATA_DFLAG_PIO;
3122
3123 err_mask = ata_dev_set_xfermode(dev);
3124
3125 if (err_mask & ~AC_ERR_DEV)
3126 goto fail;
3127
3128 /* revalidate */
3129 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3130 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3131 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3132 if (rc)
3133 return rc;
3134
3135 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3136 /* Old CFA may refuse this command, which is just fine */
3137 if (ata_id_is_cfa(dev->id))
3138 ign_dev_err = 1;
3139 /* Catch several broken garbage emulations plus some pre
3140 ATA devices */
3141 if (ata_id_major_version(dev->id) == 0 &&
3142 dev->pio_mode <= XFER_PIO_2)
3143 ign_dev_err = 1;
3144 /* Some very old devices and some bad newer ones fail
3145 any kind of SET_XFERMODE request but support PIO0-2
3146 timings and no IORDY */
3147 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3148 ign_dev_err = 1;
3149 }
3150 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3151 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3152 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3153 dev->dma_mode == XFER_MW_DMA_0 &&
3154 (dev->id[63] >> 8) & 1)
3155 ign_dev_err = 1;
3156
3157 /* if the device is actually configured correctly, ignore dev err */
3158 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3159 ign_dev_err = 1;
3160
3161 if (err_mask & AC_ERR_DEV) {
3162 if (!ign_dev_err)
3163 goto fail;
3164 else
3165 dev_err_whine = " (device error ignored)";
3166 }
3167
3168 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3169 dev->xfer_shift, (int)dev->xfer_mode);
3170
3171 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3172 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3173 dev_err_whine);
3174
3175 return 0;
3176
3177 fail:
3178 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3179 "(err_mask=0x%x)\n", err_mask);
3180 return -EIO;
3181 }
3182
3183 /**
3184 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3185 * @link: link on which timings will be programmed
3186 * @r_failed_dev: out parameter for failed device
3187 *
3188 * Standard implementation of the function used to tune and set
3189 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3190 * ata_dev_set_mode() fails, pointer to the failing device is
3191 * returned in @r_failed_dev.
3192 *
3193 * LOCKING:
3194 * PCI/etc. bus probe sem.
3195 *
3196 * RETURNS:
3197 * 0 on success, negative errno otherwise
3198 */
3199
3200 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3201 {
3202 struct ata_port *ap = link->ap;
3203 struct ata_device *dev;
3204 int rc = 0, used_dma = 0, found = 0;
3205
3206 /* step 1: calculate xfer_mask */
3207 ata_link_for_each_dev(dev, link) {
3208 unsigned long pio_mask, dma_mask;
3209 unsigned int mode_mask;
3210
3211 if (!ata_dev_enabled(dev))
3212 continue;
3213
3214 mode_mask = ATA_DMA_MASK_ATA;
3215 if (dev->class == ATA_DEV_ATAPI)
3216 mode_mask = ATA_DMA_MASK_ATAPI;
3217 else if (ata_id_is_cfa(dev->id))
3218 mode_mask = ATA_DMA_MASK_CFA;
3219
3220 ata_dev_xfermask(dev);
3221 ata_force_xfermask(dev);
3222
3223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3225
3226 if (libata_dma_mask & mode_mask)
3227 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3228 else
3229 dma_mask = 0;
3230
3231 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3232 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3233
3234 found = 1;
3235 if (dev->dma_mode != 0xff)
3236 used_dma = 1;
3237 }
3238 if (!found)
3239 goto out;
3240
3241 /* step 2: always set host PIO timings */
3242 ata_link_for_each_dev(dev, link) {
3243 if (!ata_dev_enabled(dev))
3244 continue;
3245
3246 if (dev->pio_mode == 0xff) {
3247 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3248 rc = -EINVAL;
3249 goto out;
3250 }
3251
3252 dev->xfer_mode = dev->pio_mode;
3253 dev->xfer_shift = ATA_SHIFT_PIO;
3254 if (ap->ops->set_piomode)
3255 ap->ops->set_piomode(ap, dev);
3256 }
3257
3258 /* step 3: set host DMA timings */
3259 ata_link_for_each_dev(dev, link) {
3260 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3261 continue;
3262
3263 dev->xfer_mode = dev->dma_mode;
3264 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3265 if (ap->ops->set_dmamode)
3266 ap->ops->set_dmamode(ap, dev);
3267 }
3268
3269 /* step 4: update devices' xfer mode */
3270 ata_link_for_each_dev(dev, link) {
3271 /* don't update suspended devices' xfer mode */
3272 if (!ata_dev_enabled(dev))
3273 continue;
3274
3275 rc = ata_dev_set_mode(dev);
3276 if (rc)
3277 goto out;
3278 }
3279
3280 /* Record simplex status. If we selected DMA then the other
3281 * host channels are not permitted to do so.
3282 */
3283 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3284 ap->host->simplex_claimed = ap;
3285
3286 out:
3287 if (rc)
3288 *r_failed_dev = dev;
3289 return rc;
3290 }
3291
3292 /**
3293 * ata_wait_ready - wait for link to become ready
3294 * @link: link to be waited on
3295 * @deadline: deadline jiffies for the operation
3296 * @check_ready: callback to check link readiness
3297 *
3298 * Wait for @link to become ready. @check_ready should return
3299 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3300 * link doesn't seem to be occupied, other errno for other error
3301 * conditions.
3302 *
3303 * Transient -ENODEV conditions are allowed for
3304 * ATA_TMOUT_FF_WAIT.
3305 *
3306 * LOCKING:
3307 * EH context.
3308 *
3309 * RETURNS:
3310 * 0 if @linke is ready before @deadline; otherwise, -errno.
3311 */
3312 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3313 int (*check_ready)(struct ata_link *link))
3314 {
3315 unsigned long start = jiffies;
3316 unsigned long nodev_deadline = start + ATA_TMOUT_FF_WAIT;
3317 int warned = 0;
3318
3319 if (time_after(nodev_deadline, deadline))
3320 nodev_deadline = deadline;
3321
3322 while (1) {
3323 unsigned long now = jiffies;
3324 int ready, tmp;
3325
3326 ready = tmp = check_ready(link);
3327 if (ready > 0)
3328 return 0;
3329
3330 /* -ENODEV could be transient. Ignore -ENODEV if link
3331 * is online. Also, some SATA devices take a long
3332 * time to clear 0xff after reset. For example,
3333 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3334 * GoVault needs even more than that. Wait for
3335 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3336 *
3337 * Note that some PATA controllers (pata_ali) explode
3338 * if status register is read more than once when
3339 * there's no device attached.
3340 */
3341 if (ready == -ENODEV) {
3342 if (ata_link_online(link))
3343 ready = 0;
3344 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3345 !ata_link_offline(link) &&
3346 time_before(now, nodev_deadline))
3347 ready = 0;
3348 }
3349
3350 if (ready)
3351 return ready;
3352 if (time_after(now, deadline))
3353 return -EBUSY;
3354
3355 if (!warned && time_after(now, start + 5 * HZ) &&
3356 (deadline - now > 3 * HZ)) {
3357 ata_link_printk(link, KERN_WARNING,
3358 "link is slow to respond, please be patient "
3359 "(ready=%d)\n", tmp);
3360 warned = 1;
3361 }
3362
3363 msleep(50);
3364 }
3365 }
3366
3367 /**
3368 * ata_wait_after_reset - wait for link to become ready after reset
3369 * @link: link to be waited on
3370 * @deadline: deadline jiffies for the operation
3371 * @check_ready: callback to check link readiness
3372 *
3373 * Wait for @link to become ready after reset.
3374 *
3375 * LOCKING:
3376 * EH context.
3377 *
3378 * RETURNS:
3379 * 0 if @linke is ready before @deadline; otherwise, -errno.
3380 */
3381 extern int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3382 int (*check_ready)(struct ata_link *link))
3383 {
3384 msleep(ATA_WAIT_AFTER_RESET_MSECS);
3385
3386 return ata_wait_ready(link, deadline, check_ready);
3387 }
3388
3389 /**
3390 * sata_link_debounce - debounce SATA phy status
3391 * @link: ATA link to debounce SATA phy status for
3392 * @params: timing parameters { interval, duratinon, timeout } in msec
3393 * @deadline: deadline jiffies for the operation
3394 *
3395 * Make sure SStatus of @link reaches stable state, determined by
3396 * holding the same value where DET is not 1 for @duration polled
3397 * every @interval, before @timeout. Timeout constraints the
3398 * beginning of the stable state. Because DET gets stuck at 1 on
3399 * some controllers after hot unplugging, this functions waits
3400 * until timeout then returns 0 if DET is stable at 1.
3401 *
3402 * @timeout is further limited by @deadline. The sooner of the
3403 * two is used.
3404 *
3405 * LOCKING:
3406 * Kernel thread context (may sleep)
3407 *
3408 * RETURNS:
3409 * 0 on success, -errno on failure.
3410 */
3411 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3412 unsigned long deadline)
3413 {
3414 unsigned long interval_msec = params[0];
3415 unsigned long duration = msecs_to_jiffies(params[1]);
3416 unsigned long last_jiffies, t;
3417 u32 last, cur;
3418 int rc;
3419
3420 t = jiffies + msecs_to_jiffies(params[2]);
3421 if (time_before(t, deadline))
3422 deadline = t;
3423
3424 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3425 return rc;
3426 cur &= 0xf;
3427
3428 last = cur;
3429 last_jiffies = jiffies;
3430
3431 while (1) {
3432 msleep(interval_msec);
3433 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3434 return rc;
3435 cur &= 0xf;
3436
3437 /* DET stable? */
3438 if (cur == last) {
3439 if (cur == 1 && time_before(jiffies, deadline))
3440 continue;
3441 if (time_after(jiffies, last_jiffies + duration))
3442 return 0;
3443 continue;
3444 }
3445
3446 /* unstable, start over */
3447 last = cur;
3448 last_jiffies = jiffies;
3449
3450 /* Check deadline. If debouncing failed, return
3451 * -EPIPE to tell upper layer to lower link speed.
3452 */
3453 if (time_after(jiffies, deadline))
3454 return -EPIPE;
3455 }
3456 }
3457
3458 /**
3459 * sata_link_resume - resume SATA link
3460 * @link: ATA link to resume SATA
3461 * @params: timing parameters { interval, duratinon, timeout } in msec
3462 * @deadline: deadline jiffies for the operation
3463 *
3464 * Resume SATA phy @link and debounce it.
3465 *
3466 * LOCKING:
3467 * Kernel thread context (may sleep)
3468 *
3469 * RETURNS:
3470 * 0 on success, -errno on failure.
3471 */
3472 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3473 unsigned long deadline)
3474 {
3475 u32 scontrol, serror;
3476 int rc;
3477
3478 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3479 return rc;
3480
3481 scontrol = (scontrol & 0x0f0) | 0x300;
3482
3483 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3484 return rc;
3485
3486 /* Some PHYs react badly if SStatus is pounded immediately
3487 * after resuming. Delay 200ms before debouncing.
3488 */
3489 msleep(200);
3490
3491 if ((rc = sata_link_debounce(link, params, deadline)))
3492 return rc;
3493
3494 /* Clear SError. PMP and some host PHYs require this to
3495 * operate and clearing should be done before checking PHY
3496 * online status to avoid race condition (hotplugging between
3497 * link resume and status check).
3498 */
3499 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3500 rc = sata_scr_write(link, SCR_ERROR, serror);
3501 if (rc == 0 || rc == -EINVAL) {
3502 unsigned long flags;
3503
3504 spin_lock_irqsave(link->ap->lock, flags);
3505 link->eh_info.serror = 0;
3506 spin_unlock_irqrestore(link->ap->lock, flags);
3507 rc = 0;
3508 }
3509 return rc;
3510 }
3511
3512 /**
3513 * ata_std_prereset - prepare for reset
3514 * @link: ATA link to be reset
3515 * @deadline: deadline jiffies for the operation
3516 *
3517 * @link is about to be reset. Initialize it. Failure from
3518 * prereset makes libata abort whole reset sequence and give up
3519 * that port, so prereset should be best-effort. It does its
3520 * best to prepare for reset sequence but if things go wrong, it
3521 * should just whine, not fail.
3522 *
3523 * LOCKING:
3524 * Kernel thread context (may sleep)
3525 *
3526 * RETURNS:
3527 * 0 on success, -errno otherwise.
3528 */
3529 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3530 {
3531 struct ata_port *ap = link->ap;
3532 struct ata_eh_context *ehc = &link->eh_context;
3533 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3534 int rc;
3535
3536 /* if we're about to do hardreset, nothing more to do */
3537 if (ehc->i.action & ATA_EH_HARDRESET)
3538 return 0;
3539
3540 /* if SATA, resume link */
3541 if (ap->flags & ATA_FLAG_SATA) {
3542 rc = sata_link_resume(link, timing, deadline);
3543 /* whine about phy resume failure but proceed */
3544 if (rc && rc != -EOPNOTSUPP)
3545 ata_link_printk(link, KERN_WARNING, "failed to resume "
3546 "link for reset (errno=%d)\n", rc);
3547 }
3548
3549 /* no point in trying softreset on offline link */
3550 if (ata_link_offline(link))
3551 ehc->i.action &= ~ATA_EH_SOFTRESET;
3552
3553 return 0;
3554 }
3555
3556 /**
3557 * sata_link_hardreset - reset link via SATA phy reset
3558 * @link: link to reset
3559 * @timing: timing parameters { interval, duratinon, timeout } in msec
3560 * @deadline: deadline jiffies for the operation
3561 * @online: optional out parameter indicating link onlineness
3562 * @check_ready: optional callback to check link readiness
3563 *
3564 * SATA phy-reset @link using DET bits of SControl register.
3565 * After hardreset, link readiness is waited upon using
3566 * ata_wait_ready() if @check_ready is specified. LLDs are
3567 * allowed to not specify @check_ready and wait itself after this
3568 * function returns. Device classification is LLD's
3569 * responsibility.
3570 *
3571 * *@online is set to one iff reset succeeded and @link is online
3572 * after reset.
3573 *
3574 * LOCKING:
3575 * Kernel thread context (may sleep)
3576 *
3577 * RETURNS:
3578 * 0 on success, -errno otherwise.
3579 */
3580 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3581 unsigned long deadline,
3582 bool *online, int (*check_ready)(struct ata_link *))
3583 {
3584 u32 scontrol;
3585 int rc;
3586
3587 DPRINTK("ENTER\n");
3588
3589 if (online)
3590 *online = false;
3591
3592 if (sata_set_spd_needed(link)) {
3593 /* SATA spec says nothing about how to reconfigure
3594 * spd. To be on the safe side, turn off phy during
3595 * reconfiguration. This works for at least ICH7 AHCI
3596 * and Sil3124.
3597 */
3598 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3599 goto out;
3600
3601 scontrol = (scontrol & 0x0f0) | 0x304;
3602
3603 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3604 goto out;
3605
3606 sata_set_spd(link);
3607 }
3608
3609 /* issue phy wake/reset */
3610 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3611 goto out;
3612
3613 scontrol = (scontrol & 0x0f0) | 0x301;
3614
3615 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3616 goto out;
3617
3618 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3619 * 10.4.2 says at least 1 ms.
3620 */
3621 msleep(1);
3622
3623 /* bring link back */
3624 rc = sata_link_resume(link, timing, deadline);
3625 if (rc)
3626 goto out;
3627 /* if link is offline nothing more to do */
3628 if (ata_link_offline(link))
3629 goto out;
3630
3631 /* Link is online. From this point, -ENODEV too is an error. */
3632 if (online)
3633 *online = true;
3634
3635 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3636 /* If PMP is supported, we have to do follow-up SRST.
3637 * Some PMPs don't send D2H Reg FIS after hardreset if
3638 * the first port is empty. Wait only for
3639 * ATA_TMOUT_PMP_SRST_WAIT.
3640 */
3641 if (check_ready) {
3642 unsigned long pmp_deadline;
3643
3644 pmp_deadline = jiffies + ATA_TMOUT_PMP_SRST_WAIT;
3645 if (time_after(pmp_deadline, deadline))
3646 pmp_deadline = deadline;
3647 ata_wait_ready(link, pmp_deadline, check_ready);
3648 }
3649 rc = -EAGAIN;
3650 goto out;
3651 }
3652
3653 rc = 0;
3654 if (check_ready)
3655 rc = ata_wait_ready(link, deadline, check_ready);
3656 out:
3657 if (rc && rc != -EAGAIN)
3658 ata_link_printk(link, KERN_ERR,
3659 "COMRESET failed (errno=%d)\n", rc);
3660 DPRINTK("EXIT, rc=%d\n", rc);
3661 return rc;
3662 }
3663
3664 /**
3665 * sata_std_hardreset - COMRESET w/o waiting or classification
3666 * @link: link to reset
3667 * @class: resulting class of attached device
3668 * @deadline: deadline jiffies for the operation
3669 *
3670 * Standard SATA COMRESET w/o waiting or classification.
3671 *
3672 * LOCKING:
3673 * Kernel thread context (may sleep)
3674 *
3675 * RETURNS:
3676 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3677 */
3678 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3679 unsigned long deadline)
3680 {
3681 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3682 bool online;
3683 int rc;
3684
3685 /* do hardreset */
3686 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3687 return online ? -EAGAIN : rc;
3688 }
3689
3690 /**
3691 * ata_std_postreset - standard postreset callback
3692 * @link: the target ata_link
3693 * @classes: classes of attached devices
3694 *
3695 * This function is invoked after a successful reset. Note that
3696 * the device might have been reset more than once using
3697 * different reset methods before postreset is invoked.
3698 *
3699 * LOCKING:
3700 * Kernel thread context (may sleep)
3701 */
3702 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3703 {
3704 DPRINTK("ENTER\n");
3705
3706 /* print link status */
3707 sata_print_link_status(link);
3708
3709 DPRINTK("EXIT\n");
3710 }
3711
3712 /**
3713 * ata_dev_same_device - Determine whether new ID matches configured device
3714 * @dev: device to compare against
3715 * @new_class: class of the new device
3716 * @new_id: IDENTIFY page of the new device
3717 *
3718 * Compare @new_class and @new_id against @dev and determine
3719 * whether @dev is the device indicated by @new_class and
3720 * @new_id.
3721 *
3722 * LOCKING:
3723 * None.
3724 *
3725 * RETURNS:
3726 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3727 */
3728 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3729 const u16 *new_id)
3730 {
3731 const u16 *old_id = dev->id;
3732 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3733 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3734
3735 if (dev->class != new_class) {
3736 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3737 dev->class, new_class);
3738 return 0;
3739 }
3740
3741 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3742 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3743 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3744 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3745
3746 if (strcmp(model[0], model[1])) {
3747 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3748 "'%s' != '%s'\n", model[0], model[1]);
3749 return 0;
3750 }
3751
3752 if (strcmp(serial[0], serial[1])) {
3753 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3754 "'%s' != '%s'\n", serial[0], serial[1]);
3755 return 0;
3756 }
3757
3758 return 1;
3759 }
3760
3761 /**
3762 * ata_dev_reread_id - Re-read IDENTIFY data
3763 * @dev: target ATA device
3764 * @readid_flags: read ID flags
3765 *
3766 * Re-read IDENTIFY page and make sure @dev is still attached to
3767 * the port.
3768 *
3769 * LOCKING:
3770 * Kernel thread context (may sleep)
3771 *
3772 * RETURNS:
3773 * 0 on success, negative errno otherwise
3774 */
3775 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3776 {
3777 unsigned int class = dev->class;
3778 u16 *id = (void *)dev->link->ap->sector_buf;
3779 int rc;
3780
3781 /* read ID data */
3782 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3783 if (rc)
3784 return rc;
3785
3786 /* is the device still there? */
3787 if (!ata_dev_same_device(dev, class, id))
3788 return -ENODEV;
3789
3790 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3791 return 0;
3792 }
3793
3794 /**
3795 * ata_dev_revalidate - Revalidate ATA device
3796 * @dev: device to revalidate
3797 * @new_class: new class code
3798 * @readid_flags: read ID flags
3799 *
3800 * Re-read IDENTIFY page, make sure @dev is still attached to the
3801 * port and reconfigure it according to the new IDENTIFY page.
3802 *
3803 * LOCKING:
3804 * Kernel thread context (may sleep)
3805 *
3806 * RETURNS:
3807 * 0 on success, negative errno otherwise
3808 */
3809 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3810 unsigned int readid_flags)
3811 {
3812 u64 n_sectors = dev->n_sectors;
3813 int rc;
3814
3815 if (!ata_dev_enabled(dev))
3816 return -ENODEV;
3817
3818 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3819 if (ata_class_enabled(new_class) &&
3820 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3821 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3822 dev->class, new_class);
3823 rc = -ENODEV;
3824 goto fail;
3825 }
3826
3827 /* re-read ID */
3828 rc = ata_dev_reread_id(dev, readid_flags);
3829 if (rc)
3830 goto fail;
3831
3832 /* configure device according to the new ID */
3833 rc = ata_dev_configure(dev);
3834 if (rc)
3835 goto fail;
3836
3837 /* verify n_sectors hasn't changed */
3838 if (dev->class == ATA_DEV_ATA && n_sectors &&
3839 dev->n_sectors != n_sectors) {
3840 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3841 "%llu != %llu\n",
3842 (unsigned long long)n_sectors,
3843 (unsigned long long)dev->n_sectors);
3844
3845 /* restore original n_sectors */
3846 dev->n_sectors = n_sectors;
3847
3848 rc = -ENODEV;
3849 goto fail;
3850 }
3851
3852 return 0;
3853
3854 fail:
3855 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3856 return rc;
3857 }
3858
3859 struct ata_blacklist_entry {
3860 const char *model_num;
3861 const char *model_rev;
3862 unsigned long horkage;
3863 };
3864
3865 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3866 /* Devices with DMA related problems under Linux */
3867 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3868 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3869 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3870 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3871 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3872 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3873 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3874 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3875 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3876 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3877 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3878 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3879 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3880 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3881 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3882 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3883 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3884 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3885 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3886 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3887 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3888 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3889 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3890 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3891 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3892 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3893 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3894 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3895 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3896 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3897 /* Odd clown on sil3726/4726 PMPs */
3898 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3899 ATA_HORKAGE_SKIP_PM },
3900
3901 /* Weird ATAPI devices */
3902 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3903
3904 /* Devices we expect to fail diagnostics */
3905
3906 /* Devices where NCQ should be avoided */
3907 /* NCQ is slow */
3908 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3909 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3910 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3911 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3912 /* NCQ is broken */
3913 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3914 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3915 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3916 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3917
3918 /* Blacklist entries taken from Silicon Image 3124/3132
3919 Windows driver .inf file - also several Linux problem reports */
3920 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3921 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3922 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3923
3924 /* devices which puke on READ_NATIVE_MAX */
3925 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3926 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3927 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3928 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3929
3930 /* Devices which report 1 sector over size HPA */
3931 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3932 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3933 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3934
3935 /* Devices which get the IVB wrong */
3936 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3937 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
3938 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3939 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3940 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
3941
3942 /* End Marker */
3943 { }
3944 };
3945
3946 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3947 {
3948 const char *p;
3949 int len;
3950
3951 /*
3952 * check for trailing wildcard: *\0
3953 */
3954 p = strchr(patt, wildchar);
3955 if (p && ((*(p + 1)) == 0))
3956 len = p - patt;
3957 else {
3958 len = strlen(name);
3959 if (!len) {
3960 if (!*patt)
3961 return 0;
3962 return -1;
3963 }
3964 }
3965
3966 return strncmp(patt, name, len);
3967 }
3968
3969 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3970 {
3971 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3972 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3973 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3974
3975 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3976 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3977
3978 while (ad->model_num) {
3979 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3980 if (ad->model_rev == NULL)
3981 return ad->horkage;
3982 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3983 return ad->horkage;
3984 }
3985 ad++;
3986 }
3987 return 0;
3988 }
3989
3990 static int ata_dma_blacklisted(const struct ata_device *dev)
3991 {
3992 /* We don't support polling DMA.
3993 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3994 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3995 */
3996 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3997 (dev->flags & ATA_DFLAG_CDB_INTR))
3998 return 1;
3999 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4000 }
4001
4002 /**
4003 * ata_is_40wire - check drive side detection
4004 * @dev: device
4005 *
4006 * Perform drive side detection decoding, allowing for device vendors
4007 * who can't follow the documentation.
4008 */
4009
4010 static int ata_is_40wire(struct ata_device *dev)
4011 {
4012 if (dev->horkage & ATA_HORKAGE_IVB)
4013 return ata_drive_40wire_relaxed(dev->id);
4014 return ata_drive_40wire(dev->id);
4015 }
4016
4017 /**
4018 * cable_is_40wire - 40/80/SATA decider
4019 * @ap: port to consider
4020 *
4021 * This function encapsulates the policy for speed management
4022 * in one place. At the moment we don't cache the result but
4023 * there is a good case for setting ap->cbl to the result when
4024 * we are called with unknown cables (and figuring out if it
4025 * impacts hotplug at all).
4026 *
4027 * Return 1 if the cable appears to be 40 wire.
4028 */
4029
4030 static int cable_is_40wire(struct ata_port *ap)
4031 {
4032 struct ata_link *link;
4033 struct ata_device *dev;
4034
4035 /* If the controller thinks we are 40 wire, we are */
4036 if (ap->cbl == ATA_CBL_PATA40)
4037 return 1;
4038 /* If the controller thinks we are 80 wire, we are */
4039 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4040 return 0;
4041 /* If the system is known to be 40 wire short cable (eg laptop),
4042 then we allow 80 wire modes even if the drive isn't sure */
4043 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4044 return 0;
4045 /* If the controller doesn't know we scan
4046
4047 - Note: We look for all 40 wire detects at this point.
4048 Any 80 wire detect is taken to be 80 wire cable
4049 because
4050 - In many setups only the one drive (slave if present)
4051 will give a valid detect
4052 - If you have a non detect capable drive you don't
4053 want it to colour the choice
4054 */
4055 ata_port_for_each_link(link, ap) {
4056 ata_link_for_each_dev(dev, link) {
4057 if (!ata_is_40wire(dev))
4058 return 0;
4059 }
4060 }
4061 return 1;
4062 }
4063
4064 /**
4065 * ata_dev_xfermask - Compute supported xfermask of the given device
4066 * @dev: Device to compute xfermask for
4067 *
4068 * Compute supported xfermask of @dev and store it in
4069 * dev->*_mask. This function is responsible for applying all
4070 * known limits including host controller limits, device
4071 * blacklist, etc...
4072 *
4073 * LOCKING:
4074 * None.
4075 */
4076 static void ata_dev_xfermask(struct ata_device *dev)
4077 {
4078 struct ata_link *link = dev->link;
4079 struct ata_port *ap = link->ap;
4080 struct ata_host *host = ap->host;
4081 unsigned long xfer_mask;
4082
4083 /* controller modes available */
4084 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4085 ap->mwdma_mask, ap->udma_mask);
4086
4087 /* drive modes available */
4088 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4089 dev->mwdma_mask, dev->udma_mask);
4090 xfer_mask &= ata_id_xfermask(dev->id);
4091
4092 /*
4093 * CFA Advanced TrueIDE timings are not allowed on a shared
4094 * cable
4095 */
4096 if (ata_dev_pair(dev)) {
4097 /* No PIO5 or PIO6 */
4098 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4099 /* No MWDMA3 or MWDMA 4 */
4100 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4101 }
4102
4103 if (ata_dma_blacklisted(dev)) {
4104 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4105 ata_dev_printk(dev, KERN_WARNING,
4106 "device is on DMA blacklist, disabling DMA\n");
4107 }
4108
4109 if ((host->flags & ATA_HOST_SIMPLEX) &&
4110 host->simplex_claimed && host->simplex_claimed != ap) {
4111 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4112 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4113 "other device, disabling DMA\n");
4114 }
4115
4116 if (ap->flags & ATA_FLAG_NO_IORDY)
4117 xfer_mask &= ata_pio_mask_no_iordy(dev);
4118
4119 if (ap->ops->mode_filter)
4120 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4121
4122 /* Apply cable rule here. Don't apply it early because when
4123 * we handle hot plug the cable type can itself change.
4124 * Check this last so that we know if the transfer rate was
4125 * solely limited by the cable.
4126 * Unknown or 80 wire cables reported host side are checked
4127 * drive side as well. Cases where we know a 40wire cable
4128 * is used safely for 80 are not checked here.
4129 */
4130 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4131 /* UDMA/44 or higher would be available */
4132 if (cable_is_40wire(ap)) {
4133 ata_dev_printk(dev, KERN_WARNING,
4134 "limited to UDMA/33 due to 40-wire cable\n");
4135 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4136 }
4137
4138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4139 &dev->mwdma_mask, &dev->udma_mask);
4140 }
4141
4142 /**
4143 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4144 * @dev: Device to which command will be sent
4145 *
4146 * Issue SET FEATURES - XFER MODE command to device @dev
4147 * on port @ap.
4148 *
4149 * LOCKING:
4150 * PCI/etc. bus probe sem.
4151 *
4152 * RETURNS:
4153 * 0 on success, AC_ERR_* mask otherwise.
4154 */
4155
4156 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4157 {
4158 struct ata_taskfile tf;
4159 unsigned int err_mask;
4160
4161 /* set up set-features taskfile */
4162 DPRINTK("set features - xfer mode\n");
4163
4164 /* Some controllers and ATAPI devices show flaky interrupt
4165 * behavior after setting xfer mode. Use polling instead.
4166 */
4167 ata_tf_init(dev, &tf);
4168 tf.command = ATA_CMD_SET_FEATURES;
4169 tf.feature = SETFEATURES_XFER;
4170 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4171 tf.protocol = ATA_PROT_NODATA;
4172 /* If we are using IORDY we must send the mode setting command */
4173 if (ata_pio_need_iordy(dev))
4174 tf.nsect = dev->xfer_mode;
4175 /* If the device has IORDY and the controller does not - turn it off */
4176 else if (ata_id_has_iordy(dev->id))
4177 tf.nsect = 0x01;
4178 else /* In the ancient relic department - skip all of this */
4179 return 0;
4180
4181 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4182
4183 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4184 return err_mask;
4185 }
4186 /**
4187 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4188 * @dev: Device to which command will be sent
4189 * @enable: Whether to enable or disable the feature
4190 * @feature: The sector count represents the feature to set
4191 *
4192 * Issue SET FEATURES - SATA FEATURES command to device @dev
4193 * on port @ap with sector count
4194 *
4195 * LOCKING:
4196 * PCI/etc. bus probe sem.
4197 *
4198 * RETURNS:
4199 * 0 on success, AC_ERR_* mask otherwise.
4200 */
4201 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4202 u8 feature)
4203 {
4204 struct ata_taskfile tf;
4205 unsigned int err_mask;
4206
4207 /* set up set-features taskfile */
4208 DPRINTK("set features - SATA features\n");
4209
4210 ata_tf_init(dev, &tf);
4211 tf.command = ATA_CMD_SET_FEATURES;
4212 tf.feature = enable;
4213 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4214 tf.protocol = ATA_PROT_NODATA;
4215 tf.nsect = feature;
4216
4217 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4218
4219 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4220 return err_mask;
4221 }
4222
4223 /**
4224 * ata_dev_init_params - Issue INIT DEV PARAMS command
4225 * @dev: Device to which command will be sent
4226 * @heads: Number of heads (taskfile parameter)
4227 * @sectors: Number of sectors (taskfile parameter)
4228 *
4229 * LOCKING:
4230 * Kernel thread context (may sleep)
4231 *
4232 * RETURNS:
4233 * 0 on success, AC_ERR_* mask otherwise.
4234 */
4235 static unsigned int ata_dev_init_params(struct ata_device *dev,
4236 u16 heads, u16 sectors)
4237 {
4238 struct ata_taskfile tf;
4239 unsigned int err_mask;
4240
4241 /* Number of sectors per track 1-255. Number of heads 1-16 */
4242 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4243 return AC_ERR_INVALID;
4244
4245 /* set up init dev params taskfile */
4246 DPRINTK("init dev params \n");
4247
4248 ata_tf_init(dev, &tf);
4249 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4250 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4251 tf.protocol = ATA_PROT_NODATA;
4252 tf.nsect = sectors;
4253 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4254
4255 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4256 /* A clean abort indicates an original or just out of spec drive
4257 and we should continue as we issue the setup based on the
4258 drive reported working geometry */
4259 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4260 err_mask = 0;
4261
4262 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4263 return err_mask;
4264 }
4265
4266 /**
4267 * ata_sg_clean - Unmap DMA memory associated with command
4268 * @qc: Command containing DMA memory to be released
4269 *
4270 * Unmap all mapped DMA memory associated with this command.
4271 *
4272 * LOCKING:
4273 * spin_lock_irqsave(host lock)
4274 */
4275 void ata_sg_clean(struct ata_queued_cmd *qc)
4276 {
4277 struct ata_port *ap = qc->ap;
4278 struct scatterlist *sg = qc->sg;
4279 int dir = qc->dma_dir;
4280
4281 WARN_ON(sg == NULL);
4282
4283 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4284
4285 if (qc->n_elem)
4286 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4287
4288 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4289 qc->sg = NULL;
4290 }
4291
4292 /**
4293 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4294 * @qc: Metadata associated with taskfile to check
4295 *
4296 * Allow low-level driver to filter ATA PACKET commands, returning
4297 * a status indicating whether or not it is OK to use DMA for the
4298 * supplied PACKET command.
4299 *
4300 * LOCKING:
4301 * spin_lock_irqsave(host lock)
4302 *
4303 * RETURNS: 0 when ATAPI DMA can be used
4304 * nonzero otherwise
4305 */
4306 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4307 {
4308 struct ata_port *ap = qc->ap;
4309
4310 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4311 * few ATAPI devices choke on such DMA requests.
4312 */
4313 if (unlikely(qc->nbytes & 15))
4314 return 1;
4315
4316 if (ap->ops->check_atapi_dma)
4317 return ap->ops->check_atapi_dma(qc);
4318
4319 return 0;
4320 }
4321
4322 /**
4323 * ata_std_qc_defer - Check whether a qc needs to be deferred
4324 * @qc: ATA command in question
4325 *
4326 * Non-NCQ commands cannot run with any other command, NCQ or
4327 * not. As upper layer only knows the queue depth, we are
4328 * responsible for maintaining exclusion. This function checks
4329 * whether a new command @qc can be issued.
4330 *
4331 * LOCKING:
4332 * spin_lock_irqsave(host lock)
4333 *
4334 * RETURNS:
4335 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4336 */
4337 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4338 {
4339 struct ata_link *link = qc->dev->link;
4340
4341 if (qc->tf.protocol == ATA_PROT_NCQ) {
4342 if (!ata_tag_valid(link->active_tag))
4343 return 0;
4344 } else {
4345 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4346 return 0;
4347 }
4348
4349 return ATA_DEFER_LINK;
4350 }
4351
4352 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4353
4354 /**
4355 * ata_sg_init - Associate command with scatter-gather table.
4356 * @qc: Command to be associated
4357 * @sg: Scatter-gather table.
4358 * @n_elem: Number of elements in s/g table.
4359 *
4360 * Initialize the data-related elements of queued_cmd @qc
4361 * to point to a scatter-gather table @sg, containing @n_elem
4362 * elements.
4363 *
4364 * LOCKING:
4365 * spin_lock_irqsave(host lock)
4366 */
4367 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4368 unsigned int n_elem)
4369 {
4370 qc->sg = sg;
4371 qc->n_elem = n_elem;
4372 qc->cursg = qc->sg;
4373 }
4374
4375 /**
4376 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4377 * @qc: Command with scatter-gather table to be mapped.
4378 *
4379 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4380 *
4381 * LOCKING:
4382 * spin_lock_irqsave(host lock)
4383 *
4384 * RETURNS:
4385 * Zero on success, negative on error.
4386 *
4387 */
4388 static int ata_sg_setup(struct ata_queued_cmd *qc)
4389 {
4390 struct ata_port *ap = qc->ap;
4391 unsigned int n_elem;
4392
4393 VPRINTK("ENTER, ata%u\n", ap->print_id);
4394
4395 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4396 if (n_elem < 1)
4397 return -1;
4398
4399 DPRINTK("%d sg elements mapped\n", n_elem);
4400
4401 qc->n_elem = n_elem;
4402 qc->flags |= ATA_QCFLAG_DMAMAP;
4403
4404 return 0;
4405 }
4406
4407 /**
4408 * swap_buf_le16 - swap halves of 16-bit words in place
4409 * @buf: Buffer to swap
4410 * @buf_words: Number of 16-bit words in buffer.
4411 *
4412 * Swap halves of 16-bit words if needed to convert from
4413 * little-endian byte order to native cpu byte order, or
4414 * vice-versa.
4415 *
4416 * LOCKING:
4417 * Inherited from caller.
4418 */
4419 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4420 {
4421 #ifdef __BIG_ENDIAN
4422 unsigned int i;
4423
4424 for (i = 0; i < buf_words; i++)
4425 buf[i] = le16_to_cpu(buf[i]);
4426 #endif /* __BIG_ENDIAN */
4427 }
4428
4429 /**
4430 * ata_qc_new - Request an available ATA command, for queueing
4431 * @ap: Port associated with device @dev
4432 * @dev: Device from whom we request an available command structure
4433 *
4434 * LOCKING:
4435 * None.
4436 */
4437
4438 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4439 {
4440 struct ata_queued_cmd *qc = NULL;
4441 unsigned int i;
4442
4443 /* no command while frozen */
4444 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4445 return NULL;
4446
4447 /* the last tag is reserved for internal command. */
4448 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4449 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4450 qc = __ata_qc_from_tag(ap, i);
4451 break;
4452 }
4453
4454 if (qc)
4455 qc->tag = i;
4456
4457 return qc;
4458 }
4459
4460 /**
4461 * ata_qc_new_init - Request an available ATA command, and initialize it
4462 * @dev: Device from whom we request an available command structure
4463 *
4464 * LOCKING:
4465 * None.
4466 */
4467
4468 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4469 {
4470 struct ata_port *ap = dev->link->ap;
4471 struct ata_queued_cmd *qc;
4472
4473 qc = ata_qc_new(ap);
4474 if (qc) {
4475 qc->scsicmd = NULL;
4476 qc->ap = ap;
4477 qc->dev = dev;
4478
4479 ata_qc_reinit(qc);
4480 }
4481
4482 return qc;
4483 }
4484
4485 /**
4486 * ata_qc_free - free unused ata_queued_cmd
4487 * @qc: Command to complete
4488 *
4489 * Designed to free unused ata_queued_cmd object
4490 * in case something prevents using it.
4491 *
4492 * LOCKING:
4493 * spin_lock_irqsave(host lock)
4494 */
4495 void ata_qc_free(struct ata_queued_cmd *qc)
4496 {
4497 struct ata_port *ap = qc->ap;
4498 unsigned int tag;
4499
4500 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4501
4502 qc->flags = 0;
4503 tag = qc->tag;
4504 if (likely(ata_tag_valid(tag))) {
4505 qc->tag = ATA_TAG_POISON;
4506 clear_bit(tag, &ap->qc_allocated);
4507 }
4508 }
4509
4510 void __ata_qc_complete(struct ata_queued_cmd *qc)
4511 {
4512 struct ata_port *ap = qc->ap;
4513 struct ata_link *link = qc->dev->link;
4514
4515 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4516 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4517
4518 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4519 ata_sg_clean(qc);
4520
4521 /* command should be marked inactive atomically with qc completion */
4522 if (qc->tf.protocol == ATA_PROT_NCQ) {
4523 link->sactive &= ~(1 << qc->tag);
4524 if (!link->sactive)
4525 ap->nr_active_links--;
4526 } else {
4527 link->active_tag = ATA_TAG_POISON;
4528 ap->nr_active_links--;
4529 }
4530
4531 /* clear exclusive status */
4532 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4533 ap->excl_link == link))
4534 ap->excl_link = NULL;
4535
4536 /* atapi: mark qc as inactive to prevent the interrupt handler
4537 * from completing the command twice later, before the error handler
4538 * is called. (when rc != 0 and atapi request sense is needed)
4539 */
4540 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4541 ap->qc_active &= ~(1 << qc->tag);
4542
4543 /* call completion callback */
4544 qc->complete_fn(qc);
4545 }
4546
4547 static void fill_result_tf(struct ata_queued_cmd *qc)
4548 {
4549 struct ata_port *ap = qc->ap;
4550
4551 qc->result_tf.flags = qc->tf.flags;
4552 ap->ops->qc_fill_rtf(qc);
4553 }
4554
4555 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4556 {
4557 struct ata_device *dev = qc->dev;
4558
4559 if (ata_tag_internal(qc->tag))
4560 return;
4561
4562 if (ata_is_nodata(qc->tf.protocol))
4563 return;
4564
4565 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4566 return;
4567
4568 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4569 }
4570
4571 /**
4572 * ata_qc_complete - Complete an active ATA command
4573 * @qc: Command to complete
4574 * @err_mask: ATA Status register contents
4575 *
4576 * Indicate to the mid and upper layers that an ATA
4577 * command has completed, with either an ok or not-ok status.
4578 *
4579 * LOCKING:
4580 * spin_lock_irqsave(host lock)
4581 */
4582 void ata_qc_complete(struct ata_queued_cmd *qc)
4583 {
4584 struct ata_port *ap = qc->ap;
4585
4586 /* XXX: New EH and old EH use different mechanisms to
4587 * synchronize EH with regular execution path.
4588 *
4589 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4590 * Normal execution path is responsible for not accessing a
4591 * failed qc. libata core enforces the rule by returning NULL
4592 * from ata_qc_from_tag() for failed qcs.
4593 *
4594 * Old EH depends on ata_qc_complete() nullifying completion
4595 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4596 * not synchronize with interrupt handler. Only PIO task is
4597 * taken care of.
4598 */
4599 if (ap->ops->error_handler) {
4600 struct ata_device *dev = qc->dev;
4601 struct ata_eh_info *ehi = &dev->link->eh_info;
4602
4603 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4604
4605 if (unlikely(qc->err_mask))
4606 qc->flags |= ATA_QCFLAG_FAILED;
4607
4608 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4609 if (!ata_tag_internal(qc->tag)) {
4610 /* always fill result TF for failed qc */
4611 fill_result_tf(qc);
4612 ata_qc_schedule_eh(qc);
4613 return;
4614 }
4615 }
4616
4617 /* read result TF if requested */
4618 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4619 fill_result_tf(qc);
4620
4621 /* Some commands need post-processing after successful
4622 * completion.
4623 */
4624 switch (qc->tf.command) {
4625 case ATA_CMD_SET_FEATURES:
4626 if (qc->tf.feature != SETFEATURES_WC_ON &&
4627 qc->tf.feature != SETFEATURES_WC_OFF)
4628 break;
4629 /* fall through */
4630 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4631 case ATA_CMD_SET_MULTI: /* multi_count changed */
4632 /* revalidate device */
4633 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4634 ata_port_schedule_eh(ap);
4635 break;
4636
4637 case ATA_CMD_SLEEP:
4638 dev->flags |= ATA_DFLAG_SLEEPING;
4639 break;
4640 }
4641
4642 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4643 ata_verify_xfer(qc);
4644
4645 __ata_qc_complete(qc);
4646 } else {
4647 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4648 return;
4649
4650 /* read result TF if failed or requested */
4651 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4652 fill_result_tf(qc);
4653
4654 __ata_qc_complete(qc);
4655 }
4656 }
4657
4658 /**
4659 * ata_qc_complete_multiple - Complete multiple qcs successfully
4660 * @ap: port in question
4661 * @qc_active: new qc_active mask
4662 *
4663 * Complete in-flight commands. This functions is meant to be
4664 * called from low-level driver's interrupt routine to complete
4665 * requests normally. ap->qc_active and @qc_active is compared
4666 * and commands are completed accordingly.
4667 *
4668 * LOCKING:
4669 * spin_lock_irqsave(host lock)
4670 *
4671 * RETURNS:
4672 * Number of completed commands on success, -errno otherwise.
4673 */
4674 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4675 {
4676 int nr_done = 0;
4677 u32 done_mask;
4678 int i;
4679
4680 done_mask = ap->qc_active ^ qc_active;
4681
4682 if (unlikely(done_mask & qc_active)) {
4683 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4684 "(%08x->%08x)\n", ap->qc_active, qc_active);
4685 return -EINVAL;
4686 }
4687
4688 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4689 struct ata_queued_cmd *qc;
4690
4691 if (!(done_mask & (1 << i)))
4692 continue;
4693
4694 if ((qc = ata_qc_from_tag(ap, i))) {
4695 ata_qc_complete(qc);
4696 nr_done++;
4697 }
4698 }
4699
4700 return nr_done;
4701 }
4702
4703 /**
4704 * ata_qc_issue - issue taskfile to device
4705 * @qc: command to issue to device
4706 *
4707 * Prepare an ATA command to submission to device.
4708 * This includes mapping the data into a DMA-able
4709 * area, filling in the S/G table, and finally
4710 * writing the taskfile to hardware, starting the command.
4711 *
4712 * LOCKING:
4713 * spin_lock_irqsave(host lock)
4714 */
4715 void ata_qc_issue(struct ata_queued_cmd *qc)
4716 {
4717 struct ata_port *ap = qc->ap;
4718 struct ata_link *link = qc->dev->link;
4719 u8 prot = qc->tf.protocol;
4720
4721 /* Make sure only one non-NCQ command is outstanding. The
4722 * check is skipped for old EH because it reuses active qc to
4723 * request ATAPI sense.
4724 */
4725 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4726
4727 if (ata_is_ncq(prot)) {
4728 WARN_ON(link->sactive & (1 << qc->tag));
4729
4730 if (!link->sactive)
4731 ap->nr_active_links++;
4732 link->sactive |= 1 << qc->tag;
4733 } else {
4734 WARN_ON(link->sactive);
4735
4736 ap->nr_active_links++;
4737 link->active_tag = qc->tag;
4738 }
4739
4740 qc->flags |= ATA_QCFLAG_ACTIVE;
4741 ap->qc_active |= 1 << qc->tag;
4742
4743 /* We guarantee to LLDs that they will have at least one
4744 * non-zero sg if the command is a data command.
4745 */
4746 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4747
4748 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4749 (ap->flags & ATA_FLAG_PIO_DMA)))
4750 if (ata_sg_setup(qc))
4751 goto sg_err;
4752
4753 /* if device is sleeping, schedule reset and abort the link */
4754 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4755 link->eh_info.action |= ATA_EH_RESET;
4756 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4757 ata_link_abort(link);
4758 return;
4759 }
4760
4761 ap->ops->qc_prep(qc);
4762
4763 qc->err_mask |= ap->ops->qc_issue(qc);
4764 if (unlikely(qc->err_mask))
4765 goto err;
4766 return;
4767
4768 sg_err:
4769 qc->err_mask |= AC_ERR_SYSTEM;
4770 err:
4771 ata_qc_complete(qc);
4772 }
4773
4774 /**
4775 * sata_scr_valid - test whether SCRs are accessible
4776 * @link: ATA link to test SCR accessibility for
4777 *
4778 * Test whether SCRs are accessible for @link.
4779 *
4780 * LOCKING:
4781 * None.
4782 *
4783 * RETURNS:
4784 * 1 if SCRs are accessible, 0 otherwise.
4785 */
4786 int sata_scr_valid(struct ata_link *link)
4787 {
4788 struct ata_port *ap = link->ap;
4789
4790 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4791 }
4792
4793 /**
4794 * sata_scr_read - read SCR register of the specified port
4795 * @link: ATA link to read SCR for
4796 * @reg: SCR to read
4797 * @val: Place to store read value
4798 *
4799 * Read SCR register @reg of @link into *@val. This function is
4800 * guaranteed to succeed if @link is ap->link, the cable type of
4801 * the port is SATA and the port implements ->scr_read.
4802 *
4803 * LOCKING:
4804 * None if @link is ap->link. Kernel thread context otherwise.
4805 *
4806 * RETURNS:
4807 * 0 on success, negative errno on failure.
4808 */
4809 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4810 {
4811 if (ata_is_host_link(link)) {
4812 struct ata_port *ap = link->ap;
4813
4814 if (sata_scr_valid(link))
4815 return ap->ops->scr_read(ap, reg, val);
4816 return -EOPNOTSUPP;
4817 }
4818
4819 return sata_pmp_scr_read(link, reg, val);
4820 }
4821
4822 /**
4823 * sata_scr_write - write SCR register of the specified port
4824 * @link: ATA link to write SCR for
4825 * @reg: SCR to write
4826 * @val: value to write
4827 *
4828 * Write @val to SCR register @reg of @link. This function is
4829 * guaranteed to succeed if @link is ap->link, the cable type of
4830 * the port is SATA and the port implements ->scr_read.
4831 *
4832 * LOCKING:
4833 * None if @link is ap->link. Kernel thread context otherwise.
4834 *
4835 * RETURNS:
4836 * 0 on success, negative errno on failure.
4837 */
4838 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4839 {
4840 if (ata_is_host_link(link)) {
4841 struct ata_port *ap = link->ap;
4842
4843 if (sata_scr_valid(link))
4844 return ap->ops->scr_write(ap, reg, val);
4845 return -EOPNOTSUPP;
4846 }
4847
4848 return sata_pmp_scr_write(link, reg, val);
4849 }
4850
4851 /**
4852 * sata_scr_write_flush - write SCR register of the specified port and flush
4853 * @link: ATA link to write SCR for
4854 * @reg: SCR to write
4855 * @val: value to write
4856 *
4857 * This function is identical to sata_scr_write() except that this
4858 * function performs flush after writing to the register.
4859 *
4860 * LOCKING:
4861 * None if @link is ap->link. Kernel thread context otherwise.
4862 *
4863 * RETURNS:
4864 * 0 on success, negative errno on failure.
4865 */
4866 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4867 {
4868 if (ata_is_host_link(link)) {
4869 struct ata_port *ap = link->ap;
4870 int rc;
4871
4872 if (sata_scr_valid(link)) {
4873 rc = ap->ops->scr_write(ap, reg, val);
4874 if (rc == 0)
4875 rc = ap->ops->scr_read(ap, reg, &val);
4876 return rc;
4877 }
4878 return -EOPNOTSUPP;
4879 }
4880
4881 return sata_pmp_scr_write(link, reg, val);
4882 }
4883
4884 /**
4885 * ata_link_online - test whether the given link is online
4886 * @link: ATA link to test
4887 *
4888 * Test whether @link is online. Note that this function returns
4889 * 0 if online status of @link cannot be obtained, so
4890 * ata_link_online(link) != !ata_link_offline(link).
4891 *
4892 * LOCKING:
4893 * None.
4894 *
4895 * RETURNS:
4896 * 1 if the port online status is available and online.
4897 */
4898 int ata_link_online(struct ata_link *link)
4899 {
4900 u32 sstatus;
4901
4902 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4903 (sstatus & 0xf) == 0x3)
4904 return 1;
4905 return 0;
4906 }
4907
4908 /**
4909 * ata_link_offline - test whether the given link is offline
4910 * @link: ATA link to test
4911 *
4912 * Test whether @link is offline. Note that this function
4913 * returns 0 if offline status of @link cannot be obtained, so
4914 * ata_link_online(link) != !ata_link_offline(link).
4915 *
4916 * LOCKING:
4917 * None.
4918 *
4919 * RETURNS:
4920 * 1 if the port offline status is available and offline.
4921 */
4922 int ata_link_offline(struct ata_link *link)
4923 {
4924 u32 sstatus;
4925
4926 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4927 (sstatus & 0xf) != 0x3)
4928 return 1;
4929 return 0;
4930 }
4931
4932 #ifdef CONFIG_PM
4933 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4934 unsigned int action, unsigned int ehi_flags,
4935 int wait)
4936 {
4937 unsigned long flags;
4938 int i, rc;
4939
4940 for (i = 0; i < host->n_ports; i++) {
4941 struct ata_port *ap = host->ports[i];
4942 struct ata_link *link;
4943
4944 /* Previous resume operation might still be in
4945 * progress. Wait for PM_PENDING to clear.
4946 */
4947 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4948 ata_port_wait_eh(ap);
4949 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4950 }
4951
4952 /* request PM ops to EH */
4953 spin_lock_irqsave(ap->lock, flags);
4954
4955 ap->pm_mesg = mesg;
4956 if (wait) {
4957 rc = 0;
4958 ap->pm_result = &rc;
4959 }
4960
4961 ap->pflags |= ATA_PFLAG_PM_PENDING;
4962 __ata_port_for_each_link(link, ap) {
4963 link->eh_info.action |= action;
4964 link->eh_info.flags |= ehi_flags;
4965 }
4966
4967 ata_port_schedule_eh(ap);
4968
4969 spin_unlock_irqrestore(ap->lock, flags);
4970
4971 /* wait and check result */
4972 if (wait) {
4973 ata_port_wait_eh(ap);
4974 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4975 if (rc)
4976 return rc;
4977 }
4978 }
4979
4980 return 0;
4981 }
4982
4983 /**
4984 * ata_host_suspend - suspend host
4985 * @host: host to suspend
4986 * @mesg: PM message
4987 *
4988 * Suspend @host. Actual operation is performed by EH. This
4989 * function requests EH to perform PM operations and waits for EH
4990 * to finish.
4991 *
4992 * LOCKING:
4993 * Kernel thread context (may sleep).
4994 *
4995 * RETURNS:
4996 * 0 on success, -errno on failure.
4997 */
4998 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
4999 {
5000 int rc;
5001
5002 /*
5003 * disable link pm on all ports before requesting
5004 * any pm activity
5005 */
5006 ata_lpm_enable(host);
5007
5008 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5009 if (rc == 0)
5010 host->dev->power.power_state = mesg;
5011 return rc;
5012 }
5013
5014 /**
5015 * ata_host_resume - resume host
5016 * @host: host to resume
5017 *
5018 * Resume @host. Actual operation is performed by EH. This
5019 * function requests EH to perform PM operations and returns.
5020 * Note that all resume operations are performed parallely.
5021 *
5022 * LOCKING:
5023 * Kernel thread context (may sleep).
5024 */
5025 void ata_host_resume(struct ata_host *host)
5026 {
5027 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5028 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5029 host->dev->power.power_state = PMSG_ON;
5030
5031 /* reenable link pm */
5032 ata_lpm_disable(host);
5033 }
5034 #endif
5035
5036 /**
5037 * ata_port_start - Set port up for dma.
5038 * @ap: Port to initialize
5039 *
5040 * Called just after data structures for each port are
5041 * initialized. Allocates space for PRD table.
5042 *
5043 * May be used as the port_start() entry in ata_port_operations.
5044 *
5045 * LOCKING:
5046 * Inherited from caller.
5047 */
5048 int ata_port_start(struct ata_port *ap)
5049 {
5050 struct device *dev = ap->dev;
5051
5052 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5053 GFP_KERNEL);
5054 if (!ap->prd)
5055 return -ENOMEM;
5056
5057 return 0;
5058 }
5059
5060 /**
5061 * ata_dev_init - Initialize an ata_device structure
5062 * @dev: Device structure to initialize
5063 *
5064 * Initialize @dev in preparation for probing.
5065 *
5066 * LOCKING:
5067 * Inherited from caller.
5068 */
5069 void ata_dev_init(struct ata_device *dev)
5070 {
5071 struct ata_link *link = dev->link;
5072 struct ata_port *ap = link->ap;
5073 unsigned long flags;
5074
5075 /* SATA spd limit is bound to the first device */
5076 link->sata_spd_limit = link->hw_sata_spd_limit;
5077 link->sata_spd = 0;
5078
5079 /* High bits of dev->flags are used to record warm plug
5080 * requests which occur asynchronously. Synchronize using
5081 * host lock.
5082 */
5083 spin_lock_irqsave(ap->lock, flags);
5084 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5085 dev->horkage = 0;
5086 spin_unlock_irqrestore(ap->lock, flags);
5087
5088 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5089 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5090 dev->pio_mask = UINT_MAX;
5091 dev->mwdma_mask = UINT_MAX;
5092 dev->udma_mask = UINT_MAX;
5093 }
5094
5095 /**
5096 * ata_link_init - Initialize an ata_link structure
5097 * @ap: ATA port link is attached to
5098 * @link: Link structure to initialize
5099 * @pmp: Port multiplier port number
5100 *
5101 * Initialize @link.
5102 *
5103 * LOCKING:
5104 * Kernel thread context (may sleep)
5105 */
5106 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5107 {
5108 int i;
5109
5110 /* clear everything except for devices */
5111 memset(link, 0, offsetof(struct ata_link, device[0]));
5112
5113 link->ap = ap;
5114 link->pmp = pmp;
5115 link->active_tag = ATA_TAG_POISON;
5116 link->hw_sata_spd_limit = UINT_MAX;
5117
5118 /* can't use iterator, ap isn't initialized yet */
5119 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5120 struct ata_device *dev = &link->device[i];
5121
5122 dev->link = link;
5123 dev->devno = dev - link->device;
5124 ata_dev_init(dev);
5125 }
5126 }
5127
5128 /**
5129 * sata_link_init_spd - Initialize link->sata_spd_limit
5130 * @link: Link to configure sata_spd_limit for
5131 *
5132 * Initialize @link->[hw_]sata_spd_limit to the currently
5133 * configured value.
5134 *
5135 * LOCKING:
5136 * Kernel thread context (may sleep).
5137 *
5138 * RETURNS:
5139 * 0 on success, -errno on failure.
5140 */
5141 int sata_link_init_spd(struct ata_link *link)
5142 {
5143 u32 scontrol;
5144 u8 spd;
5145 int rc;
5146
5147 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
5148 if (rc)
5149 return rc;
5150
5151 spd = (scontrol >> 4) & 0xf;
5152 if (spd)
5153 link->hw_sata_spd_limit &= (1 << spd) - 1;
5154
5155 ata_force_spd_limit(link);
5156
5157 link->sata_spd_limit = link->hw_sata_spd_limit;
5158
5159 return 0;
5160 }
5161
5162 /**
5163 * ata_port_alloc - allocate and initialize basic ATA port resources
5164 * @host: ATA host this allocated port belongs to
5165 *
5166 * Allocate and initialize basic ATA port resources.
5167 *
5168 * RETURNS:
5169 * Allocate ATA port on success, NULL on failure.
5170 *
5171 * LOCKING:
5172 * Inherited from calling layer (may sleep).
5173 */
5174 struct ata_port *ata_port_alloc(struct ata_host *host)
5175 {
5176 struct ata_port *ap;
5177
5178 DPRINTK("ENTER\n");
5179
5180 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5181 if (!ap)
5182 return NULL;
5183
5184 ap->pflags |= ATA_PFLAG_INITIALIZING;
5185 ap->lock = &host->lock;
5186 ap->flags = ATA_FLAG_DISABLED;
5187 ap->print_id = -1;
5188 ap->ctl = ATA_DEVCTL_OBS;
5189 ap->host = host;
5190 ap->dev = host->dev;
5191 ap->last_ctl = 0xFF;
5192
5193 #if defined(ATA_VERBOSE_DEBUG)
5194 /* turn on all debugging levels */
5195 ap->msg_enable = 0x00FF;
5196 #elif defined(ATA_DEBUG)
5197 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5198 #else
5199 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5200 #endif
5201
5202 #ifdef CONFIG_ATA_SFF
5203 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5204 #endif
5205 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5206 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5207 INIT_LIST_HEAD(&ap->eh_done_q);
5208 init_waitqueue_head(&ap->eh_wait_q);
5209 init_timer_deferrable(&ap->fastdrain_timer);
5210 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5211 ap->fastdrain_timer.data = (unsigned long)ap;
5212
5213 ap->cbl = ATA_CBL_NONE;
5214
5215 ata_link_init(ap, &ap->link, 0);
5216
5217 #ifdef ATA_IRQ_TRAP
5218 ap->stats.unhandled_irq = 1;
5219 ap->stats.idle_irq = 1;
5220 #endif
5221 return ap;
5222 }
5223
5224 static void ata_host_release(struct device *gendev, void *res)
5225 {
5226 struct ata_host *host = dev_get_drvdata(gendev);
5227 int i;
5228
5229 for (i = 0; i < host->n_ports; i++) {
5230 struct ata_port *ap = host->ports[i];
5231
5232 if (!ap)
5233 continue;
5234
5235 if (ap->scsi_host)
5236 scsi_host_put(ap->scsi_host);
5237
5238 kfree(ap->pmp_link);
5239 kfree(ap);
5240 host->ports[i] = NULL;
5241 }
5242
5243 dev_set_drvdata(gendev, NULL);
5244 }
5245
5246 /**
5247 * ata_host_alloc - allocate and init basic ATA host resources
5248 * @dev: generic device this host is associated with
5249 * @max_ports: maximum number of ATA ports associated with this host
5250 *
5251 * Allocate and initialize basic ATA host resources. LLD calls
5252 * this function to allocate a host, initializes it fully and
5253 * attaches it using ata_host_register().
5254 *
5255 * @max_ports ports are allocated and host->n_ports is
5256 * initialized to @max_ports. The caller is allowed to decrease
5257 * host->n_ports before calling ata_host_register(). The unused
5258 * ports will be automatically freed on registration.
5259 *
5260 * RETURNS:
5261 * Allocate ATA host on success, NULL on failure.
5262 *
5263 * LOCKING:
5264 * Inherited from calling layer (may sleep).
5265 */
5266 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5267 {
5268 struct ata_host *host;
5269 size_t sz;
5270 int i;
5271
5272 DPRINTK("ENTER\n");
5273
5274 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5275 return NULL;
5276
5277 /* alloc a container for our list of ATA ports (buses) */
5278 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5279 /* alloc a container for our list of ATA ports (buses) */
5280 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5281 if (!host)
5282 goto err_out;
5283
5284 devres_add(dev, host);
5285 dev_set_drvdata(dev, host);
5286
5287 spin_lock_init(&host->lock);
5288 host->dev = dev;
5289 host->n_ports = max_ports;
5290
5291 /* allocate ports bound to this host */
5292 for (i = 0; i < max_ports; i++) {
5293 struct ata_port *ap;
5294
5295 ap = ata_port_alloc(host);
5296 if (!ap)
5297 goto err_out;
5298
5299 ap->port_no = i;
5300 host->ports[i] = ap;
5301 }
5302
5303 devres_remove_group(dev, NULL);
5304 return host;
5305
5306 err_out:
5307 devres_release_group(dev, NULL);
5308 return NULL;
5309 }
5310
5311 /**
5312 * ata_host_alloc_pinfo - alloc host and init with port_info array
5313 * @dev: generic device this host is associated with
5314 * @ppi: array of ATA port_info to initialize host with
5315 * @n_ports: number of ATA ports attached to this host
5316 *
5317 * Allocate ATA host and initialize with info from @ppi. If NULL
5318 * terminated, @ppi may contain fewer entries than @n_ports. The
5319 * last entry will be used for the remaining ports.
5320 *
5321 * RETURNS:
5322 * Allocate ATA host on success, NULL on failure.
5323 *
5324 * LOCKING:
5325 * Inherited from calling layer (may sleep).
5326 */
5327 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5328 const struct ata_port_info * const * ppi,
5329 int n_ports)
5330 {
5331 const struct ata_port_info *pi;
5332 struct ata_host *host;
5333 int i, j;
5334
5335 host = ata_host_alloc(dev, n_ports);
5336 if (!host)
5337 return NULL;
5338
5339 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5340 struct ata_port *ap = host->ports[i];
5341
5342 if (ppi[j])
5343 pi = ppi[j++];
5344
5345 ap->pio_mask = pi->pio_mask;
5346 ap->mwdma_mask = pi->mwdma_mask;
5347 ap->udma_mask = pi->udma_mask;
5348 ap->flags |= pi->flags;
5349 ap->link.flags |= pi->link_flags;
5350 ap->ops = pi->port_ops;
5351
5352 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5353 host->ops = pi->port_ops;
5354 }
5355
5356 return host;
5357 }
5358
5359 static void ata_host_stop(struct device *gendev, void *res)
5360 {
5361 struct ata_host *host = dev_get_drvdata(gendev);
5362 int i;
5363
5364 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5365
5366 for (i = 0; i < host->n_ports; i++) {
5367 struct ata_port *ap = host->ports[i];
5368
5369 if (ap->ops->port_stop)
5370 ap->ops->port_stop(ap);
5371 }
5372
5373 if (host->ops->host_stop)
5374 host->ops->host_stop(host);
5375 }
5376
5377 /**
5378 * ata_finalize_port_ops - finalize ata_port_operations
5379 * @ops: ata_port_operations to finalize
5380 *
5381 * An ata_port_operations can inherit from another ops and that
5382 * ops can again inherit from another. This can go on as many
5383 * times as necessary as long as there is no loop in the
5384 * inheritance chain.
5385 *
5386 * Ops tables are finalized when the host is started. NULL or
5387 * unspecified entries are inherited from the closet ancestor
5388 * which has the method and the entry is populated with it.
5389 * After finalization, the ops table directly points to all the
5390 * methods and ->inherits is no longer necessary and cleared.
5391 *
5392 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5393 *
5394 * LOCKING:
5395 * None.
5396 */
5397 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5398 {
5399 static spinlock_t lock = SPIN_LOCK_UNLOCKED;
5400 const struct ata_port_operations *cur;
5401 void **begin = (void **)ops;
5402 void **end = (void **)&ops->inherits;
5403 void **pp;
5404
5405 if (!ops || !ops->inherits)
5406 return;
5407
5408 spin_lock(&lock);
5409
5410 for (cur = ops->inherits; cur; cur = cur->inherits) {
5411 void **inherit = (void **)cur;
5412
5413 for (pp = begin; pp < end; pp++, inherit++)
5414 if (!*pp)
5415 *pp = *inherit;
5416 }
5417
5418 for (pp = begin; pp < end; pp++)
5419 if (IS_ERR(*pp))
5420 *pp = NULL;
5421
5422 ops->inherits = NULL;
5423
5424 spin_unlock(&lock);
5425 }
5426
5427 /**
5428 * ata_host_start - start and freeze ports of an ATA host
5429 * @host: ATA host to start ports for
5430 *
5431 * Start and then freeze ports of @host. Started status is
5432 * recorded in host->flags, so this function can be called
5433 * multiple times. Ports are guaranteed to get started only
5434 * once. If host->ops isn't initialized yet, its set to the
5435 * first non-dummy port ops.
5436 *
5437 * LOCKING:
5438 * Inherited from calling layer (may sleep).
5439 *
5440 * RETURNS:
5441 * 0 if all ports are started successfully, -errno otherwise.
5442 */
5443 int ata_host_start(struct ata_host *host)
5444 {
5445 int have_stop = 0;
5446 void *start_dr = NULL;
5447 int i, rc;
5448
5449 if (host->flags & ATA_HOST_STARTED)
5450 return 0;
5451
5452 ata_finalize_port_ops(host->ops);
5453
5454 for (i = 0; i < host->n_ports; i++) {
5455 struct ata_port *ap = host->ports[i];
5456
5457 ata_finalize_port_ops(ap->ops);
5458
5459 if (!host->ops && !ata_port_is_dummy(ap))
5460 host->ops = ap->ops;
5461
5462 if (ap->ops->port_stop)
5463 have_stop = 1;
5464 }
5465
5466 if (host->ops->host_stop)
5467 have_stop = 1;
5468
5469 if (have_stop) {
5470 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5471 if (!start_dr)
5472 return -ENOMEM;
5473 }
5474
5475 for (i = 0; i < host->n_ports; i++) {
5476 struct ata_port *ap = host->ports[i];
5477
5478 if (ap->ops->port_start) {
5479 rc = ap->ops->port_start(ap);
5480 if (rc) {
5481 if (rc != -ENODEV)
5482 dev_printk(KERN_ERR, host->dev,
5483 "failed to start port %d "
5484 "(errno=%d)\n", i, rc);
5485 goto err_out;
5486 }
5487 }
5488 ata_eh_freeze_port(ap);
5489 }
5490
5491 if (start_dr)
5492 devres_add(host->dev, start_dr);
5493 host->flags |= ATA_HOST_STARTED;
5494 return 0;
5495
5496 err_out:
5497 while (--i >= 0) {
5498 struct ata_port *ap = host->ports[i];
5499
5500 if (ap->ops->port_stop)
5501 ap->ops->port_stop(ap);
5502 }
5503 devres_free(start_dr);
5504 return rc;
5505 }
5506
5507 /**
5508 * ata_sas_host_init - Initialize a host struct
5509 * @host: host to initialize
5510 * @dev: device host is attached to
5511 * @flags: host flags
5512 * @ops: port_ops
5513 *
5514 * LOCKING:
5515 * PCI/etc. bus probe sem.
5516 *
5517 */
5518 /* KILLME - the only user left is ipr */
5519 void ata_host_init(struct ata_host *host, struct device *dev,
5520 unsigned long flags, struct ata_port_operations *ops)
5521 {
5522 spin_lock_init(&host->lock);
5523 host->dev = dev;
5524 host->flags = flags;
5525 host->ops = ops;
5526 }
5527
5528 /**
5529 * ata_host_register - register initialized ATA host
5530 * @host: ATA host to register
5531 * @sht: template for SCSI host
5532 *
5533 * Register initialized ATA host. @host is allocated using
5534 * ata_host_alloc() and fully initialized by LLD. This function
5535 * starts ports, registers @host with ATA and SCSI layers and
5536 * probe registered devices.
5537 *
5538 * LOCKING:
5539 * Inherited from calling layer (may sleep).
5540 *
5541 * RETURNS:
5542 * 0 on success, -errno otherwise.
5543 */
5544 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5545 {
5546 int i, rc;
5547
5548 /* host must have been started */
5549 if (!(host->flags & ATA_HOST_STARTED)) {
5550 dev_printk(KERN_ERR, host->dev,
5551 "BUG: trying to register unstarted host\n");
5552 WARN_ON(1);
5553 return -EINVAL;
5554 }
5555
5556 /* Blow away unused ports. This happens when LLD can't
5557 * determine the exact number of ports to allocate at
5558 * allocation time.
5559 */
5560 for (i = host->n_ports; host->ports[i]; i++)
5561 kfree(host->ports[i]);
5562
5563 /* give ports names and add SCSI hosts */
5564 for (i = 0; i < host->n_ports; i++)
5565 host->ports[i]->print_id = ata_print_id++;
5566
5567 rc = ata_scsi_add_hosts(host, sht);
5568 if (rc)
5569 return rc;
5570
5571 /* associate with ACPI nodes */
5572 ata_acpi_associate(host);
5573
5574 /* set cable, sata_spd_limit and report */
5575 for (i = 0; i < host->n_ports; i++) {
5576 struct ata_port *ap = host->ports[i];
5577 unsigned long xfer_mask;
5578
5579 /* set SATA cable type if still unset */
5580 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5581 ap->cbl = ATA_CBL_SATA;
5582
5583 /* init sata_spd_limit to the current value */
5584 sata_link_init_spd(&ap->link);
5585
5586 /* print per-port info to dmesg */
5587 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5588 ap->udma_mask);
5589
5590 if (!ata_port_is_dummy(ap)) {
5591 ata_port_printk(ap, KERN_INFO,
5592 "%cATA max %s %s\n",
5593 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5594 ata_mode_string(xfer_mask),
5595 ap->link.eh_info.desc);
5596 ata_ehi_clear_desc(&ap->link.eh_info);
5597 } else
5598 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5599 }
5600
5601 /* perform each probe synchronously */
5602 DPRINTK("probe begin\n");
5603 for (i = 0; i < host->n_ports; i++) {
5604 struct ata_port *ap = host->ports[i];
5605
5606 /* probe */
5607 if (ap->ops->error_handler) {
5608 struct ata_eh_info *ehi = &ap->link.eh_info;
5609 unsigned long flags;
5610
5611 ata_port_probe(ap);
5612
5613 /* kick EH for boot probing */
5614 spin_lock_irqsave(ap->lock, flags);
5615
5616 ehi->probe_mask |= ATA_ALL_DEVICES;
5617 ehi->action |= ATA_EH_RESET;
5618 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5619
5620 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5621 ap->pflags |= ATA_PFLAG_LOADING;
5622 ata_port_schedule_eh(ap);
5623
5624 spin_unlock_irqrestore(ap->lock, flags);
5625
5626 /* wait for EH to finish */
5627 ata_port_wait_eh(ap);
5628 } else {
5629 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5630 rc = ata_bus_probe(ap);
5631 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5632
5633 if (rc) {
5634 /* FIXME: do something useful here?
5635 * Current libata behavior will
5636 * tear down everything when
5637 * the module is removed
5638 * or the h/w is unplugged.
5639 */
5640 }
5641 }
5642 }
5643
5644 /* probes are done, now scan each port's disk(s) */
5645 DPRINTK("host probe begin\n");
5646 for (i = 0; i < host->n_ports; i++) {
5647 struct ata_port *ap = host->ports[i];
5648
5649 ata_scsi_scan_host(ap, 1);
5650 ata_lpm_schedule(ap, ap->pm_policy);
5651 }
5652
5653 return 0;
5654 }
5655
5656 /**
5657 * ata_host_activate - start host, request IRQ and register it
5658 * @host: target ATA host
5659 * @irq: IRQ to request
5660 * @irq_handler: irq_handler used when requesting IRQ
5661 * @irq_flags: irq_flags used when requesting IRQ
5662 * @sht: scsi_host_template to use when registering the host
5663 *
5664 * After allocating an ATA host and initializing it, most libata
5665 * LLDs perform three steps to activate the host - start host,
5666 * request IRQ and register it. This helper takes necessasry
5667 * arguments and performs the three steps in one go.
5668 *
5669 * An invalid IRQ skips the IRQ registration and expects the host to
5670 * have set polling mode on the port. In this case, @irq_handler
5671 * should be NULL.
5672 *
5673 * LOCKING:
5674 * Inherited from calling layer (may sleep).
5675 *
5676 * RETURNS:
5677 * 0 on success, -errno otherwise.
5678 */
5679 int ata_host_activate(struct ata_host *host, int irq,
5680 irq_handler_t irq_handler, unsigned long irq_flags,
5681 struct scsi_host_template *sht)
5682 {
5683 int i, rc;
5684
5685 rc = ata_host_start(host);
5686 if (rc)
5687 return rc;
5688
5689 /* Special case for polling mode */
5690 if (!irq) {
5691 WARN_ON(irq_handler);
5692 return ata_host_register(host, sht);
5693 }
5694
5695 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5696 dev_driver_string(host->dev), host);
5697 if (rc)
5698 return rc;
5699
5700 for (i = 0; i < host->n_ports; i++)
5701 ata_port_desc(host->ports[i], "irq %d", irq);
5702
5703 rc = ata_host_register(host, sht);
5704 /* if failed, just free the IRQ and leave ports alone */
5705 if (rc)
5706 devm_free_irq(host->dev, irq, host);
5707
5708 return rc;
5709 }
5710
5711 /**
5712 * ata_port_detach - Detach ATA port in prepration of device removal
5713 * @ap: ATA port to be detached
5714 *
5715 * Detach all ATA devices and the associated SCSI devices of @ap;
5716 * then, remove the associated SCSI host. @ap is guaranteed to
5717 * be quiescent on return from this function.
5718 *
5719 * LOCKING:
5720 * Kernel thread context (may sleep).
5721 */
5722 static void ata_port_detach(struct ata_port *ap)
5723 {
5724 unsigned long flags;
5725 struct ata_link *link;
5726 struct ata_device *dev;
5727
5728 if (!ap->ops->error_handler)
5729 goto skip_eh;
5730
5731 /* tell EH we're leaving & flush EH */
5732 spin_lock_irqsave(ap->lock, flags);
5733 ap->pflags |= ATA_PFLAG_UNLOADING;
5734 spin_unlock_irqrestore(ap->lock, flags);
5735
5736 ata_port_wait_eh(ap);
5737
5738 /* EH is now guaranteed to see UNLOADING - EH context belongs
5739 * to us. Disable all existing devices.
5740 */
5741 ata_port_for_each_link(link, ap) {
5742 ata_link_for_each_dev(dev, link)
5743 ata_dev_disable(dev);
5744 }
5745
5746 /* Final freeze & EH. All in-flight commands are aborted. EH
5747 * will be skipped and retrials will be terminated with bad
5748 * target.
5749 */
5750 spin_lock_irqsave(ap->lock, flags);
5751 ata_port_freeze(ap); /* won't be thawed */
5752 spin_unlock_irqrestore(ap->lock, flags);
5753
5754 ata_port_wait_eh(ap);
5755 cancel_rearming_delayed_work(&ap->hotplug_task);
5756
5757 skip_eh:
5758 /* remove the associated SCSI host */
5759 scsi_remove_host(ap->scsi_host);
5760 }
5761
5762 /**
5763 * ata_host_detach - Detach all ports of an ATA host
5764 * @host: Host to detach
5765 *
5766 * Detach all ports of @host.
5767 *
5768 * LOCKING:
5769 * Kernel thread context (may sleep).
5770 */
5771 void ata_host_detach(struct ata_host *host)
5772 {
5773 int i;
5774
5775 for (i = 0; i < host->n_ports; i++)
5776 ata_port_detach(host->ports[i]);
5777
5778 /* the host is dead now, dissociate ACPI */
5779 ata_acpi_dissociate(host);
5780 }
5781
5782 #ifdef CONFIG_PCI
5783
5784 /**
5785 * ata_pci_remove_one - PCI layer callback for device removal
5786 * @pdev: PCI device that was removed
5787 *
5788 * PCI layer indicates to libata via this hook that hot-unplug or
5789 * module unload event has occurred. Detach all ports. Resource
5790 * release is handled via devres.
5791 *
5792 * LOCKING:
5793 * Inherited from PCI layer (may sleep).
5794 */
5795 void ata_pci_remove_one(struct pci_dev *pdev)
5796 {
5797 struct device *dev = &pdev->dev;
5798 struct ata_host *host = dev_get_drvdata(dev);
5799
5800 ata_host_detach(host);
5801 }
5802
5803 /* move to PCI subsystem */
5804 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5805 {
5806 unsigned long tmp = 0;
5807
5808 switch (bits->width) {
5809 case 1: {
5810 u8 tmp8 = 0;
5811 pci_read_config_byte(pdev, bits->reg, &tmp8);
5812 tmp = tmp8;
5813 break;
5814 }
5815 case 2: {
5816 u16 tmp16 = 0;
5817 pci_read_config_word(pdev, bits->reg, &tmp16);
5818 tmp = tmp16;
5819 break;
5820 }
5821 case 4: {
5822 u32 tmp32 = 0;
5823 pci_read_config_dword(pdev, bits->reg, &tmp32);
5824 tmp = tmp32;
5825 break;
5826 }
5827
5828 default:
5829 return -EINVAL;
5830 }
5831
5832 tmp &= bits->mask;
5833
5834 return (tmp == bits->val) ? 1 : 0;
5835 }
5836
5837 #ifdef CONFIG_PM
5838 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5839 {
5840 pci_save_state(pdev);
5841 pci_disable_device(pdev);
5842
5843 if (mesg.event & PM_EVENT_SLEEP)
5844 pci_set_power_state(pdev, PCI_D3hot);
5845 }
5846
5847 int ata_pci_device_do_resume(struct pci_dev *pdev)
5848 {
5849 int rc;
5850
5851 pci_set_power_state(pdev, PCI_D0);
5852 pci_restore_state(pdev);
5853
5854 rc = pcim_enable_device(pdev);
5855 if (rc) {
5856 dev_printk(KERN_ERR, &pdev->dev,
5857 "failed to enable device after resume (%d)\n", rc);
5858 return rc;
5859 }
5860
5861 pci_set_master(pdev);
5862 return 0;
5863 }
5864
5865 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5866 {
5867 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5868 int rc = 0;
5869
5870 rc = ata_host_suspend(host, mesg);
5871 if (rc)
5872 return rc;
5873
5874 ata_pci_device_do_suspend(pdev, mesg);
5875
5876 return 0;
5877 }
5878
5879 int ata_pci_device_resume(struct pci_dev *pdev)
5880 {
5881 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5882 int rc;
5883
5884 rc = ata_pci_device_do_resume(pdev);
5885 if (rc == 0)
5886 ata_host_resume(host);
5887 return rc;
5888 }
5889 #endif /* CONFIG_PM */
5890
5891 #endif /* CONFIG_PCI */
5892
5893 static int __init ata_parse_force_one(char **cur,
5894 struct ata_force_ent *force_ent,
5895 const char **reason)
5896 {
5897 /* FIXME: Currently, there's no way to tag init const data and
5898 * using __initdata causes build failure on some versions of
5899 * gcc. Once __initdataconst is implemented, add const to the
5900 * following structure.
5901 */
5902 static struct ata_force_param force_tbl[] __initdata = {
5903 { "40c", .cbl = ATA_CBL_PATA40 },
5904 { "80c", .cbl = ATA_CBL_PATA80 },
5905 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5906 { "unk", .cbl = ATA_CBL_PATA_UNK },
5907 { "ign", .cbl = ATA_CBL_PATA_IGN },
5908 { "sata", .cbl = ATA_CBL_SATA },
5909 { "1.5Gbps", .spd_limit = 1 },
5910 { "3.0Gbps", .spd_limit = 2 },
5911 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5912 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5913 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5914 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5915 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5916 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5917 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5918 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5919 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5920 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5921 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5922 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5923 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5924 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5925 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5926 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5927 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5928 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5929 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5930 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5931 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5932 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5933 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5934 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5935 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5936 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5937 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5938 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5939 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5940 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5941 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5942 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5943 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5944 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5945 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5946 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
5947 };
5948 char *start = *cur, *p = *cur;
5949 char *id, *val, *endp;
5950 const struct ata_force_param *match_fp = NULL;
5951 int nr_matches = 0, i;
5952
5953 /* find where this param ends and update *cur */
5954 while (*p != '\0' && *p != ',')
5955 p++;
5956
5957 if (*p == '\0')
5958 *cur = p;
5959 else
5960 *cur = p + 1;
5961
5962 *p = '\0';
5963
5964 /* parse */
5965 p = strchr(start, ':');
5966 if (!p) {
5967 val = strstrip(start);
5968 goto parse_val;
5969 }
5970 *p = '\0';
5971
5972 id = strstrip(start);
5973 val = strstrip(p + 1);
5974
5975 /* parse id */
5976 p = strchr(id, '.');
5977 if (p) {
5978 *p++ = '\0';
5979 force_ent->device = simple_strtoul(p, &endp, 10);
5980 if (p == endp || *endp != '\0') {
5981 *reason = "invalid device";
5982 return -EINVAL;
5983 }
5984 }
5985
5986 force_ent->port = simple_strtoul(id, &endp, 10);
5987 if (p == endp || *endp != '\0') {
5988 *reason = "invalid port/link";
5989 return -EINVAL;
5990 }
5991
5992 parse_val:
5993 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
5994 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
5995 const struct ata_force_param *fp = &force_tbl[i];
5996
5997 if (strncasecmp(val, fp->name, strlen(val)))
5998 continue;
5999
6000 nr_matches++;
6001 match_fp = fp;
6002
6003 if (strcasecmp(val, fp->name) == 0) {
6004 nr_matches = 1;
6005 break;
6006 }
6007 }
6008
6009 if (!nr_matches) {
6010 *reason = "unknown value";
6011 return -EINVAL;
6012 }
6013 if (nr_matches > 1) {
6014 *reason = "ambigious value";
6015 return -EINVAL;
6016 }
6017
6018 force_ent->param = *match_fp;
6019
6020 return 0;
6021 }
6022
6023 static void __init ata_parse_force_param(void)
6024 {
6025 int idx = 0, size = 1;
6026 int last_port = -1, last_device = -1;
6027 char *p, *cur, *next;
6028
6029 /* calculate maximum number of params and allocate force_tbl */
6030 for (p = ata_force_param_buf; *p; p++)
6031 if (*p == ',')
6032 size++;
6033
6034 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6035 if (!ata_force_tbl) {
6036 printk(KERN_WARNING "ata: failed to extend force table, "
6037 "libata.force ignored\n");
6038 return;
6039 }
6040
6041 /* parse and populate the table */
6042 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6043 const char *reason = "";
6044 struct ata_force_ent te = { .port = -1, .device = -1 };
6045
6046 next = cur;
6047 if (ata_parse_force_one(&next, &te, &reason)) {
6048 printk(KERN_WARNING "ata: failed to parse force "
6049 "parameter \"%s\" (%s)\n",
6050 cur, reason);
6051 continue;
6052 }
6053
6054 if (te.port == -1) {
6055 te.port = last_port;
6056 te.device = last_device;
6057 }
6058
6059 ata_force_tbl[idx++] = te;
6060
6061 last_port = te.port;
6062 last_device = te.device;
6063 }
6064
6065 ata_force_tbl_size = idx;
6066 }
6067
6068 static int __init ata_init(void)
6069 {
6070 ata_probe_timeout *= HZ;
6071
6072 ata_parse_force_param();
6073
6074 ata_wq = create_workqueue("ata");
6075 if (!ata_wq)
6076 return -ENOMEM;
6077
6078 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6079 if (!ata_aux_wq) {
6080 destroy_workqueue(ata_wq);
6081 return -ENOMEM;
6082 }
6083
6084 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6085 return 0;
6086 }
6087
6088 static void __exit ata_exit(void)
6089 {
6090 kfree(ata_force_tbl);
6091 destroy_workqueue(ata_wq);
6092 destroy_workqueue(ata_aux_wq);
6093 }
6094
6095 subsys_initcall(ata_init);
6096 module_exit(ata_exit);
6097
6098 static unsigned long ratelimit_time;
6099 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6100
6101 int ata_ratelimit(void)
6102 {
6103 int rc;
6104 unsigned long flags;
6105
6106 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6107
6108 if (time_after(jiffies, ratelimit_time)) {
6109 rc = 1;
6110 ratelimit_time = jiffies + (HZ/5);
6111 } else
6112 rc = 0;
6113
6114 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6115
6116 return rc;
6117 }
6118
6119 /**
6120 * ata_wait_register - wait until register value changes
6121 * @reg: IO-mapped register
6122 * @mask: Mask to apply to read register value
6123 * @val: Wait condition
6124 * @interval_msec: polling interval in milliseconds
6125 * @timeout_msec: timeout in milliseconds
6126 *
6127 * Waiting for some bits of register to change is a common
6128 * operation for ATA controllers. This function reads 32bit LE
6129 * IO-mapped register @reg and tests for the following condition.
6130 *
6131 * (*@reg & mask) != val
6132 *
6133 * If the condition is met, it returns; otherwise, the process is
6134 * repeated after @interval_msec until timeout.
6135 *
6136 * LOCKING:
6137 * Kernel thread context (may sleep)
6138 *
6139 * RETURNS:
6140 * The final register value.
6141 */
6142 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6143 unsigned long interval_msec,
6144 unsigned long timeout_msec)
6145 {
6146 unsigned long timeout;
6147 u32 tmp;
6148
6149 tmp = ioread32(reg);
6150
6151 /* Calculate timeout _after_ the first read to make sure
6152 * preceding writes reach the controller before starting to
6153 * eat away the timeout.
6154 */
6155 timeout = jiffies + (timeout_msec * HZ) / 1000;
6156
6157 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6158 msleep(interval_msec);
6159 tmp = ioread32(reg);
6160 }
6161
6162 return tmp;
6163 }
6164
6165 /*
6166 * Dummy port_ops
6167 */
6168 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6169 {
6170 return AC_ERR_SYSTEM;
6171 }
6172
6173 static void ata_dummy_error_handler(struct ata_port *ap)
6174 {
6175 /* truly dummy */
6176 }
6177
6178 struct ata_port_operations ata_dummy_port_ops = {
6179 .qc_prep = ata_noop_qc_prep,
6180 .qc_issue = ata_dummy_qc_issue,
6181 .error_handler = ata_dummy_error_handler,
6182 };
6183
6184 const struct ata_port_info ata_dummy_port_info = {
6185 .port_ops = &ata_dummy_port_ops,
6186 };
6187
6188 /*
6189 * libata is essentially a library of internal helper functions for
6190 * low-level ATA host controller drivers. As such, the API/ABI is
6191 * likely to change as new drivers are added and updated.
6192 * Do not depend on ABI/API stability.
6193 */
6194 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6195 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6196 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6197 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6198 EXPORT_SYMBOL_GPL(sata_port_ops);
6199 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6200 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6201 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6202 EXPORT_SYMBOL_GPL(ata_host_init);
6203 EXPORT_SYMBOL_GPL(ata_host_alloc);
6204 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6205 EXPORT_SYMBOL_GPL(ata_host_start);
6206 EXPORT_SYMBOL_GPL(ata_host_register);
6207 EXPORT_SYMBOL_GPL(ata_host_activate);
6208 EXPORT_SYMBOL_GPL(ata_host_detach);
6209 EXPORT_SYMBOL_GPL(ata_sg_init);
6210 EXPORT_SYMBOL_GPL(ata_qc_complete);
6211 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6212 EXPORT_SYMBOL_GPL(sata_print_link_status);
6213 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6214 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6215 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6216 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6217 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6218 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6219 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6220 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6221 EXPORT_SYMBOL_GPL(ata_mode_string);
6222 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6223 EXPORT_SYMBOL_GPL(ata_port_start);
6224 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6225 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6226 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6227 EXPORT_SYMBOL_GPL(ata_port_probe);
6228 EXPORT_SYMBOL_GPL(ata_dev_disable);
6229 EXPORT_SYMBOL_GPL(sata_set_spd);
6230 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6231 EXPORT_SYMBOL_GPL(sata_link_debounce);
6232 EXPORT_SYMBOL_GPL(sata_link_resume);
6233 EXPORT_SYMBOL_GPL(ata_std_prereset);
6234 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6235 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6236 EXPORT_SYMBOL_GPL(ata_std_postreset);
6237 EXPORT_SYMBOL_GPL(ata_dev_classify);
6238 EXPORT_SYMBOL_GPL(ata_dev_pair);
6239 EXPORT_SYMBOL_GPL(ata_port_disable);
6240 EXPORT_SYMBOL_GPL(ata_ratelimit);
6241 EXPORT_SYMBOL_GPL(ata_wait_register);
6242 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6243 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6244 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6245 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6246 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6247 EXPORT_SYMBOL_GPL(sata_scr_valid);
6248 EXPORT_SYMBOL_GPL(sata_scr_read);
6249 EXPORT_SYMBOL_GPL(sata_scr_write);
6250 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6251 EXPORT_SYMBOL_GPL(ata_link_online);
6252 EXPORT_SYMBOL_GPL(ata_link_offline);
6253 #ifdef CONFIG_PM
6254 EXPORT_SYMBOL_GPL(ata_host_suspend);
6255 EXPORT_SYMBOL_GPL(ata_host_resume);
6256 #endif /* CONFIG_PM */
6257 EXPORT_SYMBOL_GPL(ata_id_string);
6258 EXPORT_SYMBOL_GPL(ata_id_c_string);
6259 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6260
6261 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6262 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6263 EXPORT_SYMBOL_GPL(ata_timing_compute);
6264 EXPORT_SYMBOL_GPL(ata_timing_merge);
6265 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6266
6267 #ifdef CONFIG_PCI
6268 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6269 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6270 #ifdef CONFIG_PM
6271 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6272 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6273 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6274 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6275 #endif /* CONFIG_PM */
6276 #endif /* CONFIG_PCI */
6277
6278 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6279 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6280 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6281 EXPORT_SYMBOL_GPL(ata_port_desc);
6282 #ifdef CONFIG_PCI
6283 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6284 #endif /* CONFIG_PCI */
6285 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6286 EXPORT_SYMBOL_GPL(ata_link_abort);
6287 EXPORT_SYMBOL_GPL(ata_port_abort);
6288 EXPORT_SYMBOL_GPL(ata_port_freeze);
6289 EXPORT_SYMBOL_GPL(sata_async_notification);
6290 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6291 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6292 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6293 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6294 EXPORT_SYMBOL_GPL(ata_do_eh);
6295 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6296
6297 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6298 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6299 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6300 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6301 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.164644 seconds and 5 git commands to generate.