Add id_to_dma_mode function for printing DMA modes
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
96 int noacpi;
97 module_param(noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104
105
106 /**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120 {
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146 }
147
148 /**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160 {
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175 }
176
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
192 0,
193 0,
194 0,
195 0,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
205 };
206
207 /**
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
211 *
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
214 *
215 * LOCKING:
216 * caller.
217 */
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219 {
220 u8 cmd;
221
222 int index, fua, lba48, write;
223
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
238 }
239
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
246 }
247
248 /**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264 {
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289 }
290
291 /**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314 {
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412 }
413
414 /**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432 {
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436 }
437
438 /**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452 {
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459 }
460
461 static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464 } ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469 };
470
471 /**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485 {
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493 }
494
495 /**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508 {
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515 }
516
517 /**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
530 {
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537 }
538
539 /**
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
542 *
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
552 */
553 static const char *ata_mode_string(unsigned int xfer_mask)
554 {
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
577 int highbit;
578
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
583 }
584
585 static const char *sata_spd_string(unsigned int spd)
586 {
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595 }
596
597 void ata_dev_disable(struct ata_device *dev)
598 {
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
604 }
605 }
606
607 /**
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626 {
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
634
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
637
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
640
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648 }
649
650 /**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667 {
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687 }
688
689 /**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709 */
710
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713 {
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
726
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
737
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
740
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
746 }
747
748 /**
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
765 {
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780 }
781
782 /**
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
798 {
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
803 ata_id_string(id, s, ofs, len - 1);
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809 }
810
811 static u64 ata_id_n_sectors(const u16 *id)
812 {
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824 }
825
826 /**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @mode: mode to assume if we cannot tell
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842 {
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866 }
867
868 /**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881 {
882 }
883
884
885 /**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
895 *
896 * LOCKING:
897 * caller.
898 */
899
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901 {
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
911 }
912
913 /**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934 {
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949 }
950
951 /**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
954 *
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
957 *
958 * LOCKING:
959 * caller.
960 */
961
962 static inline void ata_dump_id(const u16 *id)
963 {
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
988 }
989
990 /**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005 static unsigned int ata_id_xfermask(const u16 *id)
1006 {
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1034
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057 }
1058
1059 /**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1080 {
1081 int rc;
1082
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1085
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1088
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093 }
1094
1095 /**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105 void ata_port_flush_task(struct ata_port *ap)
1106 {
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1128 }
1129
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1133
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1136 }
1137
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1139 {
1140 struct completion *waiting = qc->private_data;
1141
1142 complete(waiting);
1143 }
1144
1145 /**
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1165 */
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1170 {
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1180
1181 spin_lock_irqsave(ap->lock, flags);
1182
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1187 }
1188
1189 /* initialize internal qc */
1190
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1217
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1232 }
1233
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1236
1237 ata_qc_issue(qc);
1238
1239 spin_unlock_irqrestore(ap->lock, flags);
1240
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1242
1243 ata_port_flush_task(ap);
1244
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1252 */
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1260
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1264 }
1265
1266 spin_unlock_irqrestore(ap->lock, flags);
1267 }
1268
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1279 }
1280
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1283
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1286
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1291
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1296 *
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1300 *
1301 * Kill the following code as soon as those drivers are fixed.
1302 */
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1306 }
1307
1308 spin_unlock_irqrestore(ap->lock, flags);
1309
1310 return err_mask;
1311 }
1312
1313 /**
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1321 *
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1324 *
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1327 *
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1330 */
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1334 {
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1337
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1343 }
1344
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1346 }
1347
1348 /**
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1352 *
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1355 *
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1358 *
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1361 */
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1363 {
1364 struct ata_taskfile tf;
1365
1366 ata_tf_init(dev, &tf);
1367
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1371
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1373 }
1374
1375 /**
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1378 *
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1381 */
1382
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384 {
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1387
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1392
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1394
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1403 }
1404 }
1405 return 0;
1406 }
1407
1408 /**
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1414 *
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1419 *
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1422 *
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1425 */
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1428 {
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1435
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1438
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1440
1441 retry:
1442 ata_tf_init(dev, &tf);
1443
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1455 }
1456
1457 tf.protocol = ATA_PROT_PIO;
1458
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1461 */
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1466 */
1467 tf.flags |= ATA_TFLAG_POLLING;
1468
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1476 }
1477
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1481 }
1482
1483 swap_buf_le16(id, ATA_ID_WORDS);
1484
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1488
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1495 }
1496
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1498 /*
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1505 */
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1512 }
1513
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1516 */
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1519 }
1520 }
1521
1522 *p_class = class;
1523
1524 return 0;
1525
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1531 }
1532
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1534 {
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1536 }
1537
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1540 {
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1547 }
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1551 }
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1555 }
1556
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561 }
1562
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564 {
1565 int i;
1566
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1569
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 len = max(len, ap->device[i].cdb_len);
1572
1573 ap->scsi_host->max_cmd_len = len;
1574 }
1575 }
1576
1577 /**
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1580 *
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1583 *
1584 * LOCKING:
1585 * Kernel thread context (may sleep)
1586 *
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
1589 */
1590 int ata_dev_configure(struct ata_device *dev)
1591 {
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1599 int rc;
1600
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
1604 return 0;
1605 }
1606
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1609
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1615 }
1616
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1619
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 __FUNCTION__,
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1628
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1637
1638 /*
1639 * common ATA, ATAPI feature tests
1640 */
1641
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1644
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1647
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1656 }
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1659
1660 dev->n_sectors = ata_id_n_sectors(id);
1661
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 sizeof(fwrevbuf));
1665
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 sizeof(modelbuf));
1668
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1671
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1674 char ncq_desc[20];
1675
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1680 lba_desc = "LBA48";
1681
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1685 }
1686
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1700 }
1701 } else {
1702 /* CHS */
1703
1704 /* Default translation */
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
1708
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1714 }
1715
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1727 }
1728 }
1729
1730 dev->cdb_len = 16;
1731 }
1732
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1736
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1742 rc = -EINVAL;
1743 goto err_out_nosup;
1744 }
1745 dev->cdb_len = (unsigned int) rc;
1746
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1750 }
1751
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1757 }
1758
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1773 }
1774 }
1775
1776 ata_set_port_max_cmd_len(ap);
1777
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev)) {
1780 if (ata_msg_drv(ap) && print_info)
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
1783 dev->udma_mask &= ATA_UDMA5;
1784 dev->max_sectors = ATA_MAX_SECTORS;
1785 }
1786
1787 if (ap->ops->dev_config)
1788 ap->ops->dev_config(ap, dev);
1789
1790 if (ata_msg_probe(ap))
1791 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1792 __FUNCTION__, ata_chk_status(ap));
1793 return 0;
1794
1795 err_out_nosup:
1796 if (ata_msg_probe(ap))
1797 ata_dev_printk(dev, KERN_DEBUG,
1798 "%s: EXIT, err\n", __FUNCTION__);
1799 return rc;
1800 }
1801
1802 /**
1803 * ata_bus_probe - Reset and probe ATA bus
1804 * @ap: Bus to probe
1805 *
1806 * Master ATA bus probing function. Initiates a hardware-dependent
1807 * bus reset, then attempts to identify any devices found on
1808 * the bus.
1809 *
1810 * LOCKING:
1811 * PCI/etc. bus probe sem.
1812 *
1813 * RETURNS:
1814 * Zero on success, negative errno otherwise.
1815 */
1816
1817 int ata_bus_probe(struct ata_port *ap)
1818 {
1819 unsigned int classes[ATA_MAX_DEVICES];
1820 int tries[ATA_MAX_DEVICES];
1821 int i, rc;
1822 struct ata_device *dev;
1823
1824 ata_port_probe(ap);
1825
1826 for (i = 0; i < ATA_MAX_DEVICES; i++)
1827 tries[i] = ATA_PROBE_MAX_TRIES;
1828
1829 retry:
1830 /* reset and determine device classes */
1831 ap->ops->phy_reset(ap);
1832
1833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1834 dev = &ap->device[i];
1835
1836 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1837 dev->class != ATA_DEV_UNKNOWN)
1838 classes[dev->devno] = dev->class;
1839 else
1840 classes[dev->devno] = ATA_DEV_NONE;
1841
1842 dev->class = ATA_DEV_UNKNOWN;
1843 }
1844
1845 ata_port_probe(ap);
1846
1847 /* after the reset the device state is PIO 0 and the controller
1848 state is undefined. Record the mode */
1849
1850 for (i = 0; i < ATA_MAX_DEVICES; i++)
1851 ap->device[i].pio_mode = XFER_PIO_0;
1852
1853 /* read IDENTIFY page and configure devices */
1854 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1855 dev = &ap->device[i];
1856
1857 if (tries[i])
1858 dev->class = classes[i];
1859
1860 if (!ata_dev_enabled(dev))
1861 continue;
1862
1863 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1864 dev->id);
1865 if (rc)
1866 goto fail;
1867
1868 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1869 rc = ata_dev_configure(dev);
1870 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1871 if (rc)
1872 goto fail;
1873 }
1874
1875 /* configure transfer mode */
1876 rc = ata_set_mode(ap, &dev);
1877 if (rc)
1878 goto fail;
1879
1880 for (i = 0; i < ATA_MAX_DEVICES; i++)
1881 if (ata_dev_enabled(&ap->device[i]))
1882 return 0;
1883
1884 /* no device present, disable port */
1885 ata_port_disable(ap);
1886 ap->ops->port_disable(ap);
1887 return -ENODEV;
1888
1889 fail:
1890 tries[dev->devno]--;
1891
1892 switch (rc) {
1893 case -EINVAL:
1894 /* eeek, something went very wrong, give up */
1895 tries[dev->devno] = 0;
1896 break;
1897
1898 case -ENODEV:
1899 /* give it just one more chance */
1900 tries[dev->devno] = min(tries[dev->devno], 1);
1901 case -EIO:
1902 if (tries[dev->devno] == 1) {
1903 /* This is the last chance, better to slow
1904 * down than lose it.
1905 */
1906 sata_down_spd_limit(ap);
1907 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1908 }
1909 }
1910
1911 if (!tries[dev->devno])
1912 ata_dev_disable(dev);
1913
1914 goto retry;
1915 }
1916
1917 /**
1918 * ata_port_probe - Mark port as enabled
1919 * @ap: Port for which we indicate enablement
1920 *
1921 * Modify @ap data structure such that the system
1922 * thinks that the entire port is enabled.
1923 *
1924 * LOCKING: host lock, or some other form of
1925 * serialization.
1926 */
1927
1928 void ata_port_probe(struct ata_port *ap)
1929 {
1930 ap->flags &= ~ATA_FLAG_DISABLED;
1931 }
1932
1933 /**
1934 * sata_print_link_status - Print SATA link status
1935 * @ap: SATA port to printk link status about
1936 *
1937 * This function prints link speed and status of a SATA link.
1938 *
1939 * LOCKING:
1940 * None.
1941 */
1942 static void sata_print_link_status(struct ata_port *ap)
1943 {
1944 u32 sstatus, scontrol, tmp;
1945
1946 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1947 return;
1948 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1949
1950 if (ata_port_online(ap)) {
1951 tmp = (sstatus >> 4) & 0xf;
1952 ata_port_printk(ap, KERN_INFO,
1953 "SATA link up %s (SStatus %X SControl %X)\n",
1954 sata_spd_string(tmp), sstatus, scontrol);
1955 } else {
1956 ata_port_printk(ap, KERN_INFO,
1957 "SATA link down (SStatus %X SControl %X)\n",
1958 sstatus, scontrol);
1959 }
1960 }
1961
1962 /**
1963 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1964 * @ap: SATA port associated with target SATA PHY.
1965 *
1966 * This function issues commands to standard SATA Sxxx
1967 * PHY registers, to wake up the phy (and device), and
1968 * clear any reset condition.
1969 *
1970 * LOCKING:
1971 * PCI/etc. bus probe sem.
1972 *
1973 */
1974 void __sata_phy_reset(struct ata_port *ap)
1975 {
1976 u32 sstatus;
1977 unsigned long timeout = jiffies + (HZ * 5);
1978
1979 if (ap->flags & ATA_FLAG_SATA_RESET) {
1980 /* issue phy wake/reset */
1981 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1982 /* Couldn't find anything in SATA I/II specs, but
1983 * AHCI-1.1 10.4.2 says at least 1 ms. */
1984 mdelay(1);
1985 }
1986 /* phy wake/clear reset */
1987 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1988
1989 /* wait for phy to become ready, if necessary */
1990 do {
1991 msleep(200);
1992 sata_scr_read(ap, SCR_STATUS, &sstatus);
1993 if ((sstatus & 0xf) != 1)
1994 break;
1995 } while (time_before(jiffies, timeout));
1996
1997 /* print link status */
1998 sata_print_link_status(ap);
1999
2000 /* TODO: phy layer with polling, timeouts, etc. */
2001 if (!ata_port_offline(ap))
2002 ata_port_probe(ap);
2003 else
2004 ata_port_disable(ap);
2005
2006 if (ap->flags & ATA_FLAG_DISABLED)
2007 return;
2008
2009 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2010 ata_port_disable(ap);
2011 return;
2012 }
2013
2014 ap->cbl = ATA_CBL_SATA;
2015 }
2016
2017 /**
2018 * sata_phy_reset - Reset SATA bus.
2019 * @ap: SATA port associated with target SATA PHY.
2020 *
2021 * This function resets the SATA bus, and then probes
2022 * the bus for devices.
2023 *
2024 * LOCKING:
2025 * PCI/etc. bus probe sem.
2026 *
2027 */
2028 void sata_phy_reset(struct ata_port *ap)
2029 {
2030 __sata_phy_reset(ap);
2031 if (ap->flags & ATA_FLAG_DISABLED)
2032 return;
2033 ata_bus_reset(ap);
2034 }
2035
2036 /**
2037 * ata_dev_pair - return other device on cable
2038 * @adev: device
2039 *
2040 * Obtain the other device on the same cable, or if none is
2041 * present NULL is returned
2042 */
2043
2044 struct ata_device *ata_dev_pair(struct ata_device *adev)
2045 {
2046 struct ata_port *ap = adev->ap;
2047 struct ata_device *pair = &ap->device[1 - adev->devno];
2048 if (!ata_dev_enabled(pair))
2049 return NULL;
2050 return pair;
2051 }
2052
2053 /**
2054 * ata_port_disable - Disable port.
2055 * @ap: Port to be disabled.
2056 *
2057 * Modify @ap data structure such that the system
2058 * thinks that the entire port is disabled, and should
2059 * never attempt to probe or communicate with devices
2060 * on this port.
2061 *
2062 * LOCKING: host lock, or some other form of
2063 * serialization.
2064 */
2065
2066 void ata_port_disable(struct ata_port *ap)
2067 {
2068 ap->device[0].class = ATA_DEV_NONE;
2069 ap->device[1].class = ATA_DEV_NONE;
2070 ap->flags |= ATA_FLAG_DISABLED;
2071 }
2072
2073 /**
2074 * sata_down_spd_limit - adjust SATA spd limit downward
2075 * @ap: Port to adjust SATA spd limit for
2076 *
2077 * Adjust SATA spd limit of @ap downward. Note that this
2078 * function only adjusts the limit. The change must be applied
2079 * using sata_set_spd().
2080 *
2081 * LOCKING:
2082 * Inherited from caller.
2083 *
2084 * RETURNS:
2085 * 0 on success, negative errno on failure
2086 */
2087 int sata_down_spd_limit(struct ata_port *ap)
2088 {
2089 u32 sstatus, spd, mask;
2090 int rc, highbit;
2091
2092 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2093 if (rc)
2094 return rc;
2095
2096 mask = ap->sata_spd_limit;
2097 if (mask <= 1)
2098 return -EINVAL;
2099 highbit = fls(mask) - 1;
2100 mask &= ~(1 << highbit);
2101
2102 spd = (sstatus >> 4) & 0xf;
2103 if (spd <= 1)
2104 return -EINVAL;
2105 spd--;
2106 mask &= (1 << spd) - 1;
2107 if (!mask)
2108 return -EINVAL;
2109
2110 ap->sata_spd_limit = mask;
2111
2112 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2113 sata_spd_string(fls(mask)));
2114
2115 return 0;
2116 }
2117
2118 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2119 {
2120 u32 spd, limit;
2121
2122 if (ap->sata_spd_limit == UINT_MAX)
2123 limit = 0;
2124 else
2125 limit = fls(ap->sata_spd_limit);
2126
2127 spd = (*scontrol >> 4) & 0xf;
2128 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2129
2130 return spd != limit;
2131 }
2132
2133 /**
2134 * sata_set_spd_needed - is SATA spd configuration needed
2135 * @ap: Port in question
2136 *
2137 * Test whether the spd limit in SControl matches
2138 * @ap->sata_spd_limit. This function is used to determine
2139 * whether hardreset is necessary to apply SATA spd
2140 * configuration.
2141 *
2142 * LOCKING:
2143 * Inherited from caller.
2144 *
2145 * RETURNS:
2146 * 1 if SATA spd configuration is needed, 0 otherwise.
2147 */
2148 int sata_set_spd_needed(struct ata_port *ap)
2149 {
2150 u32 scontrol;
2151
2152 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2153 return 0;
2154
2155 return __sata_set_spd_needed(ap, &scontrol);
2156 }
2157
2158 /**
2159 * sata_set_spd - set SATA spd according to spd limit
2160 * @ap: Port to set SATA spd for
2161 *
2162 * Set SATA spd of @ap according to sata_spd_limit.
2163 *
2164 * LOCKING:
2165 * Inherited from caller.
2166 *
2167 * RETURNS:
2168 * 0 if spd doesn't need to be changed, 1 if spd has been
2169 * changed. Negative errno if SCR registers are inaccessible.
2170 */
2171 int sata_set_spd(struct ata_port *ap)
2172 {
2173 u32 scontrol;
2174 int rc;
2175
2176 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2177 return rc;
2178
2179 if (!__sata_set_spd_needed(ap, &scontrol))
2180 return 0;
2181
2182 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2183 return rc;
2184
2185 return 1;
2186 }
2187
2188 /*
2189 * This mode timing computation functionality is ported over from
2190 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2191 */
2192 /*
2193 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2194 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2195 * for UDMA6, which is currently supported only by Maxtor drives.
2196 *
2197 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2198 */
2199
2200 static const struct ata_timing ata_timing[] = {
2201
2202 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2203 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2204 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2205 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2206
2207 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2208 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2209 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2210 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2211 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2212
2213 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2214
2215 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2216 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2217 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2218
2219 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2220 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2221 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2222
2223 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2224 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2225 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2226 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2227
2228 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2229 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2230 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2231
2232 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2233
2234 { 0xFF }
2235 };
2236
2237 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2238 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2239
2240 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2241 {
2242 q->setup = EZ(t->setup * 1000, T);
2243 q->act8b = EZ(t->act8b * 1000, T);
2244 q->rec8b = EZ(t->rec8b * 1000, T);
2245 q->cyc8b = EZ(t->cyc8b * 1000, T);
2246 q->active = EZ(t->active * 1000, T);
2247 q->recover = EZ(t->recover * 1000, T);
2248 q->cycle = EZ(t->cycle * 1000, T);
2249 q->udma = EZ(t->udma * 1000, UT);
2250 }
2251
2252 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2253 struct ata_timing *m, unsigned int what)
2254 {
2255 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2256 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2257 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2258 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2259 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2260 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2261 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2262 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2263 }
2264
2265 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2266 {
2267 const struct ata_timing *t;
2268
2269 for (t = ata_timing; t->mode != speed; t++)
2270 if (t->mode == 0xFF)
2271 return NULL;
2272 return t;
2273 }
2274
2275 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2276 struct ata_timing *t, int T, int UT)
2277 {
2278 const struct ata_timing *s;
2279 struct ata_timing p;
2280
2281 /*
2282 * Find the mode.
2283 */
2284
2285 if (!(s = ata_timing_find_mode(speed)))
2286 return -EINVAL;
2287
2288 memcpy(t, s, sizeof(*s));
2289
2290 /*
2291 * If the drive is an EIDE drive, it can tell us it needs extended
2292 * PIO/MW_DMA cycle timing.
2293 */
2294
2295 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2296 memset(&p, 0, sizeof(p));
2297 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2298 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2299 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2300 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2301 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2302 }
2303 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2304 }
2305
2306 /*
2307 * Convert the timing to bus clock counts.
2308 */
2309
2310 ata_timing_quantize(t, t, T, UT);
2311
2312 /*
2313 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2314 * S.M.A.R.T * and some other commands. We have to ensure that the
2315 * DMA cycle timing is slower/equal than the fastest PIO timing.
2316 */
2317
2318 if (speed > XFER_PIO_6) {
2319 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2320 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2321 }
2322
2323 /*
2324 * Lengthen active & recovery time so that cycle time is correct.
2325 */
2326
2327 if (t->act8b + t->rec8b < t->cyc8b) {
2328 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2329 t->rec8b = t->cyc8b - t->act8b;
2330 }
2331
2332 if (t->active + t->recover < t->cycle) {
2333 t->active += (t->cycle - (t->active + t->recover)) / 2;
2334 t->recover = t->cycle - t->active;
2335 }
2336
2337 return 0;
2338 }
2339
2340 /**
2341 * ata_down_xfermask_limit - adjust dev xfer masks downward
2342 * @dev: Device to adjust xfer masks
2343 * @sel: ATA_DNXFER_* selector
2344 *
2345 * Adjust xfer masks of @dev downward. Note that this function
2346 * does not apply the change. Invoking ata_set_mode() afterwards
2347 * will apply the limit.
2348 *
2349 * LOCKING:
2350 * Inherited from caller.
2351 *
2352 * RETURNS:
2353 * 0 on success, negative errno on failure
2354 */
2355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2356 {
2357 char buf[32];
2358 unsigned int orig_mask, xfer_mask;
2359 unsigned int pio_mask, mwdma_mask, udma_mask;
2360 int quiet, highbit;
2361
2362 quiet = !!(sel & ATA_DNXFER_QUIET);
2363 sel &= ~ATA_DNXFER_QUIET;
2364
2365 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2366 dev->mwdma_mask,
2367 dev->udma_mask);
2368 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2369
2370 switch (sel) {
2371 case ATA_DNXFER_PIO:
2372 highbit = fls(pio_mask) - 1;
2373 pio_mask &= ~(1 << highbit);
2374 break;
2375
2376 case ATA_DNXFER_DMA:
2377 if (udma_mask) {
2378 highbit = fls(udma_mask) - 1;
2379 udma_mask &= ~(1 << highbit);
2380 if (!udma_mask)
2381 return -ENOENT;
2382 } else if (mwdma_mask) {
2383 highbit = fls(mwdma_mask) - 1;
2384 mwdma_mask &= ~(1 << highbit);
2385 if (!mwdma_mask)
2386 return -ENOENT;
2387 }
2388 break;
2389
2390 case ATA_DNXFER_40C:
2391 udma_mask &= ATA_UDMA_MASK_40C;
2392 break;
2393
2394 case ATA_DNXFER_FORCE_PIO0:
2395 pio_mask &= 1;
2396 case ATA_DNXFER_FORCE_PIO:
2397 mwdma_mask = 0;
2398 udma_mask = 0;
2399 break;
2400
2401 default:
2402 BUG();
2403 }
2404
2405 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2406
2407 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2408 return -ENOENT;
2409
2410 if (!quiet) {
2411 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2412 snprintf(buf, sizeof(buf), "%s:%s",
2413 ata_mode_string(xfer_mask),
2414 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2415 else
2416 snprintf(buf, sizeof(buf), "%s",
2417 ata_mode_string(xfer_mask));
2418
2419 ata_dev_printk(dev, KERN_WARNING,
2420 "limiting speed to %s\n", buf);
2421 }
2422
2423 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2424 &dev->udma_mask);
2425
2426 return 0;
2427 }
2428
2429 static int ata_dev_set_mode(struct ata_device *dev)
2430 {
2431 struct ata_eh_context *ehc = &dev->ap->eh_context;
2432 unsigned int err_mask;
2433 int rc;
2434
2435 dev->flags &= ~ATA_DFLAG_PIO;
2436 if (dev->xfer_shift == ATA_SHIFT_PIO)
2437 dev->flags |= ATA_DFLAG_PIO;
2438
2439 err_mask = ata_dev_set_xfermode(dev);
2440 /* Old CFA may refuse this command, which is just fine */
2441 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2442 err_mask &= ~AC_ERR_DEV;
2443
2444 if (err_mask) {
2445 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2446 "(err_mask=0x%x)\n", err_mask);
2447 return -EIO;
2448 }
2449
2450 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2451 rc = ata_dev_revalidate(dev, 0);
2452 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2453 if (rc)
2454 return rc;
2455
2456 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2457 dev->xfer_shift, (int)dev->xfer_mode);
2458
2459 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2460 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2461 return 0;
2462 }
2463
2464 /**
2465 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2466 * @ap: port on which timings will be programmed
2467 * @r_failed_dev: out paramter for failed device
2468 *
2469 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2470 * ata_set_mode() fails, pointer to the failing device is
2471 * returned in @r_failed_dev.
2472 *
2473 * LOCKING:
2474 * PCI/etc. bus probe sem.
2475 *
2476 * RETURNS:
2477 * 0 on success, negative errno otherwise
2478 */
2479 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2480 {
2481 struct ata_device *dev;
2482 int i, rc = 0, used_dma = 0, found = 0;
2483
2484 /* has private set_mode? */
2485 if (ap->ops->set_mode)
2486 return ap->ops->set_mode(ap, r_failed_dev);
2487
2488 /* step 1: calculate xfer_mask */
2489 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2490 unsigned int pio_mask, dma_mask;
2491
2492 dev = &ap->device[i];
2493
2494 if (!ata_dev_enabled(dev))
2495 continue;
2496
2497 ata_dev_xfermask(dev);
2498
2499 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2500 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2501 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2502 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2503
2504 found = 1;
2505 if (dev->dma_mode)
2506 used_dma = 1;
2507 }
2508 if (!found)
2509 goto out;
2510
2511 /* step 2: always set host PIO timings */
2512 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2513 dev = &ap->device[i];
2514 if (!ata_dev_enabled(dev))
2515 continue;
2516
2517 if (!dev->pio_mode) {
2518 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2519 rc = -EINVAL;
2520 goto out;
2521 }
2522
2523 dev->xfer_mode = dev->pio_mode;
2524 dev->xfer_shift = ATA_SHIFT_PIO;
2525 if (ap->ops->set_piomode)
2526 ap->ops->set_piomode(ap, dev);
2527 }
2528
2529 /* step 3: set host DMA timings */
2530 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2531 dev = &ap->device[i];
2532
2533 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2534 continue;
2535
2536 dev->xfer_mode = dev->dma_mode;
2537 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2538 if (ap->ops->set_dmamode)
2539 ap->ops->set_dmamode(ap, dev);
2540 }
2541
2542 /* step 4: update devices' xfer mode */
2543 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2544 dev = &ap->device[i];
2545
2546 /* don't update suspended devices' xfer mode */
2547 if (!ata_dev_ready(dev))
2548 continue;
2549
2550 rc = ata_dev_set_mode(dev);
2551 if (rc)
2552 goto out;
2553 }
2554
2555 /* Record simplex status. If we selected DMA then the other
2556 * host channels are not permitted to do so.
2557 */
2558 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2559 ap->host->simplex_claimed = 1;
2560
2561 /* step5: chip specific finalisation */
2562 if (ap->ops->post_set_mode)
2563 ap->ops->post_set_mode(ap);
2564
2565 out:
2566 if (rc)
2567 *r_failed_dev = dev;
2568 return rc;
2569 }
2570
2571 /**
2572 * ata_tf_to_host - issue ATA taskfile to host controller
2573 * @ap: port to which command is being issued
2574 * @tf: ATA taskfile register set
2575 *
2576 * Issues ATA taskfile register set to ATA host controller,
2577 * with proper synchronization with interrupt handler and
2578 * other threads.
2579 *
2580 * LOCKING:
2581 * spin_lock_irqsave(host lock)
2582 */
2583
2584 static inline void ata_tf_to_host(struct ata_port *ap,
2585 const struct ata_taskfile *tf)
2586 {
2587 ap->ops->tf_load(ap, tf);
2588 ap->ops->exec_command(ap, tf);
2589 }
2590
2591 /**
2592 * ata_busy_sleep - sleep until BSY clears, or timeout
2593 * @ap: port containing status register to be polled
2594 * @tmout_pat: impatience timeout
2595 * @tmout: overall timeout
2596 *
2597 * Sleep until ATA Status register bit BSY clears,
2598 * or a timeout occurs.
2599 *
2600 * LOCKING:
2601 * Kernel thread context (may sleep).
2602 *
2603 * RETURNS:
2604 * 0 on success, -errno otherwise.
2605 */
2606 int ata_busy_sleep(struct ata_port *ap,
2607 unsigned long tmout_pat, unsigned long tmout)
2608 {
2609 unsigned long timer_start, timeout;
2610 u8 status;
2611
2612 status = ata_busy_wait(ap, ATA_BUSY, 300);
2613 timer_start = jiffies;
2614 timeout = timer_start + tmout_pat;
2615 while (status != 0xff && (status & ATA_BUSY) &&
2616 time_before(jiffies, timeout)) {
2617 msleep(50);
2618 status = ata_busy_wait(ap, ATA_BUSY, 3);
2619 }
2620
2621 if (status != 0xff && (status & ATA_BUSY))
2622 ata_port_printk(ap, KERN_WARNING,
2623 "port is slow to respond, please be patient "
2624 "(Status 0x%x)\n", status);
2625
2626 timeout = timer_start + tmout;
2627 while (status != 0xff && (status & ATA_BUSY) &&
2628 time_before(jiffies, timeout)) {
2629 msleep(50);
2630 status = ata_chk_status(ap);
2631 }
2632
2633 if (status == 0xff)
2634 return -ENODEV;
2635
2636 if (status & ATA_BUSY) {
2637 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2638 "(%lu secs, Status 0x%x)\n",
2639 tmout / HZ, status);
2640 return -EBUSY;
2641 }
2642
2643 return 0;
2644 }
2645
2646 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2647 {
2648 struct ata_ioports *ioaddr = &ap->ioaddr;
2649 unsigned int dev0 = devmask & (1 << 0);
2650 unsigned int dev1 = devmask & (1 << 1);
2651 unsigned long timeout;
2652
2653 /* if device 0 was found in ata_devchk, wait for its
2654 * BSY bit to clear
2655 */
2656 if (dev0)
2657 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2658
2659 /* if device 1 was found in ata_devchk, wait for
2660 * register access, then wait for BSY to clear
2661 */
2662 timeout = jiffies + ATA_TMOUT_BOOT;
2663 while (dev1) {
2664 u8 nsect, lbal;
2665
2666 ap->ops->dev_select(ap, 1);
2667 nsect = ioread8(ioaddr->nsect_addr);
2668 lbal = ioread8(ioaddr->lbal_addr);
2669 if ((nsect == 1) && (lbal == 1))
2670 break;
2671 if (time_after(jiffies, timeout)) {
2672 dev1 = 0;
2673 break;
2674 }
2675 msleep(50); /* give drive a breather */
2676 }
2677 if (dev1)
2678 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2679
2680 /* is all this really necessary? */
2681 ap->ops->dev_select(ap, 0);
2682 if (dev1)
2683 ap->ops->dev_select(ap, 1);
2684 if (dev0)
2685 ap->ops->dev_select(ap, 0);
2686 }
2687
2688 static unsigned int ata_bus_softreset(struct ata_port *ap,
2689 unsigned int devmask)
2690 {
2691 struct ata_ioports *ioaddr = &ap->ioaddr;
2692
2693 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2694
2695 /* software reset. causes dev0 to be selected */
2696 iowrite8(ap->ctl, ioaddr->ctl_addr);
2697 udelay(20); /* FIXME: flush */
2698 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2699 udelay(20); /* FIXME: flush */
2700 iowrite8(ap->ctl, ioaddr->ctl_addr);
2701
2702 /* spec mandates ">= 2ms" before checking status.
2703 * We wait 150ms, because that was the magic delay used for
2704 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2705 * between when the ATA command register is written, and then
2706 * status is checked. Because waiting for "a while" before
2707 * checking status is fine, post SRST, we perform this magic
2708 * delay here as well.
2709 *
2710 * Old drivers/ide uses the 2mS rule and then waits for ready
2711 */
2712 msleep(150);
2713
2714 /* Before we perform post reset processing we want to see if
2715 * the bus shows 0xFF because the odd clown forgets the D7
2716 * pulldown resistor.
2717 */
2718 if (ata_check_status(ap) == 0xFF)
2719 return 0;
2720
2721 ata_bus_post_reset(ap, devmask);
2722
2723 return 0;
2724 }
2725
2726 /**
2727 * ata_bus_reset - reset host port and associated ATA channel
2728 * @ap: port to reset
2729 *
2730 * This is typically the first time we actually start issuing
2731 * commands to the ATA channel. We wait for BSY to clear, then
2732 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2733 * result. Determine what devices, if any, are on the channel
2734 * by looking at the device 0/1 error register. Look at the signature
2735 * stored in each device's taskfile registers, to determine if
2736 * the device is ATA or ATAPI.
2737 *
2738 * LOCKING:
2739 * PCI/etc. bus probe sem.
2740 * Obtains host lock.
2741 *
2742 * SIDE EFFECTS:
2743 * Sets ATA_FLAG_DISABLED if bus reset fails.
2744 */
2745
2746 void ata_bus_reset(struct ata_port *ap)
2747 {
2748 struct ata_ioports *ioaddr = &ap->ioaddr;
2749 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2750 u8 err;
2751 unsigned int dev0, dev1 = 0, devmask = 0;
2752
2753 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2754
2755 /* determine if device 0/1 are present */
2756 if (ap->flags & ATA_FLAG_SATA_RESET)
2757 dev0 = 1;
2758 else {
2759 dev0 = ata_devchk(ap, 0);
2760 if (slave_possible)
2761 dev1 = ata_devchk(ap, 1);
2762 }
2763
2764 if (dev0)
2765 devmask |= (1 << 0);
2766 if (dev1)
2767 devmask |= (1 << 1);
2768
2769 /* select device 0 again */
2770 ap->ops->dev_select(ap, 0);
2771
2772 /* issue bus reset */
2773 if (ap->flags & ATA_FLAG_SRST)
2774 if (ata_bus_softreset(ap, devmask))
2775 goto err_out;
2776
2777 /*
2778 * determine by signature whether we have ATA or ATAPI devices
2779 */
2780 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2781 if ((slave_possible) && (err != 0x81))
2782 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2783
2784 /* re-enable interrupts */
2785 ap->ops->irq_on(ap);
2786
2787 /* is double-select really necessary? */
2788 if (ap->device[1].class != ATA_DEV_NONE)
2789 ap->ops->dev_select(ap, 1);
2790 if (ap->device[0].class != ATA_DEV_NONE)
2791 ap->ops->dev_select(ap, 0);
2792
2793 /* if no devices were detected, disable this port */
2794 if ((ap->device[0].class == ATA_DEV_NONE) &&
2795 (ap->device[1].class == ATA_DEV_NONE))
2796 goto err_out;
2797
2798 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2799 /* set up device control for ATA_FLAG_SATA_RESET */
2800 iowrite8(ap->ctl, ioaddr->ctl_addr);
2801 }
2802
2803 DPRINTK("EXIT\n");
2804 return;
2805
2806 err_out:
2807 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2808 ap->ops->port_disable(ap);
2809
2810 DPRINTK("EXIT\n");
2811 }
2812
2813 /**
2814 * sata_phy_debounce - debounce SATA phy status
2815 * @ap: ATA port to debounce SATA phy status for
2816 * @params: timing parameters { interval, duratinon, timeout } in msec
2817 *
2818 * Make sure SStatus of @ap reaches stable state, determined by
2819 * holding the same value where DET is not 1 for @duration polled
2820 * every @interval, before @timeout. Timeout constraints the
2821 * beginning of the stable state. Because, after hot unplugging,
2822 * DET gets stuck at 1 on some controllers, this functions waits
2823 * until timeout then returns 0 if DET is stable at 1.
2824 *
2825 * LOCKING:
2826 * Kernel thread context (may sleep)
2827 *
2828 * RETURNS:
2829 * 0 on success, -errno on failure.
2830 */
2831 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2832 {
2833 unsigned long interval_msec = params[0];
2834 unsigned long duration = params[1] * HZ / 1000;
2835 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2836 unsigned long last_jiffies;
2837 u32 last, cur;
2838 int rc;
2839
2840 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2841 return rc;
2842 cur &= 0xf;
2843
2844 last = cur;
2845 last_jiffies = jiffies;
2846
2847 while (1) {
2848 msleep(interval_msec);
2849 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2850 return rc;
2851 cur &= 0xf;
2852
2853 /* DET stable? */
2854 if (cur == last) {
2855 if (cur == 1 && time_before(jiffies, timeout))
2856 continue;
2857 if (time_after(jiffies, last_jiffies + duration))
2858 return 0;
2859 continue;
2860 }
2861
2862 /* unstable, start over */
2863 last = cur;
2864 last_jiffies = jiffies;
2865
2866 /* check timeout */
2867 if (time_after(jiffies, timeout))
2868 return -EBUSY;
2869 }
2870 }
2871
2872 /**
2873 * sata_phy_resume - resume SATA phy
2874 * @ap: ATA port to resume SATA phy for
2875 * @params: timing parameters { interval, duratinon, timeout } in msec
2876 *
2877 * Resume SATA phy of @ap and debounce it.
2878 *
2879 * LOCKING:
2880 * Kernel thread context (may sleep)
2881 *
2882 * RETURNS:
2883 * 0 on success, -errno on failure.
2884 */
2885 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2886 {
2887 u32 scontrol;
2888 int rc;
2889
2890 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2891 return rc;
2892
2893 scontrol = (scontrol & 0x0f0) | 0x300;
2894
2895 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2896 return rc;
2897
2898 /* Some PHYs react badly if SStatus is pounded immediately
2899 * after resuming. Delay 200ms before debouncing.
2900 */
2901 msleep(200);
2902
2903 return sata_phy_debounce(ap, params);
2904 }
2905
2906 static void ata_wait_spinup(struct ata_port *ap)
2907 {
2908 struct ata_eh_context *ehc = &ap->eh_context;
2909 unsigned long end, secs;
2910 int rc;
2911
2912 /* first, debounce phy if SATA */
2913 if (ap->cbl == ATA_CBL_SATA) {
2914 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2915
2916 /* if debounced successfully and offline, no need to wait */
2917 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2918 return;
2919 }
2920
2921 /* okay, let's give the drive time to spin up */
2922 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2923 secs = ((end - jiffies) + HZ - 1) / HZ;
2924
2925 if (time_after(jiffies, end))
2926 return;
2927
2928 if (secs > 5)
2929 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2930 "(%lu secs)\n", secs);
2931
2932 schedule_timeout_uninterruptible(end - jiffies);
2933 }
2934
2935 /**
2936 * ata_std_prereset - prepare for reset
2937 * @ap: ATA port to be reset
2938 *
2939 * @ap is about to be reset. Initialize it.
2940 *
2941 * LOCKING:
2942 * Kernel thread context (may sleep)
2943 *
2944 * RETURNS:
2945 * 0 on success, -errno otherwise.
2946 */
2947 int ata_std_prereset(struct ata_port *ap)
2948 {
2949 struct ata_eh_context *ehc = &ap->eh_context;
2950 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2951 int rc;
2952
2953 /* handle link resume & hotplug spinup */
2954 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2955 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2956 ehc->i.action |= ATA_EH_HARDRESET;
2957
2958 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2959 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2960 ata_wait_spinup(ap);
2961
2962 /* if we're about to do hardreset, nothing more to do */
2963 if (ehc->i.action & ATA_EH_HARDRESET)
2964 return 0;
2965
2966 /* if SATA, resume phy */
2967 if (ap->cbl == ATA_CBL_SATA) {
2968 rc = sata_phy_resume(ap, timing);
2969 if (rc && rc != -EOPNOTSUPP) {
2970 /* phy resume failed */
2971 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2972 "link for reset (errno=%d)\n", rc);
2973 return rc;
2974 }
2975 }
2976
2977 /* Wait for !BSY if the controller can wait for the first D2H
2978 * Reg FIS and we don't know that no device is attached.
2979 */
2980 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2981 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2982
2983 return 0;
2984 }
2985
2986 /**
2987 * ata_std_softreset - reset host port via ATA SRST
2988 * @ap: port to reset
2989 * @classes: resulting classes of attached devices
2990 *
2991 * Reset host port using ATA SRST.
2992 *
2993 * LOCKING:
2994 * Kernel thread context (may sleep)
2995 *
2996 * RETURNS:
2997 * 0 on success, -errno otherwise.
2998 */
2999 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3000 {
3001 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3002 unsigned int devmask = 0, err_mask;
3003 u8 err;
3004
3005 DPRINTK("ENTER\n");
3006
3007 if (ata_port_offline(ap)) {
3008 classes[0] = ATA_DEV_NONE;
3009 goto out;
3010 }
3011
3012 /* determine if device 0/1 are present */
3013 if (ata_devchk(ap, 0))
3014 devmask |= (1 << 0);
3015 if (slave_possible && ata_devchk(ap, 1))
3016 devmask |= (1 << 1);
3017
3018 /* select device 0 again */
3019 ap->ops->dev_select(ap, 0);
3020
3021 /* issue bus reset */
3022 DPRINTK("about to softreset, devmask=%x\n", devmask);
3023 err_mask = ata_bus_softreset(ap, devmask);
3024 if (err_mask) {
3025 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3026 err_mask);
3027 return -EIO;
3028 }
3029
3030 /* determine by signature whether we have ATA or ATAPI devices */
3031 classes[0] = ata_dev_try_classify(ap, 0, &err);
3032 if (slave_possible && err != 0x81)
3033 classes[1] = ata_dev_try_classify(ap, 1, &err);
3034
3035 out:
3036 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3037 return 0;
3038 }
3039
3040 /**
3041 * sata_port_hardreset - reset port via SATA phy reset
3042 * @ap: port to reset
3043 * @timing: timing parameters { interval, duratinon, timeout } in msec
3044 *
3045 * SATA phy-reset host port using DET bits of SControl register.
3046 *
3047 * LOCKING:
3048 * Kernel thread context (may sleep)
3049 *
3050 * RETURNS:
3051 * 0 on success, -errno otherwise.
3052 */
3053 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3054 {
3055 u32 scontrol;
3056 int rc;
3057
3058 DPRINTK("ENTER\n");
3059
3060 if (sata_set_spd_needed(ap)) {
3061 /* SATA spec says nothing about how to reconfigure
3062 * spd. To be on the safe side, turn off phy during
3063 * reconfiguration. This works for at least ICH7 AHCI
3064 * and Sil3124.
3065 */
3066 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3067 goto out;
3068
3069 scontrol = (scontrol & 0x0f0) | 0x304;
3070
3071 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3072 goto out;
3073
3074 sata_set_spd(ap);
3075 }
3076
3077 /* issue phy wake/reset */
3078 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3079 goto out;
3080
3081 scontrol = (scontrol & 0x0f0) | 0x301;
3082
3083 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3084 goto out;
3085
3086 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3087 * 10.4.2 says at least 1 ms.
3088 */
3089 msleep(1);
3090
3091 /* bring phy back */
3092 rc = sata_phy_resume(ap, timing);
3093 out:
3094 DPRINTK("EXIT, rc=%d\n", rc);
3095 return rc;
3096 }
3097
3098 /**
3099 * sata_std_hardreset - reset host port via SATA phy reset
3100 * @ap: port to reset
3101 * @class: resulting class of attached device
3102 *
3103 * SATA phy-reset host port using DET bits of SControl register,
3104 * wait for !BSY and classify the attached device.
3105 *
3106 * LOCKING:
3107 * Kernel thread context (may sleep)
3108 *
3109 * RETURNS:
3110 * 0 on success, -errno otherwise.
3111 */
3112 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3113 {
3114 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3115 int rc;
3116
3117 DPRINTK("ENTER\n");
3118
3119 /* do hardreset */
3120 rc = sata_port_hardreset(ap, timing);
3121 if (rc) {
3122 ata_port_printk(ap, KERN_ERR,
3123 "COMRESET failed (errno=%d)\n", rc);
3124 return rc;
3125 }
3126
3127 /* TODO: phy layer with polling, timeouts, etc. */
3128 if (ata_port_offline(ap)) {
3129 *class = ATA_DEV_NONE;
3130 DPRINTK("EXIT, link offline\n");
3131 return 0;
3132 }
3133
3134 /* wait a while before checking status, see SRST for more info */
3135 msleep(150);
3136
3137 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3138 ata_port_printk(ap, KERN_ERR,
3139 "COMRESET failed (device not ready)\n");
3140 return -EIO;
3141 }
3142
3143 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3144
3145 *class = ata_dev_try_classify(ap, 0, NULL);
3146
3147 DPRINTK("EXIT, class=%u\n", *class);
3148 return 0;
3149 }
3150
3151 /**
3152 * ata_std_postreset - standard postreset callback
3153 * @ap: the target ata_port
3154 * @classes: classes of attached devices
3155 *
3156 * This function is invoked after a successful reset. Note that
3157 * the device might have been reset more than once using
3158 * different reset methods before postreset is invoked.
3159 *
3160 * LOCKING:
3161 * Kernel thread context (may sleep)
3162 */
3163 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3164 {
3165 u32 serror;
3166
3167 DPRINTK("ENTER\n");
3168
3169 /* print link status */
3170 sata_print_link_status(ap);
3171
3172 /* clear SError */
3173 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3174 sata_scr_write(ap, SCR_ERROR, serror);
3175
3176 /* re-enable interrupts */
3177 if (!ap->ops->error_handler)
3178 ap->ops->irq_on(ap);
3179
3180 /* is double-select really necessary? */
3181 if (classes[0] != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 1);
3183 if (classes[1] != ATA_DEV_NONE)
3184 ap->ops->dev_select(ap, 0);
3185
3186 /* bail out if no device is present */
3187 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3188 DPRINTK("EXIT, no device\n");
3189 return;
3190 }
3191
3192 /* set up device control */
3193 if (ap->ioaddr.ctl_addr)
3194 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3195
3196 DPRINTK("EXIT\n");
3197 }
3198
3199 /**
3200 * ata_dev_same_device - Determine whether new ID matches configured device
3201 * @dev: device to compare against
3202 * @new_class: class of the new device
3203 * @new_id: IDENTIFY page of the new device
3204 *
3205 * Compare @new_class and @new_id against @dev and determine
3206 * whether @dev is the device indicated by @new_class and
3207 * @new_id.
3208 *
3209 * LOCKING:
3210 * None.
3211 *
3212 * RETURNS:
3213 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3214 */
3215 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3216 const u16 *new_id)
3217 {
3218 const u16 *old_id = dev->id;
3219 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3220 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3221 u64 new_n_sectors;
3222
3223 if (dev->class != new_class) {
3224 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3225 dev->class, new_class);
3226 return 0;
3227 }
3228
3229 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3230 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3231 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3232 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3233 new_n_sectors = ata_id_n_sectors(new_id);
3234
3235 if (strcmp(model[0], model[1])) {
3236 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3237 "'%s' != '%s'\n", model[0], model[1]);
3238 return 0;
3239 }
3240
3241 if (strcmp(serial[0], serial[1])) {
3242 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3243 "'%s' != '%s'\n", serial[0], serial[1]);
3244 return 0;
3245 }
3246
3247 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3248 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3249 "%llu != %llu\n",
3250 (unsigned long long)dev->n_sectors,
3251 (unsigned long long)new_n_sectors);
3252 return 0;
3253 }
3254
3255 return 1;
3256 }
3257
3258 /**
3259 * ata_dev_revalidate - Revalidate ATA device
3260 * @dev: device to revalidate
3261 * @readid_flags: read ID flags
3262 *
3263 * Re-read IDENTIFY page and make sure @dev is still attached to
3264 * the port.
3265 *
3266 * LOCKING:
3267 * Kernel thread context (may sleep)
3268 *
3269 * RETURNS:
3270 * 0 on success, negative errno otherwise
3271 */
3272 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3273 {
3274 unsigned int class = dev->class;
3275 u16 *id = (void *)dev->ap->sector_buf;
3276 int rc;
3277
3278 if (!ata_dev_enabled(dev)) {
3279 rc = -ENODEV;
3280 goto fail;
3281 }
3282
3283 /* read ID data */
3284 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3285 if (rc)
3286 goto fail;
3287
3288 /* is the device still there? */
3289 if (!ata_dev_same_device(dev, class, id)) {
3290 rc = -ENODEV;
3291 goto fail;
3292 }
3293
3294 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3295
3296 /* configure device according to the new ID */
3297 rc = ata_dev_configure(dev);
3298 if (rc == 0)
3299 return 0;
3300
3301 fail:
3302 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3303 return rc;
3304 }
3305
3306 struct ata_blacklist_entry {
3307 const char *model_num;
3308 const char *model_rev;
3309 unsigned long horkage;
3310 };
3311
3312 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3313 /* Devices with DMA related problems under Linux */
3314 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3315 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3316 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3317 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3318 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3319 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3320 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3321 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3322 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3323 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3324 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3325 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3326 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3327 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3328 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3329 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3330 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3331 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3332 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3333 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3334 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3335 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3336 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3337 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3338 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3339 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3340 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3341 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3342 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3343
3344 /* Devices we expect to fail diagnostics */
3345
3346 /* Devices where NCQ should be avoided */
3347 /* NCQ is slow */
3348 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3349
3350 /* Devices with NCQ limits */
3351
3352 /* End Marker */
3353 { }
3354 };
3355
3356 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3357 {
3358 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3359 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3360 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3361
3362 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3363 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3364
3365 while (ad->model_num) {
3366 if (!strcmp(ad->model_num, model_num)) {
3367 if (ad->model_rev == NULL)
3368 return ad->horkage;
3369 if (!strcmp(ad->model_rev, model_rev))
3370 return ad->horkage;
3371 }
3372 ad++;
3373 }
3374 return 0;
3375 }
3376
3377 static int ata_dma_blacklisted(const struct ata_device *dev)
3378 {
3379 /* We don't support polling DMA.
3380 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3381 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3382 */
3383 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3384 (dev->flags & ATA_DFLAG_CDB_INTR))
3385 return 1;
3386 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3387 }
3388
3389 /**
3390 * ata_dev_xfermask - Compute supported xfermask of the given device
3391 * @dev: Device to compute xfermask for
3392 *
3393 * Compute supported xfermask of @dev and store it in
3394 * dev->*_mask. This function is responsible for applying all
3395 * known limits including host controller limits, device
3396 * blacklist, etc...
3397 *
3398 * LOCKING:
3399 * None.
3400 */
3401 static void ata_dev_xfermask(struct ata_device *dev)
3402 {
3403 struct ata_port *ap = dev->ap;
3404 struct ata_host *host = ap->host;
3405 unsigned long xfer_mask;
3406
3407 /* controller modes available */
3408 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3409 ap->mwdma_mask, ap->udma_mask);
3410
3411 /* Apply cable rule here. Don't apply it early because when
3412 * we handle hot plug the cable type can itself change.
3413 */
3414 if (ap->cbl == ATA_CBL_PATA40)
3415 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3416 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3417 * host side are checked drive side as well. Cases where we know a
3418 * 40wire cable is used safely for 80 are not checked here.
3419 */
3420 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3421 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3422
3423
3424 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3425 dev->mwdma_mask, dev->udma_mask);
3426 xfer_mask &= ata_id_xfermask(dev->id);
3427
3428 /*
3429 * CFA Advanced TrueIDE timings are not allowed on a shared
3430 * cable
3431 */
3432 if (ata_dev_pair(dev)) {
3433 /* No PIO5 or PIO6 */
3434 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3435 /* No MWDMA3 or MWDMA 4 */
3436 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3437 }
3438
3439 if (ata_dma_blacklisted(dev)) {
3440 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3441 ata_dev_printk(dev, KERN_WARNING,
3442 "device is on DMA blacklist, disabling DMA\n");
3443 }
3444
3445 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3446 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3447 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3448 "other device, disabling DMA\n");
3449 }
3450
3451 if (ap->ops->mode_filter)
3452 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3453
3454 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3455 &dev->mwdma_mask, &dev->udma_mask);
3456 }
3457
3458 /**
3459 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3460 * @dev: Device to which command will be sent
3461 *
3462 * Issue SET FEATURES - XFER MODE command to device @dev
3463 * on port @ap.
3464 *
3465 * LOCKING:
3466 * PCI/etc. bus probe sem.
3467 *
3468 * RETURNS:
3469 * 0 on success, AC_ERR_* mask otherwise.
3470 */
3471
3472 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3473 {
3474 struct ata_taskfile tf;
3475 unsigned int err_mask;
3476
3477 /* set up set-features taskfile */
3478 DPRINTK("set features - xfer mode\n");
3479
3480 ata_tf_init(dev, &tf);
3481 tf.command = ATA_CMD_SET_FEATURES;
3482 tf.feature = SETFEATURES_XFER;
3483 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3484 tf.protocol = ATA_PROT_NODATA;
3485 tf.nsect = dev->xfer_mode;
3486
3487 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3488
3489 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3490 return err_mask;
3491 }
3492
3493 /**
3494 * ata_dev_init_params - Issue INIT DEV PARAMS command
3495 * @dev: Device to which command will be sent
3496 * @heads: Number of heads (taskfile parameter)
3497 * @sectors: Number of sectors (taskfile parameter)
3498 *
3499 * LOCKING:
3500 * Kernel thread context (may sleep)
3501 *
3502 * RETURNS:
3503 * 0 on success, AC_ERR_* mask otherwise.
3504 */
3505 static unsigned int ata_dev_init_params(struct ata_device *dev,
3506 u16 heads, u16 sectors)
3507 {
3508 struct ata_taskfile tf;
3509 unsigned int err_mask;
3510
3511 /* Number of sectors per track 1-255. Number of heads 1-16 */
3512 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3513 return AC_ERR_INVALID;
3514
3515 /* set up init dev params taskfile */
3516 DPRINTK("init dev params \n");
3517
3518 ata_tf_init(dev, &tf);
3519 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3520 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3521 tf.protocol = ATA_PROT_NODATA;
3522 tf.nsect = sectors;
3523 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3524
3525 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3526
3527 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3528 return err_mask;
3529 }
3530
3531 /**
3532 * ata_sg_clean - Unmap DMA memory associated with command
3533 * @qc: Command containing DMA memory to be released
3534 *
3535 * Unmap all mapped DMA memory associated with this command.
3536 *
3537 * LOCKING:
3538 * spin_lock_irqsave(host lock)
3539 */
3540 void ata_sg_clean(struct ata_queued_cmd *qc)
3541 {
3542 struct ata_port *ap = qc->ap;
3543 struct scatterlist *sg = qc->__sg;
3544 int dir = qc->dma_dir;
3545 void *pad_buf = NULL;
3546
3547 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3548 WARN_ON(sg == NULL);
3549
3550 if (qc->flags & ATA_QCFLAG_SINGLE)
3551 WARN_ON(qc->n_elem > 1);
3552
3553 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3554
3555 /* if we padded the buffer out to 32-bit bound, and data
3556 * xfer direction is from-device, we must copy from the
3557 * pad buffer back into the supplied buffer
3558 */
3559 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3560 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3561
3562 if (qc->flags & ATA_QCFLAG_SG) {
3563 if (qc->n_elem)
3564 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3565 /* restore last sg */
3566 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3567 if (pad_buf) {
3568 struct scatterlist *psg = &qc->pad_sgent;
3569 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3570 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3571 kunmap_atomic(addr, KM_IRQ0);
3572 }
3573 } else {
3574 if (qc->n_elem)
3575 dma_unmap_single(ap->dev,
3576 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3577 dir);
3578 /* restore sg */
3579 sg->length += qc->pad_len;
3580 if (pad_buf)
3581 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3582 pad_buf, qc->pad_len);
3583 }
3584
3585 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3586 qc->__sg = NULL;
3587 }
3588
3589 /**
3590 * ata_fill_sg - Fill PCI IDE PRD table
3591 * @qc: Metadata associated with taskfile to be transferred
3592 *
3593 * Fill PCI IDE PRD (scatter-gather) table with segments
3594 * associated with the current disk command.
3595 *
3596 * LOCKING:
3597 * spin_lock_irqsave(host lock)
3598 *
3599 */
3600 static void ata_fill_sg(struct ata_queued_cmd *qc)
3601 {
3602 struct ata_port *ap = qc->ap;
3603 struct scatterlist *sg;
3604 unsigned int idx;
3605
3606 WARN_ON(qc->__sg == NULL);
3607 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3608
3609 idx = 0;
3610 ata_for_each_sg(sg, qc) {
3611 u32 addr, offset;
3612 u32 sg_len, len;
3613
3614 /* determine if physical DMA addr spans 64K boundary.
3615 * Note h/w doesn't support 64-bit, so we unconditionally
3616 * truncate dma_addr_t to u32.
3617 */
3618 addr = (u32) sg_dma_address(sg);
3619 sg_len = sg_dma_len(sg);
3620
3621 while (sg_len) {
3622 offset = addr & 0xffff;
3623 len = sg_len;
3624 if ((offset + sg_len) > 0x10000)
3625 len = 0x10000 - offset;
3626
3627 ap->prd[idx].addr = cpu_to_le32(addr);
3628 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3629 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3630
3631 idx++;
3632 sg_len -= len;
3633 addr += len;
3634 }
3635 }
3636
3637 if (idx)
3638 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3639 }
3640 /**
3641 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3642 * @qc: Metadata associated with taskfile to check
3643 *
3644 * Allow low-level driver to filter ATA PACKET commands, returning
3645 * a status indicating whether or not it is OK to use DMA for the
3646 * supplied PACKET command.
3647 *
3648 * LOCKING:
3649 * spin_lock_irqsave(host lock)
3650 *
3651 * RETURNS: 0 when ATAPI DMA can be used
3652 * nonzero otherwise
3653 */
3654 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3655 {
3656 struct ata_port *ap = qc->ap;
3657 int rc = 0; /* Assume ATAPI DMA is OK by default */
3658
3659 if (ap->ops->check_atapi_dma)
3660 rc = ap->ops->check_atapi_dma(qc);
3661
3662 return rc;
3663 }
3664 /**
3665 * ata_qc_prep - Prepare taskfile for submission
3666 * @qc: Metadata associated with taskfile to be prepared
3667 *
3668 * Prepare ATA taskfile for submission.
3669 *
3670 * LOCKING:
3671 * spin_lock_irqsave(host lock)
3672 */
3673 void ata_qc_prep(struct ata_queued_cmd *qc)
3674 {
3675 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3676 return;
3677
3678 ata_fill_sg(qc);
3679 }
3680
3681 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3682
3683 /**
3684 * ata_sg_init_one - Associate command with memory buffer
3685 * @qc: Command to be associated
3686 * @buf: Memory buffer
3687 * @buflen: Length of memory buffer, in bytes.
3688 *
3689 * Initialize the data-related elements of queued_cmd @qc
3690 * to point to a single memory buffer, @buf of byte length @buflen.
3691 *
3692 * LOCKING:
3693 * spin_lock_irqsave(host lock)
3694 */
3695
3696 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3697 {
3698 qc->flags |= ATA_QCFLAG_SINGLE;
3699
3700 qc->__sg = &qc->sgent;
3701 qc->n_elem = 1;
3702 qc->orig_n_elem = 1;
3703 qc->buf_virt = buf;
3704 qc->nbytes = buflen;
3705
3706 sg_init_one(&qc->sgent, buf, buflen);
3707 }
3708
3709 /**
3710 * ata_sg_init - Associate command with scatter-gather table.
3711 * @qc: Command to be associated
3712 * @sg: Scatter-gather table.
3713 * @n_elem: Number of elements in s/g table.
3714 *
3715 * Initialize the data-related elements of queued_cmd @qc
3716 * to point to a scatter-gather table @sg, containing @n_elem
3717 * elements.
3718 *
3719 * LOCKING:
3720 * spin_lock_irqsave(host lock)
3721 */
3722
3723 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3724 unsigned int n_elem)
3725 {
3726 qc->flags |= ATA_QCFLAG_SG;
3727 qc->__sg = sg;
3728 qc->n_elem = n_elem;
3729 qc->orig_n_elem = n_elem;
3730 }
3731
3732 /**
3733 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3734 * @qc: Command with memory buffer to be mapped.
3735 *
3736 * DMA-map the memory buffer associated with queued_cmd @qc.
3737 *
3738 * LOCKING:
3739 * spin_lock_irqsave(host lock)
3740 *
3741 * RETURNS:
3742 * Zero on success, negative on error.
3743 */
3744
3745 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3746 {
3747 struct ata_port *ap = qc->ap;
3748 int dir = qc->dma_dir;
3749 struct scatterlist *sg = qc->__sg;
3750 dma_addr_t dma_address;
3751 int trim_sg = 0;
3752
3753 /* we must lengthen transfers to end on a 32-bit boundary */
3754 qc->pad_len = sg->length & 3;
3755 if (qc->pad_len) {
3756 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3757 struct scatterlist *psg = &qc->pad_sgent;
3758
3759 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3760
3761 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3762
3763 if (qc->tf.flags & ATA_TFLAG_WRITE)
3764 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3765 qc->pad_len);
3766
3767 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3768 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3769 /* trim sg */
3770 sg->length -= qc->pad_len;
3771 if (sg->length == 0)
3772 trim_sg = 1;
3773
3774 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3775 sg->length, qc->pad_len);
3776 }
3777
3778 if (trim_sg) {
3779 qc->n_elem--;
3780 goto skip_map;
3781 }
3782
3783 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3784 sg->length, dir);
3785 if (dma_mapping_error(dma_address)) {
3786 /* restore sg */
3787 sg->length += qc->pad_len;
3788 return -1;
3789 }
3790
3791 sg_dma_address(sg) = dma_address;
3792 sg_dma_len(sg) = sg->length;
3793
3794 skip_map:
3795 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3796 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3797
3798 return 0;
3799 }
3800
3801 /**
3802 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3803 * @qc: Command with scatter-gather table to be mapped.
3804 *
3805 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3806 *
3807 * LOCKING:
3808 * spin_lock_irqsave(host lock)
3809 *
3810 * RETURNS:
3811 * Zero on success, negative on error.
3812 *
3813 */
3814
3815 static int ata_sg_setup(struct ata_queued_cmd *qc)
3816 {
3817 struct ata_port *ap = qc->ap;
3818 struct scatterlist *sg = qc->__sg;
3819 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3820 int n_elem, pre_n_elem, dir, trim_sg = 0;
3821
3822 VPRINTK("ENTER, ata%u\n", ap->print_id);
3823 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3824
3825 /* we must lengthen transfers to end on a 32-bit boundary */
3826 qc->pad_len = lsg->length & 3;
3827 if (qc->pad_len) {
3828 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3829 struct scatterlist *psg = &qc->pad_sgent;
3830 unsigned int offset;
3831
3832 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3833
3834 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3835
3836 /*
3837 * psg->page/offset are used to copy to-be-written
3838 * data in this function or read data in ata_sg_clean.
3839 */
3840 offset = lsg->offset + lsg->length - qc->pad_len;
3841 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3842 psg->offset = offset_in_page(offset);
3843
3844 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3845 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3846 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3847 kunmap_atomic(addr, KM_IRQ0);
3848 }
3849
3850 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3851 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3852 /* trim last sg */
3853 lsg->length -= qc->pad_len;
3854 if (lsg->length == 0)
3855 trim_sg = 1;
3856
3857 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3858 qc->n_elem - 1, lsg->length, qc->pad_len);
3859 }
3860
3861 pre_n_elem = qc->n_elem;
3862 if (trim_sg && pre_n_elem)
3863 pre_n_elem--;
3864
3865 if (!pre_n_elem) {
3866 n_elem = 0;
3867 goto skip_map;
3868 }
3869
3870 dir = qc->dma_dir;
3871 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3872 if (n_elem < 1) {
3873 /* restore last sg */
3874 lsg->length += qc->pad_len;
3875 return -1;
3876 }
3877
3878 DPRINTK("%d sg elements mapped\n", n_elem);
3879
3880 skip_map:
3881 qc->n_elem = n_elem;
3882
3883 return 0;
3884 }
3885
3886 /**
3887 * swap_buf_le16 - swap halves of 16-bit words in place
3888 * @buf: Buffer to swap
3889 * @buf_words: Number of 16-bit words in buffer.
3890 *
3891 * Swap halves of 16-bit words if needed to convert from
3892 * little-endian byte order to native cpu byte order, or
3893 * vice-versa.
3894 *
3895 * LOCKING:
3896 * Inherited from caller.
3897 */
3898 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3899 {
3900 #ifdef __BIG_ENDIAN
3901 unsigned int i;
3902
3903 for (i = 0; i < buf_words; i++)
3904 buf[i] = le16_to_cpu(buf[i]);
3905 #endif /* __BIG_ENDIAN */
3906 }
3907
3908 /**
3909 * ata_data_xfer - Transfer data by PIO
3910 * @adev: device to target
3911 * @buf: data buffer
3912 * @buflen: buffer length
3913 * @write_data: read/write
3914 *
3915 * Transfer data from/to the device data register by PIO.
3916 *
3917 * LOCKING:
3918 * Inherited from caller.
3919 */
3920 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3921 unsigned int buflen, int write_data)
3922 {
3923 struct ata_port *ap = adev->ap;
3924 unsigned int words = buflen >> 1;
3925
3926 /* Transfer multiple of 2 bytes */
3927 if (write_data)
3928 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3929 else
3930 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3931
3932 /* Transfer trailing 1 byte, if any. */
3933 if (unlikely(buflen & 0x01)) {
3934 u16 align_buf[1] = { 0 };
3935 unsigned char *trailing_buf = buf + buflen - 1;
3936
3937 if (write_data) {
3938 memcpy(align_buf, trailing_buf, 1);
3939 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3940 } else {
3941 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3942 memcpy(trailing_buf, align_buf, 1);
3943 }
3944 }
3945 }
3946
3947 /**
3948 * ata_data_xfer_noirq - Transfer data by PIO
3949 * @adev: device to target
3950 * @buf: data buffer
3951 * @buflen: buffer length
3952 * @write_data: read/write
3953 *
3954 * Transfer data from/to the device data register by PIO. Do the
3955 * transfer with interrupts disabled.
3956 *
3957 * LOCKING:
3958 * Inherited from caller.
3959 */
3960 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3961 unsigned int buflen, int write_data)
3962 {
3963 unsigned long flags;
3964 local_irq_save(flags);
3965 ata_data_xfer(adev, buf, buflen, write_data);
3966 local_irq_restore(flags);
3967 }
3968
3969
3970 /**
3971 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3972 * @qc: Command on going
3973 *
3974 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3975 *
3976 * LOCKING:
3977 * Inherited from caller.
3978 */
3979
3980 static void ata_pio_sector(struct ata_queued_cmd *qc)
3981 {
3982 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3983 struct scatterlist *sg = qc->__sg;
3984 struct ata_port *ap = qc->ap;
3985 struct page *page;
3986 unsigned int offset;
3987 unsigned char *buf;
3988
3989 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
3990 ap->hsm_task_state = HSM_ST_LAST;
3991
3992 page = sg[qc->cursg].page;
3993 offset = sg[qc->cursg].offset + qc->cursg_ofs;
3994
3995 /* get the current page and offset */
3996 page = nth_page(page, (offset >> PAGE_SHIFT));
3997 offset %= PAGE_SIZE;
3998
3999 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4000
4001 if (PageHighMem(page)) {
4002 unsigned long flags;
4003
4004 /* FIXME: use a bounce buffer */
4005 local_irq_save(flags);
4006 buf = kmap_atomic(page, KM_IRQ0);
4007
4008 /* do the actual data transfer */
4009 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4010
4011 kunmap_atomic(buf, KM_IRQ0);
4012 local_irq_restore(flags);
4013 } else {
4014 buf = page_address(page);
4015 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4016 }
4017
4018 qc->curbytes += ATA_SECT_SIZE;
4019 qc->cursg_ofs += ATA_SECT_SIZE;
4020
4021 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4022 qc->cursg++;
4023 qc->cursg_ofs = 0;
4024 }
4025 }
4026
4027 /**
4028 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4029 * @qc: Command on going
4030 *
4031 * Transfer one or many ATA_SECT_SIZE of data from/to the
4032 * ATA device for the DRQ request.
4033 *
4034 * LOCKING:
4035 * Inherited from caller.
4036 */
4037
4038 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4039 {
4040 if (is_multi_taskfile(&qc->tf)) {
4041 /* READ/WRITE MULTIPLE */
4042 unsigned int nsect;
4043
4044 WARN_ON(qc->dev->multi_count == 0);
4045
4046 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4047 qc->dev->multi_count);
4048 while (nsect--)
4049 ata_pio_sector(qc);
4050 } else
4051 ata_pio_sector(qc);
4052 }
4053
4054 /**
4055 * atapi_send_cdb - Write CDB bytes to hardware
4056 * @ap: Port to which ATAPI device is attached.
4057 * @qc: Taskfile currently active
4058 *
4059 * When device has indicated its readiness to accept
4060 * a CDB, this function is called. Send the CDB.
4061 *
4062 * LOCKING:
4063 * caller.
4064 */
4065
4066 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4067 {
4068 /* send SCSI cdb */
4069 DPRINTK("send cdb\n");
4070 WARN_ON(qc->dev->cdb_len < 12);
4071
4072 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4073 ata_altstatus(ap); /* flush */
4074
4075 switch (qc->tf.protocol) {
4076 case ATA_PROT_ATAPI:
4077 ap->hsm_task_state = HSM_ST;
4078 break;
4079 case ATA_PROT_ATAPI_NODATA:
4080 ap->hsm_task_state = HSM_ST_LAST;
4081 break;
4082 case ATA_PROT_ATAPI_DMA:
4083 ap->hsm_task_state = HSM_ST_LAST;
4084 /* initiate bmdma */
4085 ap->ops->bmdma_start(qc);
4086 break;
4087 }
4088 }
4089
4090 /**
4091 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4092 * @qc: Command on going
4093 * @bytes: number of bytes
4094 *
4095 * Transfer Transfer data from/to the ATAPI device.
4096 *
4097 * LOCKING:
4098 * Inherited from caller.
4099 *
4100 */
4101
4102 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4103 {
4104 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4105 struct scatterlist *sg = qc->__sg;
4106 struct ata_port *ap = qc->ap;
4107 struct page *page;
4108 unsigned char *buf;
4109 unsigned int offset, count;
4110
4111 if (qc->curbytes + bytes >= qc->nbytes)
4112 ap->hsm_task_state = HSM_ST_LAST;
4113
4114 next_sg:
4115 if (unlikely(qc->cursg >= qc->n_elem)) {
4116 /*
4117 * The end of qc->sg is reached and the device expects
4118 * more data to transfer. In order not to overrun qc->sg
4119 * and fulfill length specified in the byte count register,
4120 * - for read case, discard trailing data from the device
4121 * - for write case, padding zero data to the device
4122 */
4123 u16 pad_buf[1] = { 0 };
4124 unsigned int words = bytes >> 1;
4125 unsigned int i;
4126
4127 if (words) /* warning if bytes > 1 */
4128 ata_dev_printk(qc->dev, KERN_WARNING,
4129 "%u bytes trailing data\n", bytes);
4130
4131 for (i = 0; i < words; i++)
4132 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4133
4134 ap->hsm_task_state = HSM_ST_LAST;
4135 return;
4136 }
4137
4138 sg = &qc->__sg[qc->cursg];
4139
4140 page = sg->page;
4141 offset = sg->offset + qc->cursg_ofs;
4142
4143 /* get the current page and offset */
4144 page = nth_page(page, (offset >> PAGE_SHIFT));
4145 offset %= PAGE_SIZE;
4146
4147 /* don't overrun current sg */
4148 count = min(sg->length - qc->cursg_ofs, bytes);
4149
4150 /* don't cross page boundaries */
4151 count = min(count, (unsigned int)PAGE_SIZE - offset);
4152
4153 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4154
4155 if (PageHighMem(page)) {
4156 unsigned long flags;
4157
4158 /* FIXME: use bounce buffer */
4159 local_irq_save(flags);
4160 buf = kmap_atomic(page, KM_IRQ0);
4161
4162 /* do the actual data transfer */
4163 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4164
4165 kunmap_atomic(buf, KM_IRQ0);
4166 local_irq_restore(flags);
4167 } else {
4168 buf = page_address(page);
4169 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4170 }
4171
4172 bytes -= count;
4173 qc->curbytes += count;
4174 qc->cursg_ofs += count;
4175
4176 if (qc->cursg_ofs == sg->length) {
4177 qc->cursg++;
4178 qc->cursg_ofs = 0;
4179 }
4180
4181 if (bytes)
4182 goto next_sg;
4183 }
4184
4185 /**
4186 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4187 * @qc: Command on going
4188 *
4189 * Transfer Transfer data from/to the ATAPI device.
4190 *
4191 * LOCKING:
4192 * Inherited from caller.
4193 */
4194
4195 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4196 {
4197 struct ata_port *ap = qc->ap;
4198 struct ata_device *dev = qc->dev;
4199 unsigned int ireason, bc_lo, bc_hi, bytes;
4200 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4201
4202 /* Abuse qc->result_tf for temp storage of intermediate TF
4203 * here to save some kernel stack usage.
4204 * For normal completion, qc->result_tf is not relevant. For
4205 * error, qc->result_tf is later overwritten by ata_qc_complete().
4206 * So, the correctness of qc->result_tf is not affected.
4207 */
4208 ap->ops->tf_read(ap, &qc->result_tf);
4209 ireason = qc->result_tf.nsect;
4210 bc_lo = qc->result_tf.lbam;
4211 bc_hi = qc->result_tf.lbah;
4212 bytes = (bc_hi << 8) | bc_lo;
4213
4214 /* shall be cleared to zero, indicating xfer of data */
4215 if (ireason & (1 << 0))
4216 goto err_out;
4217
4218 /* make sure transfer direction matches expected */
4219 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4220 if (do_write != i_write)
4221 goto err_out;
4222
4223 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4224
4225 __atapi_pio_bytes(qc, bytes);
4226
4227 return;
4228
4229 err_out:
4230 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4231 qc->err_mask |= AC_ERR_HSM;
4232 ap->hsm_task_state = HSM_ST_ERR;
4233 }
4234
4235 /**
4236 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4237 * @ap: the target ata_port
4238 * @qc: qc on going
4239 *
4240 * RETURNS:
4241 * 1 if ok in workqueue, 0 otherwise.
4242 */
4243
4244 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4245 {
4246 if (qc->tf.flags & ATA_TFLAG_POLLING)
4247 return 1;
4248
4249 if (ap->hsm_task_state == HSM_ST_FIRST) {
4250 if (qc->tf.protocol == ATA_PROT_PIO &&
4251 (qc->tf.flags & ATA_TFLAG_WRITE))
4252 return 1;
4253
4254 if (is_atapi_taskfile(&qc->tf) &&
4255 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4256 return 1;
4257 }
4258
4259 return 0;
4260 }
4261
4262 /**
4263 * ata_hsm_qc_complete - finish a qc running on standard HSM
4264 * @qc: Command to complete
4265 * @in_wq: 1 if called from workqueue, 0 otherwise
4266 *
4267 * Finish @qc which is running on standard HSM.
4268 *
4269 * LOCKING:
4270 * If @in_wq is zero, spin_lock_irqsave(host lock).
4271 * Otherwise, none on entry and grabs host lock.
4272 */
4273 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4274 {
4275 struct ata_port *ap = qc->ap;
4276 unsigned long flags;
4277
4278 if (ap->ops->error_handler) {
4279 if (in_wq) {
4280 spin_lock_irqsave(ap->lock, flags);
4281
4282 /* EH might have kicked in while host lock is
4283 * released.
4284 */
4285 qc = ata_qc_from_tag(ap, qc->tag);
4286 if (qc) {
4287 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4288 ap->ops->irq_on(ap);
4289 ata_qc_complete(qc);
4290 } else
4291 ata_port_freeze(ap);
4292 }
4293
4294 spin_unlock_irqrestore(ap->lock, flags);
4295 } else {
4296 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4297 ata_qc_complete(qc);
4298 else
4299 ata_port_freeze(ap);
4300 }
4301 } else {
4302 if (in_wq) {
4303 spin_lock_irqsave(ap->lock, flags);
4304 ap->ops->irq_on(ap);
4305 ata_qc_complete(qc);
4306 spin_unlock_irqrestore(ap->lock, flags);
4307 } else
4308 ata_qc_complete(qc);
4309 }
4310
4311 ata_altstatus(ap); /* flush */
4312 }
4313
4314 /**
4315 * ata_hsm_move - move the HSM to the next state.
4316 * @ap: the target ata_port
4317 * @qc: qc on going
4318 * @status: current device status
4319 * @in_wq: 1 if called from workqueue, 0 otherwise
4320 *
4321 * RETURNS:
4322 * 1 when poll next status needed, 0 otherwise.
4323 */
4324 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4325 u8 status, int in_wq)
4326 {
4327 unsigned long flags = 0;
4328 int poll_next;
4329
4330 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4331
4332 /* Make sure ata_qc_issue_prot() does not throw things
4333 * like DMA polling into the workqueue. Notice that
4334 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4335 */
4336 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4337
4338 fsm_start:
4339 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4340 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4341
4342 switch (ap->hsm_task_state) {
4343 case HSM_ST_FIRST:
4344 /* Send first data block or PACKET CDB */
4345
4346 /* If polling, we will stay in the work queue after
4347 * sending the data. Otherwise, interrupt handler
4348 * takes over after sending the data.
4349 */
4350 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4351
4352 /* check device status */
4353 if (unlikely((status & ATA_DRQ) == 0)) {
4354 /* handle BSY=0, DRQ=0 as error */
4355 if (likely(status & (ATA_ERR | ATA_DF)))
4356 /* device stops HSM for abort/error */
4357 qc->err_mask |= AC_ERR_DEV;
4358 else
4359 /* HSM violation. Let EH handle this */
4360 qc->err_mask |= AC_ERR_HSM;
4361
4362 ap->hsm_task_state = HSM_ST_ERR;
4363 goto fsm_start;
4364 }
4365
4366 /* Device should not ask for data transfer (DRQ=1)
4367 * when it finds something wrong.
4368 * We ignore DRQ here and stop the HSM by
4369 * changing hsm_task_state to HSM_ST_ERR and
4370 * let the EH abort the command or reset the device.
4371 */
4372 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4373 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4374 "error, dev_stat 0x%X\n", status);
4375 qc->err_mask |= AC_ERR_HSM;
4376 ap->hsm_task_state = HSM_ST_ERR;
4377 goto fsm_start;
4378 }
4379
4380 /* Send the CDB (atapi) or the first data block (ata pio out).
4381 * During the state transition, interrupt handler shouldn't
4382 * be invoked before the data transfer is complete and
4383 * hsm_task_state is changed. Hence, the following locking.
4384 */
4385 if (in_wq)
4386 spin_lock_irqsave(ap->lock, flags);
4387
4388 if (qc->tf.protocol == ATA_PROT_PIO) {
4389 /* PIO data out protocol.
4390 * send first data block.
4391 */
4392
4393 /* ata_pio_sectors() might change the state
4394 * to HSM_ST_LAST. so, the state is changed here
4395 * before ata_pio_sectors().
4396 */
4397 ap->hsm_task_state = HSM_ST;
4398 ata_pio_sectors(qc);
4399 ata_altstatus(ap); /* flush */
4400 } else
4401 /* send CDB */
4402 atapi_send_cdb(ap, qc);
4403
4404 if (in_wq)
4405 spin_unlock_irqrestore(ap->lock, flags);
4406
4407 /* if polling, ata_pio_task() handles the rest.
4408 * otherwise, interrupt handler takes over from here.
4409 */
4410 break;
4411
4412 case HSM_ST:
4413 /* complete command or read/write the data register */
4414 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4415 /* ATAPI PIO protocol */
4416 if ((status & ATA_DRQ) == 0) {
4417 /* No more data to transfer or device error.
4418 * Device error will be tagged in HSM_ST_LAST.
4419 */
4420 ap->hsm_task_state = HSM_ST_LAST;
4421 goto fsm_start;
4422 }
4423
4424 /* Device should not ask for data transfer (DRQ=1)
4425 * when it finds something wrong.
4426 * We ignore DRQ here and stop the HSM by
4427 * changing hsm_task_state to HSM_ST_ERR and
4428 * let the EH abort the command or reset the device.
4429 */
4430 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4431 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4432 "device error, dev_stat 0x%X\n",
4433 status);
4434 qc->err_mask |= AC_ERR_HSM;
4435 ap->hsm_task_state = HSM_ST_ERR;
4436 goto fsm_start;
4437 }
4438
4439 atapi_pio_bytes(qc);
4440
4441 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4442 /* bad ireason reported by device */
4443 goto fsm_start;
4444
4445 } else {
4446 /* ATA PIO protocol */
4447 if (unlikely((status & ATA_DRQ) == 0)) {
4448 /* handle BSY=0, DRQ=0 as error */
4449 if (likely(status & (ATA_ERR | ATA_DF)))
4450 /* device stops HSM for abort/error */
4451 qc->err_mask |= AC_ERR_DEV;
4452 else
4453 /* HSM violation. Let EH handle this.
4454 * Phantom devices also trigger this
4455 * condition. Mark hint.
4456 */
4457 qc->err_mask |= AC_ERR_HSM |
4458 AC_ERR_NODEV_HINT;
4459
4460 ap->hsm_task_state = HSM_ST_ERR;
4461 goto fsm_start;
4462 }
4463
4464 /* For PIO reads, some devices may ask for
4465 * data transfer (DRQ=1) alone with ERR=1.
4466 * We respect DRQ here and transfer one
4467 * block of junk data before changing the
4468 * hsm_task_state to HSM_ST_ERR.
4469 *
4470 * For PIO writes, ERR=1 DRQ=1 doesn't make
4471 * sense since the data block has been
4472 * transferred to the device.
4473 */
4474 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4475 /* data might be corrputed */
4476 qc->err_mask |= AC_ERR_DEV;
4477
4478 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4479 ata_pio_sectors(qc);
4480 ata_altstatus(ap);
4481 status = ata_wait_idle(ap);
4482 }
4483
4484 if (status & (ATA_BUSY | ATA_DRQ))
4485 qc->err_mask |= AC_ERR_HSM;
4486
4487 /* ata_pio_sectors() might change the
4488 * state to HSM_ST_LAST. so, the state
4489 * is changed after ata_pio_sectors().
4490 */
4491 ap->hsm_task_state = HSM_ST_ERR;
4492 goto fsm_start;
4493 }
4494
4495 ata_pio_sectors(qc);
4496
4497 if (ap->hsm_task_state == HSM_ST_LAST &&
4498 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4499 /* all data read */
4500 ata_altstatus(ap);
4501 status = ata_wait_idle(ap);
4502 goto fsm_start;
4503 }
4504 }
4505
4506 ata_altstatus(ap); /* flush */
4507 poll_next = 1;
4508 break;
4509
4510 case HSM_ST_LAST:
4511 if (unlikely(!ata_ok(status))) {
4512 qc->err_mask |= __ac_err_mask(status);
4513 ap->hsm_task_state = HSM_ST_ERR;
4514 goto fsm_start;
4515 }
4516
4517 /* no more data to transfer */
4518 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4519 ap->print_id, qc->dev->devno, status);
4520
4521 WARN_ON(qc->err_mask);
4522
4523 ap->hsm_task_state = HSM_ST_IDLE;
4524
4525 /* complete taskfile transaction */
4526 ata_hsm_qc_complete(qc, in_wq);
4527
4528 poll_next = 0;
4529 break;
4530
4531 case HSM_ST_ERR:
4532 /* make sure qc->err_mask is available to
4533 * know what's wrong and recover
4534 */
4535 WARN_ON(qc->err_mask == 0);
4536
4537 ap->hsm_task_state = HSM_ST_IDLE;
4538
4539 /* complete taskfile transaction */
4540 ata_hsm_qc_complete(qc, in_wq);
4541
4542 poll_next = 0;
4543 break;
4544 default:
4545 poll_next = 0;
4546 BUG();
4547 }
4548
4549 return poll_next;
4550 }
4551
4552 static void ata_pio_task(struct work_struct *work)
4553 {
4554 struct ata_port *ap =
4555 container_of(work, struct ata_port, port_task.work);
4556 struct ata_queued_cmd *qc = ap->port_task_data;
4557 u8 status;
4558 int poll_next;
4559
4560 fsm_start:
4561 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4562
4563 /*
4564 * This is purely heuristic. This is a fast path.
4565 * Sometimes when we enter, BSY will be cleared in
4566 * a chk-status or two. If not, the drive is probably seeking
4567 * or something. Snooze for a couple msecs, then
4568 * chk-status again. If still busy, queue delayed work.
4569 */
4570 status = ata_busy_wait(ap, ATA_BUSY, 5);
4571 if (status & ATA_BUSY) {
4572 msleep(2);
4573 status = ata_busy_wait(ap, ATA_BUSY, 10);
4574 if (status & ATA_BUSY) {
4575 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4576 return;
4577 }
4578 }
4579
4580 /* move the HSM */
4581 poll_next = ata_hsm_move(ap, qc, status, 1);
4582
4583 /* another command or interrupt handler
4584 * may be running at this point.
4585 */
4586 if (poll_next)
4587 goto fsm_start;
4588 }
4589
4590 /**
4591 * ata_qc_new - Request an available ATA command, for queueing
4592 * @ap: Port associated with device @dev
4593 * @dev: Device from whom we request an available command structure
4594 *
4595 * LOCKING:
4596 * None.
4597 */
4598
4599 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4600 {
4601 struct ata_queued_cmd *qc = NULL;
4602 unsigned int i;
4603
4604 /* no command while frozen */
4605 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4606 return NULL;
4607
4608 /* the last tag is reserved for internal command. */
4609 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4610 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4611 qc = __ata_qc_from_tag(ap, i);
4612 break;
4613 }
4614
4615 if (qc)
4616 qc->tag = i;
4617
4618 return qc;
4619 }
4620
4621 /**
4622 * ata_qc_new_init - Request an available ATA command, and initialize it
4623 * @dev: Device from whom we request an available command structure
4624 *
4625 * LOCKING:
4626 * None.
4627 */
4628
4629 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4630 {
4631 struct ata_port *ap = dev->ap;
4632 struct ata_queued_cmd *qc;
4633
4634 qc = ata_qc_new(ap);
4635 if (qc) {
4636 qc->scsicmd = NULL;
4637 qc->ap = ap;
4638 qc->dev = dev;
4639
4640 ata_qc_reinit(qc);
4641 }
4642
4643 return qc;
4644 }
4645
4646 /**
4647 * ata_qc_free - free unused ata_queued_cmd
4648 * @qc: Command to complete
4649 *
4650 * Designed to free unused ata_queued_cmd object
4651 * in case something prevents using it.
4652 *
4653 * LOCKING:
4654 * spin_lock_irqsave(host lock)
4655 */
4656 void ata_qc_free(struct ata_queued_cmd *qc)
4657 {
4658 struct ata_port *ap = qc->ap;
4659 unsigned int tag;
4660
4661 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4662
4663 qc->flags = 0;
4664 tag = qc->tag;
4665 if (likely(ata_tag_valid(tag))) {
4666 qc->tag = ATA_TAG_POISON;
4667 clear_bit(tag, &ap->qc_allocated);
4668 }
4669 }
4670
4671 void __ata_qc_complete(struct ata_queued_cmd *qc)
4672 {
4673 struct ata_port *ap = qc->ap;
4674
4675 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4676 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4677
4678 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4679 ata_sg_clean(qc);
4680
4681 /* command should be marked inactive atomically with qc completion */
4682 if (qc->tf.protocol == ATA_PROT_NCQ)
4683 ap->sactive &= ~(1 << qc->tag);
4684 else
4685 ap->active_tag = ATA_TAG_POISON;
4686
4687 /* atapi: mark qc as inactive to prevent the interrupt handler
4688 * from completing the command twice later, before the error handler
4689 * is called. (when rc != 0 and atapi request sense is needed)
4690 */
4691 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4692 ap->qc_active &= ~(1 << qc->tag);
4693
4694 /* call completion callback */
4695 qc->complete_fn(qc);
4696 }
4697
4698 static void fill_result_tf(struct ata_queued_cmd *qc)
4699 {
4700 struct ata_port *ap = qc->ap;
4701
4702 ap->ops->tf_read(ap, &qc->result_tf);
4703 qc->result_tf.flags = qc->tf.flags;
4704 }
4705
4706 /**
4707 * ata_qc_complete - Complete an active ATA command
4708 * @qc: Command to complete
4709 * @err_mask: ATA Status register contents
4710 *
4711 * Indicate to the mid and upper layers that an ATA
4712 * command has completed, with either an ok or not-ok status.
4713 *
4714 * LOCKING:
4715 * spin_lock_irqsave(host lock)
4716 */
4717 void ata_qc_complete(struct ata_queued_cmd *qc)
4718 {
4719 struct ata_port *ap = qc->ap;
4720
4721 /* XXX: New EH and old EH use different mechanisms to
4722 * synchronize EH with regular execution path.
4723 *
4724 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4725 * Normal execution path is responsible for not accessing a
4726 * failed qc. libata core enforces the rule by returning NULL
4727 * from ata_qc_from_tag() for failed qcs.
4728 *
4729 * Old EH depends on ata_qc_complete() nullifying completion
4730 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4731 * not synchronize with interrupt handler. Only PIO task is
4732 * taken care of.
4733 */
4734 if (ap->ops->error_handler) {
4735 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4736
4737 if (unlikely(qc->err_mask))
4738 qc->flags |= ATA_QCFLAG_FAILED;
4739
4740 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4741 if (!ata_tag_internal(qc->tag)) {
4742 /* always fill result TF for failed qc */
4743 fill_result_tf(qc);
4744 ata_qc_schedule_eh(qc);
4745 return;
4746 }
4747 }
4748
4749 /* read result TF if requested */
4750 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4751 fill_result_tf(qc);
4752
4753 __ata_qc_complete(qc);
4754 } else {
4755 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4756 return;
4757
4758 /* read result TF if failed or requested */
4759 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4760 fill_result_tf(qc);
4761
4762 __ata_qc_complete(qc);
4763 }
4764 }
4765
4766 /**
4767 * ata_qc_complete_multiple - Complete multiple qcs successfully
4768 * @ap: port in question
4769 * @qc_active: new qc_active mask
4770 * @finish_qc: LLDD callback invoked before completing a qc
4771 *
4772 * Complete in-flight commands. This functions is meant to be
4773 * called from low-level driver's interrupt routine to complete
4774 * requests normally. ap->qc_active and @qc_active is compared
4775 * and commands are completed accordingly.
4776 *
4777 * LOCKING:
4778 * spin_lock_irqsave(host lock)
4779 *
4780 * RETURNS:
4781 * Number of completed commands on success, -errno otherwise.
4782 */
4783 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4784 void (*finish_qc)(struct ata_queued_cmd *))
4785 {
4786 int nr_done = 0;
4787 u32 done_mask;
4788 int i;
4789
4790 done_mask = ap->qc_active ^ qc_active;
4791
4792 if (unlikely(done_mask & qc_active)) {
4793 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4794 "(%08x->%08x)\n", ap->qc_active, qc_active);
4795 return -EINVAL;
4796 }
4797
4798 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4799 struct ata_queued_cmd *qc;
4800
4801 if (!(done_mask & (1 << i)))
4802 continue;
4803
4804 if ((qc = ata_qc_from_tag(ap, i))) {
4805 if (finish_qc)
4806 finish_qc(qc);
4807 ata_qc_complete(qc);
4808 nr_done++;
4809 }
4810 }
4811
4812 return nr_done;
4813 }
4814
4815 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4816 {
4817 struct ata_port *ap = qc->ap;
4818
4819 switch (qc->tf.protocol) {
4820 case ATA_PROT_NCQ:
4821 case ATA_PROT_DMA:
4822 case ATA_PROT_ATAPI_DMA:
4823 return 1;
4824
4825 case ATA_PROT_ATAPI:
4826 case ATA_PROT_PIO:
4827 if (ap->flags & ATA_FLAG_PIO_DMA)
4828 return 1;
4829
4830 /* fall through */
4831
4832 default:
4833 return 0;
4834 }
4835
4836 /* never reached */
4837 }
4838
4839 /**
4840 * ata_qc_issue - issue taskfile to device
4841 * @qc: command to issue to device
4842 *
4843 * Prepare an ATA command to submission to device.
4844 * This includes mapping the data into a DMA-able
4845 * area, filling in the S/G table, and finally
4846 * writing the taskfile to hardware, starting the command.
4847 *
4848 * LOCKING:
4849 * spin_lock_irqsave(host lock)
4850 */
4851 void ata_qc_issue(struct ata_queued_cmd *qc)
4852 {
4853 struct ata_port *ap = qc->ap;
4854
4855 /* Make sure only one non-NCQ command is outstanding. The
4856 * check is skipped for old EH because it reuses active qc to
4857 * request ATAPI sense.
4858 */
4859 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4860
4861 if (qc->tf.protocol == ATA_PROT_NCQ) {
4862 WARN_ON(ap->sactive & (1 << qc->tag));
4863 ap->sactive |= 1 << qc->tag;
4864 } else {
4865 WARN_ON(ap->sactive);
4866 ap->active_tag = qc->tag;
4867 }
4868
4869 qc->flags |= ATA_QCFLAG_ACTIVE;
4870 ap->qc_active |= 1 << qc->tag;
4871
4872 if (ata_should_dma_map(qc)) {
4873 if (qc->flags & ATA_QCFLAG_SG) {
4874 if (ata_sg_setup(qc))
4875 goto sg_err;
4876 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4877 if (ata_sg_setup_one(qc))
4878 goto sg_err;
4879 }
4880 } else {
4881 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4882 }
4883
4884 ap->ops->qc_prep(qc);
4885
4886 qc->err_mask |= ap->ops->qc_issue(qc);
4887 if (unlikely(qc->err_mask))
4888 goto err;
4889 return;
4890
4891 sg_err:
4892 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4893 qc->err_mask |= AC_ERR_SYSTEM;
4894 err:
4895 ata_qc_complete(qc);
4896 }
4897
4898 /**
4899 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4900 * @qc: command to issue to device
4901 *
4902 * Using various libata functions and hooks, this function
4903 * starts an ATA command. ATA commands are grouped into
4904 * classes called "protocols", and issuing each type of protocol
4905 * is slightly different.
4906 *
4907 * May be used as the qc_issue() entry in ata_port_operations.
4908 *
4909 * LOCKING:
4910 * spin_lock_irqsave(host lock)
4911 *
4912 * RETURNS:
4913 * Zero on success, AC_ERR_* mask on failure
4914 */
4915
4916 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4917 {
4918 struct ata_port *ap = qc->ap;
4919
4920 /* Use polling pio if the LLD doesn't handle
4921 * interrupt driven pio and atapi CDB interrupt.
4922 */
4923 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4924 switch (qc->tf.protocol) {
4925 case ATA_PROT_PIO:
4926 case ATA_PROT_NODATA:
4927 case ATA_PROT_ATAPI:
4928 case ATA_PROT_ATAPI_NODATA:
4929 qc->tf.flags |= ATA_TFLAG_POLLING;
4930 break;
4931 case ATA_PROT_ATAPI_DMA:
4932 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4933 /* see ata_dma_blacklisted() */
4934 BUG();
4935 break;
4936 default:
4937 break;
4938 }
4939 }
4940
4941 /* Some controllers show flaky interrupt behavior after
4942 * setting xfer mode. Use polling instead.
4943 */
4944 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4945 qc->tf.feature == SETFEATURES_XFER) &&
4946 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4947 qc->tf.flags |= ATA_TFLAG_POLLING;
4948
4949 /* select the device */
4950 ata_dev_select(ap, qc->dev->devno, 1, 0);
4951
4952 /* start the command */
4953 switch (qc->tf.protocol) {
4954 case ATA_PROT_NODATA:
4955 if (qc->tf.flags & ATA_TFLAG_POLLING)
4956 ata_qc_set_polling(qc);
4957
4958 ata_tf_to_host(ap, &qc->tf);
4959 ap->hsm_task_state = HSM_ST_LAST;
4960
4961 if (qc->tf.flags & ATA_TFLAG_POLLING)
4962 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4963
4964 break;
4965
4966 case ATA_PROT_DMA:
4967 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4968
4969 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4970 ap->ops->bmdma_setup(qc); /* set up bmdma */
4971 ap->ops->bmdma_start(qc); /* initiate bmdma */
4972 ap->hsm_task_state = HSM_ST_LAST;
4973 break;
4974
4975 case ATA_PROT_PIO:
4976 if (qc->tf.flags & ATA_TFLAG_POLLING)
4977 ata_qc_set_polling(qc);
4978
4979 ata_tf_to_host(ap, &qc->tf);
4980
4981 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4982 /* PIO data out protocol */
4983 ap->hsm_task_state = HSM_ST_FIRST;
4984 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4985
4986 /* always send first data block using
4987 * the ata_pio_task() codepath.
4988 */
4989 } else {
4990 /* PIO data in protocol */
4991 ap->hsm_task_state = HSM_ST;
4992
4993 if (qc->tf.flags & ATA_TFLAG_POLLING)
4994 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4995
4996 /* if polling, ata_pio_task() handles the rest.
4997 * otherwise, interrupt handler takes over from here.
4998 */
4999 }
5000
5001 break;
5002
5003 case ATA_PROT_ATAPI:
5004 case ATA_PROT_ATAPI_NODATA:
5005 if (qc->tf.flags & ATA_TFLAG_POLLING)
5006 ata_qc_set_polling(qc);
5007
5008 ata_tf_to_host(ap, &qc->tf);
5009
5010 ap->hsm_task_state = HSM_ST_FIRST;
5011
5012 /* send cdb by polling if no cdb interrupt */
5013 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5014 (qc->tf.flags & ATA_TFLAG_POLLING))
5015 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5016 break;
5017
5018 case ATA_PROT_ATAPI_DMA:
5019 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5020
5021 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5022 ap->ops->bmdma_setup(qc); /* set up bmdma */
5023 ap->hsm_task_state = HSM_ST_FIRST;
5024
5025 /* send cdb by polling if no cdb interrupt */
5026 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5027 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5028 break;
5029
5030 default:
5031 WARN_ON(1);
5032 return AC_ERR_SYSTEM;
5033 }
5034
5035 return 0;
5036 }
5037
5038 /**
5039 * ata_host_intr - Handle host interrupt for given (port, task)
5040 * @ap: Port on which interrupt arrived (possibly...)
5041 * @qc: Taskfile currently active in engine
5042 *
5043 * Handle host interrupt for given queued command. Currently,
5044 * only DMA interrupts are handled. All other commands are
5045 * handled via polling with interrupts disabled (nIEN bit).
5046 *
5047 * LOCKING:
5048 * spin_lock_irqsave(host lock)
5049 *
5050 * RETURNS:
5051 * One if interrupt was handled, zero if not (shared irq).
5052 */
5053
5054 inline unsigned int ata_host_intr (struct ata_port *ap,
5055 struct ata_queued_cmd *qc)
5056 {
5057 struct ata_eh_info *ehi = &ap->eh_info;
5058 u8 status, host_stat = 0;
5059
5060 VPRINTK("ata%u: protocol %d task_state %d\n",
5061 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5062
5063 /* Check whether we are expecting interrupt in this state */
5064 switch (ap->hsm_task_state) {
5065 case HSM_ST_FIRST:
5066 /* Some pre-ATAPI-4 devices assert INTRQ
5067 * at this state when ready to receive CDB.
5068 */
5069
5070 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5071 * The flag was turned on only for atapi devices.
5072 * No need to check is_atapi_taskfile(&qc->tf) again.
5073 */
5074 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5075 goto idle_irq;
5076 break;
5077 case HSM_ST_LAST:
5078 if (qc->tf.protocol == ATA_PROT_DMA ||
5079 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5080 /* check status of DMA engine */
5081 host_stat = ap->ops->bmdma_status(ap);
5082 VPRINTK("ata%u: host_stat 0x%X\n",
5083 ap->print_id, host_stat);
5084
5085 /* if it's not our irq... */
5086 if (!(host_stat & ATA_DMA_INTR))
5087 goto idle_irq;
5088
5089 /* before we do anything else, clear DMA-Start bit */
5090 ap->ops->bmdma_stop(qc);
5091
5092 if (unlikely(host_stat & ATA_DMA_ERR)) {
5093 /* error when transfering data to/from memory */
5094 qc->err_mask |= AC_ERR_HOST_BUS;
5095 ap->hsm_task_state = HSM_ST_ERR;
5096 }
5097 }
5098 break;
5099 case HSM_ST:
5100 break;
5101 default:
5102 goto idle_irq;
5103 }
5104
5105 /* check altstatus */
5106 status = ata_altstatus(ap);
5107 if (status & ATA_BUSY)
5108 goto idle_irq;
5109
5110 /* check main status, clearing INTRQ */
5111 status = ata_chk_status(ap);
5112 if (unlikely(status & ATA_BUSY))
5113 goto idle_irq;
5114
5115 /* ack bmdma irq events */
5116 ap->ops->irq_clear(ap);
5117
5118 ata_hsm_move(ap, qc, status, 0);
5119
5120 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5121 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5122 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5123
5124 return 1; /* irq handled */
5125
5126 idle_irq:
5127 ap->stats.idle_irq++;
5128
5129 #ifdef ATA_IRQ_TRAP
5130 if ((ap->stats.idle_irq % 1000) == 0) {
5131 ap->ops->irq_ack(ap, 0); /* debug trap */
5132 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5133 return 1;
5134 }
5135 #endif
5136 return 0; /* irq not handled */
5137 }
5138
5139 /**
5140 * ata_interrupt - Default ATA host interrupt handler
5141 * @irq: irq line (unused)
5142 * @dev_instance: pointer to our ata_host information structure
5143 *
5144 * Default interrupt handler for PCI IDE devices. Calls
5145 * ata_host_intr() for each port that is not disabled.
5146 *
5147 * LOCKING:
5148 * Obtains host lock during operation.
5149 *
5150 * RETURNS:
5151 * IRQ_NONE or IRQ_HANDLED.
5152 */
5153
5154 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5155 {
5156 struct ata_host *host = dev_instance;
5157 unsigned int i;
5158 unsigned int handled = 0;
5159 unsigned long flags;
5160
5161 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5162 spin_lock_irqsave(&host->lock, flags);
5163
5164 for (i = 0; i < host->n_ports; i++) {
5165 struct ata_port *ap;
5166
5167 ap = host->ports[i];
5168 if (ap &&
5169 !(ap->flags & ATA_FLAG_DISABLED)) {
5170 struct ata_queued_cmd *qc;
5171
5172 qc = ata_qc_from_tag(ap, ap->active_tag);
5173 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5174 (qc->flags & ATA_QCFLAG_ACTIVE))
5175 handled |= ata_host_intr(ap, qc);
5176 }
5177 }
5178
5179 spin_unlock_irqrestore(&host->lock, flags);
5180
5181 return IRQ_RETVAL(handled);
5182 }
5183
5184 /**
5185 * sata_scr_valid - test whether SCRs are accessible
5186 * @ap: ATA port to test SCR accessibility for
5187 *
5188 * Test whether SCRs are accessible for @ap.
5189 *
5190 * LOCKING:
5191 * None.
5192 *
5193 * RETURNS:
5194 * 1 if SCRs are accessible, 0 otherwise.
5195 */
5196 int sata_scr_valid(struct ata_port *ap)
5197 {
5198 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5199 }
5200
5201 /**
5202 * sata_scr_read - read SCR register of the specified port
5203 * @ap: ATA port to read SCR for
5204 * @reg: SCR to read
5205 * @val: Place to store read value
5206 *
5207 * Read SCR register @reg of @ap into *@val. This function is
5208 * guaranteed to succeed if the cable type of the port is SATA
5209 * and the port implements ->scr_read.
5210 *
5211 * LOCKING:
5212 * None.
5213 *
5214 * RETURNS:
5215 * 0 on success, negative errno on failure.
5216 */
5217 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5218 {
5219 if (sata_scr_valid(ap)) {
5220 *val = ap->ops->scr_read(ap, reg);
5221 return 0;
5222 }
5223 return -EOPNOTSUPP;
5224 }
5225
5226 /**
5227 * sata_scr_write - write SCR register of the specified port
5228 * @ap: ATA port to write SCR for
5229 * @reg: SCR to write
5230 * @val: value to write
5231 *
5232 * Write @val to SCR register @reg of @ap. This function is
5233 * guaranteed to succeed if the cable type of the port is SATA
5234 * and the port implements ->scr_read.
5235 *
5236 * LOCKING:
5237 * None.
5238 *
5239 * RETURNS:
5240 * 0 on success, negative errno on failure.
5241 */
5242 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5243 {
5244 if (sata_scr_valid(ap)) {
5245 ap->ops->scr_write(ap, reg, val);
5246 return 0;
5247 }
5248 return -EOPNOTSUPP;
5249 }
5250
5251 /**
5252 * sata_scr_write_flush - write SCR register of the specified port and flush
5253 * @ap: ATA port to write SCR for
5254 * @reg: SCR to write
5255 * @val: value to write
5256 *
5257 * This function is identical to sata_scr_write() except that this
5258 * function performs flush after writing to the register.
5259 *
5260 * LOCKING:
5261 * None.
5262 *
5263 * RETURNS:
5264 * 0 on success, negative errno on failure.
5265 */
5266 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5267 {
5268 if (sata_scr_valid(ap)) {
5269 ap->ops->scr_write(ap, reg, val);
5270 ap->ops->scr_read(ap, reg);
5271 return 0;
5272 }
5273 return -EOPNOTSUPP;
5274 }
5275
5276 /**
5277 * ata_port_online - test whether the given port is online
5278 * @ap: ATA port to test
5279 *
5280 * Test whether @ap is online. Note that this function returns 0
5281 * if online status of @ap cannot be obtained, so
5282 * ata_port_online(ap) != !ata_port_offline(ap).
5283 *
5284 * LOCKING:
5285 * None.
5286 *
5287 * RETURNS:
5288 * 1 if the port online status is available and online.
5289 */
5290 int ata_port_online(struct ata_port *ap)
5291 {
5292 u32 sstatus;
5293
5294 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5295 return 1;
5296 return 0;
5297 }
5298
5299 /**
5300 * ata_port_offline - test whether the given port is offline
5301 * @ap: ATA port to test
5302 *
5303 * Test whether @ap is offline. Note that this function returns
5304 * 0 if offline status of @ap cannot be obtained, so
5305 * ata_port_online(ap) != !ata_port_offline(ap).
5306 *
5307 * LOCKING:
5308 * None.
5309 *
5310 * RETURNS:
5311 * 1 if the port offline status is available and offline.
5312 */
5313 int ata_port_offline(struct ata_port *ap)
5314 {
5315 u32 sstatus;
5316
5317 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5318 return 1;
5319 return 0;
5320 }
5321
5322 int ata_flush_cache(struct ata_device *dev)
5323 {
5324 unsigned int err_mask;
5325 u8 cmd;
5326
5327 if (!ata_try_flush_cache(dev))
5328 return 0;
5329
5330 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5331 cmd = ATA_CMD_FLUSH_EXT;
5332 else
5333 cmd = ATA_CMD_FLUSH;
5334
5335 err_mask = ata_do_simple_cmd(dev, cmd);
5336 if (err_mask) {
5337 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5338 return -EIO;
5339 }
5340
5341 return 0;
5342 }
5343
5344 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5345 unsigned int action, unsigned int ehi_flags,
5346 int wait)
5347 {
5348 unsigned long flags;
5349 int i, rc;
5350
5351 for (i = 0; i < host->n_ports; i++) {
5352 struct ata_port *ap = host->ports[i];
5353
5354 /* Previous resume operation might still be in
5355 * progress. Wait for PM_PENDING to clear.
5356 */
5357 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5358 ata_port_wait_eh(ap);
5359 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5360 }
5361
5362 /* request PM ops to EH */
5363 spin_lock_irqsave(ap->lock, flags);
5364
5365 ap->pm_mesg = mesg;
5366 if (wait) {
5367 rc = 0;
5368 ap->pm_result = &rc;
5369 }
5370
5371 ap->pflags |= ATA_PFLAG_PM_PENDING;
5372 ap->eh_info.action |= action;
5373 ap->eh_info.flags |= ehi_flags;
5374
5375 ata_port_schedule_eh(ap);
5376
5377 spin_unlock_irqrestore(ap->lock, flags);
5378
5379 /* wait and check result */
5380 if (wait) {
5381 ata_port_wait_eh(ap);
5382 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5383 if (rc)
5384 return rc;
5385 }
5386 }
5387
5388 return 0;
5389 }
5390
5391 /**
5392 * ata_host_suspend - suspend host
5393 * @host: host to suspend
5394 * @mesg: PM message
5395 *
5396 * Suspend @host. Actual operation is performed by EH. This
5397 * function requests EH to perform PM operations and waits for EH
5398 * to finish.
5399 *
5400 * LOCKING:
5401 * Kernel thread context (may sleep).
5402 *
5403 * RETURNS:
5404 * 0 on success, -errno on failure.
5405 */
5406 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5407 {
5408 int i, j, rc;
5409
5410 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5411 if (rc)
5412 goto fail;
5413
5414 /* EH is quiescent now. Fail if we have any ready device.
5415 * This happens if hotplug occurs between completion of device
5416 * suspension and here.
5417 */
5418 for (i = 0; i < host->n_ports; i++) {
5419 struct ata_port *ap = host->ports[i];
5420
5421 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5422 struct ata_device *dev = &ap->device[j];
5423
5424 if (ata_dev_ready(dev)) {
5425 ata_port_printk(ap, KERN_WARNING,
5426 "suspend failed, device %d "
5427 "still active\n", dev->devno);
5428 rc = -EBUSY;
5429 goto fail;
5430 }
5431 }
5432 }
5433
5434 host->dev->power.power_state = mesg;
5435 return 0;
5436
5437 fail:
5438 ata_host_resume(host);
5439 return rc;
5440 }
5441
5442 /**
5443 * ata_host_resume - resume host
5444 * @host: host to resume
5445 *
5446 * Resume @host. Actual operation is performed by EH. This
5447 * function requests EH to perform PM operations and returns.
5448 * Note that all resume operations are performed parallely.
5449 *
5450 * LOCKING:
5451 * Kernel thread context (may sleep).
5452 */
5453 void ata_host_resume(struct ata_host *host)
5454 {
5455 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5456 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5457 host->dev->power.power_state = PMSG_ON;
5458 }
5459
5460 /**
5461 * ata_port_start - Set port up for dma.
5462 * @ap: Port to initialize
5463 *
5464 * Called just after data structures for each port are
5465 * initialized. Allocates space for PRD table.
5466 *
5467 * May be used as the port_start() entry in ata_port_operations.
5468 *
5469 * LOCKING:
5470 * Inherited from caller.
5471 */
5472 int ata_port_start(struct ata_port *ap)
5473 {
5474 struct device *dev = ap->dev;
5475 int rc;
5476
5477 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5478 GFP_KERNEL);
5479 if (!ap->prd)
5480 return -ENOMEM;
5481
5482 rc = ata_pad_alloc(ap, dev);
5483 if (rc)
5484 return rc;
5485
5486 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5487 (unsigned long long)ap->prd_dma);
5488 return 0;
5489 }
5490
5491 /**
5492 * ata_dev_init - Initialize an ata_device structure
5493 * @dev: Device structure to initialize
5494 *
5495 * Initialize @dev in preparation for probing.
5496 *
5497 * LOCKING:
5498 * Inherited from caller.
5499 */
5500 void ata_dev_init(struct ata_device *dev)
5501 {
5502 struct ata_port *ap = dev->ap;
5503 unsigned long flags;
5504
5505 /* SATA spd limit is bound to the first device */
5506 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5507
5508 /* High bits of dev->flags are used to record warm plug
5509 * requests which occur asynchronously. Synchronize using
5510 * host lock.
5511 */
5512 spin_lock_irqsave(ap->lock, flags);
5513 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5514 spin_unlock_irqrestore(ap->lock, flags);
5515
5516 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5517 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5518 dev->pio_mask = UINT_MAX;
5519 dev->mwdma_mask = UINT_MAX;
5520 dev->udma_mask = UINT_MAX;
5521 }
5522
5523 /**
5524 * ata_port_init - Initialize an ata_port structure
5525 * @ap: Structure to initialize
5526 * @host: Collection of hosts to which @ap belongs
5527 * @ent: Probe information provided by low-level driver
5528 * @port_no: Port number associated with this ata_port
5529 *
5530 * Initialize a new ata_port structure.
5531 *
5532 * LOCKING:
5533 * Inherited from caller.
5534 */
5535 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5536 const struct ata_probe_ent *ent, unsigned int port_no)
5537 {
5538 unsigned int i;
5539
5540 ap->lock = &host->lock;
5541 ap->flags = ATA_FLAG_DISABLED;
5542 ap->print_id = ata_print_id++;
5543 ap->ctl = ATA_DEVCTL_OBS;
5544 ap->host = host;
5545 ap->dev = ent->dev;
5546 ap->port_no = port_no;
5547 if (port_no == 1 && ent->pinfo2) {
5548 ap->pio_mask = ent->pinfo2->pio_mask;
5549 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5550 ap->udma_mask = ent->pinfo2->udma_mask;
5551 ap->flags |= ent->pinfo2->flags;
5552 ap->ops = ent->pinfo2->port_ops;
5553 } else {
5554 ap->pio_mask = ent->pio_mask;
5555 ap->mwdma_mask = ent->mwdma_mask;
5556 ap->udma_mask = ent->udma_mask;
5557 ap->flags |= ent->port_flags;
5558 ap->ops = ent->port_ops;
5559 }
5560 ap->hw_sata_spd_limit = UINT_MAX;
5561 ap->active_tag = ATA_TAG_POISON;
5562 ap->last_ctl = 0xFF;
5563
5564 #if defined(ATA_VERBOSE_DEBUG)
5565 /* turn on all debugging levels */
5566 ap->msg_enable = 0x00FF;
5567 #elif defined(ATA_DEBUG)
5568 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5569 #else
5570 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5571 #endif
5572
5573 INIT_DELAYED_WORK(&ap->port_task, NULL);
5574 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5575 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5576 INIT_LIST_HEAD(&ap->eh_done_q);
5577 init_waitqueue_head(&ap->eh_wait_q);
5578
5579 /* set cable type */
5580 ap->cbl = ATA_CBL_NONE;
5581 if (ap->flags & ATA_FLAG_SATA)
5582 ap->cbl = ATA_CBL_SATA;
5583
5584 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5585 struct ata_device *dev = &ap->device[i];
5586 dev->ap = ap;
5587 dev->devno = i;
5588 ata_dev_init(dev);
5589 }
5590
5591 #ifdef ATA_IRQ_TRAP
5592 ap->stats.unhandled_irq = 1;
5593 ap->stats.idle_irq = 1;
5594 #endif
5595
5596 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5597 }
5598
5599 /**
5600 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5601 * @ap: ATA port to initialize SCSI host for
5602 * @shost: SCSI host associated with @ap
5603 *
5604 * Initialize SCSI host @shost associated with ATA port @ap.
5605 *
5606 * LOCKING:
5607 * Inherited from caller.
5608 */
5609 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5610 {
5611 ap->scsi_host = shost;
5612
5613 shost->unique_id = ap->print_id;
5614 shost->max_id = 16;
5615 shost->max_lun = 1;
5616 shost->max_channel = 1;
5617 shost->max_cmd_len = 12;
5618 }
5619
5620 /**
5621 * ata_port_add - Attach low-level ATA driver to system
5622 * @ent: Information provided by low-level driver
5623 * @host: Collections of ports to which we add
5624 * @port_no: Port number associated with this host
5625 *
5626 * Attach low-level ATA driver to system.
5627 *
5628 * LOCKING:
5629 * PCI/etc. bus probe sem.
5630 *
5631 * RETURNS:
5632 * New ata_port on success, for NULL on error.
5633 */
5634 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5635 struct ata_host *host,
5636 unsigned int port_no)
5637 {
5638 struct Scsi_Host *shost;
5639 struct ata_port *ap;
5640
5641 DPRINTK("ENTER\n");
5642
5643 if (!ent->port_ops->error_handler &&
5644 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5645 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5646 port_no);
5647 return NULL;
5648 }
5649
5650 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5651 if (!shost)
5652 return NULL;
5653
5654 shost->transportt = &ata_scsi_transport_template;
5655
5656 ap = ata_shost_to_port(shost);
5657
5658 ata_port_init(ap, host, ent, port_no);
5659 ata_port_init_shost(ap, shost);
5660
5661 return ap;
5662 }
5663
5664 static void ata_host_release(struct device *gendev, void *res)
5665 {
5666 struct ata_host *host = dev_get_drvdata(gendev);
5667 int i;
5668
5669 for (i = 0; i < host->n_ports; i++) {
5670 struct ata_port *ap = host->ports[i];
5671
5672 if (!ap)
5673 continue;
5674
5675 if (ap->ops->port_stop)
5676 ap->ops->port_stop(ap);
5677
5678 scsi_host_put(ap->scsi_host);
5679 }
5680
5681 if (host->ops->host_stop)
5682 host->ops->host_stop(host);
5683 }
5684
5685 /**
5686 * ata_sas_host_init - Initialize a host struct
5687 * @host: host to initialize
5688 * @dev: device host is attached to
5689 * @flags: host flags
5690 * @ops: port_ops
5691 *
5692 * LOCKING:
5693 * PCI/etc. bus probe sem.
5694 *
5695 */
5696
5697 void ata_host_init(struct ata_host *host, struct device *dev,
5698 unsigned long flags, const struct ata_port_operations *ops)
5699 {
5700 spin_lock_init(&host->lock);
5701 host->dev = dev;
5702 host->flags = flags;
5703 host->ops = ops;
5704 }
5705
5706 /**
5707 * ata_device_add - Register hardware device with ATA and SCSI layers
5708 * @ent: Probe information describing hardware device to be registered
5709 *
5710 * This function processes the information provided in the probe
5711 * information struct @ent, allocates the necessary ATA and SCSI
5712 * host information structures, initializes them, and registers
5713 * everything with requisite kernel subsystems.
5714 *
5715 * This function requests irqs, probes the ATA bus, and probes
5716 * the SCSI bus.
5717 *
5718 * LOCKING:
5719 * PCI/etc. bus probe sem.
5720 *
5721 * RETURNS:
5722 * Number of ports registered. Zero on error (no ports registered).
5723 */
5724 int ata_device_add(const struct ata_probe_ent *ent)
5725 {
5726 unsigned int i;
5727 struct device *dev = ent->dev;
5728 struct ata_host *host;
5729 int rc;
5730
5731 DPRINTK("ENTER\n");
5732
5733 if (ent->irq == 0) {
5734 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5735 return 0;
5736 }
5737
5738 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5739 return 0;
5740
5741 /* alloc a container for our list of ATA ports (buses) */
5742 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5743 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5744 if (!host)
5745 goto err_out;
5746 devres_add(dev, host);
5747 dev_set_drvdata(dev, host);
5748
5749 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5750 host->n_ports = ent->n_ports;
5751 host->irq = ent->irq;
5752 host->irq2 = ent->irq2;
5753 host->iomap = ent->iomap;
5754 host->private_data = ent->private_data;
5755
5756 /* register each port bound to this device */
5757 for (i = 0; i < host->n_ports; i++) {
5758 struct ata_port *ap;
5759 unsigned long xfer_mode_mask;
5760 int irq_line = ent->irq;
5761
5762 ap = ata_port_add(ent, host, i);
5763 host->ports[i] = ap;
5764 if (!ap)
5765 goto err_out;
5766
5767 /* dummy? */
5768 if (ent->dummy_port_mask & (1 << i)) {
5769 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5770 ap->ops = &ata_dummy_port_ops;
5771 continue;
5772 }
5773
5774 /* start port */
5775 rc = ap->ops->port_start(ap);
5776 if (rc) {
5777 host->ports[i] = NULL;
5778 scsi_host_put(ap->scsi_host);
5779 goto err_out;
5780 }
5781
5782 /* Report the secondary IRQ for second channel legacy */
5783 if (i == 1 && ent->irq2)
5784 irq_line = ent->irq2;
5785
5786 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5787 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5788 (ap->pio_mask << ATA_SHIFT_PIO);
5789
5790 /* print per-port info to dmesg */
5791 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5792 "ctl 0x%p bmdma 0x%p irq %d\n",
5793 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5794 ata_mode_string(xfer_mode_mask),
5795 ap->ioaddr.cmd_addr,
5796 ap->ioaddr.ctl_addr,
5797 ap->ioaddr.bmdma_addr,
5798 irq_line);
5799
5800 /* freeze port before requesting IRQ */
5801 ata_eh_freeze_port(ap);
5802 }
5803
5804 /* obtain irq, that may be shared between channels */
5805 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5806 ent->irq_flags, DRV_NAME, host);
5807 if (rc) {
5808 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5809 ent->irq, rc);
5810 goto err_out;
5811 }
5812
5813 /* do we have a second IRQ for the other channel, eg legacy mode */
5814 if (ent->irq2) {
5815 /* We will get weird core code crashes later if this is true
5816 so trap it now */
5817 BUG_ON(ent->irq == ent->irq2);
5818
5819 rc = devm_request_irq(dev, ent->irq2,
5820 ent->port_ops->irq_handler, ent->irq_flags,
5821 DRV_NAME, host);
5822 if (rc) {
5823 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5824 ent->irq2, rc);
5825 goto err_out;
5826 }
5827 }
5828
5829 /* resource acquisition complete */
5830 devres_remove_group(dev, ata_device_add);
5831
5832 /* perform each probe synchronously */
5833 DPRINTK("probe begin\n");
5834 for (i = 0; i < host->n_ports; i++) {
5835 struct ata_port *ap = host->ports[i];
5836 u32 scontrol;
5837 int rc;
5838
5839 /* init sata_spd_limit to the current value */
5840 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5841 int spd = (scontrol >> 4) & 0xf;
5842 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5843 }
5844 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5845
5846 rc = scsi_add_host(ap->scsi_host, dev);
5847 if (rc) {
5848 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5849 /* FIXME: do something useful here */
5850 /* FIXME: handle unconditional calls to
5851 * scsi_scan_host and ata_host_remove, below,
5852 * at the very least
5853 */
5854 }
5855
5856 if (ap->ops->error_handler) {
5857 struct ata_eh_info *ehi = &ap->eh_info;
5858 unsigned long flags;
5859
5860 ata_port_probe(ap);
5861
5862 /* kick EH for boot probing */
5863 spin_lock_irqsave(ap->lock, flags);
5864
5865 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5866 ehi->action |= ATA_EH_SOFTRESET;
5867 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5868
5869 ap->pflags |= ATA_PFLAG_LOADING;
5870 ata_port_schedule_eh(ap);
5871
5872 spin_unlock_irqrestore(ap->lock, flags);
5873
5874 /* wait for EH to finish */
5875 ata_port_wait_eh(ap);
5876 } else {
5877 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5878 rc = ata_bus_probe(ap);
5879 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5880
5881 if (rc) {
5882 /* FIXME: do something useful here?
5883 * Current libata behavior will
5884 * tear down everything when
5885 * the module is removed
5886 * or the h/w is unplugged.
5887 */
5888 }
5889 }
5890 }
5891
5892 /* probes are done, now scan each port's disk(s) */
5893 DPRINTK("host probe begin\n");
5894 for (i = 0; i < host->n_ports; i++) {
5895 struct ata_port *ap = host->ports[i];
5896
5897 ata_scsi_scan_host(ap);
5898 }
5899
5900 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5901 return ent->n_ports; /* success */
5902
5903 err_out:
5904 devres_release_group(dev, ata_device_add);
5905 dev_set_drvdata(dev, NULL);
5906 VPRINTK("EXIT, returning %d\n", rc);
5907 return 0;
5908 }
5909
5910 /**
5911 * ata_port_detach - Detach ATA port in prepration of device removal
5912 * @ap: ATA port to be detached
5913 *
5914 * Detach all ATA devices and the associated SCSI devices of @ap;
5915 * then, remove the associated SCSI host. @ap is guaranteed to
5916 * be quiescent on return from this function.
5917 *
5918 * LOCKING:
5919 * Kernel thread context (may sleep).
5920 */
5921 void ata_port_detach(struct ata_port *ap)
5922 {
5923 unsigned long flags;
5924 int i;
5925
5926 if (!ap->ops->error_handler)
5927 goto skip_eh;
5928
5929 /* tell EH we're leaving & flush EH */
5930 spin_lock_irqsave(ap->lock, flags);
5931 ap->pflags |= ATA_PFLAG_UNLOADING;
5932 spin_unlock_irqrestore(ap->lock, flags);
5933
5934 ata_port_wait_eh(ap);
5935
5936 /* EH is now guaranteed to see UNLOADING, so no new device
5937 * will be attached. Disable all existing devices.
5938 */
5939 spin_lock_irqsave(ap->lock, flags);
5940
5941 for (i = 0; i < ATA_MAX_DEVICES; i++)
5942 ata_dev_disable(&ap->device[i]);
5943
5944 spin_unlock_irqrestore(ap->lock, flags);
5945
5946 /* Final freeze & EH. All in-flight commands are aborted. EH
5947 * will be skipped and retrials will be terminated with bad
5948 * target.
5949 */
5950 spin_lock_irqsave(ap->lock, flags);
5951 ata_port_freeze(ap); /* won't be thawed */
5952 spin_unlock_irqrestore(ap->lock, flags);
5953
5954 ata_port_wait_eh(ap);
5955
5956 /* Flush hotplug task. The sequence is similar to
5957 * ata_port_flush_task().
5958 */
5959 flush_workqueue(ata_aux_wq);
5960 cancel_delayed_work(&ap->hotplug_task);
5961 flush_workqueue(ata_aux_wq);
5962
5963 skip_eh:
5964 /* remove the associated SCSI host */
5965 scsi_remove_host(ap->scsi_host);
5966 }
5967
5968 /**
5969 * ata_host_detach - Detach all ports of an ATA host
5970 * @host: Host to detach
5971 *
5972 * Detach all ports of @host.
5973 *
5974 * LOCKING:
5975 * Kernel thread context (may sleep).
5976 */
5977 void ata_host_detach(struct ata_host *host)
5978 {
5979 int i;
5980
5981 for (i = 0; i < host->n_ports; i++)
5982 ata_port_detach(host->ports[i]);
5983 }
5984
5985 struct ata_probe_ent *
5986 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5987 {
5988 struct ata_probe_ent *probe_ent;
5989
5990 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5991 if (!probe_ent) {
5992 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5993 kobject_name(&(dev->kobj)));
5994 return NULL;
5995 }
5996
5997 INIT_LIST_HEAD(&probe_ent->node);
5998 probe_ent->dev = dev;
5999
6000 probe_ent->sht = port->sht;
6001 probe_ent->port_flags = port->flags;
6002 probe_ent->pio_mask = port->pio_mask;
6003 probe_ent->mwdma_mask = port->mwdma_mask;
6004 probe_ent->udma_mask = port->udma_mask;
6005 probe_ent->port_ops = port->port_ops;
6006 probe_ent->private_data = port->private_data;
6007
6008 return probe_ent;
6009 }
6010
6011 /**
6012 * ata_std_ports - initialize ioaddr with standard port offsets.
6013 * @ioaddr: IO address structure to be initialized
6014 *
6015 * Utility function which initializes data_addr, error_addr,
6016 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6017 * device_addr, status_addr, and command_addr to standard offsets
6018 * relative to cmd_addr.
6019 *
6020 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6021 */
6022
6023 void ata_std_ports(struct ata_ioports *ioaddr)
6024 {
6025 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6026 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6027 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6028 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6029 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6030 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6031 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6032 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6033 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6034 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6035 }
6036
6037
6038 #ifdef CONFIG_PCI
6039
6040 /**
6041 * ata_pci_remove_one - PCI layer callback for device removal
6042 * @pdev: PCI device that was removed
6043 *
6044 * PCI layer indicates to libata via this hook that hot-unplug or
6045 * module unload event has occurred. Detach all ports. Resource
6046 * release is handled via devres.
6047 *
6048 * LOCKING:
6049 * Inherited from PCI layer (may sleep).
6050 */
6051 void ata_pci_remove_one(struct pci_dev *pdev)
6052 {
6053 struct device *dev = pci_dev_to_dev(pdev);
6054 struct ata_host *host = dev_get_drvdata(dev);
6055
6056 ata_host_detach(host);
6057 }
6058
6059 /* move to PCI subsystem */
6060 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6061 {
6062 unsigned long tmp = 0;
6063
6064 switch (bits->width) {
6065 case 1: {
6066 u8 tmp8 = 0;
6067 pci_read_config_byte(pdev, bits->reg, &tmp8);
6068 tmp = tmp8;
6069 break;
6070 }
6071 case 2: {
6072 u16 tmp16 = 0;
6073 pci_read_config_word(pdev, bits->reg, &tmp16);
6074 tmp = tmp16;
6075 break;
6076 }
6077 case 4: {
6078 u32 tmp32 = 0;
6079 pci_read_config_dword(pdev, bits->reg, &tmp32);
6080 tmp = tmp32;
6081 break;
6082 }
6083
6084 default:
6085 return -EINVAL;
6086 }
6087
6088 tmp &= bits->mask;
6089
6090 return (tmp == bits->val) ? 1 : 0;
6091 }
6092
6093 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6094 {
6095 pci_save_state(pdev);
6096 pci_disable_device(pdev);
6097
6098 if (mesg.event == PM_EVENT_SUSPEND)
6099 pci_set_power_state(pdev, PCI_D3hot);
6100 }
6101
6102 int ata_pci_device_do_resume(struct pci_dev *pdev)
6103 {
6104 int rc;
6105
6106 pci_set_power_state(pdev, PCI_D0);
6107 pci_restore_state(pdev);
6108
6109 rc = pcim_enable_device(pdev);
6110 if (rc) {
6111 dev_printk(KERN_ERR, &pdev->dev,
6112 "failed to enable device after resume (%d)\n", rc);
6113 return rc;
6114 }
6115
6116 pci_set_master(pdev);
6117 return 0;
6118 }
6119
6120 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6121 {
6122 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6123 int rc = 0;
6124
6125 rc = ata_host_suspend(host, mesg);
6126 if (rc)
6127 return rc;
6128
6129 ata_pci_device_do_suspend(pdev, mesg);
6130
6131 return 0;
6132 }
6133
6134 int ata_pci_device_resume(struct pci_dev *pdev)
6135 {
6136 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6137 int rc;
6138
6139 rc = ata_pci_device_do_resume(pdev);
6140 if (rc == 0)
6141 ata_host_resume(host);
6142 return rc;
6143 }
6144 #endif /* CONFIG_PCI */
6145
6146
6147 static int __init ata_init(void)
6148 {
6149 ata_probe_timeout *= HZ;
6150 ata_wq = create_workqueue("ata");
6151 if (!ata_wq)
6152 return -ENOMEM;
6153
6154 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6155 if (!ata_aux_wq) {
6156 destroy_workqueue(ata_wq);
6157 return -ENOMEM;
6158 }
6159
6160 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6161 return 0;
6162 }
6163
6164 static void __exit ata_exit(void)
6165 {
6166 destroy_workqueue(ata_wq);
6167 destroy_workqueue(ata_aux_wq);
6168 }
6169
6170 subsys_initcall(ata_init);
6171 module_exit(ata_exit);
6172
6173 static unsigned long ratelimit_time;
6174 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6175
6176 int ata_ratelimit(void)
6177 {
6178 int rc;
6179 unsigned long flags;
6180
6181 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6182
6183 if (time_after(jiffies, ratelimit_time)) {
6184 rc = 1;
6185 ratelimit_time = jiffies + (HZ/5);
6186 } else
6187 rc = 0;
6188
6189 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6190
6191 return rc;
6192 }
6193
6194 /**
6195 * ata_wait_register - wait until register value changes
6196 * @reg: IO-mapped register
6197 * @mask: Mask to apply to read register value
6198 * @val: Wait condition
6199 * @interval_msec: polling interval in milliseconds
6200 * @timeout_msec: timeout in milliseconds
6201 *
6202 * Waiting for some bits of register to change is a common
6203 * operation for ATA controllers. This function reads 32bit LE
6204 * IO-mapped register @reg and tests for the following condition.
6205 *
6206 * (*@reg & mask) != val
6207 *
6208 * If the condition is met, it returns; otherwise, the process is
6209 * repeated after @interval_msec until timeout.
6210 *
6211 * LOCKING:
6212 * Kernel thread context (may sleep)
6213 *
6214 * RETURNS:
6215 * The final register value.
6216 */
6217 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6218 unsigned long interval_msec,
6219 unsigned long timeout_msec)
6220 {
6221 unsigned long timeout;
6222 u32 tmp;
6223
6224 tmp = ioread32(reg);
6225
6226 /* Calculate timeout _after_ the first read to make sure
6227 * preceding writes reach the controller before starting to
6228 * eat away the timeout.
6229 */
6230 timeout = jiffies + (timeout_msec * HZ) / 1000;
6231
6232 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6233 msleep(interval_msec);
6234 tmp = ioread32(reg);
6235 }
6236
6237 return tmp;
6238 }
6239
6240 /*
6241 * Dummy port_ops
6242 */
6243 static void ata_dummy_noret(struct ata_port *ap) { }
6244 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6245 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6246
6247 static u8 ata_dummy_check_status(struct ata_port *ap)
6248 {
6249 return ATA_DRDY;
6250 }
6251
6252 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6253 {
6254 return AC_ERR_SYSTEM;
6255 }
6256
6257 const struct ata_port_operations ata_dummy_port_ops = {
6258 .port_disable = ata_port_disable,
6259 .check_status = ata_dummy_check_status,
6260 .check_altstatus = ata_dummy_check_status,
6261 .dev_select = ata_noop_dev_select,
6262 .qc_prep = ata_noop_qc_prep,
6263 .qc_issue = ata_dummy_qc_issue,
6264 .freeze = ata_dummy_noret,
6265 .thaw = ata_dummy_noret,
6266 .error_handler = ata_dummy_noret,
6267 .post_internal_cmd = ata_dummy_qc_noret,
6268 .irq_clear = ata_dummy_noret,
6269 .port_start = ata_dummy_ret0,
6270 .port_stop = ata_dummy_noret,
6271 };
6272
6273 /*
6274 * libata is essentially a library of internal helper functions for
6275 * low-level ATA host controller drivers. As such, the API/ABI is
6276 * likely to change as new drivers are added and updated.
6277 * Do not depend on ABI/API stability.
6278 */
6279
6280 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6281 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6282 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6283 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6284 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6285 EXPORT_SYMBOL_GPL(ata_std_ports);
6286 EXPORT_SYMBOL_GPL(ata_host_init);
6287 EXPORT_SYMBOL_GPL(ata_device_add);
6288 EXPORT_SYMBOL_GPL(ata_host_detach);
6289 EXPORT_SYMBOL_GPL(ata_sg_init);
6290 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6291 EXPORT_SYMBOL_GPL(ata_hsm_move);
6292 EXPORT_SYMBOL_GPL(ata_qc_complete);
6293 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6294 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6295 EXPORT_SYMBOL_GPL(ata_tf_load);
6296 EXPORT_SYMBOL_GPL(ata_tf_read);
6297 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6298 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6299 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6300 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6301 EXPORT_SYMBOL_GPL(ata_check_status);
6302 EXPORT_SYMBOL_GPL(ata_altstatus);
6303 EXPORT_SYMBOL_GPL(ata_exec_command);
6304 EXPORT_SYMBOL_GPL(ata_port_start);
6305 EXPORT_SYMBOL_GPL(ata_interrupt);
6306 EXPORT_SYMBOL_GPL(ata_data_xfer);
6307 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6308 EXPORT_SYMBOL_GPL(ata_qc_prep);
6309 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6310 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6311 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6312 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6313 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6314 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6315 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6316 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6317 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6318 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6319 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6320 EXPORT_SYMBOL_GPL(ata_port_probe);
6321 EXPORT_SYMBOL_GPL(ata_dev_disable);
6322 EXPORT_SYMBOL_GPL(sata_set_spd);
6323 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6324 EXPORT_SYMBOL_GPL(sata_phy_resume);
6325 EXPORT_SYMBOL_GPL(sata_phy_reset);
6326 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6327 EXPORT_SYMBOL_GPL(ata_bus_reset);
6328 EXPORT_SYMBOL_GPL(ata_std_prereset);
6329 EXPORT_SYMBOL_GPL(ata_std_softreset);
6330 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6331 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6332 EXPORT_SYMBOL_GPL(ata_std_postreset);
6333 EXPORT_SYMBOL_GPL(ata_dev_classify);
6334 EXPORT_SYMBOL_GPL(ata_dev_pair);
6335 EXPORT_SYMBOL_GPL(ata_port_disable);
6336 EXPORT_SYMBOL_GPL(ata_ratelimit);
6337 EXPORT_SYMBOL_GPL(ata_wait_register);
6338 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6339 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6340 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6341 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6342 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6343 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6344 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6345 EXPORT_SYMBOL_GPL(ata_host_intr);
6346 EXPORT_SYMBOL_GPL(sata_scr_valid);
6347 EXPORT_SYMBOL_GPL(sata_scr_read);
6348 EXPORT_SYMBOL_GPL(sata_scr_write);
6349 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6350 EXPORT_SYMBOL_GPL(ata_port_online);
6351 EXPORT_SYMBOL_GPL(ata_port_offline);
6352 EXPORT_SYMBOL_GPL(ata_host_suspend);
6353 EXPORT_SYMBOL_GPL(ata_host_resume);
6354 EXPORT_SYMBOL_GPL(ata_id_string);
6355 EXPORT_SYMBOL_GPL(ata_id_c_string);
6356 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6357 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6358 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6359
6360 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6361 EXPORT_SYMBOL_GPL(ata_timing_compute);
6362 EXPORT_SYMBOL_GPL(ata_timing_merge);
6363
6364 #ifdef CONFIG_PCI
6365 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6366 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6367 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6368 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6369 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6370 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6371 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6372 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6373 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6374 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6375 #endif /* CONFIG_PCI */
6376
6377 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6378 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6379
6380 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6381 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6382 EXPORT_SYMBOL_GPL(ata_port_abort);
6383 EXPORT_SYMBOL_GPL(ata_port_freeze);
6384 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6385 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6386 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6387 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6388 EXPORT_SYMBOL_GPL(ata_do_eh);
6389 EXPORT_SYMBOL_GPL(ata_irq_on);
6390 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6391 EXPORT_SYMBOL_GPL(ata_irq_ack);
6392 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6393 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
This page took 0.247749 seconds and 5 git commands to generate.