cece3a4d11eaeb70bf2323a53f027d28439bd543
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70
71 #include "libata.h"
72 #include "libata-transport.h"
73
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78
79 const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
83 };
84
85 const struct ata_port_operations sata_port_ops = {
86 .inherits = &ata_base_port_ops,
87
88 .qc_defer = ata_std_qc_defer,
89 .hardreset = sata_std_hardreset,
90 };
91
92 static unsigned int ata_dev_init_params(struct ata_device *dev,
93 u16 heads, u16 sectors);
94 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
95 static void ata_dev_xfermask(struct ata_device *dev);
96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97
98 atomic_t ata_print_id = ATOMIC_INIT(0);
99
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108 };
109
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114 };
115
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159
160 static int atapi_an;
161 module_param(atapi_an, int, 0444);
162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION);
168
169
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 /* fall through */
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 /* fall through */
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 /* fall through */
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233
234 /**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248 {
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285 }
286
287 /**
288 * ata_dev_phys_link - find physical link for a device
289 * @dev: ATA device to look up physical link for
290 *
291 * Look up physical link which @dev is attached to. Note that
292 * this is different from @dev->link only when @dev is on slave
293 * link. For all other cases, it's the same as @dev->link.
294 *
295 * LOCKING:
296 * Don't care.
297 *
298 * RETURNS:
299 * Pointer to the found physical link.
300 */
301 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 {
303 struct ata_port *ap = dev->link->ap;
304
305 if (!ap->slave_link)
306 return dev->link;
307 if (!dev->devno)
308 return &ap->link;
309 return ap->slave_link;
310 }
311
312 /**
313 * ata_force_cbl - force cable type according to libata.force
314 * @ap: ATA port of interest
315 *
316 * Force cable type according to libata.force and whine about it.
317 * The last entry which has matching port number is used, so it
318 * can be specified as part of device force parameters. For
319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320 * same effect.
321 *
322 * LOCKING:
323 * EH context.
324 */
325 void ata_force_cbl(struct ata_port *ap)
326 {
327 int i;
328
329 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 const struct ata_force_ent *fe = &ata_force_tbl[i];
331
332 if (fe->port != -1 && fe->port != ap->print_id)
333 continue;
334
335 if (fe->param.cbl == ATA_CBL_NONE)
336 continue;
337
338 ap->cbl = fe->param.cbl;
339 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342 }
343
344 /**
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
347 *
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
356 *
357 * LOCKING:
358 * EH context.
359 */
360 static void ata_force_link_limits(struct ata_link *link)
361 {
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
365
366 if (ata_is_host_link(link))
367 linkno += 15;
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
385
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_notice(link,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
393 }
394 }
395
396 /**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
445 fe->param.name);
446 return;
447 }
448 }
449
450 /**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
489 fe->param.name);
490 }
491 }
492
493 /**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
505 int atapi_cmd_type(u8 opcode)
506 {
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
528 }
529 }
530
531 /**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573 }
574
575 /**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602 }
603
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
619 0,
620 0,
621 0,
622 0,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
632 };
633
634 /**
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
638 *
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
641 *
642 * LOCKING:
643 * caller.
644 */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 u8 cmd;
648
649 int index, fua, lba48, write;
650
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
665 }
666
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
673 }
674
675 /**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 if (!sect) {
713 ata_dev_warn(dev,
714 "device reported invalid CHS sector 0\n");
715 sect = 1; /* oh well */
716 }
717
718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
719 }
720
721 return block;
722 }
723
724 /**
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
731 * @tag: tag
732 *
733 * LOCKING:
734 * None.
735 *
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
738 *
739 * RETURNS:
740 *
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
743 */
744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 u64 block, u32 n_block, unsigned int tf_flags,
746 unsigned int tag)
747 {
748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 tf->flags |= tf_flags;
750
751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 /* yay, NCQ */
753 if (!lba_48_ok(block, n_block))
754 return -ERANGE;
755
756 tf->protocol = ATA_PROT_NCQ;
757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758
759 if (tf->flags & ATA_TFLAG_WRITE)
760 tf->command = ATA_CMD_FPDMA_WRITE;
761 else
762 tf->command = ATA_CMD_FPDMA_READ;
763
764 tf->nsect = tag << 3;
765 tf->hob_feature = (n_block >> 8) & 0xff;
766 tf->feature = n_block & 0xff;
767
768 tf->hob_lbah = (block >> 40) & 0xff;
769 tf->hob_lbam = (block >> 32) & 0xff;
770 tf->hob_lbal = (block >> 24) & 0xff;
771 tf->lbah = (block >> 16) & 0xff;
772 tf->lbam = (block >> 8) & 0xff;
773 tf->lbal = block & 0xff;
774
775 tf->device = 1 << 6;
776 if (tf->flags & ATA_TFLAG_FUA)
777 tf->device |= 1 << 7;
778 } else if (dev->flags & ATA_DFLAG_LBA) {
779 tf->flags |= ATA_TFLAG_LBA;
780
781 if (lba_28_ok(block, n_block)) {
782 /* use LBA28 */
783 tf->device |= (block >> 24) & 0xf;
784 } else if (lba_48_ok(block, n_block)) {
785 if (!(dev->flags & ATA_DFLAG_LBA48))
786 return -ERANGE;
787
788 /* use LBA48 */
789 tf->flags |= ATA_TFLAG_LBA48;
790
791 tf->hob_nsect = (n_block >> 8) & 0xff;
792
793 tf->hob_lbah = (block >> 40) & 0xff;
794 tf->hob_lbam = (block >> 32) & 0xff;
795 tf->hob_lbal = (block >> 24) & 0xff;
796 } else
797 /* request too large even for LBA48 */
798 return -ERANGE;
799
800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 return -EINVAL;
802
803 tf->nsect = n_block & 0xff;
804
805 tf->lbah = (block >> 16) & 0xff;
806 tf->lbam = (block >> 8) & 0xff;
807 tf->lbal = block & 0xff;
808
809 tf->device |= ATA_LBA;
810 } else {
811 /* CHS */
812 u32 sect, head, cyl, track;
813
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block, n_block))
816 return -ERANGE;
817
818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 return -EINVAL;
820
821 /* Convert LBA to CHS */
822 track = (u32)block / dev->sectors;
823 cyl = track / dev->heads;
824 head = track % dev->heads;
825 sect = (u32)block % dev->sectors + 1;
826
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32)block, track, cyl, head, sect);
829
830 /* Check whether the converted CHS can fit.
831 Cylinder: 0-65535
832 Head: 0-15
833 Sector: 1-255*/
834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 return -ERANGE;
836
837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 tf->lbal = sect;
839 tf->lbam = cyl;
840 tf->lbah = cyl >> 8;
841 tf->device |= head;
842 }
843
844 return 0;
845 }
846
847 /**
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
852 *
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
855 *
856 * LOCKING:
857 * None.
858 *
859 * RETURNS:
860 * Packed xfer_mask.
861 */
862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 unsigned long mwdma_mask,
864 unsigned long udma_mask)
865 {
866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
869 }
870
871 /**
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
877 *
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
880 */
881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 unsigned long *mwdma_mask, unsigned long *udma_mask)
883 {
884 if (pio_mask)
885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 if (mwdma_mask)
887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 if (udma_mask)
889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
890 }
891
892 static const struct ata_xfer_ent {
893 int shift, bits;
894 u8 base;
895 } ata_xfer_tbl[] = {
896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 { -1, },
900 };
901
902 /**
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
905 *
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
908 *
909 * LOCKING:
910 * None.
911 *
912 * RETURNS:
913 * Matching XFER_* value, 0xff if no match found.
914 */
915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916 {
917 int highbit = fls(xfer_mask) - 1;
918 const struct ata_xfer_ent *ent;
919
920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 return ent->base + highbit - ent->shift;
923 return 0xff;
924 }
925
926 /**
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
929 *
930 * Return matching xfer_mask for @xfer_mode.
931 *
932 * LOCKING:
933 * None.
934 *
935 * RETURNS:
936 * Matching xfer_mask, 0 if no match found.
937 */
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939 {
940 const struct ata_xfer_ent *ent;
941
942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 & ~((1 << ent->shift) - 1);
946 return 0;
947 }
948
949 /**
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
952 *
953 * Return matching xfer_shift for @xfer_mode.
954 *
955 * LOCKING:
956 * None.
957 *
958 * RETURNS:
959 * Matching xfer_shift, -1 if no match found.
960 */
961 int ata_xfer_mode2shift(unsigned long xfer_mode)
962 {
963 const struct ata_xfer_ent *ent;
964
965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 return ent->shift;
968 return -1;
969 }
970
971 /**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
985 const char *ata_mode_string(unsigned long xfer_mask)
986 {
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015 }
1016
1017 const char *sata_spd_string(unsigned int spd)
1018 {
1019 static const char * const spd_str[] = {
1020 "1.5 Gbps",
1021 "3.0 Gbps",
1022 "6.0 Gbps",
1023 };
1024
1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 return "<unknown>";
1027 return spd_str[spd - 1];
1028 }
1029
1030 /**
1031 * ata_dev_classify - determine device type based on ATA-spec signature
1032 * @tf: ATA taskfile register set for device to be identified
1033 *
1034 * Determine from taskfile register contents whether a device is
1035 * ATA or ATAPI, as per "Signature and persistence" section
1036 * of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 * LOCKING:
1039 * None.
1040 *
1041 * RETURNS:
1042 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 * %ATA_DEV_UNKNOWN the event of failure.
1044 */
1045 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046 {
1047 /* Apple's open source Darwin code hints that some devices only
1048 * put a proper signature into the LBA mid/high registers,
1049 * So, we only check those. It's sufficient for uniqueness.
1050 *
1051 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052 * signatures for ATA and ATAPI devices attached on SerialATA,
1053 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1054 * spec has never mentioned about using different signatures
1055 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1056 * Multiplier specification began to use 0x69/0x96 to identify
1057 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059 * 0x69/0x96 shortly and described them as reserved for
1060 * SerialATA.
1061 *
1062 * We follow the current spec and consider that 0x69/0x96
1063 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065 * SEMB signature. This is worked around in
1066 * ata_dev_read_id().
1067 */
1068 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069 DPRINTK("found ATA device by sig\n");
1070 return ATA_DEV_ATA;
1071 }
1072
1073 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074 DPRINTK("found ATAPI device by sig\n");
1075 return ATA_DEV_ATAPI;
1076 }
1077
1078 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079 DPRINTK("found PMP device by sig\n");
1080 return ATA_DEV_PMP;
1081 }
1082
1083 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085 return ATA_DEV_SEMB;
1086 }
1087
1088 DPRINTK("unknown device\n");
1089 return ATA_DEV_UNKNOWN;
1090 }
1091
1092 /**
1093 * ata_id_string - Convert IDENTIFY DEVICE page into string
1094 * @id: IDENTIFY DEVICE results we will examine
1095 * @s: string into which data is output
1096 * @ofs: offset into identify device page
1097 * @len: length of string to return. must be an even number.
1098 *
1099 * The strings in the IDENTIFY DEVICE page are broken up into
1100 * 16-bit chunks. Run through the string, and output each
1101 * 8-bit chunk linearly, regardless of platform.
1102 *
1103 * LOCKING:
1104 * caller.
1105 */
1106
1107 void ata_id_string(const u16 *id, unsigned char *s,
1108 unsigned int ofs, unsigned int len)
1109 {
1110 unsigned int c;
1111
1112 BUG_ON(len & 1);
1113
1114 while (len > 0) {
1115 c = id[ofs] >> 8;
1116 *s = c;
1117 s++;
1118
1119 c = id[ofs] & 0xff;
1120 *s = c;
1121 s++;
1122
1123 ofs++;
1124 len -= 2;
1125 }
1126 }
1127
1128 /**
1129 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 * @id: IDENTIFY DEVICE results we will examine
1131 * @s: string into which data is output
1132 * @ofs: offset into identify device page
1133 * @len: length of string to return. must be an odd number.
1134 *
1135 * This function is identical to ata_id_string except that it
1136 * trims trailing spaces and terminates the resulting string with
1137 * null. @len must be actual maximum length (even number) + 1.
1138 *
1139 * LOCKING:
1140 * caller.
1141 */
1142 void ata_id_c_string(const u16 *id, unsigned char *s,
1143 unsigned int ofs, unsigned int len)
1144 {
1145 unsigned char *p;
1146
1147 ata_id_string(id, s, ofs, len - 1);
1148
1149 p = s + strnlen(s, len - 1);
1150 while (p > s && p[-1] == ' ')
1151 p--;
1152 *p = '\0';
1153 }
1154
1155 static u64 ata_id_n_sectors(const u16 *id)
1156 {
1157 if (ata_id_has_lba(id)) {
1158 if (ata_id_has_lba48(id))
1159 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160 else
1161 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162 } else {
1163 if (ata_id_current_chs_valid(id))
1164 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165 id[ATA_ID_CUR_SECTORS];
1166 else
1167 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168 id[ATA_ID_SECTORS];
1169 }
1170 }
1171
1172 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173 {
1174 u64 sectors = 0;
1175
1176 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179 sectors |= (tf->lbah & 0xff) << 16;
1180 sectors |= (tf->lbam & 0xff) << 8;
1181 sectors |= (tf->lbal & 0xff);
1182
1183 return sectors;
1184 }
1185
1186 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187 {
1188 u64 sectors = 0;
1189
1190 sectors |= (tf->device & 0x0f) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
1195 return sectors;
1196 }
1197
1198 /**
1199 * ata_read_native_max_address - Read native max address
1200 * @dev: target device
1201 * @max_sectors: out parameter for the result native max address
1202 *
1203 * Perform an LBA48 or LBA28 native size query upon the device in
1204 * question.
1205 *
1206 * RETURNS:
1207 * 0 on success, -EACCES if command is aborted by the drive.
1208 * -EIO on other errors.
1209 */
1210 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211 {
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 ata_tf_init(dev, &tf);
1217
1218 /* always clear all address registers */
1219 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221 if (lba48) {
1222 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223 tf.flags |= ATA_TFLAG_LBA48;
1224 } else
1225 tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227 tf.protocol |= ATA_PROT_NODATA;
1228 tf.device |= ATA_LBA;
1229
1230 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231 if (err_mask) {
1232 ata_dev_warn(dev,
1233 "failed to read native max address (err_mask=0x%x)\n",
1234 err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1238 }
1239
1240 if (lba48)
1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 else
1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 (*max_sectors)--;
1246 return 0;
1247 }
1248
1249 /**
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1253 *
1254 * Set max sectors of @dev to @new_sectors.
1255 *
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1260 */
1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262 {
1263 unsigned int err_mask;
1264 struct ata_taskfile tf;
1265 int lba48 = ata_id_has_lba48(dev->id);
1266
1267 new_sectors--;
1268
1269 ata_tf_init(dev, &tf);
1270
1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1276
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 } else {
1281 tf.command = ATA_CMD_SET_MAX;
1282
1283 tf.device |= (new_sectors >> 24) & 0xf;
1284 }
1285
1286 tf.protocol |= ATA_PROT_NODATA;
1287 tf.device |= ATA_LBA;
1288
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 if (err_mask) {
1295 ata_dev_warn(dev,
1296 "failed to set max address (err_mask=0x%x)\n",
1297 err_mask);
1298 if (err_mask == AC_ERR_DEV &&
1299 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300 return -EACCES;
1301 return -EIO;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * ata_hpa_resize - Resize a device with an HPA set
1309 * @dev: Device to resize
1310 *
1311 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 * it if required to the full size of the media. The caller must check
1313 * the drive has the HPA feature set enabled.
1314 *
1315 * RETURNS:
1316 * 0 on success, -errno on failure.
1317 */
1318 static int ata_hpa_resize(struct ata_device *dev)
1319 {
1320 struct ata_eh_context *ehc = &dev->link->eh_context;
1321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323 u64 sectors = ata_id_n_sectors(dev->id);
1324 u64 native_sectors;
1325 int rc;
1326
1327 /* do we need to do it? */
1328 if (dev->class != ATA_DEV_ATA ||
1329 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331 return 0;
1332
1333 /* read native max address */
1334 rc = ata_read_native_max_address(dev, &native_sectors);
1335 if (rc) {
1336 /* If device aborted the command or HPA isn't going to
1337 * be unlocked, skip HPA resizing.
1338 */
1339 if (rc == -EACCES || !unlock_hpa) {
1340 ata_dev_warn(dev,
1341 "HPA support seems broken, skipping HPA handling\n");
1342 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344 /* we can continue if device aborted the command */
1345 if (rc == -EACCES)
1346 rc = 0;
1347 }
1348
1349 return rc;
1350 }
1351 dev->n_native_sectors = native_sectors;
1352
1353 /* nothing to do? */
1354 if (native_sectors <= sectors || !unlock_hpa) {
1355 if (!print_info || native_sectors == sectors)
1356 return 0;
1357
1358 if (native_sectors > sectors)
1359 ata_dev_info(dev,
1360 "HPA detected: current %llu, native %llu\n",
1361 (unsigned long long)sectors,
1362 (unsigned long long)native_sectors);
1363 else if (native_sectors < sectors)
1364 ata_dev_warn(dev,
1365 "native sectors (%llu) is smaller than sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1369 }
1370
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_warn(dev,
1376 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1383
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_err(dev,
1388 "failed to re-read IDENTIFY data after HPA resizing\n");
1389 return rc;
1390 }
1391
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_info(dev,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1399 }
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1407 *
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1410 *
1411 * LOCKING:
1412 * caller.
1413 */
1414
1415 static inline void ata_dump_id(const u16 *id)
1416 {
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
1439 id[88],
1440 id[93]);
1441 }
1442
1443 /**
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1446 *
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1449 *
1450 * FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 * LOCKING:
1453 * None.
1454 *
1455 * RETURNS:
1456 * Computed xfermask
1457 */
1458 unsigned long ata_id_xfermask(const u16 *id)
1459 {
1460 unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1471 */
1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 if (mode < 5) /* Valid PIO range */
1474 pio_mask = (2 << mode) - 1;
1475 else
1476 pio_mask = 1;
1477
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1483 */
1484 }
1485
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488 if (ata_id_is_cfa(id)) {
1489 /*
1490 * Process compact flash extended modes
1491 */
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1503 }
1504
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510 }
1511
1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513 {
1514 struct completion *waiting = qc->private_data;
1515
1516 complete(waiting);
1517 }
1518
1519 /**
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1528 *
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1534 *
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1540 */
1541 unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
1543 int dma_dir, struct scatterlist *sgl,
1544 unsigned int n_elem, unsigned long timeout)
1545 {
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
1548 u8 command = tf->command;
1549 int auto_timeout = 0;
1550 struct ata_queued_cmd *qc;
1551 unsigned int tag, preempted_tag;
1552 u32 preempted_sactive, preempted_qc_active;
1553 int preempted_nr_active_links;
1554 DECLARE_COMPLETION_ONSTACK(wait);
1555 unsigned long flags;
1556 unsigned int err_mask;
1557 int rc;
1558
1559 spin_lock_irqsave(ap->lock, flags);
1560
1561 /* no internal command while frozen */
1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1565 }
1566
1567 /* initialize internal qc */
1568
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1573 */
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1578
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
1581 qc = __ata_qc_from_tag(ap, tag);
1582
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1588
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
1591 preempted_qc_active = ap->qc_active;
1592 preempted_nr_active_links = ap->nr_active_links;
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
1595 ap->qc_active = 0;
1596 ap->nr_active_links = 0;
1597
1598 /* prepare & issue qc */
1599 qc->tf = *tf;
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
1605 unsigned int i, buflen = 0;
1606 struct scatterlist *sg;
1607
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
1610
1611 ata_sg_init(qc, sgl, n_elem);
1612 qc->nbytes = buflen;
1613 }
1614
1615 qc->private_data = &wait;
1616 qc->complete_fn = ata_qc_complete_internal;
1617
1618 ata_qc_issue(qc);
1619
1620 spin_unlock_irqrestore(ap->lock, flags);
1621
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1628 }
1629 }
1630
1631 if (ap->ops->error_handler)
1632 ata_eh_release(ap);
1633
1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636 if (ap->ops->error_handler)
1637 ata_eh_acquire(ap);
1638
1639 ata_sff_flush_pio_task(ap);
1640
1641 if (!rc) {
1642 spin_lock_irqsave(ap->lock, flags);
1643
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
1648 */
1649 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650 qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652 if (ap->ops->error_handler)
1653 ata_port_freeze(ap);
1654 else
1655 ata_qc_complete(qc);
1656
1657 if (ata_msg_warn(ap))
1658 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659 command);
1660 }
1661
1662 spin_unlock_irqrestore(ap->lock, flags);
1663 }
1664
1665 /* do post_internal_cmd */
1666 if (ap->ops->post_internal_cmd)
1667 ap->ops->post_internal_cmd(qc);
1668
1669 /* perform minimal error analysis */
1670 if (qc->flags & ATA_QCFLAG_FAILED) {
1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 qc->err_mask |= AC_ERR_DEV;
1673
1674 if (!qc->err_mask)
1675 qc->err_mask |= AC_ERR_OTHER;
1676
1677 if (qc->err_mask & ~AC_ERR_OTHER)
1678 qc->err_mask &= ~AC_ERR_OTHER;
1679 }
1680
1681 /* finish up */
1682 spin_lock_irqsave(ap->lock, flags);
1683
1684 *tf = qc->result_tf;
1685 err_mask = qc->err_mask;
1686
1687 ata_qc_free(qc);
1688 link->active_tag = preempted_tag;
1689 link->sactive = preempted_sactive;
1690 ap->qc_active = preempted_qc_active;
1691 ap->nr_active_links = preempted_nr_active_links;
1692
1693 spin_unlock_irqrestore(ap->lock, flags);
1694
1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 ata_internal_cmd_timed_out(dev, command);
1697
1698 return err_mask;
1699 }
1700
1701 /**
1702 * ata_exec_internal - execute libata internal command
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
1709 * @timeout: Timeout in msecs (0 for default)
1710 *
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1713 *
1714 * LOCKING:
1715 * None. Should be called with kernel context, might sleep.
1716 *
1717 * RETURNS:
1718 * Zero on success, AC_ERR_* mask on failure
1719 */
1720 unsigned ata_exec_internal(struct ata_device *dev,
1721 struct ata_taskfile *tf, const u8 *cdb,
1722 int dma_dir, void *buf, unsigned int buflen,
1723 unsigned long timeout)
1724 {
1725 struct scatterlist *psg = NULL, sg;
1726 unsigned int n_elem = 0;
1727
1728 if (dma_dir != DMA_NONE) {
1729 WARN_ON(!buf);
1730 sg_init_one(&sg, buf, buflen);
1731 psg = &sg;
1732 n_elem++;
1733 }
1734
1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 timeout);
1737 }
1738
1739 /**
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1743 *
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1746 *
1747 * LOCKING:
1748 * Kernel thread context (may sleep).
1749 *
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
1752 */
1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754 {
1755 struct ata_taskfile tf;
1756
1757 ata_tf_init(dev, &tf);
1758
1759 tf.command = cmd;
1760 tf.flags |= ATA_TFLAG_DEVICE;
1761 tf.protocol = ATA_PROT_NODATA;
1762
1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764 }
1765
1766 /**
1767 * ata_pio_need_iordy - check if iordy needed
1768 * @adev: ATA device
1769 *
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1772 */
1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774 {
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1778 */
1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 return 0;
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1783 */
1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785 return 0;
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev->id)
1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 return 0;
1790 /* PIO3 and higher it is mandatory */
1791 if (adev->pio_mode > XFER_PIO_2)
1792 return 1;
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev->id))
1795 return 1;
1796 return 0;
1797 }
1798
1799 /**
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1801 * @adev: ATA device
1802 *
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1805 */
1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807 {
1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811 /* Is the speed faster than the drive allows non IORDY ? */
1812 if (pio) {
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio > 240) /* PIO2 is 240nS per cycle */
1815 return 3 << ATA_SHIFT_PIO;
1816 return 7 << ATA_SHIFT_PIO;
1817 }
1818 }
1819 return 3 << ATA_SHIFT_PIO;
1820 }
1821
1822 /**
1823 * ata_do_dev_read_id - default ID read method
1824 * @dev: device
1825 * @tf: proposed taskfile
1826 * @id: data buffer
1827 *
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1831 */
1832 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 struct ata_taskfile *tf, u16 *id)
1834 {
1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837 }
1838
1839 /**
1840 * ata_dev_read_id - Read ID data from the specified device
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
1843 * @flags: ATA_READID_* flags
1844 * @id: buffer to read IDENTIFY data into
1845 *
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1850 *
1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 * now we abort if we hit that case.
1853 *
1854 * LOCKING:
1855 * Kernel thread context (may sleep)
1856 *
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1859 */
1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861 unsigned int flags, u16 *id)
1862 {
1863 struct ata_port *ap = dev->link->ap;
1864 unsigned int class = *p_class;
1865 struct ata_taskfile tf;
1866 unsigned int err_mask = 0;
1867 const char *reason;
1868 bool is_semb = class == ATA_DEV_SEMB;
1869 int may_fallback = 1, tried_spinup = 0;
1870 int rc;
1871
1872 if (ata_msg_ctl(ap))
1873 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874
1875 retry:
1876 ata_tf_init(dev, &tf);
1877
1878 switch (class) {
1879 case ATA_DEV_SEMB:
1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1881 case ATA_DEV_ATA:
1882 tf.command = ATA_CMD_ID_ATA;
1883 break;
1884 case ATA_DEV_ATAPI:
1885 tf.command = ATA_CMD_ID_ATAPI;
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1891 }
1892
1893 tf.protocol = ATA_PROT_PIO;
1894
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1897 */
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1902 */
1903 tf.flags |= ATA_TFLAG_POLLING;
1904
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910 if (err_mask) {
1911 if (err_mask & AC_ERR_NODEV_HINT) {
1912 ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 return -ENOENT;
1914 }
1915
1916 if (is_semb) {
1917 ata_dev_info(dev,
1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 /* SEMB is not supported yet */
1920 *p_class = ATA_DEV_SEMB_UNSUP;
1921 return 0;
1922 }
1923
1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 /* Device or controller might have reported
1926 * the wrong device class. Give a shot at the
1927 * other IDENTIFY if the current one is
1928 * aborted by the device.
1929 */
1930 if (may_fallback) {
1931 may_fallback = 0;
1932
1933 if (class == ATA_DEV_ATA)
1934 class = ATA_DEV_ATAPI;
1935 else
1936 class = ATA_DEV_ATA;
1937 goto retry;
1938 }
1939
1940 /* Control reaches here iff the device aborted
1941 * both flavors of IDENTIFYs which happens
1942 * sometimes with phantom devices.
1943 */
1944 ata_dev_dbg(dev,
1945 "both IDENTIFYs aborted, assuming NODEV\n");
1946 return -ENOENT;
1947 }
1948
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1952 }
1953
1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 "class=%d may_fallback=%d tried_spinup=%d\n",
1957 class, may_fallback, tried_spinup);
1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960 }
1961
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
1967 swap_buf_le16(id, ATA_ID_WORDS);
1968
1969 /* sanity check */
1970 rc = -EINVAL;
1971 reason = "device reports invalid type";
1972
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977 ata_id_is_ata(id)) {
1978 ata_dev_dbg(dev,
1979 "host indicates ignore ATA devices, ignored\n");
1980 return -ENOENT;
1981 }
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
1985 }
1986
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 if (err_mask && id[2] != 0x738c) {
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
2008 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009 /*
2010 * The exact sequence expected by certain pre-ATA4 drives is:
2011 * SRST RESET
2012 * IDENTIFY (optional in early ATA)
2013 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014 * anything else..
2015 * Some drives were very specific about that exact sequence.
2016 *
2017 * Note that ATA4 says lba is mandatory so the second check
2018 * should never trigger.
2019 */
2020 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022 if (err_mask) {
2023 rc = -EIO;
2024 reason = "INIT_DEV_PARAMS failed";
2025 goto err_out;
2026 }
2027
2028 /* current CHS translation info (id[53-58]) might be
2029 * changed. reread the identify device info.
2030 */
2031 flags &= ~ATA_READID_POSTRESET;
2032 goto retry;
2033 }
2034 }
2035
2036 *p_class = class;
2037
2038 return 0;
2039
2040 err_out:
2041 if (ata_msg_warn(ap))
2042 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043 reason, err_mask);
2044 return rc;
2045 }
2046
2047 static int ata_do_link_spd_horkage(struct ata_device *dev)
2048 {
2049 struct ata_link *plink = ata_dev_phys_link(dev);
2050 u32 target, target_limit;
2051
2052 if (!sata_scr_valid(plink))
2053 return 0;
2054
2055 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2056 target = 1;
2057 else
2058 return 0;
2059
2060 target_limit = (1 << target) - 1;
2061
2062 /* if already on stricter limit, no need to push further */
2063 if (plink->sata_spd_limit <= target_limit)
2064 return 0;
2065
2066 plink->sata_spd_limit = target_limit;
2067
2068 /* Request another EH round by returning -EAGAIN if link is
2069 * going faster than the target speed. Forward progress is
2070 * guaranteed by setting sata_spd_limit to target_limit above.
2071 */
2072 if (plink->sata_spd > target) {
2073 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2074 sata_spd_string(target));
2075 return -EAGAIN;
2076 }
2077 return 0;
2078 }
2079
2080 static inline u8 ata_dev_knobble(struct ata_device *dev)
2081 {
2082 struct ata_port *ap = dev->link->ap;
2083
2084 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2085 return 0;
2086
2087 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2088 }
2089
2090 static int ata_dev_config_ncq(struct ata_device *dev,
2091 char *desc, size_t desc_sz)
2092 {
2093 struct ata_port *ap = dev->link->ap;
2094 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2095 unsigned int err_mask;
2096 char *aa_desc = "";
2097
2098 if (!ata_id_has_ncq(dev->id)) {
2099 desc[0] = '\0';
2100 return 0;
2101 }
2102 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2103 snprintf(desc, desc_sz, "NCQ (not used)");
2104 return 0;
2105 }
2106 if (ap->flags & ATA_FLAG_NCQ) {
2107 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2108 dev->flags |= ATA_DFLAG_NCQ;
2109 }
2110
2111 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2112 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2113 ata_id_has_fpdma_aa(dev->id)) {
2114 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2115 SATA_FPDMA_AA);
2116 if (err_mask) {
2117 ata_dev_err(dev,
2118 "failed to enable AA (error_mask=0x%x)\n",
2119 err_mask);
2120 if (err_mask != AC_ERR_DEV) {
2121 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2122 return -EIO;
2123 }
2124 } else
2125 aa_desc = ", AA";
2126 }
2127
2128 if (hdepth >= ddepth)
2129 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2130 else
2131 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2132 ddepth, aa_desc);
2133 return 0;
2134 }
2135
2136 /**
2137 * ata_dev_configure - Configure the specified ATA/ATAPI device
2138 * @dev: Target device to configure
2139 *
2140 * Configure @dev according to @dev->id. Generic and low-level
2141 * driver specific fixups are also applied.
2142 *
2143 * LOCKING:
2144 * Kernel thread context (may sleep)
2145 *
2146 * RETURNS:
2147 * 0 on success, -errno otherwise
2148 */
2149 int ata_dev_configure(struct ata_device *dev)
2150 {
2151 struct ata_port *ap = dev->link->ap;
2152 struct ata_eh_context *ehc = &dev->link->eh_context;
2153 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2154 const u16 *id = dev->id;
2155 unsigned long xfer_mask;
2156 char revbuf[7]; /* XYZ-99\0 */
2157 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2158 char modelbuf[ATA_ID_PROD_LEN+1];
2159 int rc;
2160
2161 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2162 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2163 return 0;
2164 }
2165
2166 if (ata_msg_probe(ap))
2167 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2168
2169 /* set horkage */
2170 dev->horkage |= ata_dev_blacklisted(dev);
2171 ata_force_horkage(dev);
2172
2173 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2174 ata_dev_info(dev, "unsupported device, disabling\n");
2175 ata_dev_disable(dev);
2176 return 0;
2177 }
2178
2179 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2180 dev->class == ATA_DEV_ATAPI) {
2181 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2182 atapi_enabled ? "not supported with this driver"
2183 : "disabled");
2184 ata_dev_disable(dev);
2185 return 0;
2186 }
2187
2188 rc = ata_do_link_spd_horkage(dev);
2189 if (rc)
2190 return rc;
2191
2192 /* let ACPI work its magic */
2193 rc = ata_acpi_on_devcfg(dev);
2194 if (rc)
2195 return rc;
2196
2197 /* massage HPA, do it early as it might change IDENTIFY data */
2198 rc = ata_hpa_resize(dev);
2199 if (rc)
2200 return rc;
2201
2202 /* print device capabilities */
2203 if (ata_msg_probe(ap))
2204 ata_dev_dbg(dev,
2205 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2206 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2207 __func__,
2208 id[49], id[82], id[83], id[84],
2209 id[85], id[86], id[87], id[88]);
2210
2211 /* initialize to-be-configured parameters */
2212 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2213 dev->max_sectors = 0;
2214 dev->cdb_len = 0;
2215 dev->n_sectors = 0;
2216 dev->cylinders = 0;
2217 dev->heads = 0;
2218 dev->sectors = 0;
2219 dev->multi_count = 0;
2220
2221 /*
2222 * common ATA, ATAPI feature tests
2223 */
2224
2225 /* find max transfer mode; for printk only */
2226 xfer_mask = ata_id_xfermask(id);
2227
2228 if (ata_msg_probe(ap))
2229 ata_dump_id(id);
2230
2231 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2232 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2233 sizeof(fwrevbuf));
2234
2235 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2236 sizeof(modelbuf));
2237
2238 /* ATA-specific feature tests */
2239 if (dev->class == ATA_DEV_ATA) {
2240 if (ata_id_is_cfa(id)) {
2241 /* CPRM may make this media unusable */
2242 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2243 ata_dev_warn(dev,
2244 "supports DRM functions and may not be fully accessible\n");
2245 snprintf(revbuf, 7, "CFA");
2246 } else {
2247 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2248 /* Warn the user if the device has TPM extensions */
2249 if (ata_id_has_tpm(id))
2250 ata_dev_warn(dev,
2251 "supports DRM functions and may not be fully accessible\n");
2252 }
2253
2254 dev->n_sectors = ata_id_n_sectors(id);
2255
2256 /* get current R/W Multiple count setting */
2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258 unsigned int max = dev->id[47] & 0xff;
2259 unsigned int cnt = dev->id[59] & 0xff;
2260 /* only recognize/allow powers of two here */
2261 if (is_power_of_2(max) && is_power_of_2(cnt))
2262 if (cnt <= max)
2263 dev->multi_count = cnt;
2264 }
2265
2266 if (ata_id_has_lba(id)) {
2267 const char *lba_desc;
2268 char ncq_desc[24];
2269
2270 lba_desc = "LBA";
2271 dev->flags |= ATA_DFLAG_LBA;
2272 if (ata_id_has_lba48(id)) {
2273 dev->flags |= ATA_DFLAG_LBA48;
2274 lba_desc = "LBA48";
2275
2276 if (dev->n_sectors >= (1UL << 28) &&
2277 ata_id_has_flush_ext(id))
2278 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279 }
2280
2281 /* config NCQ */
2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 if (rc)
2284 return rc;
2285
2286 /* print device info to dmesg */
2287 if (ata_msg_drv(ap) && print_info) {
2288 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2289 revbuf, modelbuf, fwrevbuf,
2290 ata_mode_string(xfer_mask));
2291 ata_dev_info(dev,
2292 "%llu sectors, multi %u: %s %s\n",
2293 (unsigned long long)dev->n_sectors,
2294 dev->multi_count, lba_desc, ncq_desc);
2295 }
2296 } else {
2297 /* CHS */
2298
2299 /* Default translation */
2300 dev->cylinders = id[1];
2301 dev->heads = id[3];
2302 dev->sectors = id[6];
2303
2304 if (ata_id_current_chs_valid(id)) {
2305 /* Current CHS translation is valid. */
2306 dev->cylinders = id[54];
2307 dev->heads = id[55];
2308 dev->sectors = id[56];
2309 }
2310
2311 /* print device info to dmesg */
2312 if (ata_msg_drv(ap) && print_info) {
2313 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314 revbuf, modelbuf, fwrevbuf,
2315 ata_mode_string(xfer_mask));
2316 ata_dev_info(dev,
2317 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2318 (unsigned long long)dev->n_sectors,
2319 dev->multi_count, dev->cylinders,
2320 dev->heads, dev->sectors);
2321 }
2322 }
2323
2324 dev->cdb_len = 16;
2325 }
2326
2327 /* ATAPI-specific feature tests */
2328 else if (dev->class == ATA_DEV_ATAPI) {
2329 const char *cdb_intr_string = "";
2330 const char *atapi_an_string = "";
2331 const char *dma_dir_string = "";
2332 u32 sntf;
2333
2334 rc = atapi_cdb_len(id);
2335 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2336 if (ata_msg_warn(ap))
2337 ata_dev_warn(dev, "unsupported CDB len\n");
2338 rc = -EINVAL;
2339 goto err_out_nosup;
2340 }
2341 dev->cdb_len = (unsigned int) rc;
2342
2343 /* Enable ATAPI AN if both the host and device have
2344 * the support. If PMP is attached, SNTF is required
2345 * to enable ATAPI AN to discern between PHY status
2346 * changed notifications and ATAPI ANs.
2347 */
2348 if (atapi_an &&
2349 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350 (!sata_pmp_attached(ap) ||
2351 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352 unsigned int err_mask;
2353
2354 /* issue SET feature command to turn this on */
2355 err_mask = ata_dev_set_feature(dev,
2356 SETFEATURES_SATA_ENABLE, SATA_AN);
2357 if (err_mask)
2358 ata_dev_err(dev,
2359 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2360 err_mask);
2361 else {
2362 dev->flags |= ATA_DFLAG_AN;
2363 atapi_an_string = ", ATAPI AN";
2364 }
2365 }
2366
2367 if (ata_id_cdb_intr(dev->id)) {
2368 dev->flags |= ATA_DFLAG_CDB_INTR;
2369 cdb_intr_string = ", CDB intr";
2370 }
2371
2372 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373 dev->flags |= ATA_DFLAG_DMADIR;
2374 dma_dir_string = ", DMADIR";
2375 }
2376
2377 /* print device info to dmesg */
2378 if (ata_msg_drv(ap) && print_info)
2379 ata_dev_info(dev,
2380 "ATAPI: %s, %s, max %s%s%s%s\n",
2381 modelbuf, fwrevbuf,
2382 ata_mode_string(xfer_mask),
2383 cdb_intr_string, atapi_an_string,
2384 dma_dir_string);
2385 }
2386
2387 /* determine max_sectors */
2388 dev->max_sectors = ATA_MAX_SECTORS;
2389 if (dev->flags & ATA_DFLAG_LBA48)
2390 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2391
2392 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2393 200 sectors */
2394 if (ata_dev_knobble(dev)) {
2395 if (ata_msg_drv(ap) && print_info)
2396 ata_dev_info(dev, "applying bridge limits\n");
2397 dev->udma_mask &= ATA_UDMA5;
2398 dev->max_sectors = ATA_MAX_SECTORS;
2399 }
2400
2401 if ((dev->class == ATA_DEV_ATAPI) &&
2402 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2403 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2404 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405 }
2406
2407 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2408 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2409 dev->max_sectors);
2410
2411 if (ap->ops->dev_config)
2412 ap->ops->dev_config(dev);
2413
2414 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2415 /* Let the user know. We don't want to disallow opens for
2416 rescue purposes, or in case the vendor is just a blithering
2417 idiot. Do this after the dev_config call as some controllers
2418 with buggy firmware may want to avoid reporting false device
2419 bugs */
2420
2421 if (print_info) {
2422 ata_dev_warn(dev,
2423 "Drive reports diagnostics failure. This may indicate a drive\n");
2424 ata_dev_warn(dev,
2425 "fault or invalid emulation. Contact drive vendor for information.\n");
2426 }
2427 }
2428
2429 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2430 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2431 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2432 }
2433
2434 return 0;
2435
2436 err_out_nosup:
2437 if (ata_msg_probe(ap))
2438 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2439 return rc;
2440 }
2441
2442 /**
2443 * ata_cable_40wire - return 40 wire cable type
2444 * @ap: port
2445 *
2446 * Helper method for drivers which want to hardwire 40 wire cable
2447 * detection.
2448 */
2449
2450 int ata_cable_40wire(struct ata_port *ap)
2451 {
2452 return ATA_CBL_PATA40;
2453 }
2454
2455 /**
2456 * ata_cable_80wire - return 80 wire cable type
2457 * @ap: port
2458 *
2459 * Helper method for drivers which want to hardwire 80 wire cable
2460 * detection.
2461 */
2462
2463 int ata_cable_80wire(struct ata_port *ap)
2464 {
2465 return ATA_CBL_PATA80;
2466 }
2467
2468 /**
2469 * ata_cable_unknown - return unknown PATA cable.
2470 * @ap: port
2471 *
2472 * Helper method for drivers which have no PATA cable detection.
2473 */
2474
2475 int ata_cable_unknown(struct ata_port *ap)
2476 {
2477 return ATA_CBL_PATA_UNK;
2478 }
2479
2480 /**
2481 * ata_cable_ignore - return ignored PATA cable.
2482 * @ap: port
2483 *
2484 * Helper method for drivers which don't use cable type to limit
2485 * transfer mode.
2486 */
2487 int ata_cable_ignore(struct ata_port *ap)
2488 {
2489 return ATA_CBL_PATA_IGN;
2490 }
2491
2492 /**
2493 * ata_cable_sata - return SATA cable type
2494 * @ap: port
2495 *
2496 * Helper method for drivers which have SATA cables
2497 */
2498
2499 int ata_cable_sata(struct ata_port *ap)
2500 {
2501 return ATA_CBL_SATA;
2502 }
2503
2504 /**
2505 * ata_bus_probe - Reset and probe ATA bus
2506 * @ap: Bus to probe
2507 *
2508 * Master ATA bus probing function. Initiates a hardware-dependent
2509 * bus reset, then attempts to identify any devices found on
2510 * the bus.
2511 *
2512 * LOCKING:
2513 * PCI/etc. bus probe sem.
2514 *
2515 * RETURNS:
2516 * Zero on success, negative errno otherwise.
2517 */
2518
2519 int ata_bus_probe(struct ata_port *ap)
2520 {
2521 unsigned int classes[ATA_MAX_DEVICES];
2522 int tries[ATA_MAX_DEVICES];
2523 int rc;
2524 struct ata_device *dev;
2525
2526 ata_for_each_dev(dev, &ap->link, ALL)
2527 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2528
2529 retry:
2530 ata_for_each_dev(dev, &ap->link, ALL) {
2531 /* If we issue an SRST then an ATA drive (not ATAPI)
2532 * may change configuration and be in PIO0 timing. If
2533 * we do a hard reset (or are coming from power on)
2534 * this is true for ATA or ATAPI. Until we've set a
2535 * suitable controller mode we should not touch the
2536 * bus as we may be talking too fast.
2537 */
2538 dev->pio_mode = XFER_PIO_0;
2539
2540 /* If the controller has a pio mode setup function
2541 * then use it to set the chipset to rights. Don't
2542 * touch the DMA setup as that will be dealt with when
2543 * configuring devices.
2544 */
2545 if (ap->ops->set_piomode)
2546 ap->ops->set_piomode(ap, dev);
2547 }
2548
2549 /* reset and determine device classes */
2550 ap->ops->phy_reset(ap);
2551
2552 ata_for_each_dev(dev, &ap->link, ALL) {
2553 if (dev->class != ATA_DEV_UNKNOWN)
2554 classes[dev->devno] = dev->class;
2555 else
2556 classes[dev->devno] = ATA_DEV_NONE;
2557
2558 dev->class = ATA_DEV_UNKNOWN;
2559 }
2560
2561 /* read IDENTIFY page and configure devices. We have to do the identify
2562 specific sequence bass-ackwards so that PDIAG- is released by
2563 the slave device */
2564
2565 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2566 if (tries[dev->devno])
2567 dev->class = classes[dev->devno];
2568
2569 if (!ata_dev_enabled(dev))
2570 continue;
2571
2572 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2573 dev->id);
2574 if (rc)
2575 goto fail;
2576 }
2577
2578 /* Now ask for the cable type as PDIAG- should have been released */
2579 if (ap->ops->cable_detect)
2580 ap->cbl = ap->ops->cable_detect(ap);
2581
2582 /* We may have SATA bridge glue hiding here irrespective of
2583 * the reported cable types and sensed types. When SATA
2584 * drives indicate we have a bridge, we don't know which end
2585 * of the link the bridge is which is a problem.
2586 */
2587 ata_for_each_dev(dev, &ap->link, ENABLED)
2588 if (ata_id_is_sata(dev->id))
2589 ap->cbl = ATA_CBL_SATA;
2590
2591 /* After the identify sequence we can now set up the devices. We do
2592 this in the normal order so that the user doesn't get confused */
2593
2594 ata_for_each_dev(dev, &ap->link, ENABLED) {
2595 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2596 rc = ata_dev_configure(dev);
2597 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2598 if (rc)
2599 goto fail;
2600 }
2601
2602 /* configure transfer mode */
2603 rc = ata_set_mode(&ap->link, &dev);
2604 if (rc)
2605 goto fail;
2606
2607 ata_for_each_dev(dev, &ap->link, ENABLED)
2608 return 0;
2609
2610 return -ENODEV;
2611
2612 fail:
2613 tries[dev->devno]--;
2614
2615 switch (rc) {
2616 case -EINVAL:
2617 /* eeek, something went very wrong, give up */
2618 tries[dev->devno] = 0;
2619 break;
2620
2621 case -ENODEV:
2622 /* give it just one more chance */
2623 tries[dev->devno] = min(tries[dev->devno], 1);
2624 case -EIO:
2625 if (tries[dev->devno] == 1) {
2626 /* This is the last chance, better to slow
2627 * down than lose it.
2628 */
2629 sata_down_spd_limit(&ap->link, 0);
2630 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2631 }
2632 }
2633
2634 if (!tries[dev->devno])
2635 ata_dev_disable(dev);
2636
2637 goto retry;
2638 }
2639
2640 /**
2641 * sata_print_link_status - Print SATA link status
2642 * @link: SATA link to printk link status about
2643 *
2644 * This function prints link speed and status of a SATA link.
2645 *
2646 * LOCKING:
2647 * None.
2648 */
2649 static void sata_print_link_status(struct ata_link *link)
2650 {
2651 u32 sstatus, scontrol, tmp;
2652
2653 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2654 return;
2655 sata_scr_read(link, SCR_CONTROL, &scontrol);
2656
2657 if (ata_phys_link_online(link)) {
2658 tmp = (sstatus >> 4) & 0xf;
2659 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2660 sata_spd_string(tmp), sstatus, scontrol);
2661 } else {
2662 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2663 sstatus, scontrol);
2664 }
2665 }
2666
2667 /**
2668 * ata_dev_pair - return other device on cable
2669 * @adev: device
2670 *
2671 * Obtain the other device on the same cable, or if none is
2672 * present NULL is returned
2673 */
2674
2675 struct ata_device *ata_dev_pair(struct ata_device *adev)
2676 {
2677 struct ata_link *link = adev->link;
2678 struct ata_device *pair = &link->device[1 - adev->devno];
2679 if (!ata_dev_enabled(pair))
2680 return NULL;
2681 return pair;
2682 }
2683
2684 /**
2685 * sata_down_spd_limit - adjust SATA spd limit downward
2686 * @link: Link to adjust SATA spd limit for
2687 * @spd_limit: Additional limit
2688 *
2689 * Adjust SATA spd limit of @link downward. Note that this
2690 * function only adjusts the limit. The change must be applied
2691 * using sata_set_spd().
2692 *
2693 * If @spd_limit is non-zero, the speed is limited to equal to or
2694 * lower than @spd_limit if such speed is supported. If
2695 * @spd_limit is slower than any supported speed, only the lowest
2696 * supported speed is allowed.
2697 *
2698 * LOCKING:
2699 * Inherited from caller.
2700 *
2701 * RETURNS:
2702 * 0 on success, negative errno on failure
2703 */
2704 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2705 {
2706 u32 sstatus, spd, mask;
2707 int rc, bit;
2708
2709 if (!sata_scr_valid(link))
2710 return -EOPNOTSUPP;
2711
2712 /* If SCR can be read, use it to determine the current SPD.
2713 * If not, use cached value in link->sata_spd.
2714 */
2715 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716 if (rc == 0 && ata_sstatus_online(sstatus))
2717 spd = (sstatus >> 4) & 0xf;
2718 else
2719 spd = link->sata_spd;
2720
2721 mask = link->sata_spd_limit;
2722 if (mask <= 1)
2723 return -EINVAL;
2724
2725 /* unconditionally mask off the highest bit */
2726 bit = fls(mask) - 1;
2727 mask &= ~(1 << bit);
2728
2729 /* Mask off all speeds higher than or equal to the current
2730 * one. Force 1.5Gbps if current SPD is not available.
2731 */
2732 if (spd > 1)
2733 mask &= (1 << (spd - 1)) - 1;
2734 else
2735 mask &= 1;
2736
2737 /* were we already at the bottom? */
2738 if (!mask)
2739 return -EINVAL;
2740
2741 if (spd_limit) {
2742 if (mask & ((1 << spd_limit) - 1))
2743 mask &= (1 << spd_limit) - 1;
2744 else {
2745 bit = ffs(mask) - 1;
2746 mask = 1 << bit;
2747 }
2748 }
2749
2750 link->sata_spd_limit = mask;
2751
2752 ata_link_warn(link, "limiting SATA link speed to %s\n",
2753 sata_spd_string(fls(mask)));
2754
2755 return 0;
2756 }
2757
2758 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2759 {
2760 struct ata_link *host_link = &link->ap->link;
2761 u32 limit, target, spd;
2762
2763 limit = link->sata_spd_limit;
2764
2765 /* Don't configure downstream link faster than upstream link.
2766 * It doesn't speed up anything and some PMPs choke on such
2767 * configuration.
2768 */
2769 if (!ata_is_host_link(link) && host_link->sata_spd)
2770 limit &= (1 << host_link->sata_spd) - 1;
2771
2772 if (limit == UINT_MAX)
2773 target = 0;
2774 else
2775 target = fls(limit);
2776
2777 spd = (*scontrol >> 4) & 0xf;
2778 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2779
2780 return spd != target;
2781 }
2782
2783 /**
2784 * sata_set_spd_needed - is SATA spd configuration needed
2785 * @link: Link in question
2786 *
2787 * Test whether the spd limit in SControl matches
2788 * @link->sata_spd_limit. This function is used to determine
2789 * whether hardreset is necessary to apply SATA spd
2790 * configuration.
2791 *
2792 * LOCKING:
2793 * Inherited from caller.
2794 *
2795 * RETURNS:
2796 * 1 if SATA spd configuration is needed, 0 otherwise.
2797 */
2798 static int sata_set_spd_needed(struct ata_link *link)
2799 {
2800 u32 scontrol;
2801
2802 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2803 return 1;
2804
2805 return __sata_set_spd_needed(link, &scontrol);
2806 }
2807
2808 /**
2809 * sata_set_spd - set SATA spd according to spd limit
2810 * @link: Link to set SATA spd for
2811 *
2812 * Set SATA spd of @link according to sata_spd_limit.
2813 *
2814 * LOCKING:
2815 * Inherited from caller.
2816 *
2817 * RETURNS:
2818 * 0 if spd doesn't need to be changed, 1 if spd has been
2819 * changed. Negative errno if SCR registers are inaccessible.
2820 */
2821 int sata_set_spd(struct ata_link *link)
2822 {
2823 u32 scontrol;
2824 int rc;
2825
2826 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2827 return rc;
2828
2829 if (!__sata_set_spd_needed(link, &scontrol))
2830 return 0;
2831
2832 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2833 return rc;
2834
2835 return 1;
2836 }
2837
2838 /*
2839 * This mode timing computation functionality is ported over from
2840 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2841 */
2842 /*
2843 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2844 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2845 * for UDMA6, which is currently supported only by Maxtor drives.
2846 *
2847 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2848 */
2849
2850 static const struct ata_timing ata_timing[] = {
2851 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2852 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2853 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2854 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2855 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2856 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2857 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2858 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2859
2860 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2861 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2862 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2863
2864 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2865 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2866 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2867 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2868 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2869
2870 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2871 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2872 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2873 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2874 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2875 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2876 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2877 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2878
2879 { 0xFF }
2880 };
2881
2882 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2883 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2884
2885 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2886 {
2887 q->setup = EZ(t->setup * 1000, T);
2888 q->act8b = EZ(t->act8b * 1000, T);
2889 q->rec8b = EZ(t->rec8b * 1000, T);
2890 q->cyc8b = EZ(t->cyc8b * 1000, T);
2891 q->active = EZ(t->active * 1000, T);
2892 q->recover = EZ(t->recover * 1000, T);
2893 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2894 q->cycle = EZ(t->cycle * 1000, T);
2895 q->udma = EZ(t->udma * 1000, UT);
2896 }
2897
2898 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 struct ata_timing *m, unsigned int what)
2900 {
2901 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2902 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2903 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2904 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2905 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2906 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2908 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2909 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2910 }
2911
2912 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2913 {
2914 const struct ata_timing *t = ata_timing;
2915
2916 while (xfer_mode > t->mode)
2917 t++;
2918
2919 if (xfer_mode == t->mode)
2920 return t;
2921 return NULL;
2922 }
2923
2924 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2925 struct ata_timing *t, int T, int UT)
2926 {
2927 const u16 *id = adev->id;
2928 const struct ata_timing *s;
2929 struct ata_timing p;
2930
2931 /*
2932 * Find the mode.
2933 */
2934
2935 if (!(s = ata_timing_find_mode(speed)))
2936 return -EINVAL;
2937
2938 memcpy(t, s, sizeof(*s));
2939
2940 /*
2941 * If the drive is an EIDE drive, it can tell us it needs extended
2942 * PIO/MW_DMA cycle timing.
2943 */
2944
2945 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2946 memset(&p, 0, sizeof(p));
2947
2948 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2949 if (speed <= XFER_PIO_2)
2950 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2951 else if ((speed <= XFER_PIO_4) ||
2952 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2953 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2954 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2955 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2956
2957 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2958 }
2959
2960 /*
2961 * Convert the timing to bus clock counts.
2962 */
2963
2964 ata_timing_quantize(t, t, T, UT);
2965
2966 /*
2967 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2968 * S.M.A.R.T * and some other commands. We have to ensure that the
2969 * DMA cycle timing is slower/equal than the fastest PIO timing.
2970 */
2971
2972 if (speed > XFER_PIO_6) {
2973 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2974 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2975 }
2976
2977 /*
2978 * Lengthen active & recovery time so that cycle time is correct.
2979 */
2980
2981 if (t->act8b + t->rec8b < t->cyc8b) {
2982 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2983 t->rec8b = t->cyc8b - t->act8b;
2984 }
2985
2986 if (t->active + t->recover < t->cycle) {
2987 t->active += (t->cycle - (t->active + t->recover)) / 2;
2988 t->recover = t->cycle - t->active;
2989 }
2990
2991 /* In a few cases quantisation may produce enough errors to
2992 leave t->cycle too low for the sum of active and recovery
2993 if so we must correct this */
2994 if (t->active + t->recover > t->cycle)
2995 t->cycle = t->active + t->recover;
2996
2997 return 0;
2998 }
2999
3000 /**
3001 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3002 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3003 * @cycle: cycle duration in ns
3004 *
3005 * Return matching xfer mode for @cycle. The returned mode is of
3006 * the transfer type specified by @xfer_shift. If @cycle is too
3007 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3008 * than the fastest known mode, the fasted mode is returned.
3009 *
3010 * LOCKING:
3011 * None.
3012 *
3013 * RETURNS:
3014 * Matching xfer_mode, 0xff if no match found.
3015 */
3016 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3017 {
3018 u8 base_mode = 0xff, last_mode = 0xff;
3019 const struct ata_xfer_ent *ent;
3020 const struct ata_timing *t;
3021
3022 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3023 if (ent->shift == xfer_shift)
3024 base_mode = ent->base;
3025
3026 for (t = ata_timing_find_mode(base_mode);
3027 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3028 unsigned short this_cycle;
3029
3030 switch (xfer_shift) {
3031 case ATA_SHIFT_PIO:
3032 case ATA_SHIFT_MWDMA:
3033 this_cycle = t->cycle;
3034 break;
3035 case ATA_SHIFT_UDMA:
3036 this_cycle = t->udma;
3037 break;
3038 default:
3039 return 0xff;
3040 }
3041
3042 if (cycle > this_cycle)
3043 break;
3044
3045 last_mode = t->mode;
3046 }
3047
3048 return last_mode;
3049 }
3050
3051 /**
3052 * ata_down_xfermask_limit - adjust dev xfer masks downward
3053 * @dev: Device to adjust xfer masks
3054 * @sel: ATA_DNXFER_* selector
3055 *
3056 * Adjust xfer masks of @dev downward. Note that this function
3057 * does not apply the change. Invoking ata_set_mode() afterwards
3058 * will apply the limit.
3059 *
3060 * LOCKING:
3061 * Inherited from caller.
3062 *
3063 * RETURNS:
3064 * 0 on success, negative errno on failure
3065 */
3066 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3067 {
3068 char buf[32];
3069 unsigned long orig_mask, xfer_mask;
3070 unsigned long pio_mask, mwdma_mask, udma_mask;
3071 int quiet, highbit;
3072
3073 quiet = !!(sel & ATA_DNXFER_QUIET);
3074 sel &= ~ATA_DNXFER_QUIET;
3075
3076 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3077 dev->mwdma_mask,
3078 dev->udma_mask);
3079 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3080
3081 switch (sel) {
3082 case ATA_DNXFER_PIO:
3083 highbit = fls(pio_mask) - 1;
3084 pio_mask &= ~(1 << highbit);
3085 break;
3086
3087 case ATA_DNXFER_DMA:
3088 if (udma_mask) {
3089 highbit = fls(udma_mask) - 1;
3090 udma_mask &= ~(1 << highbit);
3091 if (!udma_mask)
3092 return -ENOENT;
3093 } else if (mwdma_mask) {
3094 highbit = fls(mwdma_mask) - 1;
3095 mwdma_mask &= ~(1 << highbit);
3096 if (!mwdma_mask)
3097 return -ENOENT;
3098 }
3099 break;
3100
3101 case ATA_DNXFER_40C:
3102 udma_mask &= ATA_UDMA_MASK_40C;
3103 break;
3104
3105 case ATA_DNXFER_FORCE_PIO0:
3106 pio_mask &= 1;
3107 case ATA_DNXFER_FORCE_PIO:
3108 mwdma_mask = 0;
3109 udma_mask = 0;
3110 break;
3111
3112 default:
3113 BUG();
3114 }
3115
3116 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3117
3118 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3119 return -ENOENT;
3120
3121 if (!quiet) {
3122 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3123 snprintf(buf, sizeof(buf), "%s:%s",
3124 ata_mode_string(xfer_mask),
3125 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3126 else
3127 snprintf(buf, sizeof(buf), "%s",
3128 ata_mode_string(xfer_mask));
3129
3130 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3131 }
3132
3133 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3134 &dev->udma_mask);
3135
3136 return 0;
3137 }
3138
3139 static int ata_dev_set_mode(struct ata_device *dev)
3140 {
3141 struct ata_port *ap = dev->link->ap;
3142 struct ata_eh_context *ehc = &dev->link->eh_context;
3143 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3144 const char *dev_err_whine = "";
3145 int ign_dev_err = 0;
3146 unsigned int err_mask = 0;
3147 int rc;
3148
3149 dev->flags &= ~ATA_DFLAG_PIO;
3150 if (dev->xfer_shift == ATA_SHIFT_PIO)
3151 dev->flags |= ATA_DFLAG_PIO;
3152
3153 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3154 dev_err_whine = " (SET_XFERMODE skipped)";
3155 else {
3156 if (nosetxfer)
3157 ata_dev_warn(dev,
3158 "NOSETXFER but PATA detected - can't "
3159 "skip SETXFER, might malfunction\n");
3160 err_mask = ata_dev_set_xfermode(dev);
3161 }
3162
3163 if (err_mask & ~AC_ERR_DEV)
3164 goto fail;
3165
3166 /* revalidate */
3167 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3168 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3169 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3170 if (rc)
3171 return rc;
3172
3173 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3174 /* Old CFA may refuse this command, which is just fine */
3175 if (ata_id_is_cfa(dev->id))
3176 ign_dev_err = 1;
3177 /* Catch several broken garbage emulations plus some pre
3178 ATA devices */
3179 if (ata_id_major_version(dev->id) == 0 &&
3180 dev->pio_mode <= XFER_PIO_2)
3181 ign_dev_err = 1;
3182 /* Some very old devices and some bad newer ones fail
3183 any kind of SET_XFERMODE request but support PIO0-2
3184 timings and no IORDY */
3185 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3186 ign_dev_err = 1;
3187 }
3188 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3189 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3190 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3191 dev->dma_mode == XFER_MW_DMA_0 &&
3192 (dev->id[63] >> 8) & 1)
3193 ign_dev_err = 1;
3194
3195 /* if the device is actually configured correctly, ignore dev err */
3196 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3197 ign_dev_err = 1;
3198
3199 if (err_mask & AC_ERR_DEV) {
3200 if (!ign_dev_err)
3201 goto fail;
3202 else
3203 dev_err_whine = " (device error ignored)";
3204 }
3205
3206 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3207 dev->xfer_shift, (int)dev->xfer_mode);
3208
3209 ata_dev_info(dev, "configured for %s%s\n",
3210 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3211 dev_err_whine);
3212
3213 return 0;
3214
3215 fail:
3216 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3217 return -EIO;
3218 }
3219
3220 /**
3221 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3222 * @link: link on which timings will be programmed
3223 * @r_failed_dev: out parameter for failed device
3224 *
3225 * Standard implementation of the function used to tune and set
3226 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3227 * ata_dev_set_mode() fails, pointer to the failing device is
3228 * returned in @r_failed_dev.
3229 *
3230 * LOCKING:
3231 * PCI/etc. bus probe sem.
3232 *
3233 * RETURNS:
3234 * 0 on success, negative errno otherwise
3235 */
3236
3237 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238 {
3239 struct ata_port *ap = link->ap;
3240 struct ata_device *dev;
3241 int rc = 0, used_dma = 0, found = 0;
3242
3243 /* step 1: calculate xfer_mask */
3244 ata_for_each_dev(dev, link, ENABLED) {
3245 unsigned long pio_mask, dma_mask;
3246 unsigned int mode_mask;
3247
3248 mode_mask = ATA_DMA_MASK_ATA;
3249 if (dev->class == ATA_DEV_ATAPI)
3250 mode_mask = ATA_DMA_MASK_ATAPI;
3251 else if (ata_id_is_cfa(dev->id))
3252 mode_mask = ATA_DMA_MASK_CFA;
3253
3254 ata_dev_xfermask(dev);
3255 ata_force_xfermask(dev);
3256
3257 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3258
3259 if (libata_dma_mask & mode_mask)
3260 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3261 dev->udma_mask);
3262 else
3263 dma_mask = 0;
3264
3265 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3266 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3267
3268 found = 1;
3269 if (ata_dma_enabled(dev))
3270 used_dma = 1;
3271 }
3272 if (!found)
3273 goto out;
3274
3275 /* step 2: always set host PIO timings */
3276 ata_for_each_dev(dev, link, ENABLED) {
3277 if (dev->pio_mode == 0xff) {
3278 ata_dev_warn(dev, "no PIO support\n");
3279 rc = -EINVAL;
3280 goto out;
3281 }
3282
3283 dev->xfer_mode = dev->pio_mode;
3284 dev->xfer_shift = ATA_SHIFT_PIO;
3285 if (ap->ops->set_piomode)
3286 ap->ops->set_piomode(ap, dev);
3287 }
3288
3289 /* step 3: set host DMA timings */
3290 ata_for_each_dev(dev, link, ENABLED) {
3291 if (!ata_dma_enabled(dev))
3292 continue;
3293
3294 dev->xfer_mode = dev->dma_mode;
3295 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3296 if (ap->ops->set_dmamode)
3297 ap->ops->set_dmamode(ap, dev);
3298 }
3299
3300 /* step 4: update devices' xfer mode */
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 rc = ata_dev_set_mode(dev);
3303 if (rc)
3304 goto out;
3305 }
3306
3307 /* Record simplex status. If we selected DMA then the other
3308 * host channels are not permitted to do so.
3309 */
3310 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3311 ap->host->simplex_claimed = ap;
3312
3313 out:
3314 if (rc)
3315 *r_failed_dev = dev;
3316 return rc;
3317 }
3318
3319 /**
3320 * ata_wait_ready - wait for link to become ready
3321 * @link: link to be waited on
3322 * @deadline: deadline jiffies for the operation
3323 * @check_ready: callback to check link readiness
3324 *
3325 * Wait for @link to become ready. @check_ready should return
3326 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3327 * link doesn't seem to be occupied, other errno for other error
3328 * conditions.
3329 *
3330 * Transient -ENODEV conditions are allowed for
3331 * ATA_TMOUT_FF_WAIT.
3332 *
3333 * LOCKING:
3334 * EH context.
3335 *
3336 * RETURNS:
3337 * 0 if @linke is ready before @deadline; otherwise, -errno.
3338 */
3339 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3340 int (*check_ready)(struct ata_link *link))
3341 {
3342 unsigned long start = jiffies;
3343 unsigned long nodev_deadline;
3344 int warned = 0;
3345
3346 /* choose which 0xff timeout to use, read comment in libata.h */
3347 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3348 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3349 else
3350 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3351
3352 /* Slave readiness can't be tested separately from master. On
3353 * M/S emulation configuration, this function should be called
3354 * only on the master and it will handle both master and slave.
3355 */
3356 WARN_ON(link == link->ap->slave_link);
3357
3358 if (time_after(nodev_deadline, deadline))
3359 nodev_deadline = deadline;
3360
3361 while (1) {
3362 unsigned long now = jiffies;
3363 int ready, tmp;
3364
3365 ready = tmp = check_ready(link);
3366 if (ready > 0)
3367 return 0;
3368
3369 /*
3370 * -ENODEV could be transient. Ignore -ENODEV if link
3371 * is online. Also, some SATA devices take a long
3372 * time to clear 0xff after reset. Wait for
3373 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3374 * offline.
3375 *
3376 * Note that some PATA controllers (pata_ali) explode
3377 * if status register is read more than once when
3378 * there's no device attached.
3379 */
3380 if (ready == -ENODEV) {
3381 if (ata_link_online(link))
3382 ready = 0;
3383 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3384 !ata_link_offline(link) &&
3385 time_before(now, nodev_deadline))
3386 ready = 0;
3387 }
3388
3389 if (ready)
3390 return ready;
3391 if (time_after(now, deadline))
3392 return -EBUSY;
3393
3394 if (!warned && time_after(now, start + 5 * HZ) &&
3395 (deadline - now > 3 * HZ)) {
3396 ata_link_warn(link,
3397 "link is slow to respond, please be patient "
3398 "(ready=%d)\n", tmp);
3399 warned = 1;
3400 }
3401
3402 ata_msleep(link->ap, 50);
3403 }
3404 }
3405
3406 /**
3407 * ata_wait_after_reset - wait for link to become ready after reset
3408 * @link: link to be waited on
3409 * @deadline: deadline jiffies for the operation
3410 * @check_ready: callback to check link readiness
3411 *
3412 * Wait for @link to become ready after reset.
3413 *
3414 * LOCKING:
3415 * EH context.
3416 *
3417 * RETURNS:
3418 * 0 if @linke is ready before @deadline; otherwise, -errno.
3419 */
3420 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3421 int (*check_ready)(struct ata_link *link))
3422 {
3423 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3424
3425 return ata_wait_ready(link, deadline, check_ready);
3426 }
3427
3428 /**
3429 * sata_link_debounce - debounce SATA phy status
3430 * @link: ATA link to debounce SATA phy status for
3431 * @params: timing parameters { interval, duratinon, timeout } in msec
3432 * @deadline: deadline jiffies for the operation
3433 *
3434 * Make sure SStatus of @link reaches stable state, determined by
3435 * holding the same value where DET is not 1 for @duration polled
3436 * every @interval, before @timeout. Timeout constraints the
3437 * beginning of the stable state. Because DET gets stuck at 1 on
3438 * some controllers after hot unplugging, this functions waits
3439 * until timeout then returns 0 if DET is stable at 1.
3440 *
3441 * @timeout is further limited by @deadline. The sooner of the
3442 * two is used.
3443 *
3444 * LOCKING:
3445 * Kernel thread context (may sleep)
3446 *
3447 * RETURNS:
3448 * 0 on success, -errno on failure.
3449 */
3450 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3451 unsigned long deadline)
3452 {
3453 unsigned long interval = params[0];
3454 unsigned long duration = params[1];
3455 unsigned long last_jiffies, t;
3456 u32 last, cur;
3457 int rc;
3458
3459 t = ata_deadline(jiffies, params[2]);
3460 if (time_before(t, deadline))
3461 deadline = t;
3462
3463 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3464 return rc;
3465 cur &= 0xf;
3466
3467 last = cur;
3468 last_jiffies = jiffies;
3469
3470 while (1) {
3471 ata_msleep(link->ap, interval);
3472 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3473 return rc;
3474 cur &= 0xf;
3475
3476 /* DET stable? */
3477 if (cur == last) {
3478 if (cur == 1 && time_before(jiffies, deadline))
3479 continue;
3480 if (time_after(jiffies,
3481 ata_deadline(last_jiffies, duration)))
3482 return 0;
3483 continue;
3484 }
3485
3486 /* unstable, start over */
3487 last = cur;
3488 last_jiffies = jiffies;
3489
3490 /* Check deadline. If debouncing failed, return
3491 * -EPIPE to tell upper layer to lower link speed.
3492 */
3493 if (time_after(jiffies, deadline))
3494 return -EPIPE;
3495 }
3496 }
3497
3498 /**
3499 * sata_link_resume - resume SATA link
3500 * @link: ATA link to resume SATA
3501 * @params: timing parameters { interval, duratinon, timeout } in msec
3502 * @deadline: deadline jiffies for the operation
3503 *
3504 * Resume SATA phy @link and debounce it.
3505 *
3506 * LOCKING:
3507 * Kernel thread context (may sleep)
3508 *
3509 * RETURNS:
3510 * 0 on success, -errno on failure.
3511 */
3512 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3513 unsigned long deadline)
3514 {
3515 int tries = ATA_LINK_RESUME_TRIES;
3516 u32 scontrol, serror;
3517 int rc;
3518
3519 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3520 return rc;
3521
3522 /*
3523 * Writes to SControl sometimes get ignored under certain
3524 * controllers (ata_piix SIDPR). Make sure DET actually is
3525 * cleared.
3526 */
3527 do {
3528 scontrol = (scontrol & 0x0f0) | 0x300;
3529 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530 return rc;
3531 /*
3532 * Some PHYs react badly if SStatus is pounded
3533 * immediately after resuming. Delay 200ms before
3534 * debouncing.
3535 */
3536 ata_msleep(link->ap, 200);
3537
3538 /* is SControl restored correctly? */
3539 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3540 return rc;
3541 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3542
3543 if ((scontrol & 0xf0f) != 0x300) {
3544 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3545 scontrol);
3546 return 0;
3547 }
3548
3549 if (tries < ATA_LINK_RESUME_TRIES)
3550 ata_link_warn(link, "link resume succeeded after %d retries\n",
3551 ATA_LINK_RESUME_TRIES - tries);
3552
3553 if ((rc = sata_link_debounce(link, params, deadline)))
3554 return rc;
3555
3556 /* clear SError, some PHYs require this even for SRST to work */
3557 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3558 rc = sata_scr_write(link, SCR_ERROR, serror);
3559
3560 return rc != -EINVAL ? rc : 0;
3561 }
3562
3563 /**
3564 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3565 * @link: ATA link to manipulate SControl for
3566 * @policy: LPM policy to configure
3567 * @spm_wakeup: initiate LPM transition to active state
3568 *
3569 * Manipulate the IPM field of the SControl register of @link
3570 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3571 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3572 * the link. This function also clears PHYRDY_CHG before
3573 * returning.
3574 *
3575 * LOCKING:
3576 * EH context.
3577 *
3578 * RETURNS:
3579 * 0 on succes, -errno otherwise.
3580 */
3581 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3582 bool spm_wakeup)
3583 {
3584 struct ata_eh_context *ehc = &link->eh_context;
3585 bool woken_up = false;
3586 u32 scontrol;
3587 int rc;
3588
3589 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3590 if (rc)
3591 return rc;
3592
3593 switch (policy) {
3594 case ATA_LPM_MAX_POWER:
3595 /* disable all LPM transitions */
3596 scontrol |= (0x3 << 8);
3597 /* initiate transition to active state */
3598 if (spm_wakeup) {
3599 scontrol |= (0x4 << 12);
3600 woken_up = true;
3601 }
3602 break;
3603 case ATA_LPM_MED_POWER:
3604 /* allow LPM to PARTIAL */
3605 scontrol &= ~(0x1 << 8);
3606 scontrol |= (0x2 << 8);
3607 break;
3608 case ATA_LPM_MIN_POWER:
3609 if (ata_link_nr_enabled(link) > 0)
3610 /* no restrictions on LPM transitions */
3611 scontrol &= ~(0x3 << 8);
3612 else {
3613 /* empty port, power off */
3614 scontrol &= ~0xf;
3615 scontrol |= (0x1 << 2);
3616 }
3617 break;
3618 default:
3619 WARN_ON(1);
3620 }
3621
3622 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3623 if (rc)
3624 return rc;
3625
3626 /* give the link time to transit out of LPM state */
3627 if (woken_up)
3628 msleep(10);
3629
3630 /* clear PHYRDY_CHG from SError */
3631 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3632 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3633 }
3634
3635 /**
3636 * ata_std_prereset - prepare for reset
3637 * @link: ATA link to be reset
3638 * @deadline: deadline jiffies for the operation
3639 *
3640 * @link is about to be reset. Initialize it. Failure from
3641 * prereset makes libata abort whole reset sequence and give up
3642 * that port, so prereset should be best-effort. It does its
3643 * best to prepare for reset sequence but if things go wrong, it
3644 * should just whine, not fail.
3645 *
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3648 *
3649 * RETURNS:
3650 * 0 on success, -errno otherwise.
3651 */
3652 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653 {
3654 struct ata_port *ap = link->ap;
3655 struct ata_eh_context *ehc = &link->eh_context;
3656 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657 int rc;
3658
3659 /* if we're about to do hardreset, nothing more to do */
3660 if (ehc->i.action & ATA_EH_HARDRESET)
3661 return 0;
3662
3663 /* if SATA, resume link */
3664 if (ap->flags & ATA_FLAG_SATA) {
3665 rc = sata_link_resume(link, timing, deadline);
3666 /* whine about phy resume failure but proceed */
3667 if (rc && rc != -EOPNOTSUPP)
3668 ata_link_warn(link,
3669 "failed to resume link for reset (errno=%d)\n",
3670 rc);
3671 }
3672
3673 /* no point in trying softreset on offline link */
3674 if (ata_phys_link_offline(link))
3675 ehc->i.action &= ~ATA_EH_SOFTRESET;
3676
3677 return 0;
3678 }
3679
3680 /**
3681 * sata_link_hardreset - reset link via SATA phy reset
3682 * @link: link to reset
3683 * @timing: timing parameters { interval, duratinon, timeout } in msec
3684 * @deadline: deadline jiffies for the operation
3685 * @online: optional out parameter indicating link onlineness
3686 * @check_ready: optional callback to check link readiness
3687 *
3688 * SATA phy-reset @link using DET bits of SControl register.
3689 * After hardreset, link readiness is waited upon using
3690 * ata_wait_ready() if @check_ready is specified. LLDs are
3691 * allowed to not specify @check_ready and wait itself after this
3692 * function returns. Device classification is LLD's
3693 * responsibility.
3694 *
3695 * *@online is set to one iff reset succeeded and @link is online
3696 * after reset.
3697 *
3698 * LOCKING:
3699 * Kernel thread context (may sleep)
3700 *
3701 * RETURNS:
3702 * 0 on success, -errno otherwise.
3703 */
3704 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705 unsigned long deadline,
3706 bool *online, int (*check_ready)(struct ata_link *))
3707 {
3708 u32 scontrol;
3709 int rc;
3710
3711 DPRINTK("ENTER\n");
3712
3713 if (online)
3714 *online = false;
3715
3716 if (sata_set_spd_needed(link)) {
3717 /* SATA spec says nothing about how to reconfigure
3718 * spd. To be on the safe side, turn off phy during
3719 * reconfiguration. This works for at least ICH7 AHCI
3720 * and Sil3124.
3721 */
3722 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723 goto out;
3724
3725 scontrol = (scontrol & 0x0f0) | 0x304;
3726
3727 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728 goto out;
3729
3730 sata_set_spd(link);
3731 }
3732
3733 /* issue phy wake/reset */
3734 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735 goto out;
3736
3737 scontrol = (scontrol & 0x0f0) | 0x301;
3738
3739 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740 goto out;
3741
3742 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743 * 10.4.2 says at least 1 ms.
3744 */
3745 ata_msleep(link->ap, 1);
3746
3747 /* bring link back */
3748 rc = sata_link_resume(link, timing, deadline);
3749 if (rc)
3750 goto out;
3751 /* if link is offline nothing more to do */
3752 if (ata_phys_link_offline(link))
3753 goto out;
3754
3755 /* Link is online. From this point, -ENODEV too is an error. */
3756 if (online)
3757 *online = true;
3758
3759 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760 /* If PMP is supported, we have to do follow-up SRST.
3761 * Some PMPs don't send D2H Reg FIS after hardreset if
3762 * the first port is empty. Wait only for
3763 * ATA_TMOUT_PMP_SRST_WAIT.
3764 */
3765 if (check_ready) {
3766 unsigned long pmp_deadline;
3767
3768 pmp_deadline = ata_deadline(jiffies,
3769 ATA_TMOUT_PMP_SRST_WAIT);
3770 if (time_after(pmp_deadline, deadline))
3771 pmp_deadline = deadline;
3772 ata_wait_ready(link, pmp_deadline, check_ready);
3773 }
3774 rc = -EAGAIN;
3775 goto out;
3776 }
3777
3778 rc = 0;
3779 if (check_ready)
3780 rc = ata_wait_ready(link, deadline, check_ready);
3781 out:
3782 if (rc && rc != -EAGAIN) {
3783 /* online is set iff link is online && reset succeeded */
3784 if (online)
3785 *online = false;
3786 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3787 }
3788 DPRINTK("EXIT, rc=%d\n", rc);
3789 return rc;
3790 }
3791
3792 /**
3793 * sata_std_hardreset - COMRESET w/o waiting or classification
3794 * @link: link to reset
3795 * @class: resulting class of attached device
3796 * @deadline: deadline jiffies for the operation
3797 *
3798 * Standard SATA COMRESET w/o waiting or classification.
3799 *
3800 * LOCKING:
3801 * Kernel thread context (may sleep)
3802 *
3803 * RETURNS:
3804 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3805 */
3806 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807 unsigned long deadline)
3808 {
3809 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810 bool online;
3811 int rc;
3812
3813 /* do hardreset */
3814 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815 return online ? -EAGAIN : rc;
3816 }
3817
3818 /**
3819 * ata_std_postreset - standard postreset callback
3820 * @link: the target ata_link
3821 * @classes: classes of attached devices
3822 *
3823 * This function is invoked after a successful reset. Note that
3824 * the device might have been reset more than once using
3825 * different reset methods before postreset is invoked.
3826 *
3827 * LOCKING:
3828 * Kernel thread context (may sleep)
3829 */
3830 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831 {
3832 u32 serror;
3833
3834 DPRINTK("ENTER\n");
3835
3836 /* reset complete, clear SError */
3837 if (!sata_scr_read(link, SCR_ERROR, &serror))
3838 sata_scr_write(link, SCR_ERROR, serror);
3839
3840 /* print link status */
3841 sata_print_link_status(link);
3842
3843 DPRINTK("EXIT\n");
3844 }
3845
3846 /**
3847 * ata_dev_same_device - Determine whether new ID matches configured device
3848 * @dev: device to compare against
3849 * @new_class: class of the new device
3850 * @new_id: IDENTIFY page of the new device
3851 *
3852 * Compare @new_class and @new_id against @dev and determine
3853 * whether @dev is the device indicated by @new_class and
3854 * @new_id.
3855 *
3856 * LOCKING:
3857 * None.
3858 *
3859 * RETURNS:
3860 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3861 */
3862 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863 const u16 *new_id)
3864 {
3865 const u16 *old_id = dev->id;
3866 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868
3869 if (dev->class != new_class) {
3870 ata_dev_info(dev, "class mismatch %d != %d\n",
3871 dev->class, new_class);
3872 return 0;
3873 }
3874
3875 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879
3880 if (strcmp(model[0], model[1])) {
3881 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3882 model[0], model[1]);
3883 return 0;
3884 }
3885
3886 if (strcmp(serial[0], serial[1])) {
3887 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3888 serial[0], serial[1]);
3889 return 0;
3890 }
3891
3892 return 1;
3893 }
3894
3895 /**
3896 * ata_dev_reread_id - Re-read IDENTIFY data
3897 * @dev: target ATA device
3898 * @readid_flags: read ID flags
3899 *
3900 * Re-read IDENTIFY page and make sure @dev is still attached to
3901 * the port.
3902 *
3903 * LOCKING:
3904 * Kernel thread context (may sleep)
3905 *
3906 * RETURNS:
3907 * 0 on success, negative errno otherwise
3908 */
3909 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910 {
3911 unsigned int class = dev->class;
3912 u16 *id = (void *)dev->link->ap->sector_buf;
3913 int rc;
3914
3915 /* read ID data */
3916 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917 if (rc)
3918 return rc;
3919
3920 /* is the device still there? */
3921 if (!ata_dev_same_device(dev, class, id))
3922 return -ENODEV;
3923
3924 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925 return 0;
3926 }
3927
3928 /**
3929 * ata_dev_revalidate - Revalidate ATA device
3930 * @dev: device to revalidate
3931 * @new_class: new class code
3932 * @readid_flags: read ID flags
3933 *
3934 * Re-read IDENTIFY page, make sure @dev is still attached to the
3935 * port and reconfigure it according to the new IDENTIFY page.
3936 *
3937 * LOCKING:
3938 * Kernel thread context (may sleep)
3939 *
3940 * RETURNS:
3941 * 0 on success, negative errno otherwise
3942 */
3943 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944 unsigned int readid_flags)
3945 {
3946 u64 n_sectors = dev->n_sectors;
3947 u64 n_native_sectors = dev->n_native_sectors;
3948 int rc;
3949
3950 if (!ata_dev_enabled(dev))
3951 return -ENODEV;
3952
3953 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3954 if (ata_class_enabled(new_class) &&
3955 new_class != ATA_DEV_ATA &&
3956 new_class != ATA_DEV_ATAPI &&
3957 new_class != ATA_DEV_SEMB) {
3958 ata_dev_info(dev, "class mismatch %u != %u\n",
3959 dev->class, new_class);
3960 rc = -ENODEV;
3961 goto fail;
3962 }
3963
3964 /* re-read ID */
3965 rc = ata_dev_reread_id(dev, readid_flags);
3966 if (rc)
3967 goto fail;
3968
3969 /* configure device according to the new ID */
3970 rc = ata_dev_configure(dev);
3971 if (rc)
3972 goto fail;
3973
3974 /* verify n_sectors hasn't changed */
3975 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3976 dev->n_sectors == n_sectors)
3977 return 0;
3978
3979 /* n_sectors has changed */
3980 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3981 (unsigned long long)n_sectors,
3982 (unsigned long long)dev->n_sectors);
3983
3984 /*
3985 * Something could have caused HPA to be unlocked
3986 * involuntarily. If n_native_sectors hasn't changed and the
3987 * new size matches it, keep the device.
3988 */
3989 if (dev->n_native_sectors == n_native_sectors &&
3990 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3991 ata_dev_warn(dev,
3992 "new n_sectors matches native, probably "
3993 "late HPA unlock, n_sectors updated\n");
3994 /* use the larger n_sectors */
3995 return 0;
3996 }
3997
3998 /*
3999 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4000 * unlocking HPA in those cases.
4001 *
4002 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4003 */
4004 if (dev->n_native_sectors == n_native_sectors &&
4005 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4006 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4007 ata_dev_warn(dev,
4008 "old n_sectors matches native, probably "
4009 "late HPA lock, will try to unlock HPA\n");
4010 /* try unlocking HPA */
4011 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4012 rc = -EIO;
4013 } else
4014 rc = -ENODEV;
4015
4016 /* restore original n_[native_]sectors and fail */
4017 dev->n_native_sectors = n_native_sectors;
4018 dev->n_sectors = n_sectors;
4019 fail:
4020 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4021 return rc;
4022 }
4023
4024 struct ata_blacklist_entry {
4025 const char *model_num;
4026 const char *model_rev;
4027 unsigned long horkage;
4028 };
4029
4030 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4031 /* Devices with DMA related problems under Linux */
4032 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4033 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4034 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4035 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4036 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4037 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4038 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4039 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4040 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4041 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4042 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4043 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4044 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4045 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4046 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4047 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4048 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4049 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4050 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4051 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4052 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4053 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4054 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4055 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4056 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4057 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4058 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4059 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4060 { "2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4061 /* Odd clown on sil3726/4726 PMPs */
4062 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4063
4064 /* Weird ATAPI devices */
4065 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4066 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4067
4068 /* Devices we expect to fail diagnostics */
4069
4070 /* Devices where NCQ should be avoided */
4071 /* NCQ is slow */
4072 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4073 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4074 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4075 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4076 /* NCQ is broken */
4077 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4078 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4079 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4080 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4081 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4082
4083 /* Seagate NCQ + FLUSH CACHE firmware bug */
4084 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4085 ATA_HORKAGE_FIRMWARE_WARN },
4086
4087 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4088 ATA_HORKAGE_FIRMWARE_WARN },
4089
4090 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4091 ATA_HORKAGE_FIRMWARE_WARN },
4092
4093 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4094 ATA_HORKAGE_FIRMWARE_WARN },
4095
4096 /* Blacklist entries taken from Silicon Image 3124/3132
4097 Windows driver .inf file - also several Linux problem reports */
4098 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4099 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4100 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4101
4102 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4104
4105 /* devices which puke on READ_NATIVE_MAX */
4106 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4107 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4110
4111 /* this one allows HPA unlocking but fails IOs on the area */
4112 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4113
4114 /* Devices which report 1 sector over size HPA */
4115 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4116 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4117 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4118
4119 /* Devices which get the IVB wrong */
4120 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121 /* Maybe we should just blacklist TSSTcorp... */
4122 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4123
4124 /* Devices that do not need bridging limits applied */
4125 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4126
4127 /* Devices which aren't very happy with higher link speeds */
4128 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4129
4130 /*
4131 * Devices which choke on SETXFER. Applies only if both the
4132 * device and controller are SATA.
4133 */
4134 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4135 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4136 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4137 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4138 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4139
4140 /* End Marker */
4141 { }
4142 };
4143
4144 /**
4145 * glob_match - match a text string against a glob-style pattern
4146 * @text: the string to be examined
4147 * @pattern: the glob-style pattern to be matched against
4148 *
4149 * Either/both of text and pattern can be empty strings.
4150 *
4151 * Match text against a glob-style pattern, with wildcards and simple sets:
4152 *
4153 * ? matches any single character.
4154 * * matches any run of characters.
4155 * [xyz] matches a single character from the set: x, y, or z.
4156 * [a-d] matches a single character from the range: a, b, c, or d.
4157 * [a-d0-9] matches a single character from either range.
4158 *
4159 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4160 * Behaviour with malformed patterns is undefined, though generally reasonable.
4161 *
4162 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4163 *
4164 * This function uses one level of recursion per '*' in pattern.
4165 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4166 * this will not cause stack problems for any reasonable use here.
4167 *
4168 * RETURNS:
4169 * 0 on match, 1 otherwise.
4170 */
4171 static int glob_match (const char *text, const char *pattern)
4172 {
4173 do {
4174 /* Match single character or a '?' wildcard */
4175 if (*text == *pattern || *pattern == '?') {
4176 if (!*pattern++)
4177 return 0; /* End of both strings: match */
4178 } else {
4179 /* Match single char against a '[' bracketed ']' pattern set */
4180 if (!*text || *pattern != '[')
4181 break; /* Not a pattern set */
4182 while (*++pattern && *pattern != ']' && *text != *pattern) {
4183 if (*pattern == '-' && *(pattern - 1) != '[')
4184 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4185 ++pattern;
4186 break;
4187 }
4188 }
4189 if (!*pattern || *pattern == ']')
4190 return 1; /* No match */
4191 while (*pattern && *pattern++ != ']');
4192 }
4193 } while (*++text && *pattern);
4194
4195 /* Match any run of chars against a '*' wildcard */
4196 if (*pattern == '*') {
4197 if (!*++pattern)
4198 return 0; /* Match: avoid recursion at end of pattern */
4199 /* Loop to handle additional pattern chars after the wildcard */
4200 while (*text) {
4201 if (glob_match(text, pattern) == 0)
4202 return 0; /* Remainder matched */
4203 ++text; /* Absorb (match) this char and try again */
4204 }
4205 }
4206 if (!*text && !*pattern)
4207 return 0; /* End of both strings: match */
4208 return 1; /* No match */
4209 }
4210
4211 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4212 {
4213 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4214 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4215 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4216
4217 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4218 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4219
4220 while (ad->model_num) {
4221 if (!glob_match(model_num, ad->model_num)) {
4222 if (ad->model_rev == NULL)
4223 return ad->horkage;
4224 if (!glob_match(model_rev, ad->model_rev))
4225 return ad->horkage;
4226 }
4227 ad++;
4228 }
4229 return 0;
4230 }
4231
4232 static int ata_dma_blacklisted(const struct ata_device *dev)
4233 {
4234 /* We don't support polling DMA.
4235 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4236 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4237 */
4238 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4239 (dev->flags & ATA_DFLAG_CDB_INTR))
4240 return 1;
4241 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4242 }
4243
4244 /**
4245 * ata_is_40wire - check drive side detection
4246 * @dev: device
4247 *
4248 * Perform drive side detection decoding, allowing for device vendors
4249 * who can't follow the documentation.
4250 */
4251
4252 static int ata_is_40wire(struct ata_device *dev)
4253 {
4254 if (dev->horkage & ATA_HORKAGE_IVB)
4255 return ata_drive_40wire_relaxed(dev->id);
4256 return ata_drive_40wire(dev->id);
4257 }
4258
4259 /**
4260 * cable_is_40wire - 40/80/SATA decider
4261 * @ap: port to consider
4262 *
4263 * This function encapsulates the policy for speed management
4264 * in one place. At the moment we don't cache the result but
4265 * there is a good case for setting ap->cbl to the result when
4266 * we are called with unknown cables (and figuring out if it
4267 * impacts hotplug at all).
4268 *
4269 * Return 1 if the cable appears to be 40 wire.
4270 */
4271
4272 static int cable_is_40wire(struct ata_port *ap)
4273 {
4274 struct ata_link *link;
4275 struct ata_device *dev;
4276
4277 /* If the controller thinks we are 40 wire, we are. */
4278 if (ap->cbl == ATA_CBL_PATA40)
4279 return 1;
4280
4281 /* If the controller thinks we are 80 wire, we are. */
4282 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4283 return 0;
4284
4285 /* If the system is known to be 40 wire short cable (eg
4286 * laptop), then we allow 80 wire modes even if the drive
4287 * isn't sure.
4288 */
4289 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4290 return 0;
4291
4292 /* If the controller doesn't know, we scan.
4293 *
4294 * Note: We look for all 40 wire detects at this point. Any
4295 * 80 wire detect is taken to be 80 wire cable because
4296 * - in many setups only the one drive (slave if present) will
4297 * give a valid detect
4298 * - if you have a non detect capable drive you don't want it
4299 * to colour the choice
4300 */
4301 ata_for_each_link(link, ap, EDGE) {
4302 ata_for_each_dev(dev, link, ENABLED) {
4303 if (!ata_is_40wire(dev))
4304 return 0;
4305 }
4306 }
4307 return 1;
4308 }
4309
4310 /**
4311 * ata_dev_xfermask - Compute supported xfermask of the given device
4312 * @dev: Device to compute xfermask for
4313 *
4314 * Compute supported xfermask of @dev and store it in
4315 * dev->*_mask. This function is responsible for applying all
4316 * known limits including host controller limits, device
4317 * blacklist, etc...
4318 *
4319 * LOCKING:
4320 * None.
4321 */
4322 static void ata_dev_xfermask(struct ata_device *dev)
4323 {
4324 struct ata_link *link = dev->link;
4325 struct ata_port *ap = link->ap;
4326 struct ata_host *host = ap->host;
4327 unsigned long xfer_mask;
4328
4329 /* controller modes available */
4330 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4331 ap->mwdma_mask, ap->udma_mask);
4332
4333 /* drive modes available */
4334 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4335 dev->mwdma_mask, dev->udma_mask);
4336 xfer_mask &= ata_id_xfermask(dev->id);
4337
4338 /*
4339 * CFA Advanced TrueIDE timings are not allowed on a shared
4340 * cable
4341 */
4342 if (ata_dev_pair(dev)) {
4343 /* No PIO5 or PIO6 */
4344 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4345 /* No MWDMA3 or MWDMA 4 */
4346 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4347 }
4348
4349 if (ata_dma_blacklisted(dev)) {
4350 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4351 ata_dev_warn(dev,
4352 "device is on DMA blacklist, disabling DMA\n");
4353 }
4354
4355 if ((host->flags & ATA_HOST_SIMPLEX) &&
4356 host->simplex_claimed && host->simplex_claimed != ap) {
4357 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4358 ata_dev_warn(dev,
4359 "simplex DMA is claimed by other device, disabling DMA\n");
4360 }
4361
4362 if (ap->flags & ATA_FLAG_NO_IORDY)
4363 xfer_mask &= ata_pio_mask_no_iordy(dev);
4364
4365 if (ap->ops->mode_filter)
4366 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4367
4368 /* Apply cable rule here. Don't apply it early because when
4369 * we handle hot plug the cable type can itself change.
4370 * Check this last so that we know if the transfer rate was
4371 * solely limited by the cable.
4372 * Unknown or 80 wire cables reported host side are checked
4373 * drive side as well. Cases where we know a 40wire cable
4374 * is used safely for 80 are not checked here.
4375 */
4376 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4377 /* UDMA/44 or higher would be available */
4378 if (cable_is_40wire(ap)) {
4379 ata_dev_warn(dev,
4380 "limited to UDMA/33 due to 40-wire cable\n");
4381 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4382 }
4383
4384 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4385 &dev->mwdma_mask, &dev->udma_mask);
4386 }
4387
4388 /**
4389 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4390 * @dev: Device to which command will be sent
4391 *
4392 * Issue SET FEATURES - XFER MODE command to device @dev
4393 * on port @ap.
4394 *
4395 * LOCKING:
4396 * PCI/etc. bus probe sem.
4397 *
4398 * RETURNS:
4399 * 0 on success, AC_ERR_* mask otherwise.
4400 */
4401
4402 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4403 {
4404 struct ata_taskfile tf;
4405 unsigned int err_mask;
4406
4407 /* set up set-features taskfile */
4408 DPRINTK("set features - xfer mode\n");
4409
4410 /* Some controllers and ATAPI devices show flaky interrupt
4411 * behavior after setting xfer mode. Use polling instead.
4412 */
4413 ata_tf_init(dev, &tf);
4414 tf.command = ATA_CMD_SET_FEATURES;
4415 tf.feature = SETFEATURES_XFER;
4416 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4417 tf.protocol = ATA_PROT_NODATA;
4418 /* If we are using IORDY we must send the mode setting command */
4419 if (ata_pio_need_iordy(dev))
4420 tf.nsect = dev->xfer_mode;
4421 /* If the device has IORDY and the controller does not - turn it off */
4422 else if (ata_id_has_iordy(dev->id))
4423 tf.nsect = 0x01;
4424 else /* In the ancient relic department - skip all of this */
4425 return 0;
4426
4427 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4428
4429 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4430 return err_mask;
4431 }
4432
4433 /**
4434 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4435 * @dev: Device to which command will be sent
4436 * @enable: Whether to enable or disable the feature
4437 * @feature: The sector count represents the feature to set
4438 *
4439 * Issue SET FEATURES - SATA FEATURES command to device @dev
4440 * on port @ap with sector count
4441 *
4442 * LOCKING:
4443 * PCI/etc. bus probe sem.
4444 *
4445 * RETURNS:
4446 * 0 on success, AC_ERR_* mask otherwise.
4447 */
4448 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4449 {
4450 struct ata_taskfile tf;
4451 unsigned int err_mask;
4452
4453 /* set up set-features taskfile */
4454 DPRINTK("set features - SATA features\n");
4455
4456 ata_tf_init(dev, &tf);
4457 tf.command = ATA_CMD_SET_FEATURES;
4458 tf.feature = enable;
4459 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4460 tf.protocol = ATA_PROT_NODATA;
4461 tf.nsect = feature;
4462
4463 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4464
4465 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4466 return err_mask;
4467 }
4468
4469 /**
4470 * ata_dev_init_params - Issue INIT DEV PARAMS command
4471 * @dev: Device to which command will be sent
4472 * @heads: Number of heads (taskfile parameter)
4473 * @sectors: Number of sectors (taskfile parameter)
4474 *
4475 * LOCKING:
4476 * Kernel thread context (may sleep)
4477 *
4478 * RETURNS:
4479 * 0 on success, AC_ERR_* mask otherwise.
4480 */
4481 static unsigned int ata_dev_init_params(struct ata_device *dev,
4482 u16 heads, u16 sectors)
4483 {
4484 struct ata_taskfile tf;
4485 unsigned int err_mask;
4486
4487 /* Number of sectors per track 1-255. Number of heads 1-16 */
4488 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4489 return AC_ERR_INVALID;
4490
4491 /* set up init dev params taskfile */
4492 DPRINTK("init dev params \n");
4493
4494 ata_tf_init(dev, &tf);
4495 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4496 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4497 tf.protocol = ATA_PROT_NODATA;
4498 tf.nsect = sectors;
4499 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4500
4501 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4502 /* A clean abort indicates an original or just out of spec drive
4503 and we should continue as we issue the setup based on the
4504 drive reported working geometry */
4505 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4506 err_mask = 0;
4507
4508 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 return err_mask;
4510 }
4511
4512 /**
4513 * ata_sg_clean - Unmap DMA memory associated with command
4514 * @qc: Command containing DMA memory to be released
4515 *
4516 * Unmap all mapped DMA memory associated with this command.
4517 *
4518 * LOCKING:
4519 * spin_lock_irqsave(host lock)
4520 */
4521 void ata_sg_clean(struct ata_queued_cmd *qc)
4522 {
4523 struct ata_port *ap = qc->ap;
4524 struct scatterlist *sg = qc->sg;
4525 int dir = qc->dma_dir;
4526
4527 WARN_ON_ONCE(sg == NULL);
4528
4529 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4530
4531 if (qc->n_elem)
4532 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4533
4534 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535 qc->sg = NULL;
4536 }
4537
4538 /**
4539 * atapi_check_dma - Check whether ATAPI DMA can be supported
4540 * @qc: Metadata associated with taskfile to check
4541 *
4542 * Allow low-level driver to filter ATA PACKET commands, returning
4543 * a status indicating whether or not it is OK to use DMA for the
4544 * supplied PACKET command.
4545 *
4546 * LOCKING:
4547 * spin_lock_irqsave(host lock)
4548 *
4549 * RETURNS: 0 when ATAPI DMA can be used
4550 * nonzero otherwise
4551 */
4552 int atapi_check_dma(struct ata_queued_cmd *qc)
4553 {
4554 struct ata_port *ap = qc->ap;
4555
4556 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4557 * few ATAPI devices choke on such DMA requests.
4558 */
4559 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4560 unlikely(qc->nbytes & 15))
4561 return 1;
4562
4563 if (ap->ops->check_atapi_dma)
4564 return ap->ops->check_atapi_dma(qc);
4565
4566 return 0;
4567 }
4568
4569 /**
4570 * ata_std_qc_defer - Check whether a qc needs to be deferred
4571 * @qc: ATA command in question
4572 *
4573 * Non-NCQ commands cannot run with any other command, NCQ or
4574 * not. As upper layer only knows the queue depth, we are
4575 * responsible for maintaining exclusion. This function checks
4576 * whether a new command @qc can be issued.
4577 *
4578 * LOCKING:
4579 * spin_lock_irqsave(host lock)
4580 *
4581 * RETURNS:
4582 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4583 */
4584 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4585 {
4586 struct ata_link *link = qc->dev->link;
4587
4588 if (qc->tf.protocol == ATA_PROT_NCQ) {
4589 if (!ata_tag_valid(link->active_tag))
4590 return 0;
4591 } else {
4592 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4593 return 0;
4594 }
4595
4596 return ATA_DEFER_LINK;
4597 }
4598
4599 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4600
4601 /**
4602 * ata_sg_init - Associate command with scatter-gather table.
4603 * @qc: Command to be associated
4604 * @sg: Scatter-gather table.
4605 * @n_elem: Number of elements in s/g table.
4606 *
4607 * Initialize the data-related elements of queued_cmd @qc
4608 * to point to a scatter-gather table @sg, containing @n_elem
4609 * elements.
4610 *
4611 * LOCKING:
4612 * spin_lock_irqsave(host lock)
4613 */
4614 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4615 unsigned int n_elem)
4616 {
4617 qc->sg = sg;
4618 qc->n_elem = n_elem;
4619 qc->cursg = qc->sg;
4620 }
4621
4622 /**
4623 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4624 * @qc: Command with scatter-gather table to be mapped.
4625 *
4626 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4627 *
4628 * LOCKING:
4629 * spin_lock_irqsave(host lock)
4630 *
4631 * RETURNS:
4632 * Zero on success, negative on error.
4633 *
4634 */
4635 static int ata_sg_setup(struct ata_queued_cmd *qc)
4636 {
4637 struct ata_port *ap = qc->ap;
4638 unsigned int n_elem;
4639
4640 VPRINTK("ENTER, ata%u\n", ap->print_id);
4641
4642 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4643 if (n_elem < 1)
4644 return -1;
4645
4646 DPRINTK("%d sg elements mapped\n", n_elem);
4647 qc->orig_n_elem = qc->n_elem;
4648 qc->n_elem = n_elem;
4649 qc->flags |= ATA_QCFLAG_DMAMAP;
4650
4651 return 0;
4652 }
4653
4654 /**
4655 * swap_buf_le16 - swap halves of 16-bit words in place
4656 * @buf: Buffer to swap
4657 * @buf_words: Number of 16-bit words in buffer.
4658 *
4659 * Swap halves of 16-bit words if needed to convert from
4660 * little-endian byte order to native cpu byte order, or
4661 * vice-versa.
4662 *
4663 * LOCKING:
4664 * Inherited from caller.
4665 */
4666 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4667 {
4668 #ifdef __BIG_ENDIAN
4669 unsigned int i;
4670
4671 for (i = 0; i < buf_words; i++)
4672 buf[i] = le16_to_cpu(buf[i]);
4673 #endif /* __BIG_ENDIAN */
4674 }
4675
4676 /**
4677 * ata_qc_new - Request an available ATA command, for queueing
4678 * @ap: target port
4679 *
4680 * LOCKING:
4681 * None.
4682 */
4683
4684 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4685 {
4686 struct ata_queued_cmd *qc = NULL;
4687 unsigned int i;
4688
4689 /* no command while frozen */
4690 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4691 return NULL;
4692
4693 /* the last tag is reserved for internal command. */
4694 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4695 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4696 qc = __ata_qc_from_tag(ap, i);
4697 break;
4698 }
4699
4700 if (qc)
4701 qc->tag = i;
4702
4703 return qc;
4704 }
4705
4706 /**
4707 * ata_qc_new_init - Request an available ATA command, and initialize it
4708 * @dev: Device from whom we request an available command structure
4709 *
4710 * LOCKING:
4711 * None.
4712 */
4713
4714 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4715 {
4716 struct ata_port *ap = dev->link->ap;
4717 struct ata_queued_cmd *qc;
4718
4719 qc = ata_qc_new(ap);
4720 if (qc) {
4721 qc->scsicmd = NULL;
4722 qc->ap = ap;
4723 qc->dev = dev;
4724
4725 ata_qc_reinit(qc);
4726 }
4727
4728 return qc;
4729 }
4730
4731 /**
4732 * ata_qc_free - free unused ata_queued_cmd
4733 * @qc: Command to complete
4734 *
4735 * Designed to free unused ata_queued_cmd object
4736 * in case something prevents using it.
4737 *
4738 * LOCKING:
4739 * spin_lock_irqsave(host lock)
4740 */
4741 void ata_qc_free(struct ata_queued_cmd *qc)
4742 {
4743 struct ata_port *ap;
4744 unsigned int tag;
4745
4746 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4747 ap = qc->ap;
4748
4749 qc->flags = 0;
4750 tag = qc->tag;
4751 if (likely(ata_tag_valid(tag))) {
4752 qc->tag = ATA_TAG_POISON;
4753 clear_bit(tag, &ap->qc_allocated);
4754 }
4755 }
4756
4757 void __ata_qc_complete(struct ata_queued_cmd *qc)
4758 {
4759 struct ata_port *ap;
4760 struct ata_link *link;
4761
4762 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4763 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4764 ap = qc->ap;
4765 link = qc->dev->link;
4766
4767 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4768 ata_sg_clean(qc);
4769
4770 /* command should be marked inactive atomically with qc completion */
4771 if (qc->tf.protocol == ATA_PROT_NCQ) {
4772 link->sactive &= ~(1 << qc->tag);
4773 if (!link->sactive)
4774 ap->nr_active_links--;
4775 } else {
4776 link->active_tag = ATA_TAG_POISON;
4777 ap->nr_active_links--;
4778 }
4779
4780 /* clear exclusive status */
4781 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4782 ap->excl_link == link))
4783 ap->excl_link = NULL;
4784
4785 /* atapi: mark qc as inactive to prevent the interrupt handler
4786 * from completing the command twice later, before the error handler
4787 * is called. (when rc != 0 and atapi request sense is needed)
4788 */
4789 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4790 ap->qc_active &= ~(1 << qc->tag);
4791
4792 /* call completion callback */
4793 qc->complete_fn(qc);
4794 }
4795
4796 static void fill_result_tf(struct ata_queued_cmd *qc)
4797 {
4798 struct ata_port *ap = qc->ap;
4799
4800 qc->result_tf.flags = qc->tf.flags;
4801 ap->ops->qc_fill_rtf(qc);
4802 }
4803
4804 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4805 {
4806 struct ata_device *dev = qc->dev;
4807
4808 if (ata_is_nodata(qc->tf.protocol))
4809 return;
4810
4811 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4812 return;
4813
4814 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4815 }
4816
4817 /**
4818 * ata_qc_complete - Complete an active ATA command
4819 * @qc: Command to complete
4820 *
4821 * Indicate to the mid and upper layers that an ATA command has
4822 * completed, with either an ok or not-ok status.
4823 *
4824 * Refrain from calling this function multiple times when
4825 * successfully completing multiple NCQ commands.
4826 * ata_qc_complete_multiple() should be used instead, which will
4827 * properly update IRQ expect state.
4828 *
4829 * LOCKING:
4830 * spin_lock_irqsave(host lock)
4831 */
4832 void ata_qc_complete(struct ata_queued_cmd *qc)
4833 {
4834 struct ata_port *ap = qc->ap;
4835
4836 /* XXX: New EH and old EH use different mechanisms to
4837 * synchronize EH with regular execution path.
4838 *
4839 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4840 * Normal execution path is responsible for not accessing a
4841 * failed qc. libata core enforces the rule by returning NULL
4842 * from ata_qc_from_tag() for failed qcs.
4843 *
4844 * Old EH depends on ata_qc_complete() nullifying completion
4845 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4846 * not synchronize with interrupt handler. Only PIO task is
4847 * taken care of.
4848 */
4849 if (ap->ops->error_handler) {
4850 struct ata_device *dev = qc->dev;
4851 struct ata_eh_info *ehi = &dev->link->eh_info;
4852
4853 if (unlikely(qc->err_mask))
4854 qc->flags |= ATA_QCFLAG_FAILED;
4855
4856 /*
4857 * Finish internal commands without any further processing
4858 * and always with the result TF filled.
4859 */
4860 if (unlikely(ata_tag_internal(qc->tag))) {
4861 fill_result_tf(qc);
4862 __ata_qc_complete(qc);
4863 return;
4864 }
4865
4866 /*
4867 * Non-internal qc has failed. Fill the result TF and
4868 * summon EH.
4869 */
4870 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4871 fill_result_tf(qc);
4872 ata_qc_schedule_eh(qc);
4873 return;
4874 }
4875
4876 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4877
4878 /* read result TF if requested */
4879 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4880 fill_result_tf(qc);
4881
4882 /* Some commands need post-processing after successful
4883 * completion.
4884 */
4885 switch (qc->tf.command) {
4886 case ATA_CMD_SET_FEATURES:
4887 if (qc->tf.feature != SETFEATURES_WC_ON &&
4888 qc->tf.feature != SETFEATURES_WC_OFF)
4889 break;
4890 /* fall through */
4891 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4892 case ATA_CMD_SET_MULTI: /* multi_count changed */
4893 /* revalidate device */
4894 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4895 ata_port_schedule_eh(ap);
4896 break;
4897
4898 case ATA_CMD_SLEEP:
4899 dev->flags |= ATA_DFLAG_SLEEPING;
4900 break;
4901 }
4902
4903 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4904 ata_verify_xfer(qc);
4905
4906 __ata_qc_complete(qc);
4907 } else {
4908 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4909 return;
4910
4911 /* read result TF if failed or requested */
4912 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4913 fill_result_tf(qc);
4914
4915 __ata_qc_complete(qc);
4916 }
4917 }
4918
4919 /**
4920 * ata_qc_complete_multiple - Complete multiple qcs successfully
4921 * @ap: port in question
4922 * @qc_active: new qc_active mask
4923 *
4924 * Complete in-flight commands. This functions is meant to be
4925 * called from low-level driver's interrupt routine to complete
4926 * requests normally. ap->qc_active and @qc_active is compared
4927 * and commands are completed accordingly.
4928 *
4929 * Always use this function when completing multiple NCQ commands
4930 * from IRQ handlers instead of calling ata_qc_complete()
4931 * multiple times to keep IRQ expect status properly in sync.
4932 *
4933 * LOCKING:
4934 * spin_lock_irqsave(host lock)
4935 *
4936 * RETURNS:
4937 * Number of completed commands on success, -errno otherwise.
4938 */
4939 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4940 {
4941 int nr_done = 0;
4942 u32 done_mask;
4943
4944 done_mask = ap->qc_active ^ qc_active;
4945
4946 if (unlikely(done_mask & qc_active)) {
4947 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4948 ap->qc_active, qc_active);
4949 return -EINVAL;
4950 }
4951
4952 while (done_mask) {
4953 struct ata_queued_cmd *qc;
4954 unsigned int tag = __ffs(done_mask);
4955
4956 qc = ata_qc_from_tag(ap, tag);
4957 if (qc) {
4958 ata_qc_complete(qc);
4959 nr_done++;
4960 }
4961 done_mask &= ~(1 << tag);
4962 }
4963
4964 return nr_done;
4965 }
4966
4967 /**
4968 * ata_qc_issue - issue taskfile to device
4969 * @qc: command to issue to device
4970 *
4971 * Prepare an ATA command to submission to device.
4972 * This includes mapping the data into a DMA-able
4973 * area, filling in the S/G table, and finally
4974 * writing the taskfile to hardware, starting the command.
4975 *
4976 * LOCKING:
4977 * spin_lock_irqsave(host lock)
4978 */
4979 void ata_qc_issue(struct ata_queued_cmd *qc)
4980 {
4981 struct ata_port *ap = qc->ap;
4982 struct ata_link *link = qc->dev->link;
4983 u8 prot = qc->tf.protocol;
4984
4985 /* Make sure only one non-NCQ command is outstanding. The
4986 * check is skipped for old EH because it reuses active qc to
4987 * request ATAPI sense.
4988 */
4989 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4990
4991 if (ata_is_ncq(prot)) {
4992 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4993
4994 if (!link->sactive)
4995 ap->nr_active_links++;
4996 link->sactive |= 1 << qc->tag;
4997 } else {
4998 WARN_ON_ONCE(link->sactive);
4999
5000 ap->nr_active_links++;
5001 link->active_tag = qc->tag;
5002 }
5003
5004 qc->flags |= ATA_QCFLAG_ACTIVE;
5005 ap->qc_active |= 1 << qc->tag;
5006
5007 /*
5008 * We guarantee to LLDs that they will have at least one
5009 * non-zero sg if the command is a data command.
5010 */
5011 if (WARN_ON_ONCE(ata_is_data(prot) &&
5012 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5013 goto sys_err;
5014
5015 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5016 (ap->flags & ATA_FLAG_PIO_DMA)))
5017 if (ata_sg_setup(qc))
5018 goto sys_err;
5019
5020 /* if device is sleeping, schedule reset and abort the link */
5021 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5022 link->eh_info.action |= ATA_EH_RESET;
5023 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5024 ata_link_abort(link);
5025 return;
5026 }
5027
5028 ap->ops->qc_prep(qc);
5029
5030 qc->err_mask |= ap->ops->qc_issue(qc);
5031 if (unlikely(qc->err_mask))
5032 goto err;
5033 return;
5034
5035 sys_err:
5036 qc->err_mask |= AC_ERR_SYSTEM;
5037 err:
5038 ata_qc_complete(qc);
5039 }
5040
5041 /**
5042 * sata_scr_valid - test whether SCRs are accessible
5043 * @link: ATA link to test SCR accessibility for
5044 *
5045 * Test whether SCRs are accessible for @link.
5046 *
5047 * LOCKING:
5048 * None.
5049 *
5050 * RETURNS:
5051 * 1 if SCRs are accessible, 0 otherwise.
5052 */
5053 int sata_scr_valid(struct ata_link *link)
5054 {
5055 struct ata_port *ap = link->ap;
5056
5057 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5058 }
5059
5060 /**
5061 * sata_scr_read - read SCR register of the specified port
5062 * @link: ATA link to read SCR for
5063 * @reg: SCR to read
5064 * @val: Place to store read value
5065 *
5066 * Read SCR register @reg of @link into *@val. This function is
5067 * guaranteed to succeed if @link is ap->link, the cable type of
5068 * the port is SATA and the port implements ->scr_read.
5069 *
5070 * LOCKING:
5071 * None if @link is ap->link. Kernel thread context otherwise.
5072 *
5073 * RETURNS:
5074 * 0 on success, negative errno on failure.
5075 */
5076 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5077 {
5078 if (ata_is_host_link(link)) {
5079 if (sata_scr_valid(link))
5080 return link->ap->ops->scr_read(link, reg, val);
5081 return -EOPNOTSUPP;
5082 }
5083
5084 return sata_pmp_scr_read(link, reg, val);
5085 }
5086
5087 /**
5088 * sata_scr_write - write SCR register of the specified port
5089 * @link: ATA link to write SCR for
5090 * @reg: SCR to write
5091 * @val: value to write
5092 *
5093 * Write @val to SCR register @reg of @link. This function is
5094 * guaranteed to succeed if @link is ap->link, the cable type of
5095 * the port is SATA and the port implements ->scr_read.
5096 *
5097 * LOCKING:
5098 * None if @link is ap->link. Kernel thread context otherwise.
5099 *
5100 * RETURNS:
5101 * 0 on success, negative errno on failure.
5102 */
5103 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5104 {
5105 if (ata_is_host_link(link)) {
5106 if (sata_scr_valid(link))
5107 return link->ap->ops->scr_write(link, reg, val);
5108 return -EOPNOTSUPP;
5109 }
5110
5111 return sata_pmp_scr_write(link, reg, val);
5112 }
5113
5114 /**
5115 * sata_scr_write_flush - write SCR register of the specified port and flush
5116 * @link: ATA link to write SCR for
5117 * @reg: SCR to write
5118 * @val: value to write
5119 *
5120 * This function is identical to sata_scr_write() except that this
5121 * function performs flush after writing to the register.
5122 *
5123 * LOCKING:
5124 * None if @link is ap->link. Kernel thread context otherwise.
5125 *
5126 * RETURNS:
5127 * 0 on success, negative errno on failure.
5128 */
5129 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5130 {
5131 if (ata_is_host_link(link)) {
5132 int rc;
5133
5134 if (sata_scr_valid(link)) {
5135 rc = link->ap->ops->scr_write(link, reg, val);
5136 if (rc == 0)
5137 rc = link->ap->ops->scr_read(link, reg, &val);
5138 return rc;
5139 }
5140 return -EOPNOTSUPP;
5141 }
5142
5143 return sata_pmp_scr_write(link, reg, val);
5144 }
5145
5146 /**
5147 * ata_phys_link_online - test whether the given link is online
5148 * @link: ATA link to test
5149 *
5150 * Test whether @link is online. Note that this function returns
5151 * 0 if online status of @link cannot be obtained, so
5152 * ata_link_online(link) != !ata_link_offline(link).
5153 *
5154 * LOCKING:
5155 * None.
5156 *
5157 * RETURNS:
5158 * True if the port online status is available and online.
5159 */
5160 bool ata_phys_link_online(struct ata_link *link)
5161 {
5162 u32 sstatus;
5163
5164 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5165 ata_sstatus_online(sstatus))
5166 return true;
5167 return false;
5168 }
5169
5170 /**
5171 * ata_phys_link_offline - test whether the given link is offline
5172 * @link: ATA link to test
5173 *
5174 * Test whether @link is offline. Note that this function
5175 * returns 0 if offline status of @link cannot be obtained, so
5176 * ata_link_online(link) != !ata_link_offline(link).
5177 *
5178 * LOCKING:
5179 * None.
5180 *
5181 * RETURNS:
5182 * True if the port offline status is available and offline.
5183 */
5184 bool ata_phys_link_offline(struct ata_link *link)
5185 {
5186 u32 sstatus;
5187
5188 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5189 !ata_sstatus_online(sstatus))
5190 return true;
5191 return false;
5192 }
5193
5194 /**
5195 * ata_link_online - test whether the given link is online
5196 * @link: ATA link to test
5197 *
5198 * Test whether @link is online. This is identical to
5199 * ata_phys_link_online() when there's no slave link. When
5200 * there's a slave link, this function should only be called on
5201 * the master link and will return true if any of M/S links is
5202 * online.
5203 *
5204 * LOCKING:
5205 * None.
5206 *
5207 * RETURNS:
5208 * True if the port online status is available and online.
5209 */
5210 bool ata_link_online(struct ata_link *link)
5211 {
5212 struct ata_link *slave = link->ap->slave_link;
5213
5214 WARN_ON(link == slave); /* shouldn't be called on slave link */
5215
5216 return ata_phys_link_online(link) ||
5217 (slave && ata_phys_link_online(slave));
5218 }
5219
5220 /**
5221 * ata_link_offline - test whether the given link is offline
5222 * @link: ATA link to test
5223 *
5224 * Test whether @link is offline. This is identical to
5225 * ata_phys_link_offline() when there's no slave link. When
5226 * there's a slave link, this function should only be called on
5227 * the master link and will return true if both M/S links are
5228 * offline.
5229 *
5230 * LOCKING:
5231 * None.
5232 *
5233 * RETURNS:
5234 * True if the port offline status is available and offline.
5235 */
5236 bool ata_link_offline(struct ata_link *link)
5237 {
5238 struct ata_link *slave = link->ap->slave_link;
5239
5240 WARN_ON(link == slave); /* shouldn't be called on slave link */
5241
5242 return ata_phys_link_offline(link) &&
5243 (!slave || ata_phys_link_offline(slave));
5244 }
5245
5246 #ifdef CONFIG_PM
5247 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5248 unsigned int action, unsigned int ehi_flags,
5249 int wait)
5250 {
5251 struct ata_link *link;
5252 unsigned long flags;
5253 int rc;
5254
5255 /* Previous resume operation might still be in
5256 * progress. Wait for PM_PENDING to clear.
5257 */
5258 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5259 ata_port_wait_eh(ap);
5260 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5261 }
5262
5263 /* request PM ops to EH */
5264 spin_lock_irqsave(ap->lock, flags);
5265
5266 ap->pm_mesg = mesg;
5267 if (wait) {
5268 rc = 0;
5269 ap->pm_result = &rc;
5270 }
5271
5272 ap->pflags |= ATA_PFLAG_PM_PENDING;
5273 ata_for_each_link(link, ap, HOST_FIRST) {
5274 link->eh_info.action |= action;
5275 link->eh_info.flags |= ehi_flags;
5276 }
5277
5278 ata_port_schedule_eh(ap);
5279
5280 spin_unlock_irqrestore(ap->lock, flags);
5281
5282 /* wait and check result */
5283 if (wait) {
5284 ata_port_wait_eh(ap);
5285 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5286 }
5287
5288 return rc;
5289 }
5290
5291 #define to_ata_port(d) container_of(d, struct ata_port, tdev)
5292
5293 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5294 {
5295 struct ata_port *ap = to_ata_port(dev);
5296 unsigned int ehi_flags = ATA_EHI_QUIET;
5297 int rc;
5298
5299 /*
5300 * On some hardware, device fails to respond after spun down
5301 * for suspend. As the device won't be used before being
5302 * resumed, we don't need to touch the device. Ask EH to skip
5303 * the usual stuff and proceed directly to suspend.
5304 *
5305 * http://thread.gmane.org/gmane.linux.ide/46764
5306 */
5307 if (mesg.event == PM_EVENT_SUSPEND)
5308 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5309
5310 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5311 return rc;
5312 }
5313
5314 static int ata_port_suspend(struct device *dev)
5315 {
5316 if (pm_runtime_suspended(dev))
5317 return 0;
5318
5319 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5320 }
5321
5322 static int ata_port_do_freeze(struct device *dev)
5323 {
5324 if (pm_runtime_suspended(dev))
5325 pm_runtime_resume(dev);
5326
5327 return ata_port_suspend_common(dev, PMSG_FREEZE);
5328 }
5329
5330 static int ata_port_poweroff(struct device *dev)
5331 {
5332 if (pm_runtime_suspended(dev))
5333 return 0;
5334
5335 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5336 }
5337
5338 static int ata_port_resume_common(struct device *dev)
5339 {
5340 struct ata_port *ap = to_ata_port(dev);
5341 int rc;
5342
5343 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5344 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5345 return rc;
5346 }
5347
5348 static int ata_port_resume(struct device *dev)
5349 {
5350 int rc;
5351
5352 rc = ata_port_resume_common(dev);
5353 if (!rc) {
5354 pm_runtime_disable(dev);
5355 pm_runtime_set_active(dev);
5356 pm_runtime_enable(dev);
5357 }
5358
5359 return rc;
5360 }
5361
5362 static int ata_port_runtime_idle(struct device *dev)
5363 {
5364 return pm_runtime_suspend(dev);
5365 }
5366
5367 static const struct dev_pm_ops ata_port_pm_ops = {
5368 .suspend = ata_port_suspend,
5369 .resume = ata_port_resume,
5370 .freeze = ata_port_do_freeze,
5371 .thaw = ata_port_resume,
5372 .poweroff = ata_port_poweroff,
5373 .restore = ata_port_resume,
5374
5375 .runtime_suspend = ata_port_suspend,
5376 .runtime_resume = ata_port_resume_common,
5377 .runtime_idle = ata_port_runtime_idle,
5378 };
5379
5380 /**
5381 * ata_host_suspend - suspend host
5382 * @host: host to suspend
5383 * @mesg: PM message
5384 *
5385 * Suspend @host. Actual operation is performed by port suspend.
5386 */
5387 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5388 {
5389 host->dev->power.power_state = mesg;
5390 return 0;
5391 }
5392
5393 /**
5394 * ata_host_resume - resume host
5395 * @host: host to resume
5396 *
5397 * Resume @host. Actual operation is performed by port resume.
5398 */
5399 void ata_host_resume(struct ata_host *host)
5400 {
5401 host->dev->power.power_state = PMSG_ON;
5402 }
5403 #endif
5404
5405 struct device_type ata_port_type = {
5406 .name = "ata_port",
5407 #ifdef CONFIG_PM
5408 .pm = &ata_port_pm_ops,
5409 #endif
5410 };
5411
5412 /**
5413 * ata_dev_init - Initialize an ata_device structure
5414 * @dev: Device structure to initialize
5415 *
5416 * Initialize @dev in preparation for probing.
5417 *
5418 * LOCKING:
5419 * Inherited from caller.
5420 */
5421 void ata_dev_init(struct ata_device *dev)
5422 {
5423 struct ata_link *link = ata_dev_phys_link(dev);
5424 struct ata_port *ap = link->ap;
5425 unsigned long flags;
5426
5427 /* SATA spd limit is bound to the attached device, reset together */
5428 link->sata_spd_limit = link->hw_sata_spd_limit;
5429 link->sata_spd = 0;
5430
5431 /* High bits of dev->flags are used to record warm plug
5432 * requests which occur asynchronously. Synchronize using
5433 * host lock.
5434 */
5435 spin_lock_irqsave(ap->lock, flags);
5436 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5437 dev->horkage = 0;
5438 spin_unlock_irqrestore(ap->lock, flags);
5439
5440 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5441 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5442 dev->pio_mask = UINT_MAX;
5443 dev->mwdma_mask = UINT_MAX;
5444 dev->udma_mask = UINT_MAX;
5445 }
5446
5447 /**
5448 * ata_link_init - Initialize an ata_link structure
5449 * @ap: ATA port link is attached to
5450 * @link: Link structure to initialize
5451 * @pmp: Port multiplier port number
5452 *
5453 * Initialize @link.
5454 *
5455 * LOCKING:
5456 * Kernel thread context (may sleep)
5457 */
5458 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5459 {
5460 int i;
5461
5462 /* clear everything except for devices */
5463 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5464 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5465
5466 link->ap = ap;
5467 link->pmp = pmp;
5468 link->active_tag = ATA_TAG_POISON;
5469 link->hw_sata_spd_limit = UINT_MAX;
5470
5471 /* can't use iterator, ap isn't initialized yet */
5472 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5473 struct ata_device *dev = &link->device[i];
5474
5475 dev->link = link;
5476 dev->devno = dev - link->device;
5477 #ifdef CONFIG_ATA_ACPI
5478 dev->gtf_filter = ata_acpi_gtf_filter;
5479 #endif
5480 ata_dev_init(dev);
5481 }
5482 }
5483
5484 /**
5485 * sata_link_init_spd - Initialize link->sata_spd_limit
5486 * @link: Link to configure sata_spd_limit for
5487 *
5488 * Initialize @link->[hw_]sata_spd_limit to the currently
5489 * configured value.
5490 *
5491 * LOCKING:
5492 * Kernel thread context (may sleep).
5493 *
5494 * RETURNS:
5495 * 0 on success, -errno on failure.
5496 */
5497 int sata_link_init_spd(struct ata_link *link)
5498 {
5499 u8 spd;
5500 int rc;
5501
5502 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5503 if (rc)
5504 return rc;
5505
5506 spd = (link->saved_scontrol >> 4) & 0xf;
5507 if (spd)
5508 link->hw_sata_spd_limit &= (1 << spd) - 1;
5509
5510 ata_force_link_limits(link);
5511
5512 link->sata_spd_limit = link->hw_sata_spd_limit;
5513
5514 return 0;
5515 }
5516
5517 /**
5518 * ata_port_alloc - allocate and initialize basic ATA port resources
5519 * @host: ATA host this allocated port belongs to
5520 *
5521 * Allocate and initialize basic ATA port resources.
5522 *
5523 * RETURNS:
5524 * Allocate ATA port on success, NULL on failure.
5525 *
5526 * LOCKING:
5527 * Inherited from calling layer (may sleep).
5528 */
5529 struct ata_port *ata_port_alloc(struct ata_host *host)
5530 {
5531 struct ata_port *ap;
5532
5533 DPRINTK("ENTER\n");
5534
5535 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5536 if (!ap)
5537 return NULL;
5538
5539 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5540 ap->lock = &host->lock;
5541 ap->print_id = -1;
5542 ap->host = host;
5543 ap->dev = host->dev;
5544
5545 #if defined(ATA_VERBOSE_DEBUG)
5546 /* turn on all debugging levels */
5547 ap->msg_enable = 0x00FF;
5548 #elif defined(ATA_DEBUG)
5549 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5550 #else
5551 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5552 #endif
5553
5554 mutex_init(&ap->scsi_scan_mutex);
5555 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5556 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5557 INIT_LIST_HEAD(&ap->eh_done_q);
5558 init_waitqueue_head(&ap->eh_wait_q);
5559 init_completion(&ap->park_req_pending);
5560 init_timer_deferrable(&ap->fastdrain_timer);
5561 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5562 ap->fastdrain_timer.data = (unsigned long)ap;
5563
5564 ap->cbl = ATA_CBL_NONE;
5565
5566 ata_link_init(ap, &ap->link, 0);
5567
5568 #ifdef ATA_IRQ_TRAP
5569 ap->stats.unhandled_irq = 1;
5570 ap->stats.idle_irq = 1;
5571 #endif
5572 ata_sff_port_init(ap);
5573
5574 return ap;
5575 }
5576
5577 static void ata_host_release(struct device *gendev, void *res)
5578 {
5579 struct ata_host *host = dev_get_drvdata(gendev);
5580 int i;
5581
5582 for (i = 0; i < host->n_ports; i++) {
5583 struct ata_port *ap = host->ports[i];
5584
5585 if (!ap)
5586 continue;
5587
5588 if (ap->scsi_host)
5589 scsi_host_put(ap->scsi_host);
5590
5591 kfree(ap->pmp_link);
5592 kfree(ap->slave_link);
5593 kfree(ap);
5594 host->ports[i] = NULL;
5595 }
5596
5597 dev_set_drvdata(gendev, NULL);
5598 }
5599
5600 /**
5601 * ata_host_alloc - allocate and init basic ATA host resources
5602 * @dev: generic device this host is associated with
5603 * @max_ports: maximum number of ATA ports associated with this host
5604 *
5605 * Allocate and initialize basic ATA host resources. LLD calls
5606 * this function to allocate a host, initializes it fully and
5607 * attaches it using ata_host_register().
5608 *
5609 * @max_ports ports are allocated and host->n_ports is
5610 * initialized to @max_ports. The caller is allowed to decrease
5611 * host->n_ports before calling ata_host_register(). The unused
5612 * ports will be automatically freed on registration.
5613 *
5614 * RETURNS:
5615 * Allocate ATA host on success, NULL on failure.
5616 *
5617 * LOCKING:
5618 * Inherited from calling layer (may sleep).
5619 */
5620 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5621 {
5622 struct ata_host *host;
5623 size_t sz;
5624 int i;
5625
5626 DPRINTK("ENTER\n");
5627
5628 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5629 return NULL;
5630
5631 /* alloc a container for our list of ATA ports (buses) */
5632 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5633 /* alloc a container for our list of ATA ports (buses) */
5634 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5635 if (!host)
5636 goto err_out;
5637
5638 devres_add(dev, host);
5639 dev_set_drvdata(dev, host);
5640
5641 spin_lock_init(&host->lock);
5642 mutex_init(&host->eh_mutex);
5643 host->dev = dev;
5644 host->n_ports = max_ports;
5645
5646 /* allocate ports bound to this host */
5647 for (i = 0; i < max_ports; i++) {
5648 struct ata_port *ap;
5649
5650 ap = ata_port_alloc(host);
5651 if (!ap)
5652 goto err_out;
5653
5654 ap->port_no = i;
5655 host->ports[i] = ap;
5656 }
5657
5658 devres_remove_group(dev, NULL);
5659 return host;
5660
5661 err_out:
5662 devres_release_group(dev, NULL);
5663 return NULL;
5664 }
5665
5666 /**
5667 * ata_host_alloc_pinfo - alloc host and init with port_info array
5668 * @dev: generic device this host is associated with
5669 * @ppi: array of ATA port_info to initialize host with
5670 * @n_ports: number of ATA ports attached to this host
5671 *
5672 * Allocate ATA host and initialize with info from @ppi. If NULL
5673 * terminated, @ppi may contain fewer entries than @n_ports. The
5674 * last entry will be used for the remaining ports.
5675 *
5676 * RETURNS:
5677 * Allocate ATA host on success, NULL on failure.
5678 *
5679 * LOCKING:
5680 * Inherited from calling layer (may sleep).
5681 */
5682 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5683 const struct ata_port_info * const * ppi,
5684 int n_ports)
5685 {
5686 const struct ata_port_info *pi;
5687 struct ata_host *host;
5688 int i, j;
5689
5690 host = ata_host_alloc(dev, n_ports);
5691 if (!host)
5692 return NULL;
5693
5694 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5695 struct ata_port *ap = host->ports[i];
5696
5697 if (ppi[j])
5698 pi = ppi[j++];
5699
5700 ap->pio_mask = pi->pio_mask;
5701 ap->mwdma_mask = pi->mwdma_mask;
5702 ap->udma_mask = pi->udma_mask;
5703 ap->flags |= pi->flags;
5704 ap->link.flags |= pi->link_flags;
5705 ap->ops = pi->port_ops;
5706
5707 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5708 host->ops = pi->port_ops;
5709 }
5710
5711 return host;
5712 }
5713
5714 /**
5715 * ata_slave_link_init - initialize slave link
5716 * @ap: port to initialize slave link for
5717 *
5718 * Create and initialize slave link for @ap. This enables slave
5719 * link handling on the port.
5720 *
5721 * In libata, a port contains links and a link contains devices.
5722 * There is single host link but if a PMP is attached to it,
5723 * there can be multiple fan-out links. On SATA, there's usually
5724 * a single device connected to a link but PATA and SATA
5725 * controllers emulating TF based interface can have two - master
5726 * and slave.
5727 *
5728 * However, there are a few controllers which don't fit into this
5729 * abstraction too well - SATA controllers which emulate TF
5730 * interface with both master and slave devices but also have
5731 * separate SCR register sets for each device. These controllers
5732 * need separate links for physical link handling
5733 * (e.g. onlineness, link speed) but should be treated like a
5734 * traditional M/S controller for everything else (e.g. command
5735 * issue, softreset).
5736 *
5737 * slave_link is libata's way of handling this class of
5738 * controllers without impacting core layer too much. For
5739 * anything other than physical link handling, the default host
5740 * link is used for both master and slave. For physical link
5741 * handling, separate @ap->slave_link is used. All dirty details
5742 * are implemented inside libata core layer. From LLD's POV, the
5743 * only difference is that prereset, hardreset and postreset are
5744 * called once more for the slave link, so the reset sequence
5745 * looks like the following.
5746 *
5747 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5748 * softreset(M) -> postreset(M) -> postreset(S)
5749 *
5750 * Note that softreset is called only for the master. Softreset
5751 * resets both M/S by definition, so SRST on master should handle
5752 * both (the standard method will work just fine).
5753 *
5754 * LOCKING:
5755 * Should be called before host is registered.
5756 *
5757 * RETURNS:
5758 * 0 on success, -errno on failure.
5759 */
5760 int ata_slave_link_init(struct ata_port *ap)
5761 {
5762 struct ata_link *link;
5763
5764 WARN_ON(ap->slave_link);
5765 WARN_ON(ap->flags & ATA_FLAG_PMP);
5766
5767 link = kzalloc(sizeof(*link), GFP_KERNEL);
5768 if (!link)
5769 return -ENOMEM;
5770
5771 ata_link_init(ap, link, 1);
5772 ap->slave_link = link;
5773 return 0;
5774 }
5775
5776 static void ata_host_stop(struct device *gendev, void *res)
5777 {
5778 struct ata_host *host = dev_get_drvdata(gendev);
5779 int i;
5780
5781 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5782
5783 for (i = 0; i < host->n_ports; i++) {
5784 struct ata_port *ap = host->ports[i];
5785
5786 if (ap->ops->port_stop)
5787 ap->ops->port_stop(ap);
5788 }
5789
5790 if (host->ops->host_stop)
5791 host->ops->host_stop(host);
5792 }
5793
5794 /**
5795 * ata_finalize_port_ops - finalize ata_port_operations
5796 * @ops: ata_port_operations to finalize
5797 *
5798 * An ata_port_operations can inherit from another ops and that
5799 * ops can again inherit from another. This can go on as many
5800 * times as necessary as long as there is no loop in the
5801 * inheritance chain.
5802 *
5803 * Ops tables are finalized when the host is started. NULL or
5804 * unspecified entries are inherited from the closet ancestor
5805 * which has the method and the entry is populated with it.
5806 * After finalization, the ops table directly points to all the
5807 * methods and ->inherits is no longer necessary and cleared.
5808 *
5809 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5810 *
5811 * LOCKING:
5812 * None.
5813 */
5814 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5815 {
5816 static DEFINE_SPINLOCK(lock);
5817 const struct ata_port_operations *cur;
5818 void **begin = (void **)ops;
5819 void **end = (void **)&ops->inherits;
5820 void **pp;
5821
5822 if (!ops || !ops->inherits)
5823 return;
5824
5825 spin_lock(&lock);
5826
5827 for (cur = ops->inherits; cur; cur = cur->inherits) {
5828 void **inherit = (void **)cur;
5829
5830 for (pp = begin; pp < end; pp++, inherit++)
5831 if (!*pp)
5832 *pp = *inherit;
5833 }
5834
5835 for (pp = begin; pp < end; pp++)
5836 if (IS_ERR(*pp))
5837 *pp = NULL;
5838
5839 ops->inherits = NULL;
5840
5841 spin_unlock(&lock);
5842 }
5843
5844 /**
5845 * ata_host_start - start and freeze ports of an ATA host
5846 * @host: ATA host to start ports for
5847 *
5848 * Start and then freeze ports of @host. Started status is
5849 * recorded in host->flags, so this function can be called
5850 * multiple times. Ports are guaranteed to get started only
5851 * once. If host->ops isn't initialized yet, its set to the
5852 * first non-dummy port ops.
5853 *
5854 * LOCKING:
5855 * Inherited from calling layer (may sleep).
5856 *
5857 * RETURNS:
5858 * 0 if all ports are started successfully, -errno otherwise.
5859 */
5860 int ata_host_start(struct ata_host *host)
5861 {
5862 int have_stop = 0;
5863 void *start_dr = NULL;
5864 int i, rc;
5865
5866 if (host->flags & ATA_HOST_STARTED)
5867 return 0;
5868
5869 ata_finalize_port_ops(host->ops);
5870
5871 for (i = 0; i < host->n_ports; i++) {
5872 struct ata_port *ap = host->ports[i];
5873
5874 ata_finalize_port_ops(ap->ops);
5875
5876 if (!host->ops && !ata_port_is_dummy(ap))
5877 host->ops = ap->ops;
5878
5879 if (ap->ops->port_stop)
5880 have_stop = 1;
5881 }
5882
5883 if (host->ops->host_stop)
5884 have_stop = 1;
5885
5886 if (have_stop) {
5887 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5888 if (!start_dr)
5889 return -ENOMEM;
5890 }
5891
5892 for (i = 0; i < host->n_ports; i++) {
5893 struct ata_port *ap = host->ports[i];
5894
5895 if (ap->ops->port_start) {
5896 rc = ap->ops->port_start(ap);
5897 if (rc) {
5898 if (rc != -ENODEV)
5899 dev_err(host->dev,
5900 "failed to start port %d (errno=%d)\n",
5901 i, rc);
5902 goto err_out;
5903 }
5904 }
5905 ata_eh_freeze_port(ap);
5906 }
5907
5908 if (start_dr)
5909 devres_add(host->dev, start_dr);
5910 host->flags |= ATA_HOST_STARTED;
5911 return 0;
5912
5913 err_out:
5914 while (--i >= 0) {
5915 struct ata_port *ap = host->ports[i];
5916
5917 if (ap->ops->port_stop)
5918 ap->ops->port_stop(ap);
5919 }
5920 devres_free(start_dr);
5921 return rc;
5922 }
5923
5924 /**
5925 * ata_sas_host_init - Initialize a host struct
5926 * @host: host to initialize
5927 * @dev: device host is attached to
5928 * @flags: host flags
5929 * @ops: port_ops
5930 *
5931 * LOCKING:
5932 * PCI/etc. bus probe sem.
5933 *
5934 */
5935 /* KILLME - the only user left is ipr */
5936 void ata_host_init(struct ata_host *host, struct device *dev,
5937 unsigned long flags, struct ata_port_operations *ops)
5938 {
5939 spin_lock_init(&host->lock);
5940 mutex_init(&host->eh_mutex);
5941 host->dev = dev;
5942 host->flags = flags;
5943 host->ops = ops;
5944 }
5945
5946 void __ata_port_probe(struct ata_port *ap)
5947 {
5948 struct ata_eh_info *ehi = &ap->link.eh_info;
5949 unsigned long flags;
5950
5951 /* kick EH for boot probing */
5952 spin_lock_irqsave(ap->lock, flags);
5953
5954 ehi->probe_mask |= ATA_ALL_DEVICES;
5955 ehi->action |= ATA_EH_RESET;
5956 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5957
5958 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5959 ap->pflags |= ATA_PFLAG_LOADING;
5960 ata_port_schedule_eh(ap);
5961
5962 spin_unlock_irqrestore(ap->lock, flags);
5963 }
5964
5965 int ata_port_probe(struct ata_port *ap)
5966 {
5967 int rc = 0;
5968
5969 if (ap->ops->error_handler) {
5970 __ata_port_probe(ap);
5971 ata_port_wait_eh(ap);
5972 } else {
5973 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5974 rc = ata_bus_probe(ap);
5975 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5976 }
5977 return rc;
5978 }
5979
5980
5981 static void async_port_probe(void *data, async_cookie_t cookie)
5982 {
5983 struct ata_port *ap = data;
5984
5985 /*
5986 * If we're not allowed to scan this host in parallel,
5987 * we need to wait until all previous scans have completed
5988 * before going further.
5989 * Jeff Garzik says this is only within a controller, so we
5990 * don't need to wait for port 0, only for later ports.
5991 */
5992 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5993 async_synchronize_cookie(cookie);
5994
5995 (void)ata_port_probe(ap);
5996
5997 /* in order to keep device order, we need to synchronize at this point */
5998 async_synchronize_cookie(cookie);
5999
6000 ata_scsi_scan_host(ap, 1);
6001 }
6002
6003 /**
6004 * ata_host_register - register initialized ATA host
6005 * @host: ATA host to register
6006 * @sht: template for SCSI host
6007 *
6008 * Register initialized ATA host. @host is allocated using
6009 * ata_host_alloc() and fully initialized by LLD. This function
6010 * starts ports, registers @host with ATA and SCSI layers and
6011 * probe registered devices.
6012 *
6013 * LOCKING:
6014 * Inherited from calling layer (may sleep).
6015 *
6016 * RETURNS:
6017 * 0 on success, -errno otherwise.
6018 */
6019 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6020 {
6021 int i, rc;
6022
6023 /* host must have been started */
6024 if (!(host->flags & ATA_HOST_STARTED)) {
6025 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6026 WARN_ON(1);
6027 return -EINVAL;
6028 }
6029
6030 /* Blow away unused ports. This happens when LLD can't
6031 * determine the exact number of ports to allocate at
6032 * allocation time.
6033 */
6034 for (i = host->n_ports; host->ports[i]; i++)
6035 kfree(host->ports[i]);
6036
6037 /* give ports names and add SCSI hosts */
6038 for (i = 0; i < host->n_ports; i++)
6039 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6040
6041
6042 /* Create associated sysfs transport objects */
6043 for (i = 0; i < host->n_ports; i++) {
6044 rc = ata_tport_add(host->dev,host->ports[i]);
6045 if (rc) {
6046 goto err_tadd;
6047 }
6048 }
6049
6050 rc = ata_scsi_add_hosts(host, sht);
6051 if (rc)
6052 goto err_tadd;
6053
6054 /* associate with ACPI nodes */
6055 ata_acpi_associate(host);
6056
6057 /* set cable, sata_spd_limit and report */
6058 for (i = 0; i < host->n_ports; i++) {
6059 struct ata_port *ap = host->ports[i];
6060 unsigned long xfer_mask;
6061
6062 /* set SATA cable type if still unset */
6063 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6064 ap->cbl = ATA_CBL_SATA;
6065
6066 /* init sata_spd_limit to the current value */
6067 sata_link_init_spd(&ap->link);
6068 if (ap->slave_link)
6069 sata_link_init_spd(ap->slave_link);
6070
6071 /* print per-port info to dmesg */
6072 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6073 ap->udma_mask);
6074
6075 if (!ata_port_is_dummy(ap)) {
6076 ata_port_info(ap, "%cATA max %s %s\n",
6077 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6078 ata_mode_string(xfer_mask),
6079 ap->link.eh_info.desc);
6080 ata_ehi_clear_desc(&ap->link.eh_info);
6081 } else
6082 ata_port_info(ap, "DUMMY\n");
6083 }
6084
6085 /* perform each probe asynchronously */
6086 for (i = 0; i < host->n_ports; i++) {
6087 struct ata_port *ap = host->ports[i];
6088 async_schedule(async_port_probe, ap);
6089 }
6090
6091 return 0;
6092
6093 err_tadd:
6094 while (--i >= 0) {
6095 ata_tport_delete(host->ports[i]);
6096 }
6097 return rc;
6098
6099 }
6100
6101 /**
6102 * ata_host_activate - start host, request IRQ and register it
6103 * @host: target ATA host
6104 * @irq: IRQ to request
6105 * @irq_handler: irq_handler used when requesting IRQ
6106 * @irq_flags: irq_flags used when requesting IRQ
6107 * @sht: scsi_host_template to use when registering the host
6108 *
6109 * After allocating an ATA host and initializing it, most libata
6110 * LLDs perform three steps to activate the host - start host,
6111 * request IRQ and register it. This helper takes necessasry
6112 * arguments and performs the three steps in one go.
6113 *
6114 * An invalid IRQ skips the IRQ registration and expects the host to
6115 * have set polling mode on the port. In this case, @irq_handler
6116 * should be NULL.
6117 *
6118 * LOCKING:
6119 * Inherited from calling layer (may sleep).
6120 *
6121 * RETURNS:
6122 * 0 on success, -errno otherwise.
6123 */
6124 int ata_host_activate(struct ata_host *host, int irq,
6125 irq_handler_t irq_handler, unsigned long irq_flags,
6126 struct scsi_host_template *sht)
6127 {
6128 int i, rc;
6129
6130 rc = ata_host_start(host);
6131 if (rc)
6132 return rc;
6133
6134 /* Special case for polling mode */
6135 if (!irq) {
6136 WARN_ON(irq_handler);
6137 return ata_host_register(host, sht);
6138 }
6139
6140 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6141 dev_driver_string(host->dev), host);
6142 if (rc)
6143 return rc;
6144
6145 for (i = 0; i < host->n_ports; i++)
6146 ata_port_desc(host->ports[i], "irq %d", irq);
6147
6148 rc = ata_host_register(host, sht);
6149 /* if failed, just free the IRQ and leave ports alone */
6150 if (rc)
6151 devm_free_irq(host->dev, irq, host);
6152
6153 return rc;
6154 }
6155
6156 /**
6157 * ata_port_detach - Detach ATA port in prepration of device removal
6158 * @ap: ATA port to be detached
6159 *
6160 * Detach all ATA devices and the associated SCSI devices of @ap;
6161 * then, remove the associated SCSI host. @ap is guaranteed to
6162 * be quiescent on return from this function.
6163 *
6164 * LOCKING:
6165 * Kernel thread context (may sleep).
6166 */
6167 static void ata_port_detach(struct ata_port *ap)
6168 {
6169 unsigned long flags;
6170
6171 if (!ap->ops->error_handler)
6172 goto skip_eh;
6173
6174 /* tell EH we're leaving & flush EH */
6175 spin_lock_irqsave(ap->lock, flags);
6176 ap->pflags |= ATA_PFLAG_UNLOADING;
6177 ata_port_schedule_eh(ap);
6178 spin_unlock_irqrestore(ap->lock, flags);
6179
6180 /* wait till EH commits suicide */
6181 ata_port_wait_eh(ap);
6182
6183 /* it better be dead now */
6184 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6185
6186 cancel_delayed_work_sync(&ap->hotplug_task);
6187
6188 skip_eh:
6189 if (ap->pmp_link) {
6190 int i;
6191 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6192 ata_tlink_delete(&ap->pmp_link[i]);
6193 }
6194 ata_tport_delete(ap);
6195
6196 /* remove the associated SCSI host */
6197 scsi_remove_host(ap->scsi_host);
6198 }
6199
6200 /**
6201 * ata_host_detach - Detach all ports of an ATA host
6202 * @host: Host to detach
6203 *
6204 * Detach all ports of @host.
6205 *
6206 * LOCKING:
6207 * Kernel thread context (may sleep).
6208 */
6209 void ata_host_detach(struct ata_host *host)
6210 {
6211 int i;
6212
6213 for (i = 0; i < host->n_ports; i++)
6214 ata_port_detach(host->ports[i]);
6215
6216 /* the host is dead now, dissociate ACPI */
6217 ata_acpi_dissociate(host);
6218 }
6219
6220 #ifdef CONFIG_PCI
6221
6222 /**
6223 * ata_pci_remove_one - PCI layer callback for device removal
6224 * @pdev: PCI device that was removed
6225 *
6226 * PCI layer indicates to libata via this hook that hot-unplug or
6227 * module unload event has occurred. Detach all ports. Resource
6228 * release is handled via devres.
6229 *
6230 * LOCKING:
6231 * Inherited from PCI layer (may sleep).
6232 */
6233 void ata_pci_remove_one(struct pci_dev *pdev)
6234 {
6235 struct device *dev = &pdev->dev;
6236 struct ata_host *host = dev_get_drvdata(dev);
6237
6238 ata_host_detach(host);
6239 }
6240
6241 /* move to PCI subsystem */
6242 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243 {
6244 unsigned long tmp = 0;
6245
6246 switch (bits->width) {
6247 case 1: {
6248 u8 tmp8 = 0;
6249 pci_read_config_byte(pdev, bits->reg, &tmp8);
6250 tmp = tmp8;
6251 break;
6252 }
6253 case 2: {
6254 u16 tmp16 = 0;
6255 pci_read_config_word(pdev, bits->reg, &tmp16);
6256 tmp = tmp16;
6257 break;
6258 }
6259 case 4: {
6260 u32 tmp32 = 0;
6261 pci_read_config_dword(pdev, bits->reg, &tmp32);
6262 tmp = tmp32;
6263 break;
6264 }
6265
6266 default:
6267 return -EINVAL;
6268 }
6269
6270 tmp &= bits->mask;
6271
6272 return (tmp == bits->val) ? 1 : 0;
6273 }
6274
6275 #ifdef CONFIG_PM
6276 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6277 {
6278 pci_save_state(pdev);
6279 pci_disable_device(pdev);
6280
6281 if (mesg.event & PM_EVENT_SLEEP)
6282 pci_set_power_state(pdev, PCI_D3hot);
6283 }
6284
6285 int ata_pci_device_do_resume(struct pci_dev *pdev)
6286 {
6287 int rc;
6288
6289 pci_set_power_state(pdev, PCI_D0);
6290 pci_restore_state(pdev);
6291
6292 rc = pcim_enable_device(pdev);
6293 if (rc) {
6294 dev_err(&pdev->dev,
6295 "failed to enable device after resume (%d)\n", rc);
6296 return rc;
6297 }
6298
6299 pci_set_master(pdev);
6300 return 0;
6301 }
6302
6303 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6304 {
6305 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6306 int rc = 0;
6307
6308 rc = ata_host_suspend(host, mesg);
6309 if (rc)
6310 return rc;
6311
6312 ata_pci_device_do_suspend(pdev, mesg);
6313
6314 return 0;
6315 }
6316
6317 int ata_pci_device_resume(struct pci_dev *pdev)
6318 {
6319 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6320 int rc;
6321
6322 rc = ata_pci_device_do_resume(pdev);
6323 if (rc == 0)
6324 ata_host_resume(host);
6325 return rc;
6326 }
6327 #endif /* CONFIG_PM */
6328
6329 #endif /* CONFIG_PCI */
6330
6331 static int __init ata_parse_force_one(char **cur,
6332 struct ata_force_ent *force_ent,
6333 const char **reason)
6334 {
6335 /* FIXME: Currently, there's no way to tag init const data and
6336 * using __initdata causes build failure on some versions of
6337 * gcc. Once __initdataconst is implemented, add const to the
6338 * following structure.
6339 */
6340 static struct ata_force_param force_tbl[] __initdata = {
6341 { "40c", .cbl = ATA_CBL_PATA40 },
6342 { "80c", .cbl = ATA_CBL_PATA80 },
6343 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6344 { "unk", .cbl = ATA_CBL_PATA_UNK },
6345 { "ign", .cbl = ATA_CBL_PATA_IGN },
6346 { "sata", .cbl = ATA_CBL_SATA },
6347 { "1.5Gbps", .spd_limit = 1 },
6348 { "3.0Gbps", .spd_limit = 2 },
6349 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6350 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6351 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6352 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6353 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6354 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6355 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6356 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6357 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6358 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6359 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6360 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6361 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6362 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6363 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6364 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6365 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6366 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6367 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6368 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6369 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6370 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6371 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6372 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6373 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6374 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6375 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6376 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6377 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6378 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6379 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6380 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6381 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6382 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6383 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6384 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6385 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6386 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6387 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6388 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6389 };
6390 char *start = *cur, *p = *cur;
6391 char *id, *val, *endp;
6392 const struct ata_force_param *match_fp = NULL;
6393 int nr_matches = 0, i;
6394
6395 /* find where this param ends and update *cur */
6396 while (*p != '\0' && *p != ',')
6397 p++;
6398
6399 if (*p == '\0')
6400 *cur = p;
6401 else
6402 *cur = p + 1;
6403
6404 *p = '\0';
6405
6406 /* parse */
6407 p = strchr(start, ':');
6408 if (!p) {
6409 val = strstrip(start);
6410 goto parse_val;
6411 }
6412 *p = '\0';
6413
6414 id = strstrip(start);
6415 val = strstrip(p + 1);
6416
6417 /* parse id */
6418 p = strchr(id, '.');
6419 if (p) {
6420 *p++ = '\0';
6421 force_ent->device = simple_strtoul(p, &endp, 10);
6422 if (p == endp || *endp != '\0') {
6423 *reason = "invalid device";
6424 return -EINVAL;
6425 }
6426 }
6427
6428 force_ent->port = simple_strtoul(id, &endp, 10);
6429 if (p == endp || *endp != '\0') {
6430 *reason = "invalid port/link";
6431 return -EINVAL;
6432 }
6433
6434 parse_val:
6435 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6436 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6437 const struct ata_force_param *fp = &force_tbl[i];
6438
6439 if (strncasecmp(val, fp->name, strlen(val)))
6440 continue;
6441
6442 nr_matches++;
6443 match_fp = fp;
6444
6445 if (strcasecmp(val, fp->name) == 0) {
6446 nr_matches = 1;
6447 break;
6448 }
6449 }
6450
6451 if (!nr_matches) {
6452 *reason = "unknown value";
6453 return -EINVAL;
6454 }
6455 if (nr_matches > 1) {
6456 *reason = "ambigious value";
6457 return -EINVAL;
6458 }
6459
6460 force_ent->param = *match_fp;
6461
6462 return 0;
6463 }
6464
6465 static void __init ata_parse_force_param(void)
6466 {
6467 int idx = 0, size = 1;
6468 int last_port = -1, last_device = -1;
6469 char *p, *cur, *next;
6470
6471 /* calculate maximum number of params and allocate force_tbl */
6472 for (p = ata_force_param_buf; *p; p++)
6473 if (*p == ',')
6474 size++;
6475
6476 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6477 if (!ata_force_tbl) {
6478 printk(KERN_WARNING "ata: failed to extend force table, "
6479 "libata.force ignored\n");
6480 return;
6481 }
6482
6483 /* parse and populate the table */
6484 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6485 const char *reason = "";
6486 struct ata_force_ent te = { .port = -1, .device = -1 };
6487
6488 next = cur;
6489 if (ata_parse_force_one(&next, &te, &reason)) {
6490 printk(KERN_WARNING "ata: failed to parse force "
6491 "parameter \"%s\" (%s)\n",
6492 cur, reason);
6493 continue;
6494 }
6495
6496 if (te.port == -1) {
6497 te.port = last_port;
6498 te.device = last_device;
6499 }
6500
6501 ata_force_tbl[idx++] = te;
6502
6503 last_port = te.port;
6504 last_device = te.device;
6505 }
6506
6507 ata_force_tbl_size = idx;
6508 }
6509
6510 static int __init ata_init(void)
6511 {
6512 int rc;
6513
6514 ata_parse_force_param();
6515
6516 rc = ata_sff_init();
6517 if (rc) {
6518 kfree(ata_force_tbl);
6519 return rc;
6520 }
6521
6522 libata_transport_init();
6523 ata_scsi_transport_template = ata_attach_transport();
6524 if (!ata_scsi_transport_template) {
6525 ata_sff_exit();
6526 rc = -ENOMEM;
6527 goto err_out;
6528 }
6529
6530 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6531 return 0;
6532
6533 err_out:
6534 return rc;
6535 }
6536
6537 static void __exit ata_exit(void)
6538 {
6539 ata_release_transport(ata_scsi_transport_template);
6540 libata_transport_exit();
6541 ata_sff_exit();
6542 kfree(ata_force_tbl);
6543 }
6544
6545 subsys_initcall(ata_init);
6546 module_exit(ata_exit);
6547
6548 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6549
6550 int ata_ratelimit(void)
6551 {
6552 return __ratelimit(&ratelimit);
6553 }
6554
6555 /**
6556 * ata_msleep - ATA EH owner aware msleep
6557 * @ap: ATA port to attribute the sleep to
6558 * @msecs: duration to sleep in milliseconds
6559 *
6560 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6561 * ownership is released before going to sleep and reacquired
6562 * after the sleep is complete. IOW, other ports sharing the
6563 * @ap->host will be allowed to own the EH while this task is
6564 * sleeping.
6565 *
6566 * LOCKING:
6567 * Might sleep.
6568 */
6569 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6570 {
6571 bool owns_eh = ap && ap->host->eh_owner == current;
6572
6573 if (owns_eh)
6574 ata_eh_release(ap);
6575
6576 msleep(msecs);
6577
6578 if (owns_eh)
6579 ata_eh_acquire(ap);
6580 }
6581
6582 /**
6583 * ata_wait_register - wait until register value changes
6584 * @ap: ATA port to wait register for, can be NULL
6585 * @reg: IO-mapped register
6586 * @mask: Mask to apply to read register value
6587 * @val: Wait condition
6588 * @interval: polling interval in milliseconds
6589 * @timeout: timeout in milliseconds
6590 *
6591 * Waiting for some bits of register to change is a common
6592 * operation for ATA controllers. This function reads 32bit LE
6593 * IO-mapped register @reg and tests for the following condition.
6594 *
6595 * (*@reg & mask) != val
6596 *
6597 * If the condition is met, it returns; otherwise, the process is
6598 * repeated after @interval_msec until timeout.
6599 *
6600 * LOCKING:
6601 * Kernel thread context (may sleep)
6602 *
6603 * RETURNS:
6604 * The final register value.
6605 */
6606 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6607 unsigned long interval, unsigned long timeout)
6608 {
6609 unsigned long deadline;
6610 u32 tmp;
6611
6612 tmp = ioread32(reg);
6613
6614 /* Calculate timeout _after_ the first read to make sure
6615 * preceding writes reach the controller before starting to
6616 * eat away the timeout.
6617 */
6618 deadline = ata_deadline(jiffies, timeout);
6619
6620 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6621 ata_msleep(ap, interval);
6622 tmp = ioread32(reg);
6623 }
6624
6625 return tmp;
6626 }
6627
6628 /*
6629 * Dummy port_ops
6630 */
6631 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6632 {
6633 return AC_ERR_SYSTEM;
6634 }
6635
6636 static void ata_dummy_error_handler(struct ata_port *ap)
6637 {
6638 /* truly dummy */
6639 }
6640
6641 struct ata_port_operations ata_dummy_port_ops = {
6642 .qc_prep = ata_noop_qc_prep,
6643 .qc_issue = ata_dummy_qc_issue,
6644 .error_handler = ata_dummy_error_handler,
6645 };
6646
6647 const struct ata_port_info ata_dummy_port_info = {
6648 .port_ops = &ata_dummy_port_ops,
6649 };
6650
6651 /*
6652 * Utility print functions
6653 */
6654 int ata_port_printk(const struct ata_port *ap, const char *level,
6655 const char *fmt, ...)
6656 {
6657 struct va_format vaf;
6658 va_list args;
6659 int r;
6660
6661 va_start(args, fmt);
6662
6663 vaf.fmt = fmt;
6664 vaf.va = &args;
6665
6666 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6667
6668 va_end(args);
6669
6670 return r;
6671 }
6672 EXPORT_SYMBOL(ata_port_printk);
6673
6674 int ata_link_printk(const struct ata_link *link, const char *level,
6675 const char *fmt, ...)
6676 {
6677 struct va_format vaf;
6678 va_list args;
6679 int r;
6680
6681 va_start(args, fmt);
6682
6683 vaf.fmt = fmt;
6684 vaf.va = &args;
6685
6686 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6687 r = printk("%sata%u.%02u: %pV",
6688 level, link->ap->print_id, link->pmp, &vaf);
6689 else
6690 r = printk("%sata%u: %pV",
6691 level, link->ap->print_id, &vaf);
6692
6693 va_end(args);
6694
6695 return r;
6696 }
6697 EXPORT_SYMBOL(ata_link_printk);
6698
6699 int ata_dev_printk(const struct ata_device *dev, const char *level,
6700 const char *fmt, ...)
6701 {
6702 struct va_format vaf;
6703 va_list args;
6704 int r;
6705
6706 va_start(args, fmt);
6707
6708 vaf.fmt = fmt;
6709 vaf.va = &args;
6710
6711 r = printk("%sata%u.%02u: %pV",
6712 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6713 &vaf);
6714
6715 va_end(args);
6716
6717 return r;
6718 }
6719 EXPORT_SYMBOL(ata_dev_printk);
6720
6721 void ata_print_version(const struct device *dev, const char *version)
6722 {
6723 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6724 }
6725 EXPORT_SYMBOL(ata_print_version);
6726
6727 /*
6728 * libata is essentially a library of internal helper functions for
6729 * low-level ATA host controller drivers. As such, the API/ABI is
6730 * likely to change as new drivers are added and updated.
6731 * Do not depend on ABI/API stability.
6732 */
6733 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6734 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6735 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6736 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6737 EXPORT_SYMBOL_GPL(sata_port_ops);
6738 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6739 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6740 EXPORT_SYMBOL_GPL(ata_link_next);
6741 EXPORT_SYMBOL_GPL(ata_dev_next);
6742 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6743 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6744 EXPORT_SYMBOL_GPL(ata_host_init);
6745 EXPORT_SYMBOL_GPL(ata_host_alloc);
6746 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6747 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6748 EXPORT_SYMBOL_GPL(ata_host_start);
6749 EXPORT_SYMBOL_GPL(ata_host_register);
6750 EXPORT_SYMBOL_GPL(ata_host_activate);
6751 EXPORT_SYMBOL_GPL(ata_host_detach);
6752 EXPORT_SYMBOL_GPL(ata_sg_init);
6753 EXPORT_SYMBOL_GPL(ata_qc_complete);
6754 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6755 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6756 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6757 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6758 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6759 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6760 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6761 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6762 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6763 EXPORT_SYMBOL_GPL(ata_mode_string);
6764 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6765 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6766 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6767 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6768 EXPORT_SYMBOL_GPL(ata_dev_disable);
6769 EXPORT_SYMBOL_GPL(sata_set_spd);
6770 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6771 EXPORT_SYMBOL_GPL(sata_link_debounce);
6772 EXPORT_SYMBOL_GPL(sata_link_resume);
6773 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6774 EXPORT_SYMBOL_GPL(ata_std_prereset);
6775 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6776 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6777 EXPORT_SYMBOL_GPL(ata_std_postreset);
6778 EXPORT_SYMBOL_GPL(ata_dev_classify);
6779 EXPORT_SYMBOL_GPL(ata_dev_pair);
6780 EXPORT_SYMBOL_GPL(ata_ratelimit);
6781 EXPORT_SYMBOL_GPL(ata_msleep);
6782 EXPORT_SYMBOL_GPL(ata_wait_register);
6783 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6784 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6785 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6786 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6787 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6788 EXPORT_SYMBOL_GPL(sata_scr_valid);
6789 EXPORT_SYMBOL_GPL(sata_scr_read);
6790 EXPORT_SYMBOL_GPL(sata_scr_write);
6791 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6792 EXPORT_SYMBOL_GPL(ata_link_online);
6793 EXPORT_SYMBOL_GPL(ata_link_offline);
6794 #ifdef CONFIG_PM
6795 EXPORT_SYMBOL_GPL(ata_host_suspend);
6796 EXPORT_SYMBOL_GPL(ata_host_resume);
6797 #endif /* CONFIG_PM */
6798 EXPORT_SYMBOL_GPL(ata_id_string);
6799 EXPORT_SYMBOL_GPL(ata_id_c_string);
6800 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6801 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6802
6803 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6804 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6805 EXPORT_SYMBOL_GPL(ata_timing_compute);
6806 EXPORT_SYMBOL_GPL(ata_timing_merge);
6807 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6808
6809 #ifdef CONFIG_PCI
6810 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6811 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6812 #ifdef CONFIG_PM
6813 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6814 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6815 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6816 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6817 #endif /* CONFIG_PM */
6818 #endif /* CONFIG_PCI */
6819
6820 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6821 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6822 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6823 EXPORT_SYMBOL_GPL(ata_port_desc);
6824 #ifdef CONFIG_PCI
6825 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6826 #endif /* CONFIG_PCI */
6827 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6828 EXPORT_SYMBOL_GPL(ata_link_abort);
6829 EXPORT_SYMBOL_GPL(ata_port_abort);
6830 EXPORT_SYMBOL_GPL(ata_port_freeze);
6831 EXPORT_SYMBOL_GPL(sata_async_notification);
6832 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6833 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6834 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6835 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6836 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6837 EXPORT_SYMBOL_GPL(ata_do_eh);
6838 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6839
6840 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6841 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6842 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6843 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6844 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.447795 seconds and 4 git commands to generate.