[PATCH] libata: ACPI and _GTF support
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
96 int noacpi;
97 module_param(noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104
105
106 /**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120 {
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146 }
147
148 /**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160 {
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175 }
176
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
192 0,
193 0,
194 0,
195 0,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
205 };
206
207 /**
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
211 *
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
214 *
215 * LOCKING:
216 * caller.
217 */
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219 {
220 u8 cmd;
221
222 int index, fua, lba48, write;
223
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
238 }
239
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
246 }
247
248 /**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264 {
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289 }
290
291 /**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314 {
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
319 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
320 likely(tag != ATA_TAG_INTERNAL)) {
321 /* yay, NCQ */
322 if (!lba_48_ok(block, n_block))
323 return -ERANGE;
324
325 tf->protocol = ATA_PROT_NCQ;
326 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
327
328 if (tf->flags & ATA_TFLAG_WRITE)
329 tf->command = ATA_CMD_FPDMA_WRITE;
330 else
331 tf->command = ATA_CMD_FPDMA_READ;
332
333 tf->nsect = tag << 3;
334 tf->hob_feature = (n_block >> 8) & 0xff;
335 tf->feature = n_block & 0xff;
336
337 tf->hob_lbah = (block >> 40) & 0xff;
338 tf->hob_lbam = (block >> 32) & 0xff;
339 tf->hob_lbal = (block >> 24) & 0xff;
340 tf->lbah = (block >> 16) & 0xff;
341 tf->lbam = (block >> 8) & 0xff;
342 tf->lbal = block & 0xff;
343
344 tf->device = 1 << 6;
345 if (tf->flags & ATA_TFLAG_FUA)
346 tf->device |= 1 << 7;
347 } else if (dev->flags & ATA_DFLAG_LBA) {
348 tf->flags |= ATA_TFLAG_LBA;
349
350 if (lba_28_ok(block, n_block)) {
351 /* use LBA28 */
352 tf->device |= (block >> 24) & 0xf;
353 } else if (lba_48_ok(block, n_block)) {
354 if (!(dev->flags & ATA_DFLAG_LBA48))
355 return -ERANGE;
356
357 /* use LBA48 */
358 tf->flags |= ATA_TFLAG_LBA48;
359
360 tf->hob_nsect = (n_block >> 8) & 0xff;
361
362 tf->hob_lbah = (block >> 40) & 0xff;
363 tf->hob_lbam = (block >> 32) & 0xff;
364 tf->hob_lbal = (block >> 24) & 0xff;
365 } else
366 /* request too large even for LBA48 */
367 return -ERANGE;
368
369 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 return -EINVAL;
371
372 tf->nsect = n_block & 0xff;
373
374 tf->lbah = (block >> 16) & 0xff;
375 tf->lbam = (block >> 8) & 0xff;
376 tf->lbal = block & 0xff;
377
378 tf->device |= ATA_LBA;
379 } else {
380 /* CHS */
381 u32 sect, head, cyl, track;
382
383 /* The request -may- be too large for CHS addressing. */
384 if (!lba_28_ok(block, n_block))
385 return -ERANGE;
386
387 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 return -EINVAL;
389
390 /* Convert LBA to CHS */
391 track = (u32)block / dev->sectors;
392 cyl = track / dev->heads;
393 head = track % dev->heads;
394 sect = (u32)block % dev->sectors + 1;
395
396 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
397 (u32)block, track, cyl, head, sect);
398
399 /* Check whether the converted CHS can fit.
400 Cylinder: 0-65535
401 Head: 0-15
402 Sector: 1-255*/
403 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 return -ERANGE;
405
406 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
407 tf->lbal = sect;
408 tf->lbam = cyl;
409 tf->lbah = cyl >> 8;
410 tf->device |= head;
411 }
412
413 return 0;
414 }
415
416 /**
417 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
418 * @pio_mask: pio_mask
419 * @mwdma_mask: mwdma_mask
420 * @udma_mask: udma_mask
421 *
422 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
423 * unsigned int xfer_mask.
424 *
425 * LOCKING:
426 * None.
427 *
428 * RETURNS:
429 * Packed xfer_mask.
430 */
431 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
432 unsigned int mwdma_mask,
433 unsigned int udma_mask)
434 {
435 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
436 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
437 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
438 }
439
440 /**
441 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
442 * @xfer_mask: xfer_mask to unpack
443 * @pio_mask: resulting pio_mask
444 * @mwdma_mask: resulting mwdma_mask
445 * @udma_mask: resulting udma_mask
446 *
447 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
448 * Any NULL distination masks will be ignored.
449 */
450 static void ata_unpack_xfermask(unsigned int xfer_mask,
451 unsigned int *pio_mask,
452 unsigned int *mwdma_mask,
453 unsigned int *udma_mask)
454 {
455 if (pio_mask)
456 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
457 if (mwdma_mask)
458 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
459 if (udma_mask)
460 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 }
462
463 static const struct ata_xfer_ent {
464 int shift, bits;
465 u8 base;
466 } ata_xfer_tbl[] = {
467 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
468 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
469 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
470 { -1, },
471 };
472
473 /**
474 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
475 * @xfer_mask: xfer_mask of interest
476 *
477 * Return matching XFER_* value for @xfer_mask. Only the highest
478 * bit of @xfer_mask is considered.
479 *
480 * LOCKING:
481 * None.
482 *
483 * RETURNS:
484 * Matching XFER_* value, 0 if no match found.
485 */
486 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
487 {
488 int highbit = fls(xfer_mask) - 1;
489 const struct ata_xfer_ent *ent;
490
491 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
492 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
493 return ent->base + highbit - ent->shift;
494 return 0;
495 }
496
497 /**
498 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
499 * @xfer_mode: XFER_* of interest
500 *
501 * Return matching xfer_mask for @xfer_mode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * Matching xfer_mask, 0 if no match found.
508 */
509 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
510 {
511 const struct ata_xfer_ent *ent;
512
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
515 return 1 << (ent->shift + xfer_mode - ent->base);
516 return 0;
517 }
518
519 /**
520 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
521 * @xfer_mode: XFER_* of interest
522 *
523 * Return matching xfer_shift for @xfer_mode.
524 *
525 * LOCKING:
526 * None.
527 *
528 * RETURNS:
529 * Matching xfer_shift, -1 if no match found.
530 */
531 static int ata_xfer_mode2shift(unsigned int xfer_mode)
532 {
533 const struct ata_xfer_ent *ent;
534
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return ent->shift;
538 return -1;
539 }
540
541 /**
542 * ata_mode_string - convert xfer_mask to string
543 * @xfer_mask: mask of bits supported; only highest bit counts.
544 *
545 * Determine string which represents the highest speed
546 * (highest bit in @modemask).
547 *
548 * LOCKING:
549 * None.
550 *
551 * RETURNS:
552 * Constant C string representing highest speed listed in
553 * @mode_mask, or the constant C string "<n/a>".
554 */
555 static const char *ata_mode_string(unsigned int xfer_mask)
556 {
557 static const char * const xfer_mode_str[] = {
558 "PIO0",
559 "PIO1",
560 "PIO2",
561 "PIO3",
562 "PIO4",
563 "PIO5",
564 "PIO6",
565 "MWDMA0",
566 "MWDMA1",
567 "MWDMA2",
568 "MWDMA3",
569 "MWDMA4",
570 "UDMA/16",
571 "UDMA/25",
572 "UDMA/33",
573 "UDMA/44",
574 "UDMA/66",
575 "UDMA/100",
576 "UDMA/133",
577 "UDMA7",
578 };
579 int highbit;
580
581 highbit = fls(xfer_mask) - 1;
582 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
583 return xfer_mode_str[highbit];
584 return "<n/a>";
585 }
586
587 static const char *sata_spd_string(unsigned int spd)
588 {
589 static const char * const spd_str[] = {
590 "1.5 Gbps",
591 "3.0 Gbps",
592 };
593
594 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
595 return "<unknown>";
596 return spd_str[spd - 1];
597 }
598
599 void ata_dev_disable(struct ata_device *dev)
600 {
601 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
602 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
603 dev->class++;
604 }
605 }
606
607 /**
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626 {
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
634
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
637
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
640
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648 }
649
650 /**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667 {
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687 }
688
689 /**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709 */
710
711 static unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713 {
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
726
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
737
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
740
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
746 }
747
748 /**
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
765 {
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780 }
781
782 /**
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
798 {
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
803 ata_id_string(id, s, ofs, len - 1);
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809 }
810
811 static u64 ata_id_n_sectors(const u16 *id)
812 {
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824 }
825
826 /**
827 * ata_noop_dev_select - Select device 0/1 on ATA bus
828 * @ap: ATA channel to manipulate
829 * @device: ATA device (numbered from zero) to select
830 *
831 * This function performs no actual function.
832 *
833 * May be used as the dev_select() entry in ata_port_operations.
834 *
835 * LOCKING:
836 * caller.
837 */
838 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
839 {
840 }
841
842
843 /**
844 * ata_std_dev_select - Select device 0/1 on ATA bus
845 * @ap: ATA channel to manipulate
846 * @device: ATA device (numbered from zero) to select
847 *
848 * Use the method defined in the ATA specification to
849 * make either device 0, or device 1, active on the
850 * ATA channel. Works with both PIO and MMIO.
851 *
852 * May be used as the dev_select() entry in ata_port_operations.
853 *
854 * LOCKING:
855 * caller.
856 */
857
858 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
859 {
860 u8 tmp;
861
862 if (device == 0)
863 tmp = ATA_DEVICE_OBS;
864 else
865 tmp = ATA_DEVICE_OBS | ATA_DEV1;
866
867 iowrite8(tmp, ap->ioaddr.device_addr);
868 ata_pause(ap); /* needed; also flushes, for mmio */
869 }
870
871 /**
872 * ata_dev_select - Select device 0/1 on ATA bus
873 * @ap: ATA channel to manipulate
874 * @device: ATA device (numbered from zero) to select
875 * @wait: non-zero to wait for Status register BSY bit to clear
876 * @can_sleep: non-zero if context allows sleeping
877 *
878 * Use the method defined in the ATA specification to
879 * make either device 0, or device 1, active on the
880 * ATA channel.
881 *
882 * This is a high-level version of ata_std_dev_select(),
883 * which additionally provides the services of inserting
884 * the proper pauses and status polling, where needed.
885 *
886 * LOCKING:
887 * caller.
888 */
889
890 void ata_dev_select(struct ata_port *ap, unsigned int device,
891 unsigned int wait, unsigned int can_sleep)
892 {
893 if (ata_msg_probe(ap))
894 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
895 "device %u, wait %u\n", ap->id, device, wait);
896
897 if (wait)
898 ata_wait_idle(ap);
899
900 ap->ops->dev_select(ap, device);
901
902 if (wait) {
903 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
904 msleep(150);
905 ata_wait_idle(ap);
906 }
907 }
908
909 /**
910 * ata_dump_id - IDENTIFY DEVICE info debugging output
911 * @id: IDENTIFY DEVICE page to dump
912 *
913 * Dump selected 16-bit words from the given IDENTIFY DEVICE
914 * page.
915 *
916 * LOCKING:
917 * caller.
918 */
919
920 static inline void ata_dump_id(const u16 *id)
921 {
922 DPRINTK("49==0x%04x "
923 "53==0x%04x "
924 "63==0x%04x "
925 "64==0x%04x "
926 "75==0x%04x \n",
927 id[49],
928 id[53],
929 id[63],
930 id[64],
931 id[75]);
932 DPRINTK("80==0x%04x "
933 "81==0x%04x "
934 "82==0x%04x "
935 "83==0x%04x "
936 "84==0x%04x \n",
937 id[80],
938 id[81],
939 id[82],
940 id[83],
941 id[84]);
942 DPRINTK("88==0x%04x "
943 "93==0x%04x\n",
944 id[88],
945 id[93]);
946 }
947
948 /**
949 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
950 * @id: IDENTIFY data to compute xfer mask from
951 *
952 * Compute the xfermask for this device. This is not as trivial
953 * as it seems if we must consider early devices correctly.
954 *
955 * FIXME: pre IDE drive timing (do we care ?).
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Computed xfermask
962 */
963 static unsigned int ata_id_xfermask(const u16 *id)
964 {
965 unsigned int pio_mask, mwdma_mask, udma_mask;
966
967 /* Usual case. Word 53 indicates word 64 is valid */
968 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
969 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
970 pio_mask <<= 3;
971 pio_mask |= 0x7;
972 } else {
973 /* If word 64 isn't valid then Word 51 high byte holds
974 * the PIO timing number for the maximum. Turn it into
975 * a mask.
976 */
977 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
978 if (mode < 5) /* Valid PIO range */
979 pio_mask = (2 << mode) - 1;
980 else
981 pio_mask = 1;
982
983 /* But wait.. there's more. Design your standards by
984 * committee and you too can get a free iordy field to
985 * process. However its the speeds not the modes that
986 * are supported... Note drivers using the timing API
987 * will get this right anyway
988 */
989 }
990
991 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
992
993 if (ata_id_is_cfa(id)) {
994 /*
995 * Process compact flash extended modes
996 */
997 int pio = id[163] & 0x7;
998 int dma = (id[163] >> 3) & 7;
999
1000 if (pio)
1001 pio_mask |= (1 << 5);
1002 if (pio > 1)
1003 pio_mask |= (1 << 6);
1004 if (dma)
1005 mwdma_mask |= (1 << 3);
1006 if (dma > 1)
1007 mwdma_mask |= (1 << 4);
1008 }
1009
1010 udma_mask = 0;
1011 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1012 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1013
1014 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1015 }
1016
1017 /**
1018 * ata_port_queue_task - Queue port_task
1019 * @ap: The ata_port to queue port_task for
1020 * @fn: workqueue function to be scheduled
1021 * @data: data for @fn to use
1022 * @delay: delay time for workqueue function
1023 *
1024 * Schedule @fn(@data) for execution after @delay jiffies using
1025 * port_task. There is one port_task per port and it's the
1026 * user(low level driver)'s responsibility to make sure that only
1027 * one task is active at any given time.
1028 *
1029 * libata core layer takes care of synchronization between
1030 * port_task and EH. ata_port_queue_task() may be ignored for EH
1031 * synchronization.
1032 *
1033 * LOCKING:
1034 * Inherited from caller.
1035 */
1036 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1037 unsigned long delay)
1038 {
1039 int rc;
1040
1041 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1042 return;
1043
1044 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1045 ap->port_task_data = data;
1046
1047 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1048
1049 /* rc == 0 means that another user is using port task */
1050 WARN_ON(rc == 0);
1051 }
1052
1053 /**
1054 * ata_port_flush_task - Flush port_task
1055 * @ap: The ata_port to flush port_task for
1056 *
1057 * After this function completes, port_task is guranteed not to
1058 * be running or scheduled.
1059 *
1060 * LOCKING:
1061 * Kernel thread context (may sleep)
1062 */
1063 void ata_port_flush_task(struct ata_port *ap)
1064 {
1065 unsigned long flags;
1066
1067 DPRINTK("ENTER\n");
1068
1069 spin_lock_irqsave(ap->lock, flags);
1070 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1071 spin_unlock_irqrestore(ap->lock, flags);
1072
1073 DPRINTK("flush #1\n");
1074 flush_workqueue(ata_wq);
1075
1076 /*
1077 * At this point, if a task is running, it's guaranteed to see
1078 * the FLUSH flag; thus, it will never queue pio tasks again.
1079 * Cancel and flush.
1080 */
1081 if (!cancel_delayed_work(&ap->port_task)) {
1082 if (ata_msg_ctl(ap))
1083 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1084 __FUNCTION__);
1085 flush_workqueue(ata_wq);
1086 }
1087
1088 spin_lock_irqsave(ap->lock, flags);
1089 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1090 spin_unlock_irqrestore(ap->lock, flags);
1091
1092 if (ata_msg_ctl(ap))
1093 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1094 }
1095
1096 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1097 {
1098 struct completion *waiting = qc->private_data;
1099
1100 complete(waiting);
1101 }
1102
1103 /**
1104 * ata_exec_internal_sg - execute libata internal command
1105 * @dev: Device to which the command is sent
1106 * @tf: Taskfile registers for the command and the result
1107 * @cdb: CDB for packet command
1108 * @dma_dir: Data tranfer direction of the command
1109 * @sg: sg list for the data buffer of the command
1110 * @n_elem: Number of sg entries
1111 *
1112 * Executes libata internal command with timeout. @tf contains
1113 * command on entry and result on return. Timeout and error
1114 * conditions are reported via return value. No recovery action
1115 * is taken after a command times out. It's caller's duty to
1116 * clean up after timeout.
1117 *
1118 * LOCKING:
1119 * None. Should be called with kernel context, might sleep.
1120 *
1121 * RETURNS:
1122 * Zero on success, AC_ERR_* mask on failure
1123 */
1124 unsigned ata_exec_internal_sg(struct ata_device *dev,
1125 struct ata_taskfile *tf, const u8 *cdb,
1126 int dma_dir, struct scatterlist *sg,
1127 unsigned int n_elem)
1128 {
1129 struct ata_port *ap = dev->ap;
1130 u8 command = tf->command;
1131 struct ata_queued_cmd *qc;
1132 unsigned int tag, preempted_tag;
1133 u32 preempted_sactive, preempted_qc_active;
1134 DECLARE_COMPLETION_ONSTACK(wait);
1135 unsigned long flags;
1136 unsigned int err_mask;
1137 int rc;
1138
1139 spin_lock_irqsave(ap->lock, flags);
1140
1141 /* no internal command while frozen */
1142 if (ap->pflags & ATA_PFLAG_FROZEN) {
1143 spin_unlock_irqrestore(ap->lock, flags);
1144 return AC_ERR_SYSTEM;
1145 }
1146
1147 /* initialize internal qc */
1148
1149 /* XXX: Tag 0 is used for drivers with legacy EH as some
1150 * drivers choke if any other tag is given. This breaks
1151 * ata_tag_internal() test for those drivers. Don't use new
1152 * EH stuff without converting to it.
1153 */
1154 if (ap->ops->error_handler)
1155 tag = ATA_TAG_INTERNAL;
1156 else
1157 tag = 0;
1158
1159 if (test_and_set_bit(tag, &ap->qc_allocated))
1160 BUG();
1161 qc = __ata_qc_from_tag(ap, tag);
1162
1163 qc->tag = tag;
1164 qc->scsicmd = NULL;
1165 qc->ap = ap;
1166 qc->dev = dev;
1167 ata_qc_reinit(qc);
1168
1169 preempted_tag = ap->active_tag;
1170 preempted_sactive = ap->sactive;
1171 preempted_qc_active = ap->qc_active;
1172 ap->active_tag = ATA_TAG_POISON;
1173 ap->sactive = 0;
1174 ap->qc_active = 0;
1175
1176 /* prepare & issue qc */
1177 qc->tf = *tf;
1178 if (cdb)
1179 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1180 qc->flags |= ATA_QCFLAG_RESULT_TF;
1181 qc->dma_dir = dma_dir;
1182 if (dma_dir != DMA_NONE) {
1183 unsigned int i, buflen = 0;
1184
1185 for (i = 0; i < n_elem; i++)
1186 buflen += sg[i].length;
1187
1188 ata_sg_init(qc, sg, n_elem);
1189 qc->nbytes = buflen;
1190 }
1191
1192 qc->private_data = &wait;
1193 qc->complete_fn = ata_qc_complete_internal;
1194
1195 ata_qc_issue(qc);
1196
1197 spin_unlock_irqrestore(ap->lock, flags);
1198
1199 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1200
1201 ata_port_flush_task(ap);
1202
1203 if (!rc) {
1204 spin_lock_irqsave(ap->lock, flags);
1205
1206 /* We're racing with irq here. If we lose, the
1207 * following test prevents us from completing the qc
1208 * twice. If we win, the port is frozen and will be
1209 * cleaned up by ->post_internal_cmd().
1210 */
1211 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1212 qc->err_mask |= AC_ERR_TIMEOUT;
1213
1214 if (ap->ops->error_handler)
1215 ata_port_freeze(ap);
1216 else
1217 ata_qc_complete(qc);
1218
1219 if (ata_msg_warn(ap))
1220 ata_dev_printk(dev, KERN_WARNING,
1221 "qc timeout (cmd 0x%x)\n", command);
1222 }
1223
1224 spin_unlock_irqrestore(ap->lock, flags);
1225 }
1226
1227 /* do post_internal_cmd */
1228 if (ap->ops->post_internal_cmd)
1229 ap->ops->post_internal_cmd(qc);
1230
1231 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1232 if (ata_msg_warn(ap))
1233 ata_dev_printk(dev, KERN_WARNING,
1234 "zero err_mask for failed "
1235 "internal command, assuming AC_ERR_OTHER\n");
1236 qc->err_mask |= AC_ERR_OTHER;
1237 }
1238
1239 /* finish up */
1240 spin_lock_irqsave(ap->lock, flags);
1241
1242 *tf = qc->result_tf;
1243 err_mask = qc->err_mask;
1244
1245 ata_qc_free(qc);
1246 ap->active_tag = preempted_tag;
1247 ap->sactive = preempted_sactive;
1248 ap->qc_active = preempted_qc_active;
1249
1250 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1251 * Until those drivers are fixed, we detect the condition
1252 * here, fail the command with AC_ERR_SYSTEM and reenable the
1253 * port.
1254 *
1255 * Note that this doesn't change any behavior as internal
1256 * command failure results in disabling the device in the
1257 * higher layer for LLDDs without new reset/EH callbacks.
1258 *
1259 * Kill the following code as soon as those drivers are fixed.
1260 */
1261 if (ap->flags & ATA_FLAG_DISABLED) {
1262 err_mask |= AC_ERR_SYSTEM;
1263 ata_port_probe(ap);
1264 }
1265
1266 spin_unlock_irqrestore(ap->lock, flags);
1267
1268 return err_mask;
1269 }
1270
1271 /**
1272 * ata_exec_internal - execute libata internal command
1273 * @dev: Device to which the command is sent
1274 * @tf: Taskfile registers for the command and the result
1275 * @cdb: CDB for packet command
1276 * @dma_dir: Data tranfer direction of the command
1277 * @buf: Data buffer of the command
1278 * @buflen: Length of data buffer
1279 *
1280 * Wrapper around ata_exec_internal_sg() which takes simple
1281 * buffer instead of sg list.
1282 *
1283 * LOCKING:
1284 * None. Should be called with kernel context, might sleep.
1285 *
1286 * RETURNS:
1287 * Zero on success, AC_ERR_* mask on failure
1288 */
1289 unsigned ata_exec_internal(struct ata_device *dev,
1290 struct ata_taskfile *tf, const u8 *cdb,
1291 int dma_dir, void *buf, unsigned int buflen)
1292 {
1293 struct scatterlist *psg = NULL, sg;
1294 unsigned int n_elem = 0;
1295
1296 if (dma_dir != DMA_NONE) {
1297 WARN_ON(!buf);
1298 sg_init_one(&sg, buf, buflen);
1299 psg = &sg;
1300 n_elem++;
1301 }
1302
1303 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1304 }
1305
1306 /**
1307 * ata_do_simple_cmd - execute simple internal command
1308 * @dev: Device to which the command is sent
1309 * @cmd: Opcode to execute
1310 *
1311 * Execute a 'simple' command, that only consists of the opcode
1312 * 'cmd' itself, without filling any other registers
1313 *
1314 * LOCKING:
1315 * Kernel thread context (may sleep).
1316 *
1317 * RETURNS:
1318 * Zero on success, AC_ERR_* mask on failure
1319 */
1320 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1321 {
1322 struct ata_taskfile tf;
1323
1324 ata_tf_init(dev, &tf);
1325
1326 tf.command = cmd;
1327 tf.flags |= ATA_TFLAG_DEVICE;
1328 tf.protocol = ATA_PROT_NODATA;
1329
1330 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1331 }
1332
1333 /**
1334 * ata_pio_need_iordy - check if iordy needed
1335 * @adev: ATA device
1336 *
1337 * Check if the current speed of the device requires IORDY. Used
1338 * by various controllers for chip configuration.
1339 */
1340
1341 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1342 {
1343 int pio;
1344 int speed = adev->pio_mode - XFER_PIO_0;
1345
1346 if (speed < 2)
1347 return 0;
1348 if (speed > 2)
1349 return 1;
1350
1351 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1352
1353 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1354 pio = adev->id[ATA_ID_EIDE_PIO];
1355 /* Is the speed faster than the drive allows non IORDY ? */
1356 if (pio) {
1357 /* This is cycle times not frequency - watch the logic! */
1358 if (pio > 240) /* PIO2 is 240nS per cycle */
1359 return 1;
1360 return 0;
1361 }
1362 }
1363 return 0;
1364 }
1365
1366 /**
1367 * ata_dev_read_id - Read ID data from the specified device
1368 * @dev: target device
1369 * @p_class: pointer to class of the target device (may be changed)
1370 * @flags: ATA_READID_* flags
1371 * @id: buffer to read IDENTIFY data into
1372 *
1373 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1374 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1375 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1376 * for pre-ATA4 drives.
1377 *
1378 * LOCKING:
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise.
1383 */
1384 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1385 unsigned int flags, u16 *id)
1386 {
1387 struct ata_port *ap = dev->ap;
1388 unsigned int class = *p_class;
1389 struct ata_taskfile tf;
1390 unsigned int err_mask = 0;
1391 const char *reason;
1392 int rc;
1393
1394 if (ata_msg_ctl(ap))
1395 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1396 __FUNCTION__, ap->id, dev->devno);
1397
1398 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1399
1400 retry:
1401 ata_tf_init(dev, &tf);
1402
1403 switch (class) {
1404 case ATA_DEV_ATA:
1405 tf.command = ATA_CMD_ID_ATA;
1406 break;
1407 case ATA_DEV_ATAPI:
1408 tf.command = ATA_CMD_ID_ATAPI;
1409 break;
1410 default:
1411 rc = -ENODEV;
1412 reason = "unsupported class";
1413 goto err_out;
1414 }
1415
1416 tf.protocol = ATA_PROT_PIO;
1417
1418 /* Some devices choke if TF registers contain garbage. Make
1419 * sure those are properly initialized.
1420 */
1421 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1422
1423 /* Device presence detection is unreliable on some
1424 * controllers. Always poll IDENTIFY if available.
1425 */
1426 tf.flags |= ATA_TFLAG_POLLING;
1427
1428 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1429 id, sizeof(id[0]) * ATA_ID_WORDS);
1430 if (err_mask) {
1431 if (err_mask & AC_ERR_NODEV_HINT) {
1432 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1433 ap->id, dev->devno);
1434 return -ENOENT;
1435 }
1436
1437 rc = -EIO;
1438 reason = "I/O error";
1439 goto err_out;
1440 }
1441
1442 swap_buf_le16(id, ATA_ID_WORDS);
1443
1444 /* sanity check */
1445 rc = -EINVAL;
1446 reason = "device reports illegal type";
1447
1448 if (class == ATA_DEV_ATA) {
1449 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1450 goto err_out;
1451 } else {
1452 if (ata_id_is_ata(id))
1453 goto err_out;
1454 }
1455
1456 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1457 /*
1458 * The exact sequence expected by certain pre-ATA4 drives is:
1459 * SRST RESET
1460 * IDENTIFY
1461 * INITIALIZE DEVICE PARAMETERS
1462 * anything else..
1463 * Some drives were very specific about that exact sequence.
1464 */
1465 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1466 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1467 if (err_mask) {
1468 rc = -EIO;
1469 reason = "INIT_DEV_PARAMS failed";
1470 goto err_out;
1471 }
1472
1473 /* current CHS translation info (id[53-58]) might be
1474 * changed. reread the identify device info.
1475 */
1476 flags &= ~ATA_READID_POSTRESET;
1477 goto retry;
1478 }
1479 }
1480
1481 *p_class = class;
1482
1483 return 0;
1484
1485 err_out:
1486 if (ata_msg_warn(ap))
1487 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1488 "(%s, err_mask=0x%x)\n", reason, err_mask);
1489 return rc;
1490 }
1491
1492 static inline u8 ata_dev_knobble(struct ata_device *dev)
1493 {
1494 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1495 }
1496
1497 static void ata_dev_config_ncq(struct ata_device *dev,
1498 char *desc, size_t desc_sz)
1499 {
1500 struct ata_port *ap = dev->ap;
1501 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1502
1503 if (!ata_id_has_ncq(dev->id)) {
1504 desc[0] = '\0';
1505 return;
1506 }
1507 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1508 snprintf(desc, desc_sz, "NCQ (not used)");
1509 return;
1510 }
1511 if (ap->flags & ATA_FLAG_NCQ) {
1512 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1513 dev->flags |= ATA_DFLAG_NCQ;
1514 }
1515
1516 if (hdepth >= ddepth)
1517 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1518 else
1519 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1520 }
1521
1522 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1523 {
1524 int i;
1525
1526 if (ap->scsi_host) {
1527 unsigned int len = 0;
1528
1529 for (i = 0; i < ATA_MAX_DEVICES; i++)
1530 len = max(len, ap->device[i].cdb_len);
1531
1532 ap->scsi_host->max_cmd_len = len;
1533 }
1534 }
1535
1536 /**
1537 * ata_dev_configure - Configure the specified ATA/ATAPI device
1538 * @dev: Target device to configure
1539 *
1540 * Configure @dev according to @dev->id. Generic and low-level
1541 * driver specific fixups are also applied.
1542 *
1543 * LOCKING:
1544 * Kernel thread context (may sleep)
1545 *
1546 * RETURNS:
1547 * 0 on success, -errno otherwise
1548 */
1549 int ata_dev_configure(struct ata_device *dev)
1550 {
1551 struct ata_port *ap = dev->ap;
1552 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1553 const u16 *id = dev->id;
1554 unsigned int xfer_mask;
1555 char revbuf[7]; /* XYZ-99\0 */
1556 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1557 char modelbuf[ATA_ID_PROD_LEN+1];
1558 int rc;
1559
1560 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1561 ata_dev_printk(dev, KERN_INFO,
1562 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1563 __FUNCTION__, ap->id, dev->devno);
1564 return 0;
1565 }
1566
1567 if (ata_msg_probe(ap))
1568 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1569 __FUNCTION__, ap->id, dev->devno);
1570
1571 /* print device capabilities */
1572 if (ata_msg_probe(ap))
1573 ata_dev_printk(dev, KERN_DEBUG,
1574 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1575 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1576 __FUNCTION__,
1577 id[49], id[82], id[83], id[84],
1578 id[85], id[86], id[87], id[88]);
1579
1580 /* initialize to-be-configured parameters */
1581 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1582 dev->max_sectors = 0;
1583 dev->cdb_len = 0;
1584 dev->n_sectors = 0;
1585 dev->cylinders = 0;
1586 dev->heads = 0;
1587 dev->sectors = 0;
1588
1589 /*
1590 * common ATA, ATAPI feature tests
1591 */
1592
1593 /* find max transfer mode; for printk only */
1594 xfer_mask = ata_id_xfermask(id);
1595
1596 if (ata_msg_probe(ap))
1597 ata_dump_id(id);
1598
1599 /* ATA-specific feature tests */
1600 if (dev->class == ATA_DEV_ATA) {
1601 if (ata_id_is_cfa(id)) {
1602 if (id[162] & 1) /* CPRM may make this media unusable */
1603 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1604 ap->id, dev->devno);
1605 snprintf(revbuf, 7, "CFA");
1606 }
1607 else
1608 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1609
1610 dev->n_sectors = ata_id_n_sectors(id);
1611
1612 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1613 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1614 sizeof(fwrevbuf));
1615
1616 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1617 sizeof(modelbuf));
1618
1619 if (dev->id[59] & 0x100)
1620 dev->multi_count = dev->id[59] & 0xff;
1621
1622 if (ata_id_has_lba(id)) {
1623 const char *lba_desc;
1624 char ncq_desc[20];
1625
1626 lba_desc = "LBA";
1627 dev->flags |= ATA_DFLAG_LBA;
1628 if (ata_id_has_lba48(id)) {
1629 dev->flags |= ATA_DFLAG_LBA48;
1630 lba_desc = "LBA48";
1631
1632 if (dev->n_sectors >= (1UL << 28) &&
1633 ata_id_has_flush_ext(id))
1634 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1635 }
1636
1637 /* config NCQ */
1638 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1639
1640 /* print device info to dmesg */
1641 if (ata_msg_drv(ap) && print_info) {
1642 ata_dev_printk(dev, KERN_INFO,
1643 "%s: %s, %s, max %s\n",
1644 revbuf, modelbuf, fwrevbuf,
1645 ata_mode_string(xfer_mask));
1646 ata_dev_printk(dev, KERN_INFO,
1647 "%Lu sectors, multi %u: %s %s\n",
1648 (unsigned long long)dev->n_sectors,
1649 dev->multi_count, lba_desc, ncq_desc);
1650 }
1651 } else {
1652 /* CHS */
1653
1654 /* Default translation */
1655 dev->cylinders = id[1];
1656 dev->heads = id[3];
1657 dev->sectors = id[6];
1658
1659 if (ata_id_current_chs_valid(id)) {
1660 /* Current CHS translation is valid. */
1661 dev->cylinders = id[54];
1662 dev->heads = id[55];
1663 dev->sectors = id[56];
1664 }
1665
1666 /* print device info to dmesg */
1667 if (ata_msg_drv(ap) && print_info) {
1668 ata_dev_printk(dev, KERN_INFO,
1669 "%s: %s, %s, max %s\n",
1670 revbuf, modelbuf, fwrevbuf,
1671 ata_mode_string(xfer_mask));
1672 ata_dev_printk(dev, KERN_INFO,
1673 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1674 (unsigned long long)dev->n_sectors,
1675 dev->multi_count, dev->cylinders,
1676 dev->heads, dev->sectors);
1677 }
1678 }
1679
1680 dev->cdb_len = 16;
1681 }
1682
1683 /* ATAPI-specific feature tests */
1684 else if (dev->class == ATA_DEV_ATAPI) {
1685 char *cdb_intr_string = "";
1686
1687 rc = atapi_cdb_len(id);
1688 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1689 if (ata_msg_warn(ap))
1690 ata_dev_printk(dev, KERN_WARNING,
1691 "unsupported CDB len\n");
1692 rc = -EINVAL;
1693 goto err_out_nosup;
1694 }
1695 dev->cdb_len = (unsigned int) rc;
1696
1697 if (ata_id_cdb_intr(dev->id)) {
1698 dev->flags |= ATA_DFLAG_CDB_INTR;
1699 cdb_intr_string = ", CDB intr";
1700 }
1701
1702 /* print device info to dmesg */
1703 if (ata_msg_drv(ap) && print_info)
1704 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1705 ata_mode_string(xfer_mask),
1706 cdb_intr_string);
1707 }
1708
1709 /* determine max_sectors */
1710 dev->max_sectors = ATA_MAX_SECTORS;
1711 if (dev->flags & ATA_DFLAG_LBA48)
1712 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1713
1714 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1715 /* Let the user know. We don't want to disallow opens for
1716 rescue purposes, or in case the vendor is just a blithering
1717 idiot */
1718 if (print_info) {
1719 ata_dev_printk(dev, KERN_WARNING,
1720 "Drive reports diagnostics failure. This may indicate a drive\n");
1721 ata_dev_printk(dev, KERN_WARNING,
1722 "fault or invalid emulation. Contact drive vendor for information.\n");
1723 }
1724 }
1725
1726 ata_set_port_max_cmd_len(ap);
1727
1728 /* limit bridge transfers to udma5, 200 sectors */
1729 if (ata_dev_knobble(dev)) {
1730 if (ata_msg_drv(ap) && print_info)
1731 ata_dev_printk(dev, KERN_INFO,
1732 "applying bridge limits\n");
1733 dev->udma_mask &= ATA_UDMA5;
1734 dev->max_sectors = ATA_MAX_SECTORS;
1735 }
1736
1737 if (ap->ops->dev_config)
1738 ap->ops->dev_config(ap, dev);
1739
1740 if (ata_msg_probe(ap))
1741 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1742 __FUNCTION__, ata_chk_status(ap));
1743 return 0;
1744
1745 err_out_nosup:
1746 if (ata_msg_probe(ap))
1747 ata_dev_printk(dev, KERN_DEBUG,
1748 "%s: EXIT, err\n", __FUNCTION__);
1749 return rc;
1750 }
1751
1752 /**
1753 * ata_bus_probe - Reset and probe ATA bus
1754 * @ap: Bus to probe
1755 *
1756 * Master ATA bus probing function. Initiates a hardware-dependent
1757 * bus reset, then attempts to identify any devices found on
1758 * the bus.
1759 *
1760 * LOCKING:
1761 * PCI/etc. bus probe sem.
1762 *
1763 * RETURNS:
1764 * Zero on success, negative errno otherwise.
1765 */
1766
1767 int ata_bus_probe(struct ata_port *ap)
1768 {
1769 unsigned int classes[ATA_MAX_DEVICES];
1770 int tries[ATA_MAX_DEVICES];
1771 int i, rc, down_xfermask;
1772 struct ata_device *dev;
1773
1774 ata_port_probe(ap);
1775
1776 for (i = 0; i < ATA_MAX_DEVICES; i++)
1777 tries[i] = ATA_PROBE_MAX_TRIES;
1778
1779 retry:
1780 down_xfermask = 0;
1781
1782 /* reset and determine device classes */
1783 ap->ops->phy_reset(ap);
1784
1785 /* retrieve and execute the ATA task file of _GTF */
1786 ata_acpi_exec_tfs(ap);
1787
1788 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1789 dev = &ap->device[i];
1790
1791 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1792 dev->class != ATA_DEV_UNKNOWN)
1793 classes[dev->devno] = dev->class;
1794 else
1795 classes[dev->devno] = ATA_DEV_NONE;
1796
1797 dev->class = ATA_DEV_UNKNOWN;
1798 }
1799
1800 ata_port_probe(ap);
1801
1802 /* after the reset the device state is PIO 0 and the controller
1803 state is undefined. Record the mode */
1804
1805 for (i = 0; i < ATA_MAX_DEVICES; i++)
1806 ap->device[i].pio_mode = XFER_PIO_0;
1807
1808 /* read IDENTIFY page and configure devices */
1809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1810 dev = &ap->device[i];
1811
1812 if (tries[i])
1813 dev->class = classes[i];
1814
1815 if (!ata_dev_enabled(dev))
1816 continue;
1817
1818 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1819 dev->id);
1820 if (rc)
1821 goto fail;
1822
1823 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1824 rc = ata_dev_configure(dev);
1825 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1826 if (rc)
1827 goto fail;
1828 }
1829
1830 /* configure transfer mode */
1831 rc = ata_set_mode(ap, &dev);
1832 if (rc) {
1833 down_xfermask = 1;
1834 goto fail;
1835 }
1836
1837 for (i = 0; i < ATA_MAX_DEVICES; i++)
1838 if (ata_dev_enabled(&ap->device[i]))
1839 return 0;
1840
1841 /* no device present, disable port */
1842 ata_port_disable(ap);
1843 ap->ops->port_disable(ap);
1844 return -ENODEV;
1845
1846 fail:
1847 switch (rc) {
1848 case -EINVAL:
1849 case -ENODEV:
1850 tries[dev->devno] = 0;
1851 break;
1852 case -EIO:
1853 sata_down_spd_limit(ap);
1854 /* fall through */
1855 default:
1856 tries[dev->devno]--;
1857 if (down_xfermask &&
1858 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1859 tries[dev->devno] = 0;
1860 }
1861
1862 if (!tries[dev->devno]) {
1863 ata_down_xfermask_limit(dev, 1);
1864 ata_dev_disable(dev);
1865 }
1866
1867 goto retry;
1868 }
1869
1870 /**
1871 * ata_port_probe - Mark port as enabled
1872 * @ap: Port for which we indicate enablement
1873 *
1874 * Modify @ap data structure such that the system
1875 * thinks that the entire port is enabled.
1876 *
1877 * LOCKING: host lock, or some other form of
1878 * serialization.
1879 */
1880
1881 void ata_port_probe(struct ata_port *ap)
1882 {
1883 ap->flags &= ~ATA_FLAG_DISABLED;
1884 }
1885
1886 /**
1887 * sata_print_link_status - Print SATA link status
1888 * @ap: SATA port to printk link status about
1889 *
1890 * This function prints link speed and status of a SATA link.
1891 *
1892 * LOCKING:
1893 * None.
1894 */
1895 static void sata_print_link_status(struct ata_port *ap)
1896 {
1897 u32 sstatus, scontrol, tmp;
1898
1899 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1900 return;
1901 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1902
1903 if (ata_port_online(ap)) {
1904 tmp = (sstatus >> 4) & 0xf;
1905 ata_port_printk(ap, KERN_INFO,
1906 "SATA link up %s (SStatus %X SControl %X)\n",
1907 sata_spd_string(tmp), sstatus, scontrol);
1908 } else {
1909 ata_port_printk(ap, KERN_INFO,
1910 "SATA link down (SStatus %X SControl %X)\n",
1911 sstatus, scontrol);
1912 }
1913 }
1914
1915 /**
1916 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1917 * @ap: SATA port associated with target SATA PHY.
1918 *
1919 * This function issues commands to standard SATA Sxxx
1920 * PHY registers, to wake up the phy (and device), and
1921 * clear any reset condition.
1922 *
1923 * LOCKING:
1924 * PCI/etc. bus probe sem.
1925 *
1926 */
1927 void __sata_phy_reset(struct ata_port *ap)
1928 {
1929 u32 sstatus;
1930 unsigned long timeout = jiffies + (HZ * 5);
1931
1932 if (ap->flags & ATA_FLAG_SATA_RESET) {
1933 /* issue phy wake/reset */
1934 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1935 /* Couldn't find anything in SATA I/II specs, but
1936 * AHCI-1.1 10.4.2 says at least 1 ms. */
1937 mdelay(1);
1938 }
1939 /* phy wake/clear reset */
1940 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1941
1942 /* wait for phy to become ready, if necessary */
1943 do {
1944 msleep(200);
1945 sata_scr_read(ap, SCR_STATUS, &sstatus);
1946 if ((sstatus & 0xf) != 1)
1947 break;
1948 } while (time_before(jiffies, timeout));
1949
1950 /* print link status */
1951 sata_print_link_status(ap);
1952
1953 /* TODO: phy layer with polling, timeouts, etc. */
1954 if (!ata_port_offline(ap))
1955 ata_port_probe(ap);
1956 else
1957 ata_port_disable(ap);
1958
1959 if (ap->flags & ATA_FLAG_DISABLED)
1960 return;
1961
1962 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1963 ata_port_disable(ap);
1964 return;
1965 }
1966
1967 ap->cbl = ATA_CBL_SATA;
1968 }
1969
1970 /**
1971 * sata_phy_reset - Reset SATA bus.
1972 * @ap: SATA port associated with target SATA PHY.
1973 *
1974 * This function resets the SATA bus, and then probes
1975 * the bus for devices.
1976 *
1977 * LOCKING:
1978 * PCI/etc. bus probe sem.
1979 *
1980 */
1981 void sata_phy_reset(struct ata_port *ap)
1982 {
1983 __sata_phy_reset(ap);
1984 if (ap->flags & ATA_FLAG_DISABLED)
1985 return;
1986 ata_bus_reset(ap);
1987 }
1988
1989 /**
1990 * ata_dev_pair - return other device on cable
1991 * @adev: device
1992 *
1993 * Obtain the other device on the same cable, or if none is
1994 * present NULL is returned
1995 */
1996
1997 struct ata_device *ata_dev_pair(struct ata_device *adev)
1998 {
1999 struct ata_port *ap = adev->ap;
2000 struct ata_device *pair = &ap->device[1 - adev->devno];
2001 if (!ata_dev_enabled(pair))
2002 return NULL;
2003 return pair;
2004 }
2005
2006 /**
2007 * ata_port_disable - Disable port.
2008 * @ap: Port to be disabled.
2009 *
2010 * Modify @ap data structure such that the system
2011 * thinks that the entire port is disabled, and should
2012 * never attempt to probe or communicate with devices
2013 * on this port.
2014 *
2015 * LOCKING: host lock, or some other form of
2016 * serialization.
2017 */
2018
2019 void ata_port_disable(struct ata_port *ap)
2020 {
2021 ap->device[0].class = ATA_DEV_NONE;
2022 ap->device[1].class = ATA_DEV_NONE;
2023 ap->flags |= ATA_FLAG_DISABLED;
2024 }
2025
2026 /**
2027 * sata_down_spd_limit - adjust SATA spd limit downward
2028 * @ap: Port to adjust SATA spd limit for
2029 *
2030 * Adjust SATA spd limit of @ap downward. Note that this
2031 * function only adjusts the limit. The change must be applied
2032 * using sata_set_spd().
2033 *
2034 * LOCKING:
2035 * Inherited from caller.
2036 *
2037 * RETURNS:
2038 * 0 on success, negative errno on failure
2039 */
2040 int sata_down_spd_limit(struct ata_port *ap)
2041 {
2042 u32 sstatus, spd, mask;
2043 int rc, highbit;
2044
2045 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2046 if (rc)
2047 return rc;
2048
2049 mask = ap->sata_spd_limit;
2050 if (mask <= 1)
2051 return -EINVAL;
2052 highbit = fls(mask) - 1;
2053 mask &= ~(1 << highbit);
2054
2055 spd = (sstatus >> 4) & 0xf;
2056 if (spd <= 1)
2057 return -EINVAL;
2058 spd--;
2059 mask &= (1 << spd) - 1;
2060 if (!mask)
2061 return -EINVAL;
2062
2063 ap->sata_spd_limit = mask;
2064
2065 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2066 sata_spd_string(fls(mask)));
2067
2068 return 0;
2069 }
2070
2071 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2072 {
2073 u32 spd, limit;
2074
2075 if (ap->sata_spd_limit == UINT_MAX)
2076 limit = 0;
2077 else
2078 limit = fls(ap->sata_spd_limit);
2079
2080 spd = (*scontrol >> 4) & 0xf;
2081 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2082
2083 return spd != limit;
2084 }
2085
2086 /**
2087 * sata_set_spd_needed - is SATA spd configuration needed
2088 * @ap: Port in question
2089 *
2090 * Test whether the spd limit in SControl matches
2091 * @ap->sata_spd_limit. This function is used to determine
2092 * whether hardreset is necessary to apply SATA spd
2093 * configuration.
2094 *
2095 * LOCKING:
2096 * Inherited from caller.
2097 *
2098 * RETURNS:
2099 * 1 if SATA spd configuration is needed, 0 otherwise.
2100 */
2101 int sata_set_spd_needed(struct ata_port *ap)
2102 {
2103 u32 scontrol;
2104
2105 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2106 return 0;
2107
2108 return __sata_set_spd_needed(ap, &scontrol);
2109 }
2110
2111 /**
2112 * sata_set_spd - set SATA spd according to spd limit
2113 * @ap: Port to set SATA spd for
2114 *
2115 * Set SATA spd of @ap according to sata_spd_limit.
2116 *
2117 * LOCKING:
2118 * Inherited from caller.
2119 *
2120 * RETURNS:
2121 * 0 if spd doesn't need to be changed, 1 if spd has been
2122 * changed. Negative errno if SCR registers are inaccessible.
2123 */
2124 int sata_set_spd(struct ata_port *ap)
2125 {
2126 u32 scontrol;
2127 int rc;
2128
2129 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2130 return rc;
2131
2132 if (!__sata_set_spd_needed(ap, &scontrol))
2133 return 0;
2134
2135 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2136 return rc;
2137
2138 return 1;
2139 }
2140
2141 /*
2142 * This mode timing computation functionality is ported over from
2143 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2144 */
2145 /*
2146 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2147 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2148 * for UDMA6, which is currently supported only by Maxtor drives.
2149 *
2150 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2151 */
2152
2153 static const struct ata_timing ata_timing[] = {
2154
2155 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2156 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2157 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2158 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2159
2160 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2161 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2162 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2163 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2164 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2165
2166 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2167
2168 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2169 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2170 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2171
2172 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2173 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2174 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2175
2176 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2177 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2178 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2179 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2180
2181 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2182 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2183 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2184
2185 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2186
2187 { 0xFF }
2188 };
2189
2190 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2191 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2192
2193 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2194 {
2195 q->setup = EZ(t->setup * 1000, T);
2196 q->act8b = EZ(t->act8b * 1000, T);
2197 q->rec8b = EZ(t->rec8b * 1000, T);
2198 q->cyc8b = EZ(t->cyc8b * 1000, T);
2199 q->active = EZ(t->active * 1000, T);
2200 q->recover = EZ(t->recover * 1000, T);
2201 q->cycle = EZ(t->cycle * 1000, T);
2202 q->udma = EZ(t->udma * 1000, UT);
2203 }
2204
2205 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2206 struct ata_timing *m, unsigned int what)
2207 {
2208 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2209 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2210 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2211 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2212 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2213 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2214 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2215 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2216 }
2217
2218 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2219 {
2220 const struct ata_timing *t;
2221
2222 for (t = ata_timing; t->mode != speed; t++)
2223 if (t->mode == 0xFF)
2224 return NULL;
2225 return t;
2226 }
2227
2228 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2229 struct ata_timing *t, int T, int UT)
2230 {
2231 const struct ata_timing *s;
2232 struct ata_timing p;
2233
2234 /*
2235 * Find the mode.
2236 */
2237
2238 if (!(s = ata_timing_find_mode(speed)))
2239 return -EINVAL;
2240
2241 memcpy(t, s, sizeof(*s));
2242
2243 /*
2244 * If the drive is an EIDE drive, it can tell us it needs extended
2245 * PIO/MW_DMA cycle timing.
2246 */
2247
2248 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2249 memset(&p, 0, sizeof(p));
2250 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2251 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2252 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2253 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2254 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2255 }
2256 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2257 }
2258
2259 /*
2260 * Convert the timing to bus clock counts.
2261 */
2262
2263 ata_timing_quantize(t, t, T, UT);
2264
2265 /*
2266 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2267 * S.M.A.R.T * and some other commands. We have to ensure that the
2268 * DMA cycle timing is slower/equal than the fastest PIO timing.
2269 */
2270
2271 if (speed > XFER_PIO_6) {
2272 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2273 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2274 }
2275
2276 /*
2277 * Lengthen active & recovery time so that cycle time is correct.
2278 */
2279
2280 if (t->act8b + t->rec8b < t->cyc8b) {
2281 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2282 t->rec8b = t->cyc8b - t->act8b;
2283 }
2284
2285 if (t->active + t->recover < t->cycle) {
2286 t->active += (t->cycle - (t->active + t->recover)) / 2;
2287 t->recover = t->cycle - t->active;
2288 }
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * ata_down_xfermask_limit - adjust dev xfer masks downward
2295 * @dev: Device to adjust xfer masks
2296 * @force_pio0: Force PIO0
2297 *
2298 * Adjust xfer masks of @dev downward. Note that this function
2299 * does not apply the change. Invoking ata_set_mode() afterwards
2300 * will apply the limit.
2301 *
2302 * LOCKING:
2303 * Inherited from caller.
2304 *
2305 * RETURNS:
2306 * 0 on success, negative errno on failure
2307 */
2308 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2309 {
2310 unsigned long xfer_mask;
2311 int highbit;
2312
2313 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2314 dev->udma_mask);
2315
2316 if (!xfer_mask)
2317 goto fail;
2318 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2319 if (xfer_mask & ATA_MASK_UDMA)
2320 xfer_mask &= ~ATA_MASK_MWDMA;
2321
2322 highbit = fls(xfer_mask) - 1;
2323 xfer_mask &= ~(1 << highbit);
2324 if (force_pio0)
2325 xfer_mask &= 1 << ATA_SHIFT_PIO;
2326 if (!xfer_mask)
2327 goto fail;
2328
2329 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2330 &dev->udma_mask);
2331
2332 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2333 ata_mode_string(xfer_mask));
2334
2335 return 0;
2336
2337 fail:
2338 return -EINVAL;
2339 }
2340
2341 static int ata_dev_set_mode(struct ata_device *dev)
2342 {
2343 struct ata_eh_context *ehc = &dev->ap->eh_context;
2344 unsigned int err_mask;
2345 int rc;
2346
2347 dev->flags &= ~ATA_DFLAG_PIO;
2348 if (dev->xfer_shift == ATA_SHIFT_PIO)
2349 dev->flags |= ATA_DFLAG_PIO;
2350
2351 err_mask = ata_dev_set_xfermode(dev);
2352 /* Old CFA may refuse this command, which is just fine */
2353 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2354 err_mask &= ~AC_ERR_DEV;
2355
2356 if (err_mask) {
2357 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2358 "(err_mask=0x%x)\n", err_mask);
2359 return -EIO;
2360 }
2361
2362 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2363 rc = ata_dev_revalidate(dev, 0);
2364 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2365 if (rc)
2366 return rc;
2367
2368 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2369 dev->xfer_shift, (int)dev->xfer_mode);
2370
2371 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2372 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2373 return 0;
2374 }
2375
2376 /**
2377 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2378 * @ap: port on which timings will be programmed
2379 * @r_failed_dev: out paramter for failed device
2380 *
2381 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2382 * ata_set_mode() fails, pointer to the failing device is
2383 * returned in @r_failed_dev.
2384 *
2385 * LOCKING:
2386 * PCI/etc. bus probe sem.
2387 *
2388 * RETURNS:
2389 * 0 on success, negative errno otherwise
2390 */
2391 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2392 {
2393 struct ata_device *dev;
2394 int i, rc = 0, used_dma = 0, found = 0;
2395
2396 /* has private set_mode? */
2397 if (ap->ops->set_mode)
2398 return ap->ops->set_mode(ap, r_failed_dev);
2399
2400 /* step 1: calculate xfer_mask */
2401 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2402 unsigned int pio_mask, dma_mask;
2403
2404 dev = &ap->device[i];
2405
2406 if (!ata_dev_enabled(dev))
2407 continue;
2408
2409 ata_dev_xfermask(dev);
2410
2411 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2412 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2413 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2414 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2415
2416 found = 1;
2417 if (dev->dma_mode)
2418 used_dma = 1;
2419 }
2420 if (!found)
2421 goto out;
2422
2423 /* step 2: always set host PIO timings */
2424 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2425 dev = &ap->device[i];
2426 if (!ata_dev_enabled(dev))
2427 continue;
2428
2429 if (!dev->pio_mode) {
2430 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2431 rc = -EINVAL;
2432 goto out;
2433 }
2434
2435 dev->xfer_mode = dev->pio_mode;
2436 dev->xfer_shift = ATA_SHIFT_PIO;
2437 if (ap->ops->set_piomode)
2438 ap->ops->set_piomode(ap, dev);
2439 }
2440
2441 /* step 3: set host DMA timings */
2442 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2443 dev = &ap->device[i];
2444
2445 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2446 continue;
2447
2448 dev->xfer_mode = dev->dma_mode;
2449 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2450 if (ap->ops->set_dmamode)
2451 ap->ops->set_dmamode(ap, dev);
2452 }
2453
2454 /* step 4: update devices' xfer mode */
2455 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2456 dev = &ap->device[i];
2457
2458 /* don't update suspended devices' xfer mode */
2459 if (!ata_dev_ready(dev))
2460 continue;
2461
2462 rc = ata_dev_set_mode(dev);
2463 if (rc)
2464 goto out;
2465 }
2466
2467 /* Record simplex status. If we selected DMA then the other
2468 * host channels are not permitted to do so.
2469 */
2470 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2471 ap->host->simplex_claimed = 1;
2472
2473 /* step5: chip specific finalisation */
2474 if (ap->ops->post_set_mode)
2475 ap->ops->post_set_mode(ap);
2476
2477 out:
2478 if (rc)
2479 *r_failed_dev = dev;
2480 return rc;
2481 }
2482
2483 /**
2484 * ata_tf_to_host - issue ATA taskfile to host controller
2485 * @ap: port to which command is being issued
2486 * @tf: ATA taskfile register set
2487 *
2488 * Issues ATA taskfile register set to ATA host controller,
2489 * with proper synchronization with interrupt handler and
2490 * other threads.
2491 *
2492 * LOCKING:
2493 * spin_lock_irqsave(host lock)
2494 */
2495
2496 static inline void ata_tf_to_host(struct ata_port *ap,
2497 const struct ata_taskfile *tf)
2498 {
2499 ap->ops->tf_load(ap, tf);
2500 ap->ops->exec_command(ap, tf);
2501 }
2502
2503 /**
2504 * ata_busy_sleep - sleep until BSY clears, or timeout
2505 * @ap: port containing status register to be polled
2506 * @tmout_pat: impatience timeout
2507 * @tmout: overall timeout
2508 *
2509 * Sleep until ATA Status register bit BSY clears,
2510 * or a timeout occurs.
2511 *
2512 * LOCKING:
2513 * Kernel thread context (may sleep).
2514 *
2515 * RETURNS:
2516 * 0 on success, -errno otherwise.
2517 */
2518 int ata_busy_sleep(struct ata_port *ap,
2519 unsigned long tmout_pat, unsigned long tmout)
2520 {
2521 unsigned long timer_start, timeout;
2522 u8 status;
2523
2524 status = ata_busy_wait(ap, ATA_BUSY, 300);
2525 timer_start = jiffies;
2526 timeout = timer_start + tmout_pat;
2527 while (status != 0xff && (status & ATA_BUSY) &&
2528 time_before(jiffies, timeout)) {
2529 msleep(50);
2530 status = ata_busy_wait(ap, ATA_BUSY, 3);
2531 }
2532
2533 if (status != 0xff && (status & ATA_BUSY))
2534 ata_port_printk(ap, KERN_WARNING,
2535 "port is slow to respond, please be patient "
2536 "(Status 0x%x)\n", status);
2537
2538 timeout = timer_start + tmout;
2539 while (status != 0xff && (status & ATA_BUSY) &&
2540 time_before(jiffies, timeout)) {
2541 msleep(50);
2542 status = ata_chk_status(ap);
2543 }
2544
2545 if (status == 0xff)
2546 return -ENODEV;
2547
2548 if (status & ATA_BUSY) {
2549 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2550 "(%lu secs, Status 0x%x)\n",
2551 tmout / HZ, status);
2552 return -EBUSY;
2553 }
2554
2555 return 0;
2556 }
2557
2558 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2559 {
2560 struct ata_ioports *ioaddr = &ap->ioaddr;
2561 unsigned int dev0 = devmask & (1 << 0);
2562 unsigned int dev1 = devmask & (1 << 1);
2563 unsigned long timeout;
2564
2565 /* if device 0 was found in ata_devchk, wait for its
2566 * BSY bit to clear
2567 */
2568 if (dev0)
2569 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2570
2571 /* if device 1 was found in ata_devchk, wait for
2572 * register access, then wait for BSY to clear
2573 */
2574 timeout = jiffies + ATA_TMOUT_BOOT;
2575 while (dev1) {
2576 u8 nsect, lbal;
2577
2578 ap->ops->dev_select(ap, 1);
2579 nsect = ioread8(ioaddr->nsect_addr);
2580 lbal = ioread8(ioaddr->lbal_addr);
2581 if ((nsect == 1) && (lbal == 1))
2582 break;
2583 if (time_after(jiffies, timeout)) {
2584 dev1 = 0;
2585 break;
2586 }
2587 msleep(50); /* give drive a breather */
2588 }
2589 if (dev1)
2590 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2591
2592 /* is all this really necessary? */
2593 ap->ops->dev_select(ap, 0);
2594 if (dev1)
2595 ap->ops->dev_select(ap, 1);
2596 if (dev0)
2597 ap->ops->dev_select(ap, 0);
2598 }
2599
2600 static unsigned int ata_bus_softreset(struct ata_port *ap,
2601 unsigned int devmask)
2602 {
2603 struct ata_ioports *ioaddr = &ap->ioaddr;
2604
2605 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2606
2607 /* software reset. causes dev0 to be selected */
2608 iowrite8(ap->ctl, ioaddr->ctl_addr);
2609 udelay(20); /* FIXME: flush */
2610 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2611 udelay(20); /* FIXME: flush */
2612 iowrite8(ap->ctl, ioaddr->ctl_addr);
2613
2614 /* spec mandates ">= 2ms" before checking status.
2615 * We wait 150ms, because that was the magic delay used for
2616 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2617 * between when the ATA command register is written, and then
2618 * status is checked. Because waiting for "a while" before
2619 * checking status is fine, post SRST, we perform this magic
2620 * delay here as well.
2621 *
2622 * Old drivers/ide uses the 2mS rule and then waits for ready
2623 */
2624 msleep(150);
2625
2626 /* Before we perform post reset processing we want to see if
2627 * the bus shows 0xFF because the odd clown forgets the D7
2628 * pulldown resistor.
2629 */
2630 if (ata_check_status(ap) == 0xFF)
2631 return 0;
2632
2633 ata_bus_post_reset(ap, devmask);
2634
2635 return 0;
2636 }
2637
2638 /**
2639 * ata_bus_reset - reset host port and associated ATA channel
2640 * @ap: port to reset
2641 *
2642 * This is typically the first time we actually start issuing
2643 * commands to the ATA channel. We wait for BSY to clear, then
2644 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2645 * result. Determine what devices, if any, are on the channel
2646 * by looking at the device 0/1 error register. Look at the signature
2647 * stored in each device's taskfile registers, to determine if
2648 * the device is ATA or ATAPI.
2649 *
2650 * LOCKING:
2651 * PCI/etc. bus probe sem.
2652 * Obtains host lock.
2653 *
2654 * SIDE EFFECTS:
2655 * Sets ATA_FLAG_DISABLED if bus reset fails.
2656 */
2657
2658 void ata_bus_reset(struct ata_port *ap)
2659 {
2660 struct ata_ioports *ioaddr = &ap->ioaddr;
2661 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2662 u8 err;
2663 unsigned int dev0, dev1 = 0, devmask = 0;
2664
2665 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2666
2667 /* determine if device 0/1 are present */
2668 if (ap->flags & ATA_FLAG_SATA_RESET)
2669 dev0 = 1;
2670 else {
2671 dev0 = ata_devchk(ap, 0);
2672 if (slave_possible)
2673 dev1 = ata_devchk(ap, 1);
2674 }
2675
2676 if (dev0)
2677 devmask |= (1 << 0);
2678 if (dev1)
2679 devmask |= (1 << 1);
2680
2681 /* select device 0 again */
2682 ap->ops->dev_select(ap, 0);
2683
2684 /* issue bus reset */
2685 if (ap->flags & ATA_FLAG_SRST)
2686 if (ata_bus_softreset(ap, devmask))
2687 goto err_out;
2688
2689 /*
2690 * determine by signature whether we have ATA or ATAPI devices
2691 */
2692 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2693 if ((slave_possible) && (err != 0x81))
2694 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2695
2696 /* re-enable interrupts */
2697 ap->ops->irq_on(ap);
2698
2699 /* is double-select really necessary? */
2700 if (ap->device[1].class != ATA_DEV_NONE)
2701 ap->ops->dev_select(ap, 1);
2702 if (ap->device[0].class != ATA_DEV_NONE)
2703 ap->ops->dev_select(ap, 0);
2704
2705 /* if no devices were detected, disable this port */
2706 if ((ap->device[0].class == ATA_DEV_NONE) &&
2707 (ap->device[1].class == ATA_DEV_NONE))
2708 goto err_out;
2709
2710 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2711 /* set up device control for ATA_FLAG_SATA_RESET */
2712 iowrite8(ap->ctl, ioaddr->ctl_addr);
2713 }
2714
2715 DPRINTK("EXIT\n");
2716 return;
2717
2718 err_out:
2719 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2720 ap->ops->port_disable(ap);
2721
2722 DPRINTK("EXIT\n");
2723 }
2724
2725 /**
2726 * sata_phy_debounce - debounce SATA phy status
2727 * @ap: ATA port to debounce SATA phy status for
2728 * @params: timing parameters { interval, duratinon, timeout } in msec
2729 *
2730 * Make sure SStatus of @ap reaches stable state, determined by
2731 * holding the same value where DET is not 1 for @duration polled
2732 * every @interval, before @timeout. Timeout constraints the
2733 * beginning of the stable state. Because, after hot unplugging,
2734 * DET gets stuck at 1 on some controllers, this functions waits
2735 * until timeout then returns 0 if DET is stable at 1.
2736 *
2737 * LOCKING:
2738 * Kernel thread context (may sleep)
2739 *
2740 * RETURNS:
2741 * 0 on success, -errno on failure.
2742 */
2743 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2744 {
2745 unsigned long interval_msec = params[0];
2746 unsigned long duration = params[1] * HZ / 1000;
2747 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2748 unsigned long last_jiffies;
2749 u32 last, cur;
2750 int rc;
2751
2752 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2753 return rc;
2754 cur &= 0xf;
2755
2756 last = cur;
2757 last_jiffies = jiffies;
2758
2759 while (1) {
2760 msleep(interval_msec);
2761 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2762 return rc;
2763 cur &= 0xf;
2764
2765 /* DET stable? */
2766 if (cur == last) {
2767 if (cur == 1 && time_before(jiffies, timeout))
2768 continue;
2769 if (time_after(jiffies, last_jiffies + duration))
2770 return 0;
2771 continue;
2772 }
2773
2774 /* unstable, start over */
2775 last = cur;
2776 last_jiffies = jiffies;
2777
2778 /* check timeout */
2779 if (time_after(jiffies, timeout))
2780 return -EBUSY;
2781 }
2782 }
2783
2784 /**
2785 * sata_phy_resume - resume SATA phy
2786 * @ap: ATA port to resume SATA phy for
2787 * @params: timing parameters { interval, duratinon, timeout } in msec
2788 *
2789 * Resume SATA phy of @ap and debounce it.
2790 *
2791 * LOCKING:
2792 * Kernel thread context (may sleep)
2793 *
2794 * RETURNS:
2795 * 0 on success, -errno on failure.
2796 */
2797 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2798 {
2799 u32 scontrol;
2800 int rc;
2801
2802 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2803 return rc;
2804
2805 scontrol = (scontrol & 0x0f0) | 0x300;
2806
2807 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2808 return rc;
2809
2810 /* Some PHYs react badly if SStatus is pounded immediately
2811 * after resuming. Delay 200ms before debouncing.
2812 */
2813 msleep(200);
2814
2815 return sata_phy_debounce(ap, params);
2816 }
2817
2818 static void ata_wait_spinup(struct ata_port *ap)
2819 {
2820 struct ata_eh_context *ehc = &ap->eh_context;
2821 unsigned long end, secs;
2822 int rc;
2823
2824 /* first, debounce phy if SATA */
2825 if (ap->cbl == ATA_CBL_SATA) {
2826 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2827
2828 /* if debounced successfully and offline, no need to wait */
2829 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2830 return;
2831 }
2832
2833 /* okay, let's give the drive time to spin up */
2834 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2835 secs = ((end - jiffies) + HZ - 1) / HZ;
2836
2837 if (time_after(jiffies, end))
2838 return;
2839
2840 if (secs > 5)
2841 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2842 "(%lu secs)\n", secs);
2843
2844 schedule_timeout_uninterruptible(end - jiffies);
2845 }
2846
2847 /**
2848 * ata_std_prereset - prepare for reset
2849 * @ap: ATA port to be reset
2850 *
2851 * @ap is about to be reset. Initialize it.
2852 *
2853 * LOCKING:
2854 * Kernel thread context (may sleep)
2855 *
2856 * RETURNS:
2857 * 0 on success, -errno otherwise.
2858 */
2859 int ata_std_prereset(struct ata_port *ap)
2860 {
2861 struct ata_eh_context *ehc = &ap->eh_context;
2862 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2863 int rc;
2864
2865 /* handle link resume & hotplug spinup */
2866 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2867 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2868 ehc->i.action |= ATA_EH_HARDRESET;
2869
2870 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2871 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2872 ata_wait_spinup(ap);
2873
2874 /* if we're about to do hardreset, nothing more to do */
2875 if (ehc->i.action & ATA_EH_HARDRESET)
2876 return 0;
2877
2878 /* if SATA, resume phy */
2879 if (ap->cbl == ATA_CBL_SATA) {
2880 rc = sata_phy_resume(ap, timing);
2881 if (rc && rc != -EOPNOTSUPP) {
2882 /* phy resume failed */
2883 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2884 "link for reset (errno=%d)\n", rc);
2885 return rc;
2886 }
2887 }
2888
2889 /* Wait for !BSY if the controller can wait for the first D2H
2890 * Reg FIS and we don't know that no device is attached.
2891 */
2892 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2893 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2894
2895 return 0;
2896 }
2897
2898 /**
2899 * ata_std_softreset - reset host port via ATA SRST
2900 * @ap: port to reset
2901 * @classes: resulting classes of attached devices
2902 *
2903 * Reset host port using ATA SRST.
2904 *
2905 * LOCKING:
2906 * Kernel thread context (may sleep)
2907 *
2908 * RETURNS:
2909 * 0 on success, -errno otherwise.
2910 */
2911 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2912 {
2913 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2914 unsigned int devmask = 0, err_mask;
2915 u8 err;
2916
2917 DPRINTK("ENTER\n");
2918
2919 if (ata_port_offline(ap)) {
2920 classes[0] = ATA_DEV_NONE;
2921 goto out;
2922 }
2923
2924 /* determine if device 0/1 are present */
2925 if (ata_devchk(ap, 0))
2926 devmask |= (1 << 0);
2927 if (slave_possible && ata_devchk(ap, 1))
2928 devmask |= (1 << 1);
2929
2930 /* select device 0 again */
2931 ap->ops->dev_select(ap, 0);
2932
2933 /* issue bus reset */
2934 DPRINTK("about to softreset, devmask=%x\n", devmask);
2935 err_mask = ata_bus_softreset(ap, devmask);
2936 if (err_mask) {
2937 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2938 err_mask);
2939 return -EIO;
2940 }
2941
2942 /* determine by signature whether we have ATA or ATAPI devices */
2943 classes[0] = ata_dev_try_classify(ap, 0, &err);
2944 if (slave_possible && err != 0x81)
2945 classes[1] = ata_dev_try_classify(ap, 1, &err);
2946
2947 out:
2948 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2949 return 0;
2950 }
2951
2952 /**
2953 * sata_port_hardreset - reset port via SATA phy reset
2954 * @ap: port to reset
2955 * @timing: timing parameters { interval, duratinon, timeout } in msec
2956 *
2957 * SATA phy-reset host port using DET bits of SControl register.
2958 *
2959 * LOCKING:
2960 * Kernel thread context (may sleep)
2961 *
2962 * RETURNS:
2963 * 0 on success, -errno otherwise.
2964 */
2965 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2966 {
2967 u32 scontrol;
2968 int rc;
2969
2970 DPRINTK("ENTER\n");
2971
2972 if (sata_set_spd_needed(ap)) {
2973 /* SATA spec says nothing about how to reconfigure
2974 * spd. To be on the safe side, turn off phy during
2975 * reconfiguration. This works for at least ICH7 AHCI
2976 * and Sil3124.
2977 */
2978 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2979 goto out;
2980
2981 scontrol = (scontrol & 0x0f0) | 0x304;
2982
2983 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2984 goto out;
2985
2986 sata_set_spd(ap);
2987 }
2988
2989 /* issue phy wake/reset */
2990 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2991 goto out;
2992
2993 scontrol = (scontrol & 0x0f0) | 0x301;
2994
2995 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2996 goto out;
2997
2998 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2999 * 10.4.2 says at least 1 ms.
3000 */
3001 msleep(1);
3002
3003 /* bring phy back */
3004 rc = sata_phy_resume(ap, timing);
3005 out:
3006 DPRINTK("EXIT, rc=%d\n", rc);
3007 return rc;
3008 }
3009
3010 /**
3011 * sata_std_hardreset - reset host port via SATA phy reset
3012 * @ap: port to reset
3013 * @class: resulting class of attached device
3014 *
3015 * SATA phy-reset host port using DET bits of SControl register,
3016 * wait for !BSY and classify the attached device.
3017 *
3018 * LOCKING:
3019 * Kernel thread context (may sleep)
3020 *
3021 * RETURNS:
3022 * 0 on success, -errno otherwise.
3023 */
3024 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3025 {
3026 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3027 int rc;
3028
3029 DPRINTK("ENTER\n");
3030
3031 /* do hardreset */
3032 rc = sata_port_hardreset(ap, timing);
3033 if (rc) {
3034 ata_port_printk(ap, KERN_ERR,
3035 "COMRESET failed (errno=%d)\n", rc);
3036 return rc;
3037 }
3038
3039 /* TODO: phy layer with polling, timeouts, etc. */
3040 if (ata_port_offline(ap)) {
3041 *class = ATA_DEV_NONE;
3042 DPRINTK("EXIT, link offline\n");
3043 return 0;
3044 }
3045
3046 /* wait a while before checking status, see SRST for more info */
3047 msleep(150);
3048
3049 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3050 ata_port_printk(ap, KERN_ERR,
3051 "COMRESET failed (device not ready)\n");
3052 return -EIO;
3053 }
3054
3055 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3056
3057 *class = ata_dev_try_classify(ap, 0, NULL);
3058
3059 DPRINTK("EXIT, class=%u\n", *class);
3060 return 0;
3061 }
3062
3063 /**
3064 * ata_std_postreset - standard postreset callback
3065 * @ap: the target ata_port
3066 * @classes: classes of attached devices
3067 *
3068 * This function is invoked after a successful reset. Note that
3069 * the device might have been reset more than once using
3070 * different reset methods before postreset is invoked.
3071 *
3072 * LOCKING:
3073 * Kernel thread context (may sleep)
3074 */
3075 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3076 {
3077 u32 serror;
3078
3079 DPRINTK("ENTER\n");
3080
3081 /* print link status */
3082 sata_print_link_status(ap);
3083
3084 /* clear SError */
3085 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3086 sata_scr_write(ap, SCR_ERROR, serror);
3087
3088 /* re-enable interrupts */
3089 if (!ap->ops->error_handler)
3090 ap->ops->irq_on(ap);
3091
3092 /* is double-select really necessary? */
3093 if (classes[0] != ATA_DEV_NONE)
3094 ap->ops->dev_select(ap, 1);
3095 if (classes[1] != ATA_DEV_NONE)
3096 ap->ops->dev_select(ap, 0);
3097
3098 /* bail out if no device is present */
3099 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3100 DPRINTK("EXIT, no device\n");
3101 return;
3102 }
3103
3104 /* set up device control */
3105 if (ap->ioaddr.ctl_addr)
3106 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3107
3108 DPRINTK("EXIT\n");
3109 }
3110
3111 /**
3112 * ata_dev_same_device - Determine whether new ID matches configured device
3113 * @dev: device to compare against
3114 * @new_class: class of the new device
3115 * @new_id: IDENTIFY page of the new device
3116 *
3117 * Compare @new_class and @new_id against @dev and determine
3118 * whether @dev is the device indicated by @new_class and
3119 * @new_id.
3120 *
3121 * LOCKING:
3122 * None.
3123 *
3124 * RETURNS:
3125 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3126 */
3127 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3128 const u16 *new_id)
3129 {
3130 const u16 *old_id = dev->id;
3131 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3132 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3133 u64 new_n_sectors;
3134
3135 if (dev->class != new_class) {
3136 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3137 dev->class, new_class);
3138 return 0;
3139 }
3140
3141 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3142 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3143 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3144 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3145 new_n_sectors = ata_id_n_sectors(new_id);
3146
3147 if (strcmp(model[0], model[1])) {
3148 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3149 "'%s' != '%s'\n", model[0], model[1]);
3150 return 0;
3151 }
3152
3153 if (strcmp(serial[0], serial[1])) {
3154 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3155 "'%s' != '%s'\n", serial[0], serial[1]);
3156 return 0;
3157 }
3158
3159 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3160 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3161 "%llu != %llu\n",
3162 (unsigned long long)dev->n_sectors,
3163 (unsigned long long)new_n_sectors);
3164 return 0;
3165 }
3166
3167 return 1;
3168 }
3169
3170 /**
3171 * ata_dev_revalidate - Revalidate ATA device
3172 * @dev: device to revalidate
3173 * @readid_flags: read ID flags
3174 *
3175 * Re-read IDENTIFY page and make sure @dev is still attached to
3176 * the port.
3177 *
3178 * LOCKING:
3179 * Kernel thread context (may sleep)
3180 *
3181 * RETURNS:
3182 * 0 on success, negative errno otherwise
3183 */
3184 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3185 {
3186 unsigned int class = dev->class;
3187 u16 *id = (void *)dev->ap->sector_buf;
3188 int rc;
3189
3190 if (!ata_dev_enabled(dev)) {
3191 rc = -ENODEV;
3192 goto fail;
3193 }
3194
3195 /* read ID data */
3196 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3197 if (rc)
3198 goto fail;
3199
3200 /* is the device still there? */
3201 if (!ata_dev_same_device(dev, class, id)) {
3202 rc = -ENODEV;
3203 goto fail;
3204 }
3205
3206 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3207
3208 /* configure device according to the new ID */
3209 rc = ata_dev_configure(dev);
3210 if (rc == 0)
3211 return 0;
3212
3213 fail:
3214 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3215 return rc;
3216 }
3217
3218 struct ata_blacklist_entry {
3219 const char *model_num;
3220 const char *model_rev;
3221 unsigned long horkage;
3222 };
3223
3224 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3225 /* Devices with DMA related problems under Linux */
3226 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3227 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3228 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3229 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3230 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3231 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3232 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3233 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3234 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3235 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3236 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3237 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3238 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3239 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3240 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3241 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3242 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3243 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3244 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3245 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3246 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3247 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3248 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3249 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3250 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3251 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3252 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3253 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3254 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3255 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3256
3257 /* Devices we expect to fail diagnostics */
3258
3259 /* Devices where NCQ should be avoided */
3260 /* NCQ is slow */
3261 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3262
3263 /* Devices with NCQ limits */
3264
3265 /* End Marker */
3266 { }
3267 };
3268
3269 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3270 {
3271 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3272 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3273 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3274
3275 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3276 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3277
3278 while (ad->model_num) {
3279 if (!strcmp(ad->model_num, model_num)) {
3280 if (ad->model_rev == NULL)
3281 return ad->horkage;
3282 if (!strcmp(ad->model_rev, model_rev))
3283 return ad->horkage;
3284 }
3285 ad++;
3286 }
3287 return 0;
3288 }
3289
3290 static int ata_dma_blacklisted(const struct ata_device *dev)
3291 {
3292 /* We don't support polling DMA.
3293 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3294 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3295 */
3296 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3297 (dev->flags & ATA_DFLAG_CDB_INTR))
3298 return 1;
3299 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3300 }
3301
3302 /**
3303 * ata_dev_xfermask - Compute supported xfermask of the given device
3304 * @dev: Device to compute xfermask for
3305 *
3306 * Compute supported xfermask of @dev and store it in
3307 * dev->*_mask. This function is responsible for applying all
3308 * known limits including host controller limits, device
3309 * blacklist, etc...
3310 *
3311 * LOCKING:
3312 * None.
3313 */
3314 static void ata_dev_xfermask(struct ata_device *dev)
3315 {
3316 struct ata_port *ap = dev->ap;
3317 struct ata_host *host = ap->host;
3318 unsigned long xfer_mask;
3319
3320 /* controller modes available */
3321 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3322 ap->mwdma_mask, ap->udma_mask);
3323
3324 /* Apply cable rule here. Don't apply it early because when
3325 * we handle hot plug the cable type can itself change.
3326 */
3327 if (ap->cbl == ATA_CBL_PATA40)
3328 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3329 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3330 * host side are checked drive side as well. Cases where we know a
3331 * 40wire cable is used safely for 80 are not checked here.
3332 */
3333 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3334 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3335
3336
3337 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3338 dev->mwdma_mask, dev->udma_mask);
3339 xfer_mask &= ata_id_xfermask(dev->id);
3340
3341 /*
3342 * CFA Advanced TrueIDE timings are not allowed on a shared
3343 * cable
3344 */
3345 if (ata_dev_pair(dev)) {
3346 /* No PIO5 or PIO6 */
3347 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3348 /* No MWDMA3 or MWDMA 4 */
3349 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3350 }
3351
3352 if (ata_dma_blacklisted(dev)) {
3353 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3354 ata_dev_printk(dev, KERN_WARNING,
3355 "device is on DMA blacklist, disabling DMA\n");
3356 }
3357
3358 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3359 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3360 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3361 "other device, disabling DMA\n");
3362 }
3363
3364 if (ap->ops->mode_filter)
3365 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3366
3367 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3368 &dev->mwdma_mask, &dev->udma_mask);
3369 }
3370
3371 /**
3372 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3373 * @dev: Device to which command will be sent
3374 *
3375 * Issue SET FEATURES - XFER MODE command to device @dev
3376 * on port @ap.
3377 *
3378 * LOCKING:
3379 * PCI/etc. bus probe sem.
3380 *
3381 * RETURNS:
3382 * 0 on success, AC_ERR_* mask otherwise.
3383 */
3384
3385 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3386 {
3387 struct ata_taskfile tf;
3388 unsigned int err_mask;
3389
3390 /* set up set-features taskfile */
3391 DPRINTK("set features - xfer mode\n");
3392
3393 ata_tf_init(dev, &tf);
3394 tf.command = ATA_CMD_SET_FEATURES;
3395 tf.feature = SETFEATURES_XFER;
3396 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3397 tf.protocol = ATA_PROT_NODATA;
3398 tf.nsect = dev->xfer_mode;
3399
3400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3401
3402 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3403 return err_mask;
3404 }
3405
3406 /**
3407 * ata_dev_init_params - Issue INIT DEV PARAMS command
3408 * @dev: Device to which command will be sent
3409 * @heads: Number of heads (taskfile parameter)
3410 * @sectors: Number of sectors (taskfile parameter)
3411 *
3412 * LOCKING:
3413 * Kernel thread context (may sleep)
3414 *
3415 * RETURNS:
3416 * 0 on success, AC_ERR_* mask otherwise.
3417 */
3418 static unsigned int ata_dev_init_params(struct ata_device *dev,
3419 u16 heads, u16 sectors)
3420 {
3421 struct ata_taskfile tf;
3422 unsigned int err_mask;
3423
3424 /* Number of sectors per track 1-255. Number of heads 1-16 */
3425 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3426 return AC_ERR_INVALID;
3427
3428 /* set up init dev params taskfile */
3429 DPRINTK("init dev params \n");
3430
3431 ata_tf_init(dev, &tf);
3432 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3434 tf.protocol = ATA_PROT_NODATA;
3435 tf.nsect = sectors;
3436 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3437
3438 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3439
3440 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3441 return err_mask;
3442 }
3443
3444 /**
3445 * ata_sg_clean - Unmap DMA memory associated with command
3446 * @qc: Command containing DMA memory to be released
3447 *
3448 * Unmap all mapped DMA memory associated with this command.
3449 *
3450 * LOCKING:
3451 * spin_lock_irqsave(host lock)
3452 */
3453 void ata_sg_clean(struct ata_queued_cmd *qc)
3454 {
3455 struct ata_port *ap = qc->ap;
3456 struct scatterlist *sg = qc->__sg;
3457 int dir = qc->dma_dir;
3458 void *pad_buf = NULL;
3459
3460 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3461 WARN_ON(sg == NULL);
3462
3463 if (qc->flags & ATA_QCFLAG_SINGLE)
3464 WARN_ON(qc->n_elem > 1);
3465
3466 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3467
3468 /* if we padded the buffer out to 32-bit bound, and data
3469 * xfer direction is from-device, we must copy from the
3470 * pad buffer back into the supplied buffer
3471 */
3472 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3473 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3474
3475 if (qc->flags & ATA_QCFLAG_SG) {
3476 if (qc->n_elem)
3477 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3478 /* restore last sg */
3479 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3480 if (pad_buf) {
3481 struct scatterlist *psg = &qc->pad_sgent;
3482 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3483 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3484 kunmap_atomic(addr, KM_IRQ0);
3485 }
3486 } else {
3487 if (qc->n_elem)
3488 dma_unmap_single(ap->dev,
3489 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3490 dir);
3491 /* restore sg */
3492 sg->length += qc->pad_len;
3493 if (pad_buf)
3494 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3495 pad_buf, qc->pad_len);
3496 }
3497
3498 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3499 qc->__sg = NULL;
3500 }
3501
3502 /**
3503 * ata_fill_sg - Fill PCI IDE PRD table
3504 * @qc: Metadata associated with taskfile to be transferred
3505 *
3506 * Fill PCI IDE PRD (scatter-gather) table with segments
3507 * associated with the current disk command.
3508 *
3509 * LOCKING:
3510 * spin_lock_irqsave(host lock)
3511 *
3512 */
3513 static void ata_fill_sg(struct ata_queued_cmd *qc)
3514 {
3515 struct ata_port *ap = qc->ap;
3516 struct scatterlist *sg;
3517 unsigned int idx;
3518
3519 WARN_ON(qc->__sg == NULL);
3520 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3521
3522 idx = 0;
3523 ata_for_each_sg(sg, qc) {
3524 u32 addr, offset;
3525 u32 sg_len, len;
3526
3527 /* determine if physical DMA addr spans 64K boundary.
3528 * Note h/w doesn't support 64-bit, so we unconditionally
3529 * truncate dma_addr_t to u32.
3530 */
3531 addr = (u32) sg_dma_address(sg);
3532 sg_len = sg_dma_len(sg);
3533
3534 while (sg_len) {
3535 offset = addr & 0xffff;
3536 len = sg_len;
3537 if ((offset + sg_len) > 0x10000)
3538 len = 0x10000 - offset;
3539
3540 ap->prd[idx].addr = cpu_to_le32(addr);
3541 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3542 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3543
3544 idx++;
3545 sg_len -= len;
3546 addr += len;
3547 }
3548 }
3549
3550 if (idx)
3551 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3552 }
3553 /**
3554 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3555 * @qc: Metadata associated with taskfile to check
3556 *
3557 * Allow low-level driver to filter ATA PACKET commands, returning
3558 * a status indicating whether or not it is OK to use DMA for the
3559 * supplied PACKET command.
3560 *
3561 * LOCKING:
3562 * spin_lock_irqsave(host lock)
3563 *
3564 * RETURNS: 0 when ATAPI DMA can be used
3565 * nonzero otherwise
3566 */
3567 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3568 {
3569 struct ata_port *ap = qc->ap;
3570 int rc = 0; /* Assume ATAPI DMA is OK by default */
3571
3572 if (ap->ops->check_atapi_dma)
3573 rc = ap->ops->check_atapi_dma(qc);
3574
3575 return rc;
3576 }
3577 /**
3578 * ata_qc_prep - Prepare taskfile for submission
3579 * @qc: Metadata associated with taskfile to be prepared
3580 *
3581 * Prepare ATA taskfile for submission.
3582 *
3583 * LOCKING:
3584 * spin_lock_irqsave(host lock)
3585 */
3586 void ata_qc_prep(struct ata_queued_cmd *qc)
3587 {
3588 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3589 return;
3590
3591 ata_fill_sg(qc);
3592 }
3593
3594 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3595
3596 /**
3597 * ata_sg_init_one - Associate command with memory buffer
3598 * @qc: Command to be associated
3599 * @buf: Memory buffer
3600 * @buflen: Length of memory buffer, in bytes.
3601 *
3602 * Initialize the data-related elements of queued_cmd @qc
3603 * to point to a single memory buffer, @buf of byte length @buflen.
3604 *
3605 * LOCKING:
3606 * spin_lock_irqsave(host lock)
3607 */
3608
3609 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3610 {
3611 qc->flags |= ATA_QCFLAG_SINGLE;
3612
3613 qc->__sg = &qc->sgent;
3614 qc->n_elem = 1;
3615 qc->orig_n_elem = 1;
3616 qc->buf_virt = buf;
3617 qc->nbytes = buflen;
3618
3619 sg_init_one(&qc->sgent, buf, buflen);
3620 }
3621
3622 /**
3623 * ata_sg_init - Associate command with scatter-gather table.
3624 * @qc: Command to be associated
3625 * @sg: Scatter-gather table.
3626 * @n_elem: Number of elements in s/g table.
3627 *
3628 * Initialize the data-related elements of queued_cmd @qc
3629 * to point to a scatter-gather table @sg, containing @n_elem
3630 * elements.
3631 *
3632 * LOCKING:
3633 * spin_lock_irqsave(host lock)
3634 */
3635
3636 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3637 unsigned int n_elem)
3638 {
3639 qc->flags |= ATA_QCFLAG_SG;
3640 qc->__sg = sg;
3641 qc->n_elem = n_elem;
3642 qc->orig_n_elem = n_elem;
3643 }
3644
3645 /**
3646 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3647 * @qc: Command with memory buffer to be mapped.
3648 *
3649 * DMA-map the memory buffer associated with queued_cmd @qc.
3650 *
3651 * LOCKING:
3652 * spin_lock_irqsave(host lock)
3653 *
3654 * RETURNS:
3655 * Zero on success, negative on error.
3656 */
3657
3658 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3659 {
3660 struct ata_port *ap = qc->ap;
3661 int dir = qc->dma_dir;
3662 struct scatterlist *sg = qc->__sg;
3663 dma_addr_t dma_address;
3664 int trim_sg = 0;
3665
3666 /* we must lengthen transfers to end on a 32-bit boundary */
3667 qc->pad_len = sg->length & 3;
3668 if (qc->pad_len) {
3669 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3670 struct scatterlist *psg = &qc->pad_sgent;
3671
3672 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3673
3674 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3675
3676 if (qc->tf.flags & ATA_TFLAG_WRITE)
3677 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3678 qc->pad_len);
3679
3680 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3681 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3682 /* trim sg */
3683 sg->length -= qc->pad_len;
3684 if (sg->length == 0)
3685 trim_sg = 1;
3686
3687 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3688 sg->length, qc->pad_len);
3689 }
3690
3691 if (trim_sg) {
3692 qc->n_elem--;
3693 goto skip_map;
3694 }
3695
3696 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3697 sg->length, dir);
3698 if (dma_mapping_error(dma_address)) {
3699 /* restore sg */
3700 sg->length += qc->pad_len;
3701 return -1;
3702 }
3703
3704 sg_dma_address(sg) = dma_address;
3705 sg_dma_len(sg) = sg->length;
3706
3707 skip_map:
3708 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3709 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3710
3711 return 0;
3712 }
3713
3714 /**
3715 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3716 * @qc: Command with scatter-gather table to be mapped.
3717 *
3718 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3719 *
3720 * LOCKING:
3721 * spin_lock_irqsave(host lock)
3722 *
3723 * RETURNS:
3724 * Zero on success, negative on error.
3725 *
3726 */
3727
3728 static int ata_sg_setup(struct ata_queued_cmd *qc)
3729 {
3730 struct ata_port *ap = qc->ap;
3731 struct scatterlist *sg = qc->__sg;
3732 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3733 int n_elem, pre_n_elem, dir, trim_sg = 0;
3734
3735 VPRINTK("ENTER, ata%u\n", ap->id);
3736 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3737
3738 /* we must lengthen transfers to end on a 32-bit boundary */
3739 qc->pad_len = lsg->length & 3;
3740 if (qc->pad_len) {
3741 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3742 struct scatterlist *psg = &qc->pad_sgent;
3743 unsigned int offset;
3744
3745 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3746
3747 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3748
3749 /*
3750 * psg->page/offset are used to copy to-be-written
3751 * data in this function or read data in ata_sg_clean.
3752 */
3753 offset = lsg->offset + lsg->length - qc->pad_len;
3754 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3755 psg->offset = offset_in_page(offset);
3756
3757 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3758 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3759 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3760 kunmap_atomic(addr, KM_IRQ0);
3761 }
3762
3763 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3764 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3765 /* trim last sg */
3766 lsg->length -= qc->pad_len;
3767 if (lsg->length == 0)
3768 trim_sg = 1;
3769
3770 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3771 qc->n_elem - 1, lsg->length, qc->pad_len);
3772 }
3773
3774 pre_n_elem = qc->n_elem;
3775 if (trim_sg && pre_n_elem)
3776 pre_n_elem--;
3777
3778 if (!pre_n_elem) {
3779 n_elem = 0;
3780 goto skip_map;
3781 }
3782
3783 dir = qc->dma_dir;
3784 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3785 if (n_elem < 1) {
3786 /* restore last sg */
3787 lsg->length += qc->pad_len;
3788 return -1;
3789 }
3790
3791 DPRINTK("%d sg elements mapped\n", n_elem);
3792
3793 skip_map:
3794 qc->n_elem = n_elem;
3795
3796 return 0;
3797 }
3798
3799 /**
3800 * swap_buf_le16 - swap halves of 16-bit words in place
3801 * @buf: Buffer to swap
3802 * @buf_words: Number of 16-bit words in buffer.
3803 *
3804 * Swap halves of 16-bit words if needed to convert from
3805 * little-endian byte order to native cpu byte order, or
3806 * vice-versa.
3807 *
3808 * LOCKING:
3809 * Inherited from caller.
3810 */
3811 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3812 {
3813 #ifdef __BIG_ENDIAN
3814 unsigned int i;
3815
3816 for (i = 0; i < buf_words; i++)
3817 buf[i] = le16_to_cpu(buf[i]);
3818 #endif /* __BIG_ENDIAN */
3819 }
3820
3821 /**
3822 * ata_data_xfer - Transfer data by PIO
3823 * @adev: device to target
3824 * @buf: data buffer
3825 * @buflen: buffer length
3826 * @write_data: read/write
3827 *
3828 * Transfer data from/to the device data register by PIO.
3829 *
3830 * LOCKING:
3831 * Inherited from caller.
3832 */
3833 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3834 unsigned int buflen, int write_data)
3835 {
3836 struct ata_port *ap = adev->ap;
3837 unsigned int words = buflen >> 1;
3838
3839 /* Transfer multiple of 2 bytes */
3840 if (write_data)
3841 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3842 else
3843 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3844
3845 /* Transfer trailing 1 byte, if any. */
3846 if (unlikely(buflen & 0x01)) {
3847 u16 align_buf[1] = { 0 };
3848 unsigned char *trailing_buf = buf + buflen - 1;
3849
3850 if (write_data) {
3851 memcpy(align_buf, trailing_buf, 1);
3852 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3853 } else {
3854 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3855 memcpy(trailing_buf, align_buf, 1);
3856 }
3857 }
3858 }
3859
3860 /**
3861 * ata_data_xfer_noirq - Transfer data by PIO
3862 * @adev: device to target
3863 * @buf: data buffer
3864 * @buflen: buffer length
3865 * @write_data: read/write
3866 *
3867 * Transfer data from/to the device data register by PIO. Do the
3868 * transfer with interrupts disabled.
3869 *
3870 * LOCKING:
3871 * Inherited from caller.
3872 */
3873 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3874 unsigned int buflen, int write_data)
3875 {
3876 unsigned long flags;
3877 local_irq_save(flags);
3878 ata_data_xfer(adev, buf, buflen, write_data);
3879 local_irq_restore(flags);
3880 }
3881
3882
3883 /**
3884 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3885 * @qc: Command on going
3886 *
3887 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3888 *
3889 * LOCKING:
3890 * Inherited from caller.
3891 */
3892
3893 static void ata_pio_sector(struct ata_queued_cmd *qc)
3894 {
3895 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3896 struct scatterlist *sg = qc->__sg;
3897 struct ata_port *ap = qc->ap;
3898 struct page *page;
3899 unsigned int offset;
3900 unsigned char *buf;
3901
3902 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
3903 ap->hsm_task_state = HSM_ST_LAST;
3904
3905 page = sg[qc->cursg].page;
3906 offset = sg[qc->cursg].offset + qc->cursg_ofs;
3907
3908 /* get the current page and offset */
3909 page = nth_page(page, (offset >> PAGE_SHIFT));
3910 offset %= PAGE_SIZE;
3911
3912 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3913
3914 if (PageHighMem(page)) {
3915 unsigned long flags;
3916
3917 /* FIXME: use a bounce buffer */
3918 local_irq_save(flags);
3919 buf = kmap_atomic(page, KM_IRQ0);
3920
3921 /* do the actual data transfer */
3922 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3923
3924 kunmap_atomic(buf, KM_IRQ0);
3925 local_irq_restore(flags);
3926 } else {
3927 buf = page_address(page);
3928 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3929 }
3930
3931 qc->curbytes += ATA_SECT_SIZE;
3932 qc->cursg_ofs += ATA_SECT_SIZE;
3933
3934 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
3935 qc->cursg++;
3936 qc->cursg_ofs = 0;
3937 }
3938 }
3939
3940 /**
3941 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3942 * @qc: Command on going
3943 *
3944 * Transfer one or many ATA_SECT_SIZE of data from/to the
3945 * ATA device for the DRQ request.
3946 *
3947 * LOCKING:
3948 * Inherited from caller.
3949 */
3950
3951 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3952 {
3953 if (is_multi_taskfile(&qc->tf)) {
3954 /* READ/WRITE MULTIPLE */
3955 unsigned int nsect;
3956
3957 WARN_ON(qc->dev->multi_count == 0);
3958
3959 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
3960 qc->dev->multi_count);
3961 while (nsect--)
3962 ata_pio_sector(qc);
3963 } else
3964 ata_pio_sector(qc);
3965 }
3966
3967 /**
3968 * atapi_send_cdb - Write CDB bytes to hardware
3969 * @ap: Port to which ATAPI device is attached.
3970 * @qc: Taskfile currently active
3971 *
3972 * When device has indicated its readiness to accept
3973 * a CDB, this function is called. Send the CDB.
3974 *
3975 * LOCKING:
3976 * caller.
3977 */
3978
3979 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3980 {
3981 /* send SCSI cdb */
3982 DPRINTK("send cdb\n");
3983 WARN_ON(qc->dev->cdb_len < 12);
3984
3985 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3986 ata_altstatus(ap); /* flush */
3987
3988 switch (qc->tf.protocol) {
3989 case ATA_PROT_ATAPI:
3990 ap->hsm_task_state = HSM_ST;
3991 break;
3992 case ATA_PROT_ATAPI_NODATA:
3993 ap->hsm_task_state = HSM_ST_LAST;
3994 break;
3995 case ATA_PROT_ATAPI_DMA:
3996 ap->hsm_task_state = HSM_ST_LAST;
3997 /* initiate bmdma */
3998 ap->ops->bmdma_start(qc);
3999 break;
4000 }
4001 }
4002
4003 /**
4004 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4005 * @qc: Command on going
4006 * @bytes: number of bytes
4007 *
4008 * Transfer Transfer data from/to the ATAPI device.
4009 *
4010 * LOCKING:
4011 * Inherited from caller.
4012 *
4013 */
4014
4015 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4016 {
4017 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4018 struct scatterlist *sg = qc->__sg;
4019 struct ata_port *ap = qc->ap;
4020 struct page *page;
4021 unsigned char *buf;
4022 unsigned int offset, count;
4023
4024 if (qc->curbytes + bytes >= qc->nbytes)
4025 ap->hsm_task_state = HSM_ST_LAST;
4026
4027 next_sg:
4028 if (unlikely(qc->cursg >= qc->n_elem)) {
4029 /*
4030 * The end of qc->sg is reached and the device expects
4031 * more data to transfer. In order not to overrun qc->sg
4032 * and fulfill length specified in the byte count register,
4033 * - for read case, discard trailing data from the device
4034 * - for write case, padding zero data to the device
4035 */
4036 u16 pad_buf[1] = { 0 };
4037 unsigned int words = bytes >> 1;
4038 unsigned int i;
4039
4040 if (words) /* warning if bytes > 1 */
4041 ata_dev_printk(qc->dev, KERN_WARNING,
4042 "%u bytes trailing data\n", bytes);
4043
4044 for (i = 0; i < words; i++)
4045 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4046
4047 ap->hsm_task_state = HSM_ST_LAST;
4048 return;
4049 }
4050
4051 sg = &qc->__sg[qc->cursg];
4052
4053 page = sg->page;
4054 offset = sg->offset + qc->cursg_ofs;
4055
4056 /* get the current page and offset */
4057 page = nth_page(page, (offset >> PAGE_SHIFT));
4058 offset %= PAGE_SIZE;
4059
4060 /* don't overrun current sg */
4061 count = min(sg->length - qc->cursg_ofs, bytes);
4062
4063 /* don't cross page boundaries */
4064 count = min(count, (unsigned int)PAGE_SIZE - offset);
4065
4066 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4067
4068 if (PageHighMem(page)) {
4069 unsigned long flags;
4070
4071 /* FIXME: use bounce buffer */
4072 local_irq_save(flags);
4073 buf = kmap_atomic(page, KM_IRQ0);
4074
4075 /* do the actual data transfer */
4076 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4077
4078 kunmap_atomic(buf, KM_IRQ0);
4079 local_irq_restore(flags);
4080 } else {
4081 buf = page_address(page);
4082 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4083 }
4084
4085 bytes -= count;
4086 qc->curbytes += count;
4087 qc->cursg_ofs += count;
4088
4089 if (qc->cursg_ofs == sg->length) {
4090 qc->cursg++;
4091 qc->cursg_ofs = 0;
4092 }
4093
4094 if (bytes)
4095 goto next_sg;
4096 }
4097
4098 /**
4099 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4100 * @qc: Command on going
4101 *
4102 * Transfer Transfer data from/to the ATAPI device.
4103 *
4104 * LOCKING:
4105 * Inherited from caller.
4106 */
4107
4108 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4109 {
4110 struct ata_port *ap = qc->ap;
4111 struct ata_device *dev = qc->dev;
4112 unsigned int ireason, bc_lo, bc_hi, bytes;
4113 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4114
4115 /* Abuse qc->result_tf for temp storage of intermediate TF
4116 * here to save some kernel stack usage.
4117 * For normal completion, qc->result_tf is not relevant. For
4118 * error, qc->result_tf is later overwritten by ata_qc_complete().
4119 * So, the correctness of qc->result_tf is not affected.
4120 */
4121 ap->ops->tf_read(ap, &qc->result_tf);
4122 ireason = qc->result_tf.nsect;
4123 bc_lo = qc->result_tf.lbam;
4124 bc_hi = qc->result_tf.lbah;
4125 bytes = (bc_hi << 8) | bc_lo;
4126
4127 /* shall be cleared to zero, indicating xfer of data */
4128 if (ireason & (1 << 0))
4129 goto err_out;
4130
4131 /* make sure transfer direction matches expected */
4132 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4133 if (do_write != i_write)
4134 goto err_out;
4135
4136 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4137
4138 __atapi_pio_bytes(qc, bytes);
4139
4140 return;
4141
4142 err_out:
4143 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4144 qc->err_mask |= AC_ERR_HSM;
4145 ap->hsm_task_state = HSM_ST_ERR;
4146 }
4147
4148 /**
4149 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4150 * @ap: the target ata_port
4151 * @qc: qc on going
4152 *
4153 * RETURNS:
4154 * 1 if ok in workqueue, 0 otherwise.
4155 */
4156
4157 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4158 {
4159 if (qc->tf.flags & ATA_TFLAG_POLLING)
4160 return 1;
4161
4162 if (ap->hsm_task_state == HSM_ST_FIRST) {
4163 if (qc->tf.protocol == ATA_PROT_PIO &&
4164 (qc->tf.flags & ATA_TFLAG_WRITE))
4165 return 1;
4166
4167 if (is_atapi_taskfile(&qc->tf) &&
4168 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4169 return 1;
4170 }
4171
4172 return 0;
4173 }
4174
4175 /**
4176 * ata_hsm_qc_complete - finish a qc running on standard HSM
4177 * @qc: Command to complete
4178 * @in_wq: 1 if called from workqueue, 0 otherwise
4179 *
4180 * Finish @qc which is running on standard HSM.
4181 *
4182 * LOCKING:
4183 * If @in_wq is zero, spin_lock_irqsave(host lock).
4184 * Otherwise, none on entry and grabs host lock.
4185 */
4186 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4187 {
4188 struct ata_port *ap = qc->ap;
4189 unsigned long flags;
4190
4191 if (ap->ops->error_handler) {
4192 if (in_wq) {
4193 spin_lock_irqsave(ap->lock, flags);
4194
4195 /* EH might have kicked in while host lock is
4196 * released.
4197 */
4198 qc = ata_qc_from_tag(ap, qc->tag);
4199 if (qc) {
4200 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4201 ap->ops->irq_on(ap);
4202 ata_qc_complete(qc);
4203 } else
4204 ata_port_freeze(ap);
4205 }
4206
4207 spin_unlock_irqrestore(ap->lock, flags);
4208 } else {
4209 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4210 ata_qc_complete(qc);
4211 else
4212 ata_port_freeze(ap);
4213 }
4214 } else {
4215 if (in_wq) {
4216 spin_lock_irqsave(ap->lock, flags);
4217 ap->ops->irq_on(ap);
4218 ata_qc_complete(qc);
4219 spin_unlock_irqrestore(ap->lock, flags);
4220 } else
4221 ata_qc_complete(qc);
4222 }
4223
4224 ata_altstatus(ap); /* flush */
4225 }
4226
4227 /**
4228 * ata_hsm_move - move the HSM to the next state.
4229 * @ap: the target ata_port
4230 * @qc: qc on going
4231 * @status: current device status
4232 * @in_wq: 1 if called from workqueue, 0 otherwise
4233 *
4234 * RETURNS:
4235 * 1 when poll next status needed, 0 otherwise.
4236 */
4237 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4238 u8 status, int in_wq)
4239 {
4240 unsigned long flags = 0;
4241 int poll_next;
4242
4243 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4244
4245 /* Make sure ata_qc_issue_prot() does not throw things
4246 * like DMA polling into the workqueue. Notice that
4247 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4248 */
4249 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4250
4251 fsm_start:
4252 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4253 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4254
4255 switch (ap->hsm_task_state) {
4256 case HSM_ST_FIRST:
4257 /* Send first data block or PACKET CDB */
4258
4259 /* If polling, we will stay in the work queue after
4260 * sending the data. Otherwise, interrupt handler
4261 * takes over after sending the data.
4262 */
4263 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4264
4265 /* check device status */
4266 if (unlikely((status & ATA_DRQ) == 0)) {
4267 /* handle BSY=0, DRQ=0 as error */
4268 if (likely(status & (ATA_ERR | ATA_DF)))
4269 /* device stops HSM for abort/error */
4270 qc->err_mask |= AC_ERR_DEV;
4271 else
4272 /* HSM violation. Let EH handle this */
4273 qc->err_mask |= AC_ERR_HSM;
4274
4275 ap->hsm_task_state = HSM_ST_ERR;
4276 goto fsm_start;
4277 }
4278
4279 /* Device should not ask for data transfer (DRQ=1)
4280 * when it finds something wrong.
4281 * We ignore DRQ here and stop the HSM by
4282 * changing hsm_task_state to HSM_ST_ERR and
4283 * let the EH abort the command or reset the device.
4284 */
4285 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4286 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4287 ap->id, status);
4288 qc->err_mask |= AC_ERR_HSM;
4289 ap->hsm_task_state = HSM_ST_ERR;
4290 goto fsm_start;
4291 }
4292
4293 /* Send the CDB (atapi) or the first data block (ata pio out).
4294 * During the state transition, interrupt handler shouldn't
4295 * be invoked before the data transfer is complete and
4296 * hsm_task_state is changed. Hence, the following locking.
4297 */
4298 if (in_wq)
4299 spin_lock_irqsave(ap->lock, flags);
4300
4301 if (qc->tf.protocol == ATA_PROT_PIO) {
4302 /* PIO data out protocol.
4303 * send first data block.
4304 */
4305
4306 /* ata_pio_sectors() might change the state
4307 * to HSM_ST_LAST. so, the state is changed here
4308 * before ata_pio_sectors().
4309 */
4310 ap->hsm_task_state = HSM_ST;
4311 ata_pio_sectors(qc);
4312 ata_altstatus(ap); /* flush */
4313 } else
4314 /* send CDB */
4315 atapi_send_cdb(ap, qc);
4316
4317 if (in_wq)
4318 spin_unlock_irqrestore(ap->lock, flags);
4319
4320 /* if polling, ata_pio_task() handles the rest.
4321 * otherwise, interrupt handler takes over from here.
4322 */
4323 break;
4324
4325 case HSM_ST:
4326 /* complete command or read/write the data register */
4327 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4328 /* ATAPI PIO protocol */
4329 if ((status & ATA_DRQ) == 0) {
4330 /* No more data to transfer or device error.
4331 * Device error will be tagged in HSM_ST_LAST.
4332 */
4333 ap->hsm_task_state = HSM_ST_LAST;
4334 goto fsm_start;
4335 }
4336
4337 /* Device should not ask for data transfer (DRQ=1)
4338 * when it finds something wrong.
4339 * We ignore DRQ here and stop the HSM by
4340 * changing hsm_task_state to HSM_ST_ERR and
4341 * let the EH abort the command or reset the device.
4342 */
4343 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4344 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4345 ap->id, status);
4346 qc->err_mask |= AC_ERR_HSM;
4347 ap->hsm_task_state = HSM_ST_ERR;
4348 goto fsm_start;
4349 }
4350
4351 atapi_pio_bytes(qc);
4352
4353 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4354 /* bad ireason reported by device */
4355 goto fsm_start;
4356
4357 } else {
4358 /* ATA PIO protocol */
4359 if (unlikely((status & ATA_DRQ) == 0)) {
4360 /* handle BSY=0, DRQ=0 as error */
4361 if (likely(status & (ATA_ERR | ATA_DF)))
4362 /* device stops HSM for abort/error */
4363 qc->err_mask |= AC_ERR_DEV;
4364 else
4365 /* HSM violation. Let EH handle this.
4366 * Phantom devices also trigger this
4367 * condition. Mark hint.
4368 */
4369 qc->err_mask |= AC_ERR_HSM |
4370 AC_ERR_NODEV_HINT;
4371
4372 ap->hsm_task_state = HSM_ST_ERR;
4373 goto fsm_start;
4374 }
4375
4376 /* For PIO reads, some devices may ask for
4377 * data transfer (DRQ=1) alone with ERR=1.
4378 * We respect DRQ here and transfer one
4379 * block of junk data before changing the
4380 * hsm_task_state to HSM_ST_ERR.
4381 *
4382 * For PIO writes, ERR=1 DRQ=1 doesn't make
4383 * sense since the data block has been
4384 * transferred to the device.
4385 */
4386 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4387 /* data might be corrputed */
4388 qc->err_mask |= AC_ERR_DEV;
4389
4390 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4391 ata_pio_sectors(qc);
4392 ata_altstatus(ap);
4393 status = ata_wait_idle(ap);
4394 }
4395
4396 if (status & (ATA_BUSY | ATA_DRQ))
4397 qc->err_mask |= AC_ERR_HSM;
4398
4399 /* ata_pio_sectors() might change the
4400 * state to HSM_ST_LAST. so, the state
4401 * is changed after ata_pio_sectors().
4402 */
4403 ap->hsm_task_state = HSM_ST_ERR;
4404 goto fsm_start;
4405 }
4406
4407 ata_pio_sectors(qc);
4408
4409 if (ap->hsm_task_state == HSM_ST_LAST &&
4410 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4411 /* all data read */
4412 ata_altstatus(ap);
4413 status = ata_wait_idle(ap);
4414 goto fsm_start;
4415 }
4416 }
4417
4418 ata_altstatus(ap); /* flush */
4419 poll_next = 1;
4420 break;
4421
4422 case HSM_ST_LAST:
4423 if (unlikely(!ata_ok(status))) {
4424 qc->err_mask |= __ac_err_mask(status);
4425 ap->hsm_task_state = HSM_ST_ERR;
4426 goto fsm_start;
4427 }
4428
4429 /* no more data to transfer */
4430 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4431 ap->id, qc->dev->devno, status);
4432
4433 WARN_ON(qc->err_mask);
4434
4435 ap->hsm_task_state = HSM_ST_IDLE;
4436
4437 /* complete taskfile transaction */
4438 ata_hsm_qc_complete(qc, in_wq);
4439
4440 poll_next = 0;
4441 break;
4442
4443 case HSM_ST_ERR:
4444 /* make sure qc->err_mask is available to
4445 * know what's wrong and recover
4446 */
4447 WARN_ON(qc->err_mask == 0);
4448
4449 ap->hsm_task_state = HSM_ST_IDLE;
4450
4451 /* complete taskfile transaction */
4452 ata_hsm_qc_complete(qc, in_wq);
4453
4454 poll_next = 0;
4455 break;
4456 default:
4457 poll_next = 0;
4458 BUG();
4459 }
4460
4461 return poll_next;
4462 }
4463
4464 static void ata_pio_task(struct work_struct *work)
4465 {
4466 struct ata_port *ap =
4467 container_of(work, struct ata_port, port_task.work);
4468 struct ata_queued_cmd *qc = ap->port_task_data;
4469 u8 status;
4470 int poll_next;
4471
4472 fsm_start:
4473 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4474
4475 /*
4476 * This is purely heuristic. This is a fast path.
4477 * Sometimes when we enter, BSY will be cleared in
4478 * a chk-status or two. If not, the drive is probably seeking
4479 * or something. Snooze for a couple msecs, then
4480 * chk-status again. If still busy, queue delayed work.
4481 */
4482 status = ata_busy_wait(ap, ATA_BUSY, 5);
4483 if (status & ATA_BUSY) {
4484 msleep(2);
4485 status = ata_busy_wait(ap, ATA_BUSY, 10);
4486 if (status & ATA_BUSY) {
4487 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4488 return;
4489 }
4490 }
4491
4492 /* move the HSM */
4493 poll_next = ata_hsm_move(ap, qc, status, 1);
4494
4495 /* another command or interrupt handler
4496 * may be running at this point.
4497 */
4498 if (poll_next)
4499 goto fsm_start;
4500 }
4501
4502 /**
4503 * ata_qc_new - Request an available ATA command, for queueing
4504 * @ap: Port associated with device @dev
4505 * @dev: Device from whom we request an available command structure
4506 *
4507 * LOCKING:
4508 * None.
4509 */
4510
4511 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4512 {
4513 struct ata_queued_cmd *qc = NULL;
4514 unsigned int i;
4515
4516 /* no command while frozen */
4517 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4518 return NULL;
4519
4520 /* the last tag is reserved for internal command. */
4521 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4522 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4523 qc = __ata_qc_from_tag(ap, i);
4524 break;
4525 }
4526
4527 if (qc)
4528 qc->tag = i;
4529
4530 return qc;
4531 }
4532
4533 /**
4534 * ata_qc_new_init - Request an available ATA command, and initialize it
4535 * @dev: Device from whom we request an available command structure
4536 *
4537 * LOCKING:
4538 * None.
4539 */
4540
4541 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4542 {
4543 struct ata_port *ap = dev->ap;
4544 struct ata_queued_cmd *qc;
4545
4546 qc = ata_qc_new(ap);
4547 if (qc) {
4548 qc->scsicmd = NULL;
4549 qc->ap = ap;
4550 qc->dev = dev;
4551
4552 ata_qc_reinit(qc);
4553 }
4554
4555 return qc;
4556 }
4557
4558 /**
4559 * ata_qc_free - free unused ata_queued_cmd
4560 * @qc: Command to complete
4561 *
4562 * Designed to free unused ata_queued_cmd object
4563 * in case something prevents using it.
4564 *
4565 * LOCKING:
4566 * spin_lock_irqsave(host lock)
4567 */
4568 void ata_qc_free(struct ata_queued_cmd *qc)
4569 {
4570 struct ata_port *ap = qc->ap;
4571 unsigned int tag;
4572
4573 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4574
4575 qc->flags = 0;
4576 tag = qc->tag;
4577 if (likely(ata_tag_valid(tag))) {
4578 qc->tag = ATA_TAG_POISON;
4579 clear_bit(tag, &ap->qc_allocated);
4580 }
4581 }
4582
4583 void __ata_qc_complete(struct ata_queued_cmd *qc)
4584 {
4585 struct ata_port *ap = qc->ap;
4586
4587 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4588 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4589
4590 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4591 ata_sg_clean(qc);
4592
4593 /* command should be marked inactive atomically with qc completion */
4594 if (qc->tf.protocol == ATA_PROT_NCQ)
4595 ap->sactive &= ~(1 << qc->tag);
4596 else
4597 ap->active_tag = ATA_TAG_POISON;
4598
4599 /* atapi: mark qc as inactive to prevent the interrupt handler
4600 * from completing the command twice later, before the error handler
4601 * is called. (when rc != 0 and atapi request sense is needed)
4602 */
4603 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4604 ap->qc_active &= ~(1 << qc->tag);
4605
4606 /* call completion callback */
4607 qc->complete_fn(qc);
4608 }
4609
4610 static void fill_result_tf(struct ata_queued_cmd *qc)
4611 {
4612 struct ata_port *ap = qc->ap;
4613
4614 ap->ops->tf_read(ap, &qc->result_tf);
4615 qc->result_tf.flags = qc->tf.flags;
4616 }
4617
4618 /**
4619 * ata_qc_complete - Complete an active ATA command
4620 * @qc: Command to complete
4621 * @err_mask: ATA Status register contents
4622 *
4623 * Indicate to the mid and upper layers that an ATA
4624 * command has completed, with either an ok or not-ok status.
4625 *
4626 * LOCKING:
4627 * spin_lock_irqsave(host lock)
4628 */
4629 void ata_qc_complete(struct ata_queued_cmd *qc)
4630 {
4631 struct ata_port *ap = qc->ap;
4632
4633 /* XXX: New EH and old EH use different mechanisms to
4634 * synchronize EH with regular execution path.
4635 *
4636 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4637 * Normal execution path is responsible for not accessing a
4638 * failed qc. libata core enforces the rule by returning NULL
4639 * from ata_qc_from_tag() for failed qcs.
4640 *
4641 * Old EH depends on ata_qc_complete() nullifying completion
4642 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4643 * not synchronize with interrupt handler. Only PIO task is
4644 * taken care of.
4645 */
4646 if (ap->ops->error_handler) {
4647 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4648
4649 if (unlikely(qc->err_mask))
4650 qc->flags |= ATA_QCFLAG_FAILED;
4651
4652 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4653 if (!ata_tag_internal(qc->tag)) {
4654 /* always fill result TF for failed qc */
4655 fill_result_tf(qc);
4656 ata_qc_schedule_eh(qc);
4657 return;
4658 }
4659 }
4660
4661 /* read result TF if requested */
4662 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4663 fill_result_tf(qc);
4664
4665 __ata_qc_complete(qc);
4666 } else {
4667 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4668 return;
4669
4670 /* read result TF if failed or requested */
4671 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4672 fill_result_tf(qc);
4673
4674 __ata_qc_complete(qc);
4675 }
4676 }
4677
4678 /**
4679 * ata_qc_complete_multiple - Complete multiple qcs successfully
4680 * @ap: port in question
4681 * @qc_active: new qc_active mask
4682 * @finish_qc: LLDD callback invoked before completing a qc
4683 *
4684 * Complete in-flight commands. This functions is meant to be
4685 * called from low-level driver's interrupt routine to complete
4686 * requests normally. ap->qc_active and @qc_active is compared
4687 * and commands are completed accordingly.
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4691 *
4692 * RETURNS:
4693 * Number of completed commands on success, -errno otherwise.
4694 */
4695 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4696 void (*finish_qc)(struct ata_queued_cmd *))
4697 {
4698 int nr_done = 0;
4699 u32 done_mask;
4700 int i;
4701
4702 done_mask = ap->qc_active ^ qc_active;
4703
4704 if (unlikely(done_mask & qc_active)) {
4705 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4706 "(%08x->%08x)\n", ap->qc_active, qc_active);
4707 return -EINVAL;
4708 }
4709
4710 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4711 struct ata_queued_cmd *qc;
4712
4713 if (!(done_mask & (1 << i)))
4714 continue;
4715
4716 if ((qc = ata_qc_from_tag(ap, i))) {
4717 if (finish_qc)
4718 finish_qc(qc);
4719 ata_qc_complete(qc);
4720 nr_done++;
4721 }
4722 }
4723
4724 return nr_done;
4725 }
4726
4727 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4728 {
4729 struct ata_port *ap = qc->ap;
4730
4731 switch (qc->tf.protocol) {
4732 case ATA_PROT_NCQ:
4733 case ATA_PROT_DMA:
4734 case ATA_PROT_ATAPI_DMA:
4735 return 1;
4736
4737 case ATA_PROT_ATAPI:
4738 case ATA_PROT_PIO:
4739 if (ap->flags & ATA_FLAG_PIO_DMA)
4740 return 1;
4741
4742 /* fall through */
4743
4744 default:
4745 return 0;
4746 }
4747
4748 /* never reached */
4749 }
4750
4751 /**
4752 * ata_qc_issue - issue taskfile to device
4753 * @qc: command to issue to device
4754 *
4755 * Prepare an ATA command to submission to device.
4756 * This includes mapping the data into a DMA-able
4757 * area, filling in the S/G table, and finally
4758 * writing the taskfile to hardware, starting the command.
4759 *
4760 * LOCKING:
4761 * spin_lock_irqsave(host lock)
4762 */
4763 void ata_qc_issue(struct ata_queued_cmd *qc)
4764 {
4765 struct ata_port *ap = qc->ap;
4766
4767 /* Make sure only one non-NCQ command is outstanding. The
4768 * check is skipped for old EH because it reuses active qc to
4769 * request ATAPI sense.
4770 */
4771 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4772
4773 if (qc->tf.protocol == ATA_PROT_NCQ) {
4774 WARN_ON(ap->sactive & (1 << qc->tag));
4775 ap->sactive |= 1 << qc->tag;
4776 } else {
4777 WARN_ON(ap->sactive);
4778 ap->active_tag = qc->tag;
4779 }
4780
4781 qc->flags |= ATA_QCFLAG_ACTIVE;
4782 ap->qc_active |= 1 << qc->tag;
4783
4784 if (ata_should_dma_map(qc)) {
4785 if (qc->flags & ATA_QCFLAG_SG) {
4786 if (ata_sg_setup(qc))
4787 goto sg_err;
4788 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4789 if (ata_sg_setup_one(qc))
4790 goto sg_err;
4791 }
4792 } else {
4793 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4794 }
4795
4796 ap->ops->qc_prep(qc);
4797
4798 qc->err_mask |= ap->ops->qc_issue(qc);
4799 if (unlikely(qc->err_mask))
4800 goto err;
4801 return;
4802
4803 sg_err:
4804 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4805 qc->err_mask |= AC_ERR_SYSTEM;
4806 err:
4807 ata_qc_complete(qc);
4808 }
4809
4810 /**
4811 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4812 * @qc: command to issue to device
4813 *
4814 * Using various libata functions and hooks, this function
4815 * starts an ATA command. ATA commands are grouped into
4816 * classes called "protocols", and issuing each type of protocol
4817 * is slightly different.
4818 *
4819 * May be used as the qc_issue() entry in ata_port_operations.
4820 *
4821 * LOCKING:
4822 * spin_lock_irqsave(host lock)
4823 *
4824 * RETURNS:
4825 * Zero on success, AC_ERR_* mask on failure
4826 */
4827
4828 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4829 {
4830 struct ata_port *ap = qc->ap;
4831
4832 /* Use polling pio if the LLD doesn't handle
4833 * interrupt driven pio and atapi CDB interrupt.
4834 */
4835 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4836 switch (qc->tf.protocol) {
4837 case ATA_PROT_PIO:
4838 case ATA_PROT_NODATA:
4839 case ATA_PROT_ATAPI:
4840 case ATA_PROT_ATAPI_NODATA:
4841 qc->tf.flags |= ATA_TFLAG_POLLING;
4842 break;
4843 case ATA_PROT_ATAPI_DMA:
4844 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4845 /* see ata_dma_blacklisted() */
4846 BUG();
4847 break;
4848 default:
4849 break;
4850 }
4851 }
4852
4853 /* Some controllers show flaky interrupt behavior after
4854 * setting xfer mode. Use polling instead.
4855 */
4856 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4857 qc->tf.feature == SETFEATURES_XFER) &&
4858 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4859 qc->tf.flags |= ATA_TFLAG_POLLING;
4860
4861 /* select the device */
4862 ata_dev_select(ap, qc->dev->devno, 1, 0);
4863
4864 /* start the command */
4865 switch (qc->tf.protocol) {
4866 case ATA_PROT_NODATA:
4867 if (qc->tf.flags & ATA_TFLAG_POLLING)
4868 ata_qc_set_polling(qc);
4869
4870 ata_tf_to_host(ap, &qc->tf);
4871 ap->hsm_task_state = HSM_ST_LAST;
4872
4873 if (qc->tf.flags & ATA_TFLAG_POLLING)
4874 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4875
4876 break;
4877
4878 case ATA_PROT_DMA:
4879 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4880
4881 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4882 ap->ops->bmdma_setup(qc); /* set up bmdma */
4883 ap->ops->bmdma_start(qc); /* initiate bmdma */
4884 ap->hsm_task_state = HSM_ST_LAST;
4885 break;
4886
4887 case ATA_PROT_PIO:
4888 if (qc->tf.flags & ATA_TFLAG_POLLING)
4889 ata_qc_set_polling(qc);
4890
4891 ata_tf_to_host(ap, &qc->tf);
4892
4893 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4894 /* PIO data out protocol */
4895 ap->hsm_task_state = HSM_ST_FIRST;
4896 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4897
4898 /* always send first data block using
4899 * the ata_pio_task() codepath.
4900 */
4901 } else {
4902 /* PIO data in protocol */
4903 ap->hsm_task_state = HSM_ST;
4904
4905 if (qc->tf.flags & ATA_TFLAG_POLLING)
4906 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4907
4908 /* if polling, ata_pio_task() handles the rest.
4909 * otherwise, interrupt handler takes over from here.
4910 */
4911 }
4912
4913 break;
4914
4915 case ATA_PROT_ATAPI:
4916 case ATA_PROT_ATAPI_NODATA:
4917 if (qc->tf.flags & ATA_TFLAG_POLLING)
4918 ata_qc_set_polling(qc);
4919
4920 ata_tf_to_host(ap, &qc->tf);
4921
4922 ap->hsm_task_state = HSM_ST_FIRST;
4923
4924 /* send cdb by polling if no cdb interrupt */
4925 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4926 (qc->tf.flags & ATA_TFLAG_POLLING))
4927 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4928 break;
4929
4930 case ATA_PROT_ATAPI_DMA:
4931 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4932
4933 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4934 ap->ops->bmdma_setup(qc); /* set up bmdma */
4935 ap->hsm_task_state = HSM_ST_FIRST;
4936
4937 /* send cdb by polling if no cdb interrupt */
4938 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4939 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4940 break;
4941
4942 default:
4943 WARN_ON(1);
4944 return AC_ERR_SYSTEM;
4945 }
4946
4947 return 0;
4948 }
4949
4950 /**
4951 * ata_host_intr - Handle host interrupt for given (port, task)
4952 * @ap: Port on which interrupt arrived (possibly...)
4953 * @qc: Taskfile currently active in engine
4954 *
4955 * Handle host interrupt for given queued command. Currently,
4956 * only DMA interrupts are handled. All other commands are
4957 * handled via polling with interrupts disabled (nIEN bit).
4958 *
4959 * LOCKING:
4960 * spin_lock_irqsave(host lock)
4961 *
4962 * RETURNS:
4963 * One if interrupt was handled, zero if not (shared irq).
4964 */
4965
4966 inline unsigned int ata_host_intr (struct ata_port *ap,
4967 struct ata_queued_cmd *qc)
4968 {
4969 struct ata_eh_info *ehi = &ap->eh_info;
4970 u8 status, host_stat = 0;
4971
4972 VPRINTK("ata%u: protocol %d task_state %d\n",
4973 ap->id, qc->tf.protocol, ap->hsm_task_state);
4974
4975 /* Check whether we are expecting interrupt in this state */
4976 switch (ap->hsm_task_state) {
4977 case HSM_ST_FIRST:
4978 /* Some pre-ATAPI-4 devices assert INTRQ
4979 * at this state when ready to receive CDB.
4980 */
4981
4982 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4983 * The flag was turned on only for atapi devices.
4984 * No need to check is_atapi_taskfile(&qc->tf) again.
4985 */
4986 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4987 goto idle_irq;
4988 break;
4989 case HSM_ST_LAST:
4990 if (qc->tf.protocol == ATA_PROT_DMA ||
4991 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4992 /* check status of DMA engine */
4993 host_stat = ap->ops->bmdma_status(ap);
4994 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4995
4996 /* if it's not our irq... */
4997 if (!(host_stat & ATA_DMA_INTR))
4998 goto idle_irq;
4999
5000 /* before we do anything else, clear DMA-Start bit */
5001 ap->ops->bmdma_stop(qc);
5002
5003 if (unlikely(host_stat & ATA_DMA_ERR)) {
5004 /* error when transfering data to/from memory */
5005 qc->err_mask |= AC_ERR_HOST_BUS;
5006 ap->hsm_task_state = HSM_ST_ERR;
5007 }
5008 }
5009 break;
5010 case HSM_ST:
5011 break;
5012 default:
5013 goto idle_irq;
5014 }
5015
5016 /* check altstatus */
5017 status = ata_altstatus(ap);
5018 if (status & ATA_BUSY)
5019 goto idle_irq;
5020
5021 /* check main status, clearing INTRQ */
5022 status = ata_chk_status(ap);
5023 if (unlikely(status & ATA_BUSY))
5024 goto idle_irq;
5025
5026 /* ack bmdma irq events */
5027 ap->ops->irq_clear(ap);
5028
5029 ata_hsm_move(ap, qc, status, 0);
5030
5031 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5032 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5033 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5034
5035 return 1; /* irq handled */
5036
5037 idle_irq:
5038 ap->stats.idle_irq++;
5039
5040 #ifdef ATA_IRQ_TRAP
5041 if ((ap->stats.idle_irq % 1000) == 0) {
5042 ap->ops->irq_ack(ap, 0); /* debug trap */
5043 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5044 return 1;
5045 }
5046 #endif
5047 return 0; /* irq not handled */
5048 }
5049
5050 /**
5051 * ata_interrupt - Default ATA host interrupt handler
5052 * @irq: irq line (unused)
5053 * @dev_instance: pointer to our ata_host information structure
5054 *
5055 * Default interrupt handler for PCI IDE devices. Calls
5056 * ata_host_intr() for each port that is not disabled.
5057 *
5058 * LOCKING:
5059 * Obtains host lock during operation.
5060 *
5061 * RETURNS:
5062 * IRQ_NONE or IRQ_HANDLED.
5063 */
5064
5065 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5066 {
5067 struct ata_host *host = dev_instance;
5068 unsigned int i;
5069 unsigned int handled = 0;
5070 unsigned long flags;
5071
5072 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5073 spin_lock_irqsave(&host->lock, flags);
5074
5075 for (i = 0; i < host->n_ports; i++) {
5076 struct ata_port *ap;
5077
5078 ap = host->ports[i];
5079 if (ap &&
5080 !(ap->flags & ATA_FLAG_DISABLED)) {
5081 struct ata_queued_cmd *qc;
5082
5083 qc = ata_qc_from_tag(ap, ap->active_tag);
5084 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5085 (qc->flags & ATA_QCFLAG_ACTIVE))
5086 handled |= ata_host_intr(ap, qc);
5087 }
5088 }
5089
5090 spin_unlock_irqrestore(&host->lock, flags);
5091
5092 return IRQ_RETVAL(handled);
5093 }
5094
5095 /**
5096 * sata_scr_valid - test whether SCRs are accessible
5097 * @ap: ATA port to test SCR accessibility for
5098 *
5099 * Test whether SCRs are accessible for @ap.
5100 *
5101 * LOCKING:
5102 * None.
5103 *
5104 * RETURNS:
5105 * 1 if SCRs are accessible, 0 otherwise.
5106 */
5107 int sata_scr_valid(struct ata_port *ap)
5108 {
5109 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5110 }
5111
5112 /**
5113 * sata_scr_read - read SCR register of the specified port
5114 * @ap: ATA port to read SCR for
5115 * @reg: SCR to read
5116 * @val: Place to store read value
5117 *
5118 * Read SCR register @reg of @ap into *@val. This function is
5119 * guaranteed to succeed if the cable type of the port is SATA
5120 * and the port implements ->scr_read.
5121 *
5122 * LOCKING:
5123 * None.
5124 *
5125 * RETURNS:
5126 * 0 on success, negative errno on failure.
5127 */
5128 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5129 {
5130 if (sata_scr_valid(ap)) {
5131 *val = ap->ops->scr_read(ap, reg);
5132 return 0;
5133 }
5134 return -EOPNOTSUPP;
5135 }
5136
5137 /**
5138 * sata_scr_write - write SCR register of the specified port
5139 * @ap: ATA port to write SCR for
5140 * @reg: SCR to write
5141 * @val: value to write
5142 *
5143 * Write @val to SCR register @reg of @ap. This function is
5144 * guaranteed to succeed if the cable type of the port is SATA
5145 * and the port implements ->scr_read.
5146 *
5147 * LOCKING:
5148 * None.
5149 *
5150 * RETURNS:
5151 * 0 on success, negative errno on failure.
5152 */
5153 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5154 {
5155 if (sata_scr_valid(ap)) {
5156 ap->ops->scr_write(ap, reg, val);
5157 return 0;
5158 }
5159 return -EOPNOTSUPP;
5160 }
5161
5162 /**
5163 * sata_scr_write_flush - write SCR register of the specified port and flush
5164 * @ap: ATA port to write SCR for
5165 * @reg: SCR to write
5166 * @val: value to write
5167 *
5168 * This function is identical to sata_scr_write() except that this
5169 * function performs flush after writing to the register.
5170 *
5171 * LOCKING:
5172 * None.
5173 *
5174 * RETURNS:
5175 * 0 on success, negative errno on failure.
5176 */
5177 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5178 {
5179 if (sata_scr_valid(ap)) {
5180 ap->ops->scr_write(ap, reg, val);
5181 ap->ops->scr_read(ap, reg);
5182 return 0;
5183 }
5184 return -EOPNOTSUPP;
5185 }
5186
5187 /**
5188 * ata_port_online - test whether the given port is online
5189 * @ap: ATA port to test
5190 *
5191 * Test whether @ap is online. Note that this function returns 0
5192 * if online status of @ap cannot be obtained, so
5193 * ata_port_online(ap) != !ata_port_offline(ap).
5194 *
5195 * LOCKING:
5196 * None.
5197 *
5198 * RETURNS:
5199 * 1 if the port online status is available and online.
5200 */
5201 int ata_port_online(struct ata_port *ap)
5202 {
5203 u32 sstatus;
5204
5205 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5206 return 1;
5207 return 0;
5208 }
5209
5210 /**
5211 * ata_port_offline - test whether the given port is offline
5212 * @ap: ATA port to test
5213 *
5214 * Test whether @ap is offline. Note that this function returns
5215 * 0 if offline status of @ap cannot be obtained, so
5216 * ata_port_online(ap) != !ata_port_offline(ap).
5217 *
5218 * LOCKING:
5219 * None.
5220 *
5221 * RETURNS:
5222 * 1 if the port offline status is available and offline.
5223 */
5224 int ata_port_offline(struct ata_port *ap)
5225 {
5226 u32 sstatus;
5227
5228 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5229 return 1;
5230 return 0;
5231 }
5232
5233 int ata_flush_cache(struct ata_device *dev)
5234 {
5235 unsigned int err_mask;
5236 u8 cmd;
5237
5238 if (!ata_try_flush_cache(dev))
5239 return 0;
5240
5241 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5242 cmd = ATA_CMD_FLUSH_EXT;
5243 else
5244 cmd = ATA_CMD_FLUSH;
5245
5246 err_mask = ata_do_simple_cmd(dev, cmd);
5247 if (err_mask) {
5248 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5249 return -EIO;
5250 }
5251
5252 return 0;
5253 }
5254
5255 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5256 unsigned int action, unsigned int ehi_flags,
5257 int wait)
5258 {
5259 unsigned long flags;
5260 int i, rc;
5261
5262 for (i = 0; i < host->n_ports; i++) {
5263 struct ata_port *ap = host->ports[i];
5264
5265 /* Previous resume operation might still be in
5266 * progress. Wait for PM_PENDING to clear.
5267 */
5268 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5269 ata_port_wait_eh(ap);
5270 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5271 }
5272
5273 /* request PM ops to EH */
5274 spin_lock_irqsave(ap->lock, flags);
5275
5276 ap->pm_mesg = mesg;
5277 if (wait) {
5278 rc = 0;
5279 ap->pm_result = &rc;
5280 }
5281
5282 ap->pflags |= ATA_PFLAG_PM_PENDING;
5283 ap->eh_info.action |= action;
5284 ap->eh_info.flags |= ehi_flags;
5285
5286 ata_port_schedule_eh(ap);
5287
5288 spin_unlock_irqrestore(ap->lock, flags);
5289
5290 /* wait and check result */
5291 if (wait) {
5292 ata_port_wait_eh(ap);
5293 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5294 if (rc)
5295 return rc;
5296 }
5297 }
5298
5299 return 0;
5300 }
5301
5302 /**
5303 * ata_host_suspend - suspend host
5304 * @host: host to suspend
5305 * @mesg: PM message
5306 *
5307 * Suspend @host. Actual operation is performed by EH. This
5308 * function requests EH to perform PM operations and waits for EH
5309 * to finish.
5310 *
5311 * LOCKING:
5312 * Kernel thread context (may sleep).
5313 *
5314 * RETURNS:
5315 * 0 on success, -errno on failure.
5316 */
5317 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5318 {
5319 int i, j, rc;
5320
5321 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5322 if (rc)
5323 goto fail;
5324
5325 /* EH is quiescent now. Fail if we have any ready device.
5326 * This happens if hotplug occurs between completion of device
5327 * suspension and here.
5328 */
5329 for (i = 0; i < host->n_ports; i++) {
5330 struct ata_port *ap = host->ports[i];
5331
5332 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5333 struct ata_device *dev = &ap->device[j];
5334
5335 if (ata_dev_ready(dev)) {
5336 ata_port_printk(ap, KERN_WARNING,
5337 "suspend failed, device %d "
5338 "still active\n", dev->devno);
5339 rc = -EBUSY;
5340 goto fail;
5341 }
5342 }
5343 }
5344
5345 host->dev->power.power_state = mesg;
5346 return 0;
5347
5348 fail:
5349 ata_host_resume(host);
5350 return rc;
5351 }
5352
5353 /**
5354 * ata_host_resume - resume host
5355 * @host: host to resume
5356 *
5357 * Resume @host. Actual operation is performed by EH. This
5358 * function requests EH to perform PM operations and returns.
5359 * Note that all resume operations are performed parallely.
5360 *
5361 * LOCKING:
5362 * Kernel thread context (may sleep).
5363 */
5364 void ata_host_resume(struct ata_host *host)
5365 {
5366 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5367 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5368 host->dev->power.power_state = PMSG_ON;
5369 }
5370
5371 /**
5372 * ata_port_start - Set port up for dma.
5373 * @ap: Port to initialize
5374 *
5375 * Called just after data structures for each port are
5376 * initialized. Allocates space for PRD table.
5377 *
5378 * May be used as the port_start() entry in ata_port_operations.
5379 *
5380 * LOCKING:
5381 * Inherited from caller.
5382 */
5383 int ata_port_start(struct ata_port *ap)
5384 {
5385 struct device *dev = ap->dev;
5386 int rc;
5387
5388 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5389 GFP_KERNEL);
5390 if (!ap->prd)
5391 return -ENOMEM;
5392
5393 rc = ata_pad_alloc(ap, dev);
5394 if (rc)
5395 return rc;
5396
5397 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5398 (unsigned long long)ap->prd_dma);
5399 return 0;
5400 }
5401
5402 /**
5403 * ata_dev_init - Initialize an ata_device structure
5404 * @dev: Device structure to initialize
5405 *
5406 * Initialize @dev in preparation for probing.
5407 *
5408 * LOCKING:
5409 * Inherited from caller.
5410 */
5411 void ata_dev_init(struct ata_device *dev)
5412 {
5413 struct ata_port *ap = dev->ap;
5414 unsigned long flags;
5415
5416 /* SATA spd limit is bound to the first device */
5417 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5418
5419 /* High bits of dev->flags are used to record warm plug
5420 * requests which occur asynchronously. Synchronize using
5421 * host lock.
5422 */
5423 spin_lock_irqsave(ap->lock, flags);
5424 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5425 spin_unlock_irqrestore(ap->lock, flags);
5426
5427 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5428 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5429 dev->pio_mask = UINT_MAX;
5430 dev->mwdma_mask = UINT_MAX;
5431 dev->udma_mask = UINT_MAX;
5432 }
5433
5434 /**
5435 * ata_port_init - Initialize an ata_port structure
5436 * @ap: Structure to initialize
5437 * @host: Collection of hosts to which @ap belongs
5438 * @ent: Probe information provided by low-level driver
5439 * @port_no: Port number associated with this ata_port
5440 *
5441 * Initialize a new ata_port structure.
5442 *
5443 * LOCKING:
5444 * Inherited from caller.
5445 */
5446 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5447 const struct ata_probe_ent *ent, unsigned int port_no)
5448 {
5449 unsigned int i;
5450
5451 ap->lock = &host->lock;
5452 ap->flags = ATA_FLAG_DISABLED;
5453 ap->id = ata_unique_id++;
5454 ap->ctl = ATA_DEVCTL_OBS;
5455 ap->host = host;
5456 ap->dev = ent->dev;
5457 ap->port_no = port_no;
5458 if (port_no == 1 && ent->pinfo2) {
5459 ap->pio_mask = ent->pinfo2->pio_mask;
5460 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5461 ap->udma_mask = ent->pinfo2->udma_mask;
5462 ap->flags |= ent->pinfo2->flags;
5463 ap->ops = ent->pinfo2->port_ops;
5464 } else {
5465 ap->pio_mask = ent->pio_mask;
5466 ap->mwdma_mask = ent->mwdma_mask;
5467 ap->udma_mask = ent->udma_mask;
5468 ap->flags |= ent->port_flags;
5469 ap->ops = ent->port_ops;
5470 }
5471 ap->hw_sata_spd_limit = UINT_MAX;
5472 ap->active_tag = ATA_TAG_POISON;
5473 ap->last_ctl = 0xFF;
5474
5475 #if defined(ATA_VERBOSE_DEBUG)
5476 /* turn on all debugging levels */
5477 ap->msg_enable = 0x00FF;
5478 #elif defined(ATA_DEBUG)
5479 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5480 #else
5481 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5482 #endif
5483
5484 INIT_DELAYED_WORK(&ap->port_task, NULL);
5485 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5486 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5487 INIT_LIST_HEAD(&ap->eh_done_q);
5488 init_waitqueue_head(&ap->eh_wait_q);
5489
5490 /* set cable type */
5491 ap->cbl = ATA_CBL_NONE;
5492 if (ap->flags & ATA_FLAG_SATA)
5493 ap->cbl = ATA_CBL_SATA;
5494
5495 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5496 struct ata_device *dev = &ap->device[i];
5497 dev->ap = ap;
5498 dev->devno = i;
5499 ata_dev_init(dev);
5500 }
5501
5502 #ifdef ATA_IRQ_TRAP
5503 ap->stats.unhandled_irq = 1;
5504 ap->stats.idle_irq = 1;
5505 #endif
5506
5507 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5508 }
5509
5510 /**
5511 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5512 * @ap: ATA port to initialize SCSI host for
5513 * @shost: SCSI host associated with @ap
5514 *
5515 * Initialize SCSI host @shost associated with ATA port @ap.
5516 *
5517 * LOCKING:
5518 * Inherited from caller.
5519 */
5520 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5521 {
5522 ap->scsi_host = shost;
5523
5524 shost->unique_id = ap->id;
5525 shost->max_id = 16;
5526 shost->max_lun = 1;
5527 shost->max_channel = 1;
5528 shost->max_cmd_len = 12;
5529 }
5530
5531 /**
5532 * ata_port_add - Attach low-level ATA driver to system
5533 * @ent: Information provided by low-level driver
5534 * @host: Collections of ports to which we add
5535 * @port_no: Port number associated with this host
5536 *
5537 * Attach low-level ATA driver to system.
5538 *
5539 * LOCKING:
5540 * PCI/etc. bus probe sem.
5541 *
5542 * RETURNS:
5543 * New ata_port on success, for NULL on error.
5544 */
5545 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5546 struct ata_host *host,
5547 unsigned int port_no)
5548 {
5549 struct Scsi_Host *shost;
5550 struct ata_port *ap;
5551
5552 DPRINTK("ENTER\n");
5553
5554 if (!ent->port_ops->error_handler &&
5555 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5556 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5557 port_no);
5558 return NULL;
5559 }
5560
5561 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5562 if (!shost)
5563 return NULL;
5564
5565 shost->transportt = &ata_scsi_transport_template;
5566
5567 ap = ata_shost_to_port(shost);
5568
5569 ata_port_init(ap, host, ent, port_no);
5570 ata_port_init_shost(ap, shost);
5571
5572 return ap;
5573 }
5574
5575 static void ata_host_release(struct device *gendev, void *res)
5576 {
5577 struct ata_host *host = dev_get_drvdata(gendev);
5578 int i;
5579
5580 for (i = 0; i < host->n_ports; i++) {
5581 struct ata_port *ap = host->ports[i];
5582
5583 if (!ap)
5584 continue;
5585
5586 if (ap->ops->port_stop)
5587 ap->ops->port_stop(ap);
5588
5589 scsi_host_put(ap->scsi_host);
5590 }
5591
5592 if (host->ops->host_stop)
5593 host->ops->host_stop(host);
5594 }
5595
5596 /**
5597 * ata_sas_host_init - Initialize a host struct
5598 * @host: host to initialize
5599 * @dev: device host is attached to
5600 * @flags: host flags
5601 * @ops: port_ops
5602 *
5603 * LOCKING:
5604 * PCI/etc. bus probe sem.
5605 *
5606 */
5607
5608 void ata_host_init(struct ata_host *host, struct device *dev,
5609 unsigned long flags, const struct ata_port_operations *ops)
5610 {
5611 spin_lock_init(&host->lock);
5612 host->dev = dev;
5613 host->flags = flags;
5614 host->ops = ops;
5615 }
5616
5617 /**
5618 * ata_device_add - Register hardware device with ATA and SCSI layers
5619 * @ent: Probe information describing hardware device to be registered
5620 *
5621 * This function processes the information provided in the probe
5622 * information struct @ent, allocates the necessary ATA and SCSI
5623 * host information structures, initializes them, and registers
5624 * everything with requisite kernel subsystems.
5625 *
5626 * This function requests irqs, probes the ATA bus, and probes
5627 * the SCSI bus.
5628 *
5629 * LOCKING:
5630 * PCI/etc. bus probe sem.
5631 *
5632 * RETURNS:
5633 * Number of ports registered. Zero on error (no ports registered).
5634 */
5635 int ata_device_add(const struct ata_probe_ent *ent)
5636 {
5637 unsigned int i;
5638 struct device *dev = ent->dev;
5639 struct ata_host *host;
5640 int rc;
5641
5642 DPRINTK("ENTER\n");
5643
5644 if (ent->irq == 0) {
5645 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5646 return 0;
5647 }
5648
5649 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5650 return 0;
5651
5652 /* alloc a container for our list of ATA ports (buses) */
5653 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5654 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5655 if (!host)
5656 goto err_out;
5657 devres_add(dev, host);
5658 dev_set_drvdata(dev, host);
5659
5660 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5661 host->n_ports = ent->n_ports;
5662 host->irq = ent->irq;
5663 host->irq2 = ent->irq2;
5664 host->iomap = ent->iomap;
5665 host->private_data = ent->private_data;
5666
5667 /* register each port bound to this device */
5668 for (i = 0; i < host->n_ports; i++) {
5669 struct ata_port *ap;
5670 unsigned long xfer_mode_mask;
5671 int irq_line = ent->irq;
5672
5673 ap = ata_port_add(ent, host, i);
5674 host->ports[i] = ap;
5675 if (!ap)
5676 goto err_out;
5677
5678 /* dummy? */
5679 if (ent->dummy_port_mask & (1 << i)) {
5680 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5681 ap->ops = &ata_dummy_port_ops;
5682 continue;
5683 }
5684
5685 /* start port */
5686 rc = ap->ops->port_start(ap);
5687 if (rc) {
5688 host->ports[i] = NULL;
5689 scsi_host_put(ap->scsi_host);
5690 goto err_out;
5691 }
5692
5693 /* Report the secondary IRQ for second channel legacy */
5694 if (i == 1 && ent->irq2)
5695 irq_line = ent->irq2;
5696
5697 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5698 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5699 (ap->pio_mask << ATA_SHIFT_PIO);
5700
5701 /* print per-port info to dmesg */
5702 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5703 "ctl 0x%p bmdma 0x%p irq %d\n",
5704 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5705 ata_mode_string(xfer_mode_mask),
5706 ap->ioaddr.cmd_addr,
5707 ap->ioaddr.ctl_addr,
5708 ap->ioaddr.bmdma_addr,
5709 irq_line);
5710
5711 /* freeze port before requesting IRQ */
5712 ata_eh_freeze_port(ap);
5713 }
5714
5715 /* obtain irq, that may be shared between channels */
5716 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5717 ent->irq_flags, DRV_NAME, host);
5718 if (rc) {
5719 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5720 ent->irq, rc);
5721 goto err_out;
5722 }
5723
5724 /* do we have a second IRQ for the other channel, eg legacy mode */
5725 if (ent->irq2) {
5726 /* We will get weird core code crashes later if this is true
5727 so trap it now */
5728 BUG_ON(ent->irq == ent->irq2);
5729
5730 rc = devm_request_irq(dev, ent->irq2,
5731 ent->port_ops->irq_handler, ent->irq_flags,
5732 DRV_NAME, host);
5733 if (rc) {
5734 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5735 ent->irq2, rc);
5736 goto err_out;
5737 }
5738 }
5739
5740 /* resource acquisition complete */
5741 devres_remove_group(dev, ata_device_add);
5742
5743 /* perform each probe synchronously */
5744 DPRINTK("probe begin\n");
5745 for (i = 0; i < host->n_ports; i++) {
5746 struct ata_port *ap = host->ports[i];
5747 u32 scontrol;
5748 int rc;
5749
5750 /* init sata_spd_limit to the current value */
5751 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5752 int spd = (scontrol >> 4) & 0xf;
5753 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5754 }
5755 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5756
5757 rc = scsi_add_host(ap->scsi_host, dev);
5758 if (rc) {
5759 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5760 /* FIXME: do something useful here */
5761 /* FIXME: handle unconditional calls to
5762 * scsi_scan_host and ata_host_remove, below,
5763 * at the very least
5764 */
5765 }
5766
5767 if (ap->ops->error_handler) {
5768 struct ata_eh_info *ehi = &ap->eh_info;
5769 unsigned long flags;
5770
5771 ata_port_probe(ap);
5772
5773 /* kick EH for boot probing */
5774 spin_lock_irqsave(ap->lock, flags);
5775
5776 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5777 ehi->action |= ATA_EH_SOFTRESET;
5778 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5779
5780 ap->pflags |= ATA_PFLAG_LOADING;
5781 ata_port_schedule_eh(ap);
5782
5783 spin_unlock_irqrestore(ap->lock, flags);
5784
5785 /* wait for EH to finish */
5786 ata_port_wait_eh(ap);
5787 } else {
5788 DPRINTK("ata%u: bus probe begin\n", ap->id);
5789 rc = ata_bus_probe(ap);
5790 DPRINTK("ata%u: bus probe end\n", ap->id);
5791
5792 if (rc) {
5793 /* FIXME: do something useful here?
5794 * Current libata behavior will
5795 * tear down everything when
5796 * the module is removed
5797 * or the h/w is unplugged.
5798 */
5799 }
5800 }
5801 }
5802
5803 /* probes are done, now scan each port's disk(s) */
5804 DPRINTK("host probe begin\n");
5805 for (i = 0; i < host->n_ports; i++) {
5806 struct ata_port *ap = host->ports[i];
5807
5808 ata_scsi_scan_host(ap);
5809 }
5810
5811 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5812 return ent->n_ports; /* success */
5813
5814 err_out:
5815 devres_release_group(dev, ata_device_add);
5816 dev_set_drvdata(dev, NULL);
5817 VPRINTK("EXIT, returning %d\n", rc);
5818 return 0;
5819 }
5820
5821 /**
5822 * ata_port_detach - Detach ATA port in prepration of device removal
5823 * @ap: ATA port to be detached
5824 *
5825 * Detach all ATA devices and the associated SCSI devices of @ap;
5826 * then, remove the associated SCSI host. @ap is guaranteed to
5827 * be quiescent on return from this function.
5828 *
5829 * LOCKING:
5830 * Kernel thread context (may sleep).
5831 */
5832 void ata_port_detach(struct ata_port *ap)
5833 {
5834 unsigned long flags;
5835 int i;
5836
5837 if (!ap->ops->error_handler)
5838 goto skip_eh;
5839
5840 /* tell EH we're leaving & flush EH */
5841 spin_lock_irqsave(ap->lock, flags);
5842 ap->pflags |= ATA_PFLAG_UNLOADING;
5843 spin_unlock_irqrestore(ap->lock, flags);
5844
5845 ata_port_wait_eh(ap);
5846
5847 /* EH is now guaranteed to see UNLOADING, so no new device
5848 * will be attached. Disable all existing devices.
5849 */
5850 spin_lock_irqsave(ap->lock, flags);
5851
5852 for (i = 0; i < ATA_MAX_DEVICES; i++)
5853 ata_dev_disable(&ap->device[i]);
5854
5855 spin_unlock_irqrestore(ap->lock, flags);
5856
5857 /* Final freeze & EH. All in-flight commands are aborted. EH
5858 * will be skipped and retrials will be terminated with bad
5859 * target.
5860 */
5861 spin_lock_irqsave(ap->lock, flags);
5862 ata_port_freeze(ap); /* won't be thawed */
5863 spin_unlock_irqrestore(ap->lock, flags);
5864
5865 ata_port_wait_eh(ap);
5866
5867 /* Flush hotplug task. The sequence is similar to
5868 * ata_port_flush_task().
5869 */
5870 flush_workqueue(ata_aux_wq);
5871 cancel_delayed_work(&ap->hotplug_task);
5872 flush_workqueue(ata_aux_wq);
5873
5874 skip_eh:
5875 /* remove the associated SCSI host */
5876 scsi_remove_host(ap->scsi_host);
5877 }
5878
5879 /**
5880 * ata_host_detach - Detach all ports of an ATA host
5881 * @host: Host to detach
5882 *
5883 * Detach all ports of @host.
5884 *
5885 * LOCKING:
5886 * Kernel thread context (may sleep).
5887 */
5888 void ata_host_detach(struct ata_host *host)
5889 {
5890 int i;
5891
5892 for (i = 0; i < host->n_ports; i++)
5893 ata_port_detach(host->ports[i]);
5894 }
5895
5896 struct ata_probe_ent *
5897 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5898 {
5899 struct ata_probe_ent *probe_ent;
5900
5901 /* XXX - the following if can go away once all LLDs are managed */
5902 if (!list_empty(&dev->devres_head))
5903 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5904 else
5905 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5906 if (!probe_ent) {
5907 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5908 kobject_name(&(dev->kobj)));
5909 return NULL;
5910 }
5911
5912 INIT_LIST_HEAD(&probe_ent->node);
5913 probe_ent->dev = dev;
5914
5915 probe_ent->sht = port->sht;
5916 probe_ent->port_flags = port->flags;
5917 probe_ent->pio_mask = port->pio_mask;
5918 probe_ent->mwdma_mask = port->mwdma_mask;
5919 probe_ent->udma_mask = port->udma_mask;
5920 probe_ent->port_ops = port->port_ops;
5921 probe_ent->private_data = port->private_data;
5922
5923 return probe_ent;
5924 }
5925
5926 /**
5927 * ata_std_ports - initialize ioaddr with standard port offsets.
5928 * @ioaddr: IO address structure to be initialized
5929 *
5930 * Utility function which initializes data_addr, error_addr,
5931 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5932 * device_addr, status_addr, and command_addr to standard offsets
5933 * relative to cmd_addr.
5934 *
5935 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5936 */
5937
5938 void ata_std_ports(struct ata_ioports *ioaddr)
5939 {
5940 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5941 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5942 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5943 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5944 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5945 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5946 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5947 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5948 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5949 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5950 }
5951
5952
5953 #ifdef CONFIG_PCI
5954
5955 /**
5956 * ata_pci_remove_one - PCI layer callback for device removal
5957 * @pdev: PCI device that was removed
5958 *
5959 * PCI layer indicates to libata via this hook that hot-unplug or
5960 * module unload event has occurred. Detach all ports. Resource
5961 * release is handled via devres.
5962 *
5963 * LOCKING:
5964 * Inherited from PCI layer (may sleep).
5965 */
5966 void ata_pci_remove_one(struct pci_dev *pdev)
5967 {
5968 struct device *dev = pci_dev_to_dev(pdev);
5969 struct ata_host *host = dev_get_drvdata(dev);
5970
5971 ata_host_detach(host);
5972 }
5973
5974 /* move to PCI subsystem */
5975 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5976 {
5977 unsigned long tmp = 0;
5978
5979 switch (bits->width) {
5980 case 1: {
5981 u8 tmp8 = 0;
5982 pci_read_config_byte(pdev, bits->reg, &tmp8);
5983 tmp = tmp8;
5984 break;
5985 }
5986 case 2: {
5987 u16 tmp16 = 0;
5988 pci_read_config_word(pdev, bits->reg, &tmp16);
5989 tmp = tmp16;
5990 break;
5991 }
5992 case 4: {
5993 u32 tmp32 = 0;
5994 pci_read_config_dword(pdev, bits->reg, &tmp32);
5995 tmp = tmp32;
5996 break;
5997 }
5998
5999 default:
6000 return -EINVAL;
6001 }
6002
6003 tmp &= bits->mask;
6004
6005 return (tmp == bits->val) ? 1 : 0;
6006 }
6007
6008 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6009 {
6010 pci_save_state(pdev);
6011
6012 if (mesg.event == PM_EVENT_SUSPEND) {
6013 pci_disable_device(pdev);
6014 pci_set_power_state(pdev, PCI_D3hot);
6015 }
6016 }
6017
6018 int ata_pci_device_do_resume(struct pci_dev *pdev)
6019 {
6020 int rc;
6021
6022 pci_set_power_state(pdev, PCI_D0);
6023 pci_restore_state(pdev);
6024
6025 rc = pcim_enable_device(pdev);
6026 if (rc) {
6027 dev_printk(KERN_ERR, &pdev->dev,
6028 "failed to enable device after resume (%d)\n", rc);
6029 return rc;
6030 }
6031
6032 pci_set_master(pdev);
6033 return 0;
6034 }
6035
6036 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6037 {
6038 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6039 int rc = 0;
6040
6041 rc = ata_host_suspend(host, mesg);
6042 if (rc)
6043 return rc;
6044
6045 ata_pci_device_do_suspend(pdev, mesg);
6046
6047 return 0;
6048 }
6049
6050 int ata_pci_device_resume(struct pci_dev *pdev)
6051 {
6052 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6053 int rc;
6054
6055 rc = ata_pci_device_do_resume(pdev);
6056 if (rc == 0)
6057 ata_host_resume(host);
6058 return rc;
6059 }
6060 #endif /* CONFIG_PCI */
6061
6062
6063 static int __init ata_init(void)
6064 {
6065 ata_probe_timeout *= HZ;
6066 ata_wq = create_workqueue("ata");
6067 if (!ata_wq)
6068 return -ENOMEM;
6069
6070 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6071 if (!ata_aux_wq) {
6072 destroy_workqueue(ata_wq);
6073 return -ENOMEM;
6074 }
6075
6076 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6077 return 0;
6078 }
6079
6080 static void __exit ata_exit(void)
6081 {
6082 destroy_workqueue(ata_wq);
6083 destroy_workqueue(ata_aux_wq);
6084 }
6085
6086 subsys_initcall(ata_init);
6087 module_exit(ata_exit);
6088
6089 static unsigned long ratelimit_time;
6090 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6091
6092 int ata_ratelimit(void)
6093 {
6094 int rc;
6095 unsigned long flags;
6096
6097 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6098
6099 if (time_after(jiffies, ratelimit_time)) {
6100 rc = 1;
6101 ratelimit_time = jiffies + (HZ/5);
6102 } else
6103 rc = 0;
6104
6105 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6106
6107 return rc;
6108 }
6109
6110 /**
6111 * ata_wait_register - wait until register value changes
6112 * @reg: IO-mapped register
6113 * @mask: Mask to apply to read register value
6114 * @val: Wait condition
6115 * @interval_msec: polling interval in milliseconds
6116 * @timeout_msec: timeout in milliseconds
6117 *
6118 * Waiting for some bits of register to change is a common
6119 * operation for ATA controllers. This function reads 32bit LE
6120 * IO-mapped register @reg and tests for the following condition.
6121 *
6122 * (*@reg & mask) != val
6123 *
6124 * If the condition is met, it returns; otherwise, the process is
6125 * repeated after @interval_msec until timeout.
6126 *
6127 * LOCKING:
6128 * Kernel thread context (may sleep)
6129 *
6130 * RETURNS:
6131 * The final register value.
6132 */
6133 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6134 unsigned long interval_msec,
6135 unsigned long timeout_msec)
6136 {
6137 unsigned long timeout;
6138 u32 tmp;
6139
6140 tmp = ioread32(reg);
6141
6142 /* Calculate timeout _after_ the first read to make sure
6143 * preceding writes reach the controller before starting to
6144 * eat away the timeout.
6145 */
6146 timeout = jiffies + (timeout_msec * HZ) / 1000;
6147
6148 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6149 msleep(interval_msec);
6150 tmp = ioread32(reg);
6151 }
6152
6153 return tmp;
6154 }
6155
6156 /*
6157 * Dummy port_ops
6158 */
6159 static void ata_dummy_noret(struct ata_port *ap) { }
6160 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6161 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6162
6163 static u8 ata_dummy_check_status(struct ata_port *ap)
6164 {
6165 return ATA_DRDY;
6166 }
6167
6168 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6169 {
6170 return AC_ERR_SYSTEM;
6171 }
6172
6173 const struct ata_port_operations ata_dummy_port_ops = {
6174 .port_disable = ata_port_disable,
6175 .check_status = ata_dummy_check_status,
6176 .check_altstatus = ata_dummy_check_status,
6177 .dev_select = ata_noop_dev_select,
6178 .qc_prep = ata_noop_qc_prep,
6179 .qc_issue = ata_dummy_qc_issue,
6180 .freeze = ata_dummy_noret,
6181 .thaw = ata_dummy_noret,
6182 .error_handler = ata_dummy_noret,
6183 .post_internal_cmd = ata_dummy_qc_noret,
6184 .irq_clear = ata_dummy_noret,
6185 .port_start = ata_dummy_ret0,
6186 .port_stop = ata_dummy_noret,
6187 };
6188
6189 /*
6190 * libata is essentially a library of internal helper functions for
6191 * low-level ATA host controller drivers. As such, the API/ABI is
6192 * likely to change as new drivers are added and updated.
6193 * Do not depend on ABI/API stability.
6194 */
6195
6196 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6197 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6198 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6199 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6200 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6201 EXPORT_SYMBOL_GPL(ata_std_ports);
6202 EXPORT_SYMBOL_GPL(ata_host_init);
6203 EXPORT_SYMBOL_GPL(ata_device_add);
6204 EXPORT_SYMBOL_GPL(ata_host_detach);
6205 EXPORT_SYMBOL_GPL(ata_sg_init);
6206 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6207 EXPORT_SYMBOL_GPL(ata_hsm_move);
6208 EXPORT_SYMBOL_GPL(ata_qc_complete);
6209 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6210 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6211 EXPORT_SYMBOL_GPL(ata_tf_load);
6212 EXPORT_SYMBOL_GPL(ata_tf_read);
6213 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6214 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6215 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6216 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6217 EXPORT_SYMBOL_GPL(ata_check_status);
6218 EXPORT_SYMBOL_GPL(ata_altstatus);
6219 EXPORT_SYMBOL_GPL(ata_exec_command);
6220 EXPORT_SYMBOL_GPL(ata_port_start);
6221 EXPORT_SYMBOL_GPL(ata_interrupt);
6222 EXPORT_SYMBOL_GPL(ata_data_xfer);
6223 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6224 EXPORT_SYMBOL_GPL(ata_qc_prep);
6225 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6226 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6227 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6228 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6229 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6230 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6231 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6232 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6233 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6234 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6235 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6236 EXPORT_SYMBOL_GPL(ata_port_probe);
6237 EXPORT_SYMBOL_GPL(sata_set_spd);
6238 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6239 EXPORT_SYMBOL_GPL(sata_phy_resume);
6240 EXPORT_SYMBOL_GPL(sata_phy_reset);
6241 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6242 EXPORT_SYMBOL_GPL(ata_bus_reset);
6243 EXPORT_SYMBOL_GPL(ata_std_prereset);
6244 EXPORT_SYMBOL_GPL(ata_std_softreset);
6245 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6246 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6247 EXPORT_SYMBOL_GPL(ata_std_postreset);
6248 EXPORT_SYMBOL_GPL(ata_dev_classify);
6249 EXPORT_SYMBOL_GPL(ata_dev_pair);
6250 EXPORT_SYMBOL_GPL(ata_port_disable);
6251 EXPORT_SYMBOL_GPL(ata_ratelimit);
6252 EXPORT_SYMBOL_GPL(ata_wait_register);
6253 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6254 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6255 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6256 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6257 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6258 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6259 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6260 EXPORT_SYMBOL_GPL(ata_host_intr);
6261 EXPORT_SYMBOL_GPL(sata_scr_valid);
6262 EXPORT_SYMBOL_GPL(sata_scr_read);
6263 EXPORT_SYMBOL_GPL(sata_scr_write);
6264 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6265 EXPORT_SYMBOL_GPL(ata_port_online);
6266 EXPORT_SYMBOL_GPL(ata_port_offline);
6267 EXPORT_SYMBOL_GPL(ata_host_suspend);
6268 EXPORT_SYMBOL_GPL(ata_host_resume);
6269 EXPORT_SYMBOL_GPL(ata_id_string);
6270 EXPORT_SYMBOL_GPL(ata_id_c_string);
6271 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6272 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6273
6274 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6275 EXPORT_SYMBOL_GPL(ata_timing_compute);
6276 EXPORT_SYMBOL_GPL(ata_timing_merge);
6277
6278 #ifdef CONFIG_PCI
6279 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6280 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6281 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6282 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6283 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6284 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6285 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6286 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6287 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6288 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6289 #endif /* CONFIG_PCI */
6290
6291 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6292 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6293
6294 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6295 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6296 EXPORT_SYMBOL_GPL(ata_port_abort);
6297 EXPORT_SYMBOL_GPL(ata_port_freeze);
6298 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6299 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6300 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6301 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6302 EXPORT_SYMBOL_GPL(ata_do_eh);
6303 EXPORT_SYMBOL_GPL(ata_irq_on);
6304 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6305 EXPORT_SYMBOL_GPL(ata_irq_ack);
6306 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
This page took 0.166409 seconds and 5 git commands to generate.