Merge tag 'nfs-for-3.17-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72
73 #include "libata.h"
74 #include "libata-transport.h"
75
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
78 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
79 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
80
81 const struct ata_port_operations ata_base_port_ops = {
82 .prereset = ata_std_prereset,
83 .postreset = ata_std_postreset,
84 .error_handler = ata_std_error_handler,
85 .sched_eh = ata_std_sched_eh,
86 .end_eh = ata_std_end_eh,
87 };
88
89 const struct ata_port_operations sata_port_ops = {
90 .inherits = &ata_base_port_ops,
91
92 .qc_defer = ata_std_qc_defer,
93 .hardreset = sata_std_hardreset,
94 };
95
96 static unsigned int ata_dev_init_params(struct ata_device *dev,
97 u16 heads, u16 sectors);
98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99 static void ata_dev_xfermask(struct ata_device *dev);
100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101
102 atomic_t ata_print_id = ATOMIC_INIT(0);
103
104 struct ata_force_param {
105 const char *name;
106 unsigned int cbl;
107 int spd_limit;
108 unsigned long xfer_mask;
109 unsigned int horkage_on;
110 unsigned int horkage_off;
111 unsigned int lflags;
112 };
113
114 struct ata_force_ent {
115 int port;
116 int device;
117 struct ata_force_param param;
118 };
119
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172
173
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 return (sstatus & 0xf) == 0x3;
177 }
178
179 /**
180 * ata_link_next - link iteration helper
181 * @link: the previous link, NULL to start
182 * @ap: ATA port containing links to iterate
183 * @mode: iteration mode, one of ATA_LITER_*
184 *
185 * LOCKING:
186 * Host lock or EH context.
187 *
188 * RETURNS:
189 * Pointer to the next link.
190 */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 enum ata_link_iter_mode mode)
193 {
194 BUG_ON(mode != ATA_LITER_EDGE &&
195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196
197 /* NULL link indicates start of iteration */
198 if (!link)
199 switch (mode) {
200 case ATA_LITER_EDGE:
201 case ATA_LITER_PMP_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 /* fall through */
205 case ATA_LITER_HOST_FIRST:
206 return &ap->link;
207 }
208
209 /* we just iterated over the host link, what's next? */
210 if (link == &ap->link)
211 switch (mode) {
212 case ATA_LITER_HOST_FIRST:
213 if (sata_pmp_attached(ap))
214 return ap->pmp_link;
215 /* fall through */
216 case ATA_LITER_PMP_FIRST:
217 if (unlikely(ap->slave_link))
218 return ap->slave_link;
219 /* fall through */
220 case ATA_LITER_EDGE:
221 return NULL;
222 }
223
224 /* slave_link excludes PMP */
225 if (unlikely(link == ap->slave_link))
226 return NULL;
227
228 /* we were over a PMP link */
229 if (++link < ap->pmp_link + ap->nr_pmp_links)
230 return link;
231
232 if (mode == ATA_LITER_PMP_FIRST)
233 return &ap->link;
234
235 return NULL;
236 }
237
238 /**
239 * ata_dev_next - device iteration helper
240 * @dev: the previous device, NULL to start
241 * @link: ATA link containing devices to iterate
242 * @mode: iteration mode, one of ATA_DITER_*
243 *
244 * LOCKING:
245 * Host lock or EH context.
246 *
247 * RETURNS:
248 * Pointer to the next device.
249 */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 enum ata_dev_iter_mode mode)
252 {
253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255
256 /* NULL dev indicates start of iteration */
257 if (!dev)
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 dev = link->device;
262 goto check;
263 case ATA_DITER_ENABLED_REVERSE:
264 case ATA_DITER_ALL_REVERSE:
265 dev = link->device + ata_link_max_devices(link) - 1;
266 goto check;
267 }
268
269 next:
270 /* move to the next one */
271 switch (mode) {
272 case ATA_DITER_ENABLED:
273 case ATA_DITER_ALL:
274 if (++dev < link->device + ata_link_max_devices(link))
275 goto check;
276 return NULL;
277 case ATA_DITER_ENABLED_REVERSE:
278 case ATA_DITER_ALL_REVERSE:
279 if (--dev >= link->device)
280 goto check;
281 return NULL;
282 }
283
284 check:
285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 !ata_dev_enabled(dev))
287 goto next;
288 return dev;
289 }
290
291 /**
292 * ata_dev_phys_link - find physical link for a device
293 * @dev: ATA device to look up physical link for
294 *
295 * Look up physical link which @dev is attached to. Note that
296 * this is different from @dev->link only when @dev is on slave
297 * link. For all other cases, it's the same as @dev->link.
298 *
299 * LOCKING:
300 * Don't care.
301 *
302 * RETURNS:
303 * Pointer to the found physical link.
304 */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 struct ata_port *ap = dev->link->ap;
308
309 if (!ap->slave_link)
310 return dev->link;
311 if (!dev->devno)
312 return &ap->link;
313 return ap->slave_link;
314 }
315
316 /**
317 * ata_force_cbl - force cable type according to libata.force
318 * @ap: ATA port of interest
319 *
320 * Force cable type according to libata.force and whine about it.
321 * The last entry which has matching port number is used, so it
322 * can be specified as part of device force parameters. For
323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324 * same effect.
325 *
326 * LOCKING:
327 * EH context.
328 */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 int i;
332
333 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 const struct ata_force_ent *fe = &ata_force_tbl[i];
335
336 if (fe->port != -1 && fe->port != ap->print_id)
337 continue;
338
339 if (fe->param.cbl == ATA_CBL_NONE)
340 continue;
341
342 ap->cbl = fe->param.cbl;
343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346 }
347
348 /**
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
351 *
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
360 *
361 * LOCKING:
362 * EH context.
363 */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
369
370 if (ata_is_host_link(link))
371 linkno += 15;
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 fe->param.name);
387 did_spd = true;
388 }
389
390 /* let lflags stack */
391 if (fe->param.lflags) {
392 link->flags |= fe->param.lflags;
393 ata_link_notice(link,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe->param.lflags, link->flags);
396 }
397 }
398 }
399
400 /**
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
403 *
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
407 *
408 * LOCKING:
409 * EH context.
410 */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 int devno = dev->link->pmp + dev->devno;
414 int alt_devno = devno;
415 int i;
416
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev->link))
419 alt_devno += 15;
420
421 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 const struct ata_force_ent *fe = &ata_force_tbl[i];
423 unsigned long pio_mask, mwdma_mask, udma_mask;
424
425 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 continue;
427
428 if (fe->device != -1 && fe->device != devno &&
429 fe->device != alt_devno)
430 continue;
431
432 if (!fe->param.xfer_mask)
433 continue;
434
435 ata_unpack_xfermask(fe->param.xfer_mask,
436 &pio_mask, &mwdma_mask, &udma_mask);
437 if (udma_mask)
438 dev->udma_mask = udma_mask;
439 else if (mwdma_mask) {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = mwdma_mask;
442 } else {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = 0;
445 dev->pio_mask = pio_mask;
446 }
447
448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 fe->param.name);
450 return;
451 }
452 }
453
454 /**
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
457 *
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
461 *
462 * LOCKING:
463 * EH context.
464 */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 int devno = dev->link->pmp + dev->devno;
468 int alt_devno = devno;
469 int i;
470
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev->link))
473 alt_devno += 15;
474
475 for (i = 0; i < ata_force_tbl_size; i++) {
476 const struct ata_force_ent *fe = &ata_force_tbl[i];
477
478 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 continue;
480
481 if (fe->device != -1 && fe->device != devno &&
482 fe->device != alt_devno)
483 continue;
484
485 if (!(~dev->horkage & fe->param.horkage_on) &&
486 !(dev->horkage & fe->param.horkage_off))
487 continue;
488
489 dev->horkage |= fe->param.horkage_on;
490 dev->horkage &= ~fe->param.horkage_off;
491
492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 fe->param.name);
494 }
495 }
496
497 /**
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
500 *
501 * Determine ATAPI command type from @opcode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 */
509 int atapi_cmd_type(u8 opcode)
510 {
511 switch (opcode) {
512 case GPCMD_READ_10:
513 case GPCMD_READ_12:
514 return ATAPI_READ;
515
516 case GPCMD_WRITE_10:
517 case GPCMD_WRITE_12:
518 case GPCMD_WRITE_AND_VERIFY_10:
519 return ATAPI_WRITE;
520
521 case GPCMD_READ_CD:
522 case GPCMD_READ_CD_MSF:
523 return ATAPI_READ_CD;
524
525 case ATA_16:
526 case ATA_12:
527 if (atapi_passthru16)
528 return ATAPI_PASS_THRU;
529 /* fall thru */
530 default:
531 return ATAPI_MISC;
532 }
533 }
534
535 /**
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
541 *
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
544 *
545 * LOCKING:
546 * Inherited from caller.
547 */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 fis[0] = 0x27; /* Register - Host to Device FIS */
551 fis[1] = pmp & 0xf; /* Port multiplier number*/
552 if (is_cmd)
553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554
555 fis[2] = tf->command;
556 fis[3] = tf->feature;
557
558 fis[4] = tf->lbal;
559 fis[5] = tf->lbam;
560 fis[6] = tf->lbah;
561 fis[7] = tf->device;
562
563 fis[8] = tf->hob_lbal;
564 fis[9] = tf->hob_lbam;
565 fis[10] = tf->hob_lbah;
566 fis[11] = tf->hob_feature;
567
568 fis[12] = tf->nsect;
569 fis[13] = tf->hob_nsect;
570 fis[14] = 0;
571 fis[15] = tf->ctl;
572
573 fis[16] = tf->auxiliary & 0xff;
574 fis[17] = (tf->auxiliary >> 8) & 0xff;
575 fis[18] = (tf->auxiliary >> 16) & 0xff;
576 fis[19] = (tf->auxiliary >> 24) & 0xff;
577 }
578
579 /**
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
583 *
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
585 *
586 * LOCKING:
587 * Inherited from caller.
588 */
589
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 tf->command = fis[2]; /* status */
593 tf->feature = fis[3]; /* error */
594
595 tf->lbal = fis[4];
596 tf->lbam = fis[5];
597 tf->lbah = fis[6];
598 tf->device = fis[7];
599
600 tf->hob_lbal = fis[8];
601 tf->hob_lbam = fis[9];
602 tf->hob_lbah = fis[10];
603
604 tf->nsect = fis[12];
605 tf->hob_nsect = fis[13];
606 }
607
608 static const u8 ata_rw_cmds[] = {
609 /* pio multi */
610 ATA_CMD_READ_MULTI,
611 ATA_CMD_WRITE_MULTI,
612 ATA_CMD_READ_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_EXT,
614 0,
615 0,
616 0,
617 ATA_CMD_WRITE_MULTI_FUA_EXT,
618 /* pio */
619 ATA_CMD_PIO_READ,
620 ATA_CMD_PIO_WRITE,
621 ATA_CMD_PIO_READ_EXT,
622 ATA_CMD_PIO_WRITE_EXT,
623 0,
624 0,
625 0,
626 0,
627 /* dma */
628 ATA_CMD_READ,
629 ATA_CMD_WRITE,
630 ATA_CMD_READ_EXT,
631 ATA_CMD_WRITE_EXT,
632 0,
633 0,
634 0,
635 ATA_CMD_WRITE_FUA_EXT
636 };
637
638 /**
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
642 *
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
645 *
646 * LOCKING:
647 * caller.
648 */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 u8 cmd;
652
653 int index, fua, lba48, write;
654
655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658
659 if (dev->flags & ATA_DFLAG_PIO) {
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 /* Unable to use DMA due to host limitation */
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else {
667 tf->protocol = ATA_PROT_DMA;
668 index = 16;
669 }
670
671 cmd = ata_rw_cmds[index + fua + lba48 + write];
672 if (cmd) {
673 tf->command = cmd;
674 return 0;
675 }
676 return -1;
677 }
678
679 /**
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
683 *
684 * LOCKING:
685 * None.
686 *
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
690 *
691 * RETURNS:
692 * Block address read from @tf.
693 */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 u64 block = 0;
697
698 if (tf->flags & ATA_TFLAG_LBA) {
699 if (tf->flags & ATA_TFLAG_LBA48) {
700 block |= (u64)tf->hob_lbah << 40;
701 block |= (u64)tf->hob_lbam << 32;
702 block |= (u64)tf->hob_lbal << 24;
703 } else
704 block |= (tf->device & 0xf) << 24;
705
706 block |= tf->lbah << 16;
707 block |= tf->lbam << 8;
708 block |= tf->lbal;
709 } else {
710 u32 cyl, head, sect;
711
712 cyl = tf->lbam | (tf->lbah << 8);
713 head = tf->device & 0xf;
714 sect = tf->lbal;
715
716 if (!sect) {
717 ata_dev_warn(dev,
718 "device reported invalid CHS sector 0\n");
719 sect = 1; /* oh well */
720 }
721
722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 }
724
725 return block;
726 }
727
728 /**
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
735 * @tag: tag
736 *
737 * LOCKING:
738 * None.
739 *
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
742 *
743 * RETURNS:
744 *
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
747 */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 u64 block, u32 n_block, unsigned int tf_flags,
750 unsigned int tag)
751 {
752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 tf->flags |= tf_flags;
754
755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 /* yay, NCQ */
757 if (!lba_48_ok(block, n_block))
758 return -ERANGE;
759
760 tf->protocol = ATA_PROT_NCQ;
761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762
763 if (tf->flags & ATA_TFLAG_WRITE)
764 tf->command = ATA_CMD_FPDMA_WRITE;
765 else
766 tf->command = ATA_CMD_FPDMA_READ;
767
768 tf->nsect = tag << 3;
769 tf->hob_feature = (n_block >> 8) & 0xff;
770 tf->feature = n_block & 0xff;
771
772 tf->hob_lbah = (block >> 40) & 0xff;
773 tf->hob_lbam = (block >> 32) & 0xff;
774 tf->hob_lbal = (block >> 24) & 0xff;
775 tf->lbah = (block >> 16) & 0xff;
776 tf->lbam = (block >> 8) & 0xff;
777 tf->lbal = block & 0xff;
778
779 tf->device = ATA_LBA;
780 if (tf->flags & ATA_TFLAG_FUA)
781 tf->device |= 1 << 7;
782 } else if (dev->flags & ATA_DFLAG_LBA) {
783 tf->flags |= ATA_TFLAG_LBA;
784
785 if (lba_28_ok(block, n_block)) {
786 /* use LBA28 */
787 tf->device |= (block >> 24) & 0xf;
788 } else if (lba_48_ok(block, n_block)) {
789 if (!(dev->flags & ATA_DFLAG_LBA48))
790 return -ERANGE;
791
792 /* use LBA48 */
793 tf->flags |= ATA_TFLAG_LBA48;
794
795 tf->hob_nsect = (n_block >> 8) & 0xff;
796
797 tf->hob_lbah = (block >> 40) & 0xff;
798 tf->hob_lbam = (block >> 32) & 0xff;
799 tf->hob_lbal = (block >> 24) & 0xff;
800 } else
801 /* request too large even for LBA48 */
802 return -ERANGE;
803
804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 return -EINVAL;
806
807 tf->nsect = n_block & 0xff;
808
809 tf->lbah = (block >> 16) & 0xff;
810 tf->lbam = (block >> 8) & 0xff;
811 tf->lbal = block & 0xff;
812
813 tf->device |= ATA_LBA;
814 } else {
815 /* CHS */
816 u32 sect, head, cyl, track;
817
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block, n_block))
820 return -ERANGE;
821
822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 return -EINVAL;
824
825 /* Convert LBA to CHS */
826 track = (u32)block / dev->sectors;
827 cyl = track / dev->heads;
828 head = track % dev->heads;
829 sect = (u32)block % dev->sectors + 1;
830
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32)block, track, cyl, head, sect);
833
834 /* Check whether the converted CHS can fit.
835 Cylinder: 0-65535
836 Head: 0-15
837 Sector: 1-255*/
838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 return -ERANGE;
840
841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 tf->lbal = sect;
843 tf->lbam = cyl;
844 tf->lbah = cyl >> 8;
845 tf->device |= head;
846 }
847
848 return 0;
849 }
850
851 /**
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
856 *
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
859 *
860 * LOCKING:
861 * None.
862 *
863 * RETURNS:
864 * Packed xfer_mask.
865 */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 unsigned long mwdma_mask,
868 unsigned long udma_mask)
869 {
870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874
875 /**
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
881 *
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
884 */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 if (pio_mask)
889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 if (mwdma_mask)
891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 if (udma_mask)
893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895
896 static const struct ata_xfer_ent {
897 int shift, bits;
898 u8 base;
899 } ata_xfer_tbl[] = {
900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 { -1, },
904 };
905
906 /**
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
909 *
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
912 *
913 * LOCKING:
914 * None.
915 *
916 * RETURNS:
917 * Matching XFER_* value, 0xff if no match found.
918 */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 int highbit = fls(xfer_mask) - 1;
922 const struct ata_xfer_ent *ent;
923
924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 return ent->base + highbit - ent->shift;
927 return 0xff;
928 }
929
930 /**
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_mask for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_mask, 0 if no match found.
941 */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 & ~((1 << ent->shift) - 1);
950 return 0;
951 }
952
953 /**
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
956 *
957 * Return matching xfer_shift for @xfer_mode.
958 *
959 * LOCKING:
960 * None.
961 *
962 * RETURNS:
963 * Matching xfer_shift, -1 if no match found.
964 */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 const struct ata_xfer_ent *ent;
968
969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 return ent->shift;
972 return -1;
973 }
974
975 /**
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
978 *
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
981 *
982 * LOCKING:
983 * None.
984 *
985 * RETURNS:
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
988 */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 static const char * const xfer_mode_str[] = {
992 "PIO0",
993 "PIO1",
994 "PIO2",
995 "PIO3",
996 "PIO4",
997 "PIO5",
998 "PIO6",
999 "MWDMA0",
1000 "MWDMA1",
1001 "MWDMA2",
1002 "MWDMA3",
1003 "MWDMA4",
1004 "UDMA/16",
1005 "UDMA/25",
1006 "UDMA/33",
1007 "UDMA/44",
1008 "UDMA/66",
1009 "UDMA/100",
1010 "UDMA/133",
1011 "UDMA7",
1012 };
1013 int highbit;
1014
1015 highbit = fls(xfer_mask) - 1;
1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 return xfer_mode_str[highbit];
1018 return "<n/a>";
1019 }
1020
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 static const char * const spd_str[] = {
1024 "1.5 Gbps",
1025 "3.0 Gbps",
1026 "6.0 Gbps",
1027 };
1028
1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 return "<unknown>";
1031 return spd_str[spd - 1];
1032 }
1033
1034 /**
1035 * ata_dev_classify - determine device type based on ATA-spec signature
1036 * @tf: ATA taskfile register set for device to be identified
1037 *
1038 * Determine from taskfile register contents whether a device is
1039 * ATA or ATAPI, as per "Signature and persistence" section
1040 * of ATA/PI spec (volume 1, sect 5.14).
1041 *
1042 * LOCKING:
1043 * None.
1044 *
1045 * RETURNS:
1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1047 * %ATA_DEV_UNKNOWN the event of failure.
1048 */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 /* Apple's open source Darwin code hints that some devices only
1052 * put a proper signature into the LBA mid/high registers,
1053 * So, we only check those. It's sufficient for uniqueness.
1054 *
1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1058 * spec has never mentioned about using different signatures
1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1060 * Multiplier specification began to use 0x69/0x96 to identify
1061 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 * 0x69/0x96 shortly and described them as reserved for
1064 * SerialATA.
1065 *
1066 * We follow the current spec and consider that 0x69/0x96
1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 * SEMB signature. This is worked around in
1070 * ata_dev_read_id().
1071 */
1072 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 DPRINTK("found ATA device by sig\n");
1074 return ATA_DEV_ATA;
1075 }
1076
1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 DPRINTK("found ATAPI device by sig\n");
1079 return ATA_DEV_ATAPI;
1080 }
1081
1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 DPRINTK("found PMP device by sig\n");
1084 return ATA_DEV_PMP;
1085 }
1086
1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 return ATA_DEV_SEMB;
1090 }
1091
1092 DPRINTK("unknown device\n");
1093 return ATA_DEV_UNKNOWN;
1094 }
1095
1096 /**
1097 * ata_id_string - Convert IDENTIFY DEVICE page into string
1098 * @id: IDENTIFY DEVICE results we will examine
1099 * @s: string into which data is output
1100 * @ofs: offset into identify device page
1101 * @len: length of string to return. must be an even number.
1102 *
1103 * The strings in the IDENTIFY DEVICE page are broken up into
1104 * 16-bit chunks. Run through the string, and output each
1105 * 8-bit chunk linearly, regardless of platform.
1106 *
1107 * LOCKING:
1108 * caller.
1109 */
1110
1111 void ata_id_string(const u16 *id, unsigned char *s,
1112 unsigned int ofs, unsigned int len)
1113 {
1114 unsigned int c;
1115
1116 BUG_ON(len & 1);
1117
1118 while (len > 0) {
1119 c = id[ofs] >> 8;
1120 *s = c;
1121 s++;
1122
1123 c = id[ofs] & 0xff;
1124 *s = c;
1125 s++;
1126
1127 ofs++;
1128 len -= 2;
1129 }
1130 }
1131
1132 /**
1133 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1134 * @id: IDENTIFY DEVICE results we will examine
1135 * @s: string into which data is output
1136 * @ofs: offset into identify device page
1137 * @len: length of string to return. must be an odd number.
1138 *
1139 * This function is identical to ata_id_string except that it
1140 * trims trailing spaces and terminates the resulting string with
1141 * null. @len must be actual maximum length (even number) + 1.
1142 *
1143 * LOCKING:
1144 * caller.
1145 */
1146 void ata_id_c_string(const u16 *id, unsigned char *s,
1147 unsigned int ofs, unsigned int len)
1148 {
1149 unsigned char *p;
1150
1151 ata_id_string(id, s, ofs, len - 1);
1152
1153 p = s + strnlen(s, len - 1);
1154 while (p > s && p[-1] == ' ')
1155 p--;
1156 *p = '\0';
1157 }
1158
1159 static u64 ata_id_n_sectors(const u16 *id)
1160 {
1161 if (ata_id_has_lba(id)) {
1162 if (ata_id_has_lba48(id))
1163 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1164 else
1165 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1166 } else {
1167 if (ata_id_current_chs_valid(id))
1168 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1169 id[ATA_ID_CUR_SECTORS];
1170 else
1171 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1172 id[ATA_ID_SECTORS];
1173 }
1174 }
1175
1176 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1177 {
1178 u64 sectors = 0;
1179
1180 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1181 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1182 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1183 sectors |= (tf->lbah & 0xff) << 16;
1184 sectors |= (tf->lbam & 0xff) << 8;
1185 sectors |= (tf->lbal & 0xff);
1186
1187 return sectors;
1188 }
1189
1190 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1191 {
1192 u64 sectors = 0;
1193
1194 sectors |= (tf->device & 0x0f) << 24;
1195 sectors |= (tf->lbah & 0xff) << 16;
1196 sectors |= (tf->lbam & 0xff) << 8;
1197 sectors |= (tf->lbal & 0xff);
1198
1199 return sectors;
1200 }
1201
1202 /**
1203 * ata_read_native_max_address - Read native max address
1204 * @dev: target device
1205 * @max_sectors: out parameter for the result native max address
1206 *
1207 * Perform an LBA48 or LBA28 native size query upon the device in
1208 * question.
1209 *
1210 * RETURNS:
1211 * 0 on success, -EACCES if command is aborted by the drive.
1212 * -EIO on other errors.
1213 */
1214 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1215 {
1216 unsigned int err_mask;
1217 struct ata_taskfile tf;
1218 int lba48 = ata_id_has_lba48(dev->id);
1219
1220 ata_tf_init(dev, &tf);
1221
1222 /* always clear all address registers */
1223 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1224
1225 if (lba48) {
1226 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1227 tf.flags |= ATA_TFLAG_LBA48;
1228 } else
1229 tf.command = ATA_CMD_READ_NATIVE_MAX;
1230
1231 tf.protocol |= ATA_PROT_NODATA;
1232 tf.device |= ATA_LBA;
1233
1234 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1235 if (err_mask) {
1236 ata_dev_warn(dev,
1237 "failed to read native max address (err_mask=0x%x)\n",
1238 err_mask);
1239 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1240 return -EACCES;
1241 return -EIO;
1242 }
1243
1244 if (lba48)
1245 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1246 else
1247 *max_sectors = ata_tf_to_lba(&tf) + 1;
1248 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1249 (*max_sectors)--;
1250 return 0;
1251 }
1252
1253 /**
1254 * ata_set_max_sectors - Set max sectors
1255 * @dev: target device
1256 * @new_sectors: new max sectors value to set for the device
1257 *
1258 * Set max sectors of @dev to @new_sectors.
1259 *
1260 * RETURNS:
1261 * 0 on success, -EACCES if command is aborted or denied (due to
1262 * previous non-volatile SET_MAX) by the drive. -EIO on other
1263 * errors.
1264 */
1265 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1266 {
1267 unsigned int err_mask;
1268 struct ata_taskfile tf;
1269 int lba48 = ata_id_has_lba48(dev->id);
1270
1271 new_sectors--;
1272
1273 ata_tf_init(dev, &tf);
1274
1275 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1276
1277 if (lba48) {
1278 tf.command = ATA_CMD_SET_MAX_EXT;
1279 tf.flags |= ATA_TFLAG_LBA48;
1280
1281 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1282 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1283 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1284 } else {
1285 tf.command = ATA_CMD_SET_MAX;
1286
1287 tf.device |= (new_sectors >> 24) & 0xf;
1288 }
1289
1290 tf.protocol |= ATA_PROT_NODATA;
1291 tf.device |= ATA_LBA;
1292
1293 tf.lbal = (new_sectors >> 0) & 0xff;
1294 tf.lbam = (new_sectors >> 8) & 0xff;
1295 tf.lbah = (new_sectors >> 16) & 0xff;
1296
1297 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1298 if (err_mask) {
1299 ata_dev_warn(dev,
1300 "failed to set max address (err_mask=0x%x)\n",
1301 err_mask);
1302 if (err_mask == AC_ERR_DEV &&
1303 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1304 return -EACCES;
1305 return -EIO;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * ata_hpa_resize - Resize a device with an HPA set
1313 * @dev: Device to resize
1314 *
1315 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1316 * it if required to the full size of the media. The caller must check
1317 * the drive has the HPA feature set enabled.
1318 *
1319 * RETURNS:
1320 * 0 on success, -errno on failure.
1321 */
1322 static int ata_hpa_resize(struct ata_device *dev)
1323 {
1324 struct ata_eh_context *ehc = &dev->link->eh_context;
1325 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1326 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1327 u64 sectors = ata_id_n_sectors(dev->id);
1328 u64 native_sectors;
1329 int rc;
1330
1331 /* do we need to do it? */
1332 if (dev->class != ATA_DEV_ATA ||
1333 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1334 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1335 return 0;
1336
1337 /* read native max address */
1338 rc = ata_read_native_max_address(dev, &native_sectors);
1339 if (rc) {
1340 /* If device aborted the command or HPA isn't going to
1341 * be unlocked, skip HPA resizing.
1342 */
1343 if (rc == -EACCES || !unlock_hpa) {
1344 ata_dev_warn(dev,
1345 "HPA support seems broken, skipping HPA handling\n");
1346 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1347
1348 /* we can continue if device aborted the command */
1349 if (rc == -EACCES)
1350 rc = 0;
1351 }
1352
1353 return rc;
1354 }
1355 dev->n_native_sectors = native_sectors;
1356
1357 /* nothing to do? */
1358 if (native_sectors <= sectors || !unlock_hpa) {
1359 if (!print_info || native_sectors == sectors)
1360 return 0;
1361
1362 if (native_sectors > sectors)
1363 ata_dev_info(dev,
1364 "HPA detected: current %llu, native %llu\n",
1365 (unsigned long long)sectors,
1366 (unsigned long long)native_sectors);
1367 else if (native_sectors < sectors)
1368 ata_dev_warn(dev,
1369 "native sectors (%llu) is smaller than sectors (%llu)\n",
1370 (unsigned long long)native_sectors,
1371 (unsigned long long)sectors);
1372 return 0;
1373 }
1374
1375 /* let's unlock HPA */
1376 rc = ata_set_max_sectors(dev, native_sectors);
1377 if (rc == -EACCES) {
1378 /* if device aborted the command, skip HPA resizing */
1379 ata_dev_warn(dev,
1380 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1381 (unsigned long long)sectors,
1382 (unsigned long long)native_sectors);
1383 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1384 return 0;
1385 } else if (rc)
1386 return rc;
1387
1388 /* re-read IDENTIFY data */
1389 rc = ata_dev_reread_id(dev, 0);
1390 if (rc) {
1391 ata_dev_err(dev,
1392 "failed to re-read IDENTIFY data after HPA resizing\n");
1393 return rc;
1394 }
1395
1396 if (print_info) {
1397 u64 new_sectors = ata_id_n_sectors(dev->id);
1398 ata_dev_info(dev,
1399 "HPA unlocked: %llu -> %llu, native %llu\n",
1400 (unsigned long long)sectors,
1401 (unsigned long long)new_sectors,
1402 (unsigned long long)native_sectors);
1403 }
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * ata_dump_id - IDENTIFY DEVICE info debugging output
1410 * @id: IDENTIFY DEVICE page to dump
1411 *
1412 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1413 * page.
1414 *
1415 * LOCKING:
1416 * caller.
1417 */
1418
1419 static inline void ata_dump_id(const u16 *id)
1420 {
1421 DPRINTK("49==0x%04x "
1422 "53==0x%04x "
1423 "63==0x%04x "
1424 "64==0x%04x "
1425 "75==0x%04x \n",
1426 id[49],
1427 id[53],
1428 id[63],
1429 id[64],
1430 id[75]);
1431 DPRINTK("80==0x%04x "
1432 "81==0x%04x "
1433 "82==0x%04x "
1434 "83==0x%04x "
1435 "84==0x%04x \n",
1436 id[80],
1437 id[81],
1438 id[82],
1439 id[83],
1440 id[84]);
1441 DPRINTK("88==0x%04x "
1442 "93==0x%04x\n",
1443 id[88],
1444 id[93]);
1445 }
1446
1447 /**
1448 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1449 * @id: IDENTIFY data to compute xfer mask from
1450 *
1451 * Compute the xfermask for this device. This is not as trivial
1452 * as it seems if we must consider early devices correctly.
1453 *
1454 * FIXME: pre IDE drive timing (do we care ?).
1455 *
1456 * LOCKING:
1457 * None.
1458 *
1459 * RETURNS:
1460 * Computed xfermask
1461 */
1462 unsigned long ata_id_xfermask(const u16 *id)
1463 {
1464 unsigned long pio_mask, mwdma_mask, udma_mask;
1465
1466 /* Usual case. Word 53 indicates word 64 is valid */
1467 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1468 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1469 pio_mask <<= 3;
1470 pio_mask |= 0x7;
1471 } else {
1472 /* If word 64 isn't valid then Word 51 high byte holds
1473 * the PIO timing number for the maximum. Turn it into
1474 * a mask.
1475 */
1476 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1477 if (mode < 5) /* Valid PIO range */
1478 pio_mask = (2 << mode) - 1;
1479 else
1480 pio_mask = 1;
1481
1482 /* But wait.. there's more. Design your standards by
1483 * committee and you too can get a free iordy field to
1484 * process. However its the speeds not the modes that
1485 * are supported... Note drivers using the timing API
1486 * will get this right anyway
1487 */
1488 }
1489
1490 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1491
1492 if (ata_id_is_cfa(id)) {
1493 /*
1494 * Process compact flash extended modes
1495 */
1496 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1497 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1498
1499 if (pio)
1500 pio_mask |= (1 << 5);
1501 if (pio > 1)
1502 pio_mask |= (1 << 6);
1503 if (dma)
1504 mwdma_mask |= (1 << 3);
1505 if (dma > 1)
1506 mwdma_mask |= (1 << 4);
1507 }
1508
1509 udma_mask = 0;
1510 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1511 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1512
1513 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1514 }
1515
1516 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1517 {
1518 struct completion *waiting = qc->private_data;
1519
1520 complete(waiting);
1521 }
1522
1523 /**
1524 * ata_exec_internal_sg - execute libata internal command
1525 * @dev: Device to which the command is sent
1526 * @tf: Taskfile registers for the command and the result
1527 * @cdb: CDB for packet command
1528 * @dma_dir: Data transfer direction of the command
1529 * @sgl: sg list for the data buffer of the command
1530 * @n_elem: Number of sg entries
1531 * @timeout: Timeout in msecs (0 for default)
1532 *
1533 * Executes libata internal command with timeout. @tf contains
1534 * command on entry and result on return. Timeout and error
1535 * conditions are reported via return value. No recovery action
1536 * is taken after a command times out. It's caller's duty to
1537 * clean up after timeout.
1538 *
1539 * LOCKING:
1540 * None. Should be called with kernel context, might sleep.
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
1544 */
1545 unsigned ata_exec_internal_sg(struct ata_device *dev,
1546 struct ata_taskfile *tf, const u8 *cdb,
1547 int dma_dir, struct scatterlist *sgl,
1548 unsigned int n_elem, unsigned long timeout)
1549 {
1550 struct ata_link *link = dev->link;
1551 struct ata_port *ap = link->ap;
1552 u8 command = tf->command;
1553 int auto_timeout = 0;
1554 struct ata_queued_cmd *qc;
1555 unsigned int tag, preempted_tag;
1556 u32 preempted_sactive, preempted_qc_active;
1557 int preempted_nr_active_links;
1558 DECLARE_COMPLETION_ONSTACK(wait);
1559 unsigned long flags;
1560 unsigned int err_mask;
1561 int rc;
1562
1563 spin_lock_irqsave(ap->lock, flags);
1564
1565 /* no internal command while frozen */
1566 if (ap->pflags & ATA_PFLAG_FROZEN) {
1567 spin_unlock_irqrestore(ap->lock, flags);
1568 return AC_ERR_SYSTEM;
1569 }
1570
1571 /* initialize internal qc */
1572
1573 /* XXX: Tag 0 is used for drivers with legacy EH as some
1574 * drivers choke if any other tag is given. This breaks
1575 * ata_tag_internal() test for those drivers. Don't use new
1576 * EH stuff without converting to it.
1577 */
1578 if (ap->ops->error_handler)
1579 tag = ATA_TAG_INTERNAL;
1580 else
1581 tag = 0;
1582
1583 if (test_and_set_bit(tag, &ap->qc_allocated))
1584 BUG();
1585 qc = __ata_qc_from_tag(ap, tag);
1586
1587 qc->tag = tag;
1588 qc->scsicmd = NULL;
1589 qc->ap = ap;
1590 qc->dev = dev;
1591 ata_qc_reinit(qc);
1592
1593 preempted_tag = link->active_tag;
1594 preempted_sactive = link->sactive;
1595 preempted_qc_active = ap->qc_active;
1596 preempted_nr_active_links = ap->nr_active_links;
1597 link->active_tag = ATA_TAG_POISON;
1598 link->sactive = 0;
1599 ap->qc_active = 0;
1600 ap->nr_active_links = 0;
1601
1602 /* prepare & issue qc */
1603 qc->tf = *tf;
1604 if (cdb)
1605 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1606
1607 /* some SATA bridges need us to indicate data xfer direction */
1608 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1609 dma_dir == DMA_FROM_DEVICE)
1610 qc->tf.feature |= ATAPI_DMADIR;
1611
1612 qc->flags |= ATA_QCFLAG_RESULT_TF;
1613 qc->dma_dir = dma_dir;
1614 if (dma_dir != DMA_NONE) {
1615 unsigned int i, buflen = 0;
1616 struct scatterlist *sg;
1617
1618 for_each_sg(sgl, sg, n_elem, i)
1619 buflen += sg->length;
1620
1621 ata_sg_init(qc, sgl, n_elem);
1622 qc->nbytes = buflen;
1623 }
1624
1625 qc->private_data = &wait;
1626 qc->complete_fn = ata_qc_complete_internal;
1627
1628 ata_qc_issue(qc);
1629
1630 spin_unlock_irqrestore(ap->lock, flags);
1631
1632 if (!timeout) {
1633 if (ata_probe_timeout)
1634 timeout = ata_probe_timeout * 1000;
1635 else {
1636 timeout = ata_internal_cmd_timeout(dev, command);
1637 auto_timeout = 1;
1638 }
1639 }
1640
1641 if (ap->ops->error_handler)
1642 ata_eh_release(ap);
1643
1644 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1645
1646 if (ap->ops->error_handler)
1647 ata_eh_acquire(ap);
1648
1649 ata_sff_flush_pio_task(ap);
1650
1651 if (!rc) {
1652 spin_lock_irqsave(ap->lock, flags);
1653
1654 /* We're racing with irq here. If we lose, the
1655 * following test prevents us from completing the qc
1656 * twice. If we win, the port is frozen and will be
1657 * cleaned up by ->post_internal_cmd().
1658 */
1659 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1660 qc->err_mask |= AC_ERR_TIMEOUT;
1661
1662 if (ap->ops->error_handler)
1663 ata_port_freeze(ap);
1664 else
1665 ata_qc_complete(qc);
1666
1667 if (ata_msg_warn(ap))
1668 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1669 command);
1670 }
1671
1672 spin_unlock_irqrestore(ap->lock, flags);
1673 }
1674
1675 /* do post_internal_cmd */
1676 if (ap->ops->post_internal_cmd)
1677 ap->ops->post_internal_cmd(qc);
1678
1679 /* perform minimal error analysis */
1680 if (qc->flags & ATA_QCFLAG_FAILED) {
1681 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1682 qc->err_mask |= AC_ERR_DEV;
1683
1684 if (!qc->err_mask)
1685 qc->err_mask |= AC_ERR_OTHER;
1686
1687 if (qc->err_mask & ~AC_ERR_OTHER)
1688 qc->err_mask &= ~AC_ERR_OTHER;
1689 }
1690
1691 /* finish up */
1692 spin_lock_irqsave(ap->lock, flags);
1693
1694 *tf = qc->result_tf;
1695 err_mask = qc->err_mask;
1696
1697 ata_qc_free(qc);
1698 link->active_tag = preempted_tag;
1699 link->sactive = preempted_sactive;
1700 ap->qc_active = preempted_qc_active;
1701 ap->nr_active_links = preempted_nr_active_links;
1702
1703 spin_unlock_irqrestore(ap->lock, flags);
1704
1705 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1706 ata_internal_cmd_timed_out(dev, command);
1707
1708 return err_mask;
1709 }
1710
1711 /**
1712 * ata_exec_internal - execute libata internal command
1713 * @dev: Device to which the command is sent
1714 * @tf: Taskfile registers for the command and the result
1715 * @cdb: CDB for packet command
1716 * @dma_dir: Data transfer direction of the command
1717 * @buf: Data buffer of the command
1718 * @buflen: Length of data buffer
1719 * @timeout: Timeout in msecs (0 for default)
1720 *
1721 * Wrapper around ata_exec_internal_sg() which takes simple
1722 * buffer instead of sg list.
1723 *
1724 * LOCKING:
1725 * None. Should be called with kernel context, might sleep.
1726 *
1727 * RETURNS:
1728 * Zero on success, AC_ERR_* mask on failure
1729 */
1730 unsigned ata_exec_internal(struct ata_device *dev,
1731 struct ata_taskfile *tf, const u8 *cdb,
1732 int dma_dir, void *buf, unsigned int buflen,
1733 unsigned long timeout)
1734 {
1735 struct scatterlist *psg = NULL, sg;
1736 unsigned int n_elem = 0;
1737
1738 if (dma_dir != DMA_NONE) {
1739 WARN_ON(!buf);
1740 sg_init_one(&sg, buf, buflen);
1741 psg = &sg;
1742 n_elem++;
1743 }
1744
1745 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1746 timeout);
1747 }
1748
1749 /**
1750 * ata_do_simple_cmd - execute simple internal command
1751 * @dev: Device to which the command is sent
1752 * @cmd: Opcode to execute
1753 *
1754 * Execute a 'simple' command, that only consists of the opcode
1755 * 'cmd' itself, without filling any other registers
1756 *
1757 * LOCKING:
1758 * Kernel thread context (may sleep).
1759 *
1760 * RETURNS:
1761 * Zero on success, AC_ERR_* mask on failure
1762 */
1763 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1764 {
1765 struct ata_taskfile tf;
1766
1767 ata_tf_init(dev, &tf);
1768
1769 tf.command = cmd;
1770 tf.flags |= ATA_TFLAG_DEVICE;
1771 tf.protocol = ATA_PROT_NODATA;
1772
1773 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1774 }
1775
1776 /**
1777 * ata_pio_need_iordy - check if iordy needed
1778 * @adev: ATA device
1779 *
1780 * Check if the current speed of the device requires IORDY. Used
1781 * by various controllers for chip configuration.
1782 */
1783 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1784 {
1785 /* Don't set IORDY if we're preparing for reset. IORDY may
1786 * lead to controller lock up on certain controllers if the
1787 * port is not occupied. See bko#11703 for details.
1788 */
1789 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1790 return 0;
1791 /* Controller doesn't support IORDY. Probably a pointless
1792 * check as the caller should know this.
1793 */
1794 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1795 return 0;
1796 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1797 if (ata_id_is_cfa(adev->id)
1798 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1799 return 0;
1800 /* PIO3 and higher it is mandatory */
1801 if (adev->pio_mode > XFER_PIO_2)
1802 return 1;
1803 /* We turn it on when possible */
1804 if (ata_id_has_iordy(adev->id))
1805 return 1;
1806 return 0;
1807 }
1808
1809 /**
1810 * ata_pio_mask_no_iordy - Return the non IORDY mask
1811 * @adev: ATA device
1812 *
1813 * Compute the highest mode possible if we are not using iordy. Return
1814 * -1 if no iordy mode is available.
1815 */
1816 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1817 {
1818 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1819 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1820 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1821 /* Is the speed faster than the drive allows non IORDY ? */
1822 if (pio) {
1823 /* This is cycle times not frequency - watch the logic! */
1824 if (pio > 240) /* PIO2 is 240nS per cycle */
1825 return 3 << ATA_SHIFT_PIO;
1826 return 7 << ATA_SHIFT_PIO;
1827 }
1828 }
1829 return 3 << ATA_SHIFT_PIO;
1830 }
1831
1832 /**
1833 * ata_do_dev_read_id - default ID read method
1834 * @dev: device
1835 * @tf: proposed taskfile
1836 * @id: data buffer
1837 *
1838 * Issue the identify taskfile and hand back the buffer containing
1839 * identify data. For some RAID controllers and for pre ATA devices
1840 * this function is wrapped or replaced by the driver
1841 */
1842 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1843 struct ata_taskfile *tf, u16 *id)
1844 {
1845 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1846 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1847 }
1848
1849 /**
1850 * ata_dev_read_id - Read ID data from the specified device
1851 * @dev: target device
1852 * @p_class: pointer to class of the target device (may be changed)
1853 * @flags: ATA_READID_* flags
1854 * @id: buffer to read IDENTIFY data into
1855 *
1856 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1857 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1858 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1859 * for pre-ATA4 drives.
1860 *
1861 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1862 * now we abort if we hit that case.
1863 *
1864 * LOCKING:
1865 * Kernel thread context (may sleep)
1866 *
1867 * RETURNS:
1868 * 0 on success, -errno otherwise.
1869 */
1870 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1871 unsigned int flags, u16 *id)
1872 {
1873 struct ata_port *ap = dev->link->ap;
1874 unsigned int class = *p_class;
1875 struct ata_taskfile tf;
1876 unsigned int err_mask = 0;
1877 const char *reason;
1878 bool is_semb = class == ATA_DEV_SEMB;
1879 int may_fallback = 1, tried_spinup = 0;
1880 int rc;
1881
1882 if (ata_msg_ctl(ap))
1883 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1884
1885 retry:
1886 ata_tf_init(dev, &tf);
1887
1888 switch (class) {
1889 case ATA_DEV_SEMB:
1890 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1891 case ATA_DEV_ATA:
1892 tf.command = ATA_CMD_ID_ATA;
1893 break;
1894 case ATA_DEV_ATAPI:
1895 tf.command = ATA_CMD_ID_ATAPI;
1896 break;
1897 default:
1898 rc = -ENODEV;
1899 reason = "unsupported class";
1900 goto err_out;
1901 }
1902
1903 tf.protocol = ATA_PROT_PIO;
1904
1905 /* Some devices choke if TF registers contain garbage. Make
1906 * sure those are properly initialized.
1907 */
1908 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1909
1910 /* Device presence detection is unreliable on some
1911 * controllers. Always poll IDENTIFY if available.
1912 */
1913 tf.flags |= ATA_TFLAG_POLLING;
1914
1915 if (ap->ops->read_id)
1916 err_mask = ap->ops->read_id(dev, &tf, id);
1917 else
1918 err_mask = ata_do_dev_read_id(dev, &tf, id);
1919
1920 if (err_mask) {
1921 if (err_mask & AC_ERR_NODEV_HINT) {
1922 ata_dev_dbg(dev, "NODEV after polling detection\n");
1923 return -ENOENT;
1924 }
1925
1926 if (is_semb) {
1927 ata_dev_info(dev,
1928 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1929 /* SEMB is not supported yet */
1930 *p_class = ATA_DEV_SEMB_UNSUP;
1931 return 0;
1932 }
1933
1934 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1935 /* Device or controller might have reported
1936 * the wrong device class. Give a shot at the
1937 * other IDENTIFY if the current one is
1938 * aborted by the device.
1939 */
1940 if (may_fallback) {
1941 may_fallback = 0;
1942
1943 if (class == ATA_DEV_ATA)
1944 class = ATA_DEV_ATAPI;
1945 else
1946 class = ATA_DEV_ATA;
1947 goto retry;
1948 }
1949
1950 /* Control reaches here iff the device aborted
1951 * both flavors of IDENTIFYs which happens
1952 * sometimes with phantom devices.
1953 */
1954 ata_dev_dbg(dev,
1955 "both IDENTIFYs aborted, assuming NODEV\n");
1956 return -ENOENT;
1957 }
1958
1959 rc = -EIO;
1960 reason = "I/O error";
1961 goto err_out;
1962 }
1963
1964 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1965 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1966 "class=%d may_fallback=%d tried_spinup=%d\n",
1967 class, may_fallback, tried_spinup);
1968 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1969 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1970 }
1971
1972 /* Falling back doesn't make sense if ID data was read
1973 * successfully at least once.
1974 */
1975 may_fallback = 0;
1976
1977 swap_buf_le16(id, ATA_ID_WORDS);
1978
1979 /* sanity check */
1980 rc = -EINVAL;
1981 reason = "device reports invalid type";
1982
1983 if (class == ATA_DEV_ATA) {
1984 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1985 goto err_out;
1986 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1987 ata_id_is_ata(id)) {
1988 ata_dev_dbg(dev,
1989 "host indicates ignore ATA devices, ignored\n");
1990 return -ENOENT;
1991 }
1992 } else {
1993 if (ata_id_is_ata(id))
1994 goto err_out;
1995 }
1996
1997 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1998 tried_spinup = 1;
1999 /*
2000 * Drive powered-up in standby mode, and requires a specific
2001 * SET_FEATURES spin-up subcommand before it will accept
2002 * anything other than the original IDENTIFY command.
2003 */
2004 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2005 if (err_mask && id[2] != 0x738c) {
2006 rc = -EIO;
2007 reason = "SPINUP failed";
2008 goto err_out;
2009 }
2010 /*
2011 * If the drive initially returned incomplete IDENTIFY info,
2012 * we now must reissue the IDENTIFY command.
2013 */
2014 if (id[2] == 0x37c8)
2015 goto retry;
2016 }
2017
2018 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2019 /*
2020 * The exact sequence expected by certain pre-ATA4 drives is:
2021 * SRST RESET
2022 * IDENTIFY (optional in early ATA)
2023 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2024 * anything else..
2025 * Some drives were very specific about that exact sequence.
2026 *
2027 * Note that ATA4 says lba is mandatory so the second check
2028 * should never trigger.
2029 */
2030 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2031 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2032 if (err_mask) {
2033 rc = -EIO;
2034 reason = "INIT_DEV_PARAMS failed";
2035 goto err_out;
2036 }
2037
2038 /* current CHS translation info (id[53-58]) might be
2039 * changed. reread the identify device info.
2040 */
2041 flags &= ~ATA_READID_POSTRESET;
2042 goto retry;
2043 }
2044 }
2045
2046 *p_class = class;
2047
2048 return 0;
2049
2050 err_out:
2051 if (ata_msg_warn(ap))
2052 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2053 reason, err_mask);
2054 return rc;
2055 }
2056
2057 static int ata_do_link_spd_horkage(struct ata_device *dev)
2058 {
2059 struct ata_link *plink = ata_dev_phys_link(dev);
2060 u32 target, target_limit;
2061
2062 if (!sata_scr_valid(plink))
2063 return 0;
2064
2065 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2066 target = 1;
2067 else
2068 return 0;
2069
2070 target_limit = (1 << target) - 1;
2071
2072 /* if already on stricter limit, no need to push further */
2073 if (plink->sata_spd_limit <= target_limit)
2074 return 0;
2075
2076 plink->sata_spd_limit = target_limit;
2077
2078 /* Request another EH round by returning -EAGAIN if link is
2079 * going faster than the target speed. Forward progress is
2080 * guaranteed by setting sata_spd_limit to target_limit above.
2081 */
2082 if (plink->sata_spd > target) {
2083 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2084 sata_spd_string(target));
2085 return -EAGAIN;
2086 }
2087 return 0;
2088 }
2089
2090 static inline u8 ata_dev_knobble(struct ata_device *dev)
2091 {
2092 struct ata_port *ap = dev->link->ap;
2093
2094 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2095 return 0;
2096
2097 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2098 }
2099
2100 static int ata_dev_config_ncq(struct ata_device *dev,
2101 char *desc, size_t desc_sz)
2102 {
2103 struct ata_port *ap = dev->link->ap;
2104 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2105 unsigned int err_mask;
2106 char *aa_desc = "";
2107
2108 if (!ata_id_has_ncq(dev->id)) {
2109 desc[0] = '\0';
2110 return 0;
2111 }
2112 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2113 snprintf(desc, desc_sz, "NCQ (not used)");
2114 return 0;
2115 }
2116 if (ap->flags & ATA_FLAG_NCQ) {
2117 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2118 dev->flags |= ATA_DFLAG_NCQ;
2119 }
2120
2121 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2122 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2123 ata_id_has_fpdma_aa(dev->id)) {
2124 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2125 SATA_FPDMA_AA);
2126 if (err_mask) {
2127 ata_dev_err(dev,
2128 "failed to enable AA (error_mask=0x%x)\n",
2129 err_mask);
2130 if (err_mask != AC_ERR_DEV) {
2131 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2132 return -EIO;
2133 }
2134 } else
2135 aa_desc = ", AA";
2136 }
2137
2138 if (hdepth >= ddepth)
2139 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2140 else
2141 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2142 ddepth, aa_desc);
2143
2144 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2145 ata_id_has_ncq_send_and_recv(dev->id)) {
2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2147 0, ap->sector_buf, 1);
2148 if (err_mask) {
2149 ata_dev_dbg(dev,
2150 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2151 err_mask);
2152 } else {
2153 u8 *cmds = dev->ncq_send_recv_cmds;
2154
2155 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2156 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2157
2158 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2159 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2160 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2161 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2162 }
2163 }
2164 }
2165
2166 return 0;
2167 }
2168
2169 /**
2170 * ata_dev_configure - Configure the specified ATA/ATAPI device
2171 * @dev: Target device to configure
2172 *
2173 * Configure @dev according to @dev->id. Generic and low-level
2174 * driver specific fixups are also applied.
2175 *
2176 * LOCKING:
2177 * Kernel thread context (may sleep)
2178 *
2179 * RETURNS:
2180 * 0 on success, -errno otherwise
2181 */
2182 int ata_dev_configure(struct ata_device *dev)
2183 {
2184 struct ata_port *ap = dev->link->ap;
2185 struct ata_eh_context *ehc = &dev->link->eh_context;
2186 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2187 const u16 *id = dev->id;
2188 unsigned long xfer_mask;
2189 unsigned int err_mask;
2190 char revbuf[7]; /* XYZ-99\0 */
2191 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2192 char modelbuf[ATA_ID_PROD_LEN+1];
2193 int rc;
2194
2195 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2196 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2197 return 0;
2198 }
2199
2200 if (ata_msg_probe(ap))
2201 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2202
2203 /* set horkage */
2204 dev->horkage |= ata_dev_blacklisted(dev);
2205 ata_force_horkage(dev);
2206
2207 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2208 ata_dev_info(dev, "unsupported device, disabling\n");
2209 ata_dev_disable(dev);
2210 return 0;
2211 }
2212
2213 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2214 dev->class == ATA_DEV_ATAPI) {
2215 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2216 atapi_enabled ? "not supported with this driver"
2217 : "disabled");
2218 ata_dev_disable(dev);
2219 return 0;
2220 }
2221
2222 rc = ata_do_link_spd_horkage(dev);
2223 if (rc)
2224 return rc;
2225
2226 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2227 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2228 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2229 dev->horkage |= ATA_HORKAGE_NOLPM;
2230
2231 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2232 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2233 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2234 }
2235
2236 /* let ACPI work its magic */
2237 rc = ata_acpi_on_devcfg(dev);
2238 if (rc)
2239 return rc;
2240
2241 /* massage HPA, do it early as it might change IDENTIFY data */
2242 rc = ata_hpa_resize(dev);
2243 if (rc)
2244 return rc;
2245
2246 /* print device capabilities */
2247 if (ata_msg_probe(ap))
2248 ata_dev_dbg(dev,
2249 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2250 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2251 __func__,
2252 id[49], id[82], id[83], id[84],
2253 id[85], id[86], id[87], id[88]);
2254
2255 /* initialize to-be-configured parameters */
2256 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2257 dev->max_sectors = 0;
2258 dev->cdb_len = 0;
2259 dev->n_sectors = 0;
2260 dev->cylinders = 0;
2261 dev->heads = 0;
2262 dev->sectors = 0;
2263 dev->multi_count = 0;
2264
2265 /*
2266 * common ATA, ATAPI feature tests
2267 */
2268
2269 /* find max transfer mode; for printk only */
2270 xfer_mask = ata_id_xfermask(id);
2271
2272 if (ata_msg_probe(ap))
2273 ata_dump_id(id);
2274
2275 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2276 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2277 sizeof(fwrevbuf));
2278
2279 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2280 sizeof(modelbuf));
2281
2282 /* ATA-specific feature tests */
2283 if (dev->class == ATA_DEV_ATA) {
2284 if (ata_id_is_cfa(id)) {
2285 /* CPRM may make this media unusable */
2286 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2287 ata_dev_warn(dev,
2288 "supports DRM functions and may not be fully accessible\n");
2289 snprintf(revbuf, 7, "CFA");
2290 } else {
2291 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2292 /* Warn the user if the device has TPM extensions */
2293 if (ata_id_has_tpm(id))
2294 ata_dev_warn(dev,
2295 "supports DRM functions and may not be fully accessible\n");
2296 }
2297
2298 dev->n_sectors = ata_id_n_sectors(id);
2299
2300 /* get current R/W Multiple count setting */
2301 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2302 unsigned int max = dev->id[47] & 0xff;
2303 unsigned int cnt = dev->id[59] & 0xff;
2304 /* only recognize/allow powers of two here */
2305 if (is_power_of_2(max) && is_power_of_2(cnt))
2306 if (cnt <= max)
2307 dev->multi_count = cnt;
2308 }
2309
2310 if (ata_id_has_lba(id)) {
2311 const char *lba_desc;
2312 char ncq_desc[24];
2313
2314 lba_desc = "LBA";
2315 dev->flags |= ATA_DFLAG_LBA;
2316 if (ata_id_has_lba48(id)) {
2317 dev->flags |= ATA_DFLAG_LBA48;
2318 lba_desc = "LBA48";
2319
2320 if (dev->n_sectors >= (1UL << 28) &&
2321 ata_id_has_flush_ext(id))
2322 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2323 }
2324
2325 /* config NCQ */
2326 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2327 if (rc)
2328 return rc;
2329
2330 /* print device info to dmesg */
2331 if (ata_msg_drv(ap) && print_info) {
2332 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2333 revbuf, modelbuf, fwrevbuf,
2334 ata_mode_string(xfer_mask));
2335 ata_dev_info(dev,
2336 "%llu sectors, multi %u: %s %s\n",
2337 (unsigned long long)dev->n_sectors,
2338 dev->multi_count, lba_desc, ncq_desc);
2339 }
2340 } else {
2341 /* CHS */
2342
2343 /* Default translation */
2344 dev->cylinders = id[1];
2345 dev->heads = id[3];
2346 dev->sectors = id[6];
2347
2348 if (ata_id_current_chs_valid(id)) {
2349 /* Current CHS translation is valid. */
2350 dev->cylinders = id[54];
2351 dev->heads = id[55];
2352 dev->sectors = id[56];
2353 }
2354
2355 /* print device info to dmesg */
2356 if (ata_msg_drv(ap) && print_info) {
2357 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2358 revbuf, modelbuf, fwrevbuf,
2359 ata_mode_string(xfer_mask));
2360 ata_dev_info(dev,
2361 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2362 (unsigned long long)dev->n_sectors,
2363 dev->multi_count, dev->cylinders,
2364 dev->heads, dev->sectors);
2365 }
2366 }
2367
2368 /* Check and mark DevSlp capability. Get DevSlp timing variables
2369 * from SATA Settings page of Identify Device Data Log.
2370 */
2371 if (ata_id_has_devslp(dev->id)) {
2372 u8 *sata_setting = ap->sector_buf;
2373 int i, j;
2374
2375 dev->flags |= ATA_DFLAG_DEVSLP;
2376 err_mask = ata_read_log_page(dev,
2377 ATA_LOG_SATA_ID_DEV_DATA,
2378 ATA_LOG_SATA_SETTINGS,
2379 sata_setting,
2380 1);
2381 if (err_mask)
2382 ata_dev_dbg(dev,
2383 "failed to get Identify Device Data, Emask 0x%x\n",
2384 err_mask);
2385 else
2386 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2387 j = ATA_LOG_DEVSLP_OFFSET + i;
2388 dev->devslp_timing[i] = sata_setting[j];
2389 }
2390 }
2391
2392 dev->cdb_len = 16;
2393 }
2394
2395 /* ATAPI-specific feature tests */
2396 else if (dev->class == ATA_DEV_ATAPI) {
2397 const char *cdb_intr_string = "";
2398 const char *atapi_an_string = "";
2399 const char *dma_dir_string = "";
2400 u32 sntf;
2401
2402 rc = atapi_cdb_len(id);
2403 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2404 if (ata_msg_warn(ap))
2405 ata_dev_warn(dev, "unsupported CDB len\n");
2406 rc = -EINVAL;
2407 goto err_out_nosup;
2408 }
2409 dev->cdb_len = (unsigned int) rc;
2410
2411 /* Enable ATAPI AN if both the host and device have
2412 * the support. If PMP is attached, SNTF is required
2413 * to enable ATAPI AN to discern between PHY status
2414 * changed notifications and ATAPI ANs.
2415 */
2416 if (atapi_an &&
2417 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2418 (!sata_pmp_attached(ap) ||
2419 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2420 /* issue SET feature command to turn this on */
2421 err_mask = ata_dev_set_feature(dev,
2422 SETFEATURES_SATA_ENABLE, SATA_AN);
2423 if (err_mask)
2424 ata_dev_err(dev,
2425 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2426 err_mask);
2427 else {
2428 dev->flags |= ATA_DFLAG_AN;
2429 atapi_an_string = ", ATAPI AN";
2430 }
2431 }
2432
2433 if (ata_id_cdb_intr(dev->id)) {
2434 dev->flags |= ATA_DFLAG_CDB_INTR;
2435 cdb_intr_string = ", CDB intr";
2436 }
2437
2438 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2439 dev->flags |= ATA_DFLAG_DMADIR;
2440 dma_dir_string = ", DMADIR";
2441 }
2442
2443 if (ata_id_has_da(dev->id)) {
2444 dev->flags |= ATA_DFLAG_DA;
2445 zpodd_init(dev);
2446 }
2447
2448 /* print device info to dmesg */
2449 if (ata_msg_drv(ap) && print_info)
2450 ata_dev_info(dev,
2451 "ATAPI: %s, %s, max %s%s%s%s\n",
2452 modelbuf, fwrevbuf,
2453 ata_mode_string(xfer_mask),
2454 cdb_intr_string, atapi_an_string,
2455 dma_dir_string);
2456 }
2457
2458 /* determine max_sectors */
2459 dev->max_sectors = ATA_MAX_SECTORS;
2460 if (dev->flags & ATA_DFLAG_LBA48)
2461 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2462
2463 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2464 200 sectors */
2465 if (ata_dev_knobble(dev)) {
2466 if (ata_msg_drv(ap) && print_info)
2467 ata_dev_info(dev, "applying bridge limits\n");
2468 dev->udma_mask &= ATA_UDMA5;
2469 dev->max_sectors = ATA_MAX_SECTORS;
2470 }
2471
2472 if ((dev->class == ATA_DEV_ATAPI) &&
2473 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2474 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2475 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2476 }
2477
2478 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2479 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2480 dev->max_sectors);
2481
2482 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2483 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2484
2485 if (ap->ops->dev_config)
2486 ap->ops->dev_config(dev);
2487
2488 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2489 /* Let the user know. We don't want to disallow opens for
2490 rescue purposes, or in case the vendor is just a blithering
2491 idiot. Do this after the dev_config call as some controllers
2492 with buggy firmware may want to avoid reporting false device
2493 bugs */
2494
2495 if (print_info) {
2496 ata_dev_warn(dev,
2497 "Drive reports diagnostics failure. This may indicate a drive\n");
2498 ata_dev_warn(dev,
2499 "fault or invalid emulation. Contact drive vendor for information.\n");
2500 }
2501 }
2502
2503 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2504 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2505 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2506 }
2507
2508 return 0;
2509
2510 err_out_nosup:
2511 if (ata_msg_probe(ap))
2512 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2513 return rc;
2514 }
2515
2516 /**
2517 * ata_cable_40wire - return 40 wire cable type
2518 * @ap: port
2519 *
2520 * Helper method for drivers which want to hardwire 40 wire cable
2521 * detection.
2522 */
2523
2524 int ata_cable_40wire(struct ata_port *ap)
2525 {
2526 return ATA_CBL_PATA40;
2527 }
2528
2529 /**
2530 * ata_cable_80wire - return 80 wire cable type
2531 * @ap: port
2532 *
2533 * Helper method for drivers which want to hardwire 80 wire cable
2534 * detection.
2535 */
2536
2537 int ata_cable_80wire(struct ata_port *ap)
2538 {
2539 return ATA_CBL_PATA80;
2540 }
2541
2542 /**
2543 * ata_cable_unknown - return unknown PATA cable.
2544 * @ap: port
2545 *
2546 * Helper method for drivers which have no PATA cable detection.
2547 */
2548
2549 int ata_cable_unknown(struct ata_port *ap)
2550 {
2551 return ATA_CBL_PATA_UNK;
2552 }
2553
2554 /**
2555 * ata_cable_ignore - return ignored PATA cable.
2556 * @ap: port
2557 *
2558 * Helper method for drivers which don't use cable type to limit
2559 * transfer mode.
2560 */
2561 int ata_cable_ignore(struct ata_port *ap)
2562 {
2563 return ATA_CBL_PATA_IGN;
2564 }
2565
2566 /**
2567 * ata_cable_sata - return SATA cable type
2568 * @ap: port
2569 *
2570 * Helper method for drivers which have SATA cables
2571 */
2572
2573 int ata_cable_sata(struct ata_port *ap)
2574 {
2575 return ATA_CBL_SATA;
2576 }
2577
2578 /**
2579 * ata_bus_probe - Reset and probe ATA bus
2580 * @ap: Bus to probe
2581 *
2582 * Master ATA bus probing function. Initiates a hardware-dependent
2583 * bus reset, then attempts to identify any devices found on
2584 * the bus.
2585 *
2586 * LOCKING:
2587 * PCI/etc. bus probe sem.
2588 *
2589 * RETURNS:
2590 * Zero on success, negative errno otherwise.
2591 */
2592
2593 int ata_bus_probe(struct ata_port *ap)
2594 {
2595 unsigned int classes[ATA_MAX_DEVICES];
2596 int tries[ATA_MAX_DEVICES];
2597 int rc;
2598 struct ata_device *dev;
2599
2600 ata_for_each_dev(dev, &ap->link, ALL)
2601 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2602
2603 retry:
2604 ata_for_each_dev(dev, &ap->link, ALL) {
2605 /* If we issue an SRST then an ATA drive (not ATAPI)
2606 * may change configuration and be in PIO0 timing. If
2607 * we do a hard reset (or are coming from power on)
2608 * this is true for ATA or ATAPI. Until we've set a
2609 * suitable controller mode we should not touch the
2610 * bus as we may be talking too fast.
2611 */
2612 dev->pio_mode = XFER_PIO_0;
2613 dev->dma_mode = 0xff;
2614
2615 /* If the controller has a pio mode setup function
2616 * then use it to set the chipset to rights. Don't
2617 * touch the DMA setup as that will be dealt with when
2618 * configuring devices.
2619 */
2620 if (ap->ops->set_piomode)
2621 ap->ops->set_piomode(ap, dev);
2622 }
2623
2624 /* reset and determine device classes */
2625 ap->ops->phy_reset(ap);
2626
2627 ata_for_each_dev(dev, &ap->link, ALL) {
2628 if (dev->class != ATA_DEV_UNKNOWN)
2629 classes[dev->devno] = dev->class;
2630 else
2631 classes[dev->devno] = ATA_DEV_NONE;
2632
2633 dev->class = ATA_DEV_UNKNOWN;
2634 }
2635
2636 /* read IDENTIFY page and configure devices. We have to do the identify
2637 specific sequence bass-ackwards so that PDIAG- is released by
2638 the slave device */
2639
2640 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2641 if (tries[dev->devno])
2642 dev->class = classes[dev->devno];
2643
2644 if (!ata_dev_enabled(dev))
2645 continue;
2646
2647 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2648 dev->id);
2649 if (rc)
2650 goto fail;
2651 }
2652
2653 /* Now ask for the cable type as PDIAG- should have been released */
2654 if (ap->ops->cable_detect)
2655 ap->cbl = ap->ops->cable_detect(ap);
2656
2657 /* We may have SATA bridge glue hiding here irrespective of
2658 * the reported cable types and sensed types. When SATA
2659 * drives indicate we have a bridge, we don't know which end
2660 * of the link the bridge is which is a problem.
2661 */
2662 ata_for_each_dev(dev, &ap->link, ENABLED)
2663 if (ata_id_is_sata(dev->id))
2664 ap->cbl = ATA_CBL_SATA;
2665
2666 /* After the identify sequence we can now set up the devices. We do
2667 this in the normal order so that the user doesn't get confused */
2668
2669 ata_for_each_dev(dev, &ap->link, ENABLED) {
2670 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2671 rc = ata_dev_configure(dev);
2672 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2673 if (rc)
2674 goto fail;
2675 }
2676
2677 /* configure transfer mode */
2678 rc = ata_set_mode(&ap->link, &dev);
2679 if (rc)
2680 goto fail;
2681
2682 ata_for_each_dev(dev, &ap->link, ENABLED)
2683 return 0;
2684
2685 return -ENODEV;
2686
2687 fail:
2688 tries[dev->devno]--;
2689
2690 switch (rc) {
2691 case -EINVAL:
2692 /* eeek, something went very wrong, give up */
2693 tries[dev->devno] = 0;
2694 break;
2695
2696 case -ENODEV:
2697 /* give it just one more chance */
2698 tries[dev->devno] = min(tries[dev->devno], 1);
2699 case -EIO:
2700 if (tries[dev->devno] == 1) {
2701 /* This is the last chance, better to slow
2702 * down than lose it.
2703 */
2704 sata_down_spd_limit(&ap->link, 0);
2705 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2706 }
2707 }
2708
2709 if (!tries[dev->devno])
2710 ata_dev_disable(dev);
2711
2712 goto retry;
2713 }
2714
2715 /**
2716 * sata_print_link_status - Print SATA link status
2717 * @link: SATA link to printk link status about
2718 *
2719 * This function prints link speed and status of a SATA link.
2720 *
2721 * LOCKING:
2722 * None.
2723 */
2724 static void sata_print_link_status(struct ata_link *link)
2725 {
2726 u32 sstatus, scontrol, tmp;
2727
2728 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2729 return;
2730 sata_scr_read(link, SCR_CONTROL, &scontrol);
2731
2732 if (ata_phys_link_online(link)) {
2733 tmp = (sstatus >> 4) & 0xf;
2734 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2735 sata_spd_string(tmp), sstatus, scontrol);
2736 } else {
2737 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2738 sstatus, scontrol);
2739 }
2740 }
2741
2742 /**
2743 * ata_dev_pair - return other device on cable
2744 * @adev: device
2745 *
2746 * Obtain the other device on the same cable, or if none is
2747 * present NULL is returned
2748 */
2749
2750 struct ata_device *ata_dev_pair(struct ata_device *adev)
2751 {
2752 struct ata_link *link = adev->link;
2753 struct ata_device *pair = &link->device[1 - adev->devno];
2754 if (!ata_dev_enabled(pair))
2755 return NULL;
2756 return pair;
2757 }
2758
2759 /**
2760 * sata_down_spd_limit - adjust SATA spd limit downward
2761 * @link: Link to adjust SATA spd limit for
2762 * @spd_limit: Additional limit
2763 *
2764 * Adjust SATA spd limit of @link downward. Note that this
2765 * function only adjusts the limit. The change must be applied
2766 * using sata_set_spd().
2767 *
2768 * If @spd_limit is non-zero, the speed is limited to equal to or
2769 * lower than @spd_limit if such speed is supported. If
2770 * @spd_limit is slower than any supported speed, only the lowest
2771 * supported speed is allowed.
2772 *
2773 * LOCKING:
2774 * Inherited from caller.
2775 *
2776 * RETURNS:
2777 * 0 on success, negative errno on failure
2778 */
2779 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2780 {
2781 u32 sstatus, spd, mask;
2782 int rc, bit;
2783
2784 if (!sata_scr_valid(link))
2785 return -EOPNOTSUPP;
2786
2787 /* If SCR can be read, use it to determine the current SPD.
2788 * If not, use cached value in link->sata_spd.
2789 */
2790 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2791 if (rc == 0 && ata_sstatus_online(sstatus))
2792 spd = (sstatus >> 4) & 0xf;
2793 else
2794 spd = link->sata_spd;
2795
2796 mask = link->sata_spd_limit;
2797 if (mask <= 1)
2798 return -EINVAL;
2799
2800 /* unconditionally mask off the highest bit */
2801 bit = fls(mask) - 1;
2802 mask &= ~(1 << bit);
2803
2804 /* Mask off all speeds higher than or equal to the current
2805 * one. Force 1.5Gbps if current SPD is not available.
2806 */
2807 if (spd > 1)
2808 mask &= (1 << (spd - 1)) - 1;
2809 else
2810 mask &= 1;
2811
2812 /* were we already at the bottom? */
2813 if (!mask)
2814 return -EINVAL;
2815
2816 if (spd_limit) {
2817 if (mask & ((1 << spd_limit) - 1))
2818 mask &= (1 << spd_limit) - 1;
2819 else {
2820 bit = ffs(mask) - 1;
2821 mask = 1 << bit;
2822 }
2823 }
2824
2825 link->sata_spd_limit = mask;
2826
2827 ata_link_warn(link, "limiting SATA link speed to %s\n",
2828 sata_spd_string(fls(mask)));
2829
2830 return 0;
2831 }
2832
2833 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2834 {
2835 struct ata_link *host_link = &link->ap->link;
2836 u32 limit, target, spd;
2837
2838 limit = link->sata_spd_limit;
2839
2840 /* Don't configure downstream link faster than upstream link.
2841 * It doesn't speed up anything and some PMPs choke on such
2842 * configuration.
2843 */
2844 if (!ata_is_host_link(link) && host_link->sata_spd)
2845 limit &= (1 << host_link->sata_spd) - 1;
2846
2847 if (limit == UINT_MAX)
2848 target = 0;
2849 else
2850 target = fls(limit);
2851
2852 spd = (*scontrol >> 4) & 0xf;
2853 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2854
2855 return spd != target;
2856 }
2857
2858 /**
2859 * sata_set_spd_needed - is SATA spd configuration needed
2860 * @link: Link in question
2861 *
2862 * Test whether the spd limit in SControl matches
2863 * @link->sata_spd_limit. This function is used to determine
2864 * whether hardreset is necessary to apply SATA spd
2865 * configuration.
2866 *
2867 * LOCKING:
2868 * Inherited from caller.
2869 *
2870 * RETURNS:
2871 * 1 if SATA spd configuration is needed, 0 otherwise.
2872 */
2873 static int sata_set_spd_needed(struct ata_link *link)
2874 {
2875 u32 scontrol;
2876
2877 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2878 return 1;
2879
2880 return __sata_set_spd_needed(link, &scontrol);
2881 }
2882
2883 /**
2884 * sata_set_spd - set SATA spd according to spd limit
2885 * @link: Link to set SATA spd for
2886 *
2887 * Set SATA spd of @link according to sata_spd_limit.
2888 *
2889 * LOCKING:
2890 * Inherited from caller.
2891 *
2892 * RETURNS:
2893 * 0 if spd doesn't need to be changed, 1 if spd has been
2894 * changed. Negative errno if SCR registers are inaccessible.
2895 */
2896 int sata_set_spd(struct ata_link *link)
2897 {
2898 u32 scontrol;
2899 int rc;
2900
2901 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2902 return rc;
2903
2904 if (!__sata_set_spd_needed(link, &scontrol))
2905 return 0;
2906
2907 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2908 return rc;
2909
2910 return 1;
2911 }
2912
2913 /*
2914 * This mode timing computation functionality is ported over from
2915 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2916 */
2917 /*
2918 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2919 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2920 * for UDMA6, which is currently supported only by Maxtor drives.
2921 *
2922 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2923 */
2924
2925 static const struct ata_timing ata_timing[] = {
2926 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2927 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2928 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2929 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2930 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2931 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2932 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2933 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2934
2935 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2936 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2937 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2938
2939 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2940 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2941 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2942 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2943 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2944
2945 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2946 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2947 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2948 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2949 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2950 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2951 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2952 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2953
2954 { 0xFF }
2955 };
2956
2957 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2958 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2959
2960 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2961 {
2962 q->setup = EZ(t->setup * 1000, T);
2963 q->act8b = EZ(t->act8b * 1000, T);
2964 q->rec8b = EZ(t->rec8b * 1000, T);
2965 q->cyc8b = EZ(t->cyc8b * 1000, T);
2966 q->active = EZ(t->active * 1000, T);
2967 q->recover = EZ(t->recover * 1000, T);
2968 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2969 q->cycle = EZ(t->cycle * 1000, T);
2970 q->udma = EZ(t->udma * 1000, UT);
2971 }
2972
2973 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2974 struct ata_timing *m, unsigned int what)
2975 {
2976 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2977 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2978 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2979 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2980 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2981 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2982 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2983 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2984 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2985 }
2986
2987 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2988 {
2989 const struct ata_timing *t = ata_timing;
2990
2991 while (xfer_mode > t->mode)
2992 t++;
2993
2994 if (xfer_mode == t->mode)
2995 return t;
2996
2997 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2998 __func__, xfer_mode);
2999
3000 return NULL;
3001 }
3002
3003 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3004 struct ata_timing *t, int T, int UT)
3005 {
3006 const u16 *id = adev->id;
3007 const struct ata_timing *s;
3008 struct ata_timing p;
3009
3010 /*
3011 * Find the mode.
3012 */
3013
3014 if (!(s = ata_timing_find_mode(speed)))
3015 return -EINVAL;
3016
3017 memcpy(t, s, sizeof(*s));
3018
3019 /*
3020 * If the drive is an EIDE drive, it can tell us it needs extended
3021 * PIO/MW_DMA cycle timing.
3022 */
3023
3024 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3025 memset(&p, 0, sizeof(p));
3026
3027 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3028 if (speed <= XFER_PIO_2)
3029 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3030 else if ((speed <= XFER_PIO_4) ||
3031 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3032 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3033 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3034 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3035
3036 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3037 }
3038
3039 /*
3040 * Convert the timing to bus clock counts.
3041 */
3042
3043 ata_timing_quantize(t, t, T, UT);
3044
3045 /*
3046 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3047 * S.M.A.R.T * and some other commands. We have to ensure that the
3048 * DMA cycle timing is slower/equal than the fastest PIO timing.
3049 */
3050
3051 if (speed > XFER_PIO_6) {
3052 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3053 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3054 }
3055
3056 /*
3057 * Lengthen active & recovery time so that cycle time is correct.
3058 */
3059
3060 if (t->act8b + t->rec8b < t->cyc8b) {
3061 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3062 t->rec8b = t->cyc8b - t->act8b;
3063 }
3064
3065 if (t->active + t->recover < t->cycle) {
3066 t->active += (t->cycle - (t->active + t->recover)) / 2;
3067 t->recover = t->cycle - t->active;
3068 }
3069
3070 /* In a few cases quantisation may produce enough errors to
3071 leave t->cycle too low for the sum of active and recovery
3072 if so we must correct this */
3073 if (t->active + t->recover > t->cycle)
3074 t->cycle = t->active + t->recover;
3075
3076 return 0;
3077 }
3078
3079 /**
3080 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3081 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3082 * @cycle: cycle duration in ns
3083 *
3084 * Return matching xfer mode for @cycle. The returned mode is of
3085 * the transfer type specified by @xfer_shift. If @cycle is too
3086 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3087 * than the fastest known mode, the fasted mode is returned.
3088 *
3089 * LOCKING:
3090 * None.
3091 *
3092 * RETURNS:
3093 * Matching xfer_mode, 0xff if no match found.
3094 */
3095 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3096 {
3097 u8 base_mode = 0xff, last_mode = 0xff;
3098 const struct ata_xfer_ent *ent;
3099 const struct ata_timing *t;
3100
3101 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3102 if (ent->shift == xfer_shift)
3103 base_mode = ent->base;
3104
3105 for (t = ata_timing_find_mode(base_mode);
3106 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3107 unsigned short this_cycle;
3108
3109 switch (xfer_shift) {
3110 case ATA_SHIFT_PIO:
3111 case ATA_SHIFT_MWDMA:
3112 this_cycle = t->cycle;
3113 break;
3114 case ATA_SHIFT_UDMA:
3115 this_cycle = t->udma;
3116 break;
3117 default:
3118 return 0xff;
3119 }
3120
3121 if (cycle > this_cycle)
3122 break;
3123
3124 last_mode = t->mode;
3125 }
3126
3127 return last_mode;
3128 }
3129
3130 /**
3131 * ata_down_xfermask_limit - adjust dev xfer masks downward
3132 * @dev: Device to adjust xfer masks
3133 * @sel: ATA_DNXFER_* selector
3134 *
3135 * Adjust xfer masks of @dev downward. Note that this function
3136 * does not apply the change. Invoking ata_set_mode() afterwards
3137 * will apply the limit.
3138 *
3139 * LOCKING:
3140 * Inherited from caller.
3141 *
3142 * RETURNS:
3143 * 0 on success, negative errno on failure
3144 */
3145 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3146 {
3147 char buf[32];
3148 unsigned long orig_mask, xfer_mask;
3149 unsigned long pio_mask, mwdma_mask, udma_mask;
3150 int quiet, highbit;
3151
3152 quiet = !!(sel & ATA_DNXFER_QUIET);
3153 sel &= ~ATA_DNXFER_QUIET;
3154
3155 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3156 dev->mwdma_mask,
3157 dev->udma_mask);
3158 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3159
3160 switch (sel) {
3161 case ATA_DNXFER_PIO:
3162 highbit = fls(pio_mask) - 1;
3163 pio_mask &= ~(1 << highbit);
3164 break;
3165
3166 case ATA_DNXFER_DMA:
3167 if (udma_mask) {
3168 highbit = fls(udma_mask) - 1;
3169 udma_mask &= ~(1 << highbit);
3170 if (!udma_mask)
3171 return -ENOENT;
3172 } else if (mwdma_mask) {
3173 highbit = fls(mwdma_mask) - 1;
3174 mwdma_mask &= ~(1 << highbit);
3175 if (!mwdma_mask)
3176 return -ENOENT;
3177 }
3178 break;
3179
3180 case ATA_DNXFER_40C:
3181 udma_mask &= ATA_UDMA_MASK_40C;
3182 break;
3183
3184 case ATA_DNXFER_FORCE_PIO0:
3185 pio_mask &= 1;
3186 case ATA_DNXFER_FORCE_PIO:
3187 mwdma_mask = 0;
3188 udma_mask = 0;
3189 break;
3190
3191 default:
3192 BUG();
3193 }
3194
3195 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3196
3197 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3198 return -ENOENT;
3199
3200 if (!quiet) {
3201 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3202 snprintf(buf, sizeof(buf), "%s:%s",
3203 ata_mode_string(xfer_mask),
3204 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3205 else
3206 snprintf(buf, sizeof(buf), "%s",
3207 ata_mode_string(xfer_mask));
3208
3209 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3210 }
3211
3212 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3213 &dev->udma_mask);
3214
3215 return 0;
3216 }
3217
3218 static int ata_dev_set_mode(struct ata_device *dev)
3219 {
3220 struct ata_port *ap = dev->link->ap;
3221 struct ata_eh_context *ehc = &dev->link->eh_context;
3222 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3223 const char *dev_err_whine = "";
3224 int ign_dev_err = 0;
3225 unsigned int err_mask = 0;
3226 int rc;
3227
3228 dev->flags &= ~ATA_DFLAG_PIO;
3229 if (dev->xfer_shift == ATA_SHIFT_PIO)
3230 dev->flags |= ATA_DFLAG_PIO;
3231
3232 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3233 dev_err_whine = " (SET_XFERMODE skipped)";
3234 else {
3235 if (nosetxfer)
3236 ata_dev_warn(dev,
3237 "NOSETXFER but PATA detected - can't "
3238 "skip SETXFER, might malfunction\n");
3239 err_mask = ata_dev_set_xfermode(dev);
3240 }
3241
3242 if (err_mask & ~AC_ERR_DEV)
3243 goto fail;
3244
3245 /* revalidate */
3246 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3247 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3248 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3249 if (rc)
3250 return rc;
3251
3252 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3253 /* Old CFA may refuse this command, which is just fine */
3254 if (ata_id_is_cfa(dev->id))
3255 ign_dev_err = 1;
3256 /* Catch several broken garbage emulations plus some pre
3257 ATA devices */
3258 if (ata_id_major_version(dev->id) == 0 &&
3259 dev->pio_mode <= XFER_PIO_2)
3260 ign_dev_err = 1;
3261 /* Some very old devices and some bad newer ones fail
3262 any kind of SET_XFERMODE request but support PIO0-2
3263 timings and no IORDY */
3264 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3265 ign_dev_err = 1;
3266 }
3267 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3268 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3269 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3270 dev->dma_mode == XFER_MW_DMA_0 &&
3271 (dev->id[63] >> 8) & 1)
3272 ign_dev_err = 1;
3273
3274 /* if the device is actually configured correctly, ignore dev err */
3275 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3276 ign_dev_err = 1;
3277
3278 if (err_mask & AC_ERR_DEV) {
3279 if (!ign_dev_err)
3280 goto fail;
3281 else
3282 dev_err_whine = " (device error ignored)";
3283 }
3284
3285 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3286 dev->xfer_shift, (int)dev->xfer_mode);
3287
3288 ata_dev_info(dev, "configured for %s%s\n",
3289 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3290 dev_err_whine);
3291
3292 return 0;
3293
3294 fail:
3295 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3296 return -EIO;
3297 }
3298
3299 /**
3300 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3301 * @link: link on which timings will be programmed
3302 * @r_failed_dev: out parameter for failed device
3303 *
3304 * Standard implementation of the function used to tune and set
3305 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3306 * ata_dev_set_mode() fails, pointer to the failing device is
3307 * returned in @r_failed_dev.
3308 *
3309 * LOCKING:
3310 * PCI/etc. bus probe sem.
3311 *
3312 * RETURNS:
3313 * 0 on success, negative errno otherwise
3314 */
3315
3316 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3317 {
3318 struct ata_port *ap = link->ap;
3319 struct ata_device *dev;
3320 int rc = 0, used_dma = 0, found = 0;
3321
3322 /* step 1: calculate xfer_mask */
3323 ata_for_each_dev(dev, link, ENABLED) {
3324 unsigned long pio_mask, dma_mask;
3325 unsigned int mode_mask;
3326
3327 mode_mask = ATA_DMA_MASK_ATA;
3328 if (dev->class == ATA_DEV_ATAPI)
3329 mode_mask = ATA_DMA_MASK_ATAPI;
3330 else if (ata_id_is_cfa(dev->id))
3331 mode_mask = ATA_DMA_MASK_CFA;
3332
3333 ata_dev_xfermask(dev);
3334 ata_force_xfermask(dev);
3335
3336 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3337
3338 if (libata_dma_mask & mode_mask)
3339 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3340 dev->udma_mask);
3341 else
3342 dma_mask = 0;
3343
3344 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3345 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3346
3347 found = 1;
3348 if (ata_dma_enabled(dev))
3349 used_dma = 1;
3350 }
3351 if (!found)
3352 goto out;
3353
3354 /* step 2: always set host PIO timings */
3355 ata_for_each_dev(dev, link, ENABLED) {
3356 if (dev->pio_mode == 0xff) {
3357 ata_dev_warn(dev, "no PIO support\n");
3358 rc = -EINVAL;
3359 goto out;
3360 }
3361
3362 dev->xfer_mode = dev->pio_mode;
3363 dev->xfer_shift = ATA_SHIFT_PIO;
3364 if (ap->ops->set_piomode)
3365 ap->ops->set_piomode(ap, dev);
3366 }
3367
3368 /* step 3: set host DMA timings */
3369 ata_for_each_dev(dev, link, ENABLED) {
3370 if (!ata_dma_enabled(dev))
3371 continue;
3372
3373 dev->xfer_mode = dev->dma_mode;
3374 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3375 if (ap->ops->set_dmamode)
3376 ap->ops->set_dmamode(ap, dev);
3377 }
3378
3379 /* step 4: update devices' xfer mode */
3380 ata_for_each_dev(dev, link, ENABLED) {
3381 rc = ata_dev_set_mode(dev);
3382 if (rc)
3383 goto out;
3384 }
3385
3386 /* Record simplex status. If we selected DMA then the other
3387 * host channels are not permitted to do so.
3388 */
3389 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3390 ap->host->simplex_claimed = ap;
3391
3392 out:
3393 if (rc)
3394 *r_failed_dev = dev;
3395 return rc;
3396 }
3397
3398 /**
3399 * ata_wait_ready - wait for link to become ready
3400 * @link: link to be waited on
3401 * @deadline: deadline jiffies for the operation
3402 * @check_ready: callback to check link readiness
3403 *
3404 * Wait for @link to become ready. @check_ready should return
3405 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3406 * link doesn't seem to be occupied, other errno for other error
3407 * conditions.
3408 *
3409 * Transient -ENODEV conditions are allowed for
3410 * ATA_TMOUT_FF_WAIT.
3411 *
3412 * LOCKING:
3413 * EH context.
3414 *
3415 * RETURNS:
3416 * 0 if @linke is ready before @deadline; otherwise, -errno.
3417 */
3418 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3419 int (*check_ready)(struct ata_link *link))
3420 {
3421 unsigned long start = jiffies;
3422 unsigned long nodev_deadline;
3423 int warned = 0;
3424
3425 /* choose which 0xff timeout to use, read comment in libata.h */
3426 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3427 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3428 else
3429 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3430
3431 /* Slave readiness can't be tested separately from master. On
3432 * M/S emulation configuration, this function should be called
3433 * only on the master and it will handle both master and slave.
3434 */
3435 WARN_ON(link == link->ap->slave_link);
3436
3437 if (time_after(nodev_deadline, deadline))
3438 nodev_deadline = deadline;
3439
3440 while (1) {
3441 unsigned long now = jiffies;
3442 int ready, tmp;
3443
3444 ready = tmp = check_ready(link);
3445 if (ready > 0)
3446 return 0;
3447
3448 /*
3449 * -ENODEV could be transient. Ignore -ENODEV if link
3450 * is online. Also, some SATA devices take a long
3451 * time to clear 0xff after reset. Wait for
3452 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3453 * offline.
3454 *
3455 * Note that some PATA controllers (pata_ali) explode
3456 * if status register is read more than once when
3457 * there's no device attached.
3458 */
3459 if (ready == -ENODEV) {
3460 if (ata_link_online(link))
3461 ready = 0;
3462 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3463 !ata_link_offline(link) &&
3464 time_before(now, nodev_deadline))
3465 ready = 0;
3466 }
3467
3468 if (ready)
3469 return ready;
3470 if (time_after(now, deadline))
3471 return -EBUSY;
3472
3473 if (!warned && time_after(now, start + 5 * HZ) &&
3474 (deadline - now > 3 * HZ)) {
3475 ata_link_warn(link,
3476 "link is slow to respond, please be patient "
3477 "(ready=%d)\n", tmp);
3478 warned = 1;
3479 }
3480
3481 ata_msleep(link->ap, 50);
3482 }
3483 }
3484
3485 /**
3486 * ata_wait_after_reset - wait for link to become ready after reset
3487 * @link: link to be waited on
3488 * @deadline: deadline jiffies for the operation
3489 * @check_ready: callback to check link readiness
3490 *
3491 * Wait for @link to become ready after reset.
3492 *
3493 * LOCKING:
3494 * EH context.
3495 *
3496 * RETURNS:
3497 * 0 if @linke is ready before @deadline; otherwise, -errno.
3498 */
3499 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3500 int (*check_ready)(struct ata_link *link))
3501 {
3502 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3503
3504 return ata_wait_ready(link, deadline, check_ready);
3505 }
3506
3507 /**
3508 * sata_link_debounce - debounce SATA phy status
3509 * @link: ATA link to debounce SATA phy status for
3510 * @params: timing parameters { interval, duratinon, timeout } in msec
3511 * @deadline: deadline jiffies for the operation
3512 *
3513 * Make sure SStatus of @link reaches stable state, determined by
3514 * holding the same value where DET is not 1 for @duration polled
3515 * every @interval, before @timeout. Timeout constraints the
3516 * beginning of the stable state. Because DET gets stuck at 1 on
3517 * some controllers after hot unplugging, this functions waits
3518 * until timeout then returns 0 if DET is stable at 1.
3519 *
3520 * @timeout is further limited by @deadline. The sooner of the
3521 * two is used.
3522 *
3523 * LOCKING:
3524 * Kernel thread context (may sleep)
3525 *
3526 * RETURNS:
3527 * 0 on success, -errno on failure.
3528 */
3529 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3530 unsigned long deadline)
3531 {
3532 unsigned long interval = params[0];
3533 unsigned long duration = params[1];
3534 unsigned long last_jiffies, t;
3535 u32 last, cur;
3536 int rc;
3537
3538 t = ata_deadline(jiffies, params[2]);
3539 if (time_before(t, deadline))
3540 deadline = t;
3541
3542 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3543 return rc;
3544 cur &= 0xf;
3545
3546 last = cur;
3547 last_jiffies = jiffies;
3548
3549 while (1) {
3550 ata_msleep(link->ap, interval);
3551 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3552 return rc;
3553 cur &= 0xf;
3554
3555 /* DET stable? */
3556 if (cur == last) {
3557 if (cur == 1 && time_before(jiffies, deadline))
3558 continue;
3559 if (time_after(jiffies,
3560 ata_deadline(last_jiffies, duration)))
3561 return 0;
3562 continue;
3563 }
3564
3565 /* unstable, start over */
3566 last = cur;
3567 last_jiffies = jiffies;
3568
3569 /* Check deadline. If debouncing failed, return
3570 * -EPIPE to tell upper layer to lower link speed.
3571 */
3572 if (time_after(jiffies, deadline))
3573 return -EPIPE;
3574 }
3575 }
3576
3577 /**
3578 * sata_link_resume - resume SATA link
3579 * @link: ATA link to resume SATA
3580 * @params: timing parameters { interval, duratinon, timeout } in msec
3581 * @deadline: deadline jiffies for the operation
3582 *
3583 * Resume SATA phy @link and debounce it.
3584 *
3585 * LOCKING:
3586 * Kernel thread context (may sleep)
3587 *
3588 * RETURNS:
3589 * 0 on success, -errno on failure.
3590 */
3591 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3592 unsigned long deadline)
3593 {
3594 int tries = ATA_LINK_RESUME_TRIES;
3595 u32 scontrol, serror;
3596 int rc;
3597
3598 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3599 return rc;
3600
3601 /*
3602 * Writes to SControl sometimes get ignored under certain
3603 * controllers (ata_piix SIDPR). Make sure DET actually is
3604 * cleared.
3605 */
3606 do {
3607 scontrol = (scontrol & 0x0f0) | 0x300;
3608 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3609 return rc;
3610 /*
3611 * Some PHYs react badly if SStatus is pounded
3612 * immediately after resuming. Delay 200ms before
3613 * debouncing.
3614 */
3615 ata_msleep(link->ap, 200);
3616
3617 /* is SControl restored correctly? */
3618 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3619 return rc;
3620 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3621
3622 if ((scontrol & 0xf0f) != 0x300) {
3623 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3624 scontrol);
3625 return 0;
3626 }
3627
3628 if (tries < ATA_LINK_RESUME_TRIES)
3629 ata_link_warn(link, "link resume succeeded after %d retries\n",
3630 ATA_LINK_RESUME_TRIES - tries);
3631
3632 if ((rc = sata_link_debounce(link, params, deadline)))
3633 return rc;
3634
3635 /* clear SError, some PHYs require this even for SRST to work */
3636 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3637 rc = sata_scr_write(link, SCR_ERROR, serror);
3638
3639 return rc != -EINVAL ? rc : 0;
3640 }
3641
3642 /**
3643 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3644 * @link: ATA link to manipulate SControl for
3645 * @policy: LPM policy to configure
3646 * @spm_wakeup: initiate LPM transition to active state
3647 *
3648 * Manipulate the IPM field of the SControl register of @link
3649 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3650 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3651 * the link. This function also clears PHYRDY_CHG before
3652 * returning.
3653 *
3654 * LOCKING:
3655 * EH context.
3656 *
3657 * RETURNS:
3658 * 0 on succes, -errno otherwise.
3659 */
3660 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3661 bool spm_wakeup)
3662 {
3663 struct ata_eh_context *ehc = &link->eh_context;
3664 bool woken_up = false;
3665 u32 scontrol;
3666 int rc;
3667
3668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3669 if (rc)
3670 return rc;
3671
3672 switch (policy) {
3673 case ATA_LPM_MAX_POWER:
3674 /* disable all LPM transitions */
3675 scontrol |= (0x7 << 8);
3676 /* initiate transition to active state */
3677 if (spm_wakeup) {
3678 scontrol |= (0x4 << 12);
3679 woken_up = true;
3680 }
3681 break;
3682 case ATA_LPM_MED_POWER:
3683 /* allow LPM to PARTIAL */
3684 scontrol &= ~(0x1 << 8);
3685 scontrol |= (0x6 << 8);
3686 break;
3687 case ATA_LPM_MIN_POWER:
3688 if (ata_link_nr_enabled(link) > 0)
3689 /* no restrictions on LPM transitions */
3690 scontrol &= ~(0x7 << 8);
3691 else {
3692 /* empty port, power off */
3693 scontrol &= ~0xf;
3694 scontrol |= (0x1 << 2);
3695 }
3696 break;
3697 default:
3698 WARN_ON(1);
3699 }
3700
3701 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3702 if (rc)
3703 return rc;
3704
3705 /* give the link time to transit out of LPM state */
3706 if (woken_up)
3707 msleep(10);
3708
3709 /* clear PHYRDY_CHG from SError */
3710 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3711 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3712 }
3713
3714 /**
3715 * ata_std_prereset - prepare for reset
3716 * @link: ATA link to be reset
3717 * @deadline: deadline jiffies for the operation
3718 *
3719 * @link is about to be reset. Initialize it. Failure from
3720 * prereset makes libata abort whole reset sequence and give up
3721 * that port, so prereset should be best-effort. It does its
3722 * best to prepare for reset sequence but if things go wrong, it
3723 * should just whine, not fail.
3724 *
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3727 *
3728 * RETURNS:
3729 * 0 on success, -errno otherwise.
3730 */
3731 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3732 {
3733 struct ata_port *ap = link->ap;
3734 struct ata_eh_context *ehc = &link->eh_context;
3735 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3736 int rc;
3737
3738 /* if we're about to do hardreset, nothing more to do */
3739 if (ehc->i.action & ATA_EH_HARDRESET)
3740 return 0;
3741
3742 /* if SATA, resume link */
3743 if (ap->flags & ATA_FLAG_SATA) {
3744 rc = sata_link_resume(link, timing, deadline);
3745 /* whine about phy resume failure but proceed */
3746 if (rc && rc != -EOPNOTSUPP)
3747 ata_link_warn(link,
3748 "failed to resume link for reset (errno=%d)\n",
3749 rc);
3750 }
3751
3752 /* no point in trying softreset on offline link */
3753 if (ata_phys_link_offline(link))
3754 ehc->i.action &= ~ATA_EH_SOFTRESET;
3755
3756 return 0;
3757 }
3758
3759 /**
3760 * sata_link_hardreset - reset link via SATA phy reset
3761 * @link: link to reset
3762 * @timing: timing parameters { interval, duratinon, timeout } in msec
3763 * @deadline: deadline jiffies for the operation
3764 * @online: optional out parameter indicating link onlineness
3765 * @check_ready: optional callback to check link readiness
3766 *
3767 * SATA phy-reset @link using DET bits of SControl register.
3768 * After hardreset, link readiness is waited upon using
3769 * ata_wait_ready() if @check_ready is specified. LLDs are
3770 * allowed to not specify @check_ready and wait itself after this
3771 * function returns. Device classification is LLD's
3772 * responsibility.
3773 *
3774 * *@online is set to one iff reset succeeded and @link is online
3775 * after reset.
3776 *
3777 * LOCKING:
3778 * Kernel thread context (may sleep)
3779 *
3780 * RETURNS:
3781 * 0 on success, -errno otherwise.
3782 */
3783 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3784 unsigned long deadline,
3785 bool *online, int (*check_ready)(struct ata_link *))
3786 {
3787 u32 scontrol;
3788 int rc;
3789
3790 DPRINTK("ENTER\n");
3791
3792 if (online)
3793 *online = false;
3794
3795 if (sata_set_spd_needed(link)) {
3796 /* SATA spec says nothing about how to reconfigure
3797 * spd. To be on the safe side, turn off phy during
3798 * reconfiguration. This works for at least ICH7 AHCI
3799 * and Sil3124.
3800 */
3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3802 goto out;
3803
3804 scontrol = (scontrol & 0x0f0) | 0x304;
3805
3806 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3807 goto out;
3808
3809 sata_set_spd(link);
3810 }
3811
3812 /* issue phy wake/reset */
3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3814 goto out;
3815
3816 scontrol = (scontrol & 0x0f0) | 0x301;
3817
3818 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3819 goto out;
3820
3821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3822 * 10.4.2 says at least 1 ms.
3823 */
3824 ata_msleep(link->ap, 1);
3825
3826 /* bring link back */
3827 rc = sata_link_resume(link, timing, deadline);
3828 if (rc)
3829 goto out;
3830 /* if link is offline nothing more to do */
3831 if (ata_phys_link_offline(link))
3832 goto out;
3833
3834 /* Link is online. From this point, -ENODEV too is an error. */
3835 if (online)
3836 *online = true;
3837
3838 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3839 /* If PMP is supported, we have to do follow-up SRST.
3840 * Some PMPs don't send D2H Reg FIS after hardreset if
3841 * the first port is empty. Wait only for
3842 * ATA_TMOUT_PMP_SRST_WAIT.
3843 */
3844 if (check_ready) {
3845 unsigned long pmp_deadline;
3846
3847 pmp_deadline = ata_deadline(jiffies,
3848 ATA_TMOUT_PMP_SRST_WAIT);
3849 if (time_after(pmp_deadline, deadline))
3850 pmp_deadline = deadline;
3851 ata_wait_ready(link, pmp_deadline, check_ready);
3852 }
3853 rc = -EAGAIN;
3854 goto out;
3855 }
3856
3857 rc = 0;
3858 if (check_ready)
3859 rc = ata_wait_ready(link, deadline, check_ready);
3860 out:
3861 if (rc && rc != -EAGAIN) {
3862 /* online is set iff link is online && reset succeeded */
3863 if (online)
3864 *online = false;
3865 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3866 }
3867 DPRINTK("EXIT, rc=%d\n", rc);
3868 return rc;
3869 }
3870
3871 /**
3872 * sata_std_hardreset - COMRESET w/o waiting or classification
3873 * @link: link to reset
3874 * @class: resulting class of attached device
3875 * @deadline: deadline jiffies for the operation
3876 *
3877 * Standard SATA COMRESET w/o waiting or classification.
3878 *
3879 * LOCKING:
3880 * Kernel thread context (may sleep)
3881 *
3882 * RETURNS:
3883 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3884 */
3885 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3886 unsigned long deadline)
3887 {
3888 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3889 bool online;
3890 int rc;
3891
3892 /* do hardreset */
3893 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3894 return online ? -EAGAIN : rc;
3895 }
3896
3897 /**
3898 * ata_std_postreset - standard postreset callback
3899 * @link: the target ata_link
3900 * @classes: classes of attached devices
3901 *
3902 * This function is invoked after a successful reset. Note that
3903 * the device might have been reset more than once using
3904 * different reset methods before postreset is invoked.
3905 *
3906 * LOCKING:
3907 * Kernel thread context (may sleep)
3908 */
3909 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3910 {
3911 u32 serror;
3912
3913 DPRINTK("ENTER\n");
3914
3915 /* reset complete, clear SError */
3916 if (!sata_scr_read(link, SCR_ERROR, &serror))
3917 sata_scr_write(link, SCR_ERROR, serror);
3918
3919 /* print link status */
3920 sata_print_link_status(link);
3921
3922 DPRINTK("EXIT\n");
3923 }
3924
3925 /**
3926 * ata_dev_same_device - Determine whether new ID matches configured device
3927 * @dev: device to compare against
3928 * @new_class: class of the new device
3929 * @new_id: IDENTIFY page of the new device
3930 *
3931 * Compare @new_class and @new_id against @dev and determine
3932 * whether @dev is the device indicated by @new_class and
3933 * @new_id.
3934 *
3935 * LOCKING:
3936 * None.
3937 *
3938 * RETURNS:
3939 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3940 */
3941 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3942 const u16 *new_id)
3943 {
3944 const u16 *old_id = dev->id;
3945 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3946 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3947
3948 if (dev->class != new_class) {
3949 ata_dev_info(dev, "class mismatch %d != %d\n",
3950 dev->class, new_class);
3951 return 0;
3952 }
3953
3954 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3955 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3956 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3957 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3958
3959 if (strcmp(model[0], model[1])) {
3960 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3961 model[0], model[1]);
3962 return 0;
3963 }
3964
3965 if (strcmp(serial[0], serial[1])) {
3966 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3967 serial[0], serial[1]);
3968 return 0;
3969 }
3970
3971 return 1;
3972 }
3973
3974 /**
3975 * ata_dev_reread_id - Re-read IDENTIFY data
3976 * @dev: target ATA device
3977 * @readid_flags: read ID flags
3978 *
3979 * Re-read IDENTIFY page and make sure @dev is still attached to
3980 * the port.
3981 *
3982 * LOCKING:
3983 * Kernel thread context (may sleep)
3984 *
3985 * RETURNS:
3986 * 0 on success, negative errno otherwise
3987 */
3988 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3989 {
3990 unsigned int class = dev->class;
3991 u16 *id = (void *)dev->link->ap->sector_buf;
3992 int rc;
3993
3994 /* read ID data */
3995 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3996 if (rc)
3997 return rc;
3998
3999 /* is the device still there? */
4000 if (!ata_dev_same_device(dev, class, id))
4001 return -ENODEV;
4002
4003 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4004 return 0;
4005 }
4006
4007 /**
4008 * ata_dev_revalidate - Revalidate ATA device
4009 * @dev: device to revalidate
4010 * @new_class: new class code
4011 * @readid_flags: read ID flags
4012 *
4013 * Re-read IDENTIFY page, make sure @dev is still attached to the
4014 * port and reconfigure it according to the new IDENTIFY page.
4015 *
4016 * LOCKING:
4017 * Kernel thread context (may sleep)
4018 *
4019 * RETURNS:
4020 * 0 on success, negative errno otherwise
4021 */
4022 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4023 unsigned int readid_flags)
4024 {
4025 u64 n_sectors = dev->n_sectors;
4026 u64 n_native_sectors = dev->n_native_sectors;
4027 int rc;
4028
4029 if (!ata_dev_enabled(dev))
4030 return -ENODEV;
4031
4032 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4033 if (ata_class_enabled(new_class) &&
4034 new_class != ATA_DEV_ATA &&
4035 new_class != ATA_DEV_ATAPI &&
4036 new_class != ATA_DEV_SEMB) {
4037 ata_dev_info(dev, "class mismatch %u != %u\n",
4038 dev->class, new_class);
4039 rc = -ENODEV;
4040 goto fail;
4041 }
4042
4043 /* re-read ID */
4044 rc = ata_dev_reread_id(dev, readid_flags);
4045 if (rc)
4046 goto fail;
4047
4048 /* configure device according to the new ID */
4049 rc = ata_dev_configure(dev);
4050 if (rc)
4051 goto fail;
4052
4053 /* verify n_sectors hasn't changed */
4054 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4055 dev->n_sectors == n_sectors)
4056 return 0;
4057
4058 /* n_sectors has changed */
4059 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4060 (unsigned long long)n_sectors,
4061 (unsigned long long)dev->n_sectors);
4062
4063 /*
4064 * Something could have caused HPA to be unlocked
4065 * involuntarily. If n_native_sectors hasn't changed and the
4066 * new size matches it, keep the device.
4067 */
4068 if (dev->n_native_sectors == n_native_sectors &&
4069 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4070 ata_dev_warn(dev,
4071 "new n_sectors matches native, probably "
4072 "late HPA unlock, n_sectors updated\n");
4073 /* use the larger n_sectors */
4074 return 0;
4075 }
4076
4077 /*
4078 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4079 * unlocking HPA in those cases.
4080 *
4081 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4082 */
4083 if (dev->n_native_sectors == n_native_sectors &&
4084 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4085 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4086 ata_dev_warn(dev,
4087 "old n_sectors matches native, probably "
4088 "late HPA lock, will try to unlock HPA\n");
4089 /* try unlocking HPA */
4090 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4091 rc = -EIO;
4092 } else
4093 rc = -ENODEV;
4094
4095 /* restore original n_[native_]sectors and fail */
4096 dev->n_native_sectors = n_native_sectors;
4097 dev->n_sectors = n_sectors;
4098 fail:
4099 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4100 return rc;
4101 }
4102
4103 struct ata_blacklist_entry {
4104 const char *model_num;
4105 const char *model_rev;
4106 unsigned long horkage;
4107 };
4108
4109 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4110 /* Devices with DMA related problems under Linux */
4111 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4116 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4117 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4118 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4121 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4123 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4124 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4126 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4127 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4128 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4129 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4130 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4131 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4132 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4134 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4136 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4138 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4139 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4140 /* Odd clown on sil3726/4726 PMPs */
4141 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4142
4143 /* Weird ATAPI devices */
4144 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4145 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4146 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4147 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4148
4149 /* Devices we expect to fail diagnostics */
4150
4151 /* Devices where NCQ should be avoided */
4152 /* NCQ is slow */
4153 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4154 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4155 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4156 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4157 /* NCQ is broken */
4158 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4159 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4160 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4161 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4162 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4163
4164 /* Seagate NCQ + FLUSH CACHE firmware bug */
4165 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4166 ATA_HORKAGE_FIRMWARE_WARN },
4167
4168 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4169 ATA_HORKAGE_FIRMWARE_WARN },
4170
4171 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4172 ATA_HORKAGE_FIRMWARE_WARN },
4173
4174 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4175 ATA_HORKAGE_FIRMWARE_WARN },
4176
4177 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4178 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4179 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4180
4181 /* Blacklist entries taken from Silicon Image 3124/3132
4182 Windows driver .inf file - also several Linux problem reports */
4183 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4185 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4186
4187 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4188 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4189
4190 /* devices which puke on READ_NATIVE_MAX */
4191 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4192 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4193 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4194 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4195
4196 /* this one allows HPA unlocking but fails IOs on the area */
4197 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4198
4199 /* Devices which report 1 sector over size HPA */
4200 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4201 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4202 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4203
4204 /* Devices which get the IVB wrong */
4205 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4206 /* Maybe we should just blacklist TSSTcorp... */
4207 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4208
4209 /* Devices that do not need bridging limits applied */
4210 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4211 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4212
4213 /* Devices which aren't very happy with higher link speeds */
4214 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4215 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4216
4217 /*
4218 * Devices which choke on SETXFER. Applies only if both the
4219 * device and controller are SATA.
4220 */
4221 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4222 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4223 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4224 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4225 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4226
4227 /* devices that don't properly handle queued TRIM commands */
4228 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4229 { "Crucial_CT???M500SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4230 { "Micron_M550*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4231 { "Crucial_CT???M550SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4232
4233 /*
4234 * Some WD SATA-I drives spin up and down erratically when the link
4235 * is put into the slumber mode. We don't have full list of the
4236 * affected devices. Disable LPM if the device matches one of the
4237 * known prefixes and is SATA-1. As a side effect LPM partial is
4238 * lost too.
4239 *
4240 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4241 */
4242 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4243 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4244 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4245 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4246 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4247 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4248 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4249
4250 /* End Marker */
4251 { }
4252 };
4253
4254 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4255 {
4256 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4257 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4258 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4259
4260 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4261 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4262
4263 while (ad->model_num) {
4264 if (glob_match(model_num, ad->model_num)) {
4265 if (ad->model_rev == NULL)
4266 return ad->horkage;
4267 if (glob_match(model_rev, ad->model_rev))
4268 return ad->horkage;
4269 }
4270 ad++;
4271 }
4272 return 0;
4273 }
4274
4275 static int ata_dma_blacklisted(const struct ata_device *dev)
4276 {
4277 /* We don't support polling DMA.
4278 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4279 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4280 */
4281 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4282 (dev->flags & ATA_DFLAG_CDB_INTR))
4283 return 1;
4284 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4285 }
4286
4287 /**
4288 * ata_is_40wire - check drive side detection
4289 * @dev: device
4290 *
4291 * Perform drive side detection decoding, allowing for device vendors
4292 * who can't follow the documentation.
4293 */
4294
4295 static int ata_is_40wire(struct ata_device *dev)
4296 {
4297 if (dev->horkage & ATA_HORKAGE_IVB)
4298 return ata_drive_40wire_relaxed(dev->id);
4299 return ata_drive_40wire(dev->id);
4300 }
4301
4302 /**
4303 * cable_is_40wire - 40/80/SATA decider
4304 * @ap: port to consider
4305 *
4306 * This function encapsulates the policy for speed management
4307 * in one place. At the moment we don't cache the result but
4308 * there is a good case for setting ap->cbl to the result when
4309 * we are called with unknown cables (and figuring out if it
4310 * impacts hotplug at all).
4311 *
4312 * Return 1 if the cable appears to be 40 wire.
4313 */
4314
4315 static int cable_is_40wire(struct ata_port *ap)
4316 {
4317 struct ata_link *link;
4318 struct ata_device *dev;
4319
4320 /* If the controller thinks we are 40 wire, we are. */
4321 if (ap->cbl == ATA_CBL_PATA40)
4322 return 1;
4323
4324 /* If the controller thinks we are 80 wire, we are. */
4325 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4326 return 0;
4327
4328 /* If the system is known to be 40 wire short cable (eg
4329 * laptop), then we allow 80 wire modes even if the drive
4330 * isn't sure.
4331 */
4332 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4333 return 0;
4334
4335 /* If the controller doesn't know, we scan.
4336 *
4337 * Note: We look for all 40 wire detects at this point. Any
4338 * 80 wire detect is taken to be 80 wire cable because
4339 * - in many setups only the one drive (slave if present) will
4340 * give a valid detect
4341 * - if you have a non detect capable drive you don't want it
4342 * to colour the choice
4343 */
4344 ata_for_each_link(link, ap, EDGE) {
4345 ata_for_each_dev(dev, link, ENABLED) {
4346 if (!ata_is_40wire(dev))
4347 return 0;
4348 }
4349 }
4350 return 1;
4351 }
4352
4353 /**
4354 * ata_dev_xfermask - Compute supported xfermask of the given device
4355 * @dev: Device to compute xfermask for
4356 *
4357 * Compute supported xfermask of @dev and store it in
4358 * dev->*_mask. This function is responsible for applying all
4359 * known limits including host controller limits, device
4360 * blacklist, etc...
4361 *
4362 * LOCKING:
4363 * None.
4364 */
4365 static void ata_dev_xfermask(struct ata_device *dev)
4366 {
4367 struct ata_link *link = dev->link;
4368 struct ata_port *ap = link->ap;
4369 struct ata_host *host = ap->host;
4370 unsigned long xfer_mask;
4371
4372 /* controller modes available */
4373 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4374 ap->mwdma_mask, ap->udma_mask);
4375
4376 /* drive modes available */
4377 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4378 dev->mwdma_mask, dev->udma_mask);
4379 xfer_mask &= ata_id_xfermask(dev->id);
4380
4381 /*
4382 * CFA Advanced TrueIDE timings are not allowed on a shared
4383 * cable
4384 */
4385 if (ata_dev_pair(dev)) {
4386 /* No PIO5 or PIO6 */
4387 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4388 /* No MWDMA3 or MWDMA 4 */
4389 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4390 }
4391
4392 if (ata_dma_blacklisted(dev)) {
4393 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4394 ata_dev_warn(dev,
4395 "device is on DMA blacklist, disabling DMA\n");
4396 }
4397
4398 if ((host->flags & ATA_HOST_SIMPLEX) &&
4399 host->simplex_claimed && host->simplex_claimed != ap) {
4400 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4401 ata_dev_warn(dev,
4402 "simplex DMA is claimed by other device, disabling DMA\n");
4403 }
4404
4405 if (ap->flags & ATA_FLAG_NO_IORDY)
4406 xfer_mask &= ata_pio_mask_no_iordy(dev);
4407
4408 if (ap->ops->mode_filter)
4409 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4410
4411 /* Apply cable rule here. Don't apply it early because when
4412 * we handle hot plug the cable type can itself change.
4413 * Check this last so that we know if the transfer rate was
4414 * solely limited by the cable.
4415 * Unknown or 80 wire cables reported host side are checked
4416 * drive side as well. Cases where we know a 40wire cable
4417 * is used safely for 80 are not checked here.
4418 */
4419 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4420 /* UDMA/44 or higher would be available */
4421 if (cable_is_40wire(ap)) {
4422 ata_dev_warn(dev,
4423 "limited to UDMA/33 due to 40-wire cable\n");
4424 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4425 }
4426
4427 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4428 &dev->mwdma_mask, &dev->udma_mask);
4429 }
4430
4431 /**
4432 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4433 * @dev: Device to which command will be sent
4434 *
4435 * Issue SET FEATURES - XFER MODE command to device @dev
4436 * on port @ap.
4437 *
4438 * LOCKING:
4439 * PCI/etc. bus probe sem.
4440 *
4441 * RETURNS:
4442 * 0 on success, AC_ERR_* mask otherwise.
4443 */
4444
4445 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4446 {
4447 struct ata_taskfile tf;
4448 unsigned int err_mask;
4449
4450 /* set up set-features taskfile */
4451 DPRINTK("set features - xfer mode\n");
4452
4453 /* Some controllers and ATAPI devices show flaky interrupt
4454 * behavior after setting xfer mode. Use polling instead.
4455 */
4456 ata_tf_init(dev, &tf);
4457 tf.command = ATA_CMD_SET_FEATURES;
4458 tf.feature = SETFEATURES_XFER;
4459 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4460 tf.protocol = ATA_PROT_NODATA;
4461 /* If we are using IORDY we must send the mode setting command */
4462 if (ata_pio_need_iordy(dev))
4463 tf.nsect = dev->xfer_mode;
4464 /* If the device has IORDY and the controller does not - turn it off */
4465 else if (ata_id_has_iordy(dev->id))
4466 tf.nsect = 0x01;
4467 else /* In the ancient relic department - skip all of this */
4468 return 0;
4469
4470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4471
4472 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4473 return err_mask;
4474 }
4475
4476 /**
4477 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4478 * @dev: Device to which command will be sent
4479 * @enable: Whether to enable or disable the feature
4480 * @feature: The sector count represents the feature to set
4481 *
4482 * Issue SET FEATURES - SATA FEATURES command to device @dev
4483 * on port @ap with sector count
4484 *
4485 * LOCKING:
4486 * PCI/etc. bus probe sem.
4487 *
4488 * RETURNS:
4489 * 0 on success, AC_ERR_* mask otherwise.
4490 */
4491 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4492 {
4493 struct ata_taskfile tf;
4494 unsigned int err_mask;
4495
4496 /* set up set-features taskfile */
4497 DPRINTK("set features - SATA features\n");
4498
4499 ata_tf_init(dev, &tf);
4500 tf.command = ATA_CMD_SET_FEATURES;
4501 tf.feature = enable;
4502 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4503 tf.protocol = ATA_PROT_NODATA;
4504 tf.nsect = feature;
4505
4506 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4507
4508 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 return err_mask;
4510 }
4511 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4512
4513 /**
4514 * ata_dev_init_params - Issue INIT DEV PARAMS command
4515 * @dev: Device to which command will be sent
4516 * @heads: Number of heads (taskfile parameter)
4517 * @sectors: Number of sectors (taskfile parameter)
4518 *
4519 * LOCKING:
4520 * Kernel thread context (may sleep)
4521 *
4522 * RETURNS:
4523 * 0 on success, AC_ERR_* mask otherwise.
4524 */
4525 static unsigned int ata_dev_init_params(struct ata_device *dev,
4526 u16 heads, u16 sectors)
4527 {
4528 struct ata_taskfile tf;
4529 unsigned int err_mask;
4530
4531 /* Number of sectors per track 1-255. Number of heads 1-16 */
4532 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4533 return AC_ERR_INVALID;
4534
4535 /* set up init dev params taskfile */
4536 DPRINTK("init dev params \n");
4537
4538 ata_tf_init(dev, &tf);
4539 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4540 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4541 tf.protocol = ATA_PROT_NODATA;
4542 tf.nsect = sectors;
4543 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4544
4545 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4546 /* A clean abort indicates an original or just out of spec drive
4547 and we should continue as we issue the setup based on the
4548 drive reported working geometry */
4549 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4550 err_mask = 0;
4551
4552 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4553 return err_mask;
4554 }
4555
4556 /**
4557 * ata_sg_clean - Unmap DMA memory associated with command
4558 * @qc: Command containing DMA memory to be released
4559 *
4560 * Unmap all mapped DMA memory associated with this command.
4561 *
4562 * LOCKING:
4563 * spin_lock_irqsave(host lock)
4564 */
4565 void ata_sg_clean(struct ata_queued_cmd *qc)
4566 {
4567 struct ata_port *ap = qc->ap;
4568 struct scatterlist *sg = qc->sg;
4569 int dir = qc->dma_dir;
4570
4571 WARN_ON_ONCE(sg == NULL);
4572
4573 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4574
4575 if (qc->n_elem)
4576 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4577
4578 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4579 qc->sg = NULL;
4580 }
4581
4582 /**
4583 * atapi_check_dma - Check whether ATAPI DMA can be supported
4584 * @qc: Metadata associated with taskfile to check
4585 *
4586 * Allow low-level driver to filter ATA PACKET commands, returning
4587 * a status indicating whether or not it is OK to use DMA for the
4588 * supplied PACKET command.
4589 *
4590 * LOCKING:
4591 * spin_lock_irqsave(host lock)
4592 *
4593 * RETURNS: 0 when ATAPI DMA can be used
4594 * nonzero otherwise
4595 */
4596 int atapi_check_dma(struct ata_queued_cmd *qc)
4597 {
4598 struct ata_port *ap = qc->ap;
4599
4600 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4601 * few ATAPI devices choke on such DMA requests.
4602 */
4603 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4604 unlikely(qc->nbytes & 15))
4605 return 1;
4606
4607 if (ap->ops->check_atapi_dma)
4608 return ap->ops->check_atapi_dma(qc);
4609
4610 return 0;
4611 }
4612
4613 /**
4614 * ata_std_qc_defer - Check whether a qc needs to be deferred
4615 * @qc: ATA command in question
4616 *
4617 * Non-NCQ commands cannot run with any other command, NCQ or
4618 * not. As upper layer only knows the queue depth, we are
4619 * responsible for maintaining exclusion. This function checks
4620 * whether a new command @qc can be issued.
4621 *
4622 * LOCKING:
4623 * spin_lock_irqsave(host lock)
4624 *
4625 * RETURNS:
4626 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4627 */
4628 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4629 {
4630 struct ata_link *link = qc->dev->link;
4631
4632 if (qc->tf.protocol == ATA_PROT_NCQ) {
4633 if (!ata_tag_valid(link->active_tag))
4634 return 0;
4635 } else {
4636 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4637 return 0;
4638 }
4639
4640 return ATA_DEFER_LINK;
4641 }
4642
4643 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4644
4645 /**
4646 * ata_sg_init - Associate command with scatter-gather table.
4647 * @qc: Command to be associated
4648 * @sg: Scatter-gather table.
4649 * @n_elem: Number of elements in s/g table.
4650 *
4651 * Initialize the data-related elements of queued_cmd @qc
4652 * to point to a scatter-gather table @sg, containing @n_elem
4653 * elements.
4654 *
4655 * LOCKING:
4656 * spin_lock_irqsave(host lock)
4657 */
4658 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4659 unsigned int n_elem)
4660 {
4661 qc->sg = sg;
4662 qc->n_elem = n_elem;
4663 qc->cursg = qc->sg;
4664 }
4665
4666 /**
4667 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4668 * @qc: Command with scatter-gather table to be mapped.
4669 *
4670 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4671 *
4672 * LOCKING:
4673 * spin_lock_irqsave(host lock)
4674 *
4675 * RETURNS:
4676 * Zero on success, negative on error.
4677 *
4678 */
4679 static int ata_sg_setup(struct ata_queued_cmd *qc)
4680 {
4681 struct ata_port *ap = qc->ap;
4682 unsigned int n_elem;
4683
4684 VPRINTK("ENTER, ata%u\n", ap->print_id);
4685
4686 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4687 if (n_elem < 1)
4688 return -1;
4689
4690 DPRINTK("%d sg elements mapped\n", n_elem);
4691 qc->orig_n_elem = qc->n_elem;
4692 qc->n_elem = n_elem;
4693 qc->flags |= ATA_QCFLAG_DMAMAP;
4694
4695 return 0;
4696 }
4697
4698 /**
4699 * swap_buf_le16 - swap halves of 16-bit words in place
4700 * @buf: Buffer to swap
4701 * @buf_words: Number of 16-bit words in buffer.
4702 *
4703 * Swap halves of 16-bit words if needed to convert from
4704 * little-endian byte order to native cpu byte order, or
4705 * vice-versa.
4706 *
4707 * LOCKING:
4708 * Inherited from caller.
4709 */
4710 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4711 {
4712 #ifdef __BIG_ENDIAN
4713 unsigned int i;
4714
4715 for (i = 0; i < buf_words; i++)
4716 buf[i] = le16_to_cpu(buf[i]);
4717 #endif /* __BIG_ENDIAN */
4718 }
4719
4720 /**
4721 * ata_qc_new - Request an available ATA command, for queueing
4722 * @ap: target port
4723 *
4724 * Some ATA host controllers may implement a queue depth which is less
4725 * than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond
4726 * the hardware limitation.
4727 *
4728 * LOCKING:
4729 * None.
4730 */
4731
4732 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4733 {
4734 struct ata_queued_cmd *qc = NULL;
4735 unsigned int max_queue = ap->host->n_tags;
4736 unsigned int i, tag;
4737
4738 /* no command while frozen */
4739 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4740 return NULL;
4741
4742 for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) {
4743 tag = tag < max_queue ? tag : 0;
4744
4745 /* the last tag is reserved for internal command. */
4746 if (tag == ATA_TAG_INTERNAL)
4747 continue;
4748
4749 if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4750 qc = __ata_qc_from_tag(ap, tag);
4751 qc->tag = tag;
4752 ap->last_tag = tag;
4753 break;
4754 }
4755 }
4756
4757 return qc;
4758 }
4759
4760 /**
4761 * ata_qc_new_init - Request an available ATA command, and initialize it
4762 * @dev: Device from whom we request an available command structure
4763 *
4764 * LOCKING:
4765 * None.
4766 */
4767
4768 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4769 {
4770 struct ata_port *ap = dev->link->ap;
4771 struct ata_queued_cmd *qc;
4772
4773 qc = ata_qc_new(ap);
4774 if (qc) {
4775 qc->scsicmd = NULL;
4776 qc->ap = ap;
4777 qc->dev = dev;
4778
4779 ata_qc_reinit(qc);
4780 }
4781
4782 return qc;
4783 }
4784
4785 /**
4786 * ata_qc_free - free unused ata_queued_cmd
4787 * @qc: Command to complete
4788 *
4789 * Designed to free unused ata_queued_cmd object
4790 * in case something prevents using it.
4791 *
4792 * LOCKING:
4793 * spin_lock_irqsave(host lock)
4794 */
4795 void ata_qc_free(struct ata_queued_cmd *qc)
4796 {
4797 struct ata_port *ap;
4798 unsigned int tag;
4799
4800 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4801 ap = qc->ap;
4802
4803 qc->flags = 0;
4804 tag = qc->tag;
4805 if (likely(ata_tag_valid(tag))) {
4806 qc->tag = ATA_TAG_POISON;
4807 clear_bit(tag, &ap->qc_allocated);
4808 }
4809 }
4810
4811 void __ata_qc_complete(struct ata_queued_cmd *qc)
4812 {
4813 struct ata_port *ap;
4814 struct ata_link *link;
4815
4816 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4817 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4818 ap = qc->ap;
4819 link = qc->dev->link;
4820
4821 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4822 ata_sg_clean(qc);
4823
4824 /* command should be marked inactive atomically with qc completion */
4825 if (qc->tf.protocol == ATA_PROT_NCQ) {
4826 link->sactive &= ~(1 << qc->tag);
4827 if (!link->sactive)
4828 ap->nr_active_links--;
4829 } else {
4830 link->active_tag = ATA_TAG_POISON;
4831 ap->nr_active_links--;
4832 }
4833
4834 /* clear exclusive status */
4835 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4836 ap->excl_link == link))
4837 ap->excl_link = NULL;
4838
4839 /* atapi: mark qc as inactive to prevent the interrupt handler
4840 * from completing the command twice later, before the error handler
4841 * is called. (when rc != 0 and atapi request sense is needed)
4842 */
4843 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4844 ap->qc_active &= ~(1 << qc->tag);
4845
4846 /* call completion callback */
4847 qc->complete_fn(qc);
4848 }
4849
4850 static void fill_result_tf(struct ata_queued_cmd *qc)
4851 {
4852 struct ata_port *ap = qc->ap;
4853
4854 qc->result_tf.flags = qc->tf.flags;
4855 ap->ops->qc_fill_rtf(qc);
4856 }
4857
4858 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4859 {
4860 struct ata_device *dev = qc->dev;
4861
4862 if (ata_is_nodata(qc->tf.protocol))
4863 return;
4864
4865 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4866 return;
4867
4868 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4869 }
4870
4871 /**
4872 * ata_qc_complete - Complete an active ATA command
4873 * @qc: Command to complete
4874 *
4875 * Indicate to the mid and upper layers that an ATA command has
4876 * completed, with either an ok or not-ok status.
4877 *
4878 * Refrain from calling this function multiple times when
4879 * successfully completing multiple NCQ commands.
4880 * ata_qc_complete_multiple() should be used instead, which will
4881 * properly update IRQ expect state.
4882 *
4883 * LOCKING:
4884 * spin_lock_irqsave(host lock)
4885 */
4886 void ata_qc_complete(struct ata_queued_cmd *qc)
4887 {
4888 struct ata_port *ap = qc->ap;
4889
4890 /* XXX: New EH and old EH use different mechanisms to
4891 * synchronize EH with regular execution path.
4892 *
4893 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4894 * Normal execution path is responsible for not accessing a
4895 * failed qc. libata core enforces the rule by returning NULL
4896 * from ata_qc_from_tag() for failed qcs.
4897 *
4898 * Old EH depends on ata_qc_complete() nullifying completion
4899 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4900 * not synchronize with interrupt handler. Only PIO task is
4901 * taken care of.
4902 */
4903 if (ap->ops->error_handler) {
4904 struct ata_device *dev = qc->dev;
4905 struct ata_eh_info *ehi = &dev->link->eh_info;
4906
4907 if (unlikely(qc->err_mask))
4908 qc->flags |= ATA_QCFLAG_FAILED;
4909
4910 /*
4911 * Finish internal commands without any further processing
4912 * and always with the result TF filled.
4913 */
4914 if (unlikely(ata_tag_internal(qc->tag))) {
4915 fill_result_tf(qc);
4916 __ata_qc_complete(qc);
4917 return;
4918 }
4919
4920 /*
4921 * Non-internal qc has failed. Fill the result TF and
4922 * summon EH.
4923 */
4924 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4925 fill_result_tf(qc);
4926 ata_qc_schedule_eh(qc);
4927 return;
4928 }
4929
4930 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4931
4932 /* read result TF if requested */
4933 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4934 fill_result_tf(qc);
4935
4936 /* Some commands need post-processing after successful
4937 * completion.
4938 */
4939 switch (qc->tf.command) {
4940 case ATA_CMD_SET_FEATURES:
4941 if (qc->tf.feature != SETFEATURES_WC_ON &&
4942 qc->tf.feature != SETFEATURES_WC_OFF)
4943 break;
4944 /* fall through */
4945 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4946 case ATA_CMD_SET_MULTI: /* multi_count changed */
4947 /* revalidate device */
4948 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4949 ata_port_schedule_eh(ap);
4950 break;
4951
4952 case ATA_CMD_SLEEP:
4953 dev->flags |= ATA_DFLAG_SLEEPING;
4954 break;
4955 }
4956
4957 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4958 ata_verify_xfer(qc);
4959
4960 __ata_qc_complete(qc);
4961 } else {
4962 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4963 return;
4964
4965 /* read result TF if failed or requested */
4966 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4967 fill_result_tf(qc);
4968
4969 __ata_qc_complete(qc);
4970 }
4971 }
4972
4973 /**
4974 * ata_qc_complete_multiple - Complete multiple qcs successfully
4975 * @ap: port in question
4976 * @qc_active: new qc_active mask
4977 *
4978 * Complete in-flight commands. This functions is meant to be
4979 * called from low-level driver's interrupt routine to complete
4980 * requests normally. ap->qc_active and @qc_active is compared
4981 * and commands are completed accordingly.
4982 *
4983 * Always use this function when completing multiple NCQ commands
4984 * from IRQ handlers instead of calling ata_qc_complete()
4985 * multiple times to keep IRQ expect status properly in sync.
4986 *
4987 * LOCKING:
4988 * spin_lock_irqsave(host lock)
4989 *
4990 * RETURNS:
4991 * Number of completed commands on success, -errno otherwise.
4992 */
4993 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4994 {
4995 int nr_done = 0;
4996 u32 done_mask;
4997
4998 done_mask = ap->qc_active ^ qc_active;
4999
5000 if (unlikely(done_mask & qc_active)) {
5001 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5002 ap->qc_active, qc_active);
5003 return -EINVAL;
5004 }
5005
5006 while (done_mask) {
5007 struct ata_queued_cmd *qc;
5008 unsigned int tag = __ffs(done_mask);
5009
5010 qc = ata_qc_from_tag(ap, tag);
5011 if (qc) {
5012 ata_qc_complete(qc);
5013 nr_done++;
5014 }
5015 done_mask &= ~(1 << tag);
5016 }
5017
5018 return nr_done;
5019 }
5020
5021 /**
5022 * ata_qc_issue - issue taskfile to device
5023 * @qc: command to issue to device
5024 *
5025 * Prepare an ATA command to submission to device.
5026 * This includes mapping the data into a DMA-able
5027 * area, filling in the S/G table, and finally
5028 * writing the taskfile to hardware, starting the command.
5029 *
5030 * LOCKING:
5031 * spin_lock_irqsave(host lock)
5032 */
5033 void ata_qc_issue(struct ata_queued_cmd *qc)
5034 {
5035 struct ata_port *ap = qc->ap;
5036 struct ata_link *link = qc->dev->link;
5037 u8 prot = qc->tf.protocol;
5038
5039 /* Make sure only one non-NCQ command is outstanding. The
5040 * check is skipped for old EH because it reuses active qc to
5041 * request ATAPI sense.
5042 */
5043 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5044
5045 if (ata_is_ncq(prot)) {
5046 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5047
5048 if (!link->sactive)
5049 ap->nr_active_links++;
5050 link->sactive |= 1 << qc->tag;
5051 } else {
5052 WARN_ON_ONCE(link->sactive);
5053
5054 ap->nr_active_links++;
5055 link->active_tag = qc->tag;
5056 }
5057
5058 qc->flags |= ATA_QCFLAG_ACTIVE;
5059 ap->qc_active |= 1 << qc->tag;
5060
5061 /*
5062 * We guarantee to LLDs that they will have at least one
5063 * non-zero sg if the command is a data command.
5064 */
5065 if (WARN_ON_ONCE(ata_is_data(prot) &&
5066 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5067 goto sys_err;
5068
5069 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5070 (ap->flags & ATA_FLAG_PIO_DMA)))
5071 if (ata_sg_setup(qc))
5072 goto sys_err;
5073
5074 /* if device is sleeping, schedule reset and abort the link */
5075 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5076 link->eh_info.action |= ATA_EH_RESET;
5077 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5078 ata_link_abort(link);
5079 return;
5080 }
5081
5082 ap->ops->qc_prep(qc);
5083
5084 qc->err_mask |= ap->ops->qc_issue(qc);
5085 if (unlikely(qc->err_mask))
5086 goto err;
5087 return;
5088
5089 sys_err:
5090 qc->err_mask |= AC_ERR_SYSTEM;
5091 err:
5092 ata_qc_complete(qc);
5093 }
5094
5095 /**
5096 * sata_scr_valid - test whether SCRs are accessible
5097 * @link: ATA link to test SCR accessibility for
5098 *
5099 * Test whether SCRs are accessible for @link.
5100 *
5101 * LOCKING:
5102 * None.
5103 *
5104 * RETURNS:
5105 * 1 if SCRs are accessible, 0 otherwise.
5106 */
5107 int sata_scr_valid(struct ata_link *link)
5108 {
5109 struct ata_port *ap = link->ap;
5110
5111 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5112 }
5113
5114 /**
5115 * sata_scr_read - read SCR register of the specified port
5116 * @link: ATA link to read SCR for
5117 * @reg: SCR to read
5118 * @val: Place to store read value
5119 *
5120 * Read SCR register @reg of @link into *@val. This function is
5121 * guaranteed to succeed if @link is ap->link, the cable type of
5122 * the port is SATA and the port implements ->scr_read.
5123 *
5124 * LOCKING:
5125 * None if @link is ap->link. Kernel thread context otherwise.
5126 *
5127 * RETURNS:
5128 * 0 on success, negative errno on failure.
5129 */
5130 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5131 {
5132 if (ata_is_host_link(link)) {
5133 if (sata_scr_valid(link))
5134 return link->ap->ops->scr_read(link, reg, val);
5135 return -EOPNOTSUPP;
5136 }
5137
5138 return sata_pmp_scr_read(link, reg, val);
5139 }
5140
5141 /**
5142 * sata_scr_write - write SCR register of the specified port
5143 * @link: ATA link to write SCR for
5144 * @reg: SCR to write
5145 * @val: value to write
5146 *
5147 * Write @val to SCR register @reg of @link. This function is
5148 * guaranteed to succeed if @link is ap->link, the cable type of
5149 * the port is SATA and the port implements ->scr_read.
5150 *
5151 * LOCKING:
5152 * None if @link is ap->link. Kernel thread context otherwise.
5153 *
5154 * RETURNS:
5155 * 0 on success, negative errno on failure.
5156 */
5157 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5158 {
5159 if (ata_is_host_link(link)) {
5160 if (sata_scr_valid(link))
5161 return link->ap->ops->scr_write(link, reg, val);
5162 return -EOPNOTSUPP;
5163 }
5164
5165 return sata_pmp_scr_write(link, reg, val);
5166 }
5167
5168 /**
5169 * sata_scr_write_flush - write SCR register of the specified port and flush
5170 * @link: ATA link to write SCR for
5171 * @reg: SCR to write
5172 * @val: value to write
5173 *
5174 * This function is identical to sata_scr_write() except that this
5175 * function performs flush after writing to the register.
5176 *
5177 * LOCKING:
5178 * None if @link is ap->link. Kernel thread context otherwise.
5179 *
5180 * RETURNS:
5181 * 0 on success, negative errno on failure.
5182 */
5183 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5184 {
5185 if (ata_is_host_link(link)) {
5186 int rc;
5187
5188 if (sata_scr_valid(link)) {
5189 rc = link->ap->ops->scr_write(link, reg, val);
5190 if (rc == 0)
5191 rc = link->ap->ops->scr_read(link, reg, &val);
5192 return rc;
5193 }
5194 return -EOPNOTSUPP;
5195 }
5196
5197 return sata_pmp_scr_write(link, reg, val);
5198 }
5199
5200 /**
5201 * ata_phys_link_online - test whether the given link is online
5202 * @link: ATA link to test
5203 *
5204 * Test whether @link is online. Note that this function returns
5205 * 0 if online status of @link cannot be obtained, so
5206 * ata_link_online(link) != !ata_link_offline(link).
5207 *
5208 * LOCKING:
5209 * None.
5210 *
5211 * RETURNS:
5212 * True if the port online status is available and online.
5213 */
5214 bool ata_phys_link_online(struct ata_link *link)
5215 {
5216 u32 sstatus;
5217
5218 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5219 ata_sstatus_online(sstatus))
5220 return true;
5221 return false;
5222 }
5223
5224 /**
5225 * ata_phys_link_offline - test whether the given link is offline
5226 * @link: ATA link to test
5227 *
5228 * Test whether @link is offline. Note that this function
5229 * returns 0 if offline status of @link cannot be obtained, so
5230 * ata_link_online(link) != !ata_link_offline(link).
5231 *
5232 * LOCKING:
5233 * None.
5234 *
5235 * RETURNS:
5236 * True if the port offline status is available and offline.
5237 */
5238 bool ata_phys_link_offline(struct ata_link *link)
5239 {
5240 u32 sstatus;
5241
5242 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5243 !ata_sstatus_online(sstatus))
5244 return true;
5245 return false;
5246 }
5247
5248 /**
5249 * ata_link_online - test whether the given link is online
5250 * @link: ATA link to test
5251 *
5252 * Test whether @link is online. This is identical to
5253 * ata_phys_link_online() when there's no slave link. When
5254 * there's a slave link, this function should only be called on
5255 * the master link and will return true if any of M/S links is
5256 * online.
5257 *
5258 * LOCKING:
5259 * None.
5260 *
5261 * RETURNS:
5262 * True if the port online status is available and online.
5263 */
5264 bool ata_link_online(struct ata_link *link)
5265 {
5266 struct ata_link *slave = link->ap->slave_link;
5267
5268 WARN_ON(link == slave); /* shouldn't be called on slave link */
5269
5270 return ata_phys_link_online(link) ||
5271 (slave && ata_phys_link_online(slave));
5272 }
5273
5274 /**
5275 * ata_link_offline - test whether the given link is offline
5276 * @link: ATA link to test
5277 *
5278 * Test whether @link is offline. This is identical to
5279 * ata_phys_link_offline() when there's no slave link. When
5280 * there's a slave link, this function should only be called on
5281 * the master link and will return true if both M/S links are
5282 * offline.
5283 *
5284 * LOCKING:
5285 * None.
5286 *
5287 * RETURNS:
5288 * True if the port offline status is available and offline.
5289 */
5290 bool ata_link_offline(struct ata_link *link)
5291 {
5292 struct ata_link *slave = link->ap->slave_link;
5293
5294 WARN_ON(link == slave); /* shouldn't be called on slave link */
5295
5296 return ata_phys_link_offline(link) &&
5297 (!slave || ata_phys_link_offline(slave));
5298 }
5299
5300 #ifdef CONFIG_PM
5301 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5302 unsigned int action, unsigned int ehi_flags,
5303 bool async)
5304 {
5305 struct ata_link *link;
5306 unsigned long flags;
5307
5308 /* Previous resume operation might still be in
5309 * progress. Wait for PM_PENDING to clear.
5310 */
5311 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5312 ata_port_wait_eh(ap);
5313 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5314 }
5315
5316 /* request PM ops to EH */
5317 spin_lock_irqsave(ap->lock, flags);
5318
5319 ap->pm_mesg = mesg;
5320 ap->pflags |= ATA_PFLAG_PM_PENDING;
5321 ata_for_each_link(link, ap, HOST_FIRST) {
5322 link->eh_info.action |= action;
5323 link->eh_info.flags |= ehi_flags;
5324 }
5325
5326 ata_port_schedule_eh(ap);
5327
5328 spin_unlock_irqrestore(ap->lock, flags);
5329
5330 if (!async) {
5331 ata_port_wait_eh(ap);
5332 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5333 }
5334 }
5335
5336 /*
5337 * On some hardware, device fails to respond after spun down for suspend. As
5338 * the device won't be used before being resumed, we don't need to touch the
5339 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5340 *
5341 * http://thread.gmane.org/gmane.linux.ide/46764
5342 */
5343 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5344 | ATA_EHI_NO_AUTOPSY
5345 | ATA_EHI_NO_RECOVERY;
5346
5347 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5348 {
5349 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5350 }
5351
5352 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5353 {
5354 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5355 }
5356
5357 static int ata_port_pm_suspend(struct device *dev)
5358 {
5359 struct ata_port *ap = to_ata_port(dev);
5360
5361 if (pm_runtime_suspended(dev))
5362 return 0;
5363
5364 ata_port_suspend(ap, PMSG_SUSPEND);
5365 return 0;
5366 }
5367
5368 static int ata_port_pm_freeze(struct device *dev)
5369 {
5370 struct ata_port *ap = to_ata_port(dev);
5371
5372 if (pm_runtime_suspended(dev))
5373 return 0;
5374
5375 ata_port_suspend(ap, PMSG_FREEZE);
5376 return 0;
5377 }
5378
5379 static int ata_port_pm_poweroff(struct device *dev)
5380 {
5381 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5382 return 0;
5383 }
5384
5385 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5386 | ATA_EHI_QUIET;
5387
5388 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5389 {
5390 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5391 }
5392
5393 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5394 {
5395 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5396 }
5397
5398 static int ata_port_pm_resume(struct device *dev)
5399 {
5400 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5401 pm_runtime_disable(dev);
5402 pm_runtime_set_active(dev);
5403 pm_runtime_enable(dev);
5404 return 0;
5405 }
5406
5407 /*
5408 * For ODDs, the upper layer will poll for media change every few seconds,
5409 * which will make it enter and leave suspend state every few seconds. And
5410 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5411 * is very little and the ODD may malfunction after constantly being reset.
5412 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5413 * ODD is attached to the port.
5414 */
5415 static int ata_port_runtime_idle(struct device *dev)
5416 {
5417 struct ata_port *ap = to_ata_port(dev);
5418 struct ata_link *link;
5419 struct ata_device *adev;
5420
5421 ata_for_each_link(link, ap, HOST_FIRST) {
5422 ata_for_each_dev(adev, link, ENABLED)
5423 if (adev->class == ATA_DEV_ATAPI &&
5424 !zpodd_dev_enabled(adev))
5425 return -EBUSY;
5426 }
5427
5428 return 0;
5429 }
5430
5431 static int ata_port_runtime_suspend(struct device *dev)
5432 {
5433 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5434 return 0;
5435 }
5436
5437 static int ata_port_runtime_resume(struct device *dev)
5438 {
5439 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5440 return 0;
5441 }
5442
5443 static const struct dev_pm_ops ata_port_pm_ops = {
5444 .suspend = ata_port_pm_suspend,
5445 .resume = ata_port_pm_resume,
5446 .freeze = ata_port_pm_freeze,
5447 .thaw = ata_port_pm_resume,
5448 .poweroff = ata_port_pm_poweroff,
5449 .restore = ata_port_pm_resume,
5450
5451 .runtime_suspend = ata_port_runtime_suspend,
5452 .runtime_resume = ata_port_runtime_resume,
5453 .runtime_idle = ata_port_runtime_idle,
5454 };
5455
5456 /* sas ports don't participate in pm runtime management of ata_ports,
5457 * and need to resume ata devices at the domain level, not the per-port
5458 * level. sas suspend/resume is async to allow parallel port recovery
5459 * since sas has multiple ata_port instances per Scsi_Host.
5460 */
5461 void ata_sas_port_suspend(struct ata_port *ap)
5462 {
5463 ata_port_suspend_async(ap, PMSG_SUSPEND);
5464 }
5465 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5466
5467 void ata_sas_port_resume(struct ata_port *ap)
5468 {
5469 ata_port_resume_async(ap, PMSG_RESUME);
5470 }
5471 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5472
5473 /**
5474 * ata_host_suspend - suspend host
5475 * @host: host to suspend
5476 * @mesg: PM message
5477 *
5478 * Suspend @host. Actual operation is performed by port suspend.
5479 */
5480 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5481 {
5482 host->dev->power.power_state = mesg;
5483 return 0;
5484 }
5485
5486 /**
5487 * ata_host_resume - resume host
5488 * @host: host to resume
5489 *
5490 * Resume @host. Actual operation is performed by port resume.
5491 */
5492 void ata_host_resume(struct ata_host *host)
5493 {
5494 host->dev->power.power_state = PMSG_ON;
5495 }
5496 #endif
5497
5498 struct device_type ata_port_type = {
5499 .name = "ata_port",
5500 #ifdef CONFIG_PM
5501 .pm = &ata_port_pm_ops,
5502 #endif
5503 };
5504
5505 /**
5506 * ata_dev_init - Initialize an ata_device structure
5507 * @dev: Device structure to initialize
5508 *
5509 * Initialize @dev in preparation for probing.
5510 *
5511 * LOCKING:
5512 * Inherited from caller.
5513 */
5514 void ata_dev_init(struct ata_device *dev)
5515 {
5516 struct ata_link *link = ata_dev_phys_link(dev);
5517 struct ata_port *ap = link->ap;
5518 unsigned long flags;
5519
5520 /* SATA spd limit is bound to the attached device, reset together */
5521 link->sata_spd_limit = link->hw_sata_spd_limit;
5522 link->sata_spd = 0;
5523
5524 /* High bits of dev->flags are used to record warm plug
5525 * requests which occur asynchronously. Synchronize using
5526 * host lock.
5527 */
5528 spin_lock_irqsave(ap->lock, flags);
5529 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5530 dev->horkage = 0;
5531 spin_unlock_irqrestore(ap->lock, flags);
5532
5533 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5534 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5535 dev->pio_mask = UINT_MAX;
5536 dev->mwdma_mask = UINT_MAX;
5537 dev->udma_mask = UINT_MAX;
5538 }
5539
5540 /**
5541 * ata_link_init - Initialize an ata_link structure
5542 * @ap: ATA port link is attached to
5543 * @link: Link structure to initialize
5544 * @pmp: Port multiplier port number
5545 *
5546 * Initialize @link.
5547 *
5548 * LOCKING:
5549 * Kernel thread context (may sleep)
5550 */
5551 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5552 {
5553 int i;
5554
5555 /* clear everything except for devices */
5556 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5557 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5558
5559 link->ap = ap;
5560 link->pmp = pmp;
5561 link->active_tag = ATA_TAG_POISON;
5562 link->hw_sata_spd_limit = UINT_MAX;
5563
5564 /* can't use iterator, ap isn't initialized yet */
5565 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5566 struct ata_device *dev = &link->device[i];
5567
5568 dev->link = link;
5569 dev->devno = dev - link->device;
5570 #ifdef CONFIG_ATA_ACPI
5571 dev->gtf_filter = ata_acpi_gtf_filter;
5572 #endif
5573 ata_dev_init(dev);
5574 }
5575 }
5576
5577 /**
5578 * sata_link_init_spd - Initialize link->sata_spd_limit
5579 * @link: Link to configure sata_spd_limit for
5580 *
5581 * Initialize @link->[hw_]sata_spd_limit to the currently
5582 * configured value.
5583 *
5584 * LOCKING:
5585 * Kernel thread context (may sleep).
5586 *
5587 * RETURNS:
5588 * 0 on success, -errno on failure.
5589 */
5590 int sata_link_init_spd(struct ata_link *link)
5591 {
5592 u8 spd;
5593 int rc;
5594
5595 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5596 if (rc)
5597 return rc;
5598
5599 spd = (link->saved_scontrol >> 4) & 0xf;
5600 if (spd)
5601 link->hw_sata_spd_limit &= (1 << spd) - 1;
5602
5603 ata_force_link_limits(link);
5604
5605 link->sata_spd_limit = link->hw_sata_spd_limit;
5606
5607 return 0;
5608 }
5609
5610 /**
5611 * ata_port_alloc - allocate and initialize basic ATA port resources
5612 * @host: ATA host this allocated port belongs to
5613 *
5614 * Allocate and initialize basic ATA port resources.
5615 *
5616 * RETURNS:
5617 * Allocate ATA port on success, NULL on failure.
5618 *
5619 * LOCKING:
5620 * Inherited from calling layer (may sleep).
5621 */
5622 struct ata_port *ata_port_alloc(struct ata_host *host)
5623 {
5624 struct ata_port *ap;
5625
5626 DPRINTK("ENTER\n");
5627
5628 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5629 if (!ap)
5630 return NULL;
5631
5632 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5633 ap->lock = &host->lock;
5634 ap->print_id = -1;
5635 ap->local_port_no = -1;
5636 ap->host = host;
5637 ap->dev = host->dev;
5638
5639 #if defined(ATA_VERBOSE_DEBUG)
5640 /* turn on all debugging levels */
5641 ap->msg_enable = 0x00FF;
5642 #elif defined(ATA_DEBUG)
5643 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5644 #else
5645 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5646 #endif
5647
5648 mutex_init(&ap->scsi_scan_mutex);
5649 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5650 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5651 INIT_LIST_HEAD(&ap->eh_done_q);
5652 init_waitqueue_head(&ap->eh_wait_q);
5653 init_completion(&ap->park_req_pending);
5654 init_timer_deferrable(&ap->fastdrain_timer);
5655 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5656 ap->fastdrain_timer.data = (unsigned long)ap;
5657
5658 ap->cbl = ATA_CBL_NONE;
5659
5660 ata_link_init(ap, &ap->link, 0);
5661
5662 #ifdef ATA_IRQ_TRAP
5663 ap->stats.unhandled_irq = 1;
5664 ap->stats.idle_irq = 1;
5665 #endif
5666 ata_sff_port_init(ap);
5667
5668 return ap;
5669 }
5670
5671 static void ata_host_release(struct device *gendev, void *res)
5672 {
5673 struct ata_host *host = dev_get_drvdata(gendev);
5674 int i;
5675
5676 for (i = 0; i < host->n_ports; i++) {
5677 struct ata_port *ap = host->ports[i];
5678
5679 if (!ap)
5680 continue;
5681
5682 if (ap->scsi_host)
5683 scsi_host_put(ap->scsi_host);
5684
5685 kfree(ap->pmp_link);
5686 kfree(ap->slave_link);
5687 kfree(ap);
5688 host->ports[i] = NULL;
5689 }
5690
5691 dev_set_drvdata(gendev, NULL);
5692 }
5693
5694 /**
5695 * ata_host_alloc - allocate and init basic ATA host resources
5696 * @dev: generic device this host is associated with
5697 * @max_ports: maximum number of ATA ports associated with this host
5698 *
5699 * Allocate and initialize basic ATA host resources. LLD calls
5700 * this function to allocate a host, initializes it fully and
5701 * attaches it using ata_host_register().
5702 *
5703 * @max_ports ports are allocated and host->n_ports is
5704 * initialized to @max_ports. The caller is allowed to decrease
5705 * host->n_ports before calling ata_host_register(). The unused
5706 * ports will be automatically freed on registration.
5707 *
5708 * RETURNS:
5709 * Allocate ATA host on success, NULL on failure.
5710 *
5711 * LOCKING:
5712 * Inherited from calling layer (may sleep).
5713 */
5714 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5715 {
5716 struct ata_host *host;
5717 size_t sz;
5718 int i;
5719
5720 DPRINTK("ENTER\n");
5721
5722 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5723 return NULL;
5724
5725 /* alloc a container for our list of ATA ports (buses) */
5726 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5727 /* alloc a container for our list of ATA ports (buses) */
5728 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5729 if (!host)
5730 goto err_out;
5731
5732 devres_add(dev, host);
5733 dev_set_drvdata(dev, host);
5734
5735 spin_lock_init(&host->lock);
5736 mutex_init(&host->eh_mutex);
5737 host->dev = dev;
5738 host->n_ports = max_ports;
5739
5740 /* allocate ports bound to this host */
5741 for (i = 0; i < max_ports; i++) {
5742 struct ata_port *ap;
5743
5744 ap = ata_port_alloc(host);
5745 if (!ap)
5746 goto err_out;
5747
5748 ap->port_no = i;
5749 host->ports[i] = ap;
5750 }
5751
5752 devres_remove_group(dev, NULL);
5753 return host;
5754
5755 err_out:
5756 devres_release_group(dev, NULL);
5757 return NULL;
5758 }
5759
5760 /**
5761 * ata_host_alloc_pinfo - alloc host and init with port_info array
5762 * @dev: generic device this host is associated with
5763 * @ppi: array of ATA port_info to initialize host with
5764 * @n_ports: number of ATA ports attached to this host
5765 *
5766 * Allocate ATA host and initialize with info from @ppi. If NULL
5767 * terminated, @ppi may contain fewer entries than @n_ports. The
5768 * last entry will be used for the remaining ports.
5769 *
5770 * RETURNS:
5771 * Allocate ATA host on success, NULL on failure.
5772 *
5773 * LOCKING:
5774 * Inherited from calling layer (may sleep).
5775 */
5776 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5777 const struct ata_port_info * const * ppi,
5778 int n_ports)
5779 {
5780 const struct ata_port_info *pi;
5781 struct ata_host *host;
5782 int i, j;
5783
5784 host = ata_host_alloc(dev, n_ports);
5785 if (!host)
5786 return NULL;
5787
5788 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5789 struct ata_port *ap = host->ports[i];
5790
5791 if (ppi[j])
5792 pi = ppi[j++];
5793
5794 ap->pio_mask = pi->pio_mask;
5795 ap->mwdma_mask = pi->mwdma_mask;
5796 ap->udma_mask = pi->udma_mask;
5797 ap->flags |= pi->flags;
5798 ap->link.flags |= pi->link_flags;
5799 ap->ops = pi->port_ops;
5800
5801 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5802 host->ops = pi->port_ops;
5803 }
5804
5805 return host;
5806 }
5807
5808 /**
5809 * ata_slave_link_init - initialize slave link
5810 * @ap: port to initialize slave link for
5811 *
5812 * Create and initialize slave link for @ap. This enables slave
5813 * link handling on the port.
5814 *
5815 * In libata, a port contains links and a link contains devices.
5816 * There is single host link but if a PMP is attached to it,
5817 * there can be multiple fan-out links. On SATA, there's usually
5818 * a single device connected to a link but PATA and SATA
5819 * controllers emulating TF based interface can have two - master
5820 * and slave.
5821 *
5822 * However, there are a few controllers which don't fit into this
5823 * abstraction too well - SATA controllers which emulate TF
5824 * interface with both master and slave devices but also have
5825 * separate SCR register sets for each device. These controllers
5826 * need separate links for physical link handling
5827 * (e.g. onlineness, link speed) but should be treated like a
5828 * traditional M/S controller for everything else (e.g. command
5829 * issue, softreset).
5830 *
5831 * slave_link is libata's way of handling this class of
5832 * controllers without impacting core layer too much. For
5833 * anything other than physical link handling, the default host
5834 * link is used for both master and slave. For physical link
5835 * handling, separate @ap->slave_link is used. All dirty details
5836 * are implemented inside libata core layer. From LLD's POV, the
5837 * only difference is that prereset, hardreset and postreset are
5838 * called once more for the slave link, so the reset sequence
5839 * looks like the following.
5840 *
5841 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5842 * softreset(M) -> postreset(M) -> postreset(S)
5843 *
5844 * Note that softreset is called only for the master. Softreset
5845 * resets both M/S by definition, so SRST on master should handle
5846 * both (the standard method will work just fine).
5847 *
5848 * LOCKING:
5849 * Should be called before host is registered.
5850 *
5851 * RETURNS:
5852 * 0 on success, -errno on failure.
5853 */
5854 int ata_slave_link_init(struct ata_port *ap)
5855 {
5856 struct ata_link *link;
5857
5858 WARN_ON(ap->slave_link);
5859 WARN_ON(ap->flags & ATA_FLAG_PMP);
5860
5861 link = kzalloc(sizeof(*link), GFP_KERNEL);
5862 if (!link)
5863 return -ENOMEM;
5864
5865 ata_link_init(ap, link, 1);
5866 ap->slave_link = link;
5867 return 0;
5868 }
5869
5870 static void ata_host_stop(struct device *gendev, void *res)
5871 {
5872 struct ata_host *host = dev_get_drvdata(gendev);
5873 int i;
5874
5875 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5876
5877 for (i = 0; i < host->n_ports; i++) {
5878 struct ata_port *ap = host->ports[i];
5879
5880 if (ap->ops->port_stop)
5881 ap->ops->port_stop(ap);
5882 }
5883
5884 if (host->ops->host_stop)
5885 host->ops->host_stop(host);
5886 }
5887
5888 /**
5889 * ata_finalize_port_ops - finalize ata_port_operations
5890 * @ops: ata_port_operations to finalize
5891 *
5892 * An ata_port_operations can inherit from another ops and that
5893 * ops can again inherit from another. This can go on as many
5894 * times as necessary as long as there is no loop in the
5895 * inheritance chain.
5896 *
5897 * Ops tables are finalized when the host is started. NULL or
5898 * unspecified entries are inherited from the closet ancestor
5899 * which has the method and the entry is populated with it.
5900 * After finalization, the ops table directly points to all the
5901 * methods and ->inherits is no longer necessary and cleared.
5902 *
5903 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5904 *
5905 * LOCKING:
5906 * None.
5907 */
5908 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5909 {
5910 static DEFINE_SPINLOCK(lock);
5911 const struct ata_port_operations *cur;
5912 void **begin = (void **)ops;
5913 void **end = (void **)&ops->inherits;
5914 void **pp;
5915
5916 if (!ops || !ops->inherits)
5917 return;
5918
5919 spin_lock(&lock);
5920
5921 for (cur = ops->inherits; cur; cur = cur->inherits) {
5922 void **inherit = (void **)cur;
5923
5924 for (pp = begin; pp < end; pp++, inherit++)
5925 if (!*pp)
5926 *pp = *inherit;
5927 }
5928
5929 for (pp = begin; pp < end; pp++)
5930 if (IS_ERR(*pp))
5931 *pp = NULL;
5932
5933 ops->inherits = NULL;
5934
5935 spin_unlock(&lock);
5936 }
5937
5938 /**
5939 * ata_host_start - start and freeze ports of an ATA host
5940 * @host: ATA host to start ports for
5941 *
5942 * Start and then freeze ports of @host. Started status is
5943 * recorded in host->flags, so this function can be called
5944 * multiple times. Ports are guaranteed to get started only
5945 * once. If host->ops isn't initialized yet, its set to the
5946 * first non-dummy port ops.
5947 *
5948 * LOCKING:
5949 * Inherited from calling layer (may sleep).
5950 *
5951 * RETURNS:
5952 * 0 if all ports are started successfully, -errno otherwise.
5953 */
5954 int ata_host_start(struct ata_host *host)
5955 {
5956 int have_stop = 0;
5957 void *start_dr = NULL;
5958 int i, rc;
5959
5960 if (host->flags & ATA_HOST_STARTED)
5961 return 0;
5962
5963 ata_finalize_port_ops(host->ops);
5964
5965 for (i = 0; i < host->n_ports; i++) {
5966 struct ata_port *ap = host->ports[i];
5967
5968 ata_finalize_port_ops(ap->ops);
5969
5970 if (!host->ops && !ata_port_is_dummy(ap))
5971 host->ops = ap->ops;
5972
5973 if (ap->ops->port_stop)
5974 have_stop = 1;
5975 }
5976
5977 if (host->ops->host_stop)
5978 have_stop = 1;
5979
5980 if (have_stop) {
5981 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5982 if (!start_dr)
5983 return -ENOMEM;
5984 }
5985
5986 for (i = 0; i < host->n_ports; i++) {
5987 struct ata_port *ap = host->ports[i];
5988
5989 if (ap->ops->port_start) {
5990 rc = ap->ops->port_start(ap);
5991 if (rc) {
5992 if (rc != -ENODEV)
5993 dev_err(host->dev,
5994 "failed to start port %d (errno=%d)\n",
5995 i, rc);
5996 goto err_out;
5997 }
5998 }
5999 ata_eh_freeze_port(ap);
6000 }
6001
6002 if (start_dr)
6003 devres_add(host->dev, start_dr);
6004 host->flags |= ATA_HOST_STARTED;
6005 return 0;
6006
6007 err_out:
6008 while (--i >= 0) {
6009 struct ata_port *ap = host->ports[i];
6010
6011 if (ap->ops->port_stop)
6012 ap->ops->port_stop(ap);
6013 }
6014 devres_free(start_dr);
6015 return rc;
6016 }
6017
6018 /**
6019 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6020 * @host: host to initialize
6021 * @dev: device host is attached to
6022 * @ops: port_ops
6023 *
6024 */
6025 void ata_host_init(struct ata_host *host, struct device *dev,
6026 struct ata_port_operations *ops)
6027 {
6028 spin_lock_init(&host->lock);
6029 mutex_init(&host->eh_mutex);
6030 host->n_tags = ATA_MAX_QUEUE - 1;
6031 host->dev = dev;
6032 host->ops = ops;
6033 }
6034
6035 void __ata_port_probe(struct ata_port *ap)
6036 {
6037 struct ata_eh_info *ehi = &ap->link.eh_info;
6038 unsigned long flags;
6039
6040 /* kick EH for boot probing */
6041 spin_lock_irqsave(ap->lock, flags);
6042
6043 ehi->probe_mask |= ATA_ALL_DEVICES;
6044 ehi->action |= ATA_EH_RESET;
6045 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6046
6047 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6048 ap->pflags |= ATA_PFLAG_LOADING;
6049 ata_port_schedule_eh(ap);
6050
6051 spin_unlock_irqrestore(ap->lock, flags);
6052 }
6053
6054 int ata_port_probe(struct ata_port *ap)
6055 {
6056 int rc = 0;
6057
6058 if (ap->ops->error_handler) {
6059 __ata_port_probe(ap);
6060 ata_port_wait_eh(ap);
6061 } else {
6062 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6063 rc = ata_bus_probe(ap);
6064 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6065 }
6066 return rc;
6067 }
6068
6069
6070 static void async_port_probe(void *data, async_cookie_t cookie)
6071 {
6072 struct ata_port *ap = data;
6073
6074 /*
6075 * If we're not allowed to scan this host in parallel,
6076 * we need to wait until all previous scans have completed
6077 * before going further.
6078 * Jeff Garzik says this is only within a controller, so we
6079 * don't need to wait for port 0, only for later ports.
6080 */
6081 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6082 async_synchronize_cookie(cookie);
6083
6084 (void)ata_port_probe(ap);
6085
6086 /* in order to keep device order, we need to synchronize at this point */
6087 async_synchronize_cookie(cookie);
6088
6089 ata_scsi_scan_host(ap, 1);
6090 }
6091
6092 /**
6093 * ata_host_register - register initialized ATA host
6094 * @host: ATA host to register
6095 * @sht: template for SCSI host
6096 *
6097 * Register initialized ATA host. @host is allocated using
6098 * ata_host_alloc() and fully initialized by LLD. This function
6099 * starts ports, registers @host with ATA and SCSI layers and
6100 * probe registered devices.
6101 *
6102 * LOCKING:
6103 * Inherited from calling layer (may sleep).
6104 *
6105 * RETURNS:
6106 * 0 on success, -errno otherwise.
6107 */
6108 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6109 {
6110 int i, rc;
6111
6112 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6113
6114 /* host must have been started */
6115 if (!(host->flags & ATA_HOST_STARTED)) {
6116 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6117 WARN_ON(1);
6118 return -EINVAL;
6119 }
6120
6121 /* Blow away unused ports. This happens when LLD can't
6122 * determine the exact number of ports to allocate at
6123 * allocation time.
6124 */
6125 for (i = host->n_ports; host->ports[i]; i++)
6126 kfree(host->ports[i]);
6127
6128 /* give ports names and add SCSI hosts */
6129 for (i = 0; i < host->n_ports; i++) {
6130 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6131 host->ports[i]->local_port_no = i + 1;
6132 }
6133
6134 /* Create associated sysfs transport objects */
6135 for (i = 0; i < host->n_ports; i++) {
6136 rc = ata_tport_add(host->dev,host->ports[i]);
6137 if (rc) {
6138 goto err_tadd;
6139 }
6140 }
6141
6142 rc = ata_scsi_add_hosts(host, sht);
6143 if (rc)
6144 goto err_tadd;
6145
6146 /* set cable, sata_spd_limit and report */
6147 for (i = 0; i < host->n_ports; i++) {
6148 struct ata_port *ap = host->ports[i];
6149 unsigned long xfer_mask;
6150
6151 /* set SATA cable type if still unset */
6152 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6153 ap->cbl = ATA_CBL_SATA;
6154
6155 /* init sata_spd_limit to the current value */
6156 sata_link_init_spd(&ap->link);
6157 if (ap->slave_link)
6158 sata_link_init_spd(ap->slave_link);
6159
6160 /* print per-port info to dmesg */
6161 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6162 ap->udma_mask);
6163
6164 if (!ata_port_is_dummy(ap)) {
6165 ata_port_info(ap, "%cATA max %s %s\n",
6166 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6167 ata_mode_string(xfer_mask),
6168 ap->link.eh_info.desc);
6169 ata_ehi_clear_desc(&ap->link.eh_info);
6170 } else
6171 ata_port_info(ap, "DUMMY\n");
6172 }
6173
6174 /* perform each probe asynchronously */
6175 for (i = 0; i < host->n_ports; i++) {
6176 struct ata_port *ap = host->ports[i];
6177 async_schedule(async_port_probe, ap);
6178 }
6179
6180 return 0;
6181
6182 err_tadd:
6183 while (--i >= 0) {
6184 ata_tport_delete(host->ports[i]);
6185 }
6186 return rc;
6187
6188 }
6189
6190 /**
6191 * ata_host_activate - start host, request IRQ and register it
6192 * @host: target ATA host
6193 * @irq: IRQ to request
6194 * @irq_handler: irq_handler used when requesting IRQ
6195 * @irq_flags: irq_flags used when requesting IRQ
6196 * @sht: scsi_host_template to use when registering the host
6197 *
6198 * After allocating an ATA host and initializing it, most libata
6199 * LLDs perform three steps to activate the host - start host,
6200 * request IRQ and register it. This helper takes necessasry
6201 * arguments and performs the three steps in one go.
6202 *
6203 * An invalid IRQ skips the IRQ registration and expects the host to
6204 * have set polling mode on the port. In this case, @irq_handler
6205 * should be NULL.
6206 *
6207 * LOCKING:
6208 * Inherited from calling layer (may sleep).
6209 *
6210 * RETURNS:
6211 * 0 on success, -errno otherwise.
6212 */
6213 int ata_host_activate(struct ata_host *host, int irq,
6214 irq_handler_t irq_handler, unsigned long irq_flags,
6215 struct scsi_host_template *sht)
6216 {
6217 int i, rc;
6218
6219 rc = ata_host_start(host);
6220 if (rc)
6221 return rc;
6222
6223 /* Special case for polling mode */
6224 if (!irq) {
6225 WARN_ON(irq_handler);
6226 return ata_host_register(host, sht);
6227 }
6228
6229 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6230 dev_driver_string(host->dev), host);
6231 if (rc)
6232 return rc;
6233
6234 for (i = 0; i < host->n_ports; i++)
6235 ata_port_desc(host->ports[i], "irq %d", irq);
6236
6237 rc = ata_host_register(host, sht);
6238 /* if failed, just free the IRQ and leave ports alone */
6239 if (rc)
6240 devm_free_irq(host->dev, irq, host);
6241
6242 return rc;
6243 }
6244
6245 /**
6246 * ata_port_detach - Detach ATA port in prepration of device removal
6247 * @ap: ATA port to be detached
6248 *
6249 * Detach all ATA devices and the associated SCSI devices of @ap;
6250 * then, remove the associated SCSI host. @ap is guaranteed to
6251 * be quiescent on return from this function.
6252 *
6253 * LOCKING:
6254 * Kernel thread context (may sleep).
6255 */
6256 static void ata_port_detach(struct ata_port *ap)
6257 {
6258 unsigned long flags;
6259 struct ata_link *link;
6260 struct ata_device *dev;
6261
6262 if (!ap->ops->error_handler)
6263 goto skip_eh;
6264
6265 /* tell EH we're leaving & flush EH */
6266 spin_lock_irqsave(ap->lock, flags);
6267 ap->pflags |= ATA_PFLAG_UNLOADING;
6268 ata_port_schedule_eh(ap);
6269 spin_unlock_irqrestore(ap->lock, flags);
6270
6271 /* wait till EH commits suicide */
6272 ata_port_wait_eh(ap);
6273
6274 /* it better be dead now */
6275 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6276
6277 cancel_delayed_work_sync(&ap->hotplug_task);
6278
6279 skip_eh:
6280 /* clean up zpodd on port removal */
6281 ata_for_each_link(link, ap, HOST_FIRST) {
6282 ata_for_each_dev(dev, link, ALL) {
6283 if (zpodd_dev_enabled(dev))
6284 zpodd_exit(dev);
6285 }
6286 }
6287 if (ap->pmp_link) {
6288 int i;
6289 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6290 ata_tlink_delete(&ap->pmp_link[i]);
6291 }
6292 /* remove the associated SCSI host */
6293 scsi_remove_host(ap->scsi_host);
6294 ata_tport_delete(ap);
6295 }
6296
6297 /**
6298 * ata_host_detach - Detach all ports of an ATA host
6299 * @host: Host to detach
6300 *
6301 * Detach all ports of @host.
6302 *
6303 * LOCKING:
6304 * Kernel thread context (may sleep).
6305 */
6306 void ata_host_detach(struct ata_host *host)
6307 {
6308 int i;
6309
6310 for (i = 0; i < host->n_ports; i++)
6311 ata_port_detach(host->ports[i]);
6312
6313 /* the host is dead now, dissociate ACPI */
6314 ata_acpi_dissociate(host);
6315 }
6316
6317 #ifdef CONFIG_PCI
6318
6319 /**
6320 * ata_pci_remove_one - PCI layer callback for device removal
6321 * @pdev: PCI device that was removed
6322 *
6323 * PCI layer indicates to libata via this hook that hot-unplug or
6324 * module unload event has occurred. Detach all ports. Resource
6325 * release is handled via devres.
6326 *
6327 * LOCKING:
6328 * Inherited from PCI layer (may sleep).
6329 */
6330 void ata_pci_remove_one(struct pci_dev *pdev)
6331 {
6332 struct ata_host *host = pci_get_drvdata(pdev);
6333
6334 ata_host_detach(host);
6335 }
6336
6337 /* move to PCI subsystem */
6338 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6339 {
6340 unsigned long tmp = 0;
6341
6342 switch (bits->width) {
6343 case 1: {
6344 u8 tmp8 = 0;
6345 pci_read_config_byte(pdev, bits->reg, &tmp8);
6346 tmp = tmp8;
6347 break;
6348 }
6349 case 2: {
6350 u16 tmp16 = 0;
6351 pci_read_config_word(pdev, bits->reg, &tmp16);
6352 tmp = tmp16;
6353 break;
6354 }
6355 case 4: {
6356 u32 tmp32 = 0;
6357 pci_read_config_dword(pdev, bits->reg, &tmp32);
6358 tmp = tmp32;
6359 break;
6360 }
6361
6362 default:
6363 return -EINVAL;
6364 }
6365
6366 tmp &= bits->mask;
6367
6368 return (tmp == bits->val) ? 1 : 0;
6369 }
6370
6371 #ifdef CONFIG_PM
6372 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6373 {
6374 pci_save_state(pdev);
6375 pci_disable_device(pdev);
6376
6377 if (mesg.event & PM_EVENT_SLEEP)
6378 pci_set_power_state(pdev, PCI_D3hot);
6379 }
6380
6381 int ata_pci_device_do_resume(struct pci_dev *pdev)
6382 {
6383 int rc;
6384
6385 pci_set_power_state(pdev, PCI_D0);
6386 pci_restore_state(pdev);
6387
6388 rc = pcim_enable_device(pdev);
6389 if (rc) {
6390 dev_err(&pdev->dev,
6391 "failed to enable device after resume (%d)\n", rc);
6392 return rc;
6393 }
6394
6395 pci_set_master(pdev);
6396 return 0;
6397 }
6398
6399 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6400 {
6401 struct ata_host *host = pci_get_drvdata(pdev);
6402 int rc = 0;
6403
6404 rc = ata_host_suspend(host, mesg);
6405 if (rc)
6406 return rc;
6407
6408 ata_pci_device_do_suspend(pdev, mesg);
6409
6410 return 0;
6411 }
6412
6413 int ata_pci_device_resume(struct pci_dev *pdev)
6414 {
6415 struct ata_host *host = pci_get_drvdata(pdev);
6416 int rc;
6417
6418 rc = ata_pci_device_do_resume(pdev);
6419 if (rc == 0)
6420 ata_host_resume(host);
6421 return rc;
6422 }
6423 #endif /* CONFIG_PM */
6424
6425 #endif /* CONFIG_PCI */
6426
6427 /**
6428 * ata_platform_remove_one - Platform layer callback for device removal
6429 * @pdev: Platform device that was removed
6430 *
6431 * Platform layer indicates to libata via this hook that hot-unplug or
6432 * module unload event has occurred. Detach all ports. Resource
6433 * release is handled via devres.
6434 *
6435 * LOCKING:
6436 * Inherited from platform layer (may sleep).
6437 */
6438 int ata_platform_remove_one(struct platform_device *pdev)
6439 {
6440 struct ata_host *host = platform_get_drvdata(pdev);
6441
6442 ata_host_detach(host);
6443
6444 return 0;
6445 }
6446
6447 static int __init ata_parse_force_one(char **cur,
6448 struct ata_force_ent *force_ent,
6449 const char **reason)
6450 {
6451 /* FIXME: Currently, there's no way to tag init const data and
6452 * using __initdata causes build failure on some versions of
6453 * gcc. Once __initdataconst is implemented, add const to the
6454 * following structure.
6455 */
6456 static struct ata_force_param force_tbl[] __initdata = {
6457 { "40c", .cbl = ATA_CBL_PATA40 },
6458 { "80c", .cbl = ATA_CBL_PATA80 },
6459 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6460 { "unk", .cbl = ATA_CBL_PATA_UNK },
6461 { "ign", .cbl = ATA_CBL_PATA_IGN },
6462 { "sata", .cbl = ATA_CBL_SATA },
6463 { "1.5Gbps", .spd_limit = 1 },
6464 { "3.0Gbps", .spd_limit = 2 },
6465 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6466 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6467 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6468 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6469 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6470 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6471 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6472 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6473 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6474 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6475 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6476 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6477 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6478 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6479 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6480 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6481 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6482 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6483 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6484 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6485 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6486 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6487 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6488 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6489 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6490 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6491 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6492 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6493 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6494 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6495 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6496 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6497 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6498 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6499 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6500 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6501 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6502 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6503 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6504 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6505 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6506 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6507 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6508 };
6509 char *start = *cur, *p = *cur;
6510 char *id, *val, *endp;
6511 const struct ata_force_param *match_fp = NULL;
6512 int nr_matches = 0, i;
6513
6514 /* find where this param ends and update *cur */
6515 while (*p != '\0' && *p != ',')
6516 p++;
6517
6518 if (*p == '\0')
6519 *cur = p;
6520 else
6521 *cur = p + 1;
6522
6523 *p = '\0';
6524
6525 /* parse */
6526 p = strchr(start, ':');
6527 if (!p) {
6528 val = strstrip(start);
6529 goto parse_val;
6530 }
6531 *p = '\0';
6532
6533 id = strstrip(start);
6534 val = strstrip(p + 1);
6535
6536 /* parse id */
6537 p = strchr(id, '.');
6538 if (p) {
6539 *p++ = '\0';
6540 force_ent->device = simple_strtoul(p, &endp, 10);
6541 if (p == endp || *endp != '\0') {
6542 *reason = "invalid device";
6543 return -EINVAL;
6544 }
6545 }
6546
6547 force_ent->port = simple_strtoul(id, &endp, 10);
6548 if (p == endp || *endp != '\0') {
6549 *reason = "invalid port/link";
6550 return -EINVAL;
6551 }
6552
6553 parse_val:
6554 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6555 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6556 const struct ata_force_param *fp = &force_tbl[i];
6557
6558 if (strncasecmp(val, fp->name, strlen(val)))
6559 continue;
6560
6561 nr_matches++;
6562 match_fp = fp;
6563
6564 if (strcasecmp(val, fp->name) == 0) {
6565 nr_matches = 1;
6566 break;
6567 }
6568 }
6569
6570 if (!nr_matches) {
6571 *reason = "unknown value";
6572 return -EINVAL;
6573 }
6574 if (nr_matches > 1) {
6575 *reason = "ambigious value";
6576 return -EINVAL;
6577 }
6578
6579 force_ent->param = *match_fp;
6580
6581 return 0;
6582 }
6583
6584 static void __init ata_parse_force_param(void)
6585 {
6586 int idx = 0, size = 1;
6587 int last_port = -1, last_device = -1;
6588 char *p, *cur, *next;
6589
6590 /* calculate maximum number of params and allocate force_tbl */
6591 for (p = ata_force_param_buf; *p; p++)
6592 if (*p == ',')
6593 size++;
6594
6595 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6596 if (!ata_force_tbl) {
6597 printk(KERN_WARNING "ata: failed to extend force table, "
6598 "libata.force ignored\n");
6599 return;
6600 }
6601
6602 /* parse and populate the table */
6603 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6604 const char *reason = "";
6605 struct ata_force_ent te = { .port = -1, .device = -1 };
6606
6607 next = cur;
6608 if (ata_parse_force_one(&next, &te, &reason)) {
6609 printk(KERN_WARNING "ata: failed to parse force "
6610 "parameter \"%s\" (%s)\n",
6611 cur, reason);
6612 continue;
6613 }
6614
6615 if (te.port == -1) {
6616 te.port = last_port;
6617 te.device = last_device;
6618 }
6619
6620 ata_force_tbl[idx++] = te;
6621
6622 last_port = te.port;
6623 last_device = te.device;
6624 }
6625
6626 ata_force_tbl_size = idx;
6627 }
6628
6629 static int __init ata_init(void)
6630 {
6631 int rc;
6632
6633 ata_parse_force_param();
6634
6635 rc = ata_sff_init();
6636 if (rc) {
6637 kfree(ata_force_tbl);
6638 return rc;
6639 }
6640
6641 libata_transport_init();
6642 ata_scsi_transport_template = ata_attach_transport();
6643 if (!ata_scsi_transport_template) {
6644 ata_sff_exit();
6645 rc = -ENOMEM;
6646 goto err_out;
6647 }
6648
6649 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6650 return 0;
6651
6652 err_out:
6653 return rc;
6654 }
6655
6656 static void __exit ata_exit(void)
6657 {
6658 ata_release_transport(ata_scsi_transport_template);
6659 libata_transport_exit();
6660 ata_sff_exit();
6661 kfree(ata_force_tbl);
6662 }
6663
6664 subsys_initcall(ata_init);
6665 module_exit(ata_exit);
6666
6667 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6668
6669 int ata_ratelimit(void)
6670 {
6671 return __ratelimit(&ratelimit);
6672 }
6673
6674 /**
6675 * ata_msleep - ATA EH owner aware msleep
6676 * @ap: ATA port to attribute the sleep to
6677 * @msecs: duration to sleep in milliseconds
6678 *
6679 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6680 * ownership is released before going to sleep and reacquired
6681 * after the sleep is complete. IOW, other ports sharing the
6682 * @ap->host will be allowed to own the EH while this task is
6683 * sleeping.
6684 *
6685 * LOCKING:
6686 * Might sleep.
6687 */
6688 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6689 {
6690 bool owns_eh = ap && ap->host->eh_owner == current;
6691
6692 if (owns_eh)
6693 ata_eh_release(ap);
6694
6695 msleep(msecs);
6696
6697 if (owns_eh)
6698 ata_eh_acquire(ap);
6699 }
6700
6701 /**
6702 * ata_wait_register - wait until register value changes
6703 * @ap: ATA port to wait register for, can be NULL
6704 * @reg: IO-mapped register
6705 * @mask: Mask to apply to read register value
6706 * @val: Wait condition
6707 * @interval: polling interval in milliseconds
6708 * @timeout: timeout in milliseconds
6709 *
6710 * Waiting for some bits of register to change is a common
6711 * operation for ATA controllers. This function reads 32bit LE
6712 * IO-mapped register @reg and tests for the following condition.
6713 *
6714 * (*@reg & mask) != val
6715 *
6716 * If the condition is met, it returns; otherwise, the process is
6717 * repeated after @interval_msec until timeout.
6718 *
6719 * LOCKING:
6720 * Kernel thread context (may sleep)
6721 *
6722 * RETURNS:
6723 * The final register value.
6724 */
6725 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6726 unsigned long interval, unsigned long timeout)
6727 {
6728 unsigned long deadline;
6729 u32 tmp;
6730
6731 tmp = ioread32(reg);
6732
6733 /* Calculate timeout _after_ the first read to make sure
6734 * preceding writes reach the controller before starting to
6735 * eat away the timeout.
6736 */
6737 deadline = ata_deadline(jiffies, timeout);
6738
6739 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6740 ata_msleep(ap, interval);
6741 tmp = ioread32(reg);
6742 }
6743
6744 return tmp;
6745 }
6746
6747 /*
6748 * Dummy port_ops
6749 */
6750 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6751 {
6752 return AC_ERR_SYSTEM;
6753 }
6754
6755 static void ata_dummy_error_handler(struct ata_port *ap)
6756 {
6757 /* truly dummy */
6758 }
6759
6760 struct ata_port_operations ata_dummy_port_ops = {
6761 .qc_prep = ata_noop_qc_prep,
6762 .qc_issue = ata_dummy_qc_issue,
6763 .error_handler = ata_dummy_error_handler,
6764 .sched_eh = ata_std_sched_eh,
6765 .end_eh = ata_std_end_eh,
6766 };
6767
6768 const struct ata_port_info ata_dummy_port_info = {
6769 .port_ops = &ata_dummy_port_ops,
6770 };
6771
6772 /*
6773 * Utility print functions
6774 */
6775 int ata_port_printk(const struct ata_port *ap, const char *level,
6776 const char *fmt, ...)
6777 {
6778 struct va_format vaf;
6779 va_list args;
6780 int r;
6781
6782 va_start(args, fmt);
6783
6784 vaf.fmt = fmt;
6785 vaf.va = &args;
6786
6787 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6788
6789 va_end(args);
6790
6791 return r;
6792 }
6793 EXPORT_SYMBOL(ata_port_printk);
6794
6795 int ata_link_printk(const struct ata_link *link, const char *level,
6796 const char *fmt, ...)
6797 {
6798 struct va_format vaf;
6799 va_list args;
6800 int r;
6801
6802 va_start(args, fmt);
6803
6804 vaf.fmt = fmt;
6805 vaf.va = &args;
6806
6807 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6808 r = printk("%sata%u.%02u: %pV",
6809 level, link->ap->print_id, link->pmp, &vaf);
6810 else
6811 r = printk("%sata%u: %pV",
6812 level, link->ap->print_id, &vaf);
6813
6814 va_end(args);
6815
6816 return r;
6817 }
6818 EXPORT_SYMBOL(ata_link_printk);
6819
6820 int ata_dev_printk(const struct ata_device *dev, const char *level,
6821 const char *fmt, ...)
6822 {
6823 struct va_format vaf;
6824 va_list args;
6825 int r;
6826
6827 va_start(args, fmt);
6828
6829 vaf.fmt = fmt;
6830 vaf.va = &args;
6831
6832 r = printk("%sata%u.%02u: %pV",
6833 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6834 &vaf);
6835
6836 va_end(args);
6837
6838 return r;
6839 }
6840 EXPORT_SYMBOL(ata_dev_printk);
6841
6842 void ata_print_version(const struct device *dev, const char *version)
6843 {
6844 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6845 }
6846 EXPORT_SYMBOL(ata_print_version);
6847
6848 /*
6849 * libata is essentially a library of internal helper functions for
6850 * low-level ATA host controller drivers. As such, the API/ABI is
6851 * likely to change as new drivers are added and updated.
6852 * Do not depend on ABI/API stability.
6853 */
6854 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6855 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6856 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6857 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6858 EXPORT_SYMBOL_GPL(sata_port_ops);
6859 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6860 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6861 EXPORT_SYMBOL_GPL(ata_link_next);
6862 EXPORT_SYMBOL_GPL(ata_dev_next);
6863 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6864 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6865 EXPORT_SYMBOL_GPL(ata_host_init);
6866 EXPORT_SYMBOL_GPL(ata_host_alloc);
6867 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6868 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6869 EXPORT_SYMBOL_GPL(ata_host_start);
6870 EXPORT_SYMBOL_GPL(ata_host_register);
6871 EXPORT_SYMBOL_GPL(ata_host_activate);
6872 EXPORT_SYMBOL_GPL(ata_host_detach);
6873 EXPORT_SYMBOL_GPL(ata_sg_init);
6874 EXPORT_SYMBOL_GPL(ata_qc_complete);
6875 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6876 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6877 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6878 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6879 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6880 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6881 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6882 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6883 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6884 EXPORT_SYMBOL_GPL(ata_mode_string);
6885 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6886 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6887 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6888 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6889 EXPORT_SYMBOL_GPL(ata_dev_disable);
6890 EXPORT_SYMBOL_GPL(sata_set_spd);
6891 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6892 EXPORT_SYMBOL_GPL(sata_link_debounce);
6893 EXPORT_SYMBOL_GPL(sata_link_resume);
6894 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6895 EXPORT_SYMBOL_GPL(ata_std_prereset);
6896 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6897 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6898 EXPORT_SYMBOL_GPL(ata_std_postreset);
6899 EXPORT_SYMBOL_GPL(ata_dev_classify);
6900 EXPORT_SYMBOL_GPL(ata_dev_pair);
6901 EXPORT_SYMBOL_GPL(ata_ratelimit);
6902 EXPORT_SYMBOL_GPL(ata_msleep);
6903 EXPORT_SYMBOL_GPL(ata_wait_register);
6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6909 EXPORT_SYMBOL_GPL(sata_scr_valid);
6910 EXPORT_SYMBOL_GPL(sata_scr_read);
6911 EXPORT_SYMBOL_GPL(sata_scr_write);
6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6913 EXPORT_SYMBOL_GPL(ata_link_online);
6914 EXPORT_SYMBOL_GPL(ata_link_offline);
6915 #ifdef CONFIG_PM
6916 EXPORT_SYMBOL_GPL(ata_host_suspend);
6917 EXPORT_SYMBOL_GPL(ata_host_resume);
6918 #endif /* CONFIG_PM */
6919 EXPORT_SYMBOL_GPL(ata_id_string);
6920 EXPORT_SYMBOL_GPL(ata_id_c_string);
6921 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6923
6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6925 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6926 EXPORT_SYMBOL_GPL(ata_timing_compute);
6927 EXPORT_SYMBOL_GPL(ata_timing_merge);
6928 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6929
6930 #ifdef CONFIG_PCI
6931 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6932 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6933 #ifdef CONFIG_PM
6934 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6935 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6936 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6937 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6938 #endif /* CONFIG_PM */
6939 #endif /* CONFIG_PCI */
6940
6941 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6942
6943 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6944 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6945 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6946 EXPORT_SYMBOL_GPL(ata_port_desc);
6947 #ifdef CONFIG_PCI
6948 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6949 #endif /* CONFIG_PCI */
6950 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6951 EXPORT_SYMBOL_GPL(ata_link_abort);
6952 EXPORT_SYMBOL_GPL(ata_port_abort);
6953 EXPORT_SYMBOL_GPL(ata_port_freeze);
6954 EXPORT_SYMBOL_GPL(sata_async_notification);
6955 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6956 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6957 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6958 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6959 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6960 EXPORT_SYMBOL_GPL(ata_do_eh);
6961 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6962
6963 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6964 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6965 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6966 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6967 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.173133 seconds and 5 git commands to generate.