KVM: MMU: Move set_pte() into guest paging mode independent code
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
87
88 struct workqueue_struct *ata_aux_wq;
89
90 int atapi_enabled = 1;
91 module_param(atapi_enabled, int, 0444);
92 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
94 int atapi_dmadir = 0;
95 module_param(atapi_dmadir, int, 0444);
96 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
98 int atapi_passthru16 = 1;
99 module_param(atapi_passthru16, int, 0444);
100 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
102 int libata_fua = 0;
103 module_param_named(fua, libata_fua, int, 0444);
104 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
106 static int ata_ignore_hpa;
107 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
110 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111 module_param_named(dma, libata_dma_mask, int, 0444);
112 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
114 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115 module_param(ata_probe_timeout, int, 0444);
116 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
118 int libata_noacpi = 0;
119 module_param_named(noacpi, libata_noacpi, int, 0444);
120 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
121
122 int libata_allow_tpm = 0;
123 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
126 MODULE_AUTHOR("Jeff Garzik");
127 MODULE_DESCRIPTION("Library module for ATA devices");
128 MODULE_LICENSE("GPL");
129 MODULE_VERSION(DRV_VERSION);
130
131
132 /**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
135 * @pmp: Port multiplier port
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
146 {
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174 }
175
176 /**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
187 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
188 {
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203 }
204
205 static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
220 0,
221 0,
222 0,
223 0,
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
233 };
234
235 /**
236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
239 *
240 * Examine the device configuration and tf->flags to calculate
241 * the proper read/write commands and protocol to use.
242 *
243 * LOCKING:
244 * caller.
245 */
246 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
247 {
248 u8 cmd;
249
250 int index, fua, lba48, write;
251
252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
255
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
258 index = dev->multi_count ? 0 : 8;
259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
262 index = dev->multi_count ? 0 : 8;
263 } else {
264 tf->protocol = ATA_PROT_DMA;
265 index = 16;
266 }
267
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
274 }
275
276 /**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292 {
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317 }
318
319 /**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342 {
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440 }
441
442 /**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
457 unsigned long ata_pack_xfermask(unsigned long pio_mask,
458 unsigned long mwdma_mask,
459 unsigned long udma_mask)
460 {
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464 }
465
466 /**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
476 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
477 unsigned long *mwdma_mask, unsigned long *udma_mask)
478 {
479 if (pio_mask)
480 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
481 if (mwdma_mask)
482 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
483 if (udma_mask)
484 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
485 }
486
487 static const struct ata_xfer_ent {
488 int shift, bits;
489 u8 base;
490 } ata_xfer_tbl[] = {
491 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
492 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
493 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
494 { -1, },
495 };
496
497 /**
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
500 *
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
508 * Matching XFER_* value, 0xff if no match found.
509 */
510 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
511 {
512 int highbit = fls(xfer_mask) - 1;
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
517 return ent->base + highbit - ent->shift;
518 return 0xff;
519 }
520
521 /**
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_mask for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_mask, 0 if no match found.
532 */
533 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
540 & ~((1 << ent->shift) - 1);
541 return 0;
542 }
543
544 /**
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
547 *
548 * Return matching xfer_shift for @xfer_mode.
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Matching xfer_shift, -1 if no match found.
555 */
556 int ata_xfer_mode2shift(unsigned long xfer_mode)
557 {
558 const struct ata_xfer_ent *ent;
559
560 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
561 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
562 return ent->shift;
563 return -1;
564 }
565
566 /**
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
569 *
570 * Determine string which represents the highest speed
571 * (highest bit in @modemask).
572 *
573 * LOCKING:
574 * None.
575 *
576 * RETURNS:
577 * Constant C string representing highest speed listed in
578 * @mode_mask, or the constant C string "<n/a>".
579 */
580 const char *ata_mode_string(unsigned long xfer_mask)
581 {
582 static const char * const xfer_mode_str[] = {
583 "PIO0",
584 "PIO1",
585 "PIO2",
586 "PIO3",
587 "PIO4",
588 "PIO5",
589 "PIO6",
590 "MWDMA0",
591 "MWDMA1",
592 "MWDMA2",
593 "MWDMA3",
594 "MWDMA4",
595 "UDMA/16",
596 "UDMA/25",
597 "UDMA/33",
598 "UDMA/44",
599 "UDMA/66",
600 "UDMA/100",
601 "UDMA/133",
602 "UDMA7",
603 };
604 int highbit;
605
606 highbit = fls(xfer_mask) - 1;
607 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
608 return xfer_mode_str[highbit];
609 return "<n/a>";
610 }
611
612 static const char *sata_spd_string(unsigned int spd)
613 {
614 static const char * const spd_str[] = {
615 "1.5 Gbps",
616 "3.0 Gbps",
617 };
618
619 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
620 return "<unknown>";
621 return spd_str[spd - 1];
622 }
623
624 void ata_dev_disable(struct ata_device *dev)
625 {
626 if (ata_dev_enabled(dev)) {
627 if (ata_msg_drv(dev->link->ap))
628 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
629 ata_acpi_on_disable(dev);
630 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 ATA_DNXFER_QUIET);
632 dev->class++;
633 }
634 }
635
636 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
637 {
638 struct ata_link *link = dev->link;
639 struct ata_port *ap = link->ap;
640 u32 scontrol;
641 unsigned int err_mask;
642 int rc;
643
644 /*
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
651 */
652 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
653 ap->pm_policy = NOT_AVAILABLE;
654 return -EINVAL;
655 }
656
657 /*
658 * For DIPM, we will only enable it for the
659 * min_power setting.
660 *
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
666 */
667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 if (rc)
669 return rc;
670
671 switch (policy) {
672 case MIN_POWER:
673 /* no restrictions on IPM transitions */
674 scontrol &= ~(0x3 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* enable DIPM */
680 if (dev->flags & ATA_DFLAG_DIPM)
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_ENABLE, SATA_DIPM);
683 break;
684 case MEDIUM_POWER:
685 /* allow IPM to PARTIAL */
686 scontrol &= ~(0x1 << 8);
687 scontrol |= (0x2 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
692 /*
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
696 */
697 break;
698 case NOT_AVAILABLE:
699 case MAX_PERFORMANCE:
700 /* disable all IPM transitions */
701 scontrol |= (0x3 << 8);
702 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
703 if (rc)
704 return rc;
705
706 /*
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
710 */
711 break;
712 }
713
714 /* FIXME: handle SET FEATURES failure */
715 (void) err_mask;
716
717 return 0;
718 }
719
720 /**
721 * ata_dev_enable_pm - enable SATA interface power management
722 * @dev: device to enable power management
723 * @policy: the link power management policy
724 *
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
729 *
730 * Locking: Caller.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
732 */
733 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
734 {
735 int rc = 0;
736 struct ata_port *ap = dev->link->ap;
737
738 /* set HIPM first, then DIPM */
739 if (ap->ops->enable_pm)
740 rc = ap->ops->enable_pm(ap, policy);
741 if (rc)
742 goto enable_pm_out;
743 rc = ata_dev_set_dipm(dev, policy);
744
745 enable_pm_out:
746 if (rc)
747 ap->pm_policy = MAX_PERFORMANCE;
748 else
749 ap->pm_policy = policy;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
751 }
752
753 #ifdef CONFIG_PM
754 /**
755 * ata_dev_disable_pm - disable SATA interface power management
756 * @dev: device to disable power management
757 *
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
762 *
763 * Locking: Caller.
764 * Returns: void
765 */
766 static void ata_dev_disable_pm(struct ata_device *dev)
767 {
768 struct ata_port *ap = dev->link->ap;
769
770 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
771 if (ap->ops->disable_pm)
772 ap->ops->disable_pm(ap);
773 }
774 #endif /* CONFIG_PM */
775
776 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
777 {
778 ap->pm_policy = policy;
779 ap->link.eh_info.action |= ATA_EHI_LPM;
780 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
781 ata_port_schedule_eh(ap);
782 }
783
784 #ifdef CONFIG_PM
785 static void ata_lpm_enable(struct ata_host *host)
786 {
787 struct ata_link *link;
788 struct ata_port *ap;
789 struct ata_device *dev;
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 ap = host->ports[i];
794 ata_port_for_each_link(link, ap) {
795 ata_link_for_each_dev(dev, link)
796 ata_dev_disable_pm(dev);
797 }
798 }
799 }
800
801 static void ata_lpm_disable(struct ata_host *host)
802 {
803 int i;
804
805 for (i = 0; i < host->n_ports; i++) {
806 struct ata_port *ap = host->ports[i];
807 ata_lpm_schedule(ap, ap->pm_policy);
808 }
809 }
810 #endif /* CONFIG_PM */
811
812
813 /**
814 * ata_devchk - PATA device presence detection
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
817 *
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
821 *
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
826 *
827 * LOCKING:
828 * caller.
829 */
830
831 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
832 {
833 struct ata_ioports *ioaddr = &ap->ioaddr;
834 u8 nsect, lbal;
835
836 ap->ops->dev_select(ap, device);
837
838 iowrite8(0x55, ioaddr->nsect_addr);
839 iowrite8(0xaa, ioaddr->lbal_addr);
840
841 iowrite8(0xaa, ioaddr->nsect_addr);
842 iowrite8(0x55, ioaddr->lbal_addr);
843
844 iowrite8(0x55, ioaddr->nsect_addr);
845 iowrite8(0xaa, ioaddr->lbal_addr);
846
847 nsect = ioread8(ioaddr->nsect_addr);
848 lbal = ioread8(ioaddr->lbal_addr);
849
850 if ((nsect == 0x55) && (lbal == 0xaa))
851 return 1; /* we found a device */
852
853 return 0; /* nothing found */
854 }
855
856 /**
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
859 *
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
870 */
871 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
872 {
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
876 *
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
886 * SerialATA.
887 *
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
890 */
891 if ((tf->lbam == 0) && (tf->lbah == 0)) {
892 DPRINTK("found ATA device by sig\n");
893 return ATA_DEV_ATA;
894 }
895
896 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI;
899 }
900
901 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
902 DPRINTK("found PMP device by sig\n");
903 return ATA_DEV_PMP;
904 }
905
906 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
907 printk(KERN_INFO "ata: SEMB device ignored\n");
908 return ATA_DEV_SEMB_UNSUP; /* not yet */
909 }
910
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN;
913 }
914
915 /**
916 * ata_dev_try_classify - Parse returned ATA device signature
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
919 * @r_err: Value of error register on completion
920 *
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
924 * and diagnostics.
925 *
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
929 *
930 * LOCKING:
931 * caller.
932 *
933 * RETURNS:
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
935 */
936 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
937 u8 *r_err)
938 {
939 struct ata_port *ap = dev->link->ap;
940 struct ata_taskfile tf;
941 unsigned int class;
942 u8 err;
943
944 ap->ops->dev_select(ap, dev->devno);
945
946 memset(&tf, 0, sizeof(tf));
947
948 ap->ops->tf_read(ap, &tf);
949 err = tf.feature;
950 if (r_err)
951 *r_err = err;
952
953 /* see if device passed diags: continue and warn later */
954 if (err == 0)
955 /* diagnostic fail : do nothing _YET_ */
956 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
957 else if (err == 1)
958 /* do nothing */ ;
959 else if ((dev->devno == 0) && (err == 0x81))
960 /* do nothing */ ;
961 else
962 return ATA_DEV_NONE;
963
964 /* determine if device is ATA or ATAPI */
965 class = ata_dev_classify(&tf);
966
967 if (class == ATA_DEV_UNKNOWN) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
972 * failure.
973 */
974 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
975 class = ATA_DEV_ATA;
976 else
977 class = ATA_DEV_NONE;
978 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
979 class = ATA_DEV_NONE;
980
981 return class;
982 }
983
984 /**
985 * ata_id_string - Convert IDENTIFY DEVICE page into string
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
990 *
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
994 *
995 * LOCKING:
996 * caller.
997 */
998
999 void ata_id_string(const u16 *id, unsigned char *s,
1000 unsigned int ofs, unsigned int len)
1001 {
1002 unsigned int c;
1003
1004 while (len > 0) {
1005 c = id[ofs] >> 8;
1006 *s = c;
1007 s++;
1008
1009 c = id[ofs] & 0xff;
1010 *s = c;
1011 s++;
1012
1013 ofs++;
1014 len -= 2;
1015 }
1016 }
1017
1018 /**
1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1024 *
1025 * This function is identical to ata_id_string except that it
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1028 *
1029 * LOCKING:
1030 * caller.
1031 */
1032 void ata_id_c_string(const u16 *id, unsigned char *s,
1033 unsigned int ofs, unsigned int len)
1034 {
1035 unsigned char *p;
1036
1037 WARN_ON(!(len & 1));
1038
1039 ata_id_string(id, s, ofs, len - 1);
1040
1041 p = s + strnlen(s, len - 1);
1042 while (p > s && p[-1] == ' ')
1043 p--;
1044 *p = '\0';
1045 }
1046
1047 static u64 ata_id_n_sectors(const u16 *id)
1048 {
1049 if (ata_id_has_lba(id)) {
1050 if (ata_id_has_lba48(id))
1051 return ata_id_u64(id, 100);
1052 else
1053 return ata_id_u32(id, 60);
1054 } else {
1055 if (ata_id_current_chs_valid(id))
1056 return ata_id_u32(id, 57);
1057 else
1058 return id[1] * id[3] * id[6];
1059 }
1060 }
1061
1062 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1063 {
1064 u64 sectors = 0;
1065
1066 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1067 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1068 sectors |= (tf->hob_lbal & 0xff) << 24;
1069 sectors |= (tf->lbah & 0xff) << 16;
1070 sectors |= (tf->lbam & 0xff) << 8;
1071 sectors |= (tf->lbal & 0xff);
1072
1073 return ++sectors;
1074 }
1075
1076 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1077 {
1078 u64 sectors = 0;
1079
1080 sectors |= (tf->device & 0x0f) << 24;
1081 sectors |= (tf->lbah & 0xff) << 16;
1082 sectors |= (tf->lbam & 0xff) << 8;
1083 sectors |= (tf->lbal & 0xff);
1084
1085 return ++sectors;
1086 }
1087
1088 /**
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1092 *
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1094 * question.
1095 *
1096 * RETURNS:
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1099 */
1100 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1101 {
1102 unsigned int err_mask;
1103 struct ata_taskfile tf;
1104 int lba48 = ata_id_has_lba48(dev->id);
1105
1106 ata_tf_init(dev, &tf);
1107
1108 /* always clear all address registers */
1109 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1110
1111 if (lba48) {
1112 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1113 tf.flags |= ATA_TFLAG_LBA48;
1114 } else
1115 tf.command = ATA_CMD_READ_NATIVE_MAX;
1116
1117 tf.protocol |= ATA_PROT_NODATA;
1118 tf.device |= ATA_LBA;
1119
1120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1121 if (err_mask) {
1122 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask);
1124 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 return -EACCES;
1126 return -EIO;
1127 }
1128
1129 if (lba48)
1130 *max_sectors = ata_tf_to_lba48(&tf);
1131 else
1132 *max_sectors = ata_tf_to_lba(&tf);
1133 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1134 (*max_sectors)--;
1135 return 0;
1136 }
1137
1138 /**
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
1141 * @new_sectors: new max sectors value to set for the device
1142 *
1143 * Set max sectors of @dev to @new_sectors.
1144 *
1145 * RETURNS:
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1148 * errors.
1149 */
1150 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1151 {
1152 unsigned int err_mask;
1153 struct ata_taskfile tf;
1154 int lba48 = ata_id_has_lba48(dev->id);
1155
1156 new_sectors--;
1157
1158 ata_tf_init(dev, &tf);
1159
1160 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1161
1162 if (lba48) {
1163 tf.command = ATA_CMD_SET_MAX_EXT;
1164 tf.flags |= ATA_TFLAG_LBA48;
1165
1166 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1167 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1168 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1169 } else {
1170 tf.command = ATA_CMD_SET_MAX;
1171
1172 tf.device |= (new_sectors >> 24) & 0xf;
1173 }
1174
1175 tf.protocol |= ATA_PROT_NODATA;
1176 tf.device |= ATA_LBA;
1177
1178 tf.lbal = (new_sectors >> 0) & 0xff;
1179 tf.lbam = (new_sectors >> 8) & 0xff;
1180 tf.lbah = (new_sectors >> 16) & 0xff;
1181
1182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1183 if (err_mask) {
1184 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask);
1186 if (err_mask == AC_ERR_DEV &&
1187 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1188 return -EACCES;
1189 return -EIO;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /**
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1198 *
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno on failure.
1205 */
1206 static int ata_hpa_resize(struct ata_device *dev)
1207 {
1208 struct ata_eh_context *ehc = &dev->link->eh_context;
1209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1210 u64 sectors = ata_id_n_sectors(dev->id);
1211 u64 native_sectors;
1212 int rc;
1213
1214 /* do we need to do it? */
1215 if (dev->class != ATA_DEV_ATA ||
1216 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1217 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1218 return 0;
1219
1220 /* read native max address */
1221 rc = ata_read_native_max_address(dev, &native_sectors);
1222 if (rc) {
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1225 */
1226 if (!ata_ignore_hpa) {
1227 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1230
1231 /* we can continue if device aborted the command */
1232 if (rc == -EACCES)
1233 rc = 0;
1234 }
1235
1236 return rc;
1237 }
1238
1239 /* nothing to do? */
1240 if (native_sectors <= sectors || !ata_ignore_hpa) {
1241 if (!print_info || native_sectors == sectors)
1242 return 0;
1243
1244 if (native_sectors > sectors)
1245 ata_dev_printk(dev, KERN_INFO,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors,
1248 (unsigned long long)native_sectors);
1249 else if (native_sectors < sectors)
1250 ata_dev_printk(dev, KERN_WARNING,
1251 "native sectors (%llu) is smaller than "
1252 "sectors (%llu)\n",
1253 (unsigned long long)native_sectors,
1254 (unsigned long long)sectors);
1255 return 0;
1256 }
1257
1258 /* let's unlock HPA */
1259 rc = ata_set_max_sectors(dev, native_sectors);
1260 if (rc == -EACCES) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)native_sectors);
1266 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1267 return 0;
1268 } else if (rc)
1269 return rc;
1270
1271 /* re-read IDENTIFY data */
1272 rc = ata_dev_reread_id(dev, 0);
1273 if (rc) {
1274 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1276 return rc;
1277 }
1278
1279 if (print_info) {
1280 u64 new_sectors = ata_id_n_sectors(dev->id);
1281 ata_dev_printk(dev, KERN_INFO,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors,
1284 (unsigned long long)new_sectors,
1285 (unsigned long long)native_sectors);
1286 }
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1295 *
1296 * This function performs no actual function.
1297 *
1298 * May be used as the dev_select() entry in ata_port_operations.
1299 *
1300 * LOCKING:
1301 * caller.
1302 */
1303 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1304 {
1305 }
1306
1307
1308 /**
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1312 *
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
1315 * ATA channel. Works with both PIO and MMIO.
1316 *
1317 * May be used as the dev_select() entry in ata_port_operations.
1318 *
1319 * LOCKING:
1320 * caller.
1321 */
1322
1323 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1324 {
1325 u8 tmp;
1326
1327 if (device == 0)
1328 tmp = ATA_DEVICE_OBS;
1329 else
1330 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1331
1332 iowrite8(tmp, ap->ioaddr.device_addr);
1333 ata_pause(ap); /* needed; also flushes, for mmio */
1334 }
1335
1336 /**
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1342 *
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1345 * ATA channel.
1346 *
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1350 *
1351 * LOCKING:
1352 * caller.
1353 */
1354
1355 void ata_dev_select(struct ata_port *ap, unsigned int device,
1356 unsigned int wait, unsigned int can_sleep)
1357 {
1358 if (ata_msg_probe(ap))
1359 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device, wait);
1361
1362 if (wait)
1363 ata_wait_idle(ap);
1364
1365 ap->ops->dev_select(ap, device);
1366
1367 if (wait) {
1368 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1369 msleep(150);
1370 ata_wait_idle(ap);
1371 }
1372 }
1373
1374 /**
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
1376 * @id: IDENTIFY DEVICE page to dump
1377 *
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1379 * page.
1380 *
1381 * LOCKING:
1382 * caller.
1383 */
1384
1385 static inline void ata_dump_id(const u16 *id)
1386 {
1387 DPRINTK("49==0x%04x "
1388 "53==0x%04x "
1389 "63==0x%04x "
1390 "64==0x%04x "
1391 "75==0x%04x \n",
1392 id[49],
1393 id[53],
1394 id[63],
1395 id[64],
1396 id[75]);
1397 DPRINTK("80==0x%04x "
1398 "81==0x%04x "
1399 "82==0x%04x "
1400 "83==0x%04x "
1401 "84==0x%04x \n",
1402 id[80],
1403 id[81],
1404 id[82],
1405 id[83],
1406 id[84]);
1407 DPRINTK("88==0x%04x "
1408 "93==0x%04x\n",
1409 id[88],
1410 id[93]);
1411 }
1412
1413 /**
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1416 *
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1419 *
1420 * FIXME: pre IDE drive timing (do we care ?).
1421 *
1422 * LOCKING:
1423 * None.
1424 *
1425 * RETURNS:
1426 * Computed xfermask
1427 */
1428 unsigned long ata_id_xfermask(const u16 *id)
1429 {
1430 unsigned long pio_mask, mwdma_mask, udma_mask;
1431
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1434 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1435 pio_mask <<= 3;
1436 pio_mask |= 0x7;
1437 } else {
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1440 * a mask.
1441 */
1442 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1443 if (mode < 5) /* Valid PIO range */
1444 pio_mask = (2 << mode) - 1;
1445 else
1446 pio_mask = 1;
1447
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1453 */
1454 }
1455
1456 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1457
1458 if (ata_id_is_cfa(id)) {
1459 /*
1460 * Process compact flash extended modes
1461 */
1462 int pio = id[163] & 0x7;
1463 int dma = (id[163] >> 3) & 7;
1464
1465 if (pio)
1466 pio_mask |= (1 << 5);
1467 if (pio > 1)
1468 pio_mask |= (1 << 6);
1469 if (dma)
1470 mwdma_mask |= (1 << 3);
1471 if (dma > 1)
1472 mwdma_mask |= (1 << 4);
1473 }
1474
1475 udma_mask = 0;
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1477 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1478
1479 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1480 }
1481
1482 /**
1483 * ata_pio_queue_task - Queue port_task
1484 * @ap: The ata_port to queue port_task for
1485 * @fn: workqueue function to be scheduled
1486 * @data: data for @fn to use
1487 * @delay: delay time for workqueue function
1488 *
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1493 *
1494 * libata core layer takes care of synchronization between
1495 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1496 * synchronization.
1497 *
1498 * LOCKING:
1499 * Inherited from caller.
1500 */
1501 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1502 unsigned long delay)
1503 {
1504 ap->port_task_data = data;
1505
1506 /* may fail if ata_port_flush_task() in progress */
1507 queue_delayed_work(ata_wq, &ap->port_task, delay);
1508 }
1509
1510 /**
1511 * ata_port_flush_task - Flush port_task
1512 * @ap: The ata_port to flush port_task for
1513 *
1514 * After this function completes, port_task is guranteed not to
1515 * be running or scheduled.
1516 *
1517 * LOCKING:
1518 * Kernel thread context (may sleep)
1519 */
1520 void ata_port_flush_task(struct ata_port *ap)
1521 {
1522 DPRINTK("ENTER\n");
1523
1524 cancel_rearming_delayed_work(&ap->port_task);
1525
1526 if (ata_msg_ctl(ap))
1527 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1528 }
1529
1530 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1531 {
1532 struct completion *waiting = qc->private_data;
1533
1534 complete(waiting);
1535 }
1536
1537 /**
1538 * ata_exec_internal_sg - execute libata internal command
1539 * @dev: Device to which the command is sent
1540 * @tf: Taskfile registers for the command and the result
1541 * @cdb: CDB for packet command
1542 * @dma_dir: Data tranfer direction of the command
1543 * @sgl: sg list for the data buffer of the command
1544 * @n_elem: Number of sg entries
1545 * @timeout: Timeout in msecs (0 for default)
1546 *
1547 * Executes libata internal command with timeout. @tf contains
1548 * command on entry and result on return. Timeout and error
1549 * conditions are reported via return value. No recovery action
1550 * is taken after a command times out. It's caller's duty to
1551 * clean up after timeout.
1552 *
1553 * LOCKING:
1554 * None. Should be called with kernel context, might sleep.
1555 *
1556 * RETURNS:
1557 * Zero on success, AC_ERR_* mask on failure
1558 */
1559 unsigned ata_exec_internal_sg(struct ata_device *dev,
1560 struct ata_taskfile *tf, const u8 *cdb,
1561 int dma_dir, struct scatterlist *sgl,
1562 unsigned int n_elem, unsigned long timeout)
1563 {
1564 struct ata_link *link = dev->link;
1565 struct ata_port *ap = link->ap;
1566 u8 command = tf->command;
1567 struct ata_queued_cmd *qc;
1568 unsigned int tag, preempted_tag;
1569 u32 preempted_sactive, preempted_qc_active;
1570 int preempted_nr_active_links;
1571 DECLARE_COMPLETION_ONSTACK(wait);
1572 unsigned long flags;
1573 unsigned int err_mask;
1574 int rc;
1575
1576 spin_lock_irqsave(ap->lock, flags);
1577
1578 /* no internal command while frozen */
1579 if (ap->pflags & ATA_PFLAG_FROZEN) {
1580 spin_unlock_irqrestore(ap->lock, flags);
1581 return AC_ERR_SYSTEM;
1582 }
1583
1584 /* initialize internal qc */
1585
1586 /* XXX: Tag 0 is used for drivers with legacy EH as some
1587 * drivers choke if any other tag is given. This breaks
1588 * ata_tag_internal() test for those drivers. Don't use new
1589 * EH stuff without converting to it.
1590 */
1591 if (ap->ops->error_handler)
1592 tag = ATA_TAG_INTERNAL;
1593 else
1594 tag = 0;
1595
1596 if (test_and_set_bit(tag, &ap->qc_allocated))
1597 BUG();
1598 qc = __ata_qc_from_tag(ap, tag);
1599
1600 qc->tag = tag;
1601 qc->scsicmd = NULL;
1602 qc->ap = ap;
1603 qc->dev = dev;
1604 ata_qc_reinit(qc);
1605
1606 preempted_tag = link->active_tag;
1607 preempted_sactive = link->sactive;
1608 preempted_qc_active = ap->qc_active;
1609 preempted_nr_active_links = ap->nr_active_links;
1610 link->active_tag = ATA_TAG_POISON;
1611 link->sactive = 0;
1612 ap->qc_active = 0;
1613 ap->nr_active_links = 0;
1614
1615 /* prepare & issue qc */
1616 qc->tf = *tf;
1617 if (cdb)
1618 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
1622 unsigned int i, buflen = 0;
1623 struct scatterlist *sg;
1624
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
1627
1628 ata_sg_init(qc, sgl, n_elem);
1629 qc->nbytes = buflen;
1630 }
1631
1632 qc->private_data = &wait;
1633 qc->complete_fn = ata_qc_complete_internal;
1634
1635 ata_qc_issue(qc);
1636
1637 spin_unlock_irqrestore(ap->lock, flags);
1638
1639 if (!timeout)
1640 timeout = ata_probe_timeout * 1000 / HZ;
1641
1642 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1643
1644 ata_port_flush_task(ap);
1645
1646 if (!rc) {
1647 spin_lock_irqsave(ap->lock, flags);
1648
1649 /* We're racing with irq here. If we lose, the
1650 * following test prevents us from completing the qc
1651 * twice. If we win, the port is frozen and will be
1652 * cleaned up by ->post_internal_cmd().
1653 */
1654 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1655 qc->err_mask |= AC_ERR_TIMEOUT;
1656
1657 if (ap->ops->error_handler)
1658 ata_port_freeze(ap);
1659 else
1660 ata_qc_complete(qc);
1661
1662 if (ata_msg_warn(ap))
1663 ata_dev_printk(dev, KERN_WARNING,
1664 "qc timeout (cmd 0x%x)\n", command);
1665 }
1666
1667 spin_unlock_irqrestore(ap->lock, flags);
1668 }
1669
1670 /* do post_internal_cmd */
1671 if (ap->ops->post_internal_cmd)
1672 ap->ops->post_internal_cmd(qc);
1673
1674 /* perform minimal error analysis */
1675 if (qc->flags & ATA_QCFLAG_FAILED) {
1676 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1677 qc->err_mask |= AC_ERR_DEV;
1678
1679 if (!qc->err_mask)
1680 qc->err_mask |= AC_ERR_OTHER;
1681
1682 if (qc->err_mask & ~AC_ERR_OTHER)
1683 qc->err_mask &= ~AC_ERR_OTHER;
1684 }
1685
1686 /* finish up */
1687 spin_lock_irqsave(ap->lock, flags);
1688
1689 *tf = qc->result_tf;
1690 err_mask = qc->err_mask;
1691
1692 ata_qc_free(qc);
1693 link->active_tag = preempted_tag;
1694 link->sactive = preempted_sactive;
1695 ap->qc_active = preempted_qc_active;
1696 ap->nr_active_links = preempted_nr_active_links;
1697
1698 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1699 * Until those drivers are fixed, we detect the condition
1700 * here, fail the command with AC_ERR_SYSTEM and reenable the
1701 * port.
1702 *
1703 * Note that this doesn't change any behavior as internal
1704 * command failure results in disabling the device in the
1705 * higher layer for LLDDs without new reset/EH callbacks.
1706 *
1707 * Kill the following code as soon as those drivers are fixed.
1708 */
1709 if (ap->flags & ATA_FLAG_DISABLED) {
1710 err_mask |= AC_ERR_SYSTEM;
1711 ata_port_probe(ap);
1712 }
1713
1714 spin_unlock_irqrestore(ap->lock, flags);
1715
1716 return err_mask;
1717 }
1718
1719 /**
1720 * ata_exec_internal - execute libata internal command
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data tranfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
1727 * @timeout: Timeout in msecs (0 for default)
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738 unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
1742 {
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
1745
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
1752
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
1755 }
1756
1757 /**
1758 * ata_do_simple_cmd - execute simple internal command
1759 * @dev: Device to which the command is sent
1760 * @cmd: Opcode to execute
1761 *
1762 * Execute a 'simple' command, that only consists of the opcode
1763 * 'cmd' itself, without filling any other registers
1764 *
1765 * LOCKING:
1766 * Kernel thread context (may sleep).
1767 *
1768 * RETURNS:
1769 * Zero on success, AC_ERR_* mask on failure
1770 */
1771 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1772 {
1773 struct ata_taskfile tf;
1774
1775 ata_tf_init(dev, &tf);
1776
1777 tf.command = cmd;
1778 tf.flags |= ATA_TFLAG_DEVICE;
1779 tf.protocol = ATA_PROT_NODATA;
1780
1781 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1782 }
1783
1784 /**
1785 * ata_pio_need_iordy - check if iordy needed
1786 * @adev: ATA device
1787 *
1788 * Check if the current speed of the device requires IORDY. Used
1789 * by various controllers for chip configuration.
1790 */
1791
1792 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1793 {
1794 /* Controller doesn't support IORDY. Probably a pointless check
1795 as the caller should know this */
1796 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1797 return 0;
1798 /* PIO3 and higher it is mandatory */
1799 if (adev->pio_mode > XFER_PIO_2)
1800 return 1;
1801 /* We turn it on when possible */
1802 if (ata_id_has_iordy(adev->id))
1803 return 1;
1804 return 0;
1805 }
1806
1807 /**
1808 * ata_pio_mask_no_iordy - Return the non IORDY mask
1809 * @adev: ATA device
1810 *
1811 * Compute the highest mode possible if we are not using iordy. Return
1812 * -1 if no iordy mode is available.
1813 */
1814
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1826 }
1827 }
1828 return 3 << ATA_SHIFT_PIO;
1829 }
1830
1831 /**
1832 * ata_dev_read_id - Read ID data from the specified device
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
1835 * @flags: ATA_READID_* flags
1836 * @id: buffer to read IDENTIFY data into
1837 *
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1842 *
1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1844 * now we abort if we hit that case.
1845 *
1846 * LOCKING:
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1851 */
1852 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1853 unsigned int flags, u16 *id)
1854 {
1855 struct ata_port *ap = dev->link->ap;
1856 unsigned int class = *p_class;
1857 struct ata_taskfile tf;
1858 unsigned int err_mask = 0;
1859 const char *reason;
1860 int may_fallback = 1, tried_spinup = 0;
1861 int rc;
1862
1863 if (ata_msg_ctl(ap))
1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1865
1866 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1867 retry:
1868 ata_tf_init(dev, &tf);
1869
1870 switch (class) {
1871 case ATA_DEV_ATA:
1872 tf.command = ATA_CMD_ID_ATA;
1873 break;
1874 case ATA_DEV_ATAPI:
1875 tf.command = ATA_CMD_ID_ATAPI;
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1881 }
1882
1883 tf.protocol = ATA_PROT_PIO;
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1894
1895 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1896 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1897 if (err_mask) {
1898 if (err_mask & AC_ERR_NODEV_HINT) {
1899 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1900 ap->print_id, dev->devno);
1901 return -ENOENT;
1902 }
1903
1904 /* Device or controller might have reported the wrong
1905 * device class. Give a shot at the other IDENTIFY if
1906 * the current one is aborted by the device.
1907 */
1908 if (may_fallback &&
1909 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1910 may_fallback = 0;
1911
1912 if (class == ATA_DEV_ATA)
1913 class = ATA_DEV_ATAPI;
1914 else
1915 class = ATA_DEV_ATA;
1916 goto retry;
1917 }
1918
1919 rc = -EIO;
1920 reason = "I/O error";
1921 goto err_out;
1922 }
1923
1924 /* Falling back doesn't make sense if ID data was read
1925 * successfully at least once.
1926 */
1927 may_fallback = 0;
1928
1929 swap_buf_le16(id, ATA_ID_WORDS);
1930
1931 /* sanity check */
1932 rc = -EINVAL;
1933 reason = "device reports invalid type";
1934
1935 if (class == ATA_DEV_ATA) {
1936 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1937 goto err_out;
1938 } else {
1939 if (ata_id_is_ata(id))
1940 goto err_out;
1941 }
1942
1943 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1944 tried_spinup = 1;
1945 /*
1946 * Drive powered-up in standby mode, and requires a specific
1947 * SET_FEATURES spin-up subcommand before it will accept
1948 * anything other than the original IDENTIFY command.
1949 */
1950 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1951 if (err_mask && id[2] != 0x738c) {
1952 rc = -EIO;
1953 reason = "SPINUP failed";
1954 goto err_out;
1955 }
1956 /*
1957 * If the drive initially returned incomplete IDENTIFY info,
1958 * we now must reissue the IDENTIFY command.
1959 */
1960 if (id[2] == 0x37c8)
1961 goto retry;
1962 }
1963
1964 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1965 /*
1966 * The exact sequence expected by certain pre-ATA4 drives is:
1967 * SRST RESET
1968 * IDENTIFY (optional in early ATA)
1969 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1970 * anything else..
1971 * Some drives were very specific about that exact sequence.
1972 *
1973 * Note that ATA4 says lba is mandatory so the second check
1974 * shoud never trigger.
1975 */
1976 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1977 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1978 if (err_mask) {
1979 rc = -EIO;
1980 reason = "INIT_DEV_PARAMS failed";
1981 goto err_out;
1982 }
1983
1984 /* current CHS translation info (id[53-58]) might be
1985 * changed. reread the identify device info.
1986 */
1987 flags &= ~ATA_READID_POSTRESET;
1988 goto retry;
1989 }
1990 }
1991
1992 *p_class = class;
1993
1994 return 0;
1995
1996 err_out:
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1999 "(%s, err_mask=0x%x)\n", reason, err_mask);
2000 return rc;
2001 }
2002
2003 static inline u8 ata_dev_knobble(struct ata_device *dev)
2004 {
2005 struct ata_port *ap = dev->link->ap;
2006 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2007 }
2008
2009 static void ata_dev_config_ncq(struct ata_device *dev,
2010 char *desc, size_t desc_sz)
2011 {
2012 struct ata_port *ap = dev->link->ap;
2013 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2014
2015 if (!ata_id_has_ncq(dev->id)) {
2016 desc[0] = '\0';
2017 return;
2018 }
2019 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2020 snprintf(desc, desc_sz, "NCQ (not used)");
2021 return;
2022 }
2023 if (ap->flags & ATA_FLAG_NCQ) {
2024 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2025 dev->flags |= ATA_DFLAG_NCQ;
2026 }
2027
2028 if (hdepth >= ddepth)
2029 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2030 else
2031 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2032 }
2033
2034 /**
2035 * ata_dev_configure - Configure the specified ATA/ATAPI device
2036 * @dev: Target device to configure
2037 *
2038 * Configure @dev according to @dev->id. Generic and low-level
2039 * driver specific fixups are also applied.
2040 *
2041 * LOCKING:
2042 * Kernel thread context (may sleep)
2043 *
2044 * RETURNS:
2045 * 0 on success, -errno otherwise
2046 */
2047 int ata_dev_configure(struct ata_device *dev)
2048 {
2049 struct ata_port *ap = dev->link->ap;
2050 struct ata_eh_context *ehc = &dev->link->eh_context;
2051 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2052 const u16 *id = dev->id;
2053 unsigned long xfer_mask;
2054 char revbuf[7]; /* XYZ-99\0 */
2055 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2056 char modelbuf[ATA_ID_PROD_LEN+1];
2057 int rc;
2058
2059 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2060 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2061 __FUNCTION__);
2062 return 0;
2063 }
2064
2065 if (ata_msg_probe(ap))
2066 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2067
2068 /* set horkage */
2069 dev->horkage |= ata_dev_blacklisted(dev);
2070
2071 /* let ACPI work its magic */
2072 rc = ata_acpi_on_devcfg(dev);
2073 if (rc)
2074 return rc;
2075
2076 /* massage HPA, do it early as it might change IDENTIFY data */
2077 rc = ata_hpa_resize(dev);
2078 if (rc)
2079 return rc;
2080
2081 /* print device capabilities */
2082 if (ata_msg_probe(ap))
2083 ata_dev_printk(dev, KERN_DEBUG,
2084 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2085 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2086 __FUNCTION__,
2087 id[49], id[82], id[83], id[84],
2088 id[85], id[86], id[87], id[88]);
2089
2090 /* initialize to-be-configured parameters */
2091 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2092 dev->max_sectors = 0;
2093 dev->cdb_len = 0;
2094 dev->n_sectors = 0;
2095 dev->cylinders = 0;
2096 dev->heads = 0;
2097 dev->sectors = 0;
2098
2099 /*
2100 * common ATA, ATAPI feature tests
2101 */
2102
2103 /* find max transfer mode; for printk only */
2104 xfer_mask = ata_id_xfermask(id);
2105
2106 if (ata_msg_probe(ap))
2107 ata_dump_id(id);
2108
2109 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2110 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2111 sizeof(fwrevbuf));
2112
2113 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2114 sizeof(modelbuf));
2115
2116 /* ATA-specific feature tests */
2117 if (dev->class == ATA_DEV_ATA) {
2118 if (ata_id_is_cfa(id)) {
2119 if (id[162] & 1) /* CPRM may make this media unusable */
2120 ata_dev_printk(dev, KERN_WARNING,
2121 "supports DRM functions and may "
2122 "not be fully accessable.\n");
2123 snprintf(revbuf, 7, "CFA");
2124 } else {
2125 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2126 /* Warn the user if the device has TPM extensions */
2127 if (ata_id_has_tpm(id))
2128 ata_dev_printk(dev, KERN_WARNING,
2129 "supports DRM functions and may "
2130 "not be fully accessable.\n");
2131 }
2132
2133 dev->n_sectors = ata_id_n_sectors(id);
2134
2135 if (dev->id[59] & 0x100)
2136 dev->multi_count = dev->id[59] & 0xff;
2137
2138 if (ata_id_has_lba(id)) {
2139 const char *lba_desc;
2140 char ncq_desc[20];
2141
2142 lba_desc = "LBA";
2143 dev->flags |= ATA_DFLAG_LBA;
2144 if (ata_id_has_lba48(id)) {
2145 dev->flags |= ATA_DFLAG_LBA48;
2146 lba_desc = "LBA48";
2147
2148 if (dev->n_sectors >= (1UL << 28) &&
2149 ata_id_has_flush_ext(id))
2150 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2151 }
2152
2153 /* config NCQ */
2154 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2155
2156 /* print device info to dmesg */
2157 if (ata_msg_drv(ap) && print_info) {
2158 ata_dev_printk(dev, KERN_INFO,
2159 "%s: %s, %s, max %s\n",
2160 revbuf, modelbuf, fwrevbuf,
2161 ata_mode_string(xfer_mask));
2162 ata_dev_printk(dev, KERN_INFO,
2163 "%Lu sectors, multi %u: %s %s\n",
2164 (unsigned long long)dev->n_sectors,
2165 dev->multi_count, lba_desc, ncq_desc);
2166 }
2167 } else {
2168 /* CHS */
2169
2170 /* Default translation */
2171 dev->cylinders = id[1];
2172 dev->heads = id[3];
2173 dev->sectors = id[6];
2174
2175 if (ata_id_current_chs_valid(id)) {
2176 /* Current CHS translation is valid. */
2177 dev->cylinders = id[54];
2178 dev->heads = id[55];
2179 dev->sectors = id[56];
2180 }
2181
2182 /* print device info to dmesg */
2183 if (ata_msg_drv(ap) && print_info) {
2184 ata_dev_printk(dev, KERN_INFO,
2185 "%s: %s, %s, max %s\n",
2186 revbuf, modelbuf, fwrevbuf,
2187 ata_mode_string(xfer_mask));
2188 ata_dev_printk(dev, KERN_INFO,
2189 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2190 (unsigned long long)dev->n_sectors,
2191 dev->multi_count, dev->cylinders,
2192 dev->heads, dev->sectors);
2193 }
2194 }
2195
2196 dev->cdb_len = 16;
2197 }
2198
2199 /* ATAPI-specific feature tests */
2200 else if (dev->class == ATA_DEV_ATAPI) {
2201 const char *cdb_intr_string = "";
2202 const char *atapi_an_string = "";
2203 u32 sntf;
2204
2205 rc = atapi_cdb_len(id);
2206 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2207 if (ata_msg_warn(ap))
2208 ata_dev_printk(dev, KERN_WARNING,
2209 "unsupported CDB len\n");
2210 rc = -EINVAL;
2211 goto err_out_nosup;
2212 }
2213 dev->cdb_len = (unsigned int) rc;
2214
2215 /* Enable ATAPI AN if both the host and device have
2216 * the support. If PMP is attached, SNTF is required
2217 * to enable ATAPI AN to discern between PHY status
2218 * changed notifications and ATAPI ANs.
2219 */
2220 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2221 (!ap->nr_pmp_links ||
2222 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2223 unsigned int err_mask;
2224
2225 /* issue SET feature command to turn this on */
2226 err_mask = ata_dev_set_feature(dev,
2227 SETFEATURES_SATA_ENABLE, SATA_AN);
2228 if (err_mask)
2229 ata_dev_printk(dev, KERN_ERR,
2230 "failed to enable ATAPI AN "
2231 "(err_mask=0x%x)\n", err_mask);
2232 else {
2233 dev->flags |= ATA_DFLAG_AN;
2234 atapi_an_string = ", ATAPI AN";
2235 }
2236 }
2237
2238 if (ata_id_cdb_intr(dev->id)) {
2239 dev->flags |= ATA_DFLAG_CDB_INTR;
2240 cdb_intr_string = ", CDB intr";
2241 }
2242
2243 /* print device info to dmesg */
2244 if (ata_msg_drv(ap) && print_info)
2245 ata_dev_printk(dev, KERN_INFO,
2246 "ATAPI: %s, %s, max %s%s%s\n",
2247 modelbuf, fwrevbuf,
2248 ata_mode_string(xfer_mask),
2249 cdb_intr_string, atapi_an_string);
2250 }
2251
2252 /* determine max_sectors */
2253 dev->max_sectors = ATA_MAX_SECTORS;
2254 if (dev->flags & ATA_DFLAG_LBA48)
2255 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2256
2257 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2258 if (ata_id_has_hipm(dev->id))
2259 dev->flags |= ATA_DFLAG_HIPM;
2260 if (ata_id_has_dipm(dev->id))
2261 dev->flags |= ATA_DFLAG_DIPM;
2262 }
2263
2264 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2265 200 sectors */
2266 if (ata_dev_knobble(dev)) {
2267 if (ata_msg_drv(ap) && print_info)
2268 ata_dev_printk(dev, KERN_INFO,
2269 "applying bridge limits\n");
2270 dev->udma_mask &= ATA_UDMA5;
2271 dev->max_sectors = ATA_MAX_SECTORS;
2272 }
2273
2274 if ((dev->class == ATA_DEV_ATAPI) &&
2275 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2276 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2277 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2278 }
2279
2280 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2281 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2282 dev->max_sectors);
2283
2284 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2285 dev->horkage |= ATA_HORKAGE_IPM;
2286
2287 /* reset link pm_policy for this port to no pm */
2288 ap->pm_policy = MAX_PERFORMANCE;
2289 }
2290
2291 if (ap->ops->dev_config)
2292 ap->ops->dev_config(dev);
2293
2294 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2295 /* Let the user know. We don't want to disallow opens for
2296 rescue purposes, or in case the vendor is just a blithering
2297 idiot. Do this after the dev_config call as some controllers
2298 with buggy firmware may want to avoid reporting false device
2299 bugs */
2300
2301 if (print_info) {
2302 ata_dev_printk(dev, KERN_WARNING,
2303 "Drive reports diagnostics failure. This may indicate a drive\n");
2304 ata_dev_printk(dev, KERN_WARNING,
2305 "fault or invalid emulation. Contact drive vendor for information.\n");
2306 }
2307 }
2308
2309 if (ata_msg_probe(ap))
2310 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2311 __FUNCTION__, ata_chk_status(ap));
2312 return 0;
2313
2314 err_out_nosup:
2315 if (ata_msg_probe(ap))
2316 ata_dev_printk(dev, KERN_DEBUG,
2317 "%s: EXIT, err\n", __FUNCTION__);
2318 return rc;
2319 }
2320
2321 /**
2322 * ata_cable_40wire - return 40 wire cable type
2323 * @ap: port
2324 *
2325 * Helper method for drivers which want to hardwire 40 wire cable
2326 * detection.
2327 */
2328
2329 int ata_cable_40wire(struct ata_port *ap)
2330 {
2331 return ATA_CBL_PATA40;
2332 }
2333
2334 /**
2335 * ata_cable_80wire - return 80 wire cable type
2336 * @ap: port
2337 *
2338 * Helper method for drivers which want to hardwire 80 wire cable
2339 * detection.
2340 */
2341
2342 int ata_cable_80wire(struct ata_port *ap)
2343 {
2344 return ATA_CBL_PATA80;
2345 }
2346
2347 /**
2348 * ata_cable_unknown - return unknown PATA cable.
2349 * @ap: port
2350 *
2351 * Helper method for drivers which have no PATA cable detection.
2352 */
2353
2354 int ata_cable_unknown(struct ata_port *ap)
2355 {
2356 return ATA_CBL_PATA_UNK;
2357 }
2358
2359 /**
2360 * ata_cable_ignore - return ignored PATA cable.
2361 * @ap: port
2362 *
2363 * Helper method for drivers which don't use cable type to limit
2364 * transfer mode.
2365 */
2366 int ata_cable_ignore(struct ata_port *ap)
2367 {
2368 return ATA_CBL_PATA_IGN;
2369 }
2370
2371 /**
2372 * ata_cable_sata - return SATA cable type
2373 * @ap: port
2374 *
2375 * Helper method for drivers which have SATA cables
2376 */
2377
2378 int ata_cable_sata(struct ata_port *ap)
2379 {
2380 return ATA_CBL_SATA;
2381 }
2382
2383 /**
2384 * ata_bus_probe - Reset and probe ATA bus
2385 * @ap: Bus to probe
2386 *
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2389 * the bus.
2390 *
2391 * LOCKING:
2392 * PCI/etc. bus probe sem.
2393 *
2394 * RETURNS:
2395 * Zero on success, negative errno otherwise.
2396 */
2397
2398 int ata_bus_probe(struct ata_port *ap)
2399 {
2400 unsigned int classes[ATA_MAX_DEVICES];
2401 int tries[ATA_MAX_DEVICES];
2402 int rc;
2403 struct ata_device *dev;
2404
2405 ata_port_probe(ap);
2406
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2409
2410 retry:
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2418 */
2419 dev->pio_mode = XFER_PIO_0;
2420
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2425 */
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2428 }
2429
2430 /* reset and determine device classes */
2431 ap->ops->phy_reset(ap);
2432
2433 ata_link_for_each_dev(dev, &ap->link) {
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2437 else
2438 classes[dev->devno] = ATA_DEV_NONE;
2439
2440 dev->class = ATA_DEV_UNKNOWN;
2441 }
2442
2443 ata_port_probe(ap);
2444
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2447 the slave device */
2448
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
2452
2453 if (!ata_dev_enabled(dev))
2454 continue;
2455
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2457 dev->id);
2458 if (rc)
2459 goto fail;
2460 }
2461
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2465
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2475 }
2476
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2479
2480 ata_link_for_each_dev(dev, &ap->link) {
2481 if (!ata_dev_enabled(dev))
2482 continue;
2483
2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2485 rc = ata_dev_configure(dev);
2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2487 if (rc)
2488 goto fail;
2489 }
2490
2491 /* configure transfer mode */
2492 rc = ata_set_mode(&ap->link, &dev);
2493 if (rc)
2494 goto fail;
2495
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
2498 return 0;
2499
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
2502 return -ENODEV;
2503
2504 fail:
2505 tries[dev->devno]--;
2506
2507 switch (rc) {
2508 case -EINVAL:
2509 /* eeek, something went very wrong, give up */
2510 tries[dev->devno] = 0;
2511 break;
2512
2513 case -ENODEV:
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
2516 case -EIO:
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2520 */
2521 sata_down_spd_limit(&ap->link);
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 }
2524 }
2525
2526 if (!tries[dev->devno])
2527 ata_dev_disable(dev);
2528
2529 goto retry;
2530 }
2531
2532 /**
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
2535 *
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2538 *
2539 * LOCKING: host lock, or some other form of
2540 * serialization.
2541 */
2542
2543 void ata_port_probe(struct ata_port *ap)
2544 {
2545 ap->flags &= ~ATA_FLAG_DISABLED;
2546 }
2547
2548 /**
2549 * sata_print_link_status - Print SATA link status
2550 * @link: SATA link to printk link status about
2551 *
2552 * This function prints link speed and status of a SATA link.
2553 *
2554 * LOCKING:
2555 * None.
2556 */
2557 void sata_print_link_status(struct ata_link *link)
2558 {
2559 u32 sstatus, scontrol, tmp;
2560
2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2562 return;
2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
2564
2565 if (ata_link_online(link)) {
2566 tmp = (sstatus >> 4) & 0xf;
2567 ata_link_printk(link, KERN_INFO,
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
2570 } else {
2571 ata_link_printk(link, KERN_INFO,
2572 "SATA link down (SStatus %X SControl %X)\n",
2573 sstatus, scontrol);
2574 }
2575 }
2576
2577 /**
2578 * ata_dev_pair - return other device on cable
2579 * @adev: device
2580 *
2581 * Obtain the other device on the same cable, or if none is
2582 * present NULL is returned
2583 */
2584
2585 struct ata_device *ata_dev_pair(struct ata_device *adev)
2586 {
2587 struct ata_link *link = adev->link;
2588 struct ata_device *pair = &link->device[1 - adev->devno];
2589 if (!ata_dev_enabled(pair))
2590 return NULL;
2591 return pair;
2592 }
2593
2594 /**
2595 * ata_port_disable - Disable port.
2596 * @ap: Port to be disabled.
2597 *
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is disabled, and should
2600 * never attempt to probe or communicate with devices
2601 * on this port.
2602 *
2603 * LOCKING: host lock, or some other form of
2604 * serialization.
2605 */
2606
2607 void ata_port_disable(struct ata_port *ap)
2608 {
2609 ap->link.device[0].class = ATA_DEV_NONE;
2610 ap->link.device[1].class = ATA_DEV_NONE;
2611 ap->flags |= ATA_FLAG_DISABLED;
2612 }
2613
2614 /**
2615 * sata_down_spd_limit - adjust SATA spd limit downward
2616 * @link: Link to adjust SATA spd limit for
2617 *
2618 * Adjust SATA spd limit of @link downward. Note that this
2619 * function only adjusts the limit. The change must be applied
2620 * using sata_set_spd().
2621 *
2622 * LOCKING:
2623 * Inherited from caller.
2624 *
2625 * RETURNS:
2626 * 0 on success, negative errno on failure
2627 */
2628 int sata_down_spd_limit(struct ata_link *link)
2629 {
2630 u32 sstatus, spd, mask;
2631 int rc, highbit;
2632
2633 if (!sata_scr_valid(link))
2634 return -EOPNOTSUPP;
2635
2636 /* If SCR can be read, use it to determine the current SPD.
2637 * If not, use cached value in link->sata_spd.
2638 */
2639 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2640 if (rc == 0)
2641 spd = (sstatus >> 4) & 0xf;
2642 else
2643 spd = link->sata_spd;
2644
2645 mask = link->sata_spd_limit;
2646 if (mask <= 1)
2647 return -EINVAL;
2648
2649 /* unconditionally mask off the highest bit */
2650 highbit = fls(mask) - 1;
2651 mask &= ~(1 << highbit);
2652
2653 /* Mask off all speeds higher than or equal to the current
2654 * one. Force 1.5Gbps if current SPD is not available.
2655 */
2656 if (spd > 1)
2657 mask &= (1 << (spd - 1)) - 1;
2658 else
2659 mask &= 1;
2660
2661 /* were we already at the bottom? */
2662 if (!mask)
2663 return -EINVAL;
2664
2665 link->sata_spd_limit = mask;
2666
2667 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2668 sata_spd_string(fls(mask)));
2669
2670 return 0;
2671 }
2672
2673 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2674 {
2675 struct ata_link *host_link = &link->ap->link;
2676 u32 limit, target, spd;
2677
2678 limit = link->sata_spd_limit;
2679
2680 /* Don't configure downstream link faster than upstream link.
2681 * It doesn't speed up anything and some PMPs choke on such
2682 * configuration.
2683 */
2684 if (!ata_is_host_link(link) && host_link->sata_spd)
2685 limit &= (1 << host_link->sata_spd) - 1;
2686
2687 if (limit == UINT_MAX)
2688 target = 0;
2689 else
2690 target = fls(limit);
2691
2692 spd = (*scontrol >> 4) & 0xf;
2693 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2694
2695 return spd != target;
2696 }
2697
2698 /**
2699 * sata_set_spd_needed - is SATA spd configuration needed
2700 * @link: Link in question
2701 *
2702 * Test whether the spd limit in SControl matches
2703 * @link->sata_spd_limit. This function is used to determine
2704 * whether hardreset is necessary to apply SATA spd
2705 * configuration.
2706 *
2707 * LOCKING:
2708 * Inherited from caller.
2709 *
2710 * RETURNS:
2711 * 1 if SATA spd configuration is needed, 0 otherwise.
2712 */
2713 int sata_set_spd_needed(struct ata_link *link)
2714 {
2715 u32 scontrol;
2716
2717 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2718 return 1;
2719
2720 return __sata_set_spd_needed(link, &scontrol);
2721 }
2722
2723 /**
2724 * sata_set_spd - set SATA spd according to spd limit
2725 * @link: Link to set SATA spd for
2726 *
2727 * Set SATA spd of @link according to sata_spd_limit.
2728 *
2729 * LOCKING:
2730 * Inherited from caller.
2731 *
2732 * RETURNS:
2733 * 0 if spd doesn't need to be changed, 1 if spd has been
2734 * changed. Negative errno if SCR registers are inaccessible.
2735 */
2736 int sata_set_spd(struct ata_link *link)
2737 {
2738 u32 scontrol;
2739 int rc;
2740
2741 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2742 return rc;
2743
2744 if (!__sata_set_spd_needed(link, &scontrol))
2745 return 0;
2746
2747 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2748 return rc;
2749
2750 return 1;
2751 }
2752
2753 /*
2754 * This mode timing computation functionality is ported over from
2755 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2756 */
2757 /*
2758 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2759 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2760 * for UDMA6, which is currently supported only by Maxtor drives.
2761 *
2762 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2763 */
2764
2765 static const struct ata_timing ata_timing[] = {
2766 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2767 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2768 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2769 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2770 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2771 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2772 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2773 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2774
2775 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2776 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2777 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2778
2779 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2780 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2781 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2782 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2783 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2784
2785 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2786 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2787 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2788 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2789 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2790 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2791 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2792 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2793
2794 { 0xFF }
2795 };
2796
2797 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2798 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2799
2800 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2801 {
2802 q->setup = EZ(t->setup * 1000, T);
2803 q->act8b = EZ(t->act8b * 1000, T);
2804 q->rec8b = EZ(t->rec8b * 1000, T);
2805 q->cyc8b = EZ(t->cyc8b * 1000, T);
2806 q->active = EZ(t->active * 1000, T);
2807 q->recover = EZ(t->recover * 1000, T);
2808 q->cycle = EZ(t->cycle * 1000, T);
2809 q->udma = EZ(t->udma * 1000, UT);
2810 }
2811
2812 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2813 struct ata_timing *m, unsigned int what)
2814 {
2815 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2816 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2817 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2818 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2819 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2820 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2821 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2822 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2823 }
2824
2825 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2826 {
2827 const struct ata_timing *t = ata_timing;
2828
2829 while (xfer_mode > t->mode)
2830 t++;
2831
2832 if (xfer_mode == t->mode)
2833 return t;
2834 return NULL;
2835 }
2836
2837 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2838 struct ata_timing *t, int T, int UT)
2839 {
2840 const struct ata_timing *s;
2841 struct ata_timing p;
2842
2843 /*
2844 * Find the mode.
2845 */
2846
2847 if (!(s = ata_timing_find_mode(speed)))
2848 return -EINVAL;
2849
2850 memcpy(t, s, sizeof(*s));
2851
2852 /*
2853 * If the drive is an EIDE drive, it can tell us it needs extended
2854 * PIO/MW_DMA cycle timing.
2855 */
2856
2857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2858 memset(&p, 0, sizeof(p));
2859 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2862 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2864 }
2865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2866 }
2867
2868 /*
2869 * Convert the timing to bus clock counts.
2870 */
2871
2872 ata_timing_quantize(t, t, T, UT);
2873
2874 /*
2875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2876 * S.M.A.R.T * and some other commands. We have to ensure that the
2877 * DMA cycle timing is slower/equal than the fastest PIO timing.
2878 */
2879
2880 if (speed > XFER_PIO_6) {
2881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2883 }
2884
2885 /*
2886 * Lengthen active & recovery time so that cycle time is correct.
2887 */
2888
2889 if (t->act8b + t->rec8b < t->cyc8b) {
2890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2891 t->rec8b = t->cyc8b - t->act8b;
2892 }
2893
2894 if (t->active + t->recover < t->cycle) {
2895 t->active += (t->cycle - (t->active + t->recover)) / 2;
2896 t->recover = t->cycle - t->active;
2897 }
2898
2899 /* In a few cases quantisation may produce enough errors to
2900 leave t->cycle too low for the sum of active and recovery
2901 if so we must correct this */
2902 if (t->active + t->recover > t->cycle)
2903 t->cycle = t->active + t->recover;
2904
2905 return 0;
2906 }
2907
2908 /**
2909 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2910 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2911 * @cycle: cycle duration in ns
2912 *
2913 * Return matching xfer mode for @cycle. The returned mode is of
2914 * the transfer type specified by @xfer_shift. If @cycle is too
2915 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2916 * than the fastest known mode, the fasted mode is returned.
2917 *
2918 * LOCKING:
2919 * None.
2920 *
2921 * RETURNS:
2922 * Matching xfer_mode, 0xff if no match found.
2923 */
2924 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2925 {
2926 u8 base_mode = 0xff, last_mode = 0xff;
2927 const struct ata_xfer_ent *ent;
2928 const struct ata_timing *t;
2929
2930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2931 if (ent->shift == xfer_shift)
2932 base_mode = ent->base;
2933
2934 for (t = ata_timing_find_mode(base_mode);
2935 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2936 unsigned short this_cycle;
2937
2938 switch (xfer_shift) {
2939 case ATA_SHIFT_PIO:
2940 case ATA_SHIFT_MWDMA:
2941 this_cycle = t->cycle;
2942 break;
2943 case ATA_SHIFT_UDMA:
2944 this_cycle = t->udma;
2945 break;
2946 default:
2947 return 0xff;
2948 }
2949
2950 if (cycle > this_cycle)
2951 break;
2952
2953 last_mode = t->mode;
2954 }
2955
2956 return last_mode;
2957 }
2958
2959 /**
2960 * ata_down_xfermask_limit - adjust dev xfer masks downward
2961 * @dev: Device to adjust xfer masks
2962 * @sel: ATA_DNXFER_* selector
2963 *
2964 * Adjust xfer masks of @dev downward. Note that this function
2965 * does not apply the change. Invoking ata_set_mode() afterwards
2966 * will apply the limit.
2967 *
2968 * LOCKING:
2969 * Inherited from caller.
2970 *
2971 * RETURNS:
2972 * 0 on success, negative errno on failure
2973 */
2974 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2975 {
2976 char buf[32];
2977 unsigned long orig_mask, xfer_mask;
2978 unsigned long pio_mask, mwdma_mask, udma_mask;
2979 int quiet, highbit;
2980
2981 quiet = !!(sel & ATA_DNXFER_QUIET);
2982 sel &= ~ATA_DNXFER_QUIET;
2983
2984 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2985 dev->mwdma_mask,
2986 dev->udma_mask);
2987 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2988
2989 switch (sel) {
2990 case ATA_DNXFER_PIO:
2991 highbit = fls(pio_mask) - 1;
2992 pio_mask &= ~(1 << highbit);
2993 break;
2994
2995 case ATA_DNXFER_DMA:
2996 if (udma_mask) {
2997 highbit = fls(udma_mask) - 1;
2998 udma_mask &= ~(1 << highbit);
2999 if (!udma_mask)
3000 return -ENOENT;
3001 } else if (mwdma_mask) {
3002 highbit = fls(mwdma_mask) - 1;
3003 mwdma_mask &= ~(1 << highbit);
3004 if (!mwdma_mask)
3005 return -ENOENT;
3006 }
3007 break;
3008
3009 case ATA_DNXFER_40C:
3010 udma_mask &= ATA_UDMA_MASK_40C;
3011 break;
3012
3013 case ATA_DNXFER_FORCE_PIO0:
3014 pio_mask &= 1;
3015 case ATA_DNXFER_FORCE_PIO:
3016 mwdma_mask = 0;
3017 udma_mask = 0;
3018 break;
3019
3020 default:
3021 BUG();
3022 }
3023
3024 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3025
3026 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3027 return -ENOENT;
3028
3029 if (!quiet) {
3030 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3031 snprintf(buf, sizeof(buf), "%s:%s",
3032 ata_mode_string(xfer_mask),
3033 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3034 else
3035 snprintf(buf, sizeof(buf), "%s",
3036 ata_mode_string(xfer_mask));
3037
3038 ata_dev_printk(dev, KERN_WARNING,
3039 "limiting speed to %s\n", buf);
3040 }
3041
3042 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3043 &dev->udma_mask);
3044
3045 return 0;
3046 }
3047
3048 static int ata_dev_set_mode(struct ata_device *dev)
3049 {
3050 struct ata_eh_context *ehc = &dev->link->eh_context;
3051 unsigned int err_mask;
3052 int rc;
3053
3054 dev->flags &= ~ATA_DFLAG_PIO;
3055 if (dev->xfer_shift == ATA_SHIFT_PIO)
3056 dev->flags |= ATA_DFLAG_PIO;
3057
3058 err_mask = ata_dev_set_xfermode(dev);
3059
3060 /* Old CFA may refuse this command, which is just fine */
3061 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3062 err_mask &= ~AC_ERR_DEV;
3063
3064 /* Some very old devices and some bad newer ones fail any kind of
3065 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3066 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3067 dev->pio_mode <= XFER_PIO_2)
3068 err_mask &= ~AC_ERR_DEV;
3069
3070 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3071 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3072 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3073 dev->dma_mode == XFER_MW_DMA_0 &&
3074 (dev->id[63] >> 8) & 1)
3075 err_mask &= ~AC_ERR_DEV;
3076
3077 if (err_mask) {
3078 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3079 "(err_mask=0x%x)\n", err_mask);
3080 return -EIO;
3081 }
3082
3083 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3084 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3085 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3086 if (rc)
3087 return rc;
3088
3089 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3090 dev->xfer_shift, (int)dev->xfer_mode);
3091
3092 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3093 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3094 return 0;
3095 }
3096
3097 /**
3098 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3099 * @link: link on which timings will be programmed
3100 * @r_failed_dev: out paramter for failed device
3101 *
3102 * Standard implementation of the function used to tune and set
3103 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3104 * ata_dev_set_mode() fails, pointer to the failing device is
3105 * returned in @r_failed_dev.
3106 *
3107 * LOCKING:
3108 * PCI/etc. bus probe sem.
3109 *
3110 * RETURNS:
3111 * 0 on success, negative errno otherwise
3112 */
3113
3114 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3115 {
3116 struct ata_port *ap = link->ap;
3117 struct ata_device *dev;
3118 int rc = 0, used_dma = 0, found = 0;
3119
3120 /* step 1: calculate xfer_mask */
3121 ata_link_for_each_dev(dev, link) {
3122 unsigned long pio_mask, dma_mask;
3123 unsigned int mode_mask;
3124
3125 if (!ata_dev_enabled(dev))
3126 continue;
3127
3128 mode_mask = ATA_DMA_MASK_ATA;
3129 if (dev->class == ATA_DEV_ATAPI)
3130 mode_mask = ATA_DMA_MASK_ATAPI;
3131 else if (ata_id_is_cfa(dev->id))
3132 mode_mask = ATA_DMA_MASK_CFA;
3133
3134 ata_dev_xfermask(dev);
3135
3136 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3137 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3138
3139 if (libata_dma_mask & mode_mask)
3140 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3141 else
3142 dma_mask = 0;
3143
3144 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3145 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3146
3147 found = 1;
3148 if (dev->dma_mode != 0xff)
3149 used_dma = 1;
3150 }
3151 if (!found)
3152 goto out;
3153
3154 /* step 2: always set host PIO timings */
3155 ata_link_for_each_dev(dev, link) {
3156 if (!ata_dev_enabled(dev))
3157 continue;
3158
3159 if (dev->pio_mode == 0xff) {
3160 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3161 rc = -EINVAL;
3162 goto out;
3163 }
3164
3165 dev->xfer_mode = dev->pio_mode;
3166 dev->xfer_shift = ATA_SHIFT_PIO;
3167 if (ap->ops->set_piomode)
3168 ap->ops->set_piomode(ap, dev);
3169 }
3170
3171 /* step 3: set host DMA timings */
3172 ata_link_for_each_dev(dev, link) {
3173 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3174 continue;
3175
3176 dev->xfer_mode = dev->dma_mode;
3177 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3178 if (ap->ops->set_dmamode)
3179 ap->ops->set_dmamode(ap, dev);
3180 }
3181
3182 /* step 4: update devices' xfer mode */
3183 ata_link_for_each_dev(dev, link) {
3184 /* don't update suspended devices' xfer mode */
3185 if (!ata_dev_enabled(dev))
3186 continue;
3187
3188 rc = ata_dev_set_mode(dev);
3189 if (rc)
3190 goto out;
3191 }
3192
3193 /* Record simplex status. If we selected DMA then the other
3194 * host channels are not permitted to do so.
3195 */
3196 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3197 ap->host->simplex_claimed = ap;
3198
3199 out:
3200 if (rc)
3201 *r_failed_dev = dev;
3202 return rc;
3203 }
3204
3205 /**
3206 * ata_tf_to_host - issue ATA taskfile to host controller
3207 * @ap: port to which command is being issued
3208 * @tf: ATA taskfile register set
3209 *
3210 * Issues ATA taskfile register set to ATA host controller,
3211 * with proper synchronization with interrupt handler and
3212 * other threads.
3213 *
3214 * LOCKING:
3215 * spin_lock_irqsave(host lock)
3216 */
3217
3218 static inline void ata_tf_to_host(struct ata_port *ap,
3219 const struct ata_taskfile *tf)
3220 {
3221 ap->ops->tf_load(ap, tf);
3222 ap->ops->exec_command(ap, tf);
3223 }
3224
3225 /**
3226 * ata_busy_sleep - sleep until BSY clears, or timeout
3227 * @ap: port containing status register to be polled
3228 * @tmout_pat: impatience timeout
3229 * @tmout: overall timeout
3230 *
3231 * Sleep until ATA Status register bit BSY clears,
3232 * or a timeout occurs.
3233 *
3234 * LOCKING:
3235 * Kernel thread context (may sleep).
3236 *
3237 * RETURNS:
3238 * 0 on success, -errno otherwise.
3239 */
3240 int ata_busy_sleep(struct ata_port *ap,
3241 unsigned long tmout_pat, unsigned long tmout)
3242 {
3243 unsigned long timer_start, timeout;
3244 u8 status;
3245
3246 status = ata_busy_wait(ap, ATA_BUSY, 300);
3247 timer_start = jiffies;
3248 timeout = timer_start + tmout_pat;
3249 while (status != 0xff && (status & ATA_BUSY) &&
3250 time_before(jiffies, timeout)) {
3251 msleep(50);
3252 status = ata_busy_wait(ap, ATA_BUSY, 3);
3253 }
3254
3255 if (status != 0xff && (status & ATA_BUSY))
3256 ata_port_printk(ap, KERN_WARNING,
3257 "port is slow to respond, please be patient "
3258 "(Status 0x%x)\n", status);
3259
3260 timeout = timer_start + tmout;
3261 while (status != 0xff && (status & ATA_BUSY) &&
3262 time_before(jiffies, timeout)) {
3263 msleep(50);
3264 status = ata_chk_status(ap);
3265 }
3266
3267 if (status == 0xff)
3268 return -ENODEV;
3269
3270 if (status & ATA_BUSY) {
3271 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3272 "(%lu secs, Status 0x%x)\n",
3273 tmout / HZ, status);
3274 return -EBUSY;
3275 }
3276
3277 return 0;
3278 }
3279
3280 /**
3281 * ata_wait_after_reset - wait before checking status after reset
3282 * @ap: port containing status register to be polled
3283 * @deadline: deadline jiffies for the operation
3284 *
3285 * After reset, we need to pause a while before reading status.
3286 * Also, certain combination of controller and device report 0xff
3287 * for some duration (e.g. until SATA PHY is up and running)
3288 * which is interpreted as empty port in ATA world. This
3289 * function also waits for such devices to get out of 0xff
3290 * status.
3291 *
3292 * LOCKING:
3293 * Kernel thread context (may sleep).
3294 */
3295 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3296 {
3297 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3298
3299 if (time_before(until, deadline))
3300 deadline = until;
3301
3302 /* Spec mandates ">= 2ms" before checking status. We wait
3303 * 150ms, because that was the magic delay used for ATAPI
3304 * devices in Hale Landis's ATADRVR, for the period of time
3305 * between when the ATA command register is written, and then
3306 * status is checked. Because waiting for "a while" before
3307 * checking status is fine, post SRST, we perform this magic
3308 * delay here as well.
3309 *
3310 * Old drivers/ide uses the 2mS rule and then waits for ready.
3311 */
3312 msleep(150);
3313
3314 /* Wait for 0xff to clear. Some SATA devices take a long time
3315 * to clear 0xff after reset. For example, HHD424020F7SV00
3316 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3317 * than that.
3318 *
3319 * Note that some PATA controllers (pata_ali) explode if
3320 * status register is read more than once when there's no
3321 * device attached.
3322 */
3323 if (ap->flags & ATA_FLAG_SATA) {
3324 while (1) {
3325 u8 status = ata_chk_status(ap);
3326
3327 if (status != 0xff || time_after(jiffies, deadline))
3328 return;
3329
3330 msleep(50);
3331 }
3332 }
3333 }
3334
3335 /**
3336 * ata_wait_ready - sleep until BSY clears, or timeout
3337 * @ap: port containing status register to be polled
3338 * @deadline: deadline jiffies for the operation
3339 *
3340 * Sleep until ATA Status register bit BSY clears, or timeout
3341 * occurs.
3342 *
3343 * LOCKING:
3344 * Kernel thread context (may sleep).
3345 *
3346 * RETURNS:
3347 * 0 on success, -errno otherwise.
3348 */
3349 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3350 {
3351 unsigned long start = jiffies;
3352 int warned = 0;
3353
3354 while (1) {
3355 u8 status = ata_chk_status(ap);
3356 unsigned long now = jiffies;
3357
3358 if (!(status & ATA_BUSY))
3359 return 0;
3360 if (!ata_link_online(&ap->link) && status == 0xff)
3361 return -ENODEV;
3362 if (time_after(now, deadline))
3363 return -EBUSY;
3364
3365 if (!warned && time_after(now, start + 5 * HZ) &&
3366 (deadline - now > 3 * HZ)) {
3367 ata_port_printk(ap, KERN_WARNING,
3368 "port is slow to respond, please be patient "
3369 "(Status 0x%x)\n", status);
3370 warned = 1;
3371 }
3372
3373 msleep(50);
3374 }
3375 }
3376
3377 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3378 unsigned long deadline)
3379 {
3380 struct ata_ioports *ioaddr = &ap->ioaddr;
3381 unsigned int dev0 = devmask & (1 << 0);
3382 unsigned int dev1 = devmask & (1 << 1);
3383 int rc, ret = 0;
3384
3385 /* if device 0 was found in ata_devchk, wait for its
3386 * BSY bit to clear
3387 */
3388 if (dev0) {
3389 rc = ata_wait_ready(ap, deadline);
3390 if (rc) {
3391 if (rc != -ENODEV)
3392 return rc;
3393 ret = rc;
3394 }
3395 }
3396
3397 /* if device 1 was found in ata_devchk, wait for register
3398 * access briefly, then wait for BSY to clear.
3399 */
3400 if (dev1) {
3401 int i;
3402
3403 ap->ops->dev_select(ap, 1);
3404
3405 /* Wait for register access. Some ATAPI devices fail
3406 * to set nsect/lbal after reset, so don't waste too
3407 * much time on it. We're gonna wait for !BSY anyway.
3408 */
3409 for (i = 0; i < 2; i++) {
3410 u8 nsect, lbal;
3411
3412 nsect = ioread8(ioaddr->nsect_addr);
3413 lbal = ioread8(ioaddr->lbal_addr);
3414 if ((nsect == 1) && (lbal == 1))
3415 break;
3416 msleep(50); /* give drive a breather */
3417 }
3418
3419 rc = ata_wait_ready(ap, deadline);
3420 if (rc) {
3421 if (rc != -ENODEV)
3422 return rc;
3423 ret = rc;
3424 }
3425 }
3426
3427 /* is all this really necessary? */
3428 ap->ops->dev_select(ap, 0);
3429 if (dev1)
3430 ap->ops->dev_select(ap, 1);
3431 if (dev0)
3432 ap->ops->dev_select(ap, 0);
3433
3434 return ret;
3435 }
3436
3437 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3438 unsigned long deadline)
3439 {
3440 struct ata_ioports *ioaddr = &ap->ioaddr;
3441
3442 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3443
3444 /* software reset. causes dev0 to be selected */
3445 iowrite8(ap->ctl, ioaddr->ctl_addr);
3446 udelay(20); /* FIXME: flush */
3447 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3448 udelay(20); /* FIXME: flush */
3449 iowrite8(ap->ctl, ioaddr->ctl_addr);
3450
3451 /* wait a while before checking status */
3452 ata_wait_after_reset(ap, deadline);
3453
3454 /* Before we perform post reset processing we want to see if
3455 * the bus shows 0xFF because the odd clown forgets the D7
3456 * pulldown resistor.
3457 */
3458 if (ata_chk_status(ap) == 0xFF)
3459 return -ENODEV;
3460
3461 return ata_bus_post_reset(ap, devmask, deadline);
3462 }
3463
3464 /**
3465 * ata_bus_reset - reset host port and associated ATA channel
3466 * @ap: port to reset
3467 *
3468 * This is typically the first time we actually start issuing
3469 * commands to the ATA channel. We wait for BSY to clear, then
3470 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3471 * result. Determine what devices, if any, are on the channel
3472 * by looking at the device 0/1 error register. Look at the signature
3473 * stored in each device's taskfile registers, to determine if
3474 * the device is ATA or ATAPI.
3475 *
3476 * LOCKING:
3477 * PCI/etc. bus probe sem.
3478 * Obtains host lock.
3479 *
3480 * SIDE EFFECTS:
3481 * Sets ATA_FLAG_DISABLED if bus reset fails.
3482 */
3483
3484 void ata_bus_reset(struct ata_port *ap)
3485 {
3486 struct ata_device *device = ap->link.device;
3487 struct ata_ioports *ioaddr = &ap->ioaddr;
3488 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3489 u8 err;
3490 unsigned int dev0, dev1 = 0, devmask = 0;
3491 int rc;
3492
3493 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3494
3495 /* determine if device 0/1 are present */
3496 if (ap->flags & ATA_FLAG_SATA_RESET)
3497 dev0 = 1;
3498 else {
3499 dev0 = ata_devchk(ap, 0);
3500 if (slave_possible)
3501 dev1 = ata_devchk(ap, 1);
3502 }
3503
3504 if (dev0)
3505 devmask |= (1 << 0);
3506 if (dev1)
3507 devmask |= (1 << 1);
3508
3509 /* select device 0 again */
3510 ap->ops->dev_select(ap, 0);
3511
3512 /* issue bus reset */
3513 if (ap->flags & ATA_FLAG_SRST) {
3514 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3515 if (rc && rc != -ENODEV)
3516 goto err_out;
3517 }
3518
3519 /*
3520 * determine by signature whether we have ATA or ATAPI devices
3521 */
3522 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3523 if ((slave_possible) && (err != 0x81))
3524 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3525
3526 /* is double-select really necessary? */
3527 if (device[1].class != ATA_DEV_NONE)
3528 ap->ops->dev_select(ap, 1);
3529 if (device[0].class != ATA_DEV_NONE)
3530 ap->ops->dev_select(ap, 0);
3531
3532 /* if no devices were detected, disable this port */
3533 if ((device[0].class == ATA_DEV_NONE) &&
3534 (device[1].class == ATA_DEV_NONE))
3535 goto err_out;
3536
3537 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3538 /* set up device control for ATA_FLAG_SATA_RESET */
3539 iowrite8(ap->ctl, ioaddr->ctl_addr);
3540 }
3541
3542 DPRINTK("EXIT\n");
3543 return;
3544
3545 err_out:
3546 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3547 ata_port_disable(ap);
3548
3549 DPRINTK("EXIT\n");
3550 }
3551
3552 /**
3553 * sata_link_debounce - debounce SATA phy status
3554 * @link: ATA link to debounce SATA phy status for
3555 * @params: timing parameters { interval, duratinon, timeout } in msec
3556 * @deadline: deadline jiffies for the operation
3557 *
3558 * Make sure SStatus of @link reaches stable state, determined by
3559 * holding the same value where DET is not 1 for @duration polled
3560 * every @interval, before @timeout. Timeout constraints the
3561 * beginning of the stable state. Because DET gets stuck at 1 on
3562 * some controllers after hot unplugging, this functions waits
3563 * until timeout then returns 0 if DET is stable at 1.
3564 *
3565 * @timeout is further limited by @deadline. The sooner of the
3566 * two is used.
3567 *
3568 * LOCKING:
3569 * Kernel thread context (may sleep)
3570 *
3571 * RETURNS:
3572 * 0 on success, -errno on failure.
3573 */
3574 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3575 unsigned long deadline)
3576 {
3577 unsigned long interval_msec = params[0];
3578 unsigned long duration = msecs_to_jiffies(params[1]);
3579 unsigned long last_jiffies, t;
3580 u32 last, cur;
3581 int rc;
3582
3583 t = jiffies + msecs_to_jiffies(params[2]);
3584 if (time_before(t, deadline))
3585 deadline = t;
3586
3587 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3588 return rc;
3589 cur &= 0xf;
3590
3591 last = cur;
3592 last_jiffies = jiffies;
3593
3594 while (1) {
3595 msleep(interval_msec);
3596 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3597 return rc;
3598 cur &= 0xf;
3599
3600 /* DET stable? */
3601 if (cur == last) {
3602 if (cur == 1 && time_before(jiffies, deadline))
3603 continue;
3604 if (time_after(jiffies, last_jiffies + duration))
3605 return 0;
3606 continue;
3607 }
3608
3609 /* unstable, start over */
3610 last = cur;
3611 last_jiffies = jiffies;
3612
3613 /* Check deadline. If debouncing failed, return
3614 * -EPIPE to tell upper layer to lower link speed.
3615 */
3616 if (time_after(jiffies, deadline))
3617 return -EPIPE;
3618 }
3619 }
3620
3621 /**
3622 * sata_link_resume - resume SATA link
3623 * @link: ATA link to resume SATA
3624 * @params: timing parameters { interval, duratinon, timeout } in msec
3625 * @deadline: deadline jiffies for the operation
3626 *
3627 * Resume SATA phy @link and debounce it.
3628 *
3629 * LOCKING:
3630 * Kernel thread context (may sleep)
3631 *
3632 * RETURNS:
3633 * 0 on success, -errno on failure.
3634 */
3635 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3636 unsigned long deadline)
3637 {
3638 u32 scontrol;
3639 int rc;
3640
3641 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3642 return rc;
3643
3644 scontrol = (scontrol & 0x0f0) | 0x300;
3645
3646 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3647 return rc;
3648
3649 /* Some PHYs react badly if SStatus is pounded immediately
3650 * after resuming. Delay 200ms before debouncing.
3651 */
3652 msleep(200);
3653
3654 return sata_link_debounce(link, params, deadline);
3655 }
3656
3657 /**
3658 * ata_std_prereset - prepare for reset
3659 * @link: ATA link to be reset
3660 * @deadline: deadline jiffies for the operation
3661 *
3662 * @link is about to be reset. Initialize it. Failure from
3663 * prereset makes libata abort whole reset sequence and give up
3664 * that port, so prereset should be best-effort. It does its
3665 * best to prepare for reset sequence but if things go wrong, it
3666 * should just whine, not fail.
3667 *
3668 * LOCKING:
3669 * Kernel thread context (may sleep)
3670 *
3671 * RETURNS:
3672 * 0 on success, -errno otherwise.
3673 */
3674 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3675 {
3676 struct ata_port *ap = link->ap;
3677 struct ata_eh_context *ehc = &link->eh_context;
3678 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3679 int rc;
3680
3681 /* handle link resume */
3682 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3683 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3684 ehc->i.action |= ATA_EH_HARDRESET;
3685
3686 /* Some PMPs don't work with only SRST, force hardreset if PMP
3687 * is supported.
3688 */
3689 if (ap->flags & ATA_FLAG_PMP)
3690 ehc->i.action |= ATA_EH_HARDRESET;
3691
3692 /* if we're about to do hardreset, nothing more to do */
3693 if (ehc->i.action & ATA_EH_HARDRESET)
3694 return 0;
3695
3696 /* if SATA, resume link */
3697 if (ap->flags & ATA_FLAG_SATA) {
3698 rc = sata_link_resume(link, timing, deadline);
3699 /* whine about phy resume failure but proceed */
3700 if (rc && rc != -EOPNOTSUPP)
3701 ata_link_printk(link, KERN_WARNING, "failed to resume "
3702 "link for reset (errno=%d)\n", rc);
3703 }
3704
3705 /* Wait for !BSY if the controller can wait for the first D2H
3706 * Reg FIS and we don't know that no device is attached.
3707 */
3708 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3709 rc = ata_wait_ready(ap, deadline);
3710 if (rc && rc != -ENODEV) {
3711 ata_link_printk(link, KERN_WARNING, "device not ready "
3712 "(errno=%d), forcing hardreset\n", rc);
3713 ehc->i.action |= ATA_EH_HARDRESET;
3714 }
3715 }
3716
3717 return 0;
3718 }
3719
3720 /**
3721 * ata_std_softreset - reset host port via ATA SRST
3722 * @link: ATA link to reset
3723 * @classes: resulting classes of attached devices
3724 * @deadline: deadline jiffies for the operation
3725 *
3726 * Reset host port using ATA SRST.
3727 *
3728 * LOCKING:
3729 * Kernel thread context (may sleep)
3730 *
3731 * RETURNS:
3732 * 0 on success, -errno otherwise.
3733 */
3734 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3735 unsigned long deadline)
3736 {
3737 struct ata_port *ap = link->ap;
3738 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3739 unsigned int devmask = 0;
3740 int rc;
3741 u8 err;
3742
3743 DPRINTK("ENTER\n");
3744
3745 if (ata_link_offline(link)) {
3746 classes[0] = ATA_DEV_NONE;
3747 goto out;
3748 }
3749
3750 /* determine if device 0/1 are present */
3751 if (ata_devchk(ap, 0))
3752 devmask |= (1 << 0);
3753 if (slave_possible && ata_devchk(ap, 1))
3754 devmask |= (1 << 1);
3755
3756 /* select device 0 again */
3757 ap->ops->dev_select(ap, 0);
3758
3759 /* issue bus reset */
3760 DPRINTK("about to softreset, devmask=%x\n", devmask);
3761 rc = ata_bus_softreset(ap, devmask, deadline);
3762 /* if link is occupied, -ENODEV too is an error */
3763 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3764 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3765 return rc;
3766 }
3767
3768 /* determine by signature whether we have ATA or ATAPI devices */
3769 classes[0] = ata_dev_try_classify(&link->device[0],
3770 devmask & (1 << 0), &err);
3771 if (slave_possible && err != 0x81)
3772 classes[1] = ata_dev_try_classify(&link->device[1],
3773 devmask & (1 << 1), &err);
3774
3775 out:
3776 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3777 return 0;
3778 }
3779
3780 /**
3781 * sata_link_hardreset - reset link via SATA phy reset
3782 * @link: link to reset
3783 * @timing: timing parameters { interval, duratinon, timeout } in msec
3784 * @deadline: deadline jiffies for the operation
3785 *
3786 * SATA phy-reset @link using DET bits of SControl register.
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 *
3791 * RETURNS:
3792 * 0 on success, -errno otherwise.
3793 */
3794 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3795 unsigned long deadline)
3796 {
3797 u32 scontrol;
3798 int rc;
3799
3800 DPRINTK("ENTER\n");
3801
3802 if (sata_set_spd_needed(link)) {
3803 /* SATA spec says nothing about how to reconfigure
3804 * spd. To be on the safe side, turn off phy during
3805 * reconfiguration. This works for at least ICH7 AHCI
3806 * and Sil3124.
3807 */
3808 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3809 goto out;
3810
3811 scontrol = (scontrol & 0x0f0) | 0x304;
3812
3813 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3814 goto out;
3815
3816 sata_set_spd(link);
3817 }
3818
3819 /* issue phy wake/reset */
3820 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3821 goto out;
3822
3823 scontrol = (scontrol & 0x0f0) | 0x301;
3824
3825 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3826 goto out;
3827
3828 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3829 * 10.4.2 says at least 1 ms.
3830 */
3831 msleep(1);
3832
3833 /* bring link back */
3834 rc = sata_link_resume(link, timing, deadline);
3835 out:
3836 DPRINTK("EXIT, rc=%d\n", rc);
3837 return rc;
3838 }
3839
3840 /**
3841 * sata_std_hardreset - reset host port via SATA phy reset
3842 * @link: link to reset
3843 * @class: resulting class of attached device
3844 * @deadline: deadline jiffies for the operation
3845 *
3846 * SATA phy-reset host port using DET bits of SControl register,
3847 * wait for !BSY and classify the attached device.
3848 *
3849 * LOCKING:
3850 * Kernel thread context (may sleep)
3851 *
3852 * RETURNS:
3853 * 0 on success, -errno otherwise.
3854 */
3855 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3856 unsigned long deadline)
3857 {
3858 struct ata_port *ap = link->ap;
3859 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3860 int rc;
3861
3862 DPRINTK("ENTER\n");
3863
3864 /* do hardreset */
3865 rc = sata_link_hardreset(link, timing, deadline);
3866 if (rc) {
3867 ata_link_printk(link, KERN_ERR,
3868 "COMRESET failed (errno=%d)\n", rc);
3869 return rc;
3870 }
3871
3872 /* TODO: phy layer with polling, timeouts, etc. */
3873 if (ata_link_offline(link)) {
3874 *class = ATA_DEV_NONE;
3875 DPRINTK("EXIT, link offline\n");
3876 return 0;
3877 }
3878
3879 /* wait a while before checking status */
3880 ata_wait_after_reset(ap, deadline);
3881
3882 /* If PMP is supported, we have to do follow-up SRST. Note
3883 * that some PMPs don't send D2H Reg FIS after hardreset at
3884 * all if the first port is empty. Wait for it just for a
3885 * second and request follow-up SRST.
3886 */
3887 if (ap->flags & ATA_FLAG_PMP) {
3888 ata_wait_ready(ap, jiffies + HZ);
3889 return -EAGAIN;
3890 }
3891
3892 rc = ata_wait_ready(ap, deadline);
3893 /* link occupied, -ENODEV too is an error */
3894 if (rc) {
3895 ata_link_printk(link, KERN_ERR,
3896 "COMRESET failed (errno=%d)\n", rc);
3897 return rc;
3898 }
3899
3900 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3901
3902 *class = ata_dev_try_classify(link->device, 1, NULL);
3903
3904 DPRINTK("EXIT, class=%u\n", *class);
3905 return 0;
3906 }
3907
3908 /**
3909 * ata_std_postreset - standard postreset callback
3910 * @link: the target ata_link
3911 * @classes: classes of attached devices
3912 *
3913 * This function is invoked after a successful reset. Note that
3914 * the device might have been reset more than once using
3915 * different reset methods before postreset is invoked.
3916 *
3917 * LOCKING:
3918 * Kernel thread context (may sleep)
3919 */
3920 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3921 {
3922 struct ata_port *ap = link->ap;
3923 u32 serror;
3924
3925 DPRINTK("ENTER\n");
3926
3927 /* print link status */
3928 sata_print_link_status(link);
3929
3930 /* clear SError */
3931 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3932 sata_scr_write(link, SCR_ERROR, serror);
3933 link->eh_info.serror = 0;
3934
3935 /* is double-select really necessary? */
3936 if (classes[0] != ATA_DEV_NONE)
3937 ap->ops->dev_select(ap, 1);
3938 if (classes[1] != ATA_DEV_NONE)
3939 ap->ops->dev_select(ap, 0);
3940
3941 /* bail out if no device is present */
3942 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3943 DPRINTK("EXIT, no device\n");
3944 return;
3945 }
3946
3947 /* set up device control */
3948 if (ap->ioaddr.ctl_addr)
3949 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3950
3951 DPRINTK("EXIT\n");
3952 }
3953
3954 /**
3955 * ata_dev_same_device - Determine whether new ID matches configured device
3956 * @dev: device to compare against
3957 * @new_class: class of the new device
3958 * @new_id: IDENTIFY page of the new device
3959 *
3960 * Compare @new_class and @new_id against @dev and determine
3961 * whether @dev is the device indicated by @new_class and
3962 * @new_id.
3963 *
3964 * LOCKING:
3965 * None.
3966 *
3967 * RETURNS:
3968 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3969 */
3970 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3971 const u16 *new_id)
3972 {
3973 const u16 *old_id = dev->id;
3974 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3975 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3976
3977 if (dev->class != new_class) {
3978 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3979 dev->class, new_class);
3980 return 0;
3981 }
3982
3983 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3984 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3985 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3986 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3987
3988 if (strcmp(model[0], model[1])) {
3989 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3990 "'%s' != '%s'\n", model[0], model[1]);
3991 return 0;
3992 }
3993
3994 if (strcmp(serial[0], serial[1])) {
3995 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3996 "'%s' != '%s'\n", serial[0], serial[1]);
3997 return 0;
3998 }
3999
4000 return 1;
4001 }
4002
4003 /**
4004 * ata_dev_reread_id - Re-read IDENTIFY data
4005 * @dev: target ATA device
4006 * @readid_flags: read ID flags
4007 *
4008 * Re-read IDENTIFY page and make sure @dev is still attached to
4009 * the port.
4010 *
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4013 *
4014 * RETURNS:
4015 * 0 on success, negative errno otherwise
4016 */
4017 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4018 {
4019 unsigned int class = dev->class;
4020 u16 *id = (void *)dev->link->ap->sector_buf;
4021 int rc;
4022
4023 /* read ID data */
4024 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4025 if (rc)
4026 return rc;
4027
4028 /* is the device still there? */
4029 if (!ata_dev_same_device(dev, class, id))
4030 return -ENODEV;
4031
4032 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4033 return 0;
4034 }
4035
4036 /**
4037 * ata_dev_revalidate - Revalidate ATA device
4038 * @dev: device to revalidate
4039 * @new_class: new class code
4040 * @readid_flags: read ID flags
4041 *
4042 * Re-read IDENTIFY page, make sure @dev is still attached to the
4043 * port and reconfigure it according to the new IDENTIFY page.
4044 *
4045 * LOCKING:
4046 * Kernel thread context (may sleep)
4047 *
4048 * RETURNS:
4049 * 0 on success, negative errno otherwise
4050 */
4051 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4052 unsigned int readid_flags)
4053 {
4054 u64 n_sectors = dev->n_sectors;
4055 int rc;
4056
4057 if (!ata_dev_enabled(dev))
4058 return -ENODEV;
4059
4060 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4061 if (ata_class_enabled(new_class) &&
4062 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4063 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4064 dev->class, new_class);
4065 rc = -ENODEV;
4066 goto fail;
4067 }
4068
4069 /* re-read ID */
4070 rc = ata_dev_reread_id(dev, readid_flags);
4071 if (rc)
4072 goto fail;
4073
4074 /* configure device according to the new ID */
4075 rc = ata_dev_configure(dev);
4076 if (rc)
4077 goto fail;
4078
4079 /* verify n_sectors hasn't changed */
4080 if (dev->class == ATA_DEV_ATA && n_sectors &&
4081 dev->n_sectors != n_sectors) {
4082 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4083 "%llu != %llu\n",
4084 (unsigned long long)n_sectors,
4085 (unsigned long long)dev->n_sectors);
4086
4087 /* restore original n_sectors */
4088 dev->n_sectors = n_sectors;
4089
4090 rc = -ENODEV;
4091 goto fail;
4092 }
4093
4094 return 0;
4095
4096 fail:
4097 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4098 return rc;
4099 }
4100
4101 struct ata_blacklist_entry {
4102 const char *model_num;
4103 const char *model_rev;
4104 unsigned long horkage;
4105 };
4106
4107 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4108 /* Devices with DMA related problems under Linux */
4109 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4110 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4115 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4116 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4117 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4118 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4126 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4127 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4128 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4129 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4130 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4131 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4132 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4134 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4136 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4138 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4141 ATA_HORKAGE_SKIP_PM },
4142
4143 /* Weird ATAPI devices */
4144 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4145
4146 /* Devices we expect to fail diagnostics */
4147
4148 /* Devices where NCQ should be avoided */
4149 /* NCQ is slow */
4150 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4151 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4152 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4153 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4154 /* NCQ is broken */
4155 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4156 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4157 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4158 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4161
4162 /* Blacklist entries taken from Silicon Image 3124/3132
4163 Windows driver .inf file - also several Linux problem reports */
4164 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4165 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4166 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4167
4168 /* devices which puke on READ_NATIVE_MAX */
4169 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4170 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4171 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4172 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4173
4174 /* Devices which report 1 sector over size HPA */
4175 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4176 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4177
4178 /* Devices which get the IVB wrong */
4179 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4180 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4181 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4182 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4183 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4184
4185 /* End Marker */
4186 { }
4187 };
4188
4189 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4190 {
4191 const char *p;
4192 int len;
4193
4194 /*
4195 * check for trailing wildcard: *\0
4196 */
4197 p = strchr(patt, wildchar);
4198 if (p && ((*(p + 1)) == 0))
4199 len = p - patt;
4200 else {
4201 len = strlen(name);
4202 if (!len) {
4203 if (!*patt)
4204 return 0;
4205 return -1;
4206 }
4207 }
4208
4209 return strncmp(patt, name, len);
4210 }
4211
4212 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4213 {
4214 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4215 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4216 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4217
4218 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4219 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4220
4221 while (ad->model_num) {
4222 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4223 if (ad->model_rev == NULL)
4224 return ad->horkage;
4225 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4226 return ad->horkage;
4227 }
4228 ad++;
4229 }
4230 return 0;
4231 }
4232
4233 static int ata_dma_blacklisted(const struct ata_device *dev)
4234 {
4235 /* We don't support polling DMA.
4236 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4237 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4238 */
4239 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4240 (dev->flags & ATA_DFLAG_CDB_INTR))
4241 return 1;
4242 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4243 }
4244
4245 /**
4246 * ata_is_40wire - check drive side detection
4247 * @dev: device
4248 *
4249 * Perform drive side detection decoding, allowing for device vendors
4250 * who can't follow the documentation.
4251 */
4252
4253 static int ata_is_40wire(struct ata_device *dev)
4254 {
4255 if (dev->horkage & ATA_HORKAGE_IVB)
4256 return ata_drive_40wire_relaxed(dev->id);
4257 return ata_drive_40wire(dev->id);
4258 }
4259
4260 /**
4261 * ata_dev_xfermask - Compute supported xfermask of the given device
4262 * @dev: Device to compute xfermask for
4263 *
4264 * Compute supported xfermask of @dev and store it in
4265 * dev->*_mask. This function is responsible for applying all
4266 * known limits including host controller limits, device
4267 * blacklist, etc...
4268 *
4269 * LOCKING:
4270 * None.
4271 */
4272 static void ata_dev_xfermask(struct ata_device *dev)
4273 {
4274 struct ata_link *link = dev->link;
4275 struct ata_port *ap = link->ap;
4276 struct ata_host *host = ap->host;
4277 unsigned long xfer_mask;
4278
4279 /* controller modes available */
4280 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4281 ap->mwdma_mask, ap->udma_mask);
4282
4283 /* drive modes available */
4284 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4285 dev->mwdma_mask, dev->udma_mask);
4286 xfer_mask &= ata_id_xfermask(dev->id);
4287
4288 /*
4289 * CFA Advanced TrueIDE timings are not allowed on a shared
4290 * cable
4291 */
4292 if (ata_dev_pair(dev)) {
4293 /* No PIO5 or PIO6 */
4294 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4295 /* No MWDMA3 or MWDMA 4 */
4296 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4297 }
4298
4299 if (ata_dma_blacklisted(dev)) {
4300 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4301 ata_dev_printk(dev, KERN_WARNING,
4302 "device is on DMA blacklist, disabling DMA\n");
4303 }
4304
4305 if ((host->flags & ATA_HOST_SIMPLEX) &&
4306 host->simplex_claimed && host->simplex_claimed != ap) {
4307 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4308 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4309 "other device, disabling DMA\n");
4310 }
4311
4312 if (ap->flags & ATA_FLAG_NO_IORDY)
4313 xfer_mask &= ata_pio_mask_no_iordy(dev);
4314
4315 if (ap->ops->mode_filter)
4316 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4317
4318 /* Apply cable rule here. Don't apply it early because when
4319 * we handle hot plug the cable type can itself change.
4320 * Check this last so that we know if the transfer rate was
4321 * solely limited by the cable.
4322 * Unknown or 80 wire cables reported host side are checked
4323 * drive side as well. Cases where we know a 40wire cable
4324 * is used safely for 80 are not checked here.
4325 */
4326 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4327 /* UDMA/44 or higher would be available */
4328 if ((ap->cbl == ATA_CBL_PATA40) ||
4329 (ata_is_40wire(dev) &&
4330 (ap->cbl == ATA_CBL_PATA_UNK ||
4331 ap->cbl == ATA_CBL_PATA80))) {
4332 ata_dev_printk(dev, KERN_WARNING,
4333 "limited to UDMA/33 due to 40-wire cable\n");
4334 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4335 }
4336
4337 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4338 &dev->mwdma_mask, &dev->udma_mask);
4339 }
4340
4341 /**
4342 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4343 * @dev: Device to which command will be sent
4344 *
4345 * Issue SET FEATURES - XFER MODE command to device @dev
4346 * on port @ap.
4347 *
4348 * LOCKING:
4349 * PCI/etc. bus probe sem.
4350 *
4351 * RETURNS:
4352 * 0 on success, AC_ERR_* mask otherwise.
4353 */
4354
4355 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4356 {
4357 struct ata_taskfile tf;
4358 unsigned int err_mask;
4359
4360 /* set up set-features taskfile */
4361 DPRINTK("set features - xfer mode\n");
4362
4363 /* Some controllers and ATAPI devices show flaky interrupt
4364 * behavior after setting xfer mode. Use polling instead.
4365 */
4366 ata_tf_init(dev, &tf);
4367 tf.command = ATA_CMD_SET_FEATURES;
4368 tf.feature = SETFEATURES_XFER;
4369 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4370 tf.protocol = ATA_PROT_NODATA;
4371 /* If we are using IORDY we must send the mode setting command */
4372 if (ata_pio_need_iordy(dev))
4373 tf.nsect = dev->xfer_mode;
4374 /* If the device has IORDY and the controller does not - turn it off */
4375 else if (ata_id_has_iordy(dev->id))
4376 tf.nsect = 0x01;
4377 else /* In the ancient relic department - skip all of this */
4378 return 0;
4379
4380 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4381
4382 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4383 return err_mask;
4384 }
4385 /**
4386 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4387 * @dev: Device to which command will be sent
4388 * @enable: Whether to enable or disable the feature
4389 * @feature: The sector count represents the feature to set
4390 *
4391 * Issue SET FEATURES - SATA FEATURES command to device @dev
4392 * on port @ap with sector count
4393 *
4394 * LOCKING:
4395 * PCI/etc. bus probe sem.
4396 *
4397 * RETURNS:
4398 * 0 on success, AC_ERR_* mask otherwise.
4399 */
4400 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4401 u8 feature)
4402 {
4403 struct ata_taskfile tf;
4404 unsigned int err_mask;
4405
4406 /* set up set-features taskfile */
4407 DPRINTK("set features - SATA features\n");
4408
4409 ata_tf_init(dev, &tf);
4410 tf.command = ATA_CMD_SET_FEATURES;
4411 tf.feature = enable;
4412 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4413 tf.protocol = ATA_PROT_NODATA;
4414 tf.nsect = feature;
4415
4416 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4417
4418 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4419 return err_mask;
4420 }
4421
4422 /**
4423 * ata_dev_init_params - Issue INIT DEV PARAMS command
4424 * @dev: Device to which command will be sent
4425 * @heads: Number of heads (taskfile parameter)
4426 * @sectors: Number of sectors (taskfile parameter)
4427 *
4428 * LOCKING:
4429 * Kernel thread context (may sleep)
4430 *
4431 * RETURNS:
4432 * 0 on success, AC_ERR_* mask otherwise.
4433 */
4434 static unsigned int ata_dev_init_params(struct ata_device *dev,
4435 u16 heads, u16 sectors)
4436 {
4437 struct ata_taskfile tf;
4438 unsigned int err_mask;
4439
4440 /* Number of sectors per track 1-255. Number of heads 1-16 */
4441 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4442 return AC_ERR_INVALID;
4443
4444 /* set up init dev params taskfile */
4445 DPRINTK("init dev params \n");
4446
4447 ata_tf_init(dev, &tf);
4448 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
4451 tf.nsect = sectors;
4452 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4453
4454 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4455 /* A clean abort indicates an original or just out of spec drive
4456 and we should continue as we issue the setup based on the
4457 drive reported working geometry */
4458 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4459 err_mask = 0;
4460
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
4463 }
4464
4465 /**
4466 * ata_sg_clean - Unmap DMA memory associated with command
4467 * @qc: Command containing DMA memory to be released
4468 *
4469 * Unmap all mapped DMA memory associated with this command.
4470 *
4471 * LOCKING:
4472 * spin_lock_irqsave(host lock)
4473 */
4474 void ata_sg_clean(struct ata_queued_cmd *qc)
4475 {
4476 struct ata_port *ap = qc->ap;
4477 struct scatterlist *sg = qc->sg;
4478 int dir = qc->dma_dir;
4479 void *pad_buf = NULL;
4480
4481 WARN_ON(sg == NULL);
4482
4483 VPRINTK("unmapping %u sg elements\n", qc->mapped_n_elem);
4484
4485 /* if we padded the buffer out to 32-bit bound, and data
4486 * xfer direction is from-device, we must copy from the
4487 * pad buffer back into the supplied buffer
4488 */
4489 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4490 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4491
4492 if (qc->mapped_n_elem)
4493 dma_unmap_sg(ap->dev, sg, qc->mapped_n_elem, dir);
4494 /* restore last sg */
4495 if (qc->last_sg)
4496 *qc->last_sg = qc->saved_last_sg;
4497 if (pad_buf) {
4498 struct scatterlist *psg = &qc->extra_sg[1];
4499 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4500 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4501 kunmap_atomic(addr, KM_IRQ0);
4502 }
4503
4504 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4505 qc->sg = NULL;
4506 }
4507
4508 /**
4509 * ata_fill_sg - Fill PCI IDE PRD table
4510 * @qc: Metadata associated with taskfile to be transferred
4511 *
4512 * Fill PCI IDE PRD (scatter-gather) table with segments
4513 * associated with the current disk command.
4514 *
4515 * LOCKING:
4516 * spin_lock_irqsave(host lock)
4517 *
4518 */
4519 static void ata_fill_sg(struct ata_queued_cmd *qc)
4520 {
4521 struct ata_port *ap = qc->ap;
4522 struct scatterlist *sg;
4523 unsigned int si, pi;
4524
4525 pi = 0;
4526 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4527 u32 addr, offset;
4528 u32 sg_len, len;
4529
4530 /* determine if physical DMA addr spans 64K boundary.
4531 * Note h/w doesn't support 64-bit, so we unconditionally
4532 * truncate dma_addr_t to u32.
4533 */
4534 addr = (u32) sg_dma_address(sg);
4535 sg_len = sg_dma_len(sg);
4536
4537 while (sg_len) {
4538 offset = addr & 0xffff;
4539 len = sg_len;
4540 if ((offset + sg_len) > 0x10000)
4541 len = 0x10000 - offset;
4542
4543 ap->prd[pi].addr = cpu_to_le32(addr);
4544 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4545 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4546
4547 pi++;
4548 sg_len -= len;
4549 addr += len;
4550 }
4551 }
4552
4553 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4554 }
4555
4556 /**
4557 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4558 * @qc: Metadata associated with taskfile to be transferred
4559 *
4560 * Fill PCI IDE PRD (scatter-gather) table with segments
4561 * associated with the current disk command. Perform the fill
4562 * so that we avoid writing any length 64K records for
4563 * controllers that don't follow the spec.
4564 *
4565 * LOCKING:
4566 * spin_lock_irqsave(host lock)
4567 *
4568 */
4569 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4570 {
4571 struct ata_port *ap = qc->ap;
4572 struct scatterlist *sg;
4573 unsigned int si, pi;
4574
4575 pi = 0;
4576 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4577 u32 addr, offset;
4578 u32 sg_len, len, blen;
4579
4580 /* determine if physical DMA addr spans 64K boundary.
4581 * Note h/w doesn't support 64-bit, so we unconditionally
4582 * truncate dma_addr_t to u32.
4583 */
4584 addr = (u32) sg_dma_address(sg);
4585 sg_len = sg_dma_len(sg);
4586
4587 while (sg_len) {
4588 offset = addr & 0xffff;
4589 len = sg_len;
4590 if ((offset + sg_len) > 0x10000)
4591 len = 0x10000 - offset;
4592
4593 blen = len & 0xffff;
4594 ap->prd[pi].addr = cpu_to_le32(addr);
4595 if (blen == 0) {
4596 /* Some PATA chipsets like the CS5530 can't
4597 cope with 0x0000 meaning 64K as the spec says */
4598 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4599 blen = 0x8000;
4600 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4601 }
4602 ap->prd[pi].flags_len = cpu_to_le32(blen);
4603 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4604
4605 pi++;
4606 sg_len -= len;
4607 addr += len;
4608 }
4609 }
4610
4611 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4612 }
4613
4614 /**
4615 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4616 * @qc: Metadata associated with taskfile to check
4617 *
4618 * Allow low-level driver to filter ATA PACKET commands, returning
4619 * a status indicating whether or not it is OK to use DMA for the
4620 * supplied PACKET command.
4621 *
4622 * LOCKING:
4623 * spin_lock_irqsave(host lock)
4624 *
4625 * RETURNS: 0 when ATAPI DMA can be used
4626 * nonzero otherwise
4627 */
4628 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4629 {
4630 struct ata_port *ap = qc->ap;
4631
4632 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4633 * few ATAPI devices choke on such DMA requests.
4634 */
4635 if (unlikely(qc->nbytes & 15))
4636 return 1;
4637
4638 if (ap->ops->check_atapi_dma)
4639 return ap->ops->check_atapi_dma(qc);
4640
4641 return 0;
4642 }
4643
4644 /**
4645 * atapi_qc_may_overflow - Check whether data transfer may overflow
4646 * @qc: ATA command in question
4647 *
4648 * ATAPI commands which transfer variable length data to host
4649 * might overflow due to application error or hardare bug. This
4650 * function checks whether overflow should be drained and ignored
4651 * for @qc.
4652 *
4653 * LOCKING:
4654 * None.
4655 *
4656 * RETURNS:
4657 * 1 if @qc may overflow; otherwise, 0.
4658 */
4659 static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4660 {
4661 if (qc->tf.protocol != ATAPI_PROT_PIO &&
4662 qc->tf.protocol != ATAPI_PROT_DMA)
4663 return 0;
4664
4665 if (qc->tf.flags & ATA_TFLAG_WRITE)
4666 return 0;
4667
4668 switch (qc->cdb[0]) {
4669 case READ_10:
4670 case READ_12:
4671 case WRITE_10:
4672 case WRITE_12:
4673 case GPCMD_READ_CD:
4674 case GPCMD_READ_CD_MSF:
4675 return 0;
4676 }
4677
4678 return 1;
4679 }
4680
4681 /**
4682 * ata_std_qc_defer - Check whether a qc needs to be deferred
4683 * @qc: ATA command in question
4684 *
4685 * Non-NCQ commands cannot run with any other command, NCQ or
4686 * not. As upper layer only knows the queue depth, we are
4687 * responsible for maintaining exclusion. This function checks
4688 * whether a new command @qc can be issued.
4689 *
4690 * LOCKING:
4691 * spin_lock_irqsave(host lock)
4692 *
4693 * RETURNS:
4694 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4695 */
4696 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4697 {
4698 struct ata_link *link = qc->dev->link;
4699
4700 if (qc->tf.protocol == ATA_PROT_NCQ) {
4701 if (!ata_tag_valid(link->active_tag))
4702 return 0;
4703 } else {
4704 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4705 return 0;
4706 }
4707
4708 return ATA_DEFER_LINK;
4709 }
4710
4711 /**
4712 * ata_qc_prep - Prepare taskfile for submission
4713 * @qc: Metadata associated with taskfile to be prepared
4714 *
4715 * Prepare ATA taskfile for submission.
4716 *
4717 * LOCKING:
4718 * spin_lock_irqsave(host lock)
4719 */
4720 void ata_qc_prep(struct ata_queued_cmd *qc)
4721 {
4722 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4723 return;
4724
4725 ata_fill_sg(qc);
4726 }
4727
4728 /**
4729 * ata_dumb_qc_prep - Prepare taskfile for submission
4730 * @qc: Metadata associated with taskfile to be prepared
4731 *
4732 * Prepare ATA taskfile for submission.
4733 *
4734 * LOCKING:
4735 * spin_lock_irqsave(host lock)
4736 */
4737 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4738 {
4739 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4740 return;
4741
4742 ata_fill_sg_dumb(qc);
4743 }
4744
4745 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4746
4747 /**
4748 * ata_sg_init - Associate command with scatter-gather table.
4749 * @qc: Command to be associated
4750 * @sg: Scatter-gather table.
4751 * @n_elem: Number of elements in s/g table.
4752 *
4753 * Initialize the data-related elements of queued_cmd @qc
4754 * to point to a scatter-gather table @sg, containing @n_elem
4755 * elements.
4756 *
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4759 */
4760 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4761 unsigned int n_elem)
4762 {
4763 qc->sg = sg;
4764 qc->n_elem = n_elem;
4765 qc->cursg = qc->sg;
4766 }
4767
4768 static unsigned int ata_sg_setup_extra(struct ata_queued_cmd *qc,
4769 unsigned int *n_elem_extra,
4770 unsigned int *nbytes_extra)
4771 {
4772 struct ata_port *ap = qc->ap;
4773 unsigned int n_elem = qc->n_elem;
4774 struct scatterlist *lsg, *copy_lsg = NULL, *tsg = NULL, *esg = NULL;
4775
4776 *n_elem_extra = 0;
4777 *nbytes_extra = 0;
4778
4779 /* needs padding? */
4780 qc->pad_len = qc->nbytes & 3;
4781
4782 if (likely(!qc->pad_len))
4783 return n_elem;
4784
4785 /* locate last sg and save it */
4786 lsg = sg_last(qc->sg, n_elem);
4787 qc->last_sg = lsg;
4788 qc->saved_last_sg = *lsg;
4789
4790 sg_init_table(qc->extra_sg, ARRAY_SIZE(qc->extra_sg));
4791
4792 if (qc->pad_len) {
4793 struct scatterlist *psg = &qc->extra_sg[1];
4794 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4795 unsigned int offset;
4796
4797 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4798
4799 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4800
4801 /* psg->page/offset are used to copy to-be-written
4802 * data in this function or read data in ata_sg_clean.
4803 */
4804 offset = lsg->offset + lsg->length - qc->pad_len;
4805 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4806 qc->pad_len, offset_in_page(offset));
4807
4808 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4809 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4810 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4811 kunmap_atomic(addr, KM_IRQ0);
4812 }
4813
4814 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4815 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4816
4817 /* Trim the last sg entry and chain the original and
4818 * padding sg lists.
4819 *
4820 * Because chaining consumes one sg entry, one extra
4821 * sg entry is allocated and the last sg entry is
4822 * copied to it if the length isn't zero after padded
4823 * amount is removed.
4824 *
4825 * If the last sg entry is completely replaced by
4826 * padding sg entry, the first sg entry is skipped
4827 * while chaining.
4828 */
4829 lsg->length -= qc->pad_len;
4830 if (lsg->length) {
4831 copy_lsg = &qc->extra_sg[0];
4832 tsg = &qc->extra_sg[0];
4833 } else {
4834 n_elem--;
4835 tsg = &qc->extra_sg[1];
4836 }
4837
4838 esg = &qc->extra_sg[1];
4839
4840 (*n_elem_extra)++;
4841 (*nbytes_extra) += 4 - qc->pad_len;
4842 }
4843
4844 if (copy_lsg)
4845 sg_set_page(copy_lsg, sg_page(lsg), lsg->length, lsg->offset);
4846
4847 sg_chain(lsg, 1, tsg);
4848 sg_mark_end(esg);
4849
4850 /* sglist can't start with chaining sg entry, fast forward */
4851 if (qc->sg == lsg) {
4852 qc->sg = tsg;
4853 qc->cursg = tsg;
4854 }
4855
4856 return n_elem;
4857 }
4858
4859 /**
4860 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4861 * @qc: Command with scatter-gather table to be mapped.
4862 *
4863 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4864 *
4865 * LOCKING:
4866 * spin_lock_irqsave(host lock)
4867 *
4868 * RETURNS:
4869 * Zero on success, negative on error.
4870 *
4871 */
4872 static int ata_sg_setup(struct ata_queued_cmd *qc)
4873 {
4874 struct ata_port *ap = qc->ap;
4875 unsigned int n_elem, n_elem_extra, nbytes_extra;
4876
4877 VPRINTK("ENTER, ata%u\n", ap->print_id);
4878
4879 n_elem = ata_sg_setup_extra(qc, &n_elem_extra, &nbytes_extra);
4880
4881 if (n_elem) {
4882 n_elem = dma_map_sg(ap->dev, qc->sg, n_elem, qc->dma_dir);
4883 if (n_elem < 1) {
4884 /* restore last sg */
4885 if (qc->last_sg)
4886 *qc->last_sg = qc->saved_last_sg;
4887 return -1;
4888 }
4889 DPRINTK("%d sg elements mapped\n", n_elem);
4890 }
4891
4892 qc->n_elem = qc->mapped_n_elem = n_elem;
4893 qc->n_elem += n_elem_extra;
4894 qc->nbytes += nbytes_extra;
4895 qc->flags |= ATA_QCFLAG_DMAMAP;
4896
4897 return 0;
4898 }
4899
4900 /**
4901 * swap_buf_le16 - swap halves of 16-bit words in place
4902 * @buf: Buffer to swap
4903 * @buf_words: Number of 16-bit words in buffer.
4904 *
4905 * Swap halves of 16-bit words if needed to convert from
4906 * little-endian byte order to native cpu byte order, or
4907 * vice-versa.
4908 *
4909 * LOCKING:
4910 * Inherited from caller.
4911 */
4912 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4913 {
4914 #ifdef __BIG_ENDIAN
4915 unsigned int i;
4916
4917 for (i = 0; i < buf_words; i++)
4918 buf[i] = le16_to_cpu(buf[i]);
4919 #endif /* __BIG_ENDIAN */
4920 }
4921
4922 /**
4923 * ata_data_xfer - Transfer data by PIO
4924 * @dev: device to target
4925 * @buf: data buffer
4926 * @buflen: buffer length
4927 * @rw: read/write
4928 *
4929 * Transfer data from/to the device data register by PIO.
4930 *
4931 * LOCKING:
4932 * Inherited from caller.
4933 *
4934 * RETURNS:
4935 * Bytes consumed.
4936 */
4937 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
4938 unsigned int buflen, int rw)
4939 {
4940 struct ata_port *ap = dev->link->ap;
4941 void __iomem *data_addr = ap->ioaddr.data_addr;
4942 unsigned int words = buflen >> 1;
4943
4944 /* Transfer multiple of 2 bytes */
4945 if (rw == READ)
4946 ioread16_rep(data_addr, buf, words);
4947 else
4948 iowrite16_rep(data_addr, buf, words);
4949
4950 /* Transfer trailing 1 byte, if any. */
4951 if (unlikely(buflen & 0x01)) {
4952 __le16 align_buf[1] = { 0 };
4953 unsigned char *trailing_buf = buf + buflen - 1;
4954
4955 if (rw == READ) {
4956 align_buf[0] = cpu_to_le16(ioread16(data_addr));
4957 memcpy(trailing_buf, align_buf, 1);
4958 } else {
4959 memcpy(align_buf, trailing_buf, 1);
4960 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
4961 }
4962 words++;
4963 }
4964
4965 return words << 1;
4966 }
4967
4968 /**
4969 * ata_data_xfer_noirq - Transfer data by PIO
4970 * @dev: device to target
4971 * @buf: data buffer
4972 * @buflen: buffer length
4973 * @rw: read/write
4974 *
4975 * Transfer data from/to the device data register by PIO. Do the
4976 * transfer with interrupts disabled.
4977 *
4978 * LOCKING:
4979 * Inherited from caller.
4980 *
4981 * RETURNS:
4982 * Bytes consumed.
4983 */
4984 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
4985 unsigned int buflen, int rw)
4986 {
4987 unsigned long flags;
4988 unsigned int consumed;
4989
4990 local_irq_save(flags);
4991 consumed = ata_data_xfer(dev, buf, buflen, rw);
4992 local_irq_restore(flags);
4993
4994 return consumed;
4995 }
4996
4997
4998 /**
4999 * ata_pio_sector - Transfer a sector of data.
5000 * @qc: Command on going
5001 *
5002 * Transfer qc->sect_size bytes of data from/to the ATA device.
5003 *
5004 * LOCKING:
5005 * Inherited from caller.
5006 */
5007
5008 static void ata_pio_sector(struct ata_queued_cmd *qc)
5009 {
5010 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5011 struct ata_port *ap = qc->ap;
5012 struct page *page;
5013 unsigned int offset;
5014 unsigned char *buf;
5015
5016 if (qc->curbytes == qc->nbytes - qc->sect_size)
5017 ap->hsm_task_state = HSM_ST_LAST;
5018
5019 page = sg_page(qc->cursg);
5020 offset = qc->cursg->offset + qc->cursg_ofs;
5021
5022 /* get the current page and offset */
5023 page = nth_page(page, (offset >> PAGE_SHIFT));
5024 offset %= PAGE_SIZE;
5025
5026 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5027
5028 if (PageHighMem(page)) {
5029 unsigned long flags;
5030
5031 /* FIXME: use a bounce buffer */
5032 local_irq_save(flags);
5033 buf = kmap_atomic(page, KM_IRQ0);
5034
5035 /* do the actual data transfer */
5036 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5037
5038 kunmap_atomic(buf, KM_IRQ0);
5039 local_irq_restore(flags);
5040 } else {
5041 buf = page_address(page);
5042 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5043 }
5044
5045 qc->curbytes += qc->sect_size;
5046 qc->cursg_ofs += qc->sect_size;
5047
5048 if (qc->cursg_ofs == qc->cursg->length) {
5049 qc->cursg = sg_next(qc->cursg);
5050 qc->cursg_ofs = 0;
5051 }
5052 }
5053
5054 /**
5055 * ata_pio_sectors - Transfer one or many sectors.
5056 * @qc: Command on going
5057 *
5058 * Transfer one or many sectors of data from/to the
5059 * ATA device for the DRQ request.
5060 *
5061 * LOCKING:
5062 * Inherited from caller.
5063 */
5064
5065 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5066 {
5067 if (is_multi_taskfile(&qc->tf)) {
5068 /* READ/WRITE MULTIPLE */
5069 unsigned int nsect;
5070
5071 WARN_ON(qc->dev->multi_count == 0);
5072
5073 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5074 qc->dev->multi_count);
5075 while (nsect--)
5076 ata_pio_sector(qc);
5077 } else
5078 ata_pio_sector(qc);
5079
5080 ata_altstatus(qc->ap); /* flush */
5081 }
5082
5083 /**
5084 * atapi_send_cdb - Write CDB bytes to hardware
5085 * @ap: Port to which ATAPI device is attached.
5086 * @qc: Taskfile currently active
5087 *
5088 * When device has indicated its readiness to accept
5089 * a CDB, this function is called. Send the CDB.
5090 *
5091 * LOCKING:
5092 * caller.
5093 */
5094
5095 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5096 {
5097 /* send SCSI cdb */
5098 DPRINTK("send cdb\n");
5099 WARN_ON(qc->dev->cdb_len < 12);
5100
5101 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5102 ata_altstatus(ap); /* flush */
5103
5104 switch (qc->tf.protocol) {
5105 case ATAPI_PROT_PIO:
5106 ap->hsm_task_state = HSM_ST;
5107 break;
5108 case ATAPI_PROT_NODATA:
5109 ap->hsm_task_state = HSM_ST_LAST;
5110 break;
5111 case ATAPI_PROT_DMA:
5112 ap->hsm_task_state = HSM_ST_LAST;
5113 /* initiate bmdma */
5114 ap->ops->bmdma_start(qc);
5115 break;
5116 }
5117 }
5118
5119 /**
5120 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5121 * @qc: Command on going
5122 * @bytes: number of bytes
5123 *
5124 * Transfer Transfer data from/to the ATAPI device.
5125 *
5126 * LOCKING:
5127 * Inherited from caller.
5128 *
5129 */
5130 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5131 {
5132 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5133 struct ata_port *ap = qc->ap;
5134 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5135 struct scatterlist *sg;
5136 struct page *page;
5137 unsigned char *buf;
5138 unsigned int offset, count;
5139
5140 next_sg:
5141 sg = qc->cursg;
5142 if (unlikely(!sg)) {
5143 /*
5144 * The end of qc->sg is reached and the device expects
5145 * more data to transfer. In order not to overrun qc->sg
5146 * and fulfill length specified in the byte count register,
5147 * - for read case, discard trailing data from the device
5148 * - for write case, padding zero data to the device
5149 */
5150 u16 pad_buf[1] = { 0 };
5151 unsigned int i;
5152
5153 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5154 ata_ehi_push_desc(ehi, "too much trailing data "
5155 "buf=%u cur=%u bytes=%u",
5156 qc->nbytes, qc->curbytes, bytes);
5157 return -1;
5158 }
5159
5160 /* overflow is exptected for misc ATAPI commands */
5161 if (bytes && !atapi_qc_may_overflow(qc))
5162 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5163 "trailing data (cdb=%02x nbytes=%u)\n",
5164 bytes, qc->cdb[0], qc->nbytes);
5165
5166 for (i = 0; i < (bytes + 1) / 2; i++)
5167 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5168
5169 qc->curbytes += bytes;
5170
5171 return 0;
5172 }
5173
5174 page = sg_page(sg);
5175 offset = sg->offset + qc->cursg_ofs;
5176
5177 /* get the current page and offset */
5178 page = nth_page(page, (offset >> PAGE_SHIFT));
5179 offset %= PAGE_SIZE;
5180
5181 /* don't overrun current sg */
5182 count = min(sg->length - qc->cursg_ofs, bytes);
5183
5184 /* don't cross page boundaries */
5185 count = min(count, (unsigned int)PAGE_SIZE - offset);
5186
5187 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5188
5189 if (PageHighMem(page)) {
5190 unsigned long flags;
5191
5192 /* FIXME: use bounce buffer */
5193 local_irq_save(flags);
5194 buf = kmap_atomic(page, KM_IRQ0);
5195
5196 /* do the actual data transfer */
5197 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5198
5199 kunmap_atomic(buf, KM_IRQ0);
5200 local_irq_restore(flags);
5201 } else {
5202 buf = page_address(page);
5203 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5204 }
5205
5206 bytes -= count;
5207 if ((count & 1) && bytes)
5208 bytes--;
5209 qc->curbytes += count;
5210 qc->cursg_ofs += count;
5211
5212 if (qc->cursg_ofs == sg->length) {
5213 qc->cursg = sg_next(qc->cursg);
5214 qc->cursg_ofs = 0;
5215 }
5216
5217 if (bytes)
5218 goto next_sg;
5219
5220 return 0;
5221 }
5222
5223 /**
5224 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5225 * @qc: Command on going
5226 *
5227 * Transfer Transfer data from/to the ATAPI device.
5228 *
5229 * LOCKING:
5230 * Inherited from caller.
5231 */
5232
5233 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5234 {
5235 struct ata_port *ap = qc->ap;
5236 struct ata_device *dev = qc->dev;
5237 unsigned int ireason, bc_lo, bc_hi, bytes;
5238 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5239
5240 /* Abuse qc->result_tf for temp storage of intermediate TF
5241 * here to save some kernel stack usage.
5242 * For normal completion, qc->result_tf is not relevant. For
5243 * error, qc->result_tf is later overwritten by ata_qc_complete().
5244 * So, the correctness of qc->result_tf is not affected.
5245 */
5246 ap->ops->tf_read(ap, &qc->result_tf);
5247 ireason = qc->result_tf.nsect;
5248 bc_lo = qc->result_tf.lbam;
5249 bc_hi = qc->result_tf.lbah;
5250 bytes = (bc_hi << 8) | bc_lo;
5251
5252 /* shall be cleared to zero, indicating xfer of data */
5253 if (unlikely(ireason & (1 << 0)))
5254 goto err_out;
5255
5256 /* make sure transfer direction matches expected */
5257 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5258 if (unlikely(do_write != i_write))
5259 goto err_out;
5260
5261 if (unlikely(!bytes))
5262 goto err_out;
5263
5264 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5265
5266 if (__atapi_pio_bytes(qc, bytes))
5267 goto err_out;
5268 ata_altstatus(ap); /* flush */
5269
5270 return;
5271
5272 err_out:
5273 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5274 qc->err_mask |= AC_ERR_HSM;
5275 ap->hsm_task_state = HSM_ST_ERR;
5276 }
5277
5278 /**
5279 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5280 * @ap: the target ata_port
5281 * @qc: qc on going
5282 *
5283 * RETURNS:
5284 * 1 if ok in workqueue, 0 otherwise.
5285 */
5286
5287 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5288 {
5289 if (qc->tf.flags & ATA_TFLAG_POLLING)
5290 return 1;
5291
5292 if (ap->hsm_task_state == HSM_ST_FIRST) {
5293 if (qc->tf.protocol == ATA_PROT_PIO &&
5294 (qc->tf.flags & ATA_TFLAG_WRITE))
5295 return 1;
5296
5297 if (ata_is_atapi(qc->tf.protocol) &&
5298 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5299 return 1;
5300 }
5301
5302 return 0;
5303 }
5304
5305 /**
5306 * ata_hsm_qc_complete - finish a qc running on standard HSM
5307 * @qc: Command to complete
5308 * @in_wq: 1 if called from workqueue, 0 otherwise
5309 *
5310 * Finish @qc which is running on standard HSM.
5311 *
5312 * LOCKING:
5313 * If @in_wq is zero, spin_lock_irqsave(host lock).
5314 * Otherwise, none on entry and grabs host lock.
5315 */
5316 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5317 {
5318 struct ata_port *ap = qc->ap;
5319 unsigned long flags;
5320
5321 if (ap->ops->error_handler) {
5322 if (in_wq) {
5323 spin_lock_irqsave(ap->lock, flags);
5324
5325 /* EH might have kicked in while host lock is
5326 * released.
5327 */
5328 qc = ata_qc_from_tag(ap, qc->tag);
5329 if (qc) {
5330 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5331 ap->ops->irq_on(ap);
5332 ata_qc_complete(qc);
5333 } else
5334 ata_port_freeze(ap);
5335 }
5336
5337 spin_unlock_irqrestore(ap->lock, flags);
5338 } else {
5339 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5340 ata_qc_complete(qc);
5341 else
5342 ata_port_freeze(ap);
5343 }
5344 } else {
5345 if (in_wq) {
5346 spin_lock_irqsave(ap->lock, flags);
5347 ap->ops->irq_on(ap);
5348 ata_qc_complete(qc);
5349 spin_unlock_irqrestore(ap->lock, flags);
5350 } else
5351 ata_qc_complete(qc);
5352 }
5353 }
5354
5355 /**
5356 * ata_hsm_move - move the HSM to the next state.
5357 * @ap: the target ata_port
5358 * @qc: qc on going
5359 * @status: current device status
5360 * @in_wq: 1 if called from workqueue, 0 otherwise
5361 *
5362 * RETURNS:
5363 * 1 when poll next status needed, 0 otherwise.
5364 */
5365 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5366 u8 status, int in_wq)
5367 {
5368 unsigned long flags = 0;
5369 int poll_next;
5370
5371 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5372
5373 /* Make sure ata_qc_issue_prot() does not throw things
5374 * like DMA polling into the workqueue. Notice that
5375 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5376 */
5377 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5378
5379 fsm_start:
5380 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5381 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5382
5383 switch (ap->hsm_task_state) {
5384 case HSM_ST_FIRST:
5385 /* Send first data block or PACKET CDB */
5386
5387 /* If polling, we will stay in the work queue after
5388 * sending the data. Otherwise, interrupt handler
5389 * takes over after sending the data.
5390 */
5391 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5392
5393 /* check device status */
5394 if (unlikely((status & ATA_DRQ) == 0)) {
5395 /* handle BSY=0, DRQ=0 as error */
5396 if (likely(status & (ATA_ERR | ATA_DF)))
5397 /* device stops HSM for abort/error */
5398 qc->err_mask |= AC_ERR_DEV;
5399 else
5400 /* HSM violation. Let EH handle this */
5401 qc->err_mask |= AC_ERR_HSM;
5402
5403 ap->hsm_task_state = HSM_ST_ERR;
5404 goto fsm_start;
5405 }
5406
5407 /* Device should not ask for data transfer (DRQ=1)
5408 * when it finds something wrong.
5409 * We ignore DRQ here and stop the HSM by
5410 * changing hsm_task_state to HSM_ST_ERR and
5411 * let the EH abort the command or reset the device.
5412 */
5413 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5414 /* Some ATAPI tape drives forget to clear the ERR bit
5415 * when doing the next command (mostly request sense).
5416 * We ignore ERR here to workaround and proceed sending
5417 * the CDB.
5418 */
5419 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5420 ata_port_printk(ap, KERN_WARNING,
5421 "DRQ=1 with device error, "
5422 "dev_stat 0x%X\n", status);
5423 qc->err_mask |= AC_ERR_HSM;
5424 ap->hsm_task_state = HSM_ST_ERR;
5425 goto fsm_start;
5426 }
5427 }
5428
5429 /* Send the CDB (atapi) or the first data block (ata pio out).
5430 * During the state transition, interrupt handler shouldn't
5431 * be invoked before the data transfer is complete and
5432 * hsm_task_state is changed. Hence, the following locking.
5433 */
5434 if (in_wq)
5435 spin_lock_irqsave(ap->lock, flags);
5436
5437 if (qc->tf.protocol == ATA_PROT_PIO) {
5438 /* PIO data out protocol.
5439 * send first data block.
5440 */
5441
5442 /* ata_pio_sectors() might change the state
5443 * to HSM_ST_LAST. so, the state is changed here
5444 * before ata_pio_sectors().
5445 */
5446 ap->hsm_task_state = HSM_ST;
5447 ata_pio_sectors(qc);
5448 } else
5449 /* send CDB */
5450 atapi_send_cdb(ap, qc);
5451
5452 if (in_wq)
5453 spin_unlock_irqrestore(ap->lock, flags);
5454
5455 /* if polling, ata_pio_task() handles the rest.
5456 * otherwise, interrupt handler takes over from here.
5457 */
5458 break;
5459
5460 case HSM_ST:
5461 /* complete command or read/write the data register */
5462 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5463 /* ATAPI PIO protocol */
5464 if ((status & ATA_DRQ) == 0) {
5465 /* No more data to transfer or device error.
5466 * Device error will be tagged in HSM_ST_LAST.
5467 */
5468 ap->hsm_task_state = HSM_ST_LAST;
5469 goto fsm_start;
5470 }
5471
5472 /* Device should not ask for data transfer (DRQ=1)
5473 * when it finds something wrong.
5474 * We ignore DRQ here and stop the HSM by
5475 * changing hsm_task_state to HSM_ST_ERR and
5476 * let the EH abort the command or reset the device.
5477 */
5478 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5479 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5480 "device error, dev_stat 0x%X\n",
5481 status);
5482 qc->err_mask |= AC_ERR_HSM;
5483 ap->hsm_task_state = HSM_ST_ERR;
5484 goto fsm_start;
5485 }
5486
5487 atapi_pio_bytes(qc);
5488
5489 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5490 /* bad ireason reported by device */
5491 goto fsm_start;
5492
5493 } else {
5494 /* ATA PIO protocol */
5495 if (unlikely((status & ATA_DRQ) == 0)) {
5496 /* handle BSY=0, DRQ=0 as error */
5497 if (likely(status & (ATA_ERR | ATA_DF)))
5498 /* device stops HSM for abort/error */
5499 qc->err_mask |= AC_ERR_DEV;
5500 else
5501 /* HSM violation. Let EH handle this.
5502 * Phantom devices also trigger this
5503 * condition. Mark hint.
5504 */
5505 qc->err_mask |= AC_ERR_HSM |
5506 AC_ERR_NODEV_HINT;
5507
5508 ap->hsm_task_state = HSM_ST_ERR;
5509 goto fsm_start;
5510 }
5511
5512 /* For PIO reads, some devices may ask for
5513 * data transfer (DRQ=1) alone with ERR=1.
5514 * We respect DRQ here and transfer one
5515 * block of junk data before changing the
5516 * hsm_task_state to HSM_ST_ERR.
5517 *
5518 * For PIO writes, ERR=1 DRQ=1 doesn't make
5519 * sense since the data block has been
5520 * transferred to the device.
5521 */
5522 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5523 /* data might be corrputed */
5524 qc->err_mask |= AC_ERR_DEV;
5525
5526 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5527 ata_pio_sectors(qc);
5528 status = ata_wait_idle(ap);
5529 }
5530
5531 if (status & (ATA_BUSY | ATA_DRQ))
5532 qc->err_mask |= AC_ERR_HSM;
5533
5534 /* ata_pio_sectors() might change the
5535 * state to HSM_ST_LAST. so, the state
5536 * is changed after ata_pio_sectors().
5537 */
5538 ap->hsm_task_state = HSM_ST_ERR;
5539 goto fsm_start;
5540 }
5541
5542 ata_pio_sectors(qc);
5543
5544 if (ap->hsm_task_state == HSM_ST_LAST &&
5545 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5546 /* all data read */
5547 status = ata_wait_idle(ap);
5548 goto fsm_start;
5549 }
5550 }
5551
5552 poll_next = 1;
5553 break;
5554
5555 case HSM_ST_LAST:
5556 if (unlikely(!ata_ok(status))) {
5557 qc->err_mask |= __ac_err_mask(status);
5558 ap->hsm_task_state = HSM_ST_ERR;
5559 goto fsm_start;
5560 }
5561
5562 /* no more data to transfer */
5563 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5564 ap->print_id, qc->dev->devno, status);
5565
5566 WARN_ON(qc->err_mask);
5567
5568 ap->hsm_task_state = HSM_ST_IDLE;
5569
5570 /* complete taskfile transaction */
5571 ata_hsm_qc_complete(qc, in_wq);
5572
5573 poll_next = 0;
5574 break;
5575
5576 case HSM_ST_ERR:
5577 /* make sure qc->err_mask is available to
5578 * know what's wrong and recover
5579 */
5580 WARN_ON(qc->err_mask == 0);
5581
5582 ap->hsm_task_state = HSM_ST_IDLE;
5583
5584 /* complete taskfile transaction */
5585 ata_hsm_qc_complete(qc, in_wq);
5586
5587 poll_next = 0;
5588 break;
5589 default:
5590 poll_next = 0;
5591 BUG();
5592 }
5593
5594 return poll_next;
5595 }
5596
5597 static void ata_pio_task(struct work_struct *work)
5598 {
5599 struct ata_port *ap =
5600 container_of(work, struct ata_port, port_task.work);
5601 struct ata_queued_cmd *qc = ap->port_task_data;
5602 u8 status;
5603 int poll_next;
5604
5605 fsm_start:
5606 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5607
5608 /*
5609 * This is purely heuristic. This is a fast path.
5610 * Sometimes when we enter, BSY will be cleared in
5611 * a chk-status or two. If not, the drive is probably seeking
5612 * or something. Snooze for a couple msecs, then
5613 * chk-status again. If still busy, queue delayed work.
5614 */
5615 status = ata_busy_wait(ap, ATA_BUSY, 5);
5616 if (status & ATA_BUSY) {
5617 msleep(2);
5618 status = ata_busy_wait(ap, ATA_BUSY, 10);
5619 if (status & ATA_BUSY) {
5620 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5621 return;
5622 }
5623 }
5624
5625 /* move the HSM */
5626 poll_next = ata_hsm_move(ap, qc, status, 1);
5627
5628 /* another command or interrupt handler
5629 * may be running at this point.
5630 */
5631 if (poll_next)
5632 goto fsm_start;
5633 }
5634
5635 /**
5636 * ata_qc_new - Request an available ATA command, for queueing
5637 * @ap: Port associated with device @dev
5638 * @dev: Device from whom we request an available command structure
5639 *
5640 * LOCKING:
5641 * None.
5642 */
5643
5644 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5645 {
5646 struct ata_queued_cmd *qc = NULL;
5647 unsigned int i;
5648
5649 /* no command while frozen */
5650 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5651 return NULL;
5652
5653 /* the last tag is reserved for internal command. */
5654 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5655 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5656 qc = __ata_qc_from_tag(ap, i);
5657 break;
5658 }
5659
5660 if (qc)
5661 qc->tag = i;
5662
5663 return qc;
5664 }
5665
5666 /**
5667 * ata_qc_new_init - Request an available ATA command, and initialize it
5668 * @dev: Device from whom we request an available command structure
5669 *
5670 * LOCKING:
5671 * None.
5672 */
5673
5674 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5675 {
5676 struct ata_port *ap = dev->link->ap;
5677 struct ata_queued_cmd *qc;
5678
5679 qc = ata_qc_new(ap);
5680 if (qc) {
5681 qc->scsicmd = NULL;
5682 qc->ap = ap;
5683 qc->dev = dev;
5684
5685 ata_qc_reinit(qc);
5686 }
5687
5688 return qc;
5689 }
5690
5691 /**
5692 * ata_qc_free - free unused ata_queued_cmd
5693 * @qc: Command to complete
5694 *
5695 * Designed to free unused ata_queued_cmd object
5696 * in case something prevents using it.
5697 *
5698 * LOCKING:
5699 * spin_lock_irqsave(host lock)
5700 */
5701 void ata_qc_free(struct ata_queued_cmd *qc)
5702 {
5703 struct ata_port *ap = qc->ap;
5704 unsigned int tag;
5705
5706 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5707
5708 qc->flags = 0;
5709 tag = qc->tag;
5710 if (likely(ata_tag_valid(tag))) {
5711 qc->tag = ATA_TAG_POISON;
5712 clear_bit(tag, &ap->qc_allocated);
5713 }
5714 }
5715
5716 void __ata_qc_complete(struct ata_queued_cmd *qc)
5717 {
5718 struct ata_port *ap = qc->ap;
5719 struct ata_link *link = qc->dev->link;
5720
5721 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5722 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5723
5724 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5725 ata_sg_clean(qc);
5726
5727 /* command should be marked inactive atomically with qc completion */
5728 if (qc->tf.protocol == ATA_PROT_NCQ) {
5729 link->sactive &= ~(1 << qc->tag);
5730 if (!link->sactive)
5731 ap->nr_active_links--;
5732 } else {
5733 link->active_tag = ATA_TAG_POISON;
5734 ap->nr_active_links--;
5735 }
5736
5737 /* clear exclusive status */
5738 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5739 ap->excl_link == link))
5740 ap->excl_link = NULL;
5741
5742 /* atapi: mark qc as inactive to prevent the interrupt handler
5743 * from completing the command twice later, before the error handler
5744 * is called. (when rc != 0 and atapi request sense is needed)
5745 */
5746 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5747 ap->qc_active &= ~(1 << qc->tag);
5748
5749 /* call completion callback */
5750 qc->complete_fn(qc);
5751 }
5752
5753 static void fill_result_tf(struct ata_queued_cmd *qc)
5754 {
5755 struct ata_port *ap = qc->ap;
5756
5757 qc->result_tf.flags = qc->tf.flags;
5758 ap->ops->tf_read(ap, &qc->result_tf);
5759 }
5760
5761 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5762 {
5763 struct ata_device *dev = qc->dev;
5764
5765 if (ata_tag_internal(qc->tag))
5766 return;
5767
5768 if (ata_is_nodata(qc->tf.protocol))
5769 return;
5770
5771 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5772 return;
5773
5774 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5775 }
5776
5777 /**
5778 * ata_qc_complete - Complete an active ATA command
5779 * @qc: Command to complete
5780 * @err_mask: ATA Status register contents
5781 *
5782 * Indicate to the mid and upper layers that an ATA
5783 * command has completed, with either an ok or not-ok status.
5784 *
5785 * LOCKING:
5786 * spin_lock_irqsave(host lock)
5787 */
5788 void ata_qc_complete(struct ata_queued_cmd *qc)
5789 {
5790 struct ata_port *ap = qc->ap;
5791
5792 /* XXX: New EH and old EH use different mechanisms to
5793 * synchronize EH with regular execution path.
5794 *
5795 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5796 * Normal execution path is responsible for not accessing a
5797 * failed qc. libata core enforces the rule by returning NULL
5798 * from ata_qc_from_tag() for failed qcs.
5799 *
5800 * Old EH depends on ata_qc_complete() nullifying completion
5801 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5802 * not synchronize with interrupt handler. Only PIO task is
5803 * taken care of.
5804 */
5805 if (ap->ops->error_handler) {
5806 struct ata_device *dev = qc->dev;
5807 struct ata_eh_info *ehi = &dev->link->eh_info;
5808
5809 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5810
5811 if (unlikely(qc->err_mask))
5812 qc->flags |= ATA_QCFLAG_FAILED;
5813
5814 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5815 if (!ata_tag_internal(qc->tag)) {
5816 /* always fill result TF for failed qc */
5817 fill_result_tf(qc);
5818 ata_qc_schedule_eh(qc);
5819 return;
5820 }
5821 }
5822
5823 /* read result TF if requested */
5824 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5825 fill_result_tf(qc);
5826
5827 /* Some commands need post-processing after successful
5828 * completion.
5829 */
5830 switch (qc->tf.command) {
5831 case ATA_CMD_SET_FEATURES:
5832 if (qc->tf.feature != SETFEATURES_WC_ON &&
5833 qc->tf.feature != SETFEATURES_WC_OFF)
5834 break;
5835 /* fall through */
5836 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5837 case ATA_CMD_SET_MULTI: /* multi_count changed */
5838 /* revalidate device */
5839 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5840 ata_port_schedule_eh(ap);
5841 break;
5842
5843 case ATA_CMD_SLEEP:
5844 dev->flags |= ATA_DFLAG_SLEEPING;
5845 break;
5846 }
5847
5848 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5849 ata_verify_xfer(qc);
5850
5851 __ata_qc_complete(qc);
5852 } else {
5853 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5854 return;
5855
5856 /* read result TF if failed or requested */
5857 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5858 fill_result_tf(qc);
5859
5860 __ata_qc_complete(qc);
5861 }
5862 }
5863
5864 /**
5865 * ata_qc_complete_multiple - Complete multiple qcs successfully
5866 * @ap: port in question
5867 * @qc_active: new qc_active mask
5868 * @finish_qc: LLDD callback invoked before completing a qc
5869 *
5870 * Complete in-flight commands. This functions is meant to be
5871 * called from low-level driver's interrupt routine to complete
5872 * requests normally. ap->qc_active and @qc_active is compared
5873 * and commands are completed accordingly.
5874 *
5875 * LOCKING:
5876 * spin_lock_irqsave(host lock)
5877 *
5878 * RETURNS:
5879 * Number of completed commands on success, -errno otherwise.
5880 */
5881 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5882 void (*finish_qc)(struct ata_queued_cmd *))
5883 {
5884 int nr_done = 0;
5885 u32 done_mask;
5886 int i;
5887
5888 done_mask = ap->qc_active ^ qc_active;
5889
5890 if (unlikely(done_mask & qc_active)) {
5891 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5892 "(%08x->%08x)\n", ap->qc_active, qc_active);
5893 return -EINVAL;
5894 }
5895
5896 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5897 struct ata_queued_cmd *qc;
5898
5899 if (!(done_mask & (1 << i)))
5900 continue;
5901
5902 if ((qc = ata_qc_from_tag(ap, i))) {
5903 if (finish_qc)
5904 finish_qc(qc);
5905 ata_qc_complete(qc);
5906 nr_done++;
5907 }
5908 }
5909
5910 return nr_done;
5911 }
5912
5913 /**
5914 * ata_qc_issue - issue taskfile to device
5915 * @qc: command to issue to device
5916 *
5917 * Prepare an ATA command to submission to device.
5918 * This includes mapping the data into a DMA-able
5919 * area, filling in the S/G table, and finally
5920 * writing the taskfile to hardware, starting the command.
5921 *
5922 * LOCKING:
5923 * spin_lock_irqsave(host lock)
5924 */
5925 void ata_qc_issue(struct ata_queued_cmd *qc)
5926 {
5927 struct ata_port *ap = qc->ap;
5928 struct ata_link *link = qc->dev->link;
5929 u8 prot = qc->tf.protocol;
5930
5931 /* Make sure only one non-NCQ command is outstanding. The
5932 * check is skipped for old EH because it reuses active qc to
5933 * request ATAPI sense.
5934 */
5935 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5936
5937 if (ata_is_ncq(prot)) {
5938 WARN_ON(link->sactive & (1 << qc->tag));
5939
5940 if (!link->sactive)
5941 ap->nr_active_links++;
5942 link->sactive |= 1 << qc->tag;
5943 } else {
5944 WARN_ON(link->sactive);
5945
5946 ap->nr_active_links++;
5947 link->active_tag = qc->tag;
5948 }
5949
5950 qc->flags |= ATA_QCFLAG_ACTIVE;
5951 ap->qc_active |= 1 << qc->tag;
5952
5953 /* We guarantee to LLDs that they will have at least one
5954 * non-zero sg if the command is a data command.
5955 */
5956 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5957
5958 /* ata_sg_setup() may update nbytes */
5959 qc->raw_nbytes = qc->nbytes;
5960
5961 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5962 (ap->flags & ATA_FLAG_PIO_DMA)))
5963 if (ata_sg_setup(qc))
5964 goto sg_err;
5965
5966 /* if device is sleeping, schedule softreset and abort the link */
5967 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5968 link->eh_info.action |= ATA_EH_SOFTRESET;
5969 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5970 ata_link_abort(link);
5971 return;
5972 }
5973
5974 ap->ops->qc_prep(qc);
5975
5976 qc->err_mask |= ap->ops->qc_issue(qc);
5977 if (unlikely(qc->err_mask))
5978 goto err;
5979 return;
5980
5981 sg_err:
5982 qc->err_mask |= AC_ERR_SYSTEM;
5983 err:
5984 ata_qc_complete(qc);
5985 }
5986
5987 /**
5988 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5989 * @qc: command to issue to device
5990 *
5991 * Using various libata functions and hooks, this function
5992 * starts an ATA command. ATA commands are grouped into
5993 * classes called "protocols", and issuing each type of protocol
5994 * is slightly different.
5995 *
5996 * May be used as the qc_issue() entry in ata_port_operations.
5997 *
5998 * LOCKING:
5999 * spin_lock_irqsave(host lock)
6000 *
6001 * RETURNS:
6002 * Zero on success, AC_ERR_* mask on failure
6003 */
6004
6005 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6006 {
6007 struct ata_port *ap = qc->ap;
6008
6009 /* Use polling pio if the LLD doesn't handle
6010 * interrupt driven pio and atapi CDB interrupt.
6011 */
6012 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6013 switch (qc->tf.protocol) {
6014 case ATA_PROT_PIO:
6015 case ATA_PROT_NODATA:
6016 case ATAPI_PROT_PIO:
6017 case ATAPI_PROT_NODATA:
6018 qc->tf.flags |= ATA_TFLAG_POLLING;
6019 break;
6020 case ATAPI_PROT_DMA:
6021 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6022 /* see ata_dma_blacklisted() */
6023 BUG();
6024 break;
6025 default:
6026 break;
6027 }
6028 }
6029
6030 /* select the device */
6031 ata_dev_select(ap, qc->dev->devno, 1, 0);
6032
6033 /* start the command */
6034 switch (qc->tf.protocol) {
6035 case ATA_PROT_NODATA:
6036 if (qc->tf.flags & ATA_TFLAG_POLLING)
6037 ata_qc_set_polling(qc);
6038
6039 ata_tf_to_host(ap, &qc->tf);
6040 ap->hsm_task_state = HSM_ST_LAST;
6041
6042 if (qc->tf.flags & ATA_TFLAG_POLLING)
6043 ata_pio_queue_task(ap, qc, 0);
6044
6045 break;
6046
6047 case ATA_PROT_DMA:
6048 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6049
6050 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6051 ap->ops->bmdma_setup(qc); /* set up bmdma */
6052 ap->ops->bmdma_start(qc); /* initiate bmdma */
6053 ap->hsm_task_state = HSM_ST_LAST;
6054 break;
6055
6056 case ATA_PROT_PIO:
6057 if (qc->tf.flags & ATA_TFLAG_POLLING)
6058 ata_qc_set_polling(qc);
6059
6060 ata_tf_to_host(ap, &qc->tf);
6061
6062 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6063 /* PIO data out protocol */
6064 ap->hsm_task_state = HSM_ST_FIRST;
6065 ata_pio_queue_task(ap, qc, 0);
6066
6067 /* always send first data block using
6068 * the ata_pio_task() codepath.
6069 */
6070 } else {
6071 /* PIO data in protocol */
6072 ap->hsm_task_state = HSM_ST;
6073
6074 if (qc->tf.flags & ATA_TFLAG_POLLING)
6075 ata_pio_queue_task(ap, qc, 0);
6076
6077 /* if polling, ata_pio_task() handles the rest.
6078 * otherwise, interrupt handler takes over from here.
6079 */
6080 }
6081
6082 break;
6083
6084 case ATAPI_PROT_PIO:
6085 case ATAPI_PROT_NODATA:
6086 if (qc->tf.flags & ATA_TFLAG_POLLING)
6087 ata_qc_set_polling(qc);
6088
6089 ata_tf_to_host(ap, &qc->tf);
6090
6091 ap->hsm_task_state = HSM_ST_FIRST;
6092
6093 /* send cdb by polling if no cdb interrupt */
6094 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6095 (qc->tf.flags & ATA_TFLAG_POLLING))
6096 ata_pio_queue_task(ap, qc, 0);
6097 break;
6098
6099 case ATAPI_PROT_DMA:
6100 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6101
6102 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6103 ap->ops->bmdma_setup(qc); /* set up bmdma */
6104 ap->hsm_task_state = HSM_ST_FIRST;
6105
6106 /* send cdb by polling if no cdb interrupt */
6107 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6108 ata_pio_queue_task(ap, qc, 0);
6109 break;
6110
6111 default:
6112 WARN_ON(1);
6113 return AC_ERR_SYSTEM;
6114 }
6115
6116 return 0;
6117 }
6118
6119 /**
6120 * ata_host_intr - Handle host interrupt for given (port, task)
6121 * @ap: Port on which interrupt arrived (possibly...)
6122 * @qc: Taskfile currently active in engine
6123 *
6124 * Handle host interrupt for given queued command. Currently,
6125 * only DMA interrupts are handled. All other commands are
6126 * handled via polling with interrupts disabled (nIEN bit).
6127 *
6128 * LOCKING:
6129 * spin_lock_irqsave(host lock)
6130 *
6131 * RETURNS:
6132 * One if interrupt was handled, zero if not (shared irq).
6133 */
6134
6135 inline unsigned int ata_host_intr(struct ata_port *ap,
6136 struct ata_queued_cmd *qc)
6137 {
6138 struct ata_eh_info *ehi = &ap->link.eh_info;
6139 u8 status, host_stat = 0;
6140
6141 VPRINTK("ata%u: protocol %d task_state %d\n",
6142 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6143
6144 /* Check whether we are expecting interrupt in this state */
6145 switch (ap->hsm_task_state) {
6146 case HSM_ST_FIRST:
6147 /* Some pre-ATAPI-4 devices assert INTRQ
6148 * at this state when ready to receive CDB.
6149 */
6150
6151 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6152 * The flag was turned on only for atapi devices. No
6153 * need to check ata_is_atapi(qc->tf.protocol) again.
6154 */
6155 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6156 goto idle_irq;
6157 break;
6158 case HSM_ST_LAST:
6159 if (qc->tf.protocol == ATA_PROT_DMA ||
6160 qc->tf.protocol == ATAPI_PROT_DMA) {
6161 /* check status of DMA engine */
6162 host_stat = ap->ops->bmdma_status(ap);
6163 VPRINTK("ata%u: host_stat 0x%X\n",
6164 ap->print_id, host_stat);
6165
6166 /* if it's not our irq... */
6167 if (!(host_stat & ATA_DMA_INTR))
6168 goto idle_irq;
6169
6170 /* before we do anything else, clear DMA-Start bit */
6171 ap->ops->bmdma_stop(qc);
6172
6173 if (unlikely(host_stat & ATA_DMA_ERR)) {
6174 /* error when transfering data to/from memory */
6175 qc->err_mask |= AC_ERR_HOST_BUS;
6176 ap->hsm_task_state = HSM_ST_ERR;
6177 }
6178 }
6179 break;
6180 case HSM_ST:
6181 break;
6182 default:
6183 goto idle_irq;
6184 }
6185
6186 /* check altstatus */
6187 status = ata_altstatus(ap);
6188 if (status & ATA_BUSY)
6189 goto idle_irq;
6190
6191 /* check main status, clearing INTRQ */
6192 status = ata_chk_status(ap);
6193 if (unlikely(status & ATA_BUSY))
6194 goto idle_irq;
6195
6196 /* ack bmdma irq events */
6197 ap->ops->irq_clear(ap);
6198
6199 ata_hsm_move(ap, qc, status, 0);
6200
6201 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6202 qc->tf.protocol == ATAPI_PROT_DMA))
6203 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6204
6205 return 1; /* irq handled */
6206
6207 idle_irq:
6208 ap->stats.idle_irq++;
6209
6210 #ifdef ATA_IRQ_TRAP
6211 if ((ap->stats.idle_irq % 1000) == 0) {
6212 ata_chk_status(ap);
6213 ap->ops->irq_clear(ap);
6214 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6215 return 1;
6216 }
6217 #endif
6218 return 0; /* irq not handled */
6219 }
6220
6221 /**
6222 * ata_interrupt - Default ATA host interrupt handler
6223 * @irq: irq line (unused)
6224 * @dev_instance: pointer to our ata_host information structure
6225 *
6226 * Default interrupt handler for PCI IDE devices. Calls
6227 * ata_host_intr() for each port that is not disabled.
6228 *
6229 * LOCKING:
6230 * Obtains host lock during operation.
6231 *
6232 * RETURNS:
6233 * IRQ_NONE or IRQ_HANDLED.
6234 */
6235
6236 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6237 {
6238 struct ata_host *host = dev_instance;
6239 unsigned int i;
6240 unsigned int handled = 0;
6241 unsigned long flags;
6242
6243 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6244 spin_lock_irqsave(&host->lock, flags);
6245
6246 for (i = 0; i < host->n_ports; i++) {
6247 struct ata_port *ap;
6248
6249 ap = host->ports[i];
6250 if (ap &&
6251 !(ap->flags & ATA_FLAG_DISABLED)) {
6252 struct ata_queued_cmd *qc;
6253
6254 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6255 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6256 (qc->flags & ATA_QCFLAG_ACTIVE))
6257 handled |= ata_host_intr(ap, qc);
6258 }
6259 }
6260
6261 spin_unlock_irqrestore(&host->lock, flags);
6262
6263 return IRQ_RETVAL(handled);
6264 }
6265
6266 /**
6267 * sata_scr_valid - test whether SCRs are accessible
6268 * @link: ATA link to test SCR accessibility for
6269 *
6270 * Test whether SCRs are accessible for @link.
6271 *
6272 * LOCKING:
6273 * None.
6274 *
6275 * RETURNS:
6276 * 1 if SCRs are accessible, 0 otherwise.
6277 */
6278 int sata_scr_valid(struct ata_link *link)
6279 {
6280 struct ata_port *ap = link->ap;
6281
6282 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6283 }
6284
6285 /**
6286 * sata_scr_read - read SCR register of the specified port
6287 * @link: ATA link to read SCR for
6288 * @reg: SCR to read
6289 * @val: Place to store read value
6290 *
6291 * Read SCR register @reg of @link into *@val. This function is
6292 * guaranteed to succeed if @link is ap->link, the cable type of
6293 * the port is SATA and the port implements ->scr_read.
6294 *
6295 * LOCKING:
6296 * None if @link is ap->link. Kernel thread context otherwise.
6297 *
6298 * RETURNS:
6299 * 0 on success, negative errno on failure.
6300 */
6301 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6302 {
6303 if (ata_is_host_link(link)) {
6304 struct ata_port *ap = link->ap;
6305
6306 if (sata_scr_valid(link))
6307 return ap->ops->scr_read(ap, reg, val);
6308 return -EOPNOTSUPP;
6309 }
6310
6311 return sata_pmp_scr_read(link, reg, val);
6312 }
6313
6314 /**
6315 * sata_scr_write - write SCR register of the specified port
6316 * @link: ATA link to write SCR for
6317 * @reg: SCR to write
6318 * @val: value to write
6319 *
6320 * Write @val to SCR register @reg of @link. This function is
6321 * guaranteed to succeed if @link is ap->link, the cable type of
6322 * the port is SATA and the port implements ->scr_read.
6323 *
6324 * LOCKING:
6325 * None if @link is ap->link. Kernel thread context otherwise.
6326 *
6327 * RETURNS:
6328 * 0 on success, negative errno on failure.
6329 */
6330 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6331 {
6332 if (ata_is_host_link(link)) {
6333 struct ata_port *ap = link->ap;
6334
6335 if (sata_scr_valid(link))
6336 return ap->ops->scr_write(ap, reg, val);
6337 return -EOPNOTSUPP;
6338 }
6339
6340 return sata_pmp_scr_write(link, reg, val);
6341 }
6342
6343 /**
6344 * sata_scr_write_flush - write SCR register of the specified port and flush
6345 * @link: ATA link to write SCR for
6346 * @reg: SCR to write
6347 * @val: value to write
6348 *
6349 * This function is identical to sata_scr_write() except that this
6350 * function performs flush after writing to the register.
6351 *
6352 * LOCKING:
6353 * None if @link is ap->link. Kernel thread context otherwise.
6354 *
6355 * RETURNS:
6356 * 0 on success, negative errno on failure.
6357 */
6358 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6359 {
6360 if (ata_is_host_link(link)) {
6361 struct ata_port *ap = link->ap;
6362 int rc;
6363
6364 if (sata_scr_valid(link)) {
6365 rc = ap->ops->scr_write(ap, reg, val);
6366 if (rc == 0)
6367 rc = ap->ops->scr_read(ap, reg, &val);
6368 return rc;
6369 }
6370 return -EOPNOTSUPP;
6371 }
6372
6373 return sata_pmp_scr_write(link, reg, val);
6374 }
6375
6376 /**
6377 * ata_link_online - test whether the given link is online
6378 * @link: ATA link to test
6379 *
6380 * Test whether @link is online. Note that this function returns
6381 * 0 if online status of @link cannot be obtained, so
6382 * ata_link_online(link) != !ata_link_offline(link).
6383 *
6384 * LOCKING:
6385 * None.
6386 *
6387 * RETURNS:
6388 * 1 if the port online status is available and online.
6389 */
6390 int ata_link_online(struct ata_link *link)
6391 {
6392 u32 sstatus;
6393
6394 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6395 (sstatus & 0xf) == 0x3)
6396 return 1;
6397 return 0;
6398 }
6399
6400 /**
6401 * ata_link_offline - test whether the given link is offline
6402 * @link: ATA link to test
6403 *
6404 * Test whether @link is offline. Note that this function
6405 * returns 0 if offline status of @link cannot be obtained, so
6406 * ata_link_online(link) != !ata_link_offline(link).
6407 *
6408 * LOCKING:
6409 * None.
6410 *
6411 * RETURNS:
6412 * 1 if the port offline status is available and offline.
6413 */
6414 int ata_link_offline(struct ata_link *link)
6415 {
6416 u32 sstatus;
6417
6418 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6419 (sstatus & 0xf) != 0x3)
6420 return 1;
6421 return 0;
6422 }
6423
6424 int ata_flush_cache(struct ata_device *dev)
6425 {
6426 unsigned int err_mask;
6427 u8 cmd;
6428
6429 if (!ata_try_flush_cache(dev))
6430 return 0;
6431
6432 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6433 cmd = ATA_CMD_FLUSH_EXT;
6434 else
6435 cmd = ATA_CMD_FLUSH;
6436
6437 /* This is wrong. On a failed flush we get back the LBA of the lost
6438 sector and we should (assuming it wasn't aborted as unknown) issue
6439 a further flush command to continue the writeback until it
6440 does not error */
6441 err_mask = ata_do_simple_cmd(dev, cmd);
6442 if (err_mask) {
6443 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6444 return -EIO;
6445 }
6446
6447 return 0;
6448 }
6449
6450 #ifdef CONFIG_PM
6451 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6452 unsigned int action, unsigned int ehi_flags,
6453 int wait)
6454 {
6455 unsigned long flags;
6456 int i, rc;
6457
6458 for (i = 0; i < host->n_ports; i++) {
6459 struct ata_port *ap = host->ports[i];
6460 struct ata_link *link;
6461
6462 /* Previous resume operation might still be in
6463 * progress. Wait for PM_PENDING to clear.
6464 */
6465 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6466 ata_port_wait_eh(ap);
6467 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6468 }
6469
6470 /* request PM ops to EH */
6471 spin_lock_irqsave(ap->lock, flags);
6472
6473 ap->pm_mesg = mesg;
6474 if (wait) {
6475 rc = 0;
6476 ap->pm_result = &rc;
6477 }
6478
6479 ap->pflags |= ATA_PFLAG_PM_PENDING;
6480 __ata_port_for_each_link(link, ap) {
6481 link->eh_info.action |= action;
6482 link->eh_info.flags |= ehi_flags;
6483 }
6484
6485 ata_port_schedule_eh(ap);
6486
6487 spin_unlock_irqrestore(ap->lock, flags);
6488
6489 /* wait and check result */
6490 if (wait) {
6491 ata_port_wait_eh(ap);
6492 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6493 if (rc)
6494 return rc;
6495 }
6496 }
6497
6498 return 0;
6499 }
6500
6501 /**
6502 * ata_host_suspend - suspend host
6503 * @host: host to suspend
6504 * @mesg: PM message
6505 *
6506 * Suspend @host. Actual operation is performed by EH. This
6507 * function requests EH to perform PM operations and waits for EH
6508 * to finish.
6509 *
6510 * LOCKING:
6511 * Kernel thread context (may sleep).
6512 *
6513 * RETURNS:
6514 * 0 on success, -errno on failure.
6515 */
6516 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6517 {
6518 int rc;
6519
6520 /*
6521 * disable link pm on all ports before requesting
6522 * any pm activity
6523 */
6524 ata_lpm_enable(host);
6525
6526 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6527 if (rc == 0)
6528 host->dev->power.power_state = mesg;
6529 return rc;
6530 }
6531
6532 /**
6533 * ata_host_resume - resume host
6534 * @host: host to resume
6535 *
6536 * Resume @host. Actual operation is performed by EH. This
6537 * function requests EH to perform PM operations and returns.
6538 * Note that all resume operations are performed parallely.
6539 *
6540 * LOCKING:
6541 * Kernel thread context (may sleep).
6542 */
6543 void ata_host_resume(struct ata_host *host)
6544 {
6545 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6546 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6547 host->dev->power.power_state = PMSG_ON;
6548
6549 /* reenable link pm */
6550 ata_lpm_disable(host);
6551 }
6552 #endif
6553
6554 /**
6555 * ata_port_start - Set port up for dma.
6556 * @ap: Port to initialize
6557 *
6558 * Called just after data structures for each port are
6559 * initialized. Allocates space for PRD table.
6560 *
6561 * May be used as the port_start() entry in ata_port_operations.
6562 *
6563 * LOCKING:
6564 * Inherited from caller.
6565 */
6566 int ata_port_start(struct ata_port *ap)
6567 {
6568 struct device *dev = ap->dev;
6569 int rc;
6570
6571 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6572 GFP_KERNEL);
6573 if (!ap->prd)
6574 return -ENOMEM;
6575
6576 rc = ata_pad_alloc(ap, dev);
6577 if (rc)
6578 return rc;
6579
6580 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6581 (unsigned long long)ap->prd_dma);
6582 return 0;
6583 }
6584
6585 /**
6586 * ata_dev_init - Initialize an ata_device structure
6587 * @dev: Device structure to initialize
6588 *
6589 * Initialize @dev in preparation for probing.
6590 *
6591 * LOCKING:
6592 * Inherited from caller.
6593 */
6594 void ata_dev_init(struct ata_device *dev)
6595 {
6596 struct ata_link *link = dev->link;
6597 struct ata_port *ap = link->ap;
6598 unsigned long flags;
6599
6600 /* SATA spd limit is bound to the first device */
6601 link->sata_spd_limit = link->hw_sata_spd_limit;
6602 link->sata_spd = 0;
6603
6604 /* High bits of dev->flags are used to record warm plug
6605 * requests which occur asynchronously. Synchronize using
6606 * host lock.
6607 */
6608 spin_lock_irqsave(ap->lock, flags);
6609 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6610 dev->horkage = 0;
6611 spin_unlock_irqrestore(ap->lock, flags);
6612
6613 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6614 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6615 dev->pio_mask = UINT_MAX;
6616 dev->mwdma_mask = UINT_MAX;
6617 dev->udma_mask = UINT_MAX;
6618 }
6619
6620 /**
6621 * ata_link_init - Initialize an ata_link structure
6622 * @ap: ATA port link is attached to
6623 * @link: Link structure to initialize
6624 * @pmp: Port multiplier port number
6625 *
6626 * Initialize @link.
6627 *
6628 * LOCKING:
6629 * Kernel thread context (may sleep)
6630 */
6631 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6632 {
6633 int i;
6634
6635 /* clear everything except for devices */
6636 memset(link, 0, offsetof(struct ata_link, device[0]));
6637
6638 link->ap = ap;
6639 link->pmp = pmp;
6640 link->active_tag = ATA_TAG_POISON;
6641 link->hw_sata_spd_limit = UINT_MAX;
6642
6643 /* can't use iterator, ap isn't initialized yet */
6644 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6645 struct ata_device *dev = &link->device[i];
6646
6647 dev->link = link;
6648 dev->devno = dev - link->device;
6649 ata_dev_init(dev);
6650 }
6651 }
6652
6653 /**
6654 * sata_link_init_spd - Initialize link->sata_spd_limit
6655 * @link: Link to configure sata_spd_limit for
6656 *
6657 * Initialize @link->[hw_]sata_spd_limit to the currently
6658 * configured value.
6659 *
6660 * LOCKING:
6661 * Kernel thread context (may sleep).
6662 *
6663 * RETURNS:
6664 * 0 on success, -errno on failure.
6665 */
6666 int sata_link_init_spd(struct ata_link *link)
6667 {
6668 u32 scontrol, spd;
6669 int rc;
6670
6671 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6672 if (rc)
6673 return rc;
6674
6675 spd = (scontrol >> 4) & 0xf;
6676 if (spd)
6677 link->hw_sata_spd_limit &= (1 << spd) - 1;
6678
6679 link->sata_spd_limit = link->hw_sata_spd_limit;
6680
6681 return 0;
6682 }
6683
6684 /**
6685 * ata_port_alloc - allocate and initialize basic ATA port resources
6686 * @host: ATA host this allocated port belongs to
6687 *
6688 * Allocate and initialize basic ATA port resources.
6689 *
6690 * RETURNS:
6691 * Allocate ATA port on success, NULL on failure.
6692 *
6693 * LOCKING:
6694 * Inherited from calling layer (may sleep).
6695 */
6696 struct ata_port *ata_port_alloc(struct ata_host *host)
6697 {
6698 struct ata_port *ap;
6699
6700 DPRINTK("ENTER\n");
6701
6702 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6703 if (!ap)
6704 return NULL;
6705
6706 ap->pflags |= ATA_PFLAG_INITIALIZING;
6707 ap->lock = &host->lock;
6708 ap->flags = ATA_FLAG_DISABLED;
6709 ap->print_id = -1;
6710 ap->ctl = ATA_DEVCTL_OBS;
6711 ap->host = host;
6712 ap->dev = host->dev;
6713 ap->last_ctl = 0xFF;
6714
6715 #if defined(ATA_VERBOSE_DEBUG)
6716 /* turn on all debugging levels */
6717 ap->msg_enable = 0x00FF;
6718 #elif defined(ATA_DEBUG)
6719 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6720 #else
6721 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6722 #endif
6723
6724 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6725 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6726 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6727 INIT_LIST_HEAD(&ap->eh_done_q);
6728 init_waitqueue_head(&ap->eh_wait_q);
6729 init_timer_deferrable(&ap->fastdrain_timer);
6730 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6731 ap->fastdrain_timer.data = (unsigned long)ap;
6732
6733 ap->cbl = ATA_CBL_NONE;
6734
6735 ata_link_init(ap, &ap->link, 0);
6736
6737 #ifdef ATA_IRQ_TRAP
6738 ap->stats.unhandled_irq = 1;
6739 ap->stats.idle_irq = 1;
6740 #endif
6741 return ap;
6742 }
6743
6744 static void ata_host_release(struct device *gendev, void *res)
6745 {
6746 struct ata_host *host = dev_get_drvdata(gendev);
6747 int i;
6748
6749 for (i = 0; i < host->n_ports; i++) {
6750 struct ata_port *ap = host->ports[i];
6751
6752 if (!ap)
6753 continue;
6754
6755 if (ap->scsi_host)
6756 scsi_host_put(ap->scsi_host);
6757
6758 kfree(ap->pmp_link);
6759 kfree(ap);
6760 host->ports[i] = NULL;
6761 }
6762
6763 dev_set_drvdata(gendev, NULL);
6764 }
6765
6766 /**
6767 * ata_host_alloc - allocate and init basic ATA host resources
6768 * @dev: generic device this host is associated with
6769 * @max_ports: maximum number of ATA ports associated with this host
6770 *
6771 * Allocate and initialize basic ATA host resources. LLD calls
6772 * this function to allocate a host, initializes it fully and
6773 * attaches it using ata_host_register().
6774 *
6775 * @max_ports ports are allocated and host->n_ports is
6776 * initialized to @max_ports. The caller is allowed to decrease
6777 * host->n_ports before calling ata_host_register(). The unused
6778 * ports will be automatically freed on registration.
6779 *
6780 * RETURNS:
6781 * Allocate ATA host on success, NULL on failure.
6782 *
6783 * LOCKING:
6784 * Inherited from calling layer (may sleep).
6785 */
6786 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6787 {
6788 struct ata_host *host;
6789 size_t sz;
6790 int i;
6791
6792 DPRINTK("ENTER\n");
6793
6794 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6795 return NULL;
6796
6797 /* alloc a container for our list of ATA ports (buses) */
6798 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6799 /* alloc a container for our list of ATA ports (buses) */
6800 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6801 if (!host)
6802 goto err_out;
6803
6804 devres_add(dev, host);
6805 dev_set_drvdata(dev, host);
6806
6807 spin_lock_init(&host->lock);
6808 host->dev = dev;
6809 host->n_ports = max_ports;
6810
6811 /* allocate ports bound to this host */
6812 for (i = 0; i < max_ports; i++) {
6813 struct ata_port *ap;
6814
6815 ap = ata_port_alloc(host);
6816 if (!ap)
6817 goto err_out;
6818
6819 ap->port_no = i;
6820 host->ports[i] = ap;
6821 }
6822
6823 devres_remove_group(dev, NULL);
6824 return host;
6825
6826 err_out:
6827 devres_release_group(dev, NULL);
6828 return NULL;
6829 }
6830
6831 /**
6832 * ata_host_alloc_pinfo - alloc host and init with port_info array
6833 * @dev: generic device this host is associated with
6834 * @ppi: array of ATA port_info to initialize host with
6835 * @n_ports: number of ATA ports attached to this host
6836 *
6837 * Allocate ATA host and initialize with info from @ppi. If NULL
6838 * terminated, @ppi may contain fewer entries than @n_ports. The
6839 * last entry will be used for the remaining ports.
6840 *
6841 * RETURNS:
6842 * Allocate ATA host on success, NULL on failure.
6843 *
6844 * LOCKING:
6845 * Inherited from calling layer (may sleep).
6846 */
6847 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6848 const struct ata_port_info * const * ppi,
6849 int n_ports)
6850 {
6851 const struct ata_port_info *pi;
6852 struct ata_host *host;
6853 int i, j;
6854
6855 host = ata_host_alloc(dev, n_ports);
6856 if (!host)
6857 return NULL;
6858
6859 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6860 struct ata_port *ap = host->ports[i];
6861
6862 if (ppi[j])
6863 pi = ppi[j++];
6864
6865 ap->pio_mask = pi->pio_mask;
6866 ap->mwdma_mask = pi->mwdma_mask;
6867 ap->udma_mask = pi->udma_mask;
6868 ap->flags |= pi->flags;
6869 ap->link.flags |= pi->link_flags;
6870 ap->ops = pi->port_ops;
6871
6872 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6873 host->ops = pi->port_ops;
6874 if (!host->private_data && pi->private_data)
6875 host->private_data = pi->private_data;
6876 }
6877
6878 return host;
6879 }
6880
6881 static void ata_host_stop(struct device *gendev, void *res)
6882 {
6883 struct ata_host *host = dev_get_drvdata(gendev);
6884 int i;
6885
6886 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6887
6888 for (i = 0; i < host->n_ports; i++) {
6889 struct ata_port *ap = host->ports[i];
6890
6891 if (ap->ops->port_stop)
6892 ap->ops->port_stop(ap);
6893 }
6894
6895 if (host->ops->host_stop)
6896 host->ops->host_stop(host);
6897 }
6898
6899 /**
6900 * ata_host_start - start and freeze ports of an ATA host
6901 * @host: ATA host to start ports for
6902 *
6903 * Start and then freeze ports of @host. Started status is
6904 * recorded in host->flags, so this function can be called
6905 * multiple times. Ports are guaranteed to get started only
6906 * once. If host->ops isn't initialized yet, its set to the
6907 * first non-dummy port ops.
6908 *
6909 * LOCKING:
6910 * Inherited from calling layer (may sleep).
6911 *
6912 * RETURNS:
6913 * 0 if all ports are started successfully, -errno otherwise.
6914 */
6915 int ata_host_start(struct ata_host *host)
6916 {
6917 int have_stop = 0;
6918 void *start_dr = NULL;
6919 int i, rc;
6920
6921 if (host->flags & ATA_HOST_STARTED)
6922 return 0;
6923
6924 for (i = 0; i < host->n_ports; i++) {
6925 struct ata_port *ap = host->ports[i];
6926
6927 if (!host->ops && !ata_port_is_dummy(ap))
6928 host->ops = ap->ops;
6929
6930 if (ap->ops->port_stop)
6931 have_stop = 1;
6932 }
6933
6934 if (host->ops->host_stop)
6935 have_stop = 1;
6936
6937 if (have_stop) {
6938 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6939 if (!start_dr)
6940 return -ENOMEM;
6941 }
6942
6943 for (i = 0; i < host->n_ports; i++) {
6944 struct ata_port *ap = host->ports[i];
6945
6946 if (ap->ops->port_start) {
6947 rc = ap->ops->port_start(ap);
6948 if (rc) {
6949 if (rc != -ENODEV)
6950 dev_printk(KERN_ERR, host->dev,
6951 "failed to start port %d "
6952 "(errno=%d)\n", i, rc);
6953 goto err_out;
6954 }
6955 }
6956 ata_eh_freeze_port(ap);
6957 }
6958
6959 if (start_dr)
6960 devres_add(host->dev, start_dr);
6961 host->flags |= ATA_HOST_STARTED;
6962 return 0;
6963
6964 err_out:
6965 while (--i >= 0) {
6966 struct ata_port *ap = host->ports[i];
6967
6968 if (ap->ops->port_stop)
6969 ap->ops->port_stop(ap);
6970 }
6971 devres_free(start_dr);
6972 return rc;
6973 }
6974
6975 /**
6976 * ata_sas_host_init - Initialize a host struct
6977 * @host: host to initialize
6978 * @dev: device host is attached to
6979 * @flags: host flags
6980 * @ops: port_ops
6981 *
6982 * LOCKING:
6983 * PCI/etc. bus probe sem.
6984 *
6985 */
6986 /* KILLME - the only user left is ipr */
6987 void ata_host_init(struct ata_host *host, struct device *dev,
6988 unsigned long flags, const struct ata_port_operations *ops)
6989 {
6990 spin_lock_init(&host->lock);
6991 host->dev = dev;
6992 host->flags = flags;
6993 host->ops = ops;
6994 }
6995
6996 /**
6997 * ata_host_register - register initialized ATA host
6998 * @host: ATA host to register
6999 * @sht: template for SCSI host
7000 *
7001 * Register initialized ATA host. @host is allocated using
7002 * ata_host_alloc() and fully initialized by LLD. This function
7003 * starts ports, registers @host with ATA and SCSI layers and
7004 * probe registered devices.
7005 *
7006 * LOCKING:
7007 * Inherited from calling layer (may sleep).
7008 *
7009 * RETURNS:
7010 * 0 on success, -errno otherwise.
7011 */
7012 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7013 {
7014 int i, rc;
7015
7016 /* host must have been started */
7017 if (!(host->flags & ATA_HOST_STARTED)) {
7018 dev_printk(KERN_ERR, host->dev,
7019 "BUG: trying to register unstarted host\n");
7020 WARN_ON(1);
7021 return -EINVAL;
7022 }
7023
7024 /* Blow away unused ports. This happens when LLD can't
7025 * determine the exact number of ports to allocate at
7026 * allocation time.
7027 */
7028 for (i = host->n_ports; host->ports[i]; i++)
7029 kfree(host->ports[i]);
7030
7031 /* give ports names and add SCSI hosts */
7032 for (i = 0; i < host->n_ports; i++)
7033 host->ports[i]->print_id = ata_print_id++;
7034
7035 rc = ata_scsi_add_hosts(host, sht);
7036 if (rc)
7037 return rc;
7038
7039 /* associate with ACPI nodes */
7040 ata_acpi_associate(host);
7041
7042 /* set cable, sata_spd_limit and report */
7043 for (i = 0; i < host->n_ports; i++) {
7044 struct ata_port *ap = host->ports[i];
7045 unsigned long xfer_mask;
7046
7047 /* set SATA cable type if still unset */
7048 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7049 ap->cbl = ATA_CBL_SATA;
7050
7051 /* init sata_spd_limit to the current value */
7052 sata_link_init_spd(&ap->link);
7053
7054 /* print per-port info to dmesg */
7055 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7056 ap->udma_mask);
7057
7058 if (!ata_port_is_dummy(ap)) {
7059 ata_port_printk(ap, KERN_INFO,
7060 "%cATA max %s %s\n",
7061 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7062 ata_mode_string(xfer_mask),
7063 ap->link.eh_info.desc);
7064 ata_ehi_clear_desc(&ap->link.eh_info);
7065 } else
7066 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7067 }
7068
7069 /* perform each probe synchronously */
7070 DPRINTK("probe begin\n");
7071 for (i = 0; i < host->n_ports; i++) {
7072 struct ata_port *ap = host->ports[i];
7073 int rc;
7074
7075 /* probe */
7076 if (ap->ops->error_handler) {
7077 struct ata_eh_info *ehi = &ap->link.eh_info;
7078 unsigned long flags;
7079
7080 ata_port_probe(ap);
7081
7082 /* kick EH for boot probing */
7083 spin_lock_irqsave(ap->lock, flags);
7084
7085 ehi->probe_mask =
7086 (1 << ata_link_max_devices(&ap->link)) - 1;
7087 ehi->action |= ATA_EH_SOFTRESET;
7088 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7089
7090 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7091 ap->pflags |= ATA_PFLAG_LOADING;
7092 ata_port_schedule_eh(ap);
7093
7094 spin_unlock_irqrestore(ap->lock, flags);
7095
7096 /* wait for EH to finish */
7097 ata_port_wait_eh(ap);
7098 } else {
7099 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7100 rc = ata_bus_probe(ap);
7101 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7102
7103 if (rc) {
7104 /* FIXME: do something useful here?
7105 * Current libata behavior will
7106 * tear down everything when
7107 * the module is removed
7108 * or the h/w is unplugged.
7109 */
7110 }
7111 }
7112 }
7113
7114 /* probes are done, now scan each port's disk(s) */
7115 DPRINTK("host probe begin\n");
7116 for (i = 0; i < host->n_ports; i++) {
7117 struct ata_port *ap = host->ports[i];
7118
7119 ata_scsi_scan_host(ap, 1);
7120 ata_lpm_schedule(ap, ap->pm_policy);
7121 }
7122
7123 return 0;
7124 }
7125
7126 /**
7127 * ata_host_activate - start host, request IRQ and register it
7128 * @host: target ATA host
7129 * @irq: IRQ to request
7130 * @irq_handler: irq_handler used when requesting IRQ
7131 * @irq_flags: irq_flags used when requesting IRQ
7132 * @sht: scsi_host_template to use when registering the host
7133 *
7134 * After allocating an ATA host and initializing it, most libata
7135 * LLDs perform three steps to activate the host - start host,
7136 * request IRQ and register it. This helper takes necessasry
7137 * arguments and performs the three steps in one go.
7138 *
7139 * An invalid IRQ skips the IRQ registration and expects the host to
7140 * have set polling mode on the port. In this case, @irq_handler
7141 * should be NULL.
7142 *
7143 * LOCKING:
7144 * Inherited from calling layer (may sleep).
7145 *
7146 * RETURNS:
7147 * 0 on success, -errno otherwise.
7148 */
7149 int ata_host_activate(struct ata_host *host, int irq,
7150 irq_handler_t irq_handler, unsigned long irq_flags,
7151 struct scsi_host_template *sht)
7152 {
7153 int i, rc;
7154
7155 rc = ata_host_start(host);
7156 if (rc)
7157 return rc;
7158
7159 /* Special case for polling mode */
7160 if (!irq) {
7161 WARN_ON(irq_handler);
7162 return ata_host_register(host, sht);
7163 }
7164
7165 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7166 dev_driver_string(host->dev), host);
7167 if (rc)
7168 return rc;
7169
7170 for (i = 0; i < host->n_ports; i++)
7171 ata_port_desc(host->ports[i], "irq %d", irq);
7172
7173 rc = ata_host_register(host, sht);
7174 /* if failed, just free the IRQ and leave ports alone */
7175 if (rc)
7176 devm_free_irq(host->dev, irq, host);
7177
7178 return rc;
7179 }
7180
7181 /**
7182 * ata_port_detach - Detach ATA port in prepration of device removal
7183 * @ap: ATA port to be detached
7184 *
7185 * Detach all ATA devices and the associated SCSI devices of @ap;
7186 * then, remove the associated SCSI host. @ap is guaranteed to
7187 * be quiescent on return from this function.
7188 *
7189 * LOCKING:
7190 * Kernel thread context (may sleep).
7191 */
7192 static void ata_port_detach(struct ata_port *ap)
7193 {
7194 unsigned long flags;
7195 struct ata_link *link;
7196 struct ata_device *dev;
7197
7198 if (!ap->ops->error_handler)
7199 goto skip_eh;
7200
7201 /* tell EH we're leaving & flush EH */
7202 spin_lock_irqsave(ap->lock, flags);
7203 ap->pflags |= ATA_PFLAG_UNLOADING;
7204 spin_unlock_irqrestore(ap->lock, flags);
7205
7206 ata_port_wait_eh(ap);
7207
7208 /* EH is now guaranteed to see UNLOADING - EH context belongs
7209 * to us. Disable all existing devices.
7210 */
7211 ata_port_for_each_link(link, ap) {
7212 ata_link_for_each_dev(dev, link)
7213 ata_dev_disable(dev);
7214 }
7215
7216 /* Final freeze & EH. All in-flight commands are aborted. EH
7217 * will be skipped and retrials will be terminated with bad
7218 * target.
7219 */
7220 spin_lock_irqsave(ap->lock, flags);
7221 ata_port_freeze(ap); /* won't be thawed */
7222 spin_unlock_irqrestore(ap->lock, flags);
7223
7224 ata_port_wait_eh(ap);
7225 cancel_rearming_delayed_work(&ap->hotplug_task);
7226
7227 skip_eh:
7228 /* remove the associated SCSI host */
7229 scsi_remove_host(ap->scsi_host);
7230 }
7231
7232 /**
7233 * ata_host_detach - Detach all ports of an ATA host
7234 * @host: Host to detach
7235 *
7236 * Detach all ports of @host.
7237 *
7238 * LOCKING:
7239 * Kernel thread context (may sleep).
7240 */
7241 void ata_host_detach(struct ata_host *host)
7242 {
7243 int i;
7244
7245 for (i = 0; i < host->n_ports; i++)
7246 ata_port_detach(host->ports[i]);
7247
7248 /* the host is dead now, dissociate ACPI */
7249 ata_acpi_dissociate(host);
7250 }
7251
7252 /**
7253 * ata_std_ports - initialize ioaddr with standard port offsets.
7254 * @ioaddr: IO address structure to be initialized
7255 *
7256 * Utility function which initializes data_addr, error_addr,
7257 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7258 * device_addr, status_addr, and command_addr to standard offsets
7259 * relative to cmd_addr.
7260 *
7261 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7262 */
7263
7264 void ata_std_ports(struct ata_ioports *ioaddr)
7265 {
7266 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7267 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7268 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7269 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7270 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7271 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7272 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7273 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7274 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7275 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7276 }
7277
7278
7279 #ifdef CONFIG_PCI
7280
7281 /**
7282 * ata_pci_remove_one - PCI layer callback for device removal
7283 * @pdev: PCI device that was removed
7284 *
7285 * PCI layer indicates to libata via this hook that hot-unplug or
7286 * module unload event has occurred. Detach all ports. Resource
7287 * release is handled via devres.
7288 *
7289 * LOCKING:
7290 * Inherited from PCI layer (may sleep).
7291 */
7292 void ata_pci_remove_one(struct pci_dev *pdev)
7293 {
7294 struct device *dev = &pdev->dev;
7295 struct ata_host *host = dev_get_drvdata(dev);
7296
7297 ata_host_detach(host);
7298 }
7299
7300 /* move to PCI subsystem */
7301 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7302 {
7303 unsigned long tmp = 0;
7304
7305 switch (bits->width) {
7306 case 1: {
7307 u8 tmp8 = 0;
7308 pci_read_config_byte(pdev, bits->reg, &tmp8);
7309 tmp = tmp8;
7310 break;
7311 }
7312 case 2: {
7313 u16 tmp16 = 0;
7314 pci_read_config_word(pdev, bits->reg, &tmp16);
7315 tmp = tmp16;
7316 break;
7317 }
7318 case 4: {
7319 u32 tmp32 = 0;
7320 pci_read_config_dword(pdev, bits->reg, &tmp32);
7321 tmp = tmp32;
7322 break;
7323 }
7324
7325 default:
7326 return -EINVAL;
7327 }
7328
7329 tmp &= bits->mask;
7330
7331 return (tmp == bits->val) ? 1 : 0;
7332 }
7333
7334 #ifdef CONFIG_PM
7335 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7336 {
7337 pci_save_state(pdev);
7338 pci_disable_device(pdev);
7339
7340 if (mesg.event == PM_EVENT_SUSPEND)
7341 pci_set_power_state(pdev, PCI_D3hot);
7342 }
7343
7344 int ata_pci_device_do_resume(struct pci_dev *pdev)
7345 {
7346 int rc;
7347
7348 pci_set_power_state(pdev, PCI_D0);
7349 pci_restore_state(pdev);
7350
7351 rc = pcim_enable_device(pdev);
7352 if (rc) {
7353 dev_printk(KERN_ERR, &pdev->dev,
7354 "failed to enable device after resume (%d)\n", rc);
7355 return rc;
7356 }
7357
7358 pci_set_master(pdev);
7359 return 0;
7360 }
7361
7362 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7363 {
7364 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7365 int rc = 0;
7366
7367 rc = ata_host_suspend(host, mesg);
7368 if (rc)
7369 return rc;
7370
7371 ata_pci_device_do_suspend(pdev, mesg);
7372
7373 return 0;
7374 }
7375
7376 int ata_pci_device_resume(struct pci_dev *pdev)
7377 {
7378 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7379 int rc;
7380
7381 rc = ata_pci_device_do_resume(pdev);
7382 if (rc == 0)
7383 ata_host_resume(host);
7384 return rc;
7385 }
7386 #endif /* CONFIG_PM */
7387
7388 #endif /* CONFIG_PCI */
7389
7390
7391 static int __init ata_init(void)
7392 {
7393 ata_probe_timeout *= HZ;
7394 ata_wq = create_workqueue("ata");
7395 if (!ata_wq)
7396 return -ENOMEM;
7397
7398 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7399 if (!ata_aux_wq) {
7400 destroy_workqueue(ata_wq);
7401 return -ENOMEM;
7402 }
7403
7404 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7405 return 0;
7406 }
7407
7408 static void __exit ata_exit(void)
7409 {
7410 destroy_workqueue(ata_wq);
7411 destroy_workqueue(ata_aux_wq);
7412 }
7413
7414 subsys_initcall(ata_init);
7415 module_exit(ata_exit);
7416
7417 static unsigned long ratelimit_time;
7418 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7419
7420 int ata_ratelimit(void)
7421 {
7422 int rc;
7423 unsigned long flags;
7424
7425 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7426
7427 if (time_after(jiffies, ratelimit_time)) {
7428 rc = 1;
7429 ratelimit_time = jiffies + (HZ/5);
7430 } else
7431 rc = 0;
7432
7433 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7434
7435 return rc;
7436 }
7437
7438 /**
7439 * ata_wait_register - wait until register value changes
7440 * @reg: IO-mapped register
7441 * @mask: Mask to apply to read register value
7442 * @val: Wait condition
7443 * @interval_msec: polling interval in milliseconds
7444 * @timeout_msec: timeout in milliseconds
7445 *
7446 * Waiting for some bits of register to change is a common
7447 * operation for ATA controllers. This function reads 32bit LE
7448 * IO-mapped register @reg and tests for the following condition.
7449 *
7450 * (*@reg & mask) != val
7451 *
7452 * If the condition is met, it returns; otherwise, the process is
7453 * repeated after @interval_msec until timeout.
7454 *
7455 * LOCKING:
7456 * Kernel thread context (may sleep)
7457 *
7458 * RETURNS:
7459 * The final register value.
7460 */
7461 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7462 unsigned long interval_msec,
7463 unsigned long timeout_msec)
7464 {
7465 unsigned long timeout;
7466 u32 tmp;
7467
7468 tmp = ioread32(reg);
7469
7470 /* Calculate timeout _after_ the first read to make sure
7471 * preceding writes reach the controller before starting to
7472 * eat away the timeout.
7473 */
7474 timeout = jiffies + (timeout_msec * HZ) / 1000;
7475
7476 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7477 msleep(interval_msec);
7478 tmp = ioread32(reg);
7479 }
7480
7481 return tmp;
7482 }
7483
7484 /*
7485 * Dummy port_ops
7486 */
7487 static void ata_dummy_noret(struct ata_port *ap) { }
7488 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7489 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7490
7491 static u8 ata_dummy_check_status(struct ata_port *ap)
7492 {
7493 return ATA_DRDY;
7494 }
7495
7496 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7497 {
7498 return AC_ERR_SYSTEM;
7499 }
7500
7501 const struct ata_port_operations ata_dummy_port_ops = {
7502 .check_status = ata_dummy_check_status,
7503 .check_altstatus = ata_dummy_check_status,
7504 .dev_select = ata_noop_dev_select,
7505 .qc_prep = ata_noop_qc_prep,
7506 .qc_issue = ata_dummy_qc_issue,
7507 .freeze = ata_dummy_noret,
7508 .thaw = ata_dummy_noret,
7509 .error_handler = ata_dummy_noret,
7510 .post_internal_cmd = ata_dummy_qc_noret,
7511 .irq_clear = ata_dummy_noret,
7512 .port_start = ata_dummy_ret0,
7513 .port_stop = ata_dummy_noret,
7514 };
7515
7516 const struct ata_port_info ata_dummy_port_info = {
7517 .port_ops = &ata_dummy_port_ops,
7518 };
7519
7520 /*
7521 * libata is essentially a library of internal helper functions for
7522 * low-level ATA host controller drivers. As such, the API/ABI is
7523 * likely to change as new drivers are added and updated.
7524 * Do not depend on ABI/API stability.
7525 */
7526 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7527 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7528 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7529 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7530 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7531 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7532 EXPORT_SYMBOL_GPL(ata_std_ports);
7533 EXPORT_SYMBOL_GPL(ata_host_init);
7534 EXPORT_SYMBOL_GPL(ata_host_alloc);
7535 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7536 EXPORT_SYMBOL_GPL(ata_host_start);
7537 EXPORT_SYMBOL_GPL(ata_host_register);
7538 EXPORT_SYMBOL_GPL(ata_host_activate);
7539 EXPORT_SYMBOL_GPL(ata_host_detach);
7540 EXPORT_SYMBOL_GPL(ata_sg_init);
7541 EXPORT_SYMBOL_GPL(ata_hsm_move);
7542 EXPORT_SYMBOL_GPL(ata_qc_complete);
7543 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7544 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7545 EXPORT_SYMBOL_GPL(ata_tf_load);
7546 EXPORT_SYMBOL_GPL(ata_tf_read);
7547 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7548 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7549 EXPORT_SYMBOL_GPL(sata_print_link_status);
7550 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7551 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7552 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7553 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7554 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7555 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7556 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7557 EXPORT_SYMBOL_GPL(ata_mode_string);
7558 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7559 EXPORT_SYMBOL_GPL(ata_check_status);
7560 EXPORT_SYMBOL_GPL(ata_altstatus);
7561 EXPORT_SYMBOL_GPL(ata_exec_command);
7562 EXPORT_SYMBOL_GPL(ata_port_start);
7563 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7564 EXPORT_SYMBOL_GPL(ata_interrupt);
7565 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7566 EXPORT_SYMBOL_GPL(ata_data_xfer);
7567 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7568 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7569 EXPORT_SYMBOL_GPL(ata_qc_prep);
7570 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7571 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7572 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7573 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7574 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7575 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7576 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7577 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7578 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7579 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7580 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7581 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7582 EXPORT_SYMBOL_GPL(ata_port_probe);
7583 EXPORT_SYMBOL_GPL(ata_dev_disable);
7584 EXPORT_SYMBOL_GPL(sata_set_spd);
7585 EXPORT_SYMBOL_GPL(sata_link_debounce);
7586 EXPORT_SYMBOL_GPL(sata_link_resume);
7587 EXPORT_SYMBOL_GPL(ata_bus_reset);
7588 EXPORT_SYMBOL_GPL(ata_std_prereset);
7589 EXPORT_SYMBOL_GPL(ata_std_softreset);
7590 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7591 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7592 EXPORT_SYMBOL_GPL(ata_std_postreset);
7593 EXPORT_SYMBOL_GPL(ata_dev_classify);
7594 EXPORT_SYMBOL_GPL(ata_dev_pair);
7595 EXPORT_SYMBOL_GPL(ata_port_disable);
7596 EXPORT_SYMBOL_GPL(ata_ratelimit);
7597 EXPORT_SYMBOL_GPL(ata_wait_register);
7598 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7599 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7600 EXPORT_SYMBOL_GPL(ata_wait_ready);
7601 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7602 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7603 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7604 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7605 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7606 EXPORT_SYMBOL_GPL(ata_host_intr);
7607 EXPORT_SYMBOL_GPL(sata_scr_valid);
7608 EXPORT_SYMBOL_GPL(sata_scr_read);
7609 EXPORT_SYMBOL_GPL(sata_scr_write);
7610 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7611 EXPORT_SYMBOL_GPL(ata_link_online);
7612 EXPORT_SYMBOL_GPL(ata_link_offline);
7613 #ifdef CONFIG_PM
7614 EXPORT_SYMBOL_GPL(ata_host_suspend);
7615 EXPORT_SYMBOL_GPL(ata_host_resume);
7616 #endif /* CONFIG_PM */
7617 EXPORT_SYMBOL_GPL(ata_id_string);
7618 EXPORT_SYMBOL_GPL(ata_id_c_string);
7619 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7620
7621 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7622 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7623 EXPORT_SYMBOL_GPL(ata_timing_compute);
7624 EXPORT_SYMBOL_GPL(ata_timing_merge);
7625 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7626
7627 #ifdef CONFIG_PCI
7628 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7629 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7630 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7631 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7632 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7633 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7634 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7635 #ifdef CONFIG_PM
7636 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7637 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7638 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7639 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7640 #endif /* CONFIG_PM */
7641 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7642 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7643 #endif /* CONFIG_PCI */
7644
7645 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7646 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7647 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7648 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7649 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7650
7651 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7652 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7653 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7654 EXPORT_SYMBOL_GPL(ata_port_desc);
7655 #ifdef CONFIG_PCI
7656 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7657 #endif /* CONFIG_PCI */
7658 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7659 EXPORT_SYMBOL_GPL(ata_link_abort);
7660 EXPORT_SYMBOL_GPL(ata_port_abort);
7661 EXPORT_SYMBOL_GPL(ata_port_freeze);
7662 EXPORT_SYMBOL_GPL(sata_async_notification);
7663 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7664 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7665 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7666 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7667 EXPORT_SYMBOL_GPL(ata_do_eh);
7668 EXPORT_SYMBOL_GPL(ata_irq_on);
7669 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7670
7671 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7672 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7673 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7674 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7675 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.222745 seconds and 5 git commands to generate.