abbe3229480ce860ebf8abf84e8ddb440febb1f0
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 const struct ata_port_operations ata_base_port_ops = {
78 .irq_clear = ata_noop_irq_clear,
79 };
80
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
83
84 .qc_defer = ata_std_qc_defer,
85 .dev_select = ata_noop_dev_select,
86 };
87
88 const struct ata_port_operations sata_pmp_port_ops = {
89 .inherits = &sata_port_ops,
90 };
91
92 const struct ata_port_operations ata_sff_port_ops = {
93 .inherits = &ata_base_port_ops,
94
95 .qc_prep = ata_qc_prep,
96 .qc_issue = ata_qc_issue_prot,
97
98 .freeze = ata_bmdma_freeze,
99 .thaw = ata_bmdma_thaw,
100 .error_handler = ata_bmdma_error_handler,
101 .post_internal_cmd = ata_bmdma_post_internal_cmd,
102
103 .dev_select = ata_std_dev_select,
104 .check_status = ata_check_status,
105 .tf_load = ata_tf_load,
106 .tf_read = ata_tf_read,
107 .exec_command = ata_exec_command,
108 .data_xfer = ata_data_xfer,
109 .irq_on = ata_irq_on,
110
111 .port_start = ata_sff_port_start,
112 };
113
114 const struct ata_port_operations ata_bmdma_port_ops = {
115 .inherits = &ata_sff_port_ops,
116
117 .mode_filter = ata_pci_default_filter,
118
119 .bmdma_setup = ata_bmdma_setup,
120 .bmdma_start = ata_bmdma_start,
121 .bmdma_stop = ata_bmdma_stop,
122 .bmdma_status = ata_bmdma_status,
123 .irq_clear = ata_bmdma_irq_clear,
124 };
125
126 static unsigned int ata_dev_init_params(struct ata_device *dev,
127 u16 heads, u16 sectors);
128 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
129 static unsigned int ata_dev_set_feature(struct ata_device *dev,
130 u8 enable, u8 feature);
131 static void ata_dev_xfermask(struct ata_device *dev);
132 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
133
134 unsigned int ata_print_id = 1;
135 static struct workqueue_struct *ata_wq;
136
137 struct workqueue_struct *ata_aux_wq;
138
139 struct ata_force_param {
140 const char *name;
141 unsigned int cbl;
142 int spd_limit;
143 unsigned long xfer_mask;
144 unsigned int horkage_on;
145 unsigned int horkage_off;
146 };
147
148 struct ata_force_ent {
149 int port;
150 int device;
151 struct ata_force_param param;
152 };
153
154 static struct ata_force_ent *ata_force_tbl;
155 static int ata_force_tbl_size;
156
157 static char ata_force_param_buf[PAGE_SIZE] __initdata;
158 /* param_buf is thrown away after initialization, disallow read */
159 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
160 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
161
162 int atapi_enabled = 1;
163 module_param(atapi_enabled, int, 0444);
164 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
165
166 static int atapi_dmadir = 0;
167 module_param(atapi_dmadir, int, 0444);
168 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
169
170 int atapi_passthru16 = 1;
171 module_param(atapi_passthru16, int, 0444);
172 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
173
174 int libata_fua = 0;
175 module_param_named(fua, libata_fua, int, 0444);
176 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
177
178 static int ata_ignore_hpa;
179 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
180 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
181
182 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
183 module_param_named(dma, libata_dma_mask, int, 0444);
184 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
185
186 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
187 module_param(ata_probe_timeout, int, 0444);
188 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
189
190 int libata_noacpi = 0;
191 module_param_named(noacpi, libata_noacpi, int, 0444);
192 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
193
194 int libata_allow_tpm = 0;
195 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
196 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
197
198 MODULE_AUTHOR("Jeff Garzik");
199 MODULE_DESCRIPTION("Library module for ATA devices");
200 MODULE_LICENSE("GPL");
201 MODULE_VERSION(DRV_VERSION);
202
203
204 /**
205 * ata_force_cbl - force cable type according to libata.force
206 * @ap: ATA port of interest
207 *
208 * Force cable type according to libata.force and whine about it.
209 * The last entry which has matching port number is used, so it
210 * can be specified as part of device force parameters. For
211 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
212 * same effect.
213 *
214 * LOCKING:
215 * EH context.
216 */
217 void ata_force_cbl(struct ata_port *ap)
218 {
219 int i;
220
221 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
222 const struct ata_force_ent *fe = &ata_force_tbl[i];
223
224 if (fe->port != -1 && fe->port != ap->print_id)
225 continue;
226
227 if (fe->param.cbl == ATA_CBL_NONE)
228 continue;
229
230 ap->cbl = fe->param.cbl;
231 ata_port_printk(ap, KERN_NOTICE,
232 "FORCE: cable set to %s\n", fe->param.name);
233 return;
234 }
235 }
236
237 /**
238 * ata_force_spd_limit - force SATA spd limit according to libata.force
239 * @link: ATA link of interest
240 *
241 * Force SATA spd limit according to libata.force and whine about
242 * it. When only the port part is specified (e.g. 1:), the limit
243 * applies to all links connected to both the host link and all
244 * fan-out ports connected via PMP. If the device part is
245 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
246 * link not the host link. Device number 15 always points to the
247 * host link whether PMP is attached or not.
248 *
249 * LOCKING:
250 * EH context.
251 */
252 static void ata_force_spd_limit(struct ata_link *link)
253 {
254 int linkno, i;
255
256 if (ata_is_host_link(link))
257 linkno = 15;
258 else
259 linkno = link->pmp;
260
261 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
262 const struct ata_force_ent *fe = &ata_force_tbl[i];
263
264 if (fe->port != -1 && fe->port != link->ap->print_id)
265 continue;
266
267 if (fe->device != -1 && fe->device != linkno)
268 continue;
269
270 if (!fe->param.spd_limit)
271 continue;
272
273 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
274 ata_link_printk(link, KERN_NOTICE,
275 "FORCE: PHY spd limit set to %s\n", fe->param.name);
276 return;
277 }
278 }
279
280 /**
281 * ata_force_xfermask - force xfermask according to libata.force
282 * @dev: ATA device of interest
283 *
284 * Force xfer_mask according to libata.force and whine about it.
285 * For consistency with link selection, device number 15 selects
286 * the first device connected to the host link.
287 *
288 * LOCKING:
289 * EH context.
290 */
291 static void ata_force_xfermask(struct ata_device *dev)
292 {
293 int devno = dev->link->pmp + dev->devno;
294 int alt_devno = devno;
295 int i;
296
297 /* allow n.15 for the first device attached to host port */
298 if (ata_is_host_link(dev->link) && devno == 0)
299 alt_devno = 15;
300
301 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
302 const struct ata_force_ent *fe = &ata_force_tbl[i];
303 unsigned long pio_mask, mwdma_mask, udma_mask;
304
305 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
306 continue;
307
308 if (fe->device != -1 && fe->device != devno &&
309 fe->device != alt_devno)
310 continue;
311
312 if (!fe->param.xfer_mask)
313 continue;
314
315 ata_unpack_xfermask(fe->param.xfer_mask,
316 &pio_mask, &mwdma_mask, &udma_mask);
317 if (udma_mask)
318 dev->udma_mask = udma_mask;
319 else if (mwdma_mask) {
320 dev->udma_mask = 0;
321 dev->mwdma_mask = mwdma_mask;
322 } else {
323 dev->udma_mask = 0;
324 dev->mwdma_mask = 0;
325 dev->pio_mask = pio_mask;
326 }
327
328 ata_dev_printk(dev, KERN_NOTICE,
329 "FORCE: xfer_mask set to %s\n", fe->param.name);
330 return;
331 }
332 }
333
334 /**
335 * ata_force_horkage - force horkage according to libata.force
336 * @dev: ATA device of interest
337 *
338 * Force horkage according to libata.force and whine about it.
339 * For consistency with link selection, device number 15 selects
340 * the first device connected to the host link.
341 *
342 * LOCKING:
343 * EH context.
344 */
345 static void ata_force_horkage(struct ata_device *dev)
346 {
347 int devno = dev->link->pmp + dev->devno;
348 int alt_devno = devno;
349 int i;
350
351 /* allow n.15 for the first device attached to host port */
352 if (ata_is_host_link(dev->link) && devno == 0)
353 alt_devno = 15;
354
355 for (i = 0; i < ata_force_tbl_size; i++) {
356 const struct ata_force_ent *fe = &ata_force_tbl[i];
357
358 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
359 continue;
360
361 if (fe->device != -1 && fe->device != devno &&
362 fe->device != alt_devno)
363 continue;
364
365 if (!(~dev->horkage & fe->param.horkage_on) &&
366 !(dev->horkage & fe->param.horkage_off))
367 continue;
368
369 dev->horkage |= fe->param.horkage_on;
370 dev->horkage &= ~fe->param.horkage_off;
371
372 ata_dev_printk(dev, KERN_NOTICE,
373 "FORCE: horkage modified (%s)\n", fe->param.name);
374 }
375 }
376
377 /**
378 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
379 * @opcode: SCSI opcode
380 *
381 * Determine ATAPI command type from @opcode.
382 *
383 * LOCKING:
384 * None.
385 *
386 * RETURNS:
387 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
388 */
389 int atapi_cmd_type(u8 opcode)
390 {
391 switch (opcode) {
392 case GPCMD_READ_10:
393 case GPCMD_READ_12:
394 return ATAPI_READ;
395
396 case GPCMD_WRITE_10:
397 case GPCMD_WRITE_12:
398 case GPCMD_WRITE_AND_VERIFY_10:
399 return ATAPI_WRITE;
400
401 case GPCMD_READ_CD:
402 case GPCMD_READ_CD_MSF:
403 return ATAPI_READ_CD;
404
405 case ATA_16:
406 case ATA_12:
407 if (atapi_passthru16)
408 return ATAPI_PASS_THRU;
409 /* fall thru */
410 default:
411 return ATAPI_MISC;
412 }
413 }
414
415 /**
416 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
417 * @tf: Taskfile to convert
418 * @pmp: Port multiplier port
419 * @is_cmd: This FIS is for command
420 * @fis: Buffer into which data will output
421 *
422 * Converts a standard ATA taskfile to a Serial ATA
423 * FIS structure (Register - Host to Device).
424 *
425 * LOCKING:
426 * Inherited from caller.
427 */
428 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
429 {
430 fis[0] = 0x27; /* Register - Host to Device FIS */
431 fis[1] = pmp & 0xf; /* Port multiplier number*/
432 if (is_cmd)
433 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
434
435 fis[2] = tf->command;
436 fis[3] = tf->feature;
437
438 fis[4] = tf->lbal;
439 fis[5] = tf->lbam;
440 fis[6] = tf->lbah;
441 fis[7] = tf->device;
442
443 fis[8] = tf->hob_lbal;
444 fis[9] = tf->hob_lbam;
445 fis[10] = tf->hob_lbah;
446 fis[11] = tf->hob_feature;
447
448 fis[12] = tf->nsect;
449 fis[13] = tf->hob_nsect;
450 fis[14] = 0;
451 fis[15] = tf->ctl;
452
453 fis[16] = 0;
454 fis[17] = 0;
455 fis[18] = 0;
456 fis[19] = 0;
457 }
458
459 /**
460 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
461 * @fis: Buffer from which data will be input
462 * @tf: Taskfile to output
463 *
464 * Converts a serial ATA FIS structure to a standard ATA taskfile.
465 *
466 * LOCKING:
467 * Inherited from caller.
468 */
469
470 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
471 {
472 tf->command = fis[2]; /* status */
473 tf->feature = fis[3]; /* error */
474
475 tf->lbal = fis[4];
476 tf->lbam = fis[5];
477 tf->lbah = fis[6];
478 tf->device = fis[7];
479
480 tf->hob_lbal = fis[8];
481 tf->hob_lbam = fis[9];
482 tf->hob_lbah = fis[10];
483
484 tf->nsect = fis[12];
485 tf->hob_nsect = fis[13];
486 }
487
488 static const u8 ata_rw_cmds[] = {
489 /* pio multi */
490 ATA_CMD_READ_MULTI,
491 ATA_CMD_WRITE_MULTI,
492 ATA_CMD_READ_MULTI_EXT,
493 ATA_CMD_WRITE_MULTI_EXT,
494 0,
495 0,
496 0,
497 ATA_CMD_WRITE_MULTI_FUA_EXT,
498 /* pio */
499 ATA_CMD_PIO_READ,
500 ATA_CMD_PIO_WRITE,
501 ATA_CMD_PIO_READ_EXT,
502 ATA_CMD_PIO_WRITE_EXT,
503 0,
504 0,
505 0,
506 0,
507 /* dma */
508 ATA_CMD_READ,
509 ATA_CMD_WRITE,
510 ATA_CMD_READ_EXT,
511 ATA_CMD_WRITE_EXT,
512 0,
513 0,
514 0,
515 ATA_CMD_WRITE_FUA_EXT
516 };
517
518 /**
519 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
520 * @tf: command to examine and configure
521 * @dev: device tf belongs to
522 *
523 * Examine the device configuration and tf->flags to calculate
524 * the proper read/write commands and protocol to use.
525 *
526 * LOCKING:
527 * caller.
528 */
529 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
530 {
531 u8 cmd;
532
533 int index, fua, lba48, write;
534
535 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
536 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
537 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
538
539 if (dev->flags & ATA_DFLAG_PIO) {
540 tf->protocol = ATA_PROT_PIO;
541 index = dev->multi_count ? 0 : 8;
542 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
543 /* Unable to use DMA due to host limitation */
544 tf->protocol = ATA_PROT_PIO;
545 index = dev->multi_count ? 0 : 8;
546 } else {
547 tf->protocol = ATA_PROT_DMA;
548 index = 16;
549 }
550
551 cmd = ata_rw_cmds[index + fua + lba48 + write];
552 if (cmd) {
553 tf->command = cmd;
554 return 0;
555 }
556 return -1;
557 }
558
559 /**
560 * ata_tf_read_block - Read block address from ATA taskfile
561 * @tf: ATA taskfile of interest
562 * @dev: ATA device @tf belongs to
563 *
564 * LOCKING:
565 * None.
566 *
567 * Read block address from @tf. This function can handle all
568 * three address formats - LBA, LBA48 and CHS. tf->protocol and
569 * flags select the address format to use.
570 *
571 * RETURNS:
572 * Block address read from @tf.
573 */
574 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
575 {
576 u64 block = 0;
577
578 if (tf->flags & ATA_TFLAG_LBA) {
579 if (tf->flags & ATA_TFLAG_LBA48) {
580 block |= (u64)tf->hob_lbah << 40;
581 block |= (u64)tf->hob_lbam << 32;
582 block |= tf->hob_lbal << 24;
583 } else
584 block |= (tf->device & 0xf) << 24;
585
586 block |= tf->lbah << 16;
587 block |= tf->lbam << 8;
588 block |= tf->lbal;
589 } else {
590 u32 cyl, head, sect;
591
592 cyl = tf->lbam | (tf->lbah << 8);
593 head = tf->device & 0xf;
594 sect = tf->lbal;
595
596 block = (cyl * dev->heads + head) * dev->sectors + sect;
597 }
598
599 return block;
600 }
601
602 /**
603 * ata_build_rw_tf - Build ATA taskfile for given read/write request
604 * @tf: Target ATA taskfile
605 * @dev: ATA device @tf belongs to
606 * @block: Block address
607 * @n_block: Number of blocks
608 * @tf_flags: RW/FUA etc...
609 * @tag: tag
610 *
611 * LOCKING:
612 * None.
613 *
614 * Build ATA taskfile @tf for read/write request described by
615 * @block, @n_block, @tf_flags and @tag on @dev.
616 *
617 * RETURNS:
618 *
619 * 0 on success, -ERANGE if the request is too large for @dev,
620 * -EINVAL if the request is invalid.
621 */
622 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
623 u64 block, u32 n_block, unsigned int tf_flags,
624 unsigned int tag)
625 {
626 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
627 tf->flags |= tf_flags;
628
629 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
630 /* yay, NCQ */
631 if (!lba_48_ok(block, n_block))
632 return -ERANGE;
633
634 tf->protocol = ATA_PROT_NCQ;
635 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
636
637 if (tf->flags & ATA_TFLAG_WRITE)
638 tf->command = ATA_CMD_FPDMA_WRITE;
639 else
640 tf->command = ATA_CMD_FPDMA_READ;
641
642 tf->nsect = tag << 3;
643 tf->hob_feature = (n_block >> 8) & 0xff;
644 tf->feature = n_block & 0xff;
645
646 tf->hob_lbah = (block >> 40) & 0xff;
647 tf->hob_lbam = (block >> 32) & 0xff;
648 tf->hob_lbal = (block >> 24) & 0xff;
649 tf->lbah = (block >> 16) & 0xff;
650 tf->lbam = (block >> 8) & 0xff;
651 tf->lbal = block & 0xff;
652
653 tf->device = 1 << 6;
654 if (tf->flags & ATA_TFLAG_FUA)
655 tf->device |= 1 << 7;
656 } else if (dev->flags & ATA_DFLAG_LBA) {
657 tf->flags |= ATA_TFLAG_LBA;
658
659 if (lba_28_ok(block, n_block)) {
660 /* use LBA28 */
661 tf->device |= (block >> 24) & 0xf;
662 } else if (lba_48_ok(block, n_block)) {
663 if (!(dev->flags & ATA_DFLAG_LBA48))
664 return -ERANGE;
665
666 /* use LBA48 */
667 tf->flags |= ATA_TFLAG_LBA48;
668
669 tf->hob_nsect = (n_block >> 8) & 0xff;
670
671 tf->hob_lbah = (block >> 40) & 0xff;
672 tf->hob_lbam = (block >> 32) & 0xff;
673 tf->hob_lbal = (block >> 24) & 0xff;
674 } else
675 /* request too large even for LBA48 */
676 return -ERANGE;
677
678 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
679 return -EINVAL;
680
681 tf->nsect = n_block & 0xff;
682
683 tf->lbah = (block >> 16) & 0xff;
684 tf->lbam = (block >> 8) & 0xff;
685 tf->lbal = block & 0xff;
686
687 tf->device |= ATA_LBA;
688 } else {
689 /* CHS */
690 u32 sect, head, cyl, track;
691
692 /* The request -may- be too large for CHS addressing. */
693 if (!lba_28_ok(block, n_block))
694 return -ERANGE;
695
696 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
697 return -EINVAL;
698
699 /* Convert LBA to CHS */
700 track = (u32)block / dev->sectors;
701 cyl = track / dev->heads;
702 head = track % dev->heads;
703 sect = (u32)block % dev->sectors + 1;
704
705 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
706 (u32)block, track, cyl, head, sect);
707
708 /* Check whether the converted CHS can fit.
709 Cylinder: 0-65535
710 Head: 0-15
711 Sector: 1-255*/
712 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
713 return -ERANGE;
714
715 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
716 tf->lbal = sect;
717 tf->lbam = cyl;
718 tf->lbah = cyl >> 8;
719 tf->device |= head;
720 }
721
722 return 0;
723 }
724
725 /**
726 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
727 * @pio_mask: pio_mask
728 * @mwdma_mask: mwdma_mask
729 * @udma_mask: udma_mask
730 *
731 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
732 * unsigned int xfer_mask.
733 *
734 * LOCKING:
735 * None.
736 *
737 * RETURNS:
738 * Packed xfer_mask.
739 */
740 unsigned long ata_pack_xfermask(unsigned long pio_mask,
741 unsigned long mwdma_mask,
742 unsigned long udma_mask)
743 {
744 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
745 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
746 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
747 }
748
749 /**
750 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
751 * @xfer_mask: xfer_mask to unpack
752 * @pio_mask: resulting pio_mask
753 * @mwdma_mask: resulting mwdma_mask
754 * @udma_mask: resulting udma_mask
755 *
756 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
757 * Any NULL distination masks will be ignored.
758 */
759 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
760 unsigned long *mwdma_mask, unsigned long *udma_mask)
761 {
762 if (pio_mask)
763 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
764 if (mwdma_mask)
765 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
766 if (udma_mask)
767 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
768 }
769
770 static const struct ata_xfer_ent {
771 int shift, bits;
772 u8 base;
773 } ata_xfer_tbl[] = {
774 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
775 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
776 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
777 { -1, },
778 };
779
780 /**
781 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
782 * @xfer_mask: xfer_mask of interest
783 *
784 * Return matching XFER_* value for @xfer_mask. Only the highest
785 * bit of @xfer_mask is considered.
786 *
787 * LOCKING:
788 * None.
789 *
790 * RETURNS:
791 * Matching XFER_* value, 0xff if no match found.
792 */
793 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
794 {
795 int highbit = fls(xfer_mask) - 1;
796 const struct ata_xfer_ent *ent;
797
798 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
799 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
800 return ent->base + highbit - ent->shift;
801 return 0xff;
802 }
803
804 /**
805 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
806 * @xfer_mode: XFER_* of interest
807 *
808 * Return matching xfer_mask for @xfer_mode.
809 *
810 * LOCKING:
811 * None.
812 *
813 * RETURNS:
814 * Matching xfer_mask, 0 if no match found.
815 */
816 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
817 {
818 const struct ata_xfer_ent *ent;
819
820 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
821 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
822 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
823 & ~((1 << ent->shift) - 1);
824 return 0;
825 }
826
827 /**
828 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
829 * @xfer_mode: XFER_* of interest
830 *
831 * Return matching xfer_shift for @xfer_mode.
832 *
833 * LOCKING:
834 * None.
835 *
836 * RETURNS:
837 * Matching xfer_shift, -1 if no match found.
838 */
839 int ata_xfer_mode2shift(unsigned long xfer_mode)
840 {
841 const struct ata_xfer_ent *ent;
842
843 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
844 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
845 return ent->shift;
846 return -1;
847 }
848
849 /**
850 * ata_mode_string - convert xfer_mask to string
851 * @xfer_mask: mask of bits supported; only highest bit counts.
852 *
853 * Determine string which represents the highest speed
854 * (highest bit in @modemask).
855 *
856 * LOCKING:
857 * None.
858 *
859 * RETURNS:
860 * Constant C string representing highest speed listed in
861 * @mode_mask, or the constant C string "<n/a>".
862 */
863 const char *ata_mode_string(unsigned long xfer_mask)
864 {
865 static const char * const xfer_mode_str[] = {
866 "PIO0",
867 "PIO1",
868 "PIO2",
869 "PIO3",
870 "PIO4",
871 "PIO5",
872 "PIO6",
873 "MWDMA0",
874 "MWDMA1",
875 "MWDMA2",
876 "MWDMA3",
877 "MWDMA4",
878 "UDMA/16",
879 "UDMA/25",
880 "UDMA/33",
881 "UDMA/44",
882 "UDMA/66",
883 "UDMA/100",
884 "UDMA/133",
885 "UDMA7",
886 };
887 int highbit;
888
889 highbit = fls(xfer_mask) - 1;
890 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
891 return xfer_mode_str[highbit];
892 return "<n/a>";
893 }
894
895 static const char *sata_spd_string(unsigned int spd)
896 {
897 static const char * const spd_str[] = {
898 "1.5 Gbps",
899 "3.0 Gbps",
900 };
901
902 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
903 return "<unknown>";
904 return spd_str[spd - 1];
905 }
906
907 void ata_dev_disable(struct ata_device *dev)
908 {
909 if (ata_dev_enabled(dev)) {
910 if (ata_msg_drv(dev->link->ap))
911 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
912 ata_acpi_on_disable(dev);
913 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
914 ATA_DNXFER_QUIET);
915 dev->class++;
916 }
917 }
918
919 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
920 {
921 struct ata_link *link = dev->link;
922 struct ata_port *ap = link->ap;
923 u32 scontrol;
924 unsigned int err_mask;
925 int rc;
926
927 /*
928 * disallow DIPM for drivers which haven't set
929 * ATA_FLAG_IPM. This is because when DIPM is enabled,
930 * phy ready will be set in the interrupt status on
931 * state changes, which will cause some drivers to
932 * think there are errors - additionally drivers will
933 * need to disable hot plug.
934 */
935 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
936 ap->pm_policy = NOT_AVAILABLE;
937 return -EINVAL;
938 }
939
940 /*
941 * For DIPM, we will only enable it for the
942 * min_power setting.
943 *
944 * Why? Because Disks are too stupid to know that
945 * If the host rejects a request to go to SLUMBER
946 * they should retry at PARTIAL, and instead it
947 * just would give up. So, for medium_power to
948 * work at all, we need to only allow HIPM.
949 */
950 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
951 if (rc)
952 return rc;
953
954 switch (policy) {
955 case MIN_POWER:
956 /* no restrictions on IPM transitions */
957 scontrol &= ~(0x3 << 8);
958 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
959 if (rc)
960 return rc;
961
962 /* enable DIPM */
963 if (dev->flags & ATA_DFLAG_DIPM)
964 err_mask = ata_dev_set_feature(dev,
965 SETFEATURES_SATA_ENABLE, SATA_DIPM);
966 break;
967 case MEDIUM_POWER:
968 /* allow IPM to PARTIAL */
969 scontrol &= ~(0x1 << 8);
970 scontrol |= (0x2 << 8);
971 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
972 if (rc)
973 return rc;
974
975 /*
976 * we don't have to disable DIPM since IPM flags
977 * disallow transitions to SLUMBER, which effectively
978 * disable DIPM if it does not support PARTIAL
979 */
980 break;
981 case NOT_AVAILABLE:
982 case MAX_PERFORMANCE:
983 /* disable all IPM transitions */
984 scontrol |= (0x3 << 8);
985 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
986 if (rc)
987 return rc;
988
989 /*
990 * we don't have to disable DIPM since IPM flags
991 * disallow all transitions which effectively
992 * disable DIPM anyway.
993 */
994 break;
995 }
996
997 /* FIXME: handle SET FEATURES failure */
998 (void) err_mask;
999
1000 return 0;
1001 }
1002
1003 /**
1004 * ata_dev_enable_pm - enable SATA interface power management
1005 * @dev: device to enable power management
1006 * @policy: the link power management policy
1007 *
1008 * Enable SATA Interface power management. This will enable
1009 * Device Interface Power Management (DIPM) for min_power
1010 * policy, and then call driver specific callbacks for
1011 * enabling Host Initiated Power management.
1012 *
1013 * Locking: Caller.
1014 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1015 */
1016 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1017 {
1018 int rc = 0;
1019 struct ata_port *ap = dev->link->ap;
1020
1021 /* set HIPM first, then DIPM */
1022 if (ap->ops->enable_pm)
1023 rc = ap->ops->enable_pm(ap, policy);
1024 if (rc)
1025 goto enable_pm_out;
1026 rc = ata_dev_set_dipm(dev, policy);
1027
1028 enable_pm_out:
1029 if (rc)
1030 ap->pm_policy = MAX_PERFORMANCE;
1031 else
1032 ap->pm_policy = policy;
1033 return /* rc */; /* hopefully we can use 'rc' eventually */
1034 }
1035
1036 #ifdef CONFIG_PM
1037 /**
1038 * ata_dev_disable_pm - disable SATA interface power management
1039 * @dev: device to disable power management
1040 *
1041 * Disable SATA Interface power management. This will disable
1042 * Device Interface Power Management (DIPM) without changing
1043 * policy, call driver specific callbacks for disabling Host
1044 * Initiated Power management.
1045 *
1046 * Locking: Caller.
1047 * Returns: void
1048 */
1049 static void ata_dev_disable_pm(struct ata_device *dev)
1050 {
1051 struct ata_port *ap = dev->link->ap;
1052
1053 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1054 if (ap->ops->disable_pm)
1055 ap->ops->disable_pm(ap);
1056 }
1057 #endif /* CONFIG_PM */
1058
1059 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1060 {
1061 ap->pm_policy = policy;
1062 ap->link.eh_info.action |= ATA_EH_LPM;
1063 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1064 ata_port_schedule_eh(ap);
1065 }
1066
1067 #ifdef CONFIG_PM
1068 static void ata_lpm_enable(struct ata_host *host)
1069 {
1070 struct ata_link *link;
1071 struct ata_port *ap;
1072 struct ata_device *dev;
1073 int i;
1074
1075 for (i = 0; i < host->n_ports; i++) {
1076 ap = host->ports[i];
1077 ata_port_for_each_link(link, ap) {
1078 ata_link_for_each_dev(dev, link)
1079 ata_dev_disable_pm(dev);
1080 }
1081 }
1082 }
1083
1084 static void ata_lpm_disable(struct ata_host *host)
1085 {
1086 int i;
1087
1088 for (i = 0; i < host->n_ports; i++) {
1089 struct ata_port *ap = host->ports[i];
1090 ata_lpm_schedule(ap, ap->pm_policy);
1091 }
1092 }
1093 #endif /* CONFIG_PM */
1094
1095
1096 /**
1097 * ata_devchk - PATA device presence detection
1098 * @ap: ATA channel to examine
1099 * @device: Device to examine (starting at zero)
1100 *
1101 * This technique was originally described in
1102 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1103 * later found its way into the ATA/ATAPI spec.
1104 *
1105 * Write a pattern to the ATA shadow registers,
1106 * and if a device is present, it will respond by
1107 * correctly storing and echoing back the
1108 * ATA shadow register contents.
1109 *
1110 * LOCKING:
1111 * caller.
1112 */
1113
1114 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1115 {
1116 struct ata_ioports *ioaddr = &ap->ioaddr;
1117 u8 nsect, lbal;
1118
1119 ap->ops->dev_select(ap, device);
1120
1121 iowrite8(0x55, ioaddr->nsect_addr);
1122 iowrite8(0xaa, ioaddr->lbal_addr);
1123
1124 iowrite8(0xaa, ioaddr->nsect_addr);
1125 iowrite8(0x55, ioaddr->lbal_addr);
1126
1127 iowrite8(0x55, ioaddr->nsect_addr);
1128 iowrite8(0xaa, ioaddr->lbal_addr);
1129
1130 nsect = ioread8(ioaddr->nsect_addr);
1131 lbal = ioread8(ioaddr->lbal_addr);
1132
1133 if ((nsect == 0x55) && (lbal == 0xaa))
1134 return 1; /* we found a device */
1135
1136 return 0; /* nothing found */
1137 }
1138
1139 /**
1140 * ata_dev_classify - determine device type based on ATA-spec signature
1141 * @tf: ATA taskfile register set for device to be identified
1142 *
1143 * Determine from taskfile register contents whether a device is
1144 * ATA or ATAPI, as per "Signature and persistence" section
1145 * of ATA/PI spec (volume 1, sect 5.14).
1146 *
1147 * LOCKING:
1148 * None.
1149 *
1150 * RETURNS:
1151 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1152 * %ATA_DEV_UNKNOWN the event of failure.
1153 */
1154 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1155 {
1156 /* Apple's open source Darwin code hints that some devices only
1157 * put a proper signature into the LBA mid/high registers,
1158 * So, we only check those. It's sufficient for uniqueness.
1159 *
1160 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1161 * signatures for ATA and ATAPI devices attached on SerialATA,
1162 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1163 * spec has never mentioned about using different signatures
1164 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1165 * Multiplier specification began to use 0x69/0x96 to identify
1166 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1167 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1168 * 0x69/0x96 shortly and described them as reserved for
1169 * SerialATA.
1170 *
1171 * We follow the current spec and consider that 0x69/0x96
1172 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1173 */
1174 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1175 DPRINTK("found ATA device by sig\n");
1176 return ATA_DEV_ATA;
1177 }
1178
1179 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1180 DPRINTK("found ATAPI device by sig\n");
1181 return ATA_DEV_ATAPI;
1182 }
1183
1184 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1185 DPRINTK("found PMP device by sig\n");
1186 return ATA_DEV_PMP;
1187 }
1188
1189 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1190 printk(KERN_INFO "ata: SEMB device ignored\n");
1191 return ATA_DEV_SEMB_UNSUP; /* not yet */
1192 }
1193
1194 DPRINTK("unknown device\n");
1195 return ATA_DEV_UNKNOWN;
1196 }
1197
1198 /**
1199 * ata_dev_try_classify - Parse returned ATA device signature
1200 * @dev: ATA device to classify (starting at zero)
1201 * @present: device seems present
1202 * @r_err: Value of error register on completion
1203 *
1204 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1205 * an ATA/ATAPI-defined set of values is placed in the ATA
1206 * shadow registers, indicating the results of device detection
1207 * and diagnostics.
1208 *
1209 * Select the ATA device, and read the values from the ATA shadow
1210 * registers. Then parse according to the Error register value,
1211 * and the spec-defined values examined by ata_dev_classify().
1212 *
1213 * LOCKING:
1214 * caller.
1215 *
1216 * RETURNS:
1217 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1218 */
1219 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1220 u8 *r_err)
1221 {
1222 struct ata_port *ap = dev->link->ap;
1223 struct ata_taskfile tf;
1224 unsigned int class;
1225 u8 err;
1226
1227 ap->ops->dev_select(ap, dev->devno);
1228
1229 memset(&tf, 0, sizeof(tf));
1230
1231 ap->ops->tf_read(ap, &tf);
1232 err = tf.feature;
1233 if (r_err)
1234 *r_err = err;
1235
1236 /* see if device passed diags: continue and warn later */
1237 if (err == 0)
1238 /* diagnostic fail : do nothing _YET_ */
1239 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1240 else if (err == 1)
1241 /* do nothing */ ;
1242 else if ((dev->devno == 0) && (err == 0x81))
1243 /* do nothing */ ;
1244 else
1245 return ATA_DEV_NONE;
1246
1247 /* determine if device is ATA or ATAPI */
1248 class = ata_dev_classify(&tf);
1249
1250 if (class == ATA_DEV_UNKNOWN) {
1251 /* If the device failed diagnostic, it's likely to
1252 * have reported incorrect device signature too.
1253 * Assume ATA device if the device seems present but
1254 * device signature is invalid with diagnostic
1255 * failure.
1256 */
1257 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1258 class = ATA_DEV_ATA;
1259 else
1260 class = ATA_DEV_NONE;
1261 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1262 class = ATA_DEV_NONE;
1263
1264 return class;
1265 }
1266
1267 /**
1268 * ata_id_string - Convert IDENTIFY DEVICE page into string
1269 * @id: IDENTIFY DEVICE results we will examine
1270 * @s: string into which data is output
1271 * @ofs: offset into identify device page
1272 * @len: length of string to return. must be an even number.
1273 *
1274 * The strings in the IDENTIFY DEVICE page are broken up into
1275 * 16-bit chunks. Run through the string, and output each
1276 * 8-bit chunk linearly, regardless of platform.
1277 *
1278 * LOCKING:
1279 * caller.
1280 */
1281
1282 void ata_id_string(const u16 *id, unsigned char *s,
1283 unsigned int ofs, unsigned int len)
1284 {
1285 unsigned int c;
1286
1287 while (len > 0) {
1288 c = id[ofs] >> 8;
1289 *s = c;
1290 s++;
1291
1292 c = id[ofs] & 0xff;
1293 *s = c;
1294 s++;
1295
1296 ofs++;
1297 len -= 2;
1298 }
1299 }
1300
1301 /**
1302 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1303 * @id: IDENTIFY DEVICE results we will examine
1304 * @s: string into which data is output
1305 * @ofs: offset into identify device page
1306 * @len: length of string to return. must be an odd number.
1307 *
1308 * This function is identical to ata_id_string except that it
1309 * trims trailing spaces and terminates the resulting string with
1310 * null. @len must be actual maximum length (even number) + 1.
1311 *
1312 * LOCKING:
1313 * caller.
1314 */
1315 void ata_id_c_string(const u16 *id, unsigned char *s,
1316 unsigned int ofs, unsigned int len)
1317 {
1318 unsigned char *p;
1319
1320 WARN_ON(!(len & 1));
1321
1322 ata_id_string(id, s, ofs, len - 1);
1323
1324 p = s + strnlen(s, len - 1);
1325 while (p > s && p[-1] == ' ')
1326 p--;
1327 *p = '\0';
1328 }
1329
1330 static u64 ata_id_n_sectors(const u16 *id)
1331 {
1332 if (ata_id_has_lba(id)) {
1333 if (ata_id_has_lba48(id))
1334 return ata_id_u64(id, 100);
1335 else
1336 return ata_id_u32(id, 60);
1337 } else {
1338 if (ata_id_current_chs_valid(id))
1339 return ata_id_u32(id, 57);
1340 else
1341 return id[1] * id[3] * id[6];
1342 }
1343 }
1344
1345 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1346 {
1347 u64 sectors = 0;
1348
1349 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1350 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1351 sectors |= (tf->hob_lbal & 0xff) << 24;
1352 sectors |= (tf->lbah & 0xff) << 16;
1353 sectors |= (tf->lbam & 0xff) << 8;
1354 sectors |= (tf->lbal & 0xff);
1355
1356 return ++sectors;
1357 }
1358
1359 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1360 {
1361 u64 sectors = 0;
1362
1363 sectors |= (tf->device & 0x0f) << 24;
1364 sectors |= (tf->lbah & 0xff) << 16;
1365 sectors |= (tf->lbam & 0xff) << 8;
1366 sectors |= (tf->lbal & 0xff);
1367
1368 return ++sectors;
1369 }
1370
1371 /**
1372 * ata_read_native_max_address - Read native max address
1373 * @dev: target device
1374 * @max_sectors: out parameter for the result native max address
1375 *
1376 * Perform an LBA48 or LBA28 native size query upon the device in
1377 * question.
1378 *
1379 * RETURNS:
1380 * 0 on success, -EACCES if command is aborted by the drive.
1381 * -EIO on other errors.
1382 */
1383 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1384 {
1385 unsigned int err_mask;
1386 struct ata_taskfile tf;
1387 int lba48 = ata_id_has_lba48(dev->id);
1388
1389 ata_tf_init(dev, &tf);
1390
1391 /* always clear all address registers */
1392 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1393
1394 if (lba48) {
1395 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1396 tf.flags |= ATA_TFLAG_LBA48;
1397 } else
1398 tf.command = ATA_CMD_READ_NATIVE_MAX;
1399
1400 tf.protocol |= ATA_PROT_NODATA;
1401 tf.device |= ATA_LBA;
1402
1403 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1404 if (err_mask) {
1405 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1406 "max address (err_mask=0x%x)\n", err_mask);
1407 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1408 return -EACCES;
1409 return -EIO;
1410 }
1411
1412 if (lba48)
1413 *max_sectors = ata_tf_to_lba48(&tf);
1414 else
1415 *max_sectors = ata_tf_to_lba(&tf);
1416 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1417 (*max_sectors)--;
1418 return 0;
1419 }
1420
1421 /**
1422 * ata_set_max_sectors - Set max sectors
1423 * @dev: target device
1424 * @new_sectors: new max sectors value to set for the device
1425 *
1426 * Set max sectors of @dev to @new_sectors.
1427 *
1428 * RETURNS:
1429 * 0 on success, -EACCES if command is aborted or denied (due to
1430 * previous non-volatile SET_MAX) by the drive. -EIO on other
1431 * errors.
1432 */
1433 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1434 {
1435 unsigned int err_mask;
1436 struct ata_taskfile tf;
1437 int lba48 = ata_id_has_lba48(dev->id);
1438
1439 new_sectors--;
1440
1441 ata_tf_init(dev, &tf);
1442
1443 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1444
1445 if (lba48) {
1446 tf.command = ATA_CMD_SET_MAX_EXT;
1447 tf.flags |= ATA_TFLAG_LBA48;
1448
1449 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1450 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1451 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1452 } else {
1453 tf.command = ATA_CMD_SET_MAX;
1454
1455 tf.device |= (new_sectors >> 24) & 0xf;
1456 }
1457
1458 tf.protocol |= ATA_PROT_NODATA;
1459 tf.device |= ATA_LBA;
1460
1461 tf.lbal = (new_sectors >> 0) & 0xff;
1462 tf.lbam = (new_sectors >> 8) & 0xff;
1463 tf.lbah = (new_sectors >> 16) & 0xff;
1464
1465 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1466 if (err_mask) {
1467 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1468 "max address (err_mask=0x%x)\n", err_mask);
1469 if (err_mask == AC_ERR_DEV &&
1470 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1471 return -EACCES;
1472 return -EIO;
1473 }
1474
1475 return 0;
1476 }
1477
1478 /**
1479 * ata_hpa_resize - Resize a device with an HPA set
1480 * @dev: Device to resize
1481 *
1482 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1483 * it if required to the full size of the media. The caller must check
1484 * the drive has the HPA feature set enabled.
1485 *
1486 * RETURNS:
1487 * 0 on success, -errno on failure.
1488 */
1489 static int ata_hpa_resize(struct ata_device *dev)
1490 {
1491 struct ata_eh_context *ehc = &dev->link->eh_context;
1492 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1493 u64 sectors = ata_id_n_sectors(dev->id);
1494 u64 native_sectors;
1495 int rc;
1496
1497 /* do we need to do it? */
1498 if (dev->class != ATA_DEV_ATA ||
1499 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1500 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1501 return 0;
1502
1503 /* read native max address */
1504 rc = ata_read_native_max_address(dev, &native_sectors);
1505 if (rc) {
1506 /* If device aborted the command or HPA isn't going to
1507 * be unlocked, skip HPA resizing.
1508 */
1509 if (rc == -EACCES || !ata_ignore_hpa) {
1510 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1511 "broken, skipping HPA handling\n");
1512 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1513
1514 /* we can continue if device aborted the command */
1515 if (rc == -EACCES)
1516 rc = 0;
1517 }
1518
1519 return rc;
1520 }
1521
1522 /* nothing to do? */
1523 if (native_sectors <= sectors || !ata_ignore_hpa) {
1524 if (!print_info || native_sectors == sectors)
1525 return 0;
1526
1527 if (native_sectors > sectors)
1528 ata_dev_printk(dev, KERN_INFO,
1529 "HPA detected: current %llu, native %llu\n",
1530 (unsigned long long)sectors,
1531 (unsigned long long)native_sectors);
1532 else if (native_sectors < sectors)
1533 ata_dev_printk(dev, KERN_WARNING,
1534 "native sectors (%llu) is smaller than "
1535 "sectors (%llu)\n",
1536 (unsigned long long)native_sectors,
1537 (unsigned long long)sectors);
1538 return 0;
1539 }
1540
1541 /* let's unlock HPA */
1542 rc = ata_set_max_sectors(dev, native_sectors);
1543 if (rc == -EACCES) {
1544 /* if device aborted the command, skip HPA resizing */
1545 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1546 "(%llu -> %llu), skipping HPA handling\n",
1547 (unsigned long long)sectors,
1548 (unsigned long long)native_sectors);
1549 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1550 return 0;
1551 } else if (rc)
1552 return rc;
1553
1554 /* re-read IDENTIFY data */
1555 rc = ata_dev_reread_id(dev, 0);
1556 if (rc) {
1557 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1558 "data after HPA resizing\n");
1559 return rc;
1560 }
1561
1562 if (print_info) {
1563 u64 new_sectors = ata_id_n_sectors(dev->id);
1564 ata_dev_printk(dev, KERN_INFO,
1565 "HPA unlocked: %llu -> %llu, native %llu\n",
1566 (unsigned long long)sectors,
1567 (unsigned long long)new_sectors,
1568 (unsigned long long)native_sectors);
1569 }
1570
1571 return 0;
1572 }
1573
1574 /**
1575 * ata_noop_dev_select - Select device 0/1 on ATA bus
1576 * @ap: ATA channel to manipulate
1577 * @device: ATA device (numbered from zero) to select
1578 *
1579 * This function performs no actual function.
1580 *
1581 * May be used as the dev_select() entry in ata_port_operations.
1582 *
1583 * LOCKING:
1584 * caller.
1585 */
1586 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1587 {
1588 }
1589
1590
1591 /**
1592 * ata_std_dev_select - Select device 0/1 on ATA bus
1593 * @ap: ATA channel to manipulate
1594 * @device: ATA device (numbered from zero) to select
1595 *
1596 * Use the method defined in the ATA specification to
1597 * make either device 0, or device 1, active on the
1598 * ATA channel. Works with both PIO and MMIO.
1599 *
1600 * May be used as the dev_select() entry in ata_port_operations.
1601 *
1602 * LOCKING:
1603 * caller.
1604 */
1605
1606 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1607 {
1608 u8 tmp;
1609
1610 if (device == 0)
1611 tmp = ATA_DEVICE_OBS;
1612 else
1613 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1614
1615 iowrite8(tmp, ap->ioaddr.device_addr);
1616 ata_pause(ap); /* needed; also flushes, for mmio */
1617 }
1618
1619 /**
1620 * ata_dev_select - Select device 0/1 on ATA bus
1621 * @ap: ATA channel to manipulate
1622 * @device: ATA device (numbered from zero) to select
1623 * @wait: non-zero to wait for Status register BSY bit to clear
1624 * @can_sleep: non-zero if context allows sleeping
1625 *
1626 * Use the method defined in the ATA specification to
1627 * make either device 0, or device 1, active on the
1628 * ATA channel.
1629 *
1630 * This is a high-level version of ata_std_dev_select(),
1631 * which additionally provides the services of inserting
1632 * the proper pauses and status polling, where needed.
1633 *
1634 * LOCKING:
1635 * caller.
1636 */
1637
1638 void ata_dev_select(struct ata_port *ap, unsigned int device,
1639 unsigned int wait, unsigned int can_sleep)
1640 {
1641 if (ata_msg_probe(ap))
1642 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1643 "device %u, wait %u\n", device, wait);
1644
1645 if (wait)
1646 ata_wait_idle(ap);
1647
1648 ap->ops->dev_select(ap, device);
1649
1650 if (wait) {
1651 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1652 msleep(150);
1653 ata_wait_idle(ap);
1654 }
1655 }
1656
1657 /**
1658 * ata_dump_id - IDENTIFY DEVICE info debugging output
1659 * @id: IDENTIFY DEVICE page to dump
1660 *
1661 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1662 * page.
1663 *
1664 * LOCKING:
1665 * caller.
1666 */
1667
1668 static inline void ata_dump_id(const u16 *id)
1669 {
1670 DPRINTK("49==0x%04x "
1671 "53==0x%04x "
1672 "63==0x%04x "
1673 "64==0x%04x "
1674 "75==0x%04x \n",
1675 id[49],
1676 id[53],
1677 id[63],
1678 id[64],
1679 id[75]);
1680 DPRINTK("80==0x%04x "
1681 "81==0x%04x "
1682 "82==0x%04x "
1683 "83==0x%04x "
1684 "84==0x%04x \n",
1685 id[80],
1686 id[81],
1687 id[82],
1688 id[83],
1689 id[84]);
1690 DPRINTK("88==0x%04x "
1691 "93==0x%04x\n",
1692 id[88],
1693 id[93]);
1694 }
1695
1696 /**
1697 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1698 * @id: IDENTIFY data to compute xfer mask from
1699 *
1700 * Compute the xfermask for this device. This is not as trivial
1701 * as it seems if we must consider early devices correctly.
1702 *
1703 * FIXME: pre IDE drive timing (do we care ?).
1704 *
1705 * LOCKING:
1706 * None.
1707 *
1708 * RETURNS:
1709 * Computed xfermask
1710 */
1711 unsigned long ata_id_xfermask(const u16 *id)
1712 {
1713 unsigned long pio_mask, mwdma_mask, udma_mask;
1714
1715 /* Usual case. Word 53 indicates word 64 is valid */
1716 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1717 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1718 pio_mask <<= 3;
1719 pio_mask |= 0x7;
1720 } else {
1721 /* If word 64 isn't valid then Word 51 high byte holds
1722 * the PIO timing number for the maximum. Turn it into
1723 * a mask.
1724 */
1725 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1726 if (mode < 5) /* Valid PIO range */
1727 pio_mask = (2 << mode) - 1;
1728 else
1729 pio_mask = 1;
1730
1731 /* But wait.. there's more. Design your standards by
1732 * committee and you too can get a free iordy field to
1733 * process. However its the speeds not the modes that
1734 * are supported... Note drivers using the timing API
1735 * will get this right anyway
1736 */
1737 }
1738
1739 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1740
1741 if (ata_id_is_cfa(id)) {
1742 /*
1743 * Process compact flash extended modes
1744 */
1745 int pio = id[163] & 0x7;
1746 int dma = (id[163] >> 3) & 7;
1747
1748 if (pio)
1749 pio_mask |= (1 << 5);
1750 if (pio > 1)
1751 pio_mask |= (1 << 6);
1752 if (dma)
1753 mwdma_mask |= (1 << 3);
1754 if (dma > 1)
1755 mwdma_mask |= (1 << 4);
1756 }
1757
1758 udma_mask = 0;
1759 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1760 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1761
1762 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1763 }
1764
1765 /**
1766 * ata_pio_queue_task - Queue port_task
1767 * @ap: The ata_port to queue port_task for
1768 * @fn: workqueue function to be scheduled
1769 * @data: data for @fn to use
1770 * @delay: delay time for workqueue function
1771 *
1772 * Schedule @fn(@data) for execution after @delay jiffies using
1773 * port_task. There is one port_task per port and it's the
1774 * user(low level driver)'s responsibility to make sure that only
1775 * one task is active at any given time.
1776 *
1777 * libata core layer takes care of synchronization between
1778 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1779 * synchronization.
1780 *
1781 * LOCKING:
1782 * Inherited from caller.
1783 */
1784 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1785 unsigned long delay)
1786 {
1787 ap->port_task_data = data;
1788
1789 /* may fail if ata_port_flush_task() in progress */
1790 queue_delayed_work(ata_wq, &ap->port_task, delay);
1791 }
1792
1793 /**
1794 * ata_port_flush_task - Flush port_task
1795 * @ap: The ata_port to flush port_task for
1796 *
1797 * After this function completes, port_task is guranteed not to
1798 * be running or scheduled.
1799 *
1800 * LOCKING:
1801 * Kernel thread context (may sleep)
1802 */
1803 void ata_port_flush_task(struct ata_port *ap)
1804 {
1805 DPRINTK("ENTER\n");
1806
1807 cancel_rearming_delayed_work(&ap->port_task);
1808
1809 if (ata_msg_ctl(ap))
1810 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1811 }
1812
1813 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1814 {
1815 struct completion *waiting = qc->private_data;
1816
1817 complete(waiting);
1818 }
1819
1820 /**
1821 * ata_exec_internal_sg - execute libata internal command
1822 * @dev: Device to which the command is sent
1823 * @tf: Taskfile registers for the command and the result
1824 * @cdb: CDB for packet command
1825 * @dma_dir: Data tranfer direction of the command
1826 * @sgl: sg list for the data buffer of the command
1827 * @n_elem: Number of sg entries
1828 * @timeout: Timeout in msecs (0 for default)
1829 *
1830 * Executes libata internal command with timeout. @tf contains
1831 * command on entry and result on return. Timeout and error
1832 * conditions are reported via return value. No recovery action
1833 * is taken after a command times out. It's caller's duty to
1834 * clean up after timeout.
1835 *
1836 * LOCKING:
1837 * None. Should be called with kernel context, might sleep.
1838 *
1839 * RETURNS:
1840 * Zero on success, AC_ERR_* mask on failure
1841 */
1842 unsigned ata_exec_internal_sg(struct ata_device *dev,
1843 struct ata_taskfile *tf, const u8 *cdb,
1844 int dma_dir, struct scatterlist *sgl,
1845 unsigned int n_elem, unsigned long timeout)
1846 {
1847 struct ata_link *link = dev->link;
1848 struct ata_port *ap = link->ap;
1849 u8 command = tf->command;
1850 struct ata_queued_cmd *qc;
1851 unsigned int tag, preempted_tag;
1852 u32 preempted_sactive, preempted_qc_active;
1853 int preempted_nr_active_links;
1854 DECLARE_COMPLETION_ONSTACK(wait);
1855 unsigned long flags;
1856 unsigned int err_mask;
1857 int rc;
1858
1859 spin_lock_irqsave(ap->lock, flags);
1860
1861 /* no internal command while frozen */
1862 if (ap->pflags & ATA_PFLAG_FROZEN) {
1863 spin_unlock_irqrestore(ap->lock, flags);
1864 return AC_ERR_SYSTEM;
1865 }
1866
1867 /* initialize internal qc */
1868
1869 /* XXX: Tag 0 is used for drivers with legacy EH as some
1870 * drivers choke if any other tag is given. This breaks
1871 * ata_tag_internal() test for those drivers. Don't use new
1872 * EH stuff without converting to it.
1873 */
1874 if (ap->ops->error_handler)
1875 tag = ATA_TAG_INTERNAL;
1876 else
1877 tag = 0;
1878
1879 if (test_and_set_bit(tag, &ap->qc_allocated))
1880 BUG();
1881 qc = __ata_qc_from_tag(ap, tag);
1882
1883 qc->tag = tag;
1884 qc->scsicmd = NULL;
1885 qc->ap = ap;
1886 qc->dev = dev;
1887 ata_qc_reinit(qc);
1888
1889 preempted_tag = link->active_tag;
1890 preempted_sactive = link->sactive;
1891 preempted_qc_active = ap->qc_active;
1892 preempted_nr_active_links = ap->nr_active_links;
1893 link->active_tag = ATA_TAG_POISON;
1894 link->sactive = 0;
1895 ap->qc_active = 0;
1896 ap->nr_active_links = 0;
1897
1898 /* prepare & issue qc */
1899 qc->tf = *tf;
1900 if (cdb)
1901 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1902 qc->flags |= ATA_QCFLAG_RESULT_TF;
1903 qc->dma_dir = dma_dir;
1904 if (dma_dir != DMA_NONE) {
1905 unsigned int i, buflen = 0;
1906 struct scatterlist *sg;
1907
1908 for_each_sg(sgl, sg, n_elem, i)
1909 buflen += sg->length;
1910
1911 ata_sg_init(qc, sgl, n_elem);
1912 qc->nbytes = buflen;
1913 }
1914
1915 qc->private_data = &wait;
1916 qc->complete_fn = ata_qc_complete_internal;
1917
1918 ata_qc_issue(qc);
1919
1920 spin_unlock_irqrestore(ap->lock, flags);
1921
1922 if (!timeout)
1923 timeout = ata_probe_timeout * 1000 / HZ;
1924
1925 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1926
1927 ata_port_flush_task(ap);
1928
1929 if (!rc) {
1930 spin_lock_irqsave(ap->lock, flags);
1931
1932 /* We're racing with irq here. If we lose, the
1933 * following test prevents us from completing the qc
1934 * twice. If we win, the port is frozen and will be
1935 * cleaned up by ->post_internal_cmd().
1936 */
1937 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1938 qc->err_mask |= AC_ERR_TIMEOUT;
1939
1940 if (ap->ops->error_handler)
1941 ata_port_freeze(ap);
1942 else
1943 ata_qc_complete(qc);
1944
1945 if (ata_msg_warn(ap))
1946 ata_dev_printk(dev, KERN_WARNING,
1947 "qc timeout (cmd 0x%x)\n", command);
1948 }
1949
1950 spin_unlock_irqrestore(ap->lock, flags);
1951 }
1952
1953 /* do post_internal_cmd */
1954 if (ap->ops->post_internal_cmd)
1955 ap->ops->post_internal_cmd(qc);
1956
1957 /* perform minimal error analysis */
1958 if (qc->flags & ATA_QCFLAG_FAILED) {
1959 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1960 qc->err_mask |= AC_ERR_DEV;
1961
1962 if (!qc->err_mask)
1963 qc->err_mask |= AC_ERR_OTHER;
1964
1965 if (qc->err_mask & ~AC_ERR_OTHER)
1966 qc->err_mask &= ~AC_ERR_OTHER;
1967 }
1968
1969 /* finish up */
1970 spin_lock_irqsave(ap->lock, flags);
1971
1972 *tf = qc->result_tf;
1973 err_mask = qc->err_mask;
1974
1975 ata_qc_free(qc);
1976 link->active_tag = preempted_tag;
1977 link->sactive = preempted_sactive;
1978 ap->qc_active = preempted_qc_active;
1979 ap->nr_active_links = preempted_nr_active_links;
1980
1981 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1982 * Until those drivers are fixed, we detect the condition
1983 * here, fail the command with AC_ERR_SYSTEM and reenable the
1984 * port.
1985 *
1986 * Note that this doesn't change any behavior as internal
1987 * command failure results in disabling the device in the
1988 * higher layer for LLDDs without new reset/EH callbacks.
1989 *
1990 * Kill the following code as soon as those drivers are fixed.
1991 */
1992 if (ap->flags & ATA_FLAG_DISABLED) {
1993 err_mask |= AC_ERR_SYSTEM;
1994 ata_port_probe(ap);
1995 }
1996
1997 spin_unlock_irqrestore(ap->lock, flags);
1998
1999 return err_mask;
2000 }
2001
2002 /**
2003 * ata_exec_internal - execute libata internal command
2004 * @dev: Device to which the command is sent
2005 * @tf: Taskfile registers for the command and the result
2006 * @cdb: CDB for packet command
2007 * @dma_dir: Data tranfer direction of the command
2008 * @buf: Data buffer of the command
2009 * @buflen: Length of data buffer
2010 * @timeout: Timeout in msecs (0 for default)
2011 *
2012 * Wrapper around ata_exec_internal_sg() which takes simple
2013 * buffer instead of sg list.
2014 *
2015 * LOCKING:
2016 * None. Should be called with kernel context, might sleep.
2017 *
2018 * RETURNS:
2019 * Zero on success, AC_ERR_* mask on failure
2020 */
2021 unsigned ata_exec_internal(struct ata_device *dev,
2022 struct ata_taskfile *tf, const u8 *cdb,
2023 int dma_dir, void *buf, unsigned int buflen,
2024 unsigned long timeout)
2025 {
2026 struct scatterlist *psg = NULL, sg;
2027 unsigned int n_elem = 0;
2028
2029 if (dma_dir != DMA_NONE) {
2030 WARN_ON(!buf);
2031 sg_init_one(&sg, buf, buflen);
2032 psg = &sg;
2033 n_elem++;
2034 }
2035
2036 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
2037 timeout);
2038 }
2039
2040 /**
2041 * ata_do_simple_cmd - execute simple internal command
2042 * @dev: Device to which the command is sent
2043 * @cmd: Opcode to execute
2044 *
2045 * Execute a 'simple' command, that only consists of the opcode
2046 * 'cmd' itself, without filling any other registers
2047 *
2048 * LOCKING:
2049 * Kernel thread context (may sleep).
2050 *
2051 * RETURNS:
2052 * Zero on success, AC_ERR_* mask on failure
2053 */
2054 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
2055 {
2056 struct ata_taskfile tf;
2057
2058 ata_tf_init(dev, &tf);
2059
2060 tf.command = cmd;
2061 tf.flags |= ATA_TFLAG_DEVICE;
2062 tf.protocol = ATA_PROT_NODATA;
2063
2064 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2065 }
2066
2067 /**
2068 * ata_pio_need_iordy - check if iordy needed
2069 * @adev: ATA device
2070 *
2071 * Check if the current speed of the device requires IORDY. Used
2072 * by various controllers for chip configuration.
2073 */
2074
2075 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2076 {
2077 /* Controller doesn't support IORDY. Probably a pointless check
2078 as the caller should know this */
2079 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2080 return 0;
2081 /* PIO3 and higher it is mandatory */
2082 if (adev->pio_mode > XFER_PIO_2)
2083 return 1;
2084 /* We turn it on when possible */
2085 if (ata_id_has_iordy(adev->id))
2086 return 1;
2087 return 0;
2088 }
2089
2090 /**
2091 * ata_pio_mask_no_iordy - Return the non IORDY mask
2092 * @adev: ATA device
2093 *
2094 * Compute the highest mode possible if we are not using iordy. Return
2095 * -1 if no iordy mode is available.
2096 */
2097
2098 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2099 {
2100 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2101 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2102 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2103 /* Is the speed faster than the drive allows non IORDY ? */
2104 if (pio) {
2105 /* This is cycle times not frequency - watch the logic! */
2106 if (pio > 240) /* PIO2 is 240nS per cycle */
2107 return 3 << ATA_SHIFT_PIO;
2108 return 7 << ATA_SHIFT_PIO;
2109 }
2110 }
2111 return 3 << ATA_SHIFT_PIO;
2112 }
2113
2114 /**
2115 * ata_dev_read_id - Read ID data from the specified device
2116 * @dev: target device
2117 * @p_class: pointer to class of the target device (may be changed)
2118 * @flags: ATA_READID_* flags
2119 * @id: buffer to read IDENTIFY data into
2120 *
2121 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2122 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2123 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2124 * for pre-ATA4 drives.
2125 *
2126 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2127 * now we abort if we hit that case.
2128 *
2129 * LOCKING:
2130 * Kernel thread context (may sleep)
2131 *
2132 * RETURNS:
2133 * 0 on success, -errno otherwise.
2134 */
2135 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2136 unsigned int flags, u16 *id)
2137 {
2138 struct ata_port *ap = dev->link->ap;
2139 unsigned int class = *p_class;
2140 struct ata_taskfile tf;
2141 unsigned int err_mask = 0;
2142 const char *reason;
2143 int may_fallback = 1, tried_spinup = 0;
2144 int rc;
2145
2146 if (ata_msg_ctl(ap))
2147 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2148
2149 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2150 retry:
2151 ata_tf_init(dev, &tf);
2152
2153 switch (class) {
2154 case ATA_DEV_ATA:
2155 tf.command = ATA_CMD_ID_ATA;
2156 break;
2157 case ATA_DEV_ATAPI:
2158 tf.command = ATA_CMD_ID_ATAPI;
2159 break;
2160 default:
2161 rc = -ENODEV;
2162 reason = "unsupported class";
2163 goto err_out;
2164 }
2165
2166 tf.protocol = ATA_PROT_PIO;
2167
2168 /* Some devices choke if TF registers contain garbage. Make
2169 * sure those are properly initialized.
2170 */
2171 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2172
2173 /* Device presence detection is unreliable on some
2174 * controllers. Always poll IDENTIFY if available.
2175 */
2176 tf.flags |= ATA_TFLAG_POLLING;
2177
2178 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2179 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2180 if (err_mask) {
2181 if (err_mask & AC_ERR_NODEV_HINT) {
2182 ata_dev_printk(dev, KERN_DEBUG,
2183 "NODEV after polling detection\n");
2184 return -ENOENT;
2185 }
2186
2187 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2188 /* Device or controller might have reported
2189 * the wrong device class. Give a shot at the
2190 * other IDENTIFY if the current one is
2191 * aborted by the device.
2192 */
2193 if (may_fallback) {
2194 may_fallback = 0;
2195
2196 if (class == ATA_DEV_ATA)
2197 class = ATA_DEV_ATAPI;
2198 else
2199 class = ATA_DEV_ATA;
2200 goto retry;
2201 }
2202
2203 /* Control reaches here iff the device aborted
2204 * both flavors of IDENTIFYs which happens
2205 * sometimes with phantom devices.
2206 */
2207 ata_dev_printk(dev, KERN_DEBUG,
2208 "both IDENTIFYs aborted, assuming NODEV\n");
2209 return -ENOENT;
2210 }
2211
2212 rc = -EIO;
2213 reason = "I/O error";
2214 goto err_out;
2215 }
2216
2217 /* Falling back doesn't make sense if ID data was read
2218 * successfully at least once.
2219 */
2220 may_fallback = 0;
2221
2222 swap_buf_le16(id, ATA_ID_WORDS);
2223
2224 /* sanity check */
2225 rc = -EINVAL;
2226 reason = "device reports invalid type";
2227
2228 if (class == ATA_DEV_ATA) {
2229 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2230 goto err_out;
2231 } else {
2232 if (ata_id_is_ata(id))
2233 goto err_out;
2234 }
2235
2236 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2237 tried_spinup = 1;
2238 /*
2239 * Drive powered-up in standby mode, and requires a specific
2240 * SET_FEATURES spin-up subcommand before it will accept
2241 * anything other than the original IDENTIFY command.
2242 */
2243 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2244 if (err_mask && id[2] != 0x738c) {
2245 rc = -EIO;
2246 reason = "SPINUP failed";
2247 goto err_out;
2248 }
2249 /*
2250 * If the drive initially returned incomplete IDENTIFY info,
2251 * we now must reissue the IDENTIFY command.
2252 */
2253 if (id[2] == 0x37c8)
2254 goto retry;
2255 }
2256
2257 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2258 /*
2259 * The exact sequence expected by certain pre-ATA4 drives is:
2260 * SRST RESET
2261 * IDENTIFY (optional in early ATA)
2262 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2263 * anything else..
2264 * Some drives were very specific about that exact sequence.
2265 *
2266 * Note that ATA4 says lba is mandatory so the second check
2267 * shoud never trigger.
2268 */
2269 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2270 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2271 if (err_mask) {
2272 rc = -EIO;
2273 reason = "INIT_DEV_PARAMS failed";
2274 goto err_out;
2275 }
2276
2277 /* current CHS translation info (id[53-58]) might be
2278 * changed. reread the identify device info.
2279 */
2280 flags &= ~ATA_READID_POSTRESET;
2281 goto retry;
2282 }
2283 }
2284
2285 *p_class = class;
2286
2287 return 0;
2288
2289 err_out:
2290 if (ata_msg_warn(ap))
2291 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2292 "(%s, err_mask=0x%x)\n", reason, err_mask);
2293 return rc;
2294 }
2295
2296 static inline u8 ata_dev_knobble(struct ata_device *dev)
2297 {
2298 struct ata_port *ap = dev->link->ap;
2299 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2300 }
2301
2302 static void ata_dev_config_ncq(struct ata_device *dev,
2303 char *desc, size_t desc_sz)
2304 {
2305 struct ata_port *ap = dev->link->ap;
2306 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2307
2308 if (!ata_id_has_ncq(dev->id)) {
2309 desc[0] = '\0';
2310 return;
2311 }
2312 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2313 snprintf(desc, desc_sz, "NCQ (not used)");
2314 return;
2315 }
2316 if (ap->flags & ATA_FLAG_NCQ) {
2317 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2318 dev->flags |= ATA_DFLAG_NCQ;
2319 }
2320
2321 if (hdepth >= ddepth)
2322 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2323 else
2324 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2325 }
2326
2327 /**
2328 * ata_dev_configure - Configure the specified ATA/ATAPI device
2329 * @dev: Target device to configure
2330 *
2331 * Configure @dev according to @dev->id. Generic and low-level
2332 * driver specific fixups are also applied.
2333 *
2334 * LOCKING:
2335 * Kernel thread context (may sleep)
2336 *
2337 * RETURNS:
2338 * 0 on success, -errno otherwise
2339 */
2340 int ata_dev_configure(struct ata_device *dev)
2341 {
2342 struct ata_port *ap = dev->link->ap;
2343 struct ata_eh_context *ehc = &dev->link->eh_context;
2344 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2345 const u16 *id = dev->id;
2346 unsigned long xfer_mask;
2347 char revbuf[7]; /* XYZ-99\0 */
2348 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2349 char modelbuf[ATA_ID_PROD_LEN+1];
2350 int rc;
2351
2352 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2353 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2354 __func__);
2355 return 0;
2356 }
2357
2358 if (ata_msg_probe(ap))
2359 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2360
2361 /* set horkage */
2362 dev->horkage |= ata_dev_blacklisted(dev);
2363 ata_force_horkage(dev);
2364
2365 /* let ACPI work its magic */
2366 rc = ata_acpi_on_devcfg(dev);
2367 if (rc)
2368 return rc;
2369
2370 /* massage HPA, do it early as it might change IDENTIFY data */
2371 rc = ata_hpa_resize(dev);
2372 if (rc)
2373 return rc;
2374
2375 /* print device capabilities */
2376 if (ata_msg_probe(ap))
2377 ata_dev_printk(dev, KERN_DEBUG,
2378 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2379 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2380 __func__,
2381 id[49], id[82], id[83], id[84],
2382 id[85], id[86], id[87], id[88]);
2383
2384 /* initialize to-be-configured parameters */
2385 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2386 dev->max_sectors = 0;
2387 dev->cdb_len = 0;
2388 dev->n_sectors = 0;
2389 dev->cylinders = 0;
2390 dev->heads = 0;
2391 dev->sectors = 0;
2392
2393 /*
2394 * common ATA, ATAPI feature tests
2395 */
2396
2397 /* find max transfer mode; for printk only */
2398 xfer_mask = ata_id_xfermask(id);
2399
2400 if (ata_msg_probe(ap))
2401 ata_dump_id(id);
2402
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 sizeof(fwrevbuf));
2406
2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 sizeof(modelbuf));
2409
2410 /* ATA-specific feature tests */
2411 if (dev->class == ATA_DEV_ATA) {
2412 if (ata_id_is_cfa(id)) {
2413 if (id[162] & 1) /* CPRM may make this media unusable */
2414 ata_dev_printk(dev, KERN_WARNING,
2415 "supports DRM functions and may "
2416 "not be fully accessable.\n");
2417 snprintf(revbuf, 7, "CFA");
2418 } else {
2419 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2420 /* Warn the user if the device has TPM extensions */
2421 if (ata_id_has_tpm(id))
2422 ata_dev_printk(dev, KERN_WARNING,
2423 "supports DRM functions and may "
2424 "not be fully accessable.\n");
2425 }
2426
2427 dev->n_sectors = ata_id_n_sectors(id);
2428
2429 if (dev->id[59] & 0x100)
2430 dev->multi_count = dev->id[59] & 0xff;
2431
2432 if (ata_id_has_lba(id)) {
2433 const char *lba_desc;
2434 char ncq_desc[20];
2435
2436 lba_desc = "LBA";
2437 dev->flags |= ATA_DFLAG_LBA;
2438 if (ata_id_has_lba48(id)) {
2439 dev->flags |= ATA_DFLAG_LBA48;
2440 lba_desc = "LBA48";
2441
2442 if (dev->n_sectors >= (1UL << 28) &&
2443 ata_id_has_flush_ext(id))
2444 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2445 }
2446
2447 /* config NCQ */
2448 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2449
2450 /* print device info to dmesg */
2451 if (ata_msg_drv(ap) && print_info) {
2452 ata_dev_printk(dev, KERN_INFO,
2453 "%s: %s, %s, max %s\n",
2454 revbuf, modelbuf, fwrevbuf,
2455 ata_mode_string(xfer_mask));
2456 ata_dev_printk(dev, KERN_INFO,
2457 "%Lu sectors, multi %u: %s %s\n",
2458 (unsigned long long)dev->n_sectors,
2459 dev->multi_count, lba_desc, ncq_desc);
2460 }
2461 } else {
2462 /* CHS */
2463
2464 /* Default translation */
2465 dev->cylinders = id[1];
2466 dev->heads = id[3];
2467 dev->sectors = id[6];
2468
2469 if (ata_id_current_chs_valid(id)) {
2470 /* Current CHS translation is valid. */
2471 dev->cylinders = id[54];
2472 dev->heads = id[55];
2473 dev->sectors = id[56];
2474 }
2475
2476 /* print device info to dmesg */
2477 if (ata_msg_drv(ap) && print_info) {
2478 ata_dev_printk(dev, KERN_INFO,
2479 "%s: %s, %s, max %s\n",
2480 revbuf, modelbuf, fwrevbuf,
2481 ata_mode_string(xfer_mask));
2482 ata_dev_printk(dev, KERN_INFO,
2483 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2484 (unsigned long long)dev->n_sectors,
2485 dev->multi_count, dev->cylinders,
2486 dev->heads, dev->sectors);
2487 }
2488 }
2489
2490 dev->cdb_len = 16;
2491 }
2492
2493 /* ATAPI-specific feature tests */
2494 else if (dev->class == ATA_DEV_ATAPI) {
2495 const char *cdb_intr_string = "";
2496 const char *atapi_an_string = "";
2497 const char *dma_dir_string = "";
2498 u32 sntf;
2499
2500 rc = atapi_cdb_len(id);
2501 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2502 if (ata_msg_warn(ap))
2503 ata_dev_printk(dev, KERN_WARNING,
2504 "unsupported CDB len\n");
2505 rc = -EINVAL;
2506 goto err_out_nosup;
2507 }
2508 dev->cdb_len = (unsigned int) rc;
2509
2510 /* Enable ATAPI AN if both the host and device have
2511 * the support. If PMP is attached, SNTF is required
2512 * to enable ATAPI AN to discern between PHY status
2513 * changed notifications and ATAPI ANs.
2514 */
2515 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2516 (!ap->nr_pmp_links ||
2517 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2518 unsigned int err_mask;
2519
2520 /* issue SET feature command to turn this on */
2521 err_mask = ata_dev_set_feature(dev,
2522 SETFEATURES_SATA_ENABLE, SATA_AN);
2523 if (err_mask)
2524 ata_dev_printk(dev, KERN_ERR,
2525 "failed to enable ATAPI AN "
2526 "(err_mask=0x%x)\n", err_mask);
2527 else {
2528 dev->flags |= ATA_DFLAG_AN;
2529 atapi_an_string = ", ATAPI AN";
2530 }
2531 }
2532
2533 if (ata_id_cdb_intr(dev->id)) {
2534 dev->flags |= ATA_DFLAG_CDB_INTR;
2535 cdb_intr_string = ", CDB intr";
2536 }
2537
2538 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2539 dev->flags |= ATA_DFLAG_DMADIR;
2540 dma_dir_string = ", DMADIR";
2541 }
2542
2543 /* print device info to dmesg */
2544 if (ata_msg_drv(ap) && print_info)
2545 ata_dev_printk(dev, KERN_INFO,
2546 "ATAPI: %s, %s, max %s%s%s%s\n",
2547 modelbuf, fwrevbuf,
2548 ata_mode_string(xfer_mask),
2549 cdb_intr_string, atapi_an_string,
2550 dma_dir_string);
2551 }
2552
2553 /* determine max_sectors */
2554 dev->max_sectors = ATA_MAX_SECTORS;
2555 if (dev->flags & ATA_DFLAG_LBA48)
2556 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2557
2558 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2559 if (ata_id_has_hipm(dev->id))
2560 dev->flags |= ATA_DFLAG_HIPM;
2561 if (ata_id_has_dipm(dev->id))
2562 dev->flags |= ATA_DFLAG_DIPM;
2563 }
2564
2565 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2566 200 sectors */
2567 if (ata_dev_knobble(dev)) {
2568 if (ata_msg_drv(ap) && print_info)
2569 ata_dev_printk(dev, KERN_INFO,
2570 "applying bridge limits\n");
2571 dev->udma_mask &= ATA_UDMA5;
2572 dev->max_sectors = ATA_MAX_SECTORS;
2573 }
2574
2575 if ((dev->class == ATA_DEV_ATAPI) &&
2576 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2577 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2578 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2579 }
2580
2581 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2582 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2583 dev->max_sectors);
2584
2585 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2586 dev->horkage |= ATA_HORKAGE_IPM;
2587
2588 /* reset link pm_policy for this port to no pm */
2589 ap->pm_policy = MAX_PERFORMANCE;
2590 }
2591
2592 if (ap->ops->dev_config)
2593 ap->ops->dev_config(dev);
2594
2595 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2596 /* Let the user know. We don't want to disallow opens for
2597 rescue purposes, or in case the vendor is just a blithering
2598 idiot. Do this after the dev_config call as some controllers
2599 with buggy firmware may want to avoid reporting false device
2600 bugs */
2601
2602 if (print_info) {
2603 ata_dev_printk(dev, KERN_WARNING,
2604 "Drive reports diagnostics failure. This may indicate a drive\n");
2605 ata_dev_printk(dev, KERN_WARNING,
2606 "fault or invalid emulation. Contact drive vendor for information.\n");
2607 }
2608 }
2609
2610 if (ata_msg_probe(ap))
2611 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2612 __func__, ata_chk_status(ap));
2613 return 0;
2614
2615 err_out_nosup:
2616 if (ata_msg_probe(ap))
2617 ata_dev_printk(dev, KERN_DEBUG,
2618 "%s: EXIT, err\n", __func__);
2619 return rc;
2620 }
2621
2622 /**
2623 * ata_cable_40wire - return 40 wire cable type
2624 * @ap: port
2625 *
2626 * Helper method for drivers which want to hardwire 40 wire cable
2627 * detection.
2628 */
2629
2630 int ata_cable_40wire(struct ata_port *ap)
2631 {
2632 return ATA_CBL_PATA40;
2633 }
2634
2635 /**
2636 * ata_cable_80wire - return 80 wire cable type
2637 * @ap: port
2638 *
2639 * Helper method for drivers which want to hardwire 80 wire cable
2640 * detection.
2641 */
2642
2643 int ata_cable_80wire(struct ata_port *ap)
2644 {
2645 return ATA_CBL_PATA80;
2646 }
2647
2648 /**
2649 * ata_cable_unknown - return unknown PATA cable.
2650 * @ap: port
2651 *
2652 * Helper method for drivers which have no PATA cable detection.
2653 */
2654
2655 int ata_cable_unknown(struct ata_port *ap)
2656 {
2657 return ATA_CBL_PATA_UNK;
2658 }
2659
2660 /**
2661 * ata_cable_ignore - return ignored PATA cable.
2662 * @ap: port
2663 *
2664 * Helper method for drivers which don't use cable type to limit
2665 * transfer mode.
2666 */
2667 int ata_cable_ignore(struct ata_port *ap)
2668 {
2669 return ATA_CBL_PATA_IGN;
2670 }
2671
2672 /**
2673 * ata_cable_sata - return SATA cable type
2674 * @ap: port
2675 *
2676 * Helper method for drivers which have SATA cables
2677 */
2678
2679 int ata_cable_sata(struct ata_port *ap)
2680 {
2681 return ATA_CBL_SATA;
2682 }
2683
2684 /**
2685 * ata_bus_probe - Reset and probe ATA bus
2686 * @ap: Bus to probe
2687 *
2688 * Master ATA bus probing function. Initiates a hardware-dependent
2689 * bus reset, then attempts to identify any devices found on
2690 * the bus.
2691 *
2692 * LOCKING:
2693 * PCI/etc. bus probe sem.
2694 *
2695 * RETURNS:
2696 * Zero on success, negative errno otherwise.
2697 */
2698
2699 int ata_bus_probe(struct ata_port *ap)
2700 {
2701 unsigned int classes[ATA_MAX_DEVICES];
2702 int tries[ATA_MAX_DEVICES];
2703 int rc;
2704 struct ata_device *dev;
2705
2706 ata_port_probe(ap);
2707
2708 ata_link_for_each_dev(dev, &ap->link)
2709 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2710
2711 retry:
2712 ata_link_for_each_dev(dev, &ap->link) {
2713 /* If we issue an SRST then an ATA drive (not ATAPI)
2714 * may change configuration and be in PIO0 timing. If
2715 * we do a hard reset (or are coming from power on)
2716 * this is true for ATA or ATAPI. Until we've set a
2717 * suitable controller mode we should not touch the
2718 * bus as we may be talking too fast.
2719 */
2720 dev->pio_mode = XFER_PIO_0;
2721
2722 /* If the controller has a pio mode setup function
2723 * then use it to set the chipset to rights. Don't
2724 * touch the DMA setup as that will be dealt with when
2725 * configuring devices.
2726 */
2727 if (ap->ops->set_piomode)
2728 ap->ops->set_piomode(ap, dev);
2729 }
2730
2731 /* reset and determine device classes */
2732 ap->ops->phy_reset(ap);
2733
2734 ata_link_for_each_dev(dev, &ap->link) {
2735 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2736 dev->class != ATA_DEV_UNKNOWN)
2737 classes[dev->devno] = dev->class;
2738 else
2739 classes[dev->devno] = ATA_DEV_NONE;
2740
2741 dev->class = ATA_DEV_UNKNOWN;
2742 }
2743
2744 ata_port_probe(ap);
2745
2746 /* read IDENTIFY page and configure devices. We have to do the identify
2747 specific sequence bass-ackwards so that PDIAG- is released by
2748 the slave device */
2749
2750 ata_link_for_each_dev_reverse(dev, &ap->link) {
2751 if (tries[dev->devno])
2752 dev->class = classes[dev->devno];
2753
2754 if (!ata_dev_enabled(dev))
2755 continue;
2756
2757 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2758 dev->id);
2759 if (rc)
2760 goto fail;
2761 }
2762
2763 /* Now ask for the cable type as PDIAG- should have been released */
2764 if (ap->ops->cable_detect)
2765 ap->cbl = ap->ops->cable_detect(ap);
2766
2767 /* We may have SATA bridge glue hiding here irrespective of the
2768 reported cable types and sensed types */
2769 ata_link_for_each_dev(dev, &ap->link) {
2770 if (!ata_dev_enabled(dev))
2771 continue;
2772 /* SATA drives indicate we have a bridge. We don't know which
2773 end of the link the bridge is which is a problem */
2774 if (ata_id_is_sata(dev->id))
2775 ap->cbl = ATA_CBL_SATA;
2776 }
2777
2778 /* After the identify sequence we can now set up the devices. We do
2779 this in the normal order so that the user doesn't get confused */
2780
2781 ata_link_for_each_dev(dev, &ap->link) {
2782 if (!ata_dev_enabled(dev))
2783 continue;
2784
2785 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2786 rc = ata_dev_configure(dev);
2787 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2788 if (rc)
2789 goto fail;
2790 }
2791
2792 /* configure transfer mode */
2793 rc = ata_set_mode(&ap->link, &dev);
2794 if (rc)
2795 goto fail;
2796
2797 ata_link_for_each_dev(dev, &ap->link)
2798 if (ata_dev_enabled(dev))
2799 return 0;
2800
2801 /* no device present, disable port */
2802 ata_port_disable(ap);
2803 return -ENODEV;
2804
2805 fail:
2806 tries[dev->devno]--;
2807
2808 switch (rc) {
2809 case -EINVAL:
2810 /* eeek, something went very wrong, give up */
2811 tries[dev->devno] = 0;
2812 break;
2813
2814 case -ENODEV:
2815 /* give it just one more chance */
2816 tries[dev->devno] = min(tries[dev->devno], 1);
2817 case -EIO:
2818 if (tries[dev->devno] == 1) {
2819 /* This is the last chance, better to slow
2820 * down than lose it.
2821 */
2822 sata_down_spd_limit(&ap->link);
2823 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2824 }
2825 }
2826
2827 if (!tries[dev->devno])
2828 ata_dev_disable(dev);
2829
2830 goto retry;
2831 }
2832
2833 /**
2834 * ata_port_probe - Mark port as enabled
2835 * @ap: Port for which we indicate enablement
2836 *
2837 * Modify @ap data structure such that the system
2838 * thinks that the entire port is enabled.
2839 *
2840 * LOCKING: host lock, or some other form of
2841 * serialization.
2842 */
2843
2844 void ata_port_probe(struct ata_port *ap)
2845 {
2846 ap->flags &= ~ATA_FLAG_DISABLED;
2847 }
2848
2849 /**
2850 * sata_print_link_status - Print SATA link status
2851 * @link: SATA link to printk link status about
2852 *
2853 * This function prints link speed and status of a SATA link.
2854 *
2855 * LOCKING:
2856 * None.
2857 */
2858 void sata_print_link_status(struct ata_link *link)
2859 {
2860 u32 sstatus, scontrol, tmp;
2861
2862 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2863 return;
2864 sata_scr_read(link, SCR_CONTROL, &scontrol);
2865
2866 if (ata_link_online(link)) {
2867 tmp = (sstatus >> 4) & 0xf;
2868 ata_link_printk(link, KERN_INFO,
2869 "SATA link up %s (SStatus %X SControl %X)\n",
2870 sata_spd_string(tmp), sstatus, scontrol);
2871 } else {
2872 ata_link_printk(link, KERN_INFO,
2873 "SATA link down (SStatus %X SControl %X)\n",
2874 sstatus, scontrol);
2875 }
2876 }
2877
2878 /**
2879 * ata_dev_pair - return other device on cable
2880 * @adev: device
2881 *
2882 * Obtain the other device on the same cable, or if none is
2883 * present NULL is returned
2884 */
2885
2886 struct ata_device *ata_dev_pair(struct ata_device *adev)
2887 {
2888 struct ata_link *link = adev->link;
2889 struct ata_device *pair = &link->device[1 - adev->devno];
2890 if (!ata_dev_enabled(pair))
2891 return NULL;
2892 return pair;
2893 }
2894
2895 /**
2896 * ata_port_disable - Disable port.
2897 * @ap: Port to be disabled.
2898 *
2899 * Modify @ap data structure such that the system
2900 * thinks that the entire port is disabled, and should
2901 * never attempt to probe or communicate with devices
2902 * on this port.
2903 *
2904 * LOCKING: host lock, or some other form of
2905 * serialization.
2906 */
2907
2908 void ata_port_disable(struct ata_port *ap)
2909 {
2910 ap->link.device[0].class = ATA_DEV_NONE;
2911 ap->link.device[1].class = ATA_DEV_NONE;
2912 ap->flags |= ATA_FLAG_DISABLED;
2913 }
2914
2915 /**
2916 * sata_down_spd_limit - adjust SATA spd limit downward
2917 * @link: Link to adjust SATA spd limit for
2918 *
2919 * Adjust SATA spd limit of @link downward. Note that this
2920 * function only adjusts the limit. The change must be applied
2921 * using sata_set_spd().
2922 *
2923 * LOCKING:
2924 * Inherited from caller.
2925 *
2926 * RETURNS:
2927 * 0 on success, negative errno on failure
2928 */
2929 int sata_down_spd_limit(struct ata_link *link)
2930 {
2931 u32 sstatus, spd, mask;
2932 int rc, highbit;
2933
2934 if (!sata_scr_valid(link))
2935 return -EOPNOTSUPP;
2936
2937 /* If SCR can be read, use it to determine the current SPD.
2938 * If not, use cached value in link->sata_spd.
2939 */
2940 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2941 if (rc == 0)
2942 spd = (sstatus >> 4) & 0xf;
2943 else
2944 spd = link->sata_spd;
2945
2946 mask = link->sata_spd_limit;
2947 if (mask <= 1)
2948 return -EINVAL;
2949
2950 /* unconditionally mask off the highest bit */
2951 highbit = fls(mask) - 1;
2952 mask &= ~(1 << highbit);
2953
2954 /* Mask off all speeds higher than or equal to the current
2955 * one. Force 1.5Gbps if current SPD is not available.
2956 */
2957 if (spd > 1)
2958 mask &= (1 << (spd - 1)) - 1;
2959 else
2960 mask &= 1;
2961
2962 /* were we already at the bottom? */
2963 if (!mask)
2964 return -EINVAL;
2965
2966 link->sata_spd_limit = mask;
2967
2968 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2969 sata_spd_string(fls(mask)));
2970
2971 return 0;
2972 }
2973
2974 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2975 {
2976 struct ata_link *host_link = &link->ap->link;
2977 u32 limit, target, spd;
2978
2979 limit = link->sata_spd_limit;
2980
2981 /* Don't configure downstream link faster than upstream link.
2982 * It doesn't speed up anything and some PMPs choke on such
2983 * configuration.
2984 */
2985 if (!ata_is_host_link(link) && host_link->sata_spd)
2986 limit &= (1 << host_link->sata_spd) - 1;
2987
2988 if (limit == UINT_MAX)
2989 target = 0;
2990 else
2991 target = fls(limit);
2992
2993 spd = (*scontrol >> 4) & 0xf;
2994 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2995
2996 return spd != target;
2997 }
2998
2999 /**
3000 * sata_set_spd_needed - is SATA spd configuration needed
3001 * @link: Link in question
3002 *
3003 * Test whether the spd limit in SControl matches
3004 * @link->sata_spd_limit. This function is used to determine
3005 * whether hardreset is necessary to apply SATA spd
3006 * configuration.
3007 *
3008 * LOCKING:
3009 * Inherited from caller.
3010 *
3011 * RETURNS:
3012 * 1 if SATA spd configuration is needed, 0 otherwise.
3013 */
3014 int sata_set_spd_needed(struct ata_link *link)
3015 {
3016 u32 scontrol;
3017
3018 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3019 return 1;
3020
3021 return __sata_set_spd_needed(link, &scontrol);
3022 }
3023
3024 /**
3025 * sata_set_spd - set SATA spd according to spd limit
3026 * @link: Link to set SATA spd for
3027 *
3028 * Set SATA spd of @link according to sata_spd_limit.
3029 *
3030 * LOCKING:
3031 * Inherited from caller.
3032 *
3033 * RETURNS:
3034 * 0 if spd doesn't need to be changed, 1 if spd has been
3035 * changed. Negative errno if SCR registers are inaccessible.
3036 */
3037 int sata_set_spd(struct ata_link *link)
3038 {
3039 u32 scontrol;
3040 int rc;
3041
3042 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3043 return rc;
3044
3045 if (!__sata_set_spd_needed(link, &scontrol))
3046 return 0;
3047
3048 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3049 return rc;
3050
3051 return 1;
3052 }
3053
3054 /*
3055 * This mode timing computation functionality is ported over from
3056 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3057 */
3058 /*
3059 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3060 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3061 * for UDMA6, which is currently supported only by Maxtor drives.
3062 *
3063 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3064 */
3065
3066 static const struct ata_timing ata_timing[] = {
3067 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3068 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
3069 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
3070 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
3071 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
3072 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
3073 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
3074 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
3075
3076 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
3077 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
3078 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
3079
3080 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
3081 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
3082 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
3083 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
3084 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
3085
3086 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3087 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3088 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3089 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3090 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3091 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3092 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3093 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
3094
3095 { 0xFF }
3096 };
3097
3098 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3099 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3100
3101 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3102 {
3103 q->setup = EZ(t->setup * 1000, T);
3104 q->act8b = EZ(t->act8b * 1000, T);
3105 q->rec8b = EZ(t->rec8b * 1000, T);
3106 q->cyc8b = EZ(t->cyc8b * 1000, T);
3107 q->active = EZ(t->active * 1000, T);
3108 q->recover = EZ(t->recover * 1000, T);
3109 q->cycle = EZ(t->cycle * 1000, T);
3110 q->udma = EZ(t->udma * 1000, UT);
3111 }
3112
3113 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3114 struct ata_timing *m, unsigned int what)
3115 {
3116 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3117 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3118 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3119 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3120 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3121 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3122 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3123 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3124 }
3125
3126 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3127 {
3128 const struct ata_timing *t = ata_timing;
3129
3130 while (xfer_mode > t->mode)
3131 t++;
3132
3133 if (xfer_mode == t->mode)
3134 return t;
3135 return NULL;
3136 }
3137
3138 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3139 struct ata_timing *t, int T, int UT)
3140 {
3141 const struct ata_timing *s;
3142 struct ata_timing p;
3143
3144 /*
3145 * Find the mode.
3146 */
3147
3148 if (!(s = ata_timing_find_mode(speed)))
3149 return -EINVAL;
3150
3151 memcpy(t, s, sizeof(*s));
3152
3153 /*
3154 * If the drive is an EIDE drive, it can tell us it needs extended
3155 * PIO/MW_DMA cycle timing.
3156 */
3157
3158 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3159 memset(&p, 0, sizeof(p));
3160 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3161 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3162 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3163 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3164 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3165 }
3166 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3167 }
3168
3169 /*
3170 * Convert the timing to bus clock counts.
3171 */
3172
3173 ata_timing_quantize(t, t, T, UT);
3174
3175 /*
3176 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3177 * S.M.A.R.T * and some other commands. We have to ensure that the
3178 * DMA cycle timing is slower/equal than the fastest PIO timing.
3179 */
3180
3181 if (speed > XFER_PIO_6) {
3182 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3183 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3184 }
3185
3186 /*
3187 * Lengthen active & recovery time so that cycle time is correct.
3188 */
3189
3190 if (t->act8b + t->rec8b < t->cyc8b) {
3191 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3192 t->rec8b = t->cyc8b - t->act8b;
3193 }
3194
3195 if (t->active + t->recover < t->cycle) {
3196 t->active += (t->cycle - (t->active + t->recover)) / 2;
3197 t->recover = t->cycle - t->active;
3198 }
3199
3200 /* In a few cases quantisation may produce enough errors to
3201 leave t->cycle too low for the sum of active and recovery
3202 if so we must correct this */
3203 if (t->active + t->recover > t->cycle)
3204 t->cycle = t->active + t->recover;
3205
3206 return 0;
3207 }
3208
3209 /**
3210 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3211 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3212 * @cycle: cycle duration in ns
3213 *
3214 * Return matching xfer mode for @cycle. The returned mode is of
3215 * the transfer type specified by @xfer_shift. If @cycle is too
3216 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3217 * than the fastest known mode, the fasted mode is returned.
3218 *
3219 * LOCKING:
3220 * None.
3221 *
3222 * RETURNS:
3223 * Matching xfer_mode, 0xff if no match found.
3224 */
3225 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3226 {
3227 u8 base_mode = 0xff, last_mode = 0xff;
3228 const struct ata_xfer_ent *ent;
3229 const struct ata_timing *t;
3230
3231 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3232 if (ent->shift == xfer_shift)
3233 base_mode = ent->base;
3234
3235 for (t = ata_timing_find_mode(base_mode);
3236 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3237 unsigned short this_cycle;
3238
3239 switch (xfer_shift) {
3240 case ATA_SHIFT_PIO:
3241 case ATA_SHIFT_MWDMA:
3242 this_cycle = t->cycle;
3243 break;
3244 case ATA_SHIFT_UDMA:
3245 this_cycle = t->udma;
3246 break;
3247 default:
3248 return 0xff;
3249 }
3250
3251 if (cycle > this_cycle)
3252 break;
3253
3254 last_mode = t->mode;
3255 }
3256
3257 return last_mode;
3258 }
3259
3260 /**
3261 * ata_down_xfermask_limit - adjust dev xfer masks downward
3262 * @dev: Device to adjust xfer masks
3263 * @sel: ATA_DNXFER_* selector
3264 *
3265 * Adjust xfer masks of @dev downward. Note that this function
3266 * does not apply the change. Invoking ata_set_mode() afterwards
3267 * will apply the limit.
3268 *
3269 * LOCKING:
3270 * Inherited from caller.
3271 *
3272 * RETURNS:
3273 * 0 on success, negative errno on failure
3274 */
3275 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3276 {
3277 char buf[32];
3278 unsigned long orig_mask, xfer_mask;
3279 unsigned long pio_mask, mwdma_mask, udma_mask;
3280 int quiet, highbit;
3281
3282 quiet = !!(sel & ATA_DNXFER_QUIET);
3283 sel &= ~ATA_DNXFER_QUIET;
3284
3285 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3286 dev->mwdma_mask,
3287 dev->udma_mask);
3288 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3289
3290 switch (sel) {
3291 case ATA_DNXFER_PIO:
3292 highbit = fls(pio_mask) - 1;
3293 pio_mask &= ~(1 << highbit);
3294 break;
3295
3296 case ATA_DNXFER_DMA:
3297 if (udma_mask) {
3298 highbit = fls(udma_mask) - 1;
3299 udma_mask &= ~(1 << highbit);
3300 if (!udma_mask)
3301 return -ENOENT;
3302 } else if (mwdma_mask) {
3303 highbit = fls(mwdma_mask) - 1;
3304 mwdma_mask &= ~(1 << highbit);
3305 if (!mwdma_mask)
3306 return -ENOENT;
3307 }
3308 break;
3309
3310 case ATA_DNXFER_40C:
3311 udma_mask &= ATA_UDMA_MASK_40C;
3312 break;
3313
3314 case ATA_DNXFER_FORCE_PIO0:
3315 pio_mask &= 1;
3316 case ATA_DNXFER_FORCE_PIO:
3317 mwdma_mask = 0;
3318 udma_mask = 0;
3319 break;
3320
3321 default:
3322 BUG();
3323 }
3324
3325 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3326
3327 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3328 return -ENOENT;
3329
3330 if (!quiet) {
3331 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3332 snprintf(buf, sizeof(buf), "%s:%s",
3333 ata_mode_string(xfer_mask),
3334 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3335 else
3336 snprintf(buf, sizeof(buf), "%s",
3337 ata_mode_string(xfer_mask));
3338
3339 ata_dev_printk(dev, KERN_WARNING,
3340 "limiting speed to %s\n", buf);
3341 }
3342
3343 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3344 &dev->udma_mask);
3345
3346 return 0;
3347 }
3348
3349 static int ata_dev_set_mode(struct ata_device *dev)
3350 {
3351 struct ata_eh_context *ehc = &dev->link->eh_context;
3352 const char *dev_err_whine = "";
3353 int ign_dev_err = 0;
3354 unsigned int err_mask;
3355 int rc;
3356
3357 dev->flags &= ~ATA_DFLAG_PIO;
3358 if (dev->xfer_shift == ATA_SHIFT_PIO)
3359 dev->flags |= ATA_DFLAG_PIO;
3360
3361 err_mask = ata_dev_set_xfermode(dev);
3362
3363 if (err_mask & ~AC_ERR_DEV)
3364 goto fail;
3365
3366 /* revalidate */
3367 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3368 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3369 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3370 if (rc)
3371 return rc;
3372
3373 /* Old CFA may refuse this command, which is just fine */
3374 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3375 ign_dev_err = 1;
3376
3377 /* Some very old devices and some bad newer ones fail any kind of
3378 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3379 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3380 dev->pio_mode <= XFER_PIO_2)
3381 ign_dev_err = 1;
3382
3383 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3384 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3385 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3386 dev->dma_mode == XFER_MW_DMA_0 &&
3387 (dev->id[63] >> 8) & 1)
3388 ign_dev_err = 1;
3389
3390 /* if the device is actually configured correctly, ignore dev err */
3391 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3392 ign_dev_err = 1;
3393
3394 if (err_mask & AC_ERR_DEV) {
3395 if (!ign_dev_err)
3396 goto fail;
3397 else
3398 dev_err_whine = " (device error ignored)";
3399 }
3400
3401 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3402 dev->xfer_shift, (int)dev->xfer_mode);
3403
3404 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3405 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3406 dev_err_whine);
3407
3408 return 0;
3409
3410 fail:
3411 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3412 "(err_mask=0x%x)\n", err_mask);
3413 return -EIO;
3414 }
3415
3416 /**
3417 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3418 * @link: link on which timings will be programmed
3419 * @r_failed_dev: out parameter for failed device
3420 *
3421 * Standard implementation of the function used to tune and set
3422 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3423 * ata_dev_set_mode() fails, pointer to the failing device is
3424 * returned in @r_failed_dev.
3425 *
3426 * LOCKING:
3427 * PCI/etc. bus probe sem.
3428 *
3429 * RETURNS:
3430 * 0 on success, negative errno otherwise
3431 */
3432
3433 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3434 {
3435 struct ata_port *ap = link->ap;
3436 struct ata_device *dev;
3437 int rc = 0, used_dma = 0, found = 0;
3438
3439 /* step 1: calculate xfer_mask */
3440 ata_link_for_each_dev(dev, link) {
3441 unsigned long pio_mask, dma_mask;
3442 unsigned int mode_mask;
3443
3444 if (!ata_dev_enabled(dev))
3445 continue;
3446
3447 mode_mask = ATA_DMA_MASK_ATA;
3448 if (dev->class == ATA_DEV_ATAPI)
3449 mode_mask = ATA_DMA_MASK_ATAPI;
3450 else if (ata_id_is_cfa(dev->id))
3451 mode_mask = ATA_DMA_MASK_CFA;
3452
3453 ata_dev_xfermask(dev);
3454 ata_force_xfermask(dev);
3455
3456 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3457 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3458
3459 if (libata_dma_mask & mode_mask)
3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3461 else
3462 dma_mask = 0;
3463
3464 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3465 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3466
3467 found = 1;
3468 if (dev->dma_mode != 0xff)
3469 used_dma = 1;
3470 }
3471 if (!found)
3472 goto out;
3473
3474 /* step 2: always set host PIO timings */
3475 ata_link_for_each_dev(dev, link) {
3476 if (!ata_dev_enabled(dev))
3477 continue;
3478
3479 if (dev->pio_mode == 0xff) {
3480 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3481 rc = -EINVAL;
3482 goto out;
3483 }
3484
3485 dev->xfer_mode = dev->pio_mode;
3486 dev->xfer_shift = ATA_SHIFT_PIO;
3487 if (ap->ops->set_piomode)
3488 ap->ops->set_piomode(ap, dev);
3489 }
3490
3491 /* step 3: set host DMA timings */
3492 ata_link_for_each_dev(dev, link) {
3493 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3494 continue;
3495
3496 dev->xfer_mode = dev->dma_mode;
3497 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3498 if (ap->ops->set_dmamode)
3499 ap->ops->set_dmamode(ap, dev);
3500 }
3501
3502 /* step 4: update devices' xfer mode */
3503 ata_link_for_each_dev(dev, link) {
3504 /* don't update suspended devices' xfer mode */
3505 if (!ata_dev_enabled(dev))
3506 continue;
3507
3508 rc = ata_dev_set_mode(dev);
3509 if (rc)
3510 goto out;
3511 }
3512
3513 /* Record simplex status. If we selected DMA then the other
3514 * host channels are not permitted to do so.
3515 */
3516 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3517 ap->host->simplex_claimed = ap;
3518
3519 out:
3520 if (rc)
3521 *r_failed_dev = dev;
3522 return rc;
3523 }
3524
3525 /**
3526 * ata_tf_to_host - issue ATA taskfile to host controller
3527 * @ap: port to which command is being issued
3528 * @tf: ATA taskfile register set
3529 *
3530 * Issues ATA taskfile register set to ATA host controller,
3531 * with proper synchronization with interrupt handler and
3532 * other threads.
3533 *
3534 * LOCKING:
3535 * spin_lock_irqsave(host lock)
3536 */
3537
3538 static inline void ata_tf_to_host(struct ata_port *ap,
3539 const struct ata_taskfile *tf)
3540 {
3541 ap->ops->tf_load(ap, tf);
3542 ap->ops->exec_command(ap, tf);
3543 }
3544
3545 /**
3546 * ata_busy_sleep - sleep until BSY clears, or timeout
3547 * @ap: port containing status register to be polled
3548 * @tmout_pat: impatience timeout
3549 * @tmout: overall timeout
3550 *
3551 * Sleep until ATA Status register bit BSY clears,
3552 * or a timeout occurs.
3553 *
3554 * LOCKING:
3555 * Kernel thread context (may sleep).
3556 *
3557 * RETURNS:
3558 * 0 on success, -errno otherwise.
3559 */
3560 int ata_busy_sleep(struct ata_port *ap,
3561 unsigned long tmout_pat, unsigned long tmout)
3562 {
3563 unsigned long timer_start, timeout;
3564 u8 status;
3565
3566 status = ata_busy_wait(ap, ATA_BUSY, 300);
3567 timer_start = jiffies;
3568 timeout = timer_start + tmout_pat;
3569 while (status != 0xff && (status & ATA_BUSY) &&
3570 time_before(jiffies, timeout)) {
3571 msleep(50);
3572 status = ata_busy_wait(ap, ATA_BUSY, 3);
3573 }
3574
3575 if (status != 0xff && (status & ATA_BUSY))
3576 ata_port_printk(ap, KERN_WARNING,
3577 "port is slow to respond, please be patient "
3578 "(Status 0x%x)\n", status);
3579
3580 timeout = timer_start + tmout;
3581 while (status != 0xff && (status & ATA_BUSY) &&
3582 time_before(jiffies, timeout)) {
3583 msleep(50);
3584 status = ata_chk_status(ap);
3585 }
3586
3587 if (status == 0xff)
3588 return -ENODEV;
3589
3590 if (status & ATA_BUSY) {
3591 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3592 "(%lu secs, Status 0x%x)\n",
3593 tmout / HZ, status);
3594 return -EBUSY;
3595 }
3596
3597 return 0;
3598 }
3599
3600 /**
3601 * ata_wait_after_reset - wait before checking status after reset
3602 * @ap: port containing status register to be polled
3603 * @deadline: deadline jiffies for the operation
3604 *
3605 * After reset, we need to pause a while before reading status.
3606 * Also, certain combination of controller and device report 0xff
3607 * for some duration (e.g. until SATA PHY is up and running)
3608 * which is interpreted as empty port in ATA world. This
3609 * function also waits for such devices to get out of 0xff
3610 * status.
3611 *
3612 * LOCKING:
3613 * Kernel thread context (may sleep).
3614 */
3615 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3616 {
3617 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3618
3619 if (time_before(until, deadline))
3620 deadline = until;
3621
3622 /* Spec mandates ">= 2ms" before checking status. We wait
3623 * 150ms, because that was the magic delay used for ATAPI
3624 * devices in Hale Landis's ATADRVR, for the period of time
3625 * between when the ATA command register is written, and then
3626 * status is checked. Because waiting for "a while" before
3627 * checking status is fine, post SRST, we perform this magic
3628 * delay here as well.
3629 *
3630 * Old drivers/ide uses the 2mS rule and then waits for ready.
3631 */
3632 msleep(150);
3633
3634 /* Wait for 0xff to clear. Some SATA devices take a long time
3635 * to clear 0xff after reset. For example, HHD424020F7SV00
3636 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3637 * than that.
3638 *
3639 * Note that some PATA controllers (pata_ali) explode if
3640 * status register is read more than once when there's no
3641 * device attached.
3642 */
3643 if (ap->flags & ATA_FLAG_SATA) {
3644 while (1) {
3645 u8 status = ata_chk_status(ap);
3646
3647 if (status != 0xff || time_after(jiffies, deadline))
3648 return;
3649
3650 msleep(50);
3651 }
3652 }
3653 }
3654
3655 /**
3656 * ata_wait_ready - sleep until BSY clears, or timeout
3657 * @ap: port containing status register to be polled
3658 * @deadline: deadline jiffies for the operation
3659 *
3660 * Sleep until ATA Status register bit BSY clears, or timeout
3661 * occurs.
3662 *
3663 * LOCKING:
3664 * Kernel thread context (may sleep).
3665 *
3666 * RETURNS:
3667 * 0 on success, -errno otherwise.
3668 */
3669 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3670 {
3671 unsigned long start = jiffies;
3672 int warned = 0;
3673
3674 while (1) {
3675 u8 status = ata_chk_status(ap);
3676 unsigned long now = jiffies;
3677
3678 if (!(status & ATA_BUSY))
3679 return 0;
3680 if (!ata_link_online(&ap->link) && status == 0xff)
3681 return -ENODEV;
3682 if (time_after(now, deadline))
3683 return -EBUSY;
3684
3685 if (!warned && time_after(now, start + 5 * HZ) &&
3686 (deadline - now > 3 * HZ)) {
3687 ata_port_printk(ap, KERN_WARNING,
3688 "port is slow to respond, please be patient "
3689 "(Status 0x%x)\n", status);
3690 warned = 1;
3691 }
3692
3693 msleep(50);
3694 }
3695 }
3696
3697 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3698 unsigned long deadline)
3699 {
3700 struct ata_ioports *ioaddr = &ap->ioaddr;
3701 unsigned int dev0 = devmask & (1 << 0);
3702 unsigned int dev1 = devmask & (1 << 1);
3703 int rc, ret = 0;
3704
3705 /* if device 0 was found in ata_devchk, wait for its
3706 * BSY bit to clear
3707 */
3708 if (dev0) {
3709 rc = ata_wait_ready(ap, deadline);
3710 if (rc) {
3711 if (rc != -ENODEV)
3712 return rc;
3713 ret = rc;
3714 }
3715 }
3716
3717 /* if device 1 was found in ata_devchk, wait for register
3718 * access briefly, then wait for BSY to clear.
3719 */
3720 if (dev1) {
3721 int i;
3722
3723 ap->ops->dev_select(ap, 1);
3724
3725 /* Wait for register access. Some ATAPI devices fail
3726 * to set nsect/lbal after reset, so don't waste too
3727 * much time on it. We're gonna wait for !BSY anyway.
3728 */
3729 for (i = 0; i < 2; i++) {
3730 u8 nsect, lbal;
3731
3732 nsect = ioread8(ioaddr->nsect_addr);
3733 lbal = ioread8(ioaddr->lbal_addr);
3734 if ((nsect == 1) && (lbal == 1))
3735 break;
3736 msleep(50); /* give drive a breather */
3737 }
3738
3739 rc = ata_wait_ready(ap, deadline);
3740 if (rc) {
3741 if (rc != -ENODEV)
3742 return rc;
3743 ret = rc;
3744 }
3745 }
3746
3747 /* is all this really necessary? */
3748 ap->ops->dev_select(ap, 0);
3749 if (dev1)
3750 ap->ops->dev_select(ap, 1);
3751 if (dev0)
3752 ap->ops->dev_select(ap, 0);
3753
3754 return ret;
3755 }
3756
3757 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3758 unsigned long deadline)
3759 {
3760 struct ata_ioports *ioaddr = &ap->ioaddr;
3761
3762 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3763
3764 /* software reset. causes dev0 to be selected */
3765 iowrite8(ap->ctl, ioaddr->ctl_addr);
3766 udelay(20); /* FIXME: flush */
3767 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3768 udelay(20); /* FIXME: flush */
3769 iowrite8(ap->ctl, ioaddr->ctl_addr);
3770
3771 /* wait a while before checking status */
3772 ata_wait_after_reset(ap, deadline);
3773
3774 /* Before we perform post reset processing we want to see if
3775 * the bus shows 0xFF because the odd clown forgets the D7
3776 * pulldown resistor.
3777 */
3778 if (ata_chk_status(ap) == 0xFF)
3779 return -ENODEV;
3780
3781 return ata_bus_post_reset(ap, devmask, deadline);
3782 }
3783
3784 /**
3785 * ata_bus_reset - reset host port and associated ATA channel
3786 * @ap: port to reset
3787 *
3788 * This is typically the first time we actually start issuing
3789 * commands to the ATA channel. We wait for BSY to clear, then
3790 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3791 * result. Determine what devices, if any, are on the channel
3792 * by looking at the device 0/1 error register. Look at the signature
3793 * stored in each device's taskfile registers, to determine if
3794 * the device is ATA or ATAPI.
3795 *
3796 * LOCKING:
3797 * PCI/etc. bus probe sem.
3798 * Obtains host lock.
3799 *
3800 * SIDE EFFECTS:
3801 * Sets ATA_FLAG_DISABLED if bus reset fails.
3802 */
3803
3804 void ata_bus_reset(struct ata_port *ap)
3805 {
3806 struct ata_device *device = ap->link.device;
3807 struct ata_ioports *ioaddr = &ap->ioaddr;
3808 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3809 u8 err;
3810 unsigned int dev0, dev1 = 0, devmask = 0;
3811 int rc;
3812
3813 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3814
3815 /* determine if device 0/1 are present */
3816 if (ap->flags & ATA_FLAG_SATA_RESET)
3817 dev0 = 1;
3818 else {
3819 dev0 = ata_devchk(ap, 0);
3820 if (slave_possible)
3821 dev1 = ata_devchk(ap, 1);
3822 }
3823
3824 if (dev0)
3825 devmask |= (1 << 0);
3826 if (dev1)
3827 devmask |= (1 << 1);
3828
3829 /* select device 0 again */
3830 ap->ops->dev_select(ap, 0);
3831
3832 /* issue bus reset */
3833 if (ap->flags & ATA_FLAG_SRST) {
3834 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3835 if (rc && rc != -ENODEV)
3836 goto err_out;
3837 }
3838
3839 /*
3840 * determine by signature whether we have ATA or ATAPI devices
3841 */
3842 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3843 if ((slave_possible) && (err != 0x81))
3844 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3845
3846 /* is double-select really necessary? */
3847 if (device[1].class != ATA_DEV_NONE)
3848 ap->ops->dev_select(ap, 1);
3849 if (device[0].class != ATA_DEV_NONE)
3850 ap->ops->dev_select(ap, 0);
3851
3852 /* if no devices were detected, disable this port */
3853 if ((device[0].class == ATA_DEV_NONE) &&
3854 (device[1].class == ATA_DEV_NONE))
3855 goto err_out;
3856
3857 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3858 /* set up device control for ATA_FLAG_SATA_RESET */
3859 iowrite8(ap->ctl, ioaddr->ctl_addr);
3860 }
3861
3862 DPRINTK("EXIT\n");
3863 return;
3864
3865 err_out:
3866 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3867 ata_port_disable(ap);
3868
3869 DPRINTK("EXIT\n");
3870 }
3871
3872 /**
3873 * sata_link_debounce - debounce SATA phy status
3874 * @link: ATA link to debounce SATA phy status for
3875 * @params: timing parameters { interval, duratinon, timeout } in msec
3876 * @deadline: deadline jiffies for the operation
3877 *
3878 * Make sure SStatus of @link reaches stable state, determined by
3879 * holding the same value where DET is not 1 for @duration polled
3880 * every @interval, before @timeout. Timeout constraints the
3881 * beginning of the stable state. Because DET gets stuck at 1 on
3882 * some controllers after hot unplugging, this functions waits
3883 * until timeout then returns 0 if DET is stable at 1.
3884 *
3885 * @timeout is further limited by @deadline. The sooner of the
3886 * two is used.
3887 *
3888 * LOCKING:
3889 * Kernel thread context (may sleep)
3890 *
3891 * RETURNS:
3892 * 0 on success, -errno on failure.
3893 */
3894 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3895 unsigned long deadline)
3896 {
3897 unsigned long interval_msec = params[0];
3898 unsigned long duration = msecs_to_jiffies(params[1]);
3899 unsigned long last_jiffies, t;
3900 u32 last, cur;
3901 int rc;
3902
3903 t = jiffies + msecs_to_jiffies(params[2]);
3904 if (time_before(t, deadline))
3905 deadline = t;
3906
3907 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3908 return rc;
3909 cur &= 0xf;
3910
3911 last = cur;
3912 last_jiffies = jiffies;
3913
3914 while (1) {
3915 msleep(interval_msec);
3916 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3917 return rc;
3918 cur &= 0xf;
3919
3920 /* DET stable? */
3921 if (cur == last) {
3922 if (cur == 1 && time_before(jiffies, deadline))
3923 continue;
3924 if (time_after(jiffies, last_jiffies + duration))
3925 return 0;
3926 continue;
3927 }
3928
3929 /* unstable, start over */
3930 last = cur;
3931 last_jiffies = jiffies;
3932
3933 /* Check deadline. If debouncing failed, return
3934 * -EPIPE to tell upper layer to lower link speed.
3935 */
3936 if (time_after(jiffies, deadline))
3937 return -EPIPE;
3938 }
3939 }
3940
3941 /**
3942 * sata_link_resume - resume SATA link
3943 * @link: ATA link to resume SATA
3944 * @params: timing parameters { interval, duratinon, timeout } in msec
3945 * @deadline: deadline jiffies for the operation
3946 *
3947 * Resume SATA phy @link and debounce it.
3948 *
3949 * LOCKING:
3950 * Kernel thread context (may sleep)
3951 *
3952 * RETURNS:
3953 * 0 on success, -errno on failure.
3954 */
3955 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3956 unsigned long deadline)
3957 {
3958 u32 scontrol;
3959 int rc;
3960
3961 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3962 return rc;
3963
3964 scontrol = (scontrol & 0x0f0) | 0x300;
3965
3966 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3967 return rc;
3968
3969 /* Some PHYs react badly if SStatus is pounded immediately
3970 * after resuming. Delay 200ms before debouncing.
3971 */
3972 msleep(200);
3973
3974 return sata_link_debounce(link, params, deadline);
3975 }
3976
3977 /**
3978 * ata_std_prereset - prepare for reset
3979 * @link: ATA link to be reset
3980 * @deadline: deadline jiffies for the operation
3981 *
3982 * @link is about to be reset. Initialize it. Failure from
3983 * prereset makes libata abort whole reset sequence and give up
3984 * that port, so prereset should be best-effort. It does its
3985 * best to prepare for reset sequence but if things go wrong, it
3986 * should just whine, not fail.
3987 *
3988 * LOCKING:
3989 * Kernel thread context (may sleep)
3990 *
3991 * RETURNS:
3992 * 0 on success, -errno otherwise.
3993 */
3994 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3995 {
3996 struct ata_port *ap = link->ap;
3997 struct ata_eh_context *ehc = &link->eh_context;
3998 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3999 int rc;
4000
4001 /* if we're about to do hardreset, nothing more to do */
4002 if (ehc->i.action & ATA_EH_HARDRESET)
4003 return 0;
4004
4005 /* if SATA, resume link */
4006 if (ap->flags & ATA_FLAG_SATA) {
4007 rc = sata_link_resume(link, timing, deadline);
4008 /* whine about phy resume failure but proceed */
4009 if (rc && rc != -EOPNOTSUPP)
4010 ata_link_printk(link, KERN_WARNING, "failed to resume "
4011 "link for reset (errno=%d)\n", rc);
4012 }
4013
4014 /* wait for !BSY if we don't know that no device is attached */
4015 if (!ata_link_offline(link)) {
4016 rc = ata_wait_ready(ap, deadline);
4017 if (rc && rc != -ENODEV) {
4018 ata_link_printk(link, KERN_WARNING, "device not ready "
4019 "(errno=%d), forcing hardreset\n", rc);
4020 ehc->i.action |= ATA_EH_HARDRESET;
4021 }
4022 }
4023
4024 return 0;
4025 }
4026
4027 /**
4028 * ata_std_softreset - reset host port via ATA SRST
4029 * @link: ATA link to reset
4030 * @classes: resulting classes of attached devices
4031 * @deadline: deadline jiffies for the operation
4032 *
4033 * Reset host port using ATA SRST.
4034 *
4035 * LOCKING:
4036 * Kernel thread context (may sleep)
4037 *
4038 * RETURNS:
4039 * 0 on success, -errno otherwise.
4040 */
4041 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
4042 unsigned long deadline)
4043 {
4044 struct ata_port *ap = link->ap;
4045 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
4046 unsigned int devmask = 0;
4047 int rc;
4048 u8 err;
4049
4050 DPRINTK("ENTER\n");
4051
4052 if (ata_link_offline(link)) {
4053 classes[0] = ATA_DEV_NONE;
4054 goto out;
4055 }
4056
4057 /* determine if device 0/1 are present */
4058 if (ata_devchk(ap, 0))
4059 devmask |= (1 << 0);
4060 if (slave_possible && ata_devchk(ap, 1))
4061 devmask |= (1 << 1);
4062
4063 /* select device 0 again */
4064 ap->ops->dev_select(ap, 0);
4065
4066 /* issue bus reset */
4067 DPRINTK("about to softreset, devmask=%x\n", devmask);
4068 rc = ata_bus_softreset(ap, devmask, deadline);
4069 /* if link is occupied, -ENODEV too is an error */
4070 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
4071 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
4072 return rc;
4073 }
4074
4075 /* determine by signature whether we have ATA or ATAPI devices */
4076 classes[0] = ata_dev_try_classify(&link->device[0],
4077 devmask & (1 << 0), &err);
4078 if (slave_possible && err != 0x81)
4079 classes[1] = ata_dev_try_classify(&link->device[1],
4080 devmask & (1 << 1), &err);
4081
4082 out:
4083 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
4084 return 0;
4085 }
4086
4087 /**
4088 * sata_link_hardreset - reset link via SATA phy reset
4089 * @link: link to reset
4090 * @timing: timing parameters { interval, duratinon, timeout } in msec
4091 * @deadline: deadline jiffies for the operation
4092 *
4093 * SATA phy-reset @link using DET bits of SControl register.
4094 *
4095 * LOCKING:
4096 * Kernel thread context (may sleep)
4097 *
4098 * RETURNS:
4099 * 0 on success, -errno otherwise.
4100 */
4101 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4102 unsigned long deadline)
4103 {
4104 u32 scontrol;
4105 int rc;
4106
4107 DPRINTK("ENTER\n");
4108
4109 if (sata_set_spd_needed(link)) {
4110 /* SATA spec says nothing about how to reconfigure
4111 * spd. To be on the safe side, turn off phy during
4112 * reconfiguration. This works for at least ICH7 AHCI
4113 * and Sil3124.
4114 */
4115 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4116 goto out;
4117
4118 scontrol = (scontrol & 0x0f0) | 0x304;
4119
4120 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4121 goto out;
4122
4123 sata_set_spd(link);
4124 }
4125
4126 /* issue phy wake/reset */
4127 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4128 goto out;
4129
4130 scontrol = (scontrol & 0x0f0) | 0x301;
4131
4132 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4133 goto out;
4134
4135 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4136 * 10.4.2 says at least 1 ms.
4137 */
4138 msleep(1);
4139
4140 /* bring link back */
4141 rc = sata_link_resume(link, timing, deadline);
4142 out:
4143 DPRINTK("EXIT, rc=%d\n", rc);
4144 return rc;
4145 }
4146
4147 /**
4148 * sata_std_hardreset - reset host port via SATA phy reset
4149 * @link: link to reset
4150 * @class: resulting class of attached device
4151 * @deadline: deadline jiffies for the operation
4152 *
4153 * SATA phy-reset host port using DET bits of SControl register,
4154 * wait for !BSY and classify the attached device.
4155 *
4156 * LOCKING:
4157 * Kernel thread context (may sleep)
4158 *
4159 * RETURNS:
4160 * 0 on success, -errno otherwise.
4161 */
4162 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4163 unsigned long deadline)
4164 {
4165 struct ata_port *ap = link->ap;
4166 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4167 int rc;
4168
4169 DPRINTK("ENTER\n");
4170
4171 /* do hardreset */
4172 rc = sata_link_hardreset(link, timing, deadline);
4173 if (rc) {
4174 ata_link_printk(link, KERN_ERR,
4175 "COMRESET failed (errno=%d)\n", rc);
4176 return rc;
4177 }
4178
4179 /* TODO: phy layer with polling, timeouts, etc. */
4180 if (ata_link_offline(link)) {
4181 *class = ATA_DEV_NONE;
4182 DPRINTK("EXIT, link offline\n");
4183 return 0;
4184 }
4185
4186 /* wait a while before checking status */
4187 ata_wait_after_reset(ap, deadline);
4188
4189 /* If PMP is supported, we have to do follow-up SRST. Note
4190 * that some PMPs don't send D2H Reg FIS after hardreset at
4191 * all if the first port is empty. Wait for it just for a
4192 * second and request follow-up SRST.
4193 */
4194 if (ap->flags & ATA_FLAG_PMP) {
4195 ata_wait_ready(ap, jiffies + HZ);
4196 return -EAGAIN;
4197 }
4198
4199 rc = ata_wait_ready(ap, deadline);
4200 /* link occupied, -ENODEV too is an error */
4201 if (rc) {
4202 ata_link_printk(link, KERN_ERR,
4203 "COMRESET failed (errno=%d)\n", rc);
4204 return rc;
4205 }
4206
4207 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4208
4209 *class = ata_dev_try_classify(link->device, 1, NULL);
4210
4211 DPRINTK("EXIT, class=%u\n", *class);
4212 return 0;
4213 }
4214
4215 /**
4216 * ata_std_postreset - standard postreset callback
4217 * @link: the target ata_link
4218 * @classes: classes of attached devices
4219 *
4220 * This function is invoked after a successful reset. Note that
4221 * the device might have been reset more than once using
4222 * different reset methods before postreset is invoked.
4223 *
4224 * LOCKING:
4225 * Kernel thread context (may sleep)
4226 */
4227 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4228 {
4229 struct ata_port *ap = link->ap;
4230 u32 serror;
4231
4232 DPRINTK("ENTER\n");
4233
4234 /* print link status */
4235 sata_print_link_status(link);
4236
4237 /* clear SError */
4238 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4239 sata_scr_write(link, SCR_ERROR, serror);
4240 link->eh_info.serror = 0;
4241
4242 /* is double-select really necessary? */
4243 if (classes[0] != ATA_DEV_NONE)
4244 ap->ops->dev_select(ap, 1);
4245 if (classes[1] != ATA_DEV_NONE)
4246 ap->ops->dev_select(ap, 0);
4247
4248 /* bail out if no device is present */
4249 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4250 DPRINTK("EXIT, no device\n");
4251 return;
4252 }
4253
4254 /* set up device control */
4255 if (ap->ioaddr.ctl_addr)
4256 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4257
4258 DPRINTK("EXIT\n");
4259 }
4260
4261 /**
4262 * ata_dev_same_device - Determine whether new ID matches configured device
4263 * @dev: device to compare against
4264 * @new_class: class of the new device
4265 * @new_id: IDENTIFY page of the new device
4266 *
4267 * Compare @new_class and @new_id against @dev and determine
4268 * whether @dev is the device indicated by @new_class and
4269 * @new_id.
4270 *
4271 * LOCKING:
4272 * None.
4273 *
4274 * RETURNS:
4275 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4276 */
4277 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4278 const u16 *new_id)
4279 {
4280 const u16 *old_id = dev->id;
4281 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4282 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4283
4284 if (dev->class != new_class) {
4285 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4286 dev->class, new_class);
4287 return 0;
4288 }
4289
4290 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4291 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4292 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4293 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4294
4295 if (strcmp(model[0], model[1])) {
4296 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4297 "'%s' != '%s'\n", model[0], model[1]);
4298 return 0;
4299 }
4300
4301 if (strcmp(serial[0], serial[1])) {
4302 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4303 "'%s' != '%s'\n", serial[0], serial[1]);
4304 return 0;
4305 }
4306
4307 return 1;
4308 }
4309
4310 /**
4311 * ata_dev_reread_id - Re-read IDENTIFY data
4312 * @dev: target ATA device
4313 * @readid_flags: read ID flags
4314 *
4315 * Re-read IDENTIFY page and make sure @dev is still attached to
4316 * the port.
4317 *
4318 * LOCKING:
4319 * Kernel thread context (may sleep)
4320 *
4321 * RETURNS:
4322 * 0 on success, negative errno otherwise
4323 */
4324 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4325 {
4326 unsigned int class = dev->class;
4327 u16 *id = (void *)dev->link->ap->sector_buf;
4328 int rc;
4329
4330 /* read ID data */
4331 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4332 if (rc)
4333 return rc;
4334
4335 /* is the device still there? */
4336 if (!ata_dev_same_device(dev, class, id))
4337 return -ENODEV;
4338
4339 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4340 return 0;
4341 }
4342
4343 /**
4344 * ata_dev_revalidate - Revalidate ATA device
4345 * @dev: device to revalidate
4346 * @new_class: new class code
4347 * @readid_flags: read ID flags
4348 *
4349 * Re-read IDENTIFY page, make sure @dev is still attached to the
4350 * port and reconfigure it according to the new IDENTIFY page.
4351 *
4352 * LOCKING:
4353 * Kernel thread context (may sleep)
4354 *
4355 * RETURNS:
4356 * 0 on success, negative errno otherwise
4357 */
4358 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4359 unsigned int readid_flags)
4360 {
4361 u64 n_sectors = dev->n_sectors;
4362 int rc;
4363
4364 if (!ata_dev_enabled(dev))
4365 return -ENODEV;
4366
4367 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4368 if (ata_class_enabled(new_class) &&
4369 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4370 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4371 dev->class, new_class);
4372 rc = -ENODEV;
4373 goto fail;
4374 }
4375
4376 /* re-read ID */
4377 rc = ata_dev_reread_id(dev, readid_flags);
4378 if (rc)
4379 goto fail;
4380
4381 /* configure device according to the new ID */
4382 rc = ata_dev_configure(dev);
4383 if (rc)
4384 goto fail;
4385
4386 /* verify n_sectors hasn't changed */
4387 if (dev->class == ATA_DEV_ATA && n_sectors &&
4388 dev->n_sectors != n_sectors) {
4389 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4390 "%llu != %llu\n",
4391 (unsigned long long)n_sectors,
4392 (unsigned long long)dev->n_sectors);
4393
4394 /* restore original n_sectors */
4395 dev->n_sectors = n_sectors;
4396
4397 rc = -ENODEV;
4398 goto fail;
4399 }
4400
4401 return 0;
4402
4403 fail:
4404 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4405 return rc;
4406 }
4407
4408 struct ata_blacklist_entry {
4409 const char *model_num;
4410 const char *model_rev;
4411 unsigned long horkage;
4412 };
4413
4414 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4415 /* Devices with DMA related problems under Linux */
4416 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4417 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4418 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4419 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4420 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4421 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4422 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4423 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4424 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4425 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4426 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4427 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4428 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4429 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4430 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4431 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4432 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4433 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4434 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4435 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4436 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4437 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4438 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4439 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4440 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4441 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4442 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4443 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4444 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4445 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4446 /* Odd clown on sil3726/4726 PMPs */
4447 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4448 ATA_HORKAGE_SKIP_PM },
4449
4450 /* Weird ATAPI devices */
4451 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4452
4453 /* Devices we expect to fail diagnostics */
4454
4455 /* Devices where NCQ should be avoided */
4456 /* NCQ is slow */
4457 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4458 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4459 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4460 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4461 /* NCQ is broken */
4462 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4463 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4464 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4465 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4466
4467 /* Blacklist entries taken from Silicon Image 3124/3132
4468 Windows driver .inf file - also several Linux problem reports */
4469 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4470 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4471 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4472
4473 /* devices which puke on READ_NATIVE_MAX */
4474 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4475 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4476 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4477 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4478
4479 /* Devices which report 1 sector over size HPA */
4480 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4481 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4482 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4483
4484 /* Devices which get the IVB wrong */
4485 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4486 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4487 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4488 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4489 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4490
4491 /* End Marker */
4492 { }
4493 };
4494
4495 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4496 {
4497 const char *p;
4498 int len;
4499
4500 /*
4501 * check for trailing wildcard: *\0
4502 */
4503 p = strchr(patt, wildchar);
4504 if (p && ((*(p + 1)) == 0))
4505 len = p - patt;
4506 else {
4507 len = strlen(name);
4508 if (!len) {
4509 if (!*patt)
4510 return 0;
4511 return -1;
4512 }
4513 }
4514
4515 return strncmp(patt, name, len);
4516 }
4517
4518 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4519 {
4520 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4521 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4522 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4523
4524 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4525 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4526
4527 while (ad->model_num) {
4528 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4529 if (ad->model_rev == NULL)
4530 return ad->horkage;
4531 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4532 return ad->horkage;
4533 }
4534 ad++;
4535 }
4536 return 0;
4537 }
4538
4539 static int ata_dma_blacklisted(const struct ata_device *dev)
4540 {
4541 /* We don't support polling DMA.
4542 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4543 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4544 */
4545 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4546 (dev->flags & ATA_DFLAG_CDB_INTR))
4547 return 1;
4548 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4549 }
4550
4551 /**
4552 * ata_is_40wire - check drive side detection
4553 * @dev: device
4554 *
4555 * Perform drive side detection decoding, allowing for device vendors
4556 * who can't follow the documentation.
4557 */
4558
4559 static int ata_is_40wire(struct ata_device *dev)
4560 {
4561 if (dev->horkage & ATA_HORKAGE_IVB)
4562 return ata_drive_40wire_relaxed(dev->id);
4563 return ata_drive_40wire(dev->id);
4564 }
4565
4566 /**
4567 * ata_dev_xfermask - Compute supported xfermask of the given device
4568 * @dev: Device to compute xfermask for
4569 *
4570 * Compute supported xfermask of @dev and store it in
4571 * dev->*_mask. This function is responsible for applying all
4572 * known limits including host controller limits, device
4573 * blacklist, etc...
4574 *
4575 * LOCKING:
4576 * None.
4577 */
4578 static void ata_dev_xfermask(struct ata_device *dev)
4579 {
4580 struct ata_link *link = dev->link;
4581 struct ata_port *ap = link->ap;
4582 struct ata_host *host = ap->host;
4583 unsigned long xfer_mask;
4584
4585 /* controller modes available */
4586 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4587 ap->mwdma_mask, ap->udma_mask);
4588
4589 /* drive modes available */
4590 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4591 dev->mwdma_mask, dev->udma_mask);
4592 xfer_mask &= ata_id_xfermask(dev->id);
4593
4594 /*
4595 * CFA Advanced TrueIDE timings are not allowed on a shared
4596 * cable
4597 */
4598 if (ata_dev_pair(dev)) {
4599 /* No PIO5 or PIO6 */
4600 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4601 /* No MWDMA3 or MWDMA 4 */
4602 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4603 }
4604
4605 if (ata_dma_blacklisted(dev)) {
4606 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4607 ata_dev_printk(dev, KERN_WARNING,
4608 "device is on DMA blacklist, disabling DMA\n");
4609 }
4610
4611 if ((host->flags & ATA_HOST_SIMPLEX) &&
4612 host->simplex_claimed && host->simplex_claimed != ap) {
4613 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4614 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4615 "other device, disabling DMA\n");
4616 }
4617
4618 if (ap->flags & ATA_FLAG_NO_IORDY)
4619 xfer_mask &= ata_pio_mask_no_iordy(dev);
4620
4621 if (ap->ops->mode_filter)
4622 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4623
4624 /* Apply cable rule here. Don't apply it early because when
4625 * we handle hot plug the cable type can itself change.
4626 * Check this last so that we know if the transfer rate was
4627 * solely limited by the cable.
4628 * Unknown or 80 wire cables reported host side are checked
4629 * drive side as well. Cases where we know a 40wire cable
4630 * is used safely for 80 are not checked here.
4631 */
4632 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4633 /* UDMA/44 or higher would be available */
4634 if ((ap->cbl == ATA_CBL_PATA40) ||
4635 (ata_is_40wire(dev) &&
4636 (ap->cbl == ATA_CBL_PATA_UNK ||
4637 ap->cbl == ATA_CBL_PATA80))) {
4638 ata_dev_printk(dev, KERN_WARNING,
4639 "limited to UDMA/33 due to 40-wire cable\n");
4640 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4641 }
4642
4643 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4644 &dev->mwdma_mask, &dev->udma_mask);
4645 }
4646
4647 /**
4648 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4649 * @dev: Device to which command will be sent
4650 *
4651 * Issue SET FEATURES - XFER MODE command to device @dev
4652 * on port @ap.
4653 *
4654 * LOCKING:
4655 * PCI/etc. bus probe sem.
4656 *
4657 * RETURNS:
4658 * 0 on success, AC_ERR_* mask otherwise.
4659 */
4660
4661 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4662 {
4663 struct ata_taskfile tf;
4664 unsigned int err_mask;
4665
4666 /* set up set-features taskfile */
4667 DPRINTK("set features - xfer mode\n");
4668
4669 /* Some controllers and ATAPI devices show flaky interrupt
4670 * behavior after setting xfer mode. Use polling instead.
4671 */
4672 ata_tf_init(dev, &tf);
4673 tf.command = ATA_CMD_SET_FEATURES;
4674 tf.feature = SETFEATURES_XFER;
4675 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4676 tf.protocol = ATA_PROT_NODATA;
4677 /* If we are using IORDY we must send the mode setting command */
4678 if (ata_pio_need_iordy(dev))
4679 tf.nsect = dev->xfer_mode;
4680 /* If the device has IORDY and the controller does not - turn it off */
4681 else if (ata_id_has_iordy(dev->id))
4682 tf.nsect = 0x01;
4683 else /* In the ancient relic department - skip all of this */
4684 return 0;
4685
4686 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4687
4688 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4689 return err_mask;
4690 }
4691 /**
4692 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4693 * @dev: Device to which command will be sent
4694 * @enable: Whether to enable or disable the feature
4695 * @feature: The sector count represents the feature to set
4696 *
4697 * Issue SET FEATURES - SATA FEATURES command to device @dev
4698 * on port @ap with sector count
4699 *
4700 * LOCKING:
4701 * PCI/etc. bus probe sem.
4702 *
4703 * RETURNS:
4704 * 0 on success, AC_ERR_* mask otherwise.
4705 */
4706 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4707 u8 feature)
4708 {
4709 struct ata_taskfile tf;
4710 unsigned int err_mask;
4711
4712 /* set up set-features taskfile */
4713 DPRINTK("set features - SATA features\n");
4714
4715 ata_tf_init(dev, &tf);
4716 tf.command = ATA_CMD_SET_FEATURES;
4717 tf.feature = enable;
4718 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4719 tf.protocol = ATA_PROT_NODATA;
4720 tf.nsect = feature;
4721
4722 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4723
4724 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4725 return err_mask;
4726 }
4727
4728 /**
4729 * ata_dev_init_params - Issue INIT DEV PARAMS command
4730 * @dev: Device to which command will be sent
4731 * @heads: Number of heads (taskfile parameter)
4732 * @sectors: Number of sectors (taskfile parameter)
4733 *
4734 * LOCKING:
4735 * Kernel thread context (may sleep)
4736 *
4737 * RETURNS:
4738 * 0 on success, AC_ERR_* mask otherwise.
4739 */
4740 static unsigned int ata_dev_init_params(struct ata_device *dev,
4741 u16 heads, u16 sectors)
4742 {
4743 struct ata_taskfile tf;
4744 unsigned int err_mask;
4745
4746 /* Number of sectors per track 1-255. Number of heads 1-16 */
4747 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4748 return AC_ERR_INVALID;
4749
4750 /* set up init dev params taskfile */
4751 DPRINTK("init dev params \n");
4752
4753 ata_tf_init(dev, &tf);
4754 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4755 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4756 tf.protocol = ATA_PROT_NODATA;
4757 tf.nsect = sectors;
4758 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4759
4760 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4761 /* A clean abort indicates an original or just out of spec drive
4762 and we should continue as we issue the setup based on the
4763 drive reported working geometry */
4764 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4765 err_mask = 0;
4766
4767 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4768 return err_mask;
4769 }
4770
4771 /**
4772 * ata_sg_clean - Unmap DMA memory associated with command
4773 * @qc: Command containing DMA memory to be released
4774 *
4775 * Unmap all mapped DMA memory associated with this command.
4776 *
4777 * LOCKING:
4778 * spin_lock_irqsave(host lock)
4779 */
4780 void ata_sg_clean(struct ata_queued_cmd *qc)
4781 {
4782 struct ata_port *ap = qc->ap;
4783 struct scatterlist *sg = qc->sg;
4784 int dir = qc->dma_dir;
4785
4786 WARN_ON(sg == NULL);
4787
4788 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4789
4790 if (qc->n_elem)
4791 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4792
4793 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4794 qc->sg = NULL;
4795 }
4796
4797 /**
4798 * ata_fill_sg - Fill PCI IDE PRD table
4799 * @qc: Metadata associated with taskfile to be transferred
4800 *
4801 * Fill PCI IDE PRD (scatter-gather) table with segments
4802 * associated with the current disk command.
4803 *
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4806 *
4807 */
4808 static void ata_fill_sg(struct ata_queued_cmd *qc)
4809 {
4810 struct ata_port *ap = qc->ap;
4811 struct scatterlist *sg;
4812 unsigned int si, pi;
4813
4814 pi = 0;
4815 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4816 u32 addr, offset;
4817 u32 sg_len, len;
4818
4819 /* determine if physical DMA addr spans 64K boundary.
4820 * Note h/w doesn't support 64-bit, so we unconditionally
4821 * truncate dma_addr_t to u32.
4822 */
4823 addr = (u32) sg_dma_address(sg);
4824 sg_len = sg_dma_len(sg);
4825
4826 while (sg_len) {
4827 offset = addr & 0xffff;
4828 len = sg_len;
4829 if ((offset + sg_len) > 0x10000)
4830 len = 0x10000 - offset;
4831
4832 ap->prd[pi].addr = cpu_to_le32(addr);
4833 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4834 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4835
4836 pi++;
4837 sg_len -= len;
4838 addr += len;
4839 }
4840 }
4841
4842 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4843 }
4844
4845 /**
4846 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4847 * @qc: Metadata associated with taskfile to be transferred
4848 *
4849 * Fill PCI IDE PRD (scatter-gather) table with segments
4850 * associated with the current disk command. Perform the fill
4851 * so that we avoid writing any length 64K records for
4852 * controllers that don't follow the spec.
4853 *
4854 * LOCKING:
4855 * spin_lock_irqsave(host lock)
4856 *
4857 */
4858 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4859 {
4860 struct ata_port *ap = qc->ap;
4861 struct scatterlist *sg;
4862 unsigned int si, pi;
4863
4864 pi = 0;
4865 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4866 u32 addr, offset;
4867 u32 sg_len, len, blen;
4868
4869 /* determine if physical DMA addr spans 64K boundary.
4870 * Note h/w doesn't support 64-bit, so we unconditionally
4871 * truncate dma_addr_t to u32.
4872 */
4873 addr = (u32) sg_dma_address(sg);
4874 sg_len = sg_dma_len(sg);
4875
4876 while (sg_len) {
4877 offset = addr & 0xffff;
4878 len = sg_len;
4879 if ((offset + sg_len) > 0x10000)
4880 len = 0x10000 - offset;
4881
4882 blen = len & 0xffff;
4883 ap->prd[pi].addr = cpu_to_le32(addr);
4884 if (blen == 0) {
4885 /* Some PATA chipsets like the CS5530 can't
4886 cope with 0x0000 meaning 64K as the spec says */
4887 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4888 blen = 0x8000;
4889 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4890 }
4891 ap->prd[pi].flags_len = cpu_to_le32(blen);
4892 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4893
4894 pi++;
4895 sg_len -= len;
4896 addr += len;
4897 }
4898 }
4899
4900 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4901 }
4902
4903 /**
4904 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4905 * @qc: Metadata associated with taskfile to check
4906 *
4907 * Allow low-level driver to filter ATA PACKET commands, returning
4908 * a status indicating whether or not it is OK to use DMA for the
4909 * supplied PACKET command.
4910 *
4911 * LOCKING:
4912 * spin_lock_irqsave(host lock)
4913 *
4914 * RETURNS: 0 when ATAPI DMA can be used
4915 * nonzero otherwise
4916 */
4917 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4918 {
4919 struct ata_port *ap = qc->ap;
4920
4921 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4922 * few ATAPI devices choke on such DMA requests.
4923 */
4924 if (unlikely(qc->nbytes & 15))
4925 return 1;
4926
4927 if (ap->ops->check_atapi_dma)
4928 return ap->ops->check_atapi_dma(qc);
4929
4930 return 0;
4931 }
4932
4933 /**
4934 * ata_std_qc_defer - Check whether a qc needs to be deferred
4935 * @qc: ATA command in question
4936 *
4937 * Non-NCQ commands cannot run with any other command, NCQ or
4938 * not. As upper layer only knows the queue depth, we are
4939 * responsible for maintaining exclusion. This function checks
4940 * whether a new command @qc can be issued.
4941 *
4942 * LOCKING:
4943 * spin_lock_irqsave(host lock)
4944 *
4945 * RETURNS:
4946 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4947 */
4948 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4949 {
4950 struct ata_link *link = qc->dev->link;
4951
4952 if (qc->tf.protocol == ATA_PROT_NCQ) {
4953 if (!ata_tag_valid(link->active_tag))
4954 return 0;
4955 } else {
4956 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4957 return 0;
4958 }
4959
4960 return ATA_DEFER_LINK;
4961 }
4962
4963 /**
4964 * ata_qc_prep - Prepare taskfile for submission
4965 * @qc: Metadata associated with taskfile to be prepared
4966 *
4967 * Prepare ATA taskfile for submission.
4968 *
4969 * LOCKING:
4970 * spin_lock_irqsave(host lock)
4971 */
4972 void ata_qc_prep(struct ata_queued_cmd *qc)
4973 {
4974 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4975 return;
4976
4977 ata_fill_sg(qc);
4978 }
4979
4980 /**
4981 * ata_dumb_qc_prep - Prepare taskfile for submission
4982 * @qc: Metadata associated with taskfile to be prepared
4983 *
4984 * Prepare ATA taskfile for submission.
4985 *
4986 * LOCKING:
4987 * spin_lock_irqsave(host lock)
4988 */
4989 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4990 {
4991 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4992 return;
4993
4994 ata_fill_sg_dumb(qc);
4995 }
4996
4997 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4998
4999 /**
5000 * ata_sg_init - Associate command with scatter-gather table.
5001 * @qc: Command to be associated
5002 * @sg: Scatter-gather table.
5003 * @n_elem: Number of elements in s/g table.
5004 *
5005 * Initialize the data-related elements of queued_cmd @qc
5006 * to point to a scatter-gather table @sg, containing @n_elem
5007 * elements.
5008 *
5009 * LOCKING:
5010 * spin_lock_irqsave(host lock)
5011 */
5012 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5013 unsigned int n_elem)
5014 {
5015 qc->sg = sg;
5016 qc->n_elem = n_elem;
5017 qc->cursg = qc->sg;
5018 }
5019
5020 /**
5021 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5022 * @qc: Command with scatter-gather table to be mapped.
5023 *
5024 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5025 *
5026 * LOCKING:
5027 * spin_lock_irqsave(host lock)
5028 *
5029 * RETURNS:
5030 * Zero on success, negative on error.
5031 *
5032 */
5033 static int ata_sg_setup(struct ata_queued_cmd *qc)
5034 {
5035 struct ata_port *ap = qc->ap;
5036 unsigned int n_elem;
5037
5038 VPRINTK("ENTER, ata%u\n", ap->print_id);
5039
5040 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5041 if (n_elem < 1)
5042 return -1;
5043
5044 DPRINTK("%d sg elements mapped\n", n_elem);
5045
5046 qc->n_elem = n_elem;
5047 qc->flags |= ATA_QCFLAG_DMAMAP;
5048
5049 return 0;
5050 }
5051
5052 /**
5053 * swap_buf_le16 - swap halves of 16-bit words in place
5054 * @buf: Buffer to swap
5055 * @buf_words: Number of 16-bit words in buffer.
5056 *
5057 * Swap halves of 16-bit words if needed to convert from
5058 * little-endian byte order to native cpu byte order, or
5059 * vice-versa.
5060 *
5061 * LOCKING:
5062 * Inherited from caller.
5063 */
5064 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5065 {
5066 #ifdef __BIG_ENDIAN
5067 unsigned int i;
5068
5069 for (i = 0; i < buf_words; i++)
5070 buf[i] = le16_to_cpu(buf[i]);
5071 #endif /* __BIG_ENDIAN */
5072 }
5073
5074 /**
5075 * ata_data_xfer - Transfer data by PIO
5076 * @dev: device to target
5077 * @buf: data buffer
5078 * @buflen: buffer length
5079 * @rw: read/write
5080 *
5081 * Transfer data from/to the device data register by PIO.
5082 *
5083 * LOCKING:
5084 * Inherited from caller.
5085 *
5086 * RETURNS:
5087 * Bytes consumed.
5088 */
5089 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5090 unsigned int buflen, int rw)
5091 {
5092 struct ata_port *ap = dev->link->ap;
5093 void __iomem *data_addr = ap->ioaddr.data_addr;
5094 unsigned int words = buflen >> 1;
5095
5096 /* Transfer multiple of 2 bytes */
5097 if (rw == READ)
5098 ioread16_rep(data_addr, buf, words);
5099 else
5100 iowrite16_rep(data_addr, buf, words);
5101
5102 /* Transfer trailing 1 byte, if any. */
5103 if (unlikely(buflen & 0x01)) {
5104 __le16 align_buf[1] = { 0 };
5105 unsigned char *trailing_buf = buf + buflen - 1;
5106
5107 if (rw == READ) {
5108 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5109 memcpy(trailing_buf, align_buf, 1);
5110 } else {
5111 memcpy(align_buf, trailing_buf, 1);
5112 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5113 }
5114 words++;
5115 }
5116
5117 return words << 1;
5118 }
5119
5120 /**
5121 * ata_data_xfer_noirq - Transfer data by PIO
5122 * @dev: device to target
5123 * @buf: data buffer
5124 * @buflen: buffer length
5125 * @rw: read/write
5126 *
5127 * Transfer data from/to the device data register by PIO. Do the
5128 * transfer with interrupts disabled.
5129 *
5130 * LOCKING:
5131 * Inherited from caller.
5132 *
5133 * RETURNS:
5134 * Bytes consumed.
5135 */
5136 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5137 unsigned int buflen, int rw)
5138 {
5139 unsigned long flags;
5140 unsigned int consumed;
5141
5142 local_irq_save(flags);
5143 consumed = ata_data_xfer(dev, buf, buflen, rw);
5144 local_irq_restore(flags);
5145
5146 return consumed;
5147 }
5148
5149
5150 /**
5151 * ata_pio_sector - Transfer a sector of data.
5152 * @qc: Command on going
5153 *
5154 * Transfer qc->sect_size bytes of data from/to the ATA device.
5155 *
5156 * LOCKING:
5157 * Inherited from caller.
5158 */
5159
5160 static void ata_pio_sector(struct ata_queued_cmd *qc)
5161 {
5162 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5163 struct ata_port *ap = qc->ap;
5164 struct page *page;
5165 unsigned int offset;
5166 unsigned char *buf;
5167
5168 if (qc->curbytes == qc->nbytes - qc->sect_size)
5169 ap->hsm_task_state = HSM_ST_LAST;
5170
5171 page = sg_page(qc->cursg);
5172 offset = qc->cursg->offset + qc->cursg_ofs;
5173
5174 /* get the current page and offset */
5175 page = nth_page(page, (offset >> PAGE_SHIFT));
5176 offset %= PAGE_SIZE;
5177
5178 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5179
5180 if (PageHighMem(page)) {
5181 unsigned long flags;
5182
5183 /* FIXME: use a bounce buffer */
5184 local_irq_save(flags);
5185 buf = kmap_atomic(page, KM_IRQ0);
5186
5187 /* do the actual data transfer */
5188 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5189
5190 kunmap_atomic(buf, KM_IRQ0);
5191 local_irq_restore(flags);
5192 } else {
5193 buf = page_address(page);
5194 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5195 }
5196
5197 qc->curbytes += qc->sect_size;
5198 qc->cursg_ofs += qc->sect_size;
5199
5200 if (qc->cursg_ofs == qc->cursg->length) {
5201 qc->cursg = sg_next(qc->cursg);
5202 qc->cursg_ofs = 0;
5203 }
5204 }
5205
5206 /**
5207 * ata_pio_sectors - Transfer one or many sectors.
5208 * @qc: Command on going
5209 *
5210 * Transfer one or many sectors of data from/to the
5211 * ATA device for the DRQ request.
5212 *
5213 * LOCKING:
5214 * Inherited from caller.
5215 */
5216
5217 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5218 {
5219 if (is_multi_taskfile(&qc->tf)) {
5220 /* READ/WRITE MULTIPLE */
5221 unsigned int nsect;
5222
5223 WARN_ON(qc->dev->multi_count == 0);
5224
5225 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5226 qc->dev->multi_count);
5227 while (nsect--)
5228 ata_pio_sector(qc);
5229 } else
5230 ata_pio_sector(qc);
5231
5232 ata_altstatus(qc->ap); /* flush */
5233 }
5234
5235 /**
5236 * atapi_send_cdb - Write CDB bytes to hardware
5237 * @ap: Port to which ATAPI device is attached.
5238 * @qc: Taskfile currently active
5239 *
5240 * When device has indicated its readiness to accept
5241 * a CDB, this function is called. Send the CDB.
5242 *
5243 * LOCKING:
5244 * caller.
5245 */
5246
5247 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5248 {
5249 /* send SCSI cdb */
5250 DPRINTK("send cdb\n");
5251 WARN_ON(qc->dev->cdb_len < 12);
5252
5253 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5254 ata_altstatus(ap); /* flush */
5255
5256 switch (qc->tf.protocol) {
5257 case ATAPI_PROT_PIO:
5258 ap->hsm_task_state = HSM_ST;
5259 break;
5260 case ATAPI_PROT_NODATA:
5261 ap->hsm_task_state = HSM_ST_LAST;
5262 break;
5263 case ATAPI_PROT_DMA:
5264 ap->hsm_task_state = HSM_ST_LAST;
5265 /* initiate bmdma */
5266 ap->ops->bmdma_start(qc);
5267 break;
5268 }
5269 }
5270
5271 /**
5272 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5273 * @qc: Command on going
5274 * @bytes: number of bytes
5275 *
5276 * Transfer Transfer data from/to the ATAPI device.
5277 *
5278 * LOCKING:
5279 * Inherited from caller.
5280 *
5281 */
5282 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5283 {
5284 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5285 struct ata_port *ap = qc->ap;
5286 struct ata_device *dev = qc->dev;
5287 struct ata_eh_info *ehi = &dev->link->eh_info;
5288 struct scatterlist *sg;
5289 struct page *page;
5290 unsigned char *buf;
5291 unsigned int offset, count, consumed;
5292
5293 next_sg:
5294 sg = qc->cursg;
5295 if (unlikely(!sg)) {
5296 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5297 "buf=%u cur=%u bytes=%u",
5298 qc->nbytes, qc->curbytes, bytes);
5299 return -1;
5300 }
5301
5302 page = sg_page(sg);
5303 offset = sg->offset + qc->cursg_ofs;
5304
5305 /* get the current page and offset */
5306 page = nth_page(page, (offset >> PAGE_SHIFT));
5307 offset %= PAGE_SIZE;
5308
5309 /* don't overrun current sg */
5310 count = min(sg->length - qc->cursg_ofs, bytes);
5311
5312 /* don't cross page boundaries */
5313 count = min(count, (unsigned int)PAGE_SIZE - offset);
5314
5315 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5316
5317 if (PageHighMem(page)) {
5318 unsigned long flags;
5319
5320 /* FIXME: use bounce buffer */
5321 local_irq_save(flags);
5322 buf = kmap_atomic(page, KM_IRQ0);
5323
5324 /* do the actual data transfer */
5325 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5326
5327 kunmap_atomic(buf, KM_IRQ0);
5328 local_irq_restore(flags);
5329 } else {
5330 buf = page_address(page);
5331 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5332 }
5333
5334 bytes -= min(bytes, consumed);
5335 qc->curbytes += count;
5336 qc->cursg_ofs += count;
5337
5338 if (qc->cursg_ofs == sg->length) {
5339 qc->cursg = sg_next(qc->cursg);
5340 qc->cursg_ofs = 0;
5341 }
5342
5343 /* consumed can be larger than count only for the last transfer */
5344 WARN_ON(qc->cursg && count != consumed);
5345
5346 if (bytes)
5347 goto next_sg;
5348 return 0;
5349 }
5350
5351 /**
5352 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5353 * @qc: Command on going
5354 *
5355 * Transfer Transfer data from/to the ATAPI device.
5356 *
5357 * LOCKING:
5358 * Inherited from caller.
5359 */
5360
5361 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5362 {
5363 struct ata_port *ap = qc->ap;
5364 struct ata_device *dev = qc->dev;
5365 struct ata_eh_info *ehi = &dev->link->eh_info;
5366 unsigned int ireason, bc_lo, bc_hi, bytes;
5367 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5368
5369 /* Abuse qc->result_tf for temp storage of intermediate TF
5370 * here to save some kernel stack usage.
5371 * For normal completion, qc->result_tf is not relevant. For
5372 * error, qc->result_tf is later overwritten by ata_qc_complete().
5373 * So, the correctness of qc->result_tf is not affected.
5374 */
5375 ap->ops->tf_read(ap, &qc->result_tf);
5376 ireason = qc->result_tf.nsect;
5377 bc_lo = qc->result_tf.lbam;
5378 bc_hi = qc->result_tf.lbah;
5379 bytes = (bc_hi << 8) | bc_lo;
5380
5381 /* shall be cleared to zero, indicating xfer of data */
5382 if (unlikely(ireason & (1 << 0)))
5383 goto atapi_check;
5384
5385 /* make sure transfer direction matches expected */
5386 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5387 if (unlikely(do_write != i_write))
5388 goto atapi_check;
5389
5390 if (unlikely(!bytes))
5391 goto atapi_check;
5392
5393 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5394
5395 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5396 goto err_out;
5397 ata_altstatus(ap); /* flush */
5398
5399 return;
5400
5401 atapi_check:
5402 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5403 ireason, bytes);
5404 err_out:
5405 qc->err_mask |= AC_ERR_HSM;
5406 ap->hsm_task_state = HSM_ST_ERR;
5407 }
5408
5409 /**
5410 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5411 * @ap: the target ata_port
5412 * @qc: qc on going
5413 *
5414 * RETURNS:
5415 * 1 if ok in workqueue, 0 otherwise.
5416 */
5417
5418 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5419 {
5420 if (qc->tf.flags & ATA_TFLAG_POLLING)
5421 return 1;
5422
5423 if (ap->hsm_task_state == HSM_ST_FIRST) {
5424 if (qc->tf.protocol == ATA_PROT_PIO &&
5425 (qc->tf.flags & ATA_TFLAG_WRITE))
5426 return 1;
5427
5428 if (ata_is_atapi(qc->tf.protocol) &&
5429 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5430 return 1;
5431 }
5432
5433 return 0;
5434 }
5435
5436 /**
5437 * ata_hsm_qc_complete - finish a qc running on standard HSM
5438 * @qc: Command to complete
5439 * @in_wq: 1 if called from workqueue, 0 otherwise
5440 *
5441 * Finish @qc which is running on standard HSM.
5442 *
5443 * LOCKING:
5444 * If @in_wq is zero, spin_lock_irqsave(host lock).
5445 * Otherwise, none on entry and grabs host lock.
5446 */
5447 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5448 {
5449 struct ata_port *ap = qc->ap;
5450 unsigned long flags;
5451
5452 if (ap->ops->error_handler) {
5453 if (in_wq) {
5454 spin_lock_irqsave(ap->lock, flags);
5455
5456 /* EH might have kicked in while host lock is
5457 * released.
5458 */
5459 qc = ata_qc_from_tag(ap, qc->tag);
5460 if (qc) {
5461 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5462 ap->ops->irq_on(ap);
5463 ata_qc_complete(qc);
5464 } else
5465 ata_port_freeze(ap);
5466 }
5467
5468 spin_unlock_irqrestore(ap->lock, flags);
5469 } else {
5470 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5471 ata_qc_complete(qc);
5472 else
5473 ata_port_freeze(ap);
5474 }
5475 } else {
5476 if (in_wq) {
5477 spin_lock_irqsave(ap->lock, flags);
5478 ap->ops->irq_on(ap);
5479 ata_qc_complete(qc);
5480 spin_unlock_irqrestore(ap->lock, flags);
5481 } else
5482 ata_qc_complete(qc);
5483 }
5484 }
5485
5486 /**
5487 * ata_hsm_move - move the HSM to the next state.
5488 * @ap: the target ata_port
5489 * @qc: qc on going
5490 * @status: current device status
5491 * @in_wq: 1 if called from workqueue, 0 otherwise
5492 *
5493 * RETURNS:
5494 * 1 when poll next status needed, 0 otherwise.
5495 */
5496 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5497 u8 status, int in_wq)
5498 {
5499 unsigned long flags = 0;
5500 int poll_next;
5501
5502 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5503
5504 /* Make sure ata_qc_issue_prot() does not throw things
5505 * like DMA polling into the workqueue. Notice that
5506 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5507 */
5508 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5509
5510 fsm_start:
5511 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5512 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5513
5514 switch (ap->hsm_task_state) {
5515 case HSM_ST_FIRST:
5516 /* Send first data block or PACKET CDB */
5517
5518 /* If polling, we will stay in the work queue after
5519 * sending the data. Otherwise, interrupt handler
5520 * takes over after sending the data.
5521 */
5522 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5523
5524 /* check device status */
5525 if (unlikely((status & ATA_DRQ) == 0)) {
5526 /* handle BSY=0, DRQ=0 as error */
5527 if (likely(status & (ATA_ERR | ATA_DF)))
5528 /* device stops HSM for abort/error */
5529 qc->err_mask |= AC_ERR_DEV;
5530 else
5531 /* HSM violation. Let EH handle this */
5532 qc->err_mask |= AC_ERR_HSM;
5533
5534 ap->hsm_task_state = HSM_ST_ERR;
5535 goto fsm_start;
5536 }
5537
5538 /* Device should not ask for data transfer (DRQ=1)
5539 * when it finds something wrong.
5540 * We ignore DRQ here and stop the HSM by
5541 * changing hsm_task_state to HSM_ST_ERR and
5542 * let the EH abort the command or reset the device.
5543 */
5544 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5545 /* Some ATAPI tape drives forget to clear the ERR bit
5546 * when doing the next command (mostly request sense).
5547 * We ignore ERR here to workaround and proceed sending
5548 * the CDB.
5549 */
5550 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5551 ata_port_printk(ap, KERN_WARNING,
5552 "DRQ=1 with device error, "
5553 "dev_stat 0x%X\n", status);
5554 qc->err_mask |= AC_ERR_HSM;
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
5557 }
5558 }
5559
5560 /* Send the CDB (atapi) or the first data block (ata pio out).
5561 * During the state transition, interrupt handler shouldn't
5562 * be invoked before the data transfer is complete and
5563 * hsm_task_state is changed. Hence, the following locking.
5564 */
5565 if (in_wq)
5566 spin_lock_irqsave(ap->lock, flags);
5567
5568 if (qc->tf.protocol == ATA_PROT_PIO) {
5569 /* PIO data out protocol.
5570 * send first data block.
5571 */
5572
5573 /* ata_pio_sectors() might change the state
5574 * to HSM_ST_LAST. so, the state is changed here
5575 * before ata_pio_sectors().
5576 */
5577 ap->hsm_task_state = HSM_ST;
5578 ata_pio_sectors(qc);
5579 } else
5580 /* send CDB */
5581 atapi_send_cdb(ap, qc);
5582
5583 if (in_wq)
5584 spin_unlock_irqrestore(ap->lock, flags);
5585
5586 /* if polling, ata_pio_task() handles the rest.
5587 * otherwise, interrupt handler takes over from here.
5588 */
5589 break;
5590
5591 case HSM_ST:
5592 /* complete command or read/write the data register */
5593 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5594 /* ATAPI PIO protocol */
5595 if ((status & ATA_DRQ) == 0) {
5596 /* No more data to transfer or device error.
5597 * Device error will be tagged in HSM_ST_LAST.
5598 */
5599 ap->hsm_task_state = HSM_ST_LAST;
5600 goto fsm_start;
5601 }
5602
5603 /* Device should not ask for data transfer (DRQ=1)
5604 * when it finds something wrong.
5605 * We ignore DRQ here and stop the HSM by
5606 * changing hsm_task_state to HSM_ST_ERR and
5607 * let the EH abort the command or reset the device.
5608 */
5609 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5610 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5611 "device error, dev_stat 0x%X\n",
5612 status);
5613 qc->err_mask |= AC_ERR_HSM;
5614 ap->hsm_task_state = HSM_ST_ERR;
5615 goto fsm_start;
5616 }
5617
5618 atapi_pio_bytes(qc);
5619
5620 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5621 /* bad ireason reported by device */
5622 goto fsm_start;
5623
5624 } else {
5625 /* ATA PIO protocol */
5626 if (unlikely((status & ATA_DRQ) == 0)) {
5627 /* handle BSY=0, DRQ=0 as error */
5628 if (likely(status & (ATA_ERR | ATA_DF)))
5629 /* device stops HSM for abort/error */
5630 qc->err_mask |= AC_ERR_DEV;
5631 else
5632 /* HSM violation. Let EH handle this.
5633 * Phantom devices also trigger this
5634 * condition. Mark hint.
5635 */
5636 qc->err_mask |= AC_ERR_HSM |
5637 AC_ERR_NODEV_HINT;
5638
5639 ap->hsm_task_state = HSM_ST_ERR;
5640 goto fsm_start;
5641 }
5642
5643 /* For PIO reads, some devices may ask for
5644 * data transfer (DRQ=1) alone with ERR=1.
5645 * We respect DRQ here and transfer one
5646 * block of junk data before changing the
5647 * hsm_task_state to HSM_ST_ERR.
5648 *
5649 * For PIO writes, ERR=1 DRQ=1 doesn't make
5650 * sense since the data block has been
5651 * transferred to the device.
5652 */
5653 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5654 /* data might be corrputed */
5655 qc->err_mask |= AC_ERR_DEV;
5656
5657 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5658 ata_pio_sectors(qc);
5659 status = ata_wait_idle(ap);
5660 }
5661
5662 if (status & (ATA_BUSY | ATA_DRQ))
5663 qc->err_mask |= AC_ERR_HSM;
5664
5665 /* ata_pio_sectors() might change the
5666 * state to HSM_ST_LAST. so, the state
5667 * is changed after ata_pio_sectors().
5668 */
5669 ap->hsm_task_state = HSM_ST_ERR;
5670 goto fsm_start;
5671 }
5672
5673 ata_pio_sectors(qc);
5674
5675 if (ap->hsm_task_state == HSM_ST_LAST &&
5676 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5677 /* all data read */
5678 status = ata_wait_idle(ap);
5679 goto fsm_start;
5680 }
5681 }
5682
5683 poll_next = 1;
5684 break;
5685
5686 case HSM_ST_LAST:
5687 if (unlikely(!ata_ok(status))) {
5688 qc->err_mask |= __ac_err_mask(status);
5689 ap->hsm_task_state = HSM_ST_ERR;
5690 goto fsm_start;
5691 }
5692
5693 /* no more data to transfer */
5694 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5695 ap->print_id, qc->dev->devno, status);
5696
5697 WARN_ON(qc->err_mask);
5698
5699 ap->hsm_task_state = HSM_ST_IDLE;
5700
5701 /* complete taskfile transaction */
5702 ata_hsm_qc_complete(qc, in_wq);
5703
5704 poll_next = 0;
5705 break;
5706
5707 case HSM_ST_ERR:
5708 /* make sure qc->err_mask is available to
5709 * know what's wrong and recover
5710 */
5711 WARN_ON(qc->err_mask == 0);
5712
5713 ap->hsm_task_state = HSM_ST_IDLE;
5714
5715 /* complete taskfile transaction */
5716 ata_hsm_qc_complete(qc, in_wq);
5717
5718 poll_next = 0;
5719 break;
5720 default:
5721 poll_next = 0;
5722 BUG();
5723 }
5724
5725 return poll_next;
5726 }
5727
5728 static void ata_pio_task(struct work_struct *work)
5729 {
5730 struct ata_port *ap =
5731 container_of(work, struct ata_port, port_task.work);
5732 struct ata_queued_cmd *qc = ap->port_task_data;
5733 u8 status;
5734 int poll_next;
5735
5736 fsm_start:
5737 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5738
5739 /*
5740 * This is purely heuristic. This is a fast path.
5741 * Sometimes when we enter, BSY will be cleared in
5742 * a chk-status or two. If not, the drive is probably seeking
5743 * or something. Snooze for a couple msecs, then
5744 * chk-status again. If still busy, queue delayed work.
5745 */
5746 status = ata_busy_wait(ap, ATA_BUSY, 5);
5747 if (status & ATA_BUSY) {
5748 msleep(2);
5749 status = ata_busy_wait(ap, ATA_BUSY, 10);
5750 if (status & ATA_BUSY) {
5751 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5752 return;
5753 }
5754 }
5755
5756 /* move the HSM */
5757 poll_next = ata_hsm_move(ap, qc, status, 1);
5758
5759 /* another command or interrupt handler
5760 * may be running at this point.
5761 */
5762 if (poll_next)
5763 goto fsm_start;
5764 }
5765
5766 /**
5767 * ata_qc_new - Request an available ATA command, for queueing
5768 * @ap: Port associated with device @dev
5769 * @dev: Device from whom we request an available command structure
5770 *
5771 * LOCKING:
5772 * None.
5773 */
5774
5775 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5776 {
5777 struct ata_queued_cmd *qc = NULL;
5778 unsigned int i;
5779
5780 /* no command while frozen */
5781 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5782 return NULL;
5783
5784 /* the last tag is reserved for internal command. */
5785 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5786 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5787 qc = __ata_qc_from_tag(ap, i);
5788 break;
5789 }
5790
5791 if (qc)
5792 qc->tag = i;
5793
5794 return qc;
5795 }
5796
5797 /**
5798 * ata_qc_new_init - Request an available ATA command, and initialize it
5799 * @dev: Device from whom we request an available command structure
5800 *
5801 * LOCKING:
5802 * None.
5803 */
5804
5805 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5806 {
5807 struct ata_port *ap = dev->link->ap;
5808 struct ata_queued_cmd *qc;
5809
5810 qc = ata_qc_new(ap);
5811 if (qc) {
5812 qc->scsicmd = NULL;
5813 qc->ap = ap;
5814 qc->dev = dev;
5815
5816 ata_qc_reinit(qc);
5817 }
5818
5819 return qc;
5820 }
5821
5822 /**
5823 * ata_qc_free - free unused ata_queued_cmd
5824 * @qc: Command to complete
5825 *
5826 * Designed to free unused ata_queued_cmd object
5827 * in case something prevents using it.
5828 *
5829 * LOCKING:
5830 * spin_lock_irqsave(host lock)
5831 */
5832 void ata_qc_free(struct ata_queued_cmd *qc)
5833 {
5834 struct ata_port *ap = qc->ap;
5835 unsigned int tag;
5836
5837 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5838
5839 qc->flags = 0;
5840 tag = qc->tag;
5841 if (likely(ata_tag_valid(tag))) {
5842 qc->tag = ATA_TAG_POISON;
5843 clear_bit(tag, &ap->qc_allocated);
5844 }
5845 }
5846
5847 void __ata_qc_complete(struct ata_queued_cmd *qc)
5848 {
5849 struct ata_port *ap = qc->ap;
5850 struct ata_link *link = qc->dev->link;
5851
5852 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5853 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5854
5855 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5856 ata_sg_clean(qc);
5857
5858 /* command should be marked inactive atomically with qc completion */
5859 if (qc->tf.protocol == ATA_PROT_NCQ) {
5860 link->sactive &= ~(1 << qc->tag);
5861 if (!link->sactive)
5862 ap->nr_active_links--;
5863 } else {
5864 link->active_tag = ATA_TAG_POISON;
5865 ap->nr_active_links--;
5866 }
5867
5868 /* clear exclusive status */
5869 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5870 ap->excl_link == link))
5871 ap->excl_link = NULL;
5872
5873 /* atapi: mark qc as inactive to prevent the interrupt handler
5874 * from completing the command twice later, before the error handler
5875 * is called. (when rc != 0 and atapi request sense is needed)
5876 */
5877 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5878 ap->qc_active &= ~(1 << qc->tag);
5879
5880 /* call completion callback */
5881 qc->complete_fn(qc);
5882 }
5883
5884 static void fill_result_tf(struct ata_queued_cmd *qc)
5885 {
5886 struct ata_port *ap = qc->ap;
5887
5888 qc->result_tf.flags = qc->tf.flags;
5889 ap->ops->tf_read(ap, &qc->result_tf);
5890 }
5891
5892 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5893 {
5894 struct ata_device *dev = qc->dev;
5895
5896 if (ata_tag_internal(qc->tag))
5897 return;
5898
5899 if (ata_is_nodata(qc->tf.protocol))
5900 return;
5901
5902 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5903 return;
5904
5905 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5906 }
5907
5908 /**
5909 * ata_qc_complete - Complete an active ATA command
5910 * @qc: Command to complete
5911 * @err_mask: ATA Status register contents
5912 *
5913 * Indicate to the mid and upper layers that an ATA
5914 * command has completed, with either an ok or not-ok status.
5915 *
5916 * LOCKING:
5917 * spin_lock_irqsave(host lock)
5918 */
5919 void ata_qc_complete(struct ata_queued_cmd *qc)
5920 {
5921 struct ata_port *ap = qc->ap;
5922
5923 /* XXX: New EH and old EH use different mechanisms to
5924 * synchronize EH with regular execution path.
5925 *
5926 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5927 * Normal execution path is responsible for not accessing a
5928 * failed qc. libata core enforces the rule by returning NULL
5929 * from ata_qc_from_tag() for failed qcs.
5930 *
5931 * Old EH depends on ata_qc_complete() nullifying completion
5932 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5933 * not synchronize with interrupt handler. Only PIO task is
5934 * taken care of.
5935 */
5936 if (ap->ops->error_handler) {
5937 struct ata_device *dev = qc->dev;
5938 struct ata_eh_info *ehi = &dev->link->eh_info;
5939
5940 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5941
5942 if (unlikely(qc->err_mask))
5943 qc->flags |= ATA_QCFLAG_FAILED;
5944
5945 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5946 if (!ata_tag_internal(qc->tag)) {
5947 /* always fill result TF for failed qc */
5948 fill_result_tf(qc);
5949 ata_qc_schedule_eh(qc);
5950 return;
5951 }
5952 }
5953
5954 /* read result TF if requested */
5955 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5956 fill_result_tf(qc);
5957
5958 /* Some commands need post-processing after successful
5959 * completion.
5960 */
5961 switch (qc->tf.command) {
5962 case ATA_CMD_SET_FEATURES:
5963 if (qc->tf.feature != SETFEATURES_WC_ON &&
5964 qc->tf.feature != SETFEATURES_WC_OFF)
5965 break;
5966 /* fall through */
5967 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5968 case ATA_CMD_SET_MULTI: /* multi_count changed */
5969 /* revalidate device */
5970 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5971 ata_port_schedule_eh(ap);
5972 break;
5973
5974 case ATA_CMD_SLEEP:
5975 dev->flags |= ATA_DFLAG_SLEEPING;
5976 break;
5977 }
5978
5979 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5980 ata_verify_xfer(qc);
5981
5982 __ata_qc_complete(qc);
5983 } else {
5984 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5985 return;
5986
5987 /* read result TF if failed or requested */
5988 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5989 fill_result_tf(qc);
5990
5991 __ata_qc_complete(qc);
5992 }
5993 }
5994
5995 /**
5996 * ata_qc_complete_multiple - Complete multiple qcs successfully
5997 * @ap: port in question
5998 * @qc_active: new qc_active mask
5999 * @finish_qc: LLDD callback invoked before completing a qc
6000 *
6001 * Complete in-flight commands. This functions is meant to be
6002 * called from low-level driver's interrupt routine to complete
6003 * requests normally. ap->qc_active and @qc_active is compared
6004 * and commands are completed accordingly.
6005 *
6006 * LOCKING:
6007 * spin_lock_irqsave(host lock)
6008 *
6009 * RETURNS:
6010 * Number of completed commands on success, -errno otherwise.
6011 */
6012 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
6013 void (*finish_qc)(struct ata_queued_cmd *))
6014 {
6015 int nr_done = 0;
6016 u32 done_mask;
6017 int i;
6018
6019 done_mask = ap->qc_active ^ qc_active;
6020
6021 if (unlikely(done_mask & qc_active)) {
6022 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
6023 "(%08x->%08x)\n", ap->qc_active, qc_active);
6024 return -EINVAL;
6025 }
6026
6027 for (i = 0; i < ATA_MAX_QUEUE; i++) {
6028 struct ata_queued_cmd *qc;
6029
6030 if (!(done_mask & (1 << i)))
6031 continue;
6032
6033 if ((qc = ata_qc_from_tag(ap, i))) {
6034 if (finish_qc)
6035 finish_qc(qc);
6036 ata_qc_complete(qc);
6037 nr_done++;
6038 }
6039 }
6040
6041 return nr_done;
6042 }
6043
6044 /**
6045 * ata_qc_issue - issue taskfile to device
6046 * @qc: command to issue to device
6047 *
6048 * Prepare an ATA command to submission to device.
6049 * This includes mapping the data into a DMA-able
6050 * area, filling in the S/G table, and finally
6051 * writing the taskfile to hardware, starting the command.
6052 *
6053 * LOCKING:
6054 * spin_lock_irqsave(host lock)
6055 */
6056 void ata_qc_issue(struct ata_queued_cmd *qc)
6057 {
6058 struct ata_port *ap = qc->ap;
6059 struct ata_link *link = qc->dev->link;
6060 u8 prot = qc->tf.protocol;
6061
6062 /* Make sure only one non-NCQ command is outstanding. The
6063 * check is skipped for old EH because it reuses active qc to
6064 * request ATAPI sense.
6065 */
6066 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
6067
6068 if (ata_is_ncq(prot)) {
6069 WARN_ON(link->sactive & (1 << qc->tag));
6070
6071 if (!link->sactive)
6072 ap->nr_active_links++;
6073 link->sactive |= 1 << qc->tag;
6074 } else {
6075 WARN_ON(link->sactive);
6076
6077 ap->nr_active_links++;
6078 link->active_tag = qc->tag;
6079 }
6080
6081 qc->flags |= ATA_QCFLAG_ACTIVE;
6082 ap->qc_active |= 1 << qc->tag;
6083
6084 /* We guarantee to LLDs that they will have at least one
6085 * non-zero sg if the command is a data command.
6086 */
6087 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
6088
6089 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6090 (ap->flags & ATA_FLAG_PIO_DMA)))
6091 if (ata_sg_setup(qc))
6092 goto sg_err;
6093
6094 /* if device is sleeping, schedule reset and abort the link */
6095 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6096 link->eh_info.action |= ATA_EH_RESET;
6097 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6098 ata_link_abort(link);
6099 return;
6100 }
6101
6102 ap->ops->qc_prep(qc);
6103
6104 qc->err_mask |= ap->ops->qc_issue(qc);
6105 if (unlikely(qc->err_mask))
6106 goto err;
6107 return;
6108
6109 sg_err:
6110 qc->err_mask |= AC_ERR_SYSTEM;
6111 err:
6112 ata_qc_complete(qc);
6113 }
6114
6115 /**
6116 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6117 * @qc: command to issue to device
6118 *
6119 * Using various libata functions and hooks, this function
6120 * starts an ATA command. ATA commands are grouped into
6121 * classes called "protocols", and issuing each type of protocol
6122 * is slightly different.
6123 *
6124 * May be used as the qc_issue() entry in ata_port_operations.
6125 *
6126 * LOCKING:
6127 * spin_lock_irqsave(host lock)
6128 *
6129 * RETURNS:
6130 * Zero on success, AC_ERR_* mask on failure
6131 */
6132
6133 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6134 {
6135 struct ata_port *ap = qc->ap;
6136
6137 /* Use polling pio if the LLD doesn't handle
6138 * interrupt driven pio and atapi CDB interrupt.
6139 */
6140 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6141 switch (qc->tf.protocol) {
6142 case ATA_PROT_PIO:
6143 case ATA_PROT_NODATA:
6144 case ATAPI_PROT_PIO:
6145 case ATAPI_PROT_NODATA:
6146 qc->tf.flags |= ATA_TFLAG_POLLING;
6147 break;
6148 case ATAPI_PROT_DMA:
6149 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6150 /* see ata_dma_blacklisted() */
6151 BUG();
6152 break;
6153 default:
6154 break;
6155 }
6156 }
6157
6158 /* select the device */
6159 ata_dev_select(ap, qc->dev->devno, 1, 0);
6160
6161 /* start the command */
6162 switch (qc->tf.protocol) {
6163 case ATA_PROT_NODATA:
6164 if (qc->tf.flags & ATA_TFLAG_POLLING)
6165 ata_qc_set_polling(qc);
6166
6167 ata_tf_to_host(ap, &qc->tf);
6168 ap->hsm_task_state = HSM_ST_LAST;
6169
6170 if (qc->tf.flags & ATA_TFLAG_POLLING)
6171 ata_pio_queue_task(ap, qc, 0);
6172
6173 break;
6174
6175 case ATA_PROT_DMA:
6176 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6177
6178 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6179 ap->ops->bmdma_setup(qc); /* set up bmdma */
6180 ap->ops->bmdma_start(qc); /* initiate bmdma */
6181 ap->hsm_task_state = HSM_ST_LAST;
6182 break;
6183
6184 case ATA_PROT_PIO:
6185 if (qc->tf.flags & ATA_TFLAG_POLLING)
6186 ata_qc_set_polling(qc);
6187
6188 ata_tf_to_host(ap, &qc->tf);
6189
6190 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6191 /* PIO data out protocol */
6192 ap->hsm_task_state = HSM_ST_FIRST;
6193 ata_pio_queue_task(ap, qc, 0);
6194
6195 /* always send first data block using
6196 * the ata_pio_task() codepath.
6197 */
6198 } else {
6199 /* PIO data in protocol */
6200 ap->hsm_task_state = HSM_ST;
6201
6202 if (qc->tf.flags & ATA_TFLAG_POLLING)
6203 ata_pio_queue_task(ap, qc, 0);
6204
6205 /* if polling, ata_pio_task() handles the rest.
6206 * otherwise, interrupt handler takes over from here.
6207 */
6208 }
6209
6210 break;
6211
6212 case ATAPI_PROT_PIO:
6213 case ATAPI_PROT_NODATA:
6214 if (qc->tf.flags & ATA_TFLAG_POLLING)
6215 ata_qc_set_polling(qc);
6216
6217 ata_tf_to_host(ap, &qc->tf);
6218
6219 ap->hsm_task_state = HSM_ST_FIRST;
6220
6221 /* send cdb by polling if no cdb interrupt */
6222 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6223 (qc->tf.flags & ATA_TFLAG_POLLING))
6224 ata_pio_queue_task(ap, qc, 0);
6225 break;
6226
6227 case ATAPI_PROT_DMA:
6228 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6229
6230 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6231 ap->ops->bmdma_setup(qc); /* set up bmdma */
6232 ap->hsm_task_state = HSM_ST_FIRST;
6233
6234 /* send cdb by polling if no cdb interrupt */
6235 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6236 ata_pio_queue_task(ap, qc, 0);
6237 break;
6238
6239 default:
6240 WARN_ON(1);
6241 return AC_ERR_SYSTEM;
6242 }
6243
6244 return 0;
6245 }
6246
6247 /**
6248 * ata_host_intr - Handle host interrupt for given (port, task)
6249 * @ap: Port on which interrupt arrived (possibly...)
6250 * @qc: Taskfile currently active in engine
6251 *
6252 * Handle host interrupt for given queued command. Currently,
6253 * only DMA interrupts are handled. All other commands are
6254 * handled via polling with interrupts disabled (nIEN bit).
6255 *
6256 * LOCKING:
6257 * spin_lock_irqsave(host lock)
6258 *
6259 * RETURNS:
6260 * One if interrupt was handled, zero if not (shared irq).
6261 */
6262
6263 inline unsigned int ata_host_intr(struct ata_port *ap,
6264 struct ata_queued_cmd *qc)
6265 {
6266 struct ata_eh_info *ehi = &ap->link.eh_info;
6267 u8 status, host_stat = 0;
6268
6269 VPRINTK("ata%u: protocol %d task_state %d\n",
6270 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6271
6272 /* Check whether we are expecting interrupt in this state */
6273 switch (ap->hsm_task_state) {
6274 case HSM_ST_FIRST:
6275 /* Some pre-ATAPI-4 devices assert INTRQ
6276 * at this state when ready to receive CDB.
6277 */
6278
6279 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6280 * The flag was turned on only for atapi devices. No
6281 * need to check ata_is_atapi(qc->tf.protocol) again.
6282 */
6283 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6284 goto idle_irq;
6285 break;
6286 case HSM_ST_LAST:
6287 if (qc->tf.protocol == ATA_PROT_DMA ||
6288 qc->tf.protocol == ATAPI_PROT_DMA) {
6289 /* check status of DMA engine */
6290 host_stat = ap->ops->bmdma_status(ap);
6291 VPRINTK("ata%u: host_stat 0x%X\n",
6292 ap->print_id, host_stat);
6293
6294 /* if it's not our irq... */
6295 if (!(host_stat & ATA_DMA_INTR))
6296 goto idle_irq;
6297
6298 /* before we do anything else, clear DMA-Start bit */
6299 ap->ops->bmdma_stop(qc);
6300
6301 if (unlikely(host_stat & ATA_DMA_ERR)) {
6302 /* error when transfering data to/from memory */
6303 qc->err_mask |= AC_ERR_HOST_BUS;
6304 ap->hsm_task_state = HSM_ST_ERR;
6305 }
6306 }
6307 break;
6308 case HSM_ST:
6309 break;
6310 default:
6311 goto idle_irq;
6312 }
6313
6314 /* check altstatus */
6315 status = ata_altstatus(ap);
6316 if (status & ATA_BUSY)
6317 goto idle_irq;
6318
6319 /* check main status, clearing INTRQ */
6320 status = ata_chk_status(ap);
6321 if (unlikely(status & ATA_BUSY))
6322 goto idle_irq;
6323
6324 /* ack bmdma irq events */
6325 ap->ops->irq_clear(ap);
6326
6327 ata_hsm_move(ap, qc, status, 0);
6328
6329 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6330 qc->tf.protocol == ATAPI_PROT_DMA))
6331 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6332
6333 return 1; /* irq handled */
6334
6335 idle_irq:
6336 ap->stats.idle_irq++;
6337
6338 #ifdef ATA_IRQ_TRAP
6339 if ((ap->stats.idle_irq % 1000) == 0) {
6340 ata_chk_status(ap);
6341 ap->ops->irq_clear(ap);
6342 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6343 return 1;
6344 }
6345 #endif
6346 return 0; /* irq not handled */
6347 }
6348
6349 /**
6350 * ata_interrupt - Default ATA host interrupt handler
6351 * @irq: irq line (unused)
6352 * @dev_instance: pointer to our ata_host information structure
6353 *
6354 * Default interrupt handler for PCI IDE devices. Calls
6355 * ata_host_intr() for each port that is not disabled.
6356 *
6357 * LOCKING:
6358 * Obtains host lock during operation.
6359 *
6360 * RETURNS:
6361 * IRQ_NONE or IRQ_HANDLED.
6362 */
6363
6364 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6365 {
6366 struct ata_host *host = dev_instance;
6367 unsigned int i;
6368 unsigned int handled = 0;
6369 unsigned long flags;
6370
6371 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6372 spin_lock_irqsave(&host->lock, flags);
6373
6374 for (i = 0; i < host->n_ports; i++) {
6375 struct ata_port *ap;
6376
6377 ap = host->ports[i];
6378 if (ap &&
6379 !(ap->flags & ATA_FLAG_DISABLED)) {
6380 struct ata_queued_cmd *qc;
6381
6382 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6383 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6384 (qc->flags & ATA_QCFLAG_ACTIVE))
6385 handled |= ata_host_intr(ap, qc);
6386 }
6387 }
6388
6389 spin_unlock_irqrestore(&host->lock, flags);
6390
6391 return IRQ_RETVAL(handled);
6392 }
6393
6394 /**
6395 * sata_scr_valid - test whether SCRs are accessible
6396 * @link: ATA link to test SCR accessibility for
6397 *
6398 * Test whether SCRs are accessible for @link.
6399 *
6400 * LOCKING:
6401 * None.
6402 *
6403 * RETURNS:
6404 * 1 if SCRs are accessible, 0 otherwise.
6405 */
6406 int sata_scr_valid(struct ata_link *link)
6407 {
6408 struct ata_port *ap = link->ap;
6409
6410 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6411 }
6412
6413 /**
6414 * sata_scr_read - read SCR register of the specified port
6415 * @link: ATA link to read SCR for
6416 * @reg: SCR to read
6417 * @val: Place to store read value
6418 *
6419 * Read SCR register @reg of @link into *@val. This function is
6420 * guaranteed to succeed if @link is ap->link, the cable type of
6421 * the port is SATA and the port implements ->scr_read.
6422 *
6423 * LOCKING:
6424 * None if @link is ap->link. Kernel thread context otherwise.
6425 *
6426 * RETURNS:
6427 * 0 on success, negative errno on failure.
6428 */
6429 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6430 {
6431 if (ata_is_host_link(link)) {
6432 struct ata_port *ap = link->ap;
6433
6434 if (sata_scr_valid(link))
6435 return ap->ops->scr_read(ap, reg, val);
6436 return -EOPNOTSUPP;
6437 }
6438
6439 return sata_pmp_scr_read(link, reg, val);
6440 }
6441
6442 /**
6443 * sata_scr_write - write SCR register of the specified port
6444 * @link: ATA link to write SCR for
6445 * @reg: SCR to write
6446 * @val: value to write
6447 *
6448 * Write @val to SCR register @reg of @link. This function is
6449 * guaranteed to succeed if @link is ap->link, the cable type of
6450 * the port is SATA and the port implements ->scr_read.
6451 *
6452 * LOCKING:
6453 * None if @link is ap->link. Kernel thread context otherwise.
6454 *
6455 * RETURNS:
6456 * 0 on success, negative errno on failure.
6457 */
6458 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6459 {
6460 if (ata_is_host_link(link)) {
6461 struct ata_port *ap = link->ap;
6462
6463 if (sata_scr_valid(link))
6464 return ap->ops->scr_write(ap, reg, val);
6465 return -EOPNOTSUPP;
6466 }
6467
6468 return sata_pmp_scr_write(link, reg, val);
6469 }
6470
6471 /**
6472 * sata_scr_write_flush - write SCR register of the specified port and flush
6473 * @link: ATA link to write SCR for
6474 * @reg: SCR to write
6475 * @val: value to write
6476 *
6477 * This function is identical to sata_scr_write() except that this
6478 * function performs flush after writing to the register.
6479 *
6480 * LOCKING:
6481 * None if @link is ap->link. Kernel thread context otherwise.
6482 *
6483 * RETURNS:
6484 * 0 on success, negative errno on failure.
6485 */
6486 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6487 {
6488 if (ata_is_host_link(link)) {
6489 struct ata_port *ap = link->ap;
6490 int rc;
6491
6492 if (sata_scr_valid(link)) {
6493 rc = ap->ops->scr_write(ap, reg, val);
6494 if (rc == 0)
6495 rc = ap->ops->scr_read(ap, reg, &val);
6496 return rc;
6497 }
6498 return -EOPNOTSUPP;
6499 }
6500
6501 return sata_pmp_scr_write(link, reg, val);
6502 }
6503
6504 /**
6505 * ata_link_online - test whether the given link is online
6506 * @link: ATA link to test
6507 *
6508 * Test whether @link is online. Note that this function returns
6509 * 0 if online status of @link cannot be obtained, so
6510 * ata_link_online(link) != !ata_link_offline(link).
6511 *
6512 * LOCKING:
6513 * None.
6514 *
6515 * RETURNS:
6516 * 1 if the port online status is available and online.
6517 */
6518 int ata_link_online(struct ata_link *link)
6519 {
6520 u32 sstatus;
6521
6522 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6523 (sstatus & 0xf) == 0x3)
6524 return 1;
6525 return 0;
6526 }
6527
6528 /**
6529 * ata_link_offline - test whether the given link is offline
6530 * @link: ATA link to test
6531 *
6532 * Test whether @link is offline. Note that this function
6533 * returns 0 if offline status of @link cannot be obtained, so
6534 * ata_link_online(link) != !ata_link_offline(link).
6535 *
6536 * LOCKING:
6537 * None.
6538 *
6539 * RETURNS:
6540 * 1 if the port offline status is available and offline.
6541 */
6542 int ata_link_offline(struct ata_link *link)
6543 {
6544 u32 sstatus;
6545
6546 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6547 (sstatus & 0xf) != 0x3)
6548 return 1;
6549 return 0;
6550 }
6551
6552 int ata_flush_cache(struct ata_device *dev)
6553 {
6554 unsigned int err_mask;
6555 u8 cmd;
6556
6557 if (!ata_try_flush_cache(dev))
6558 return 0;
6559
6560 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6561 cmd = ATA_CMD_FLUSH_EXT;
6562 else
6563 cmd = ATA_CMD_FLUSH;
6564
6565 /* This is wrong. On a failed flush we get back the LBA of the lost
6566 sector and we should (assuming it wasn't aborted as unknown) issue
6567 a further flush command to continue the writeback until it
6568 does not error */
6569 err_mask = ata_do_simple_cmd(dev, cmd);
6570 if (err_mask) {
6571 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6572 return -EIO;
6573 }
6574
6575 return 0;
6576 }
6577
6578 #ifdef CONFIG_PM
6579 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6580 unsigned int action, unsigned int ehi_flags,
6581 int wait)
6582 {
6583 unsigned long flags;
6584 int i, rc;
6585
6586 for (i = 0; i < host->n_ports; i++) {
6587 struct ata_port *ap = host->ports[i];
6588 struct ata_link *link;
6589
6590 /* Previous resume operation might still be in
6591 * progress. Wait for PM_PENDING to clear.
6592 */
6593 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6594 ata_port_wait_eh(ap);
6595 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6596 }
6597
6598 /* request PM ops to EH */
6599 spin_lock_irqsave(ap->lock, flags);
6600
6601 ap->pm_mesg = mesg;
6602 if (wait) {
6603 rc = 0;
6604 ap->pm_result = &rc;
6605 }
6606
6607 ap->pflags |= ATA_PFLAG_PM_PENDING;
6608 __ata_port_for_each_link(link, ap) {
6609 link->eh_info.action |= action;
6610 link->eh_info.flags |= ehi_flags;
6611 }
6612
6613 ata_port_schedule_eh(ap);
6614
6615 spin_unlock_irqrestore(ap->lock, flags);
6616
6617 /* wait and check result */
6618 if (wait) {
6619 ata_port_wait_eh(ap);
6620 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6621 if (rc)
6622 return rc;
6623 }
6624 }
6625
6626 return 0;
6627 }
6628
6629 /**
6630 * ata_host_suspend - suspend host
6631 * @host: host to suspend
6632 * @mesg: PM message
6633 *
6634 * Suspend @host. Actual operation is performed by EH. This
6635 * function requests EH to perform PM operations and waits for EH
6636 * to finish.
6637 *
6638 * LOCKING:
6639 * Kernel thread context (may sleep).
6640 *
6641 * RETURNS:
6642 * 0 on success, -errno on failure.
6643 */
6644 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6645 {
6646 int rc;
6647
6648 /*
6649 * disable link pm on all ports before requesting
6650 * any pm activity
6651 */
6652 ata_lpm_enable(host);
6653
6654 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6655 if (rc == 0)
6656 host->dev->power.power_state = mesg;
6657 return rc;
6658 }
6659
6660 /**
6661 * ata_host_resume - resume host
6662 * @host: host to resume
6663 *
6664 * Resume @host. Actual operation is performed by EH. This
6665 * function requests EH to perform PM operations and returns.
6666 * Note that all resume operations are performed parallely.
6667 *
6668 * LOCKING:
6669 * Kernel thread context (may sleep).
6670 */
6671 void ata_host_resume(struct ata_host *host)
6672 {
6673 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
6674 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6675 host->dev->power.power_state = PMSG_ON;
6676
6677 /* reenable link pm */
6678 ata_lpm_disable(host);
6679 }
6680 #endif
6681
6682 /**
6683 * ata_port_start - Set port up for dma.
6684 * @ap: Port to initialize
6685 *
6686 * Called just after data structures for each port are
6687 * initialized. Allocates space for PRD table.
6688 *
6689 * May be used as the port_start() entry in ata_port_operations.
6690 *
6691 * LOCKING:
6692 * Inherited from caller.
6693 */
6694 int ata_port_start(struct ata_port *ap)
6695 {
6696 struct device *dev = ap->dev;
6697
6698 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6699 GFP_KERNEL);
6700 if (!ap->prd)
6701 return -ENOMEM;
6702
6703 return 0;
6704 }
6705
6706 /**
6707 * ata_dev_init - Initialize an ata_device structure
6708 * @dev: Device structure to initialize
6709 *
6710 * Initialize @dev in preparation for probing.
6711 *
6712 * LOCKING:
6713 * Inherited from caller.
6714 */
6715 void ata_dev_init(struct ata_device *dev)
6716 {
6717 struct ata_link *link = dev->link;
6718 struct ata_port *ap = link->ap;
6719 unsigned long flags;
6720
6721 /* SATA spd limit is bound to the first device */
6722 link->sata_spd_limit = link->hw_sata_spd_limit;
6723 link->sata_spd = 0;
6724
6725 /* High bits of dev->flags are used to record warm plug
6726 * requests which occur asynchronously. Synchronize using
6727 * host lock.
6728 */
6729 spin_lock_irqsave(ap->lock, flags);
6730 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6731 dev->horkage = 0;
6732 spin_unlock_irqrestore(ap->lock, flags);
6733
6734 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6735 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6736 dev->pio_mask = UINT_MAX;
6737 dev->mwdma_mask = UINT_MAX;
6738 dev->udma_mask = UINT_MAX;
6739 }
6740
6741 /**
6742 * ata_link_init - Initialize an ata_link structure
6743 * @ap: ATA port link is attached to
6744 * @link: Link structure to initialize
6745 * @pmp: Port multiplier port number
6746 *
6747 * Initialize @link.
6748 *
6749 * LOCKING:
6750 * Kernel thread context (may sleep)
6751 */
6752 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6753 {
6754 int i;
6755
6756 /* clear everything except for devices */
6757 memset(link, 0, offsetof(struct ata_link, device[0]));
6758
6759 link->ap = ap;
6760 link->pmp = pmp;
6761 link->active_tag = ATA_TAG_POISON;
6762 link->hw_sata_spd_limit = UINT_MAX;
6763
6764 /* can't use iterator, ap isn't initialized yet */
6765 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6766 struct ata_device *dev = &link->device[i];
6767
6768 dev->link = link;
6769 dev->devno = dev - link->device;
6770 ata_dev_init(dev);
6771 }
6772 }
6773
6774 /**
6775 * sata_link_init_spd - Initialize link->sata_spd_limit
6776 * @link: Link to configure sata_spd_limit for
6777 *
6778 * Initialize @link->[hw_]sata_spd_limit to the currently
6779 * configured value.
6780 *
6781 * LOCKING:
6782 * Kernel thread context (may sleep).
6783 *
6784 * RETURNS:
6785 * 0 on success, -errno on failure.
6786 */
6787 int sata_link_init_spd(struct ata_link *link)
6788 {
6789 u32 scontrol;
6790 u8 spd;
6791 int rc;
6792
6793 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6794 if (rc)
6795 return rc;
6796
6797 spd = (scontrol >> 4) & 0xf;
6798 if (spd)
6799 link->hw_sata_spd_limit &= (1 << spd) - 1;
6800
6801 ata_force_spd_limit(link);
6802
6803 link->sata_spd_limit = link->hw_sata_spd_limit;
6804
6805 return 0;
6806 }
6807
6808 /**
6809 * ata_port_alloc - allocate and initialize basic ATA port resources
6810 * @host: ATA host this allocated port belongs to
6811 *
6812 * Allocate and initialize basic ATA port resources.
6813 *
6814 * RETURNS:
6815 * Allocate ATA port on success, NULL on failure.
6816 *
6817 * LOCKING:
6818 * Inherited from calling layer (may sleep).
6819 */
6820 struct ata_port *ata_port_alloc(struct ata_host *host)
6821 {
6822 struct ata_port *ap;
6823
6824 DPRINTK("ENTER\n");
6825
6826 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6827 if (!ap)
6828 return NULL;
6829
6830 ap->pflags |= ATA_PFLAG_INITIALIZING;
6831 ap->lock = &host->lock;
6832 ap->flags = ATA_FLAG_DISABLED;
6833 ap->print_id = -1;
6834 ap->ctl = ATA_DEVCTL_OBS;
6835 ap->host = host;
6836 ap->dev = host->dev;
6837 ap->last_ctl = 0xFF;
6838
6839 #if defined(ATA_VERBOSE_DEBUG)
6840 /* turn on all debugging levels */
6841 ap->msg_enable = 0x00FF;
6842 #elif defined(ATA_DEBUG)
6843 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6844 #else
6845 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6846 #endif
6847
6848 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6849 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6850 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6851 INIT_LIST_HEAD(&ap->eh_done_q);
6852 init_waitqueue_head(&ap->eh_wait_q);
6853 init_timer_deferrable(&ap->fastdrain_timer);
6854 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6855 ap->fastdrain_timer.data = (unsigned long)ap;
6856
6857 ap->cbl = ATA_CBL_NONE;
6858
6859 ata_link_init(ap, &ap->link, 0);
6860
6861 #ifdef ATA_IRQ_TRAP
6862 ap->stats.unhandled_irq = 1;
6863 ap->stats.idle_irq = 1;
6864 #endif
6865 return ap;
6866 }
6867
6868 static void ata_host_release(struct device *gendev, void *res)
6869 {
6870 struct ata_host *host = dev_get_drvdata(gendev);
6871 int i;
6872
6873 for (i = 0; i < host->n_ports; i++) {
6874 struct ata_port *ap = host->ports[i];
6875
6876 if (!ap)
6877 continue;
6878
6879 if (ap->scsi_host)
6880 scsi_host_put(ap->scsi_host);
6881
6882 kfree(ap->pmp_link);
6883 kfree(ap);
6884 host->ports[i] = NULL;
6885 }
6886
6887 dev_set_drvdata(gendev, NULL);
6888 }
6889
6890 /**
6891 * ata_host_alloc - allocate and init basic ATA host resources
6892 * @dev: generic device this host is associated with
6893 * @max_ports: maximum number of ATA ports associated with this host
6894 *
6895 * Allocate and initialize basic ATA host resources. LLD calls
6896 * this function to allocate a host, initializes it fully and
6897 * attaches it using ata_host_register().
6898 *
6899 * @max_ports ports are allocated and host->n_ports is
6900 * initialized to @max_ports. The caller is allowed to decrease
6901 * host->n_ports before calling ata_host_register(). The unused
6902 * ports will be automatically freed on registration.
6903 *
6904 * RETURNS:
6905 * Allocate ATA host on success, NULL on failure.
6906 *
6907 * LOCKING:
6908 * Inherited from calling layer (may sleep).
6909 */
6910 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6911 {
6912 struct ata_host *host;
6913 size_t sz;
6914 int i;
6915
6916 DPRINTK("ENTER\n");
6917
6918 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6919 return NULL;
6920
6921 /* alloc a container for our list of ATA ports (buses) */
6922 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6923 /* alloc a container for our list of ATA ports (buses) */
6924 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6925 if (!host)
6926 goto err_out;
6927
6928 devres_add(dev, host);
6929 dev_set_drvdata(dev, host);
6930
6931 spin_lock_init(&host->lock);
6932 host->dev = dev;
6933 host->n_ports = max_ports;
6934
6935 /* allocate ports bound to this host */
6936 for (i = 0; i < max_ports; i++) {
6937 struct ata_port *ap;
6938
6939 ap = ata_port_alloc(host);
6940 if (!ap)
6941 goto err_out;
6942
6943 ap->port_no = i;
6944 host->ports[i] = ap;
6945 }
6946
6947 devres_remove_group(dev, NULL);
6948 return host;
6949
6950 err_out:
6951 devres_release_group(dev, NULL);
6952 return NULL;
6953 }
6954
6955 /**
6956 * ata_host_alloc_pinfo - alloc host and init with port_info array
6957 * @dev: generic device this host is associated with
6958 * @ppi: array of ATA port_info to initialize host with
6959 * @n_ports: number of ATA ports attached to this host
6960 *
6961 * Allocate ATA host and initialize with info from @ppi. If NULL
6962 * terminated, @ppi may contain fewer entries than @n_ports. The
6963 * last entry will be used for the remaining ports.
6964 *
6965 * RETURNS:
6966 * Allocate ATA host on success, NULL on failure.
6967 *
6968 * LOCKING:
6969 * Inherited from calling layer (may sleep).
6970 */
6971 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6972 const struct ata_port_info * const * ppi,
6973 int n_ports)
6974 {
6975 const struct ata_port_info *pi;
6976 struct ata_host *host;
6977 int i, j;
6978
6979 host = ata_host_alloc(dev, n_ports);
6980 if (!host)
6981 return NULL;
6982
6983 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6984 struct ata_port *ap = host->ports[i];
6985
6986 if (ppi[j])
6987 pi = ppi[j++];
6988
6989 ap->pio_mask = pi->pio_mask;
6990 ap->mwdma_mask = pi->mwdma_mask;
6991 ap->udma_mask = pi->udma_mask;
6992 ap->flags |= pi->flags;
6993 ap->link.flags |= pi->link_flags;
6994 ap->ops = pi->port_ops;
6995
6996 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6997 host->ops = pi->port_ops;
6998 if (!host->private_data && pi->private_data)
6999 host->private_data = pi->private_data;
7000 }
7001
7002 return host;
7003 }
7004
7005 static void ata_host_stop(struct device *gendev, void *res)
7006 {
7007 struct ata_host *host = dev_get_drvdata(gendev);
7008 int i;
7009
7010 WARN_ON(!(host->flags & ATA_HOST_STARTED));
7011
7012 for (i = 0; i < host->n_ports; i++) {
7013 struct ata_port *ap = host->ports[i];
7014
7015 if (ap->ops->port_stop)
7016 ap->ops->port_stop(ap);
7017 }
7018
7019 if (host->ops->host_stop)
7020 host->ops->host_stop(host);
7021 }
7022
7023 /**
7024 * ata_finalize_port_ops - finalize ata_port_operations
7025 * @ops: ata_port_operations to finalize
7026 *
7027 * An ata_port_operations can inherit from another ops and that
7028 * ops can again inherit from another. This can go on as many
7029 * times as necessary as long as there is no loop in the
7030 * inheritance chain.
7031 *
7032 * Ops tables are finalized when the host is started. NULL or
7033 * unspecified entries are inherited from the closet ancestor
7034 * which has the method and the entry is populated with it.
7035 * After finalization, the ops table directly points to all the
7036 * methods and ->inherits is no longer necessary and cleared.
7037 *
7038 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
7039 *
7040 * LOCKING:
7041 * None.
7042 */
7043 static void ata_finalize_port_ops(struct ata_port_operations *ops)
7044 {
7045 static spinlock_t lock = SPIN_LOCK_UNLOCKED;
7046 const struct ata_port_operations *cur;
7047 void **begin = (void **)ops;
7048 void **end = (void **)&ops->inherits;
7049 void **pp;
7050
7051 if (!ops || !ops->inherits)
7052 return;
7053
7054 spin_lock(&lock);
7055
7056 for (cur = ops->inherits; cur; cur = cur->inherits) {
7057 void **inherit = (void **)cur;
7058
7059 for (pp = begin; pp < end; pp++, inherit++)
7060 if (!*pp)
7061 *pp = *inherit;
7062 }
7063
7064 for (pp = begin; pp < end; pp++)
7065 if (IS_ERR(*pp))
7066 *pp = NULL;
7067
7068 ops->inherits = NULL;
7069
7070 spin_unlock(&lock);
7071 }
7072
7073 /**
7074 * ata_host_start - start and freeze ports of an ATA host
7075 * @host: ATA host to start ports for
7076 *
7077 * Start and then freeze ports of @host. Started status is
7078 * recorded in host->flags, so this function can be called
7079 * multiple times. Ports are guaranteed to get started only
7080 * once. If host->ops isn't initialized yet, its set to the
7081 * first non-dummy port ops.
7082 *
7083 * LOCKING:
7084 * Inherited from calling layer (may sleep).
7085 *
7086 * RETURNS:
7087 * 0 if all ports are started successfully, -errno otherwise.
7088 */
7089 int ata_host_start(struct ata_host *host)
7090 {
7091 int have_stop = 0;
7092 void *start_dr = NULL;
7093 int i, rc;
7094
7095 if (host->flags & ATA_HOST_STARTED)
7096 return 0;
7097
7098 ata_finalize_port_ops(host->ops);
7099
7100 for (i = 0; i < host->n_ports; i++) {
7101 struct ata_port *ap = host->ports[i];
7102
7103 ata_finalize_port_ops(ap->ops);
7104
7105 if (!host->ops && !ata_port_is_dummy(ap))
7106 host->ops = ap->ops;
7107
7108 if (ap->ops->port_stop)
7109 have_stop = 1;
7110 }
7111
7112 if (host->ops->host_stop)
7113 have_stop = 1;
7114
7115 if (have_stop) {
7116 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
7117 if (!start_dr)
7118 return -ENOMEM;
7119 }
7120
7121 for (i = 0; i < host->n_ports; i++) {
7122 struct ata_port *ap = host->ports[i];
7123
7124 if (ap->ops->port_start) {
7125 rc = ap->ops->port_start(ap);
7126 if (rc) {
7127 if (rc != -ENODEV)
7128 dev_printk(KERN_ERR, host->dev,
7129 "failed to start port %d "
7130 "(errno=%d)\n", i, rc);
7131 goto err_out;
7132 }
7133 }
7134 ata_eh_freeze_port(ap);
7135 }
7136
7137 if (start_dr)
7138 devres_add(host->dev, start_dr);
7139 host->flags |= ATA_HOST_STARTED;
7140 return 0;
7141
7142 err_out:
7143 while (--i >= 0) {
7144 struct ata_port *ap = host->ports[i];
7145
7146 if (ap->ops->port_stop)
7147 ap->ops->port_stop(ap);
7148 }
7149 devres_free(start_dr);
7150 return rc;
7151 }
7152
7153 /**
7154 * ata_sas_host_init - Initialize a host struct
7155 * @host: host to initialize
7156 * @dev: device host is attached to
7157 * @flags: host flags
7158 * @ops: port_ops
7159 *
7160 * LOCKING:
7161 * PCI/etc. bus probe sem.
7162 *
7163 */
7164 /* KILLME - the only user left is ipr */
7165 void ata_host_init(struct ata_host *host, struct device *dev,
7166 unsigned long flags, struct ata_port_operations *ops)
7167 {
7168 spin_lock_init(&host->lock);
7169 host->dev = dev;
7170 host->flags = flags;
7171 host->ops = ops;
7172 }
7173
7174 /**
7175 * ata_host_register - register initialized ATA host
7176 * @host: ATA host to register
7177 * @sht: template for SCSI host
7178 *
7179 * Register initialized ATA host. @host is allocated using
7180 * ata_host_alloc() and fully initialized by LLD. This function
7181 * starts ports, registers @host with ATA and SCSI layers and
7182 * probe registered devices.
7183 *
7184 * LOCKING:
7185 * Inherited from calling layer (may sleep).
7186 *
7187 * RETURNS:
7188 * 0 on success, -errno otherwise.
7189 */
7190 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7191 {
7192 int i, rc;
7193
7194 /* host must have been started */
7195 if (!(host->flags & ATA_HOST_STARTED)) {
7196 dev_printk(KERN_ERR, host->dev,
7197 "BUG: trying to register unstarted host\n");
7198 WARN_ON(1);
7199 return -EINVAL;
7200 }
7201
7202 /* Blow away unused ports. This happens when LLD can't
7203 * determine the exact number of ports to allocate at
7204 * allocation time.
7205 */
7206 for (i = host->n_ports; host->ports[i]; i++)
7207 kfree(host->ports[i]);
7208
7209 /* give ports names and add SCSI hosts */
7210 for (i = 0; i < host->n_ports; i++)
7211 host->ports[i]->print_id = ata_print_id++;
7212
7213 rc = ata_scsi_add_hosts(host, sht);
7214 if (rc)
7215 return rc;
7216
7217 /* associate with ACPI nodes */
7218 ata_acpi_associate(host);
7219
7220 /* set cable, sata_spd_limit and report */
7221 for (i = 0; i < host->n_ports; i++) {
7222 struct ata_port *ap = host->ports[i];
7223 unsigned long xfer_mask;
7224
7225 /* set SATA cable type if still unset */
7226 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7227 ap->cbl = ATA_CBL_SATA;
7228
7229 /* init sata_spd_limit to the current value */
7230 sata_link_init_spd(&ap->link);
7231
7232 /* print per-port info to dmesg */
7233 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7234 ap->udma_mask);
7235
7236 if (!ata_port_is_dummy(ap)) {
7237 ata_port_printk(ap, KERN_INFO,
7238 "%cATA max %s %s\n",
7239 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7240 ata_mode_string(xfer_mask),
7241 ap->link.eh_info.desc);
7242 ata_ehi_clear_desc(&ap->link.eh_info);
7243 } else
7244 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7245 }
7246
7247 /* perform each probe synchronously */
7248 DPRINTK("probe begin\n");
7249 for (i = 0; i < host->n_ports; i++) {
7250 struct ata_port *ap = host->ports[i];
7251
7252 /* probe */
7253 if (ap->ops->error_handler) {
7254 struct ata_eh_info *ehi = &ap->link.eh_info;
7255 unsigned long flags;
7256
7257 ata_port_probe(ap);
7258
7259 /* kick EH for boot probing */
7260 spin_lock_irqsave(ap->lock, flags);
7261
7262 ehi->probe_mask |= ATA_ALL_DEVICES;
7263 ehi->action |= ATA_EH_RESET;
7264 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7265
7266 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7267 ap->pflags |= ATA_PFLAG_LOADING;
7268 ata_port_schedule_eh(ap);
7269
7270 spin_unlock_irqrestore(ap->lock, flags);
7271
7272 /* wait for EH to finish */
7273 ata_port_wait_eh(ap);
7274 } else {
7275 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7276 rc = ata_bus_probe(ap);
7277 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7278
7279 if (rc) {
7280 /* FIXME: do something useful here?
7281 * Current libata behavior will
7282 * tear down everything when
7283 * the module is removed
7284 * or the h/w is unplugged.
7285 */
7286 }
7287 }
7288 }
7289
7290 /* probes are done, now scan each port's disk(s) */
7291 DPRINTK("host probe begin\n");
7292 for (i = 0; i < host->n_ports; i++) {
7293 struct ata_port *ap = host->ports[i];
7294
7295 ata_scsi_scan_host(ap, 1);
7296 ata_lpm_schedule(ap, ap->pm_policy);
7297 }
7298
7299 return 0;
7300 }
7301
7302 /**
7303 * ata_host_activate - start host, request IRQ and register it
7304 * @host: target ATA host
7305 * @irq: IRQ to request
7306 * @irq_handler: irq_handler used when requesting IRQ
7307 * @irq_flags: irq_flags used when requesting IRQ
7308 * @sht: scsi_host_template to use when registering the host
7309 *
7310 * After allocating an ATA host and initializing it, most libata
7311 * LLDs perform three steps to activate the host - start host,
7312 * request IRQ and register it. This helper takes necessasry
7313 * arguments and performs the three steps in one go.
7314 *
7315 * An invalid IRQ skips the IRQ registration and expects the host to
7316 * have set polling mode on the port. In this case, @irq_handler
7317 * should be NULL.
7318 *
7319 * LOCKING:
7320 * Inherited from calling layer (may sleep).
7321 *
7322 * RETURNS:
7323 * 0 on success, -errno otherwise.
7324 */
7325 int ata_host_activate(struct ata_host *host, int irq,
7326 irq_handler_t irq_handler, unsigned long irq_flags,
7327 struct scsi_host_template *sht)
7328 {
7329 int i, rc;
7330
7331 rc = ata_host_start(host);
7332 if (rc)
7333 return rc;
7334
7335 /* Special case for polling mode */
7336 if (!irq) {
7337 WARN_ON(irq_handler);
7338 return ata_host_register(host, sht);
7339 }
7340
7341 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7342 dev_driver_string(host->dev), host);
7343 if (rc)
7344 return rc;
7345
7346 for (i = 0; i < host->n_ports; i++)
7347 ata_port_desc(host->ports[i], "irq %d", irq);
7348
7349 rc = ata_host_register(host, sht);
7350 /* if failed, just free the IRQ and leave ports alone */
7351 if (rc)
7352 devm_free_irq(host->dev, irq, host);
7353
7354 return rc;
7355 }
7356
7357 /**
7358 * ata_port_detach - Detach ATA port in prepration of device removal
7359 * @ap: ATA port to be detached
7360 *
7361 * Detach all ATA devices and the associated SCSI devices of @ap;
7362 * then, remove the associated SCSI host. @ap is guaranteed to
7363 * be quiescent on return from this function.
7364 *
7365 * LOCKING:
7366 * Kernel thread context (may sleep).
7367 */
7368 static void ata_port_detach(struct ata_port *ap)
7369 {
7370 unsigned long flags;
7371 struct ata_link *link;
7372 struct ata_device *dev;
7373
7374 if (!ap->ops->error_handler)
7375 goto skip_eh;
7376
7377 /* tell EH we're leaving & flush EH */
7378 spin_lock_irqsave(ap->lock, flags);
7379 ap->pflags |= ATA_PFLAG_UNLOADING;
7380 spin_unlock_irqrestore(ap->lock, flags);
7381
7382 ata_port_wait_eh(ap);
7383
7384 /* EH is now guaranteed to see UNLOADING - EH context belongs
7385 * to us. Disable all existing devices.
7386 */
7387 ata_port_for_each_link(link, ap) {
7388 ata_link_for_each_dev(dev, link)
7389 ata_dev_disable(dev);
7390 }
7391
7392 /* Final freeze & EH. All in-flight commands are aborted. EH
7393 * will be skipped and retrials will be terminated with bad
7394 * target.
7395 */
7396 spin_lock_irqsave(ap->lock, flags);
7397 ata_port_freeze(ap); /* won't be thawed */
7398 spin_unlock_irqrestore(ap->lock, flags);
7399
7400 ata_port_wait_eh(ap);
7401 cancel_rearming_delayed_work(&ap->hotplug_task);
7402
7403 skip_eh:
7404 /* remove the associated SCSI host */
7405 scsi_remove_host(ap->scsi_host);
7406 }
7407
7408 /**
7409 * ata_host_detach - Detach all ports of an ATA host
7410 * @host: Host to detach
7411 *
7412 * Detach all ports of @host.
7413 *
7414 * LOCKING:
7415 * Kernel thread context (may sleep).
7416 */
7417 void ata_host_detach(struct ata_host *host)
7418 {
7419 int i;
7420
7421 for (i = 0; i < host->n_ports; i++)
7422 ata_port_detach(host->ports[i]);
7423
7424 /* the host is dead now, dissociate ACPI */
7425 ata_acpi_dissociate(host);
7426 }
7427
7428 /**
7429 * ata_std_ports - initialize ioaddr with standard port offsets.
7430 * @ioaddr: IO address structure to be initialized
7431 *
7432 * Utility function which initializes data_addr, error_addr,
7433 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7434 * device_addr, status_addr, and command_addr to standard offsets
7435 * relative to cmd_addr.
7436 *
7437 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7438 */
7439
7440 void ata_std_ports(struct ata_ioports *ioaddr)
7441 {
7442 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7443 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7444 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7445 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7446 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7447 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7448 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7449 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7450 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7451 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7452 }
7453
7454
7455 #ifdef CONFIG_PCI
7456
7457 /**
7458 * ata_pci_remove_one - PCI layer callback for device removal
7459 * @pdev: PCI device that was removed
7460 *
7461 * PCI layer indicates to libata via this hook that hot-unplug or
7462 * module unload event has occurred. Detach all ports. Resource
7463 * release is handled via devres.
7464 *
7465 * LOCKING:
7466 * Inherited from PCI layer (may sleep).
7467 */
7468 void ata_pci_remove_one(struct pci_dev *pdev)
7469 {
7470 struct device *dev = &pdev->dev;
7471 struct ata_host *host = dev_get_drvdata(dev);
7472
7473 ata_host_detach(host);
7474 }
7475
7476 /* move to PCI subsystem */
7477 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7478 {
7479 unsigned long tmp = 0;
7480
7481 switch (bits->width) {
7482 case 1: {
7483 u8 tmp8 = 0;
7484 pci_read_config_byte(pdev, bits->reg, &tmp8);
7485 tmp = tmp8;
7486 break;
7487 }
7488 case 2: {
7489 u16 tmp16 = 0;
7490 pci_read_config_word(pdev, bits->reg, &tmp16);
7491 tmp = tmp16;
7492 break;
7493 }
7494 case 4: {
7495 u32 tmp32 = 0;
7496 pci_read_config_dword(pdev, bits->reg, &tmp32);
7497 tmp = tmp32;
7498 break;
7499 }
7500
7501 default:
7502 return -EINVAL;
7503 }
7504
7505 tmp &= bits->mask;
7506
7507 return (tmp == bits->val) ? 1 : 0;
7508 }
7509
7510 #ifdef CONFIG_PM
7511 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7512 {
7513 pci_save_state(pdev);
7514 pci_disable_device(pdev);
7515
7516 if (mesg.event & PM_EVENT_SLEEP)
7517 pci_set_power_state(pdev, PCI_D3hot);
7518 }
7519
7520 int ata_pci_device_do_resume(struct pci_dev *pdev)
7521 {
7522 int rc;
7523
7524 pci_set_power_state(pdev, PCI_D0);
7525 pci_restore_state(pdev);
7526
7527 rc = pcim_enable_device(pdev);
7528 if (rc) {
7529 dev_printk(KERN_ERR, &pdev->dev,
7530 "failed to enable device after resume (%d)\n", rc);
7531 return rc;
7532 }
7533
7534 pci_set_master(pdev);
7535 return 0;
7536 }
7537
7538 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7539 {
7540 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7541 int rc = 0;
7542
7543 rc = ata_host_suspend(host, mesg);
7544 if (rc)
7545 return rc;
7546
7547 ata_pci_device_do_suspend(pdev, mesg);
7548
7549 return 0;
7550 }
7551
7552 int ata_pci_device_resume(struct pci_dev *pdev)
7553 {
7554 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7555 int rc;
7556
7557 rc = ata_pci_device_do_resume(pdev);
7558 if (rc == 0)
7559 ata_host_resume(host);
7560 return rc;
7561 }
7562 #endif /* CONFIG_PM */
7563
7564 #endif /* CONFIG_PCI */
7565
7566 static int __init ata_parse_force_one(char **cur,
7567 struct ata_force_ent *force_ent,
7568 const char **reason)
7569 {
7570 /* FIXME: Currently, there's no way to tag init const data and
7571 * using __initdata causes build failure on some versions of
7572 * gcc. Once __initdataconst is implemented, add const to the
7573 * following structure.
7574 */
7575 static struct ata_force_param force_tbl[] __initdata = {
7576 { "40c", .cbl = ATA_CBL_PATA40 },
7577 { "80c", .cbl = ATA_CBL_PATA80 },
7578 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7579 { "unk", .cbl = ATA_CBL_PATA_UNK },
7580 { "ign", .cbl = ATA_CBL_PATA_IGN },
7581 { "sata", .cbl = ATA_CBL_SATA },
7582 { "1.5Gbps", .spd_limit = 1 },
7583 { "3.0Gbps", .spd_limit = 2 },
7584 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7585 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7586 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7587 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7588 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7589 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7590 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7591 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7592 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7593 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7594 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7595 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7596 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7597 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7598 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7599 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7600 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7601 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7602 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7603 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7604 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7605 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7606 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7607 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7608 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7609 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7610 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7611 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7612 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7613 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7614 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7615 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7616 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7617 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7618 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7619 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7620 };
7621 char *start = *cur, *p = *cur;
7622 char *id, *val, *endp;
7623 const struct ata_force_param *match_fp = NULL;
7624 int nr_matches = 0, i;
7625
7626 /* find where this param ends and update *cur */
7627 while (*p != '\0' && *p != ',')
7628 p++;
7629
7630 if (*p == '\0')
7631 *cur = p;
7632 else
7633 *cur = p + 1;
7634
7635 *p = '\0';
7636
7637 /* parse */
7638 p = strchr(start, ':');
7639 if (!p) {
7640 val = strstrip(start);
7641 goto parse_val;
7642 }
7643 *p = '\0';
7644
7645 id = strstrip(start);
7646 val = strstrip(p + 1);
7647
7648 /* parse id */
7649 p = strchr(id, '.');
7650 if (p) {
7651 *p++ = '\0';
7652 force_ent->device = simple_strtoul(p, &endp, 10);
7653 if (p == endp || *endp != '\0') {
7654 *reason = "invalid device";
7655 return -EINVAL;
7656 }
7657 }
7658
7659 force_ent->port = simple_strtoul(id, &endp, 10);
7660 if (p == endp || *endp != '\0') {
7661 *reason = "invalid port/link";
7662 return -EINVAL;
7663 }
7664
7665 parse_val:
7666 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7667 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7668 const struct ata_force_param *fp = &force_tbl[i];
7669
7670 if (strncasecmp(val, fp->name, strlen(val)))
7671 continue;
7672
7673 nr_matches++;
7674 match_fp = fp;
7675
7676 if (strcasecmp(val, fp->name) == 0) {
7677 nr_matches = 1;
7678 break;
7679 }
7680 }
7681
7682 if (!nr_matches) {
7683 *reason = "unknown value";
7684 return -EINVAL;
7685 }
7686 if (nr_matches > 1) {
7687 *reason = "ambigious value";
7688 return -EINVAL;
7689 }
7690
7691 force_ent->param = *match_fp;
7692
7693 return 0;
7694 }
7695
7696 static void __init ata_parse_force_param(void)
7697 {
7698 int idx = 0, size = 1;
7699 int last_port = -1, last_device = -1;
7700 char *p, *cur, *next;
7701
7702 /* calculate maximum number of params and allocate force_tbl */
7703 for (p = ata_force_param_buf; *p; p++)
7704 if (*p == ',')
7705 size++;
7706
7707 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7708 if (!ata_force_tbl) {
7709 printk(KERN_WARNING "ata: failed to extend force table, "
7710 "libata.force ignored\n");
7711 return;
7712 }
7713
7714 /* parse and populate the table */
7715 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7716 const char *reason = "";
7717 struct ata_force_ent te = { .port = -1, .device = -1 };
7718
7719 next = cur;
7720 if (ata_parse_force_one(&next, &te, &reason)) {
7721 printk(KERN_WARNING "ata: failed to parse force "
7722 "parameter \"%s\" (%s)\n",
7723 cur, reason);
7724 continue;
7725 }
7726
7727 if (te.port == -1) {
7728 te.port = last_port;
7729 te.device = last_device;
7730 }
7731
7732 ata_force_tbl[idx++] = te;
7733
7734 last_port = te.port;
7735 last_device = te.device;
7736 }
7737
7738 ata_force_tbl_size = idx;
7739 }
7740
7741 static int __init ata_init(void)
7742 {
7743 ata_probe_timeout *= HZ;
7744
7745 ata_parse_force_param();
7746
7747 ata_wq = create_workqueue("ata");
7748 if (!ata_wq)
7749 return -ENOMEM;
7750
7751 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7752 if (!ata_aux_wq) {
7753 destroy_workqueue(ata_wq);
7754 return -ENOMEM;
7755 }
7756
7757 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7758 return 0;
7759 }
7760
7761 static void __exit ata_exit(void)
7762 {
7763 kfree(ata_force_tbl);
7764 destroy_workqueue(ata_wq);
7765 destroy_workqueue(ata_aux_wq);
7766 }
7767
7768 subsys_initcall(ata_init);
7769 module_exit(ata_exit);
7770
7771 static unsigned long ratelimit_time;
7772 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7773
7774 int ata_ratelimit(void)
7775 {
7776 int rc;
7777 unsigned long flags;
7778
7779 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7780
7781 if (time_after(jiffies, ratelimit_time)) {
7782 rc = 1;
7783 ratelimit_time = jiffies + (HZ/5);
7784 } else
7785 rc = 0;
7786
7787 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7788
7789 return rc;
7790 }
7791
7792 /**
7793 * ata_wait_register - wait until register value changes
7794 * @reg: IO-mapped register
7795 * @mask: Mask to apply to read register value
7796 * @val: Wait condition
7797 * @interval_msec: polling interval in milliseconds
7798 * @timeout_msec: timeout in milliseconds
7799 *
7800 * Waiting for some bits of register to change is a common
7801 * operation for ATA controllers. This function reads 32bit LE
7802 * IO-mapped register @reg and tests for the following condition.
7803 *
7804 * (*@reg & mask) != val
7805 *
7806 * If the condition is met, it returns; otherwise, the process is
7807 * repeated after @interval_msec until timeout.
7808 *
7809 * LOCKING:
7810 * Kernel thread context (may sleep)
7811 *
7812 * RETURNS:
7813 * The final register value.
7814 */
7815 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7816 unsigned long interval_msec,
7817 unsigned long timeout_msec)
7818 {
7819 unsigned long timeout;
7820 u32 tmp;
7821
7822 tmp = ioread32(reg);
7823
7824 /* Calculate timeout _after_ the first read to make sure
7825 * preceding writes reach the controller before starting to
7826 * eat away the timeout.
7827 */
7828 timeout = jiffies + (timeout_msec * HZ) / 1000;
7829
7830 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7831 msleep(interval_msec);
7832 tmp = ioread32(reg);
7833 }
7834
7835 return tmp;
7836 }
7837
7838 /*
7839 * Dummy port_ops
7840 */
7841 static void ata_dummy_noret(struct ata_port *ap) { }
7842 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7843 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7844
7845 static u8 ata_dummy_check_status(struct ata_port *ap)
7846 {
7847 return ATA_DRDY;
7848 }
7849
7850 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7851 {
7852 return AC_ERR_SYSTEM;
7853 }
7854
7855 struct ata_port_operations ata_dummy_port_ops = {
7856 .check_status = ata_dummy_check_status,
7857 .check_altstatus = ata_dummy_check_status,
7858 .dev_select = ata_noop_dev_select,
7859 .qc_prep = ata_noop_qc_prep,
7860 .qc_issue = ata_dummy_qc_issue,
7861 .freeze = ata_dummy_noret,
7862 .thaw = ata_dummy_noret,
7863 .error_handler = ata_dummy_noret,
7864 .post_internal_cmd = ata_dummy_qc_noret,
7865 .irq_clear = ata_dummy_noret,
7866 .port_start = ata_dummy_ret0,
7867 .port_stop = ata_dummy_noret,
7868 };
7869
7870 const struct ata_port_info ata_dummy_port_info = {
7871 .port_ops = &ata_dummy_port_ops,
7872 };
7873
7874 /*
7875 * libata is essentially a library of internal helper functions for
7876 * low-level ATA host controller drivers. As such, the API/ABI is
7877 * likely to change as new drivers are added and updated.
7878 * Do not depend on ABI/API stability.
7879 */
7880 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7881 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7882 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7883 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7884 EXPORT_SYMBOL_GPL(sata_port_ops);
7885 EXPORT_SYMBOL_GPL(sata_pmp_port_ops);
7886 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
7887 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
7888 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7889 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7890 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7891 EXPORT_SYMBOL_GPL(ata_std_ports);
7892 EXPORT_SYMBOL_GPL(ata_host_init);
7893 EXPORT_SYMBOL_GPL(ata_host_alloc);
7894 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7895 EXPORT_SYMBOL_GPL(ata_host_start);
7896 EXPORT_SYMBOL_GPL(ata_host_register);
7897 EXPORT_SYMBOL_GPL(ata_host_activate);
7898 EXPORT_SYMBOL_GPL(ata_host_detach);
7899 EXPORT_SYMBOL_GPL(ata_sg_init);
7900 EXPORT_SYMBOL_GPL(ata_hsm_move);
7901 EXPORT_SYMBOL_GPL(ata_qc_complete);
7902 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7903 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7904 EXPORT_SYMBOL_GPL(ata_tf_load);
7905 EXPORT_SYMBOL_GPL(ata_tf_read);
7906 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7907 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7908 EXPORT_SYMBOL_GPL(sata_print_link_status);
7909 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7910 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7911 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7912 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7913 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7914 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7915 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7916 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7917 EXPORT_SYMBOL_GPL(ata_mode_string);
7918 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7919 EXPORT_SYMBOL_GPL(ata_check_status);
7920 EXPORT_SYMBOL_GPL(ata_altstatus);
7921 EXPORT_SYMBOL_GPL(ata_exec_command);
7922 EXPORT_SYMBOL_GPL(ata_port_start);
7923 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7924 EXPORT_SYMBOL_GPL(ata_interrupt);
7925 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7926 EXPORT_SYMBOL_GPL(ata_data_xfer);
7927 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7928 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7929 EXPORT_SYMBOL_GPL(ata_qc_prep);
7930 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7931 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7932 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7933 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7934 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7935 EXPORT_SYMBOL_GPL(ata_noop_irq_clear);
7936 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7937 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7938 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7939 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7940 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7941 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7942 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7943 EXPORT_SYMBOL_GPL(ata_port_probe);
7944 EXPORT_SYMBOL_GPL(ata_dev_disable);
7945 EXPORT_SYMBOL_GPL(sata_set_spd);
7946 EXPORT_SYMBOL_GPL(sata_link_debounce);
7947 EXPORT_SYMBOL_GPL(sata_link_resume);
7948 EXPORT_SYMBOL_GPL(ata_bus_reset);
7949 EXPORT_SYMBOL_GPL(ata_std_prereset);
7950 EXPORT_SYMBOL_GPL(ata_std_softreset);
7951 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7952 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7953 EXPORT_SYMBOL_GPL(ata_std_postreset);
7954 EXPORT_SYMBOL_GPL(ata_dev_classify);
7955 EXPORT_SYMBOL_GPL(ata_dev_pair);
7956 EXPORT_SYMBOL_GPL(ata_port_disable);
7957 EXPORT_SYMBOL_GPL(ata_ratelimit);
7958 EXPORT_SYMBOL_GPL(ata_wait_register);
7959 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7960 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7961 EXPORT_SYMBOL_GPL(ata_wait_ready);
7962 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7963 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7964 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7965 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7966 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7967 EXPORT_SYMBOL_GPL(ata_host_intr);
7968 EXPORT_SYMBOL_GPL(sata_scr_valid);
7969 EXPORT_SYMBOL_GPL(sata_scr_read);
7970 EXPORT_SYMBOL_GPL(sata_scr_write);
7971 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7972 EXPORT_SYMBOL_GPL(ata_link_online);
7973 EXPORT_SYMBOL_GPL(ata_link_offline);
7974 #ifdef CONFIG_PM
7975 EXPORT_SYMBOL_GPL(ata_host_suspend);
7976 EXPORT_SYMBOL_GPL(ata_host_resume);
7977 #endif /* CONFIG_PM */
7978 EXPORT_SYMBOL_GPL(ata_id_string);
7979 EXPORT_SYMBOL_GPL(ata_id_c_string);
7980 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7981
7982 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7983 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7984 EXPORT_SYMBOL_GPL(ata_timing_compute);
7985 EXPORT_SYMBOL_GPL(ata_timing_merge);
7986 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7987
7988 #ifdef CONFIG_PCI
7989 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7990 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7991 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7992 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7993 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7994 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7995 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7996 #ifdef CONFIG_PM
7997 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7998 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7999 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
8000 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
8001 #endif /* CONFIG_PM */
8002 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
8003 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
8004 #endif /* CONFIG_PCI */
8005
8006 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
8007 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
8008 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
8009 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
8010 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
8011
8012 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
8013 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
8014 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
8015 EXPORT_SYMBOL_GPL(ata_port_desc);
8016 #ifdef CONFIG_PCI
8017 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
8018 #endif /* CONFIG_PCI */
8019 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
8020 EXPORT_SYMBOL_GPL(ata_link_abort);
8021 EXPORT_SYMBOL_GPL(ata_port_abort);
8022 EXPORT_SYMBOL_GPL(ata_port_freeze);
8023 EXPORT_SYMBOL_GPL(sata_async_notification);
8024 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
8025 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
8026 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
8027 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
8028 EXPORT_SYMBOL_GPL(ata_do_eh);
8029 EXPORT_SYMBOL_GPL(ata_irq_on);
8030 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
8031
8032 EXPORT_SYMBOL_GPL(ata_cable_40wire);
8033 EXPORT_SYMBOL_GPL(ata_cable_80wire);
8034 EXPORT_SYMBOL_GPL(ata_cable_unknown);
8035 EXPORT_SYMBOL_GPL(ata_cable_ignore);
8036 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.285884 seconds and 4 git commands to generate.