libata debugging: Warn when unable to find timing descriptor based on xfer_mode
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70
71 #include "libata.h"
72 #include "libata-transport.h"
73
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78
79 const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
83 .sched_eh = ata_std_sched_eh,
84 .end_eh = ata_std_end_eh,
85 };
86
87 const struct ata_port_operations sata_port_ops = {
88 .inherits = &ata_base_port_ops,
89
90 .qc_defer = ata_std_qc_defer,
91 .hardreset = sata_std_hardreset,
92 };
93
94 static unsigned int ata_dev_init_params(struct ata_device *dev,
95 u16 heads, u16 sectors);
96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
97 static void ata_dev_xfermask(struct ata_device *dev);
98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99
100 atomic_t ata_print_id = ATOMIC_INIT(0);
101
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
110 };
111
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
116 };
117
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161
162 static int atapi_an;
163 module_param(atapi_an, int, 0444);
164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
165
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION);
170
171
172 static bool ata_sstatus_online(u32 sstatus)
173 {
174 return (sstatus & 0xf) == 0x3;
175 }
176
177 /**
178 * ata_link_next - link iteration helper
179 * @link: the previous link, NULL to start
180 * @ap: ATA port containing links to iterate
181 * @mode: iteration mode, one of ATA_LITER_*
182 *
183 * LOCKING:
184 * Host lock or EH context.
185 *
186 * RETURNS:
187 * Pointer to the next link.
188 */
189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
190 enum ata_link_iter_mode mode)
191 {
192 BUG_ON(mode != ATA_LITER_EDGE &&
193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
194
195 /* NULL link indicates start of iteration */
196 if (!link)
197 switch (mode) {
198 case ATA_LITER_EDGE:
199 case ATA_LITER_PMP_FIRST:
200 if (sata_pmp_attached(ap))
201 return ap->pmp_link;
202 /* fall through */
203 case ATA_LITER_HOST_FIRST:
204 return &ap->link;
205 }
206
207 /* we just iterated over the host link, what's next? */
208 if (link == &ap->link)
209 switch (mode) {
210 case ATA_LITER_HOST_FIRST:
211 if (sata_pmp_attached(ap))
212 return ap->pmp_link;
213 /* fall through */
214 case ATA_LITER_PMP_FIRST:
215 if (unlikely(ap->slave_link))
216 return ap->slave_link;
217 /* fall through */
218 case ATA_LITER_EDGE:
219 return NULL;
220 }
221
222 /* slave_link excludes PMP */
223 if (unlikely(link == ap->slave_link))
224 return NULL;
225
226 /* we were over a PMP link */
227 if (++link < ap->pmp_link + ap->nr_pmp_links)
228 return link;
229
230 if (mode == ATA_LITER_PMP_FIRST)
231 return &ap->link;
232
233 return NULL;
234 }
235
236 /**
237 * ata_dev_next - device iteration helper
238 * @dev: the previous device, NULL to start
239 * @link: ATA link containing devices to iterate
240 * @mode: iteration mode, one of ATA_DITER_*
241 *
242 * LOCKING:
243 * Host lock or EH context.
244 *
245 * RETURNS:
246 * Pointer to the next device.
247 */
248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
249 enum ata_dev_iter_mode mode)
250 {
251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
253
254 /* NULL dev indicates start of iteration */
255 if (!dev)
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 dev = link->device;
260 goto check;
261 case ATA_DITER_ENABLED_REVERSE:
262 case ATA_DITER_ALL_REVERSE:
263 dev = link->device + ata_link_max_devices(link) - 1;
264 goto check;
265 }
266
267 next:
268 /* move to the next one */
269 switch (mode) {
270 case ATA_DITER_ENABLED:
271 case ATA_DITER_ALL:
272 if (++dev < link->device + ata_link_max_devices(link))
273 goto check;
274 return NULL;
275 case ATA_DITER_ENABLED_REVERSE:
276 case ATA_DITER_ALL_REVERSE:
277 if (--dev >= link->device)
278 goto check;
279 return NULL;
280 }
281
282 check:
283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
284 !ata_dev_enabled(dev))
285 goto next;
286 return dev;
287 }
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 /**
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
317 *
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 * same effect.
323 *
324 * LOCKING:
325 * EH context.
326 */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 int i;
330
331 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
333
334 if (fe->port != -1 && fe->port != ap->print_id)
335 continue;
336
337 if (fe->param.cbl == ATA_CBL_NONE)
338 continue;
339
340 ap->cbl = fe->param.cbl;
341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 return;
343 }
344 }
345
346 /**
347 * ata_force_link_limits - force link limits according to libata.force
348 * @link: ATA link of interest
349 *
350 * Force link flags and SATA spd limit according to libata.force
351 * and whine about it. When only the port part is specified
352 * (e.g. 1:), the limit applies to all links connected to both
353 * the host link and all fan-out ports connected via PMP. If the
354 * device part is specified as 0 (e.g. 1.00:), it specifies the
355 * first fan-out link not the host link. Device number 15 always
356 * points to the host link whether PMP is attached or not. If the
357 * controller has slave link, device number 16 points to it.
358 *
359 * LOCKING:
360 * EH context.
361 */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 bool did_spd = false;
365 int linkno = link->pmp;
366 int i;
367
368 if (ata_is_host_link(link))
369 linkno += 15;
370
371 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 const struct ata_force_ent *fe = &ata_force_tbl[i];
373
374 if (fe->port != -1 && fe->port != link->ap->print_id)
375 continue;
376
377 if (fe->device != -1 && fe->device != linkno)
378 continue;
379
380 /* only honor the first spd limit */
381 if (!did_spd && fe->param.spd_limit) {
382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 fe->param.name);
385 did_spd = true;
386 }
387
388 /* let lflags stack */
389 if (fe->param.lflags) {
390 link->flags |= fe->param.lflags;
391 ata_link_notice(link,
392 "FORCE: link flag 0x%x forced -> 0x%x\n",
393 fe->param.lflags, link->flags);
394 }
395 }
396 }
397
398 /**
399 * ata_force_xfermask - force xfermask according to libata.force
400 * @dev: ATA device of interest
401 *
402 * Force xfer_mask according to libata.force and whine about it.
403 * For consistency with link selection, device number 15 selects
404 * the first device connected to the host link.
405 *
406 * LOCKING:
407 * EH context.
408 */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 int devno = dev->link->pmp + dev->devno;
412 int alt_devno = devno;
413 int i;
414
415 /* allow n.15/16 for devices attached to host port */
416 if (ata_is_host_link(dev->link))
417 alt_devno += 15;
418
419 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 const struct ata_force_ent *fe = &ata_force_tbl[i];
421 unsigned long pio_mask, mwdma_mask, udma_mask;
422
423 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 continue;
425
426 if (fe->device != -1 && fe->device != devno &&
427 fe->device != alt_devno)
428 continue;
429
430 if (!fe->param.xfer_mask)
431 continue;
432
433 ata_unpack_xfermask(fe->param.xfer_mask,
434 &pio_mask, &mwdma_mask, &udma_mask);
435 if (udma_mask)
436 dev->udma_mask = udma_mask;
437 else if (mwdma_mask) {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = mwdma_mask;
440 } else {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = 0;
443 dev->pio_mask = pio_mask;
444 }
445
446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 fe->param.name);
448 return;
449 }
450 }
451
452 /**
453 * ata_force_horkage - force horkage according to libata.force
454 * @dev: ATA device of interest
455 *
456 * Force horkage according to libata.force and whine about it.
457 * For consistency with link selection, device number 15 selects
458 * the first device connected to the host link.
459 *
460 * LOCKING:
461 * EH context.
462 */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 int devno = dev->link->pmp + dev->devno;
466 int alt_devno = devno;
467 int i;
468
469 /* allow n.15/16 for devices attached to host port */
470 if (ata_is_host_link(dev->link))
471 alt_devno += 15;
472
473 for (i = 0; i < ata_force_tbl_size; i++) {
474 const struct ata_force_ent *fe = &ata_force_tbl[i];
475
476 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 continue;
478
479 if (fe->device != -1 && fe->device != devno &&
480 fe->device != alt_devno)
481 continue;
482
483 if (!(~dev->horkage & fe->param.horkage_on) &&
484 !(dev->horkage & fe->param.horkage_off))
485 continue;
486
487 dev->horkage |= fe->param.horkage_on;
488 dev->horkage &= ~fe->param.horkage_off;
489
490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 fe->param.name);
492 }
493 }
494
495 /**
496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497 * @opcode: SCSI opcode
498 *
499 * Determine ATAPI command type from @opcode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 */
507 int atapi_cmd_type(u8 opcode)
508 {
509 switch (opcode) {
510 case GPCMD_READ_10:
511 case GPCMD_READ_12:
512 return ATAPI_READ;
513
514 case GPCMD_WRITE_10:
515 case GPCMD_WRITE_12:
516 case GPCMD_WRITE_AND_VERIFY_10:
517 return ATAPI_WRITE;
518
519 case GPCMD_READ_CD:
520 case GPCMD_READ_CD_MSF:
521 return ATAPI_READ_CD;
522
523 case ATA_16:
524 case ATA_12:
525 if (atapi_passthru16)
526 return ATAPI_PASS_THRU;
527 /* fall thru */
528 default:
529 return ATAPI_MISC;
530 }
531 }
532
533 /**
534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
535 * @tf: Taskfile to convert
536 * @pmp: Port multiplier port
537 * @is_cmd: This FIS is for command
538 * @fis: Buffer into which data will output
539 *
540 * Converts a standard ATA taskfile to a Serial ATA
541 * FIS structure (Register - Host to Device).
542 *
543 * LOCKING:
544 * Inherited from caller.
545 */
546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 {
548 fis[0] = 0x27; /* Register - Host to Device FIS */
549 fis[1] = pmp & 0xf; /* Port multiplier number*/
550 if (is_cmd)
551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552
553 fis[2] = tf->command;
554 fis[3] = tf->feature;
555
556 fis[4] = tf->lbal;
557 fis[5] = tf->lbam;
558 fis[6] = tf->lbah;
559 fis[7] = tf->device;
560
561 fis[8] = tf->hob_lbal;
562 fis[9] = tf->hob_lbam;
563 fis[10] = tf->hob_lbah;
564 fis[11] = tf->hob_feature;
565
566 fis[12] = tf->nsect;
567 fis[13] = tf->hob_nsect;
568 fis[14] = 0;
569 fis[15] = tf->ctl;
570
571 fis[16] = 0;
572 fis[17] = 0;
573 fis[18] = 0;
574 fis[19] = 0;
575 }
576
577 /**
578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
579 * @fis: Buffer from which data will be input
580 * @tf: Taskfile to output
581 *
582 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 *
584 * LOCKING:
585 * Inherited from caller.
586 */
587
588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 {
590 tf->command = fis[2]; /* status */
591 tf->feature = fis[3]; /* error */
592
593 tf->lbal = fis[4];
594 tf->lbam = fis[5];
595 tf->lbah = fis[6];
596 tf->device = fis[7];
597
598 tf->hob_lbal = fis[8];
599 tf->hob_lbam = fis[9];
600 tf->hob_lbah = fis[10];
601
602 tf->nsect = fis[12];
603 tf->hob_nsect = fis[13];
604 }
605
606 static const u8 ata_rw_cmds[] = {
607 /* pio multi */
608 ATA_CMD_READ_MULTI,
609 ATA_CMD_WRITE_MULTI,
610 ATA_CMD_READ_MULTI_EXT,
611 ATA_CMD_WRITE_MULTI_EXT,
612 0,
613 0,
614 0,
615 ATA_CMD_WRITE_MULTI_FUA_EXT,
616 /* pio */
617 ATA_CMD_PIO_READ,
618 ATA_CMD_PIO_WRITE,
619 ATA_CMD_PIO_READ_EXT,
620 ATA_CMD_PIO_WRITE_EXT,
621 0,
622 0,
623 0,
624 0,
625 /* dma */
626 ATA_CMD_READ,
627 ATA_CMD_WRITE,
628 ATA_CMD_READ_EXT,
629 ATA_CMD_WRITE_EXT,
630 0,
631 0,
632 0,
633 ATA_CMD_WRITE_FUA_EXT
634 };
635
636 /**
637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
638 * @tf: command to examine and configure
639 * @dev: device tf belongs to
640 *
641 * Examine the device configuration and tf->flags to calculate
642 * the proper read/write commands and protocol to use.
643 *
644 * LOCKING:
645 * caller.
646 */
647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 {
649 u8 cmd;
650
651 int index, fua, lba48, write;
652
653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656
657 if (dev->flags & ATA_DFLAG_PIO) {
658 tf->protocol = ATA_PROT_PIO;
659 index = dev->multi_count ? 0 : 8;
660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
661 /* Unable to use DMA due to host limitation */
662 tf->protocol = ATA_PROT_PIO;
663 index = dev->multi_count ? 0 : 8;
664 } else {
665 tf->protocol = ATA_PROT_DMA;
666 index = 16;
667 }
668
669 cmd = ata_rw_cmds[index + fua + lba48 + write];
670 if (cmd) {
671 tf->command = cmd;
672 return 0;
673 }
674 return -1;
675 }
676
677 /**
678 * ata_tf_read_block - Read block address from ATA taskfile
679 * @tf: ATA taskfile of interest
680 * @dev: ATA device @tf belongs to
681 *
682 * LOCKING:
683 * None.
684 *
685 * Read block address from @tf. This function can handle all
686 * three address formats - LBA, LBA48 and CHS. tf->protocol and
687 * flags select the address format to use.
688 *
689 * RETURNS:
690 * Block address read from @tf.
691 */
692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 {
694 u64 block = 0;
695
696 if (tf->flags & ATA_TFLAG_LBA) {
697 if (tf->flags & ATA_TFLAG_LBA48) {
698 block |= (u64)tf->hob_lbah << 40;
699 block |= (u64)tf->hob_lbam << 32;
700 block |= (u64)tf->hob_lbal << 24;
701 } else
702 block |= (tf->device & 0xf) << 24;
703
704 block |= tf->lbah << 16;
705 block |= tf->lbam << 8;
706 block |= tf->lbal;
707 } else {
708 u32 cyl, head, sect;
709
710 cyl = tf->lbam | (tf->lbah << 8);
711 head = tf->device & 0xf;
712 sect = tf->lbal;
713
714 if (!sect) {
715 ata_dev_warn(dev,
716 "device reported invalid CHS sector 0\n");
717 sect = 1; /* oh well */
718 }
719
720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 }
722
723 return block;
724 }
725
726 /**
727 * ata_build_rw_tf - Build ATA taskfile for given read/write request
728 * @tf: Target ATA taskfile
729 * @dev: ATA device @tf belongs to
730 * @block: Block address
731 * @n_block: Number of blocks
732 * @tf_flags: RW/FUA etc...
733 * @tag: tag
734 *
735 * LOCKING:
736 * None.
737 *
738 * Build ATA taskfile @tf for read/write request described by
739 * @block, @n_block, @tf_flags and @tag on @dev.
740 *
741 * RETURNS:
742 *
743 * 0 on success, -ERANGE if the request is too large for @dev,
744 * -EINVAL if the request is invalid.
745 */
746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
747 u64 block, u32 n_block, unsigned int tf_flags,
748 unsigned int tag)
749 {
750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
751 tf->flags |= tf_flags;
752
753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
754 /* yay, NCQ */
755 if (!lba_48_ok(block, n_block))
756 return -ERANGE;
757
758 tf->protocol = ATA_PROT_NCQ;
759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760
761 if (tf->flags & ATA_TFLAG_WRITE)
762 tf->command = ATA_CMD_FPDMA_WRITE;
763 else
764 tf->command = ATA_CMD_FPDMA_READ;
765
766 tf->nsect = tag << 3;
767 tf->hob_feature = (n_block >> 8) & 0xff;
768 tf->feature = n_block & 0xff;
769
770 tf->hob_lbah = (block >> 40) & 0xff;
771 tf->hob_lbam = (block >> 32) & 0xff;
772 tf->hob_lbal = (block >> 24) & 0xff;
773 tf->lbah = (block >> 16) & 0xff;
774 tf->lbam = (block >> 8) & 0xff;
775 tf->lbal = block & 0xff;
776
777 tf->device = ATA_LBA;
778 if (tf->flags & ATA_TFLAG_FUA)
779 tf->device |= 1 << 7;
780 } else if (dev->flags & ATA_DFLAG_LBA) {
781 tf->flags |= ATA_TFLAG_LBA;
782
783 if (lba_28_ok(block, n_block)) {
784 /* use LBA28 */
785 tf->device |= (block >> 24) & 0xf;
786 } else if (lba_48_ok(block, n_block)) {
787 if (!(dev->flags & ATA_DFLAG_LBA48))
788 return -ERANGE;
789
790 /* use LBA48 */
791 tf->flags |= ATA_TFLAG_LBA48;
792
793 tf->hob_nsect = (n_block >> 8) & 0xff;
794
795 tf->hob_lbah = (block >> 40) & 0xff;
796 tf->hob_lbam = (block >> 32) & 0xff;
797 tf->hob_lbal = (block >> 24) & 0xff;
798 } else
799 /* request too large even for LBA48 */
800 return -ERANGE;
801
802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
803 return -EINVAL;
804
805 tf->nsect = n_block & 0xff;
806
807 tf->lbah = (block >> 16) & 0xff;
808 tf->lbam = (block >> 8) & 0xff;
809 tf->lbal = block & 0xff;
810
811 tf->device |= ATA_LBA;
812 } else {
813 /* CHS */
814 u32 sect, head, cyl, track;
815
816 /* The request -may- be too large for CHS addressing. */
817 if (!lba_28_ok(block, n_block))
818 return -ERANGE;
819
820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
821 return -EINVAL;
822
823 /* Convert LBA to CHS */
824 track = (u32)block / dev->sectors;
825 cyl = track / dev->heads;
826 head = track % dev->heads;
827 sect = (u32)block % dev->sectors + 1;
828
829 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
830 (u32)block, track, cyl, head, sect);
831
832 /* Check whether the converted CHS can fit.
833 Cylinder: 0-65535
834 Head: 0-15
835 Sector: 1-255*/
836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
837 return -ERANGE;
838
839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
840 tf->lbal = sect;
841 tf->lbam = cyl;
842 tf->lbah = cyl >> 8;
843 tf->device |= head;
844 }
845
846 return 0;
847 }
848
849 /**
850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
851 * @pio_mask: pio_mask
852 * @mwdma_mask: mwdma_mask
853 * @udma_mask: udma_mask
854 *
855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
856 * unsigned int xfer_mask.
857 *
858 * LOCKING:
859 * None.
860 *
861 * RETURNS:
862 * Packed xfer_mask.
863 */
864 unsigned long ata_pack_xfermask(unsigned long pio_mask,
865 unsigned long mwdma_mask,
866 unsigned long udma_mask)
867 {
868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871 }
872
873 /**
874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
875 * @xfer_mask: xfer_mask to unpack
876 * @pio_mask: resulting pio_mask
877 * @mwdma_mask: resulting mwdma_mask
878 * @udma_mask: resulting udma_mask
879 *
880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
881 * Any NULL distination masks will be ignored.
882 */
883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
884 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 {
886 if (pio_mask)
887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
888 if (mwdma_mask)
889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
890 if (udma_mask)
891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 }
893
894 static const struct ata_xfer_ent {
895 int shift, bits;
896 u8 base;
897 } ata_xfer_tbl[] = {
898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
901 { -1, },
902 };
903
904 /**
905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
906 * @xfer_mask: xfer_mask of interest
907 *
908 * Return matching XFER_* value for @xfer_mask. Only the highest
909 * bit of @xfer_mask is considered.
910 *
911 * LOCKING:
912 * None.
913 *
914 * RETURNS:
915 * Matching XFER_* value, 0xff if no match found.
916 */
917 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 {
919 int highbit = fls(xfer_mask) - 1;
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
924 return ent->base + highbit - ent->shift;
925 return 0xff;
926 }
927
928 /**
929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
930 * @xfer_mode: XFER_* of interest
931 *
932 * Return matching xfer_mask for @xfer_mode.
933 *
934 * LOCKING:
935 * None.
936 *
937 * RETURNS:
938 * Matching xfer_mask, 0 if no match found.
939 */
940 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 {
942 const struct ata_xfer_ent *ent;
943
944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
947 & ~((1 << ent->shift) - 1);
948 return 0;
949 }
950
951 /**
952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
953 * @xfer_mode: XFER_* of interest
954 *
955 * Return matching xfer_shift for @xfer_mode.
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Matching xfer_shift, -1 if no match found.
962 */
963 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 {
965 const struct ata_xfer_ent *ent;
966
967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
969 return ent->shift;
970 return -1;
971 }
972
973 /**
974 * ata_mode_string - convert xfer_mask to string
975 * @xfer_mask: mask of bits supported; only highest bit counts.
976 *
977 * Determine string which represents the highest speed
978 * (highest bit in @modemask).
979 *
980 * LOCKING:
981 * None.
982 *
983 * RETURNS:
984 * Constant C string representing highest speed listed in
985 * @mode_mask, or the constant C string "<n/a>".
986 */
987 const char *ata_mode_string(unsigned long xfer_mask)
988 {
989 static const char * const xfer_mode_str[] = {
990 "PIO0",
991 "PIO1",
992 "PIO2",
993 "PIO3",
994 "PIO4",
995 "PIO5",
996 "PIO6",
997 "MWDMA0",
998 "MWDMA1",
999 "MWDMA2",
1000 "MWDMA3",
1001 "MWDMA4",
1002 "UDMA/16",
1003 "UDMA/25",
1004 "UDMA/33",
1005 "UDMA/44",
1006 "UDMA/66",
1007 "UDMA/100",
1008 "UDMA/133",
1009 "UDMA7",
1010 };
1011 int highbit;
1012
1013 highbit = fls(xfer_mask) - 1;
1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015 return xfer_mode_str[highbit];
1016 return "<n/a>";
1017 }
1018
1019 const char *sata_spd_string(unsigned int spd)
1020 {
1021 static const char * const spd_str[] = {
1022 "1.5 Gbps",
1023 "3.0 Gbps",
1024 "6.0 Gbps",
1025 };
1026
1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028 return "<unknown>";
1029 return spd_str[spd - 1];
1030 }
1031
1032 /**
1033 * ata_dev_classify - determine device type based on ATA-spec signature
1034 * @tf: ATA taskfile register set for device to be identified
1035 *
1036 * Determine from taskfile register contents whether a device is
1037 * ATA or ATAPI, as per "Signature and persistence" section
1038 * of ATA/PI spec (volume 1, sect 5.14).
1039 *
1040 * LOCKING:
1041 * None.
1042 *
1043 * RETURNS:
1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045 * %ATA_DEV_UNKNOWN the event of failure.
1046 */
1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048 {
1049 /* Apple's open source Darwin code hints that some devices only
1050 * put a proper signature into the LBA mid/high registers,
1051 * So, we only check those. It's sufficient for uniqueness.
1052 *
1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054 * signatures for ATA and ATAPI devices attached on SerialATA,
1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1056 * spec has never mentioned about using different signatures
1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1058 * Multiplier specification began to use 0x69/0x96 to identify
1059 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061 * 0x69/0x96 shortly and described them as reserved for
1062 * SerialATA.
1063 *
1064 * We follow the current spec and consider that 0x69/0x96
1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067 * SEMB signature. This is worked around in
1068 * ata_dev_read_id().
1069 */
1070 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071 DPRINTK("found ATA device by sig\n");
1072 return ATA_DEV_ATA;
1073 }
1074
1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076 DPRINTK("found ATAPI device by sig\n");
1077 return ATA_DEV_ATAPI;
1078 }
1079
1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081 DPRINTK("found PMP device by sig\n");
1082 return ATA_DEV_PMP;
1083 }
1084
1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087 return ATA_DEV_SEMB;
1088 }
1089
1090 DPRINTK("unknown device\n");
1091 return ATA_DEV_UNKNOWN;
1092 }
1093
1094 /**
1095 * ata_id_string - Convert IDENTIFY DEVICE page into string
1096 * @id: IDENTIFY DEVICE results we will examine
1097 * @s: string into which data is output
1098 * @ofs: offset into identify device page
1099 * @len: length of string to return. must be an even number.
1100 *
1101 * The strings in the IDENTIFY DEVICE page are broken up into
1102 * 16-bit chunks. Run through the string, and output each
1103 * 8-bit chunk linearly, regardless of platform.
1104 *
1105 * LOCKING:
1106 * caller.
1107 */
1108
1109 void ata_id_string(const u16 *id, unsigned char *s,
1110 unsigned int ofs, unsigned int len)
1111 {
1112 unsigned int c;
1113
1114 BUG_ON(len & 1);
1115
1116 while (len > 0) {
1117 c = id[ofs] >> 8;
1118 *s = c;
1119 s++;
1120
1121 c = id[ofs] & 0xff;
1122 *s = c;
1123 s++;
1124
1125 ofs++;
1126 len -= 2;
1127 }
1128 }
1129
1130 /**
1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132 * @id: IDENTIFY DEVICE results we will examine
1133 * @s: string into which data is output
1134 * @ofs: offset into identify device page
1135 * @len: length of string to return. must be an odd number.
1136 *
1137 * This function is identical to ata_id_string except that it
1138 * trims trailing spaces and terminates the resulting string with
1139 * null. @len must be actual maximum length (even number) + 1.
1140 *
1141 * LOCKING:
1142 * caller.
1143 */
1144 void ata_id_c_string(const u16 *id, unsigned char *s,
1145 unsigned int ofs, unsigned int len)
1146 {
1147 unsigned char *p;
1148
1149 ata_id_string(id, s, ofs, len - 1);
1150
1151 p = s + strnlen(s, len - 1);
1152 while (p > s && p[-1] == ' ')
1153 p--;
1154 *p = '\0';
1155 }
1156
1157 static u64 ata_id_n_sectors(const u16 *id)
1158 {
1159 if (ata_id_has_lba(id)) {
1160 if (ata_id_has_lba48(id))
1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162 else
1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164 } else {
1165 if (ata_id_current_chs_valid(id))
1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167 id[ATA_ID_CUR_SECTORS];
1168 else
1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170 id[ATA_ID_SECTORS];
1171 }
1172 }
1173
1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175 {
1176 u64 sectors = 0;
1177
1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181 sectors |= (tf->lbah & 0xff) << 16;
1182 sectors |= (tf->lbam & 0xff) << 8;
1183 sectors |= (tf->lbal & 0xff);
1184
1185 return sectors;
1186 }
1187
1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189 {
1190 u64 sectors = 0;
1191
1192 sectors |= (tf->device & 0x0f) << 24;
1193 sectors |= (tf->lbah & 0xff) << 16;
1194 sectors |= (tf->lbam & 0xff) << 8;
1195 sectors |= (tf->lbal & 0xff);
1196
1197 return sectors;
1198 }
1199
1200 /**
1201 * ata_read_native_max_address - Read native max address
1202 * @dev: target device
1203 * @max_sectors: out parameter for the result native max address
1204 *
1205 * Perform an LBA48 or LBA28 native size query upon the device in
1206 * question.
1207 *
1208 * RETURNS:
1209 * 0 on success, -EACCES if command is aborted by the drive.
1210 * -EIO on other errors.
1211 */
1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213 {
1214 unsigned int err_mask;
1215 struct ata_taskfile tf;
1216 int lba48 = ata_id_has_lba48(dev->id);
1217
1218 ata_tf_init(dev, &tf);
1219
1220 /* always clear all address registers */
1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223 if (lba48) {
1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225 tf.flags |= ATA_TFLAG_LBA48;
1226 } else
1227 tf.command = ATA_CMD_READ_NATIVE_MAX;
1228
1229 tf.protocol |= ATA_PROT_NODATA;
1230 tf.device |= ATA_LBA;
1231
1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 if (err_mask) {
1234 ata_dev_warn(dev,
1235 "failed to read native max address (err_mask=0x%x)\n",
1236 err_mask);
1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238 return -EACCES;
1239 return -EIO;
1240 }
1241
1242 if (lba48)
1243 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1244 else
1245 *max_sectors = ata_tf_to_lba(&tf) + 1;
1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247 (*max_sectors)--;
1248 return 0;
1249 }
1250
1251 /**
1252 * ata_set_max_sectors - Set max sectors
1253 * @dev: target device
1254 * @new_sectors: new max sectors value to set for the device
1255 *
1256 * Set max sectors of @dev to @new_sectors.
1257 *
1258 * RETURNS:
1259 * 0 on success, -EACCES if command is aborted or denied (due to
1260 * previous non-volatile SET_MAX) by the drive. -EIO on other
1261 * errors.
1262 */
1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264 {
1265 unsigned int err_mask;
1266 struct ata_taskfile tf;
1267 int lba48 = ata_id_has_lba48(dev->id);
1268
1269 new_sectors--;
1270
1271 ata_tf_init(dev, &tf);
1272
1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274
1275 if (lba48) {
1276 tf.command = ATA_CMD_SET_MAX_EXT;
1277 tf.flags |= ATA_TFLAG_LBA48;
1278
1279 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282 } else {
1283 tf.command = ATA_CMD_SET_MAX;
1284
1285 tf.device |= (new_sectors >> 24) & 0xf;
1286 }
1287
1288 tf.protocol |= ATA_PROT_NODATA;
1289 tf.device |= ATA_LBA;
1290
1291 tf.lbal = (new_sectors >> 0) & 0xff;
1292 tf.lbam = (new_sectors >> 8) & 0xff;
1293 tf.lbah = (new_sectors >> 16) & 0xff;
1294
1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296 if (err_mask) {
1297 ata_dev_warn(dev,
1298 "failed to set max address (err_mask=0x%x)\n",
1299 err_mask);
1300 if (err_mask == AC_ERR_DEV &&
1301 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302 return -EACCES;
1303 return -EIO;
1304 }
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * ata_hpa_resize - Resize a device with an HPA set
1311 * @dev: Device to resize
1312 *
1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314 * it if required to the full size of the media. The caller must check
1315 * the drive has the HPA feature set enabled.
1316 *
1317 * RETURNS:
1318 * 0 on success, -errno on failure.
1319 */
1320 static int ata_hpa_resize(struct ata_device *dev)
1321 {
1322 struct ata_eh_context *ehc = &dev->link->eh_context;
1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325 u64 sectors = ata_id_n_sectors(dev->id);
1326 u64 native_sectors;
1327 int rc;
1328
1329 /* do we need to do it? */
1330 if (dev->class != ATA_DEV_ATA ||
1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333 return 0;
1334
1335 /* read native max address */
1336 rc = ata_read_native_max_address(dev, &native_sectors);
1337 if (rc) {
1338 /* If device aborted the command or HPA isn't going to
1339 * be unlocked, skip HPA resizing.
1340 */
1341 if (rc == -EACCES || !unlock_hpa) {
1342 ata_dev_warn(dev,
1343 "HPA support seems broken, skipping HPA handling\n");
1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345
1346 /* we can continue if device aborted the command */
1347 if (rc == -EACCES)
1348 rc = 0;
1349 }
1350
1351 return rc;
1352 }
1353 dev->n_native_sectors = native_sectors;
1354
1355 /* nothing to do? */
1356 if (native_sectors <= sectors || !unlock_hpa) {
1357 if (!print_info || native_sectors == sectors)
1358 return 0;
1359
1360 if (native_sectors > sectors)
1361 ata_dev_info(dev,
1362 "HPA detected: current %llu, native %llu\n",
1363 (unsigned long long)sectors,
1364 (unsigned long long)native_sectors);
1365 else if (native_sectors < sectors)
1366 ata_dev_warn(dev,
1367 "native sectors (%llu) is smaller than sectors (%llu)\n",
1368 (unsigned long long)native_sectors,
1369 (unsigned long long)sectors);
1370 return 0;
1371 }
1372
1373 /* let's unlock HPA */
1374 rc = ata_set_max_sectors(dev, native_sectors);
1375 if (rc == -EACCES) {
1376 /* if device aborted the command, skip HPA resizing */
1377 ata_dev_warn(dev,
1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379 (unsigned long long)sectors,
1380 (unsigned long long)native_sectors);
1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382 return 0;
1383 } else if (rc)
1384 return rc;
1385
1386 /* re-read IDENTIFY data */
1387 rc = ata_dev_reread_id(dev, 0);
1388 if (rc) {
1389 ata_dev_err(dev,
1390 "failed to re-read IDENTIFY data after HPA resizing\n");
1391 return rc;
1392 }
1393
1394 if (print_info) {
1395 u64 new_sectors = ata_id_n_sectors(dev->id);
1396 ata_dev_info(dev,
1397 "HPA unlocked: %llu -> %llu, native %llu\n",
1398 (unsigned long long)sectors,
1399 (unsigned long long)new_sectors,
1400 (unsigned long long)native_sectors);
1401 }
1402
1403 return 0;
1404 }
1405
1406 /**
1407 * ata_dump_id - IDENTIFY DEVICE info debugging output
1408 * @id: IDENTIFY DEVICE page to dump
1409 *
1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1411 * page.
1412 *
1413 * LOCKING:
1414 * caller.
1415 */
1416
1417 static inline void ata_dump_id(const u16 *id)
1418 {
1419 DPRINTK("49==0x%04x "
1420 "53==0x%04x "
1421 "63==0x%04x "
1422 "64==0x%04x "
1423 "75==0x%04x \n",
1424 id[49],
1425 id[53],
1426 id[63],
1427 id[64],
1428 id[75]);
1429 DPRINTK("80==0x%04x "
1430 "81==0x%04x "
1431 "82==0x%04x "
1432 "83==0x%04x "
1433 "84==0x%04x \n",
1434 id[80],
1435 id[81],
1436 id[82],
1437 id[83],
1438 id[84]);
1439 DPRINTK("88==0x%04x "
1440 "93==0x%04x\n",
1441 id[88],
1442 id[93]);
1443 }
1444
1445 /**
1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447 * @id: IDENTIFY data to compute xfer mask from
1448 *
1449 * Compute the xfermask for this device. This is not as trivial
1450 * as it seems if we must consider early devices correctly.
1451 *
1452 * FIXME: pre IDE drive timing (do we care ?).
1453 *
1454 * LOCKING:
1455 * None.
1456 *
1457 * RETURNS:
1458 * Computed xfermask
1459 */
1460 unsigned long ata_id_xfermask(const u16 *id)
1461 {
1462 unsigned long pio_mask, mwdma_mask, udma_mask;
1463
1464 /* Usual case. Word 53 indicates word 64 is valid */
1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467 pio_mask <<= 3;
1468 pio_mask |= 0x7;
1469 } else {
1470 /* If word 64 isn't valid then Word 51 high byte holds
1471 * the PIO timing number for the maximum. Turn it into
1472 * a mask.
1473 */
1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475 if (mode < 5) /* Valid PIO range */
1476 pio_mask = (2 << mode) - 1;
1477 else
1478 pio_mask = 1;
1479
1480 /* But wait.. there's more. Design your standards by
1481 * committee and you too can get a free iordy field to
1482 * process. However its the speeds not the modes that
1483 * are supported... Note drivers using the timing API
1484 * will get this right anyway
1485 */
1486 }
1487
1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489
1490 if (ata_id_is_cfa(id)) {
1491 /*
1492 * Process compact flash extended modes
1493 */
1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496
1497 if (pio)
1498 pio_mask |= (1 << 5);
1499 if (pio > 1)
1500 pio_mask |= (1 << 6);
1501 if (dma)
1502 mwdma_mask |= (1 << 3);
1503 if (dma > 1)
1504 mwdma_mask |= (1 << 4);
1505 }
1506
1507 udma_mask = 0;
1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510
1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 }
1513
1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515 {
1516 struct completion *waiting = qc->private_data;
1517
1518 complete(waiting);
1519 }
1520
1521 /**
1522 * ata_exec_internal_sg - execute libata internal command
1523 * @dev: Device to which the command is sent
1524 * @tf: Taskfile registers for the command and the result
1525 * @cdb: CDB for packet command
1526 * @dma_dir: Data tranfer direction of the command
1527 * @sgl: sg list for the data buffer of the command
1528 * @n_elem: Number of sg entries
1529 * @timeout: Timeout in msecs (0 for default)
1530 *
1531 * Executes libata internal command with timeout. @tf contains
1532 * command on entry and result on return. Timeout and error
1533 * conditions are reported via return value. No recovery action
1534 * is taken after a command times out. It's caller's duty to
1535 * clean up after timeout.
1536 *
1537 * LOCKING:
1538 * None. Should be called with kernel context, might sleep.
1539 *
1540 * RETURNS:
1541 * Zero on success, AC_ERR_* mask on failure
1542 */
1543 unsigned ata_exec_internal_sg(struct ata_device *dev,
1544 struct ata_taskfile *tf, const u8 *cdb,
1545 int dma_dir, struct scatterlist *sgl,
1546 unsigned int n_elem, unsigned long timeout)
1547 {
1548 struct ata_link *link = dev->link;
1549 struct ata_port *ap = link->ap;
1550 u8 command = tf->command;
1551 int auto_timeout = 0;
1552 struct ata_queued_cmd *qc;
1553 unsigned int tag, preempted_tag;
1554 u32 preempted_sactive, preempted_qc_active;
1555 int preempted_nr_active_links;
1556 DECLARE_COMPLETION_ONSTACK(wait);
1557 unsigned long flags;
1558 unsigned int err_mask;
1559 int rc;
1560
1561 spin_lock_irqsave(ap->lock, flags);
1562
1563 /* no internal command while frozen */
1564 if (ap->pflags & ATA_PFLAG_FROZEN) {
1565 spin_unlock_irqrestore(ap->lock, flags);
1566 return AC_ERR_SYSTEM;
1567 }
1568
1569 /* initialize internal qc */
1570
1571 /* XXX: Tag 0 is used for drivers with legacy EH as some
1572 * drivers choke if any other tag is given. This breaks
1573 * ata_tag_internal() test for those drivers. Don't use new
1574 * EH stuff without converting to it.
1575 */
1576 if (ap->ops->error_handler)
1577 tag = ATA_TAG_INTERNAL;
1578 else
1579 tag = 0;
1580
1581 if (test_and_set_bit(tag, &ap->qc_allocated))
1582 BUG();
1583 qc = __ata_qc_from_tag(ap, tag);
1584
1585 qc->tag = tag;
1586 qc->scsicmd = NULL;
1587 qc->ap = ap;
1588 qc->dev = dev;
1589 ata_qc_reinit(qc);
1590
1591 preempted_tag = link->active_tag;
1592 preempted_sactive = link->sactive;
1593 preempted_qc_active = ap->qc_active;
1594 preempted_nr_active_links = ap->nr_active_links;
1595 link->active_tag = ATA_TAG_POISON;
1596 link->sactive = 0;
1597 ap->qc_active = 0;
1598 ap->nr_active_links = 0;
1599
1600 /* prepare & issue qc */
1601 qc->tf = *tf;
1602 if (cdb)
1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604 qc->flags |= ATA_QCFLAG_RESULT_TF;
1605 qc->dma_dir = dma_dir;
1606 if (dma_dir != DMA_NONE) {
1607 unsigned int i, buflen = 0;
1608 struct scatterlist *sg;
1609
1610 for_each_sg(sgl, sg, n_elem, i)
1611 buflen += sg->length;
1612
1613 ata_sg_init(qc, sgl, n_elem);
1614 qc->nbytes = buflen;
1615 }
1616
1617 qc->private_data = &wait;
1618 qc->complete_fn = ata_qc_complete_internal;
1619
1620 ata_qc_issue(qc);
1621
1622 spin_unlock_irqrestore(ap->lock, flags);
1623
1624 if (!timeout) {
1625 if (ata_probe_timeout)
1626 timeout = ata_probe_timeout * 1000;
1627 else {
1628 timeout = ata_internal_cmd_timeout(dev, command);
1629 auto_timeout = 1;
1630 }
1631 }
1632
1633 if (ap->ops->error_handler)
1634 ata_eh_release(ap);
1635
1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637
1638 if (ap->ops->error_handler)
1639 ata_eh_acquire(ap);
1640
1641 ata_sff_flush_pio_task(ap);
1642
1643 if (!rc) {
1644 spin_lock_irqsave(ap->lock, flags);
1645
1646 /* We're racing with irq here. If we lose, the
1647 * following test prevents us from completing the qc
1648 * twice. If we win, the port is frozen and will be
1649 * cleaned up by ->post_internal_cmd().
1650 */
1651 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652 qc->err_mask |= AC_ERR_TIMEOUT;
1653
1654 if (ap->ops->error_handler)
1655 ata_port_freeze(ap);
1656 else
1657 ata_qc_complete(qc);
1658
1659 if (ata_msg_warn(ap))
1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661 command);
1662 }
1663
1664 spin_unlock_irqrestore(ap->lock, flags);
1665 }
1666
1667 /* do post_internal_cmd */
1668 if (ap->ops->post_internal_cmd)
1669 ap->ops->post_internal_cmd(qc);
1670
1671 /* perform minimal error analysis */
1672 if (qc->flags & ATA_QCFLAG_FAILED) {
1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674 qc->err_mask |= AC_ERR_DEV;
1675
1676 if (!qc->err_mask)
1677 qc->err_mask |= AC_ERR_OTHER;
1678
1679 if (qc->err_mask & ~AC_ERR_OTHER)
1680 qc->err_mask &= ~AC_ERR_OTHER;
1681 }
1682
1683 /* finish up */
1684 spin_lock_irqsave(ap->lock, flags);
1685
1686 *tf = qc->result_tf;
1687 err_mask = qc->err_mask;
1688
1689 ata_qc_free(qc);
1690 link->active_tag = preempted_tag;
1691 link->sactive = preempted_sactive;
1692 ap->qc_active = preempted_qc_active;
1693 ap->nr_active_links = preempted_nr_active_links;
1694
1695 spin_unlock_irqrestore(ap->lock, flags);
1696
1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698 ata_internal_cmd_timed_out(dev, command);
1699
1700 return err_mask;
1701 }
1702
1703 /**
1704 * ata_exec_internal - execute libata internal command
1705 * @dev: Device to which the command is sent
1706 * @tf: Taskfile registers for the command and the result
1707 * @cdb: CDB for packet command
1708 * @dma_dir: Data tranfer direction of the command
1709 * @buf: Data buffer of the command
1710 * @buflen: Length of data buffer
1711 * @timeout: Timeout in msecs (0 for default)
1712 *
1713 * Wrapper around ata_exec_internal_sg() which takes simple
1714 * buffer instead of sg list.
1715 *
1716 * LOCKING:
1717 * None. Should be called with kernel context, might sleep.
1718 *
1719 * RETURNS:
1720 * Zero on success, AC_ERR_* mask on failure
1721 */
1722 unsigned ata_exec_internal(struct ata_device *dev,
1723 struct ata_taskfile *tf, const u8 *cdb,
1724 int dma_dir, void *buf, unsigned int buflen,
1725 unsigned long timeout)
1726 {
1727 struct scatterlist *psg = NULL, sg;
1728 unsigned int n_elem = 0;
1729
1730 if (dma_dir != DMA_NONE) {
1731 WARN_ON(!buf);
1732 sg_init_one(&sg, buf, buflen);
1733 psg = &sg;
1734 n_elem++;
1735 }
1736
1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738 timeout);
1739 }
1740
1741 /**
1742 * ata_do_simple_cmd - execute simple internal command
1743 * @dev: Device to which the command is sent
1744 * @cmd: Opcode to execute
1745 *
1746 * Execute a 'simple' command, that only consists of the opcode
1747 * 'cmd' itself, without filling any other registers
1748 *
1749 * LOCKING:
1750 * Kernel thread context (may sleep).
1751 *
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1754 */
1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756 {
1757 struct ata_taskfile tf;
1758
1759 ata_tf_init(dev, &tf);
1760
1761 tf.command = cmd;
1762 tf.flags |= ATA_TFLAG_DEVICE;
1763 tf.protocol = ATA_PROT_NODATA;
1764
1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766 }
1767
1768 /**
1769 * ata_pio_need_iordy - check if iordy needed
1770 * @adev: ATA device
1771 *
1772 * Check if the current speed of the device requires IORDY. Used
1773 * by various controllers for chip configuration.
1774 */
1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776 {
1777 /* Don't set IORDY if we're preparing for reset. IORDY may
1778 * lead to controller lock up on certain controllers if the
1779 * port is not occupied. See bko#11703 for details.
1780 */
1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782 return 0;
1783 /* Controller doesn't support IORDY. Probably a pointless
1784 * check as the caller should know this.
1785 */
1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787 return 0;
1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1789 if (ata_id_is_cfa(adev->id)
1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791 return 0;
1792 /* PIO3 and higher it is mandatory */
1793 if (adev->pio_mode > XFER_PIO_2)
1794 return 1;
1795 /* We turn it on when possible */
1796 if (ata_id_has_iordy(adev->id))
1797 return 1;
1798 return 0;
1799 }
1800
1801 /**
1802 * ata_pio_mask_no_iordy - Return the non IORDY mask
1803 * @adev: ATA device
1804 *
1805 * Compute the highest mode possible if we are not using iordy. Return
1806 * -1 if no iordy mode is available.
1807 */
1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809 {
1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1812 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813 /* Is the speed faster than the drive allows non IORDY ? */
1814 if (pio) {
1815 /* This is cycle times not frequency - watch the logic! */
1816 if (pio > 240) /* PIO2 is 240nS per cycle */
1817 return 3 << ATA_SHIFT_PIO;
1818 return 7 << ATA_SHIFT_PIO;
1819 }
1820 }
1821 return 3 << ATA_SHIFT_PIO;
1822 }
1823
1824 /**
1825 * ata_do_dev_read_id - default ID read method
1826 * @dev: device
1827 * @tf: proposed taskfile
1828 * @id: data buffer
1829 *
1830 * Issue the identify taskfile and hand back the buffer containing
1831 * identify data. For some RAID controllers and for pre ATA devices
1832 * this function is wrapped or replaced by the driver
1833 */
1834 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835 struct ata_taskfile *tf, u16 *id)
1836 {
1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839 }
1840
1841 /**
1842 * ata_dev_read_id - Read ID data from the specified device
1843 * @dev: target device
1844 * @p_class: pointer to class of the target device (may be changed)
1845 * @flags: ATA_READID_* flags
1846 * @id: buffer to read IDENTIFY data into
1847 *
1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1851 * for pre-ATA4 drives.
1852 *
1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854 * now we abort if we hit that case.
1855 *
1856 * LOCKING:
1857 * Kernel thread context (may sleep)
1858 *
1859 * RETURNS:
1860 * 0 on success, -errno otherwise.
1861 */
1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863 unsigned int flags, u16 *id)
1864 {
1865 struct ata_port *ap = dev->link->ap;
1866 unsigned int class = *p_class;
1867 struct ata_taskfile tf;
1868 unsigned int err_mask = 0;
1869 const char *reason;
1870 bool is_semb = class == ATA_DEV_SEMB;
1871 int may_fallback = 1, tried_spinup = 0;
1872 int rc;
1873
1874 if (ata_msg_ctl(ap))
1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876
1877 retry:
1878 ata_tf_init(dev, &tf);
1879
1880 switch (class) {
1881 case ATA_DEV_SEMB:
1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1883 case ATA_DEV_ATA:
1884 tf.command = ATA_CMD_ID_ATA;
1885 break;
1886 case ATA_DEV_ATAPI:
1887 tf.command = ATA_CMD_ID_ATAPI;
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1893 }
1894
1895 tf.protocol = ATA_PROT_PIO;
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1906
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912 if (err_mask) {
1913 if (err_mask & AC_ERR_NODEV_HINT) {
1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 return -ENOENT;
1916 }
1917
1918 if (is_semb) {
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1948 return -ENOENT;
1949 }
1950
1951 rc = -EIO;
1952 reason = "I/O error";
1953 goto err_out;
1954 }
1955
1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
1987 }
1988
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 if (err_mask && id[2] != 0x738c) {
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011 /*
2012 * The exact sequence expected by certain pre-ATA4 drives is:
2013 * SRST RESET
2014 * IDENTIFY (optional in early ATA)
2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016 * anything else..
2017 * Some drives were very specific about that exact sequence.
2018 *
2019 * Note that ATA4 says lba is mandatory so the second check
2020 * should never trigger.
2021 */
2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024 if (err_mask) {
2025 rc = -EIO;
2026 reason = "INIT_DEV_PARAMS failed";
2027 goto err_out;
2028 }
2029
2030 /* current CHS translation info (id[53-58]) might be
2031 * changed. reread the identify device info.
2032 */
2033 flags &= ~ATA_READID_POSTRESET;
2034 goto retry;
2035 }
2036 }
2037
2038 *p_class = class;
2039
2040 return 0;
2041
2042 err_out:
2043 if (ata_msg_warn(ap))
2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045 reason, err_mask);
2046 return rc;
2047 }
2048
2049 static int ata_do_link_spd_horkage(struct ata_device *dev)
2050 {
2051 struct ata_link *plink = ata_dev_phys_link(dev);
2052 u32 target, target_limit;
2053
2054 if (!sata_scr_valid(plink))
2055 return 0;
2056
2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058 target = 1;
2059 else
2060 return 0;
2061
2062 target_limit = (1 << target) - 1;
2063
2064 /* if already on stricter limit, no need to push further */
2065 if (plink->sata_spd_limit <= target_limit)
2066 return 0;
2067
2068 plink->sata_spd_limit = target_limit;
2069
2070 /* Request another EH round by returning -EAGAIN if link is
2071 * going faster than the target speed. Forward progress is
2072 * guaranteed by setting sata_spd_limit to target_limit above.
2073 */
2074 if (plink->sata_spd > target) {
2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076 sata_spd_string(target));
2077 return -EAGAIN;
2078 }
2079 return 0;
2080 }
2081
2082 static inline u8 ata_dev_knobble(struct ata_device *dev)
2083 {
2084 struct ata_port *ap = dev->link->ap;
2085
2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087 return 0;
2088
2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090 }
2091
2092 static int ata_dev_config_ncq(struct ata_device *dev,
2093 char *desc, size_t desc_sz)
2094 {
2095 struct ata_port *ap = dev->link->ap;
2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097 unsigned int err_mask;
2098 char *aa_desc = "";
2099
2100 if (!ata_id_has_ncq(dev->id)) {
2101 desc[0] = '\0';
2102 return 0;
2103 }
2104 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105 snprintf(desc, desc_sz, "NCQ (not used)");
2106 return 0;
2107 }
2108 if (ap->flags & ATA_FLAG_NCQ) {
2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110 dev->flags |= ATA_DFLAG_NCQ;
2111 }
2112
2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2115 ata_id_has_fpdma_aa(dev->id)) {
2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117 SATA_FPDMA_AA);
2118 if (err_mask) {
2119 ata_dev_err(dev,
2120 "failed to enable AA (error_mask=0x%x)\n",
2121 err_mask);
2122 if (err_mask != AC_ERR_DEV) {
2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124 return -EIO;
2125 }
2126 } else
2127 aa_desc = ", AA";
2128 }
2129
2130 if (hdepth >= ddepth)
2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132 else
2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134 ddepth, aa_desc);
2135 return 0;
2136 }
2137
2138 /**
2139 * ata_dev_configure - Configure the specified ATA/ATAPI device
2140 * @dev: Target device to configure
2141 *
2142 * Configure @dev according to @dev->id. Generic and low-level
2143 * driver specific fixups are also applied.
2144 *
2145 * LOCKING:
2146 * Kernel thread context (may sleep)
2147 *
2148 * RETURNS:
2149 * 0 on success, -errno otherwise
2150 */
2151 int ata_dev_configure(struct ata_device *dev)
2152 {
2153 struct ata_port *ap = dev->link->ap;
2154 struct ata_eh_context *ehc = &dev->link->eh_context;
2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156 const u16 *id = dev->id;
2157 unsigned long xfer_mask;
2158 unsigned int err_mask;
2159 char revbuf[7]; /* XYZ-99\0 */
2160 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2161 char modelbuf[ATA_ID_PROD_LEN+1];
2162 int rc;
2163
2164 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2165 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2166 return 0;
2167 }
2168
2169 if (ata_msg_probe(ap))
2170 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2171
2172 /* set horkage */
2173 dev->horkage |= ata_dev_blacklisted(dev);
2174 ata_force_horkage(dev);
2175
2176 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2177 ata_dev_info(dev, "unsupported device, disabling\n");
2178 ata_dev_disable(dev);
2179 return 0;
2180 }
2181
2182 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2183 dev->class == ATA_DEV_ATAPI) {
2184 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2185 atapi_enabled ? "not supported with this driver"
2186 : "disabled");
2187 ata_dev_disable(dev);
2188 return 0;
2189 }
2190
2191 rc = ata_do_link_spd_horkage(dev);
2192 if (rc)
2193 return rc;
2194
2195 /* let ACPI work its magic */
2196 rc = ata_acpi_on_devcfg(dev);
2197 if (rc)
2198 return rc;
2199
2200 /* massage HPA, do it early as it might change IDENTIFY data */
2201 rc = ata_hpa_resize(dev);
2202 if (rc)
2203 return rc;
2204
2205 /* print device capabilities */
2206 if (ata_msg_probe(ap))
2207 ata_dev_dbg(dev,
2208 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2209 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2210 __func__,
2211 id[49], id[82], id[83], id[84],
2212 id[85], id[86], id[87], id[88]);
2213
2214 /* initialize to-be-configured parameters */
2215 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2216 dev->max_sectors = 0;
2217 dev->cdb_len = 0;
2218 dev->n_sectors = 0;
2219 dev->cylinders = 0;
2220 dev->heads = 0;
2221 dev->sectors = 0;
2222 dev->multi_count = 0;
2223
2224 /*
2225 * common ATA, ATAPI feature tests
2226 */
2227
2228 /* find max transfer mode; for printk only */
2229 xfer_mask = ata_id_xfermask(id);
2230
2231 if (ata_msg_probe(ap))
2232 ata_dump_id(id);
2233
2234 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2235 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2236 sizeof(fwrevbuf));
2237
2238 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2239 sizeof(modelbuf));
2240
2241 /* ATA-specific feature tests */
2242 if (dev->class == ATA_DEV_ATA) {
2243 if (ata_id_is_cfa(id)) {
2244 /* CPRM may make this media unusable */
2245 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2246 ata_dev_warn(dev,
2247 "supports DRM functions and may not be fully accessible\n");
2248 snprintf(revbuf, 7, "CFA");
2249 } else {
2250 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2251 /* Warn the user if the device has TPM extensions */
2252 if (ata_id_has_tpm(id))
2253 ata_dev_warn(dev,
2254 "supports DRM functions and may not be fully accessible\n");
2255 }
2256
2257 dev->n_sectors = ata_id_n_sectors(id);
2258
2259 /* get current R/W Multiple count setting */
2260 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2261 unsigned int max = dev->id[47] & 0xff;
2262 unsigned int cnt = dev->id[59] & 0xff;
2263 /* only recognize/allow powers of two here */
2264 if (is_power_of_2(max) && is_power_of_2(cnt))
2265 if (cnt <= max)
2266 dev->multi_count = cnt;
2267 }
2268
2269 if (ata_id_has_lba(id)) {
2270 const char *lba_desc;
2271 char ncq_desc[24];
2272
2273 lba_desc = "LBA";
2274 dev->flags |= ATA_DFLAG_LBA;
2275 if (ata_id_has_lba48(id)) {
2276 dev->flags |= ATA_DFLAG_LBA48;
2277 lba_desc = "LBA48";
2278
2279 if (dev->n_sectors >= (1UL << 28) &&
2280 ata_id_has_flush_ext(id))
2281 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2282 }
2283
2284 /* config NCQ */
2285 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2286 if (rc)
2287 return rc;
2288
2289 /* print device info to dmesg */
2290 if (ata_msg_drv(ap) && print_info) {
2291 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2292 revbuf, modelbuf, fwrevbuf,
2293 ata_mode_string(xfer_mask));
2294 ata_dev_info(dev,
2295 "%llu sectors, multi %u: %s %s\n",
2296 (unsigned long long)dev->n_sectors,
2297 dev->multi_count, lba_desc, ncq_desc);
2298 }
2299 } else {
2300 /* CHS */
2301
2302 /* Default translation */
2303 dev->cylinders = id[1];
2304 dev->heads = id[3];
2305 dev->sectors = id[6];
2306
2307 if (ata_id_current_chs_valid(id)) {
2308 /* Current CHS translation is valid. */
2309 dev->cylinders = id[54];
2310 dev->heads = id[55];
2311 dev->sectors = id[56];
2312 }
2313
2314 /* print device info to dmesg */
2315 if (ata_msg_drv(ap) && print_info) {
2316 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2317 revbuf, modelbuf, fwrevbuf,
2318 ata_mode_string(xfer_mask));
2319 ata_dev_info(dev,
2320 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2321 (unsigned long long)dev->n_sectors,
2322 dev->multi_count, dev->cylinders,
2323 dev->heads, dev->sectors);
2324 }
2325 }
2326
2327 /* check and mark DevSlp capability */
2328 if (ata_id_has_devslp(dev->id))
2329 dev->flags |= ATA_DFLAG_DEVSLP;
2330
2331 /* Obtain SATA Settings page from Identify Device Data Log,
2332 * which contains DevSlp timing variables etc.
2333 * Exclude old devices with ata_id_has_ncq()
2334 */
2335 if (ata_id_has_ncq(dev->id)) {
2336 err_mask = ata_read_log_page(dev,
2337 ATA_LOG_SATA_ID_DEV_DATA,
2338 ATA_LOG_SATA_SETTINGS,
2339 dev->sata_settings,
2340 1);
2341 if (err_mask)
2342 ata_dev_dbg(dev,
2343 "failed to get Identify Device Data, Emask 0x%x\n",
2344 err_mask);
2345 }
2346
2347 dev->cdb_len = 16;
2348 }
2349
2350 /* ATAPI-specific feature tests */
2351 else if (dev->class == ATA_DEV_ATAPI) {
2352 const char *cdb_intr_string = "";
2353 const char *atapi_an_string = "";
2354 const char *dma_dir_string = "";
2355 u32 sntf;
2356
2357 rc = atapi_cdb_len(id);
2358 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2359 if (ata_msg_warn(ap))
2360 ata_dev_warn(dev, "unsupported CDB len\n");
2361 rc = -EINVAL;
2362 goto err_out_nosup;
2363 }
2364 dev->cdb_len = (unsigned int) rc;
2365
2366 /* Enable ATAPI AN if both the host and device have
2367 * the support. If PMP is attached, SNTF is required
2368 * to enable ATAPI AN to discern between PHY status
2369 * changed notifications and ATAPI ANs.
2370 */
2371 if (atapi_an &&
2372 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2373 (!sata_pmp_attached(ap) ||
2374 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2375 /* issue SET feature command to turn this on */
2376 err_mask = ata_dev_set_feature(dev,
2377 SETFEATURES_SATA_ENABLE, SATA_AN);
2378 if (err_mask)
2379 ata_dev_err(dev,
2380 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2381 err_mask);
2382 else {
2383 dev->flags |= ATA_DFLAG_AN;
2384 atapi_an_string = ", ATAPI AN";
2385 }
2386 }
2387
2388 if (ata_id_cdb_intr(dev->id)) {
2389 dev->flags |= ATA_DFLAG_CDB_INTR;
2390 cdb_intr_string = ", CDB intr";
2391 }
2392
2393 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2394 dev->flags |= ATA_DFLAG_DMADIR;
2395 dma_dir_string = ", DMADIR";
2396 }
2397
2398 if (ata_id_has_da(dev->id))
2399 dev->flags |= ATA_DFLAG_DA;
2400
2401 /* print device info to dmesg */
2402 if (ata_msg_drv(ap) && print_info)
2403 ata_dev_info(dev,
2404 "ATAPI: %s, %s, max %s%s%s%s\n",
2405 modelbuf, fwrevbuf,
2406 ata_mode_string(xfer_mask),
2407 cdb_intr_string, atapi_an_string,
2408 dma_dir_string);
2409 }
2410
2411 /* determine max_sectors */
2412 dev->max_sectors = ATA_MAX_SECTORS;
2413 if (dev->flags & ATA_DFLAG_LBA48)
2414 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2415
2416 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2417 200 sectors */
2418 if (ata_dev_knobble(dev)) {
2419 if (ata_msg_drv(ap) && print_info)
2420 ata_dev_info(dev, "applying bridge limits\n");
2421 dev->udma_mask &= ATA_UDMA5;
2422 dev->max_sectors = ATA_MAX_SECTORS;
2423 }
2424
2425 if ((dev->class == ATA_DEV_ATAPI) &&
2426 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2427 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2428 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2429 }
2430
2431 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2432 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2433 dev->max_sectors);
2434
2435 if (ap->ops->dev_config)
2436 ap->ops->dev_config(dev);
2437
2438 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2439 /* Let the user know. We don't want to disallow opens for
2440 rescue purposes, or in case the vendor is just a blithering
2441 idiot. Do this after the dev_config call as some controllers
2442 with buggy firmware may want to avoid reporting false device
2443 bugs */
2444
2445 if (print_info) {
2446 ata_dev_warn(dev,
2447 "Drive reports diagnostics failure. This may indicate a drive\n");
2448 ata_dev_warn(dev,
2449 "fault or invalid emulation. Contact drive vendor for information.\n");
2450 }
2451 }
2452
2453 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2454 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2455 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2456 }
2457
2458 return 0;
2459
2460 err_out_nosup:
2461 if (ata_msg_probe(ap))
2462 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2463 return rc;
2464 }
2465
2466 /**
2467 * ata_cable_40wire - return 40 wire cable type
2468 * @ap: port
2469 *
2470 * Helper method for drivers which want to hardwire 40 wire cable
2471 * detection.
2472 */
2473
2474 int ata_cable_40wire(struct ata_port *ap)
2475 {
2476 return ATA_CBL_PATA40;
2477 }
2478
2479 /**
2480 * ata_cable_80wire - return 80 wire cable type
2481 * @ap: port
2482 *
2483 * Helper method for drivers which want to hardwire 80 wire cable
2484 * detection.
2485 */
2486
2487 int ata_cable_80wire(struct ata_port *ap)
2488 {
2489 return ATA_CBL_PATA80;
2490 }
2491
2492 /**
2493 * ata_cable_unknown - return unknown PATA cable.
2494 * @ap: port
2495 *
2496 * Helper method for drivers which have no PATA cable detection.
2497 */
2498
2499 int ata_cable_unknown(struct ata_port *ap)
2500 {
2501 return ATA_CBL_PATA_UNK;
2502 }
2503
2504 /**
2505 * ata_cable_ignore - return ignored PATA cable.
2506 * @ap: port
2507 *
2508 * Helper method for drivers which don't use cable type to limit
2509 * transfer mode.
2510 */
2511 int ata_cable_ignore(struct ata_port *ap)
2512 {
2513 return ATA_CBL_PATA_IGN;
2514 }
2515
2516 /**
2517 * ata_cable_sata - return SATA cable type
2518 * @ap: port
2519 *
2520 * Helper method for drivers which have SATA cables
2521 */
2522
2523 int ata_cable_sata(struct ata_port *ap)
2524 {
2525 return ATA_CBL_SATA;
2526 }
2527
2528 /**
2529 * ata_bus_probe - Reset and probe ATA bus
2530 * @ap: Bus to probe
2531 *
2532 * Master ATA bus probing function. Initiates a hardware-dependent
2533 * bus reset, then attempts to identify any devices found on
2534 * the bus.
2535 *
2536 * LOCKING:
2537 * PCI/etc. bus probe sem.
2538 *
2539 * RETURNS:
2540 * Zero on success, negative errno otherwise.
2541 */
2542
2543 int ata_bus_probe(struct ata_port *ap)
2544 {
2545 unsigned int classes[ATA_MAX_DEVICES];
2546 int tries[ATA_MAX_DEVICES];
2547 int rc;
2548 struct ata_device *dev;
2549
2550 ata_for_each_dev(dev, &ap->link, ALL)
2551 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2552
2553 retry:
2554 ata_for_each_dev(dev, &ap->link, ALL) {
2555 /* If we issue an SRST then an ATA drive (not ATAPI)
2556 * may change configuration and be in PIO0 timing. If
2557 * we do a hard reset (or are coming from power on)
2558 * this is true for ATA or ATAPI. Until we've set a
2559 * suitable controller mode we should not touch the
2560 * bus as we may be talking too fast.
2561 */
2562 dev->pio_mode = XFER_PIO_0;
2563
2564 /* If the controller has a pio mode setup function
2565 * then use it to set the chipset to rights. Don't
2566 * touch the DMA setup as that will be dealt with when
2567 * configuring devices.
2568 */
2569 if (ap->ops->set_piomode)
2570 ap->ops->set_piomode(ap, dev);
2571 }
2572
2573 /* reset and determine device classes */
2574 ap->ops->phy_reset(ap);
2575
2576 ata_for_each_dev(dev, &ap->link, ALL) {
2577 if (dev->class != ATA_DEV_UNKNOWN)
2578 classes[dev->devno] = dev->class;
2579 else
2580 classes[dev->devno] = ATA_DEV_NONE;
2581
2582 dev->class = ATA_DEV_UNKNOWN;
2583 }
2584
2585 /* read IDENTIFY page and configure devices. We have to do the identify
2586 specific sequence bass-ackwards so that PDIAG- is released by
2587 the slave device */
2588
2589 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2590 if (tries[dev->devno])
2591 dev->class = classes[dev->devno];
2592
2593 if (!ata_dev_enabled(dev))
2594 continue;
2595
2596 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2597 dev->id);
2598 if (rc)
2599 goto fail;
2600 }
2601
2602 /* Now ask for the cable type as PDIAG- should have been released */
2603 if (ap->ops->cable_detect)
2604 ap->cbl = ap->ops->cable_detect(ap);
2605
2606 /* We may have SATA bridge glue hiding here irrespective of
2607 * the reported cable types and sensed types. When SATA
2608 * drives indicate we have a bridge, we don't know which end
2609 * of the link the bridge is which is a problem.
2610 */
2611 ata_for_each_dev(dev, &ap->link, ENABLED)
2612 if (ata_id_is_sata(dev->id))
2613 ap->cbl = ATA_CBL_SATA;
2614
2615 /* After the identify sequence we can now set up the devices. We do
2616 this in the normal order so that the user doesn't get confused */
2617
2618 ata_for_each_dev(dev, &ap->link, ENABLED) {
2619 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2620 rc = ata_dev_configure(dev);
2621 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2622 if (rc)
2623 goto fail;
2624 }
2625
2626 /* configure transfer mode */
2627 rc = ata_set_mode(&ap->link, &dev);
2628 if (rc)
2629 goto fail;
2630
2631 ata_for_each_dev(dev, &ap->link, ENABLED)
2632 return 0;
2633
2634 return -ENODEV;
2635
2636 fail:
2637 tries[dev->devno]--;
2638
2639 switch (rc) {
2640 case -EINVAL:
2641 /* eeek, something went very wrong, give up */
2642 tries[dev->devno] = 0;
2643 break;
2644
2645 case -ENODEV:
2646 /* give it just one more chance */
2647 tries[dev->devno] = min(tries[dev->devno], 1);
2648 case -EIO:
2649 if (tries[dev->devno] == 1) {
2650 /* This is the last chance, better to slow
2651 * down than lose it.
2652 */
2653 sata_down_spd_limit(&ap->link, 0);
2654 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2655 }
2656 }
2657
2658 if (!tries[dev->devno])
2659 ata_dev_disable(dev);
2660
2661 goto retry;
2662 }
2663
2664 /**
2665 * sata_print_link_status - Print SATA link status
2666 * @link: SATA link to printk link status about
2667 *
2668 * This function prints link speed and status of a SATA link.
2669 *
2670 * LOCKING:
2671 * None.
2672 */
2673 static void sata_print_link_status(struct ata_link *link)
2674 {
2675 u32 sstatus, scontrol, tmp;
2676
2677 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2678 return;
2679 sata_scr_read(link, SCR_CONTROL, &scontrol);
2680
2681 if (ata_phys_link_online(link)) {
2682 tmp = (sstatus >> 4) & 0xf;
2683 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2684 sata_spd_string(tmp), sstatus, scontrol);
2685 } else {
2686 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2687 sstatus, scontrol);
2688 }
2689 }
2690
2691 /**
2692 * ata_dev_pair - return other device on cable
2693 * @adev: device
2694 *
2695 * Obtain the other device on the same cable, or if none is
2696 * present NULL is returned
2697 */
2698
2699 struct ata_device *ata_dev_pair(struct ata_device *adev)
2700 {
2701 struct ata_link *link = adev->link;
2702 struct ata_device *pair = &link->device[1 - adev->devno];
2703 if (!ata_dev_enabled(pair))
2704 return NULL;
2705 return pair;
2706 }
2707
2708 /**
2709 * sata_down_spd_limit - adjust SATA spd limit downward
2710 * @link: Link to adjust SATA spd limit for
2711 * @spd_limit: Additional limit
2712 *
2713 * Adjust SATA spd limit of @link downward. Note that this
2714 * function only adjusts the limit. The change must be applied
2715 * using sata_set_spd().
2716 *
2717 * If @spd_limit is non-zero, the speed is limited to equal to or
2718 * lower than @spd_limit if such speed is supported. If
2719 * @spd_limit is slower than any supported speed, only the lowest
2720 * supported speed is allowed.
2721 *
2722 * LOCKING:
2723 * Inherited from caller.
2724 *
2725 * RETURNS:
2726 * 0 on success, negative errno on failure
2727 */
2728 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2729 {
2730 u32 sstatus, spd, mask;
2731 int rc, bit;
2732
2733 if (!sata_scr_valid(link))
2734 return -EOPNOTSUPP;
2735
2736 /* If SCR can be read, use it to determine the current SPD.
2737 * If not, use cached value in link->sata_spd.
2738 */
2739 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2740 if (rc == 0 && ata_sstatus_online(sstatus))
2741 spd = (sstatus >> 4) & 0xf;
2742 else
2743 spd = link->sata_spd;
2744
2745 mask = link->sata_spd_limit;
2746 if (mask <= 1)
2747 return -EINVAL;
2748
2749 /* unconditionally mask off the highest bit */
2750 bit = fls(mask) - 1;
2751 mask &= ~(1 << bit);
2752
2753 /* Mask off all speeds higher than or equal to the current
2754 * one. Force 1.5Gbps if current SPD is not available.
2755 */
2756 if (spd > 1)
2757 mask &= (1 << (spd - 1)) - 1;
2758 else
2759 mask &= 1;
2760
2761 /* were we already at the bottom? */
2762 if (!mask)
2763 return -EINVAL;
2764
2765 if (spd_limit) {
2766 if (mask & ((1 << spd_limit) - 1))
2767 mask &= (1 << spd_limit) - 1;
2768 else {
2769 bit = ffs(mask) - 1;
2770 mask = 1 << bit;
2771 }
2772 }
2773
2774 link->sata_spd_limit = mask;
2775
2776 ata_link_warn(link, "limiting SATA link speed to %s\n",
2777 sata_spd_string(fls(mask)));
2778
2779 return 0;
2780 }
2781
2782 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2783 {
2784 struct ata_link *host_link = &link->ap->link;
2785 u32 limit, target, spd;
2786
2787 limit = link->sata_spd_limit;
2788
2789 /* Don't configure downstream link faster than upstream link.
2790 * It doesn't speed up anything and some PMPs choke on such
2791 * configuration.
2792 */
2793 if (!ata_is_host_link(link) && host_link->sata_spd)
2794 limit &= (1 << host_link->sata_spd) - 1;
2795
2796 if (limit == UINT_MAX)
2797 target = 0;
2798 else
2799 target = fls(limit);
2800
2801 spd = (*scontrol >> 4) & 0xf;
2802 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2803
2804 return spd != target;
2805 }
2806
2807 /**
2808 * sata_set_spd_needed - is SATA spd configuration needed
2809 * @link: Link in question
2810 *
2811 * Test whether the spd limit in SControl matches
2812 * @link->sata_spd_limit. This function is used to determine
2813 * whether hardreset is necessary to apply SATA spd
2814 * configuration.
2815 *
2816 * LOCKING:
2817 * Inherited from caller.
2818 *
2819 * RETURNS:
2820 * 1 if SATA spd configuration is needed, 0 otherwise.
2821 */
2822 static int sata_set_spd_needed(struct ata_link *link)
2823 {
2824 u32 scontrol;
2825
2826 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2827 return 1;
2828
2829 return __sata_set_spd_needed(link, &scontrol);
2830 }
2831
2832 /**
2833 * sata_set_spd - set SATA spd according to spd limit
2834 * @link: Link to set SATA spd for
2835 *
2836 * Set SATA spd of @link according to sata_spd_limit.
2837 *
2838 * LOCKING:
2839 * Inherited from caller.
2840 *
2841 * RETURNS:
2842 * 0 if spd doesn't need to be changed, 1 if spd has been
2843 * changed. Negative errno if SCR registers are inaccessible.
2844 */
2845 int sata_set_spd(struct ata_link *link)
2846 {
2847 u32 scontrol;
2848 int rc;
2849
2850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2851 return rc;
2852
2853 if (!__sata_set_spd_needed(link, &scontrol))
2854 return 0;
2855
2856 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2857 return rc;
2858
2859 return 1;
2860 }
2861
2862 /*
2863 * This mode timing computation functionality is ported over from
2864 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2865 */
2866 /*
2867 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2868 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2869 * for UDMA6, which is currently supported only by Maxtor drives.
2870 *
2871 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2872 */
2873
2874 static const struct ata_timing ata_timing[] = {
2875 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2877 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2878 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2879 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2880 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2881 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2882 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2883
2884 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2885 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2886 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2887
2888 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2889 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2890 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2891 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2892 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2893
2894 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2895 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2896 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2897 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2898 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2899 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2900 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2901 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2902
2903 { 0xFF }
2904 };
2905
2906 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2907 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2908
2909 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2910 {
2911 q->setup = EZ(t->setup * 1000, T);
2912 q->act8b = EZ(t->act8b * 1000, T);
2913 q->rec8b = EZ(t->rec8b * 1000, T);
2914 q->cyc8b = EZ(t->cyc8b * 1000, T);
2915 q->active = EZ(t->active * 1000, T);
2916 q->recover = EZ(t->recover * 1000, T);
2917 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2918 q->cycle = EZ(t->cycle * 1000, T);
2919 q->udma = EZ(t->udma * 1000, UT);
2920 }
2921
2922 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2923 struct ata_timing *m, unsigned int what)
2924 {
2925 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2926 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2927 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2928 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2929 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2930 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2931 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2932 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2933 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2934 }
2935
2936 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2937 {
2938 const struct ata_timing *t = ata_timing;
2939
2940 while (xfer_mode > t->mode)
2941 t++;
2942
2943 if (xfer_mode == t->mode)
2944 return t;
2945
2946 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2947 __func__, xfer_mode);
2948
2949 return NULL;
2950 }
2951
2952 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2953 struct ata_timing *t, int T, int UT)
2954 {
2955 const u16 *id = adev->id;
2956 const struct ata_timing *s;
2957 struct ata_timing p;
2958
2959 /*
2960 * Find the mode.
2961 */
2962
2963 if (!(s = ata_timing_find_mode(speed)))
2964 return -EINVAL;
2965
2966 memcpy(t, s, sizeof(*s));
2967
2968 /*
2969 * If the drive is an EIDE drive, it can tell us it needs extended
2970 * PIO/MW_DMA cycle timing.
2971 */
2972
2973 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2974 memset(&p, 0, sizeof(p));
2975
2976 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2977 if (speed <= XFER_PIO_2)
2978 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2979 else if ((speed <= XFER_PIO_4) ||
2980 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2981 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2982 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2983 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2984
2985 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2986 }
2987
2988 /*
2989 * Convert the timing to bus clock counts.
2990 */
2991
2992 ata_timing_quantize(t, t, T, UT);
2993
2994 /*
2995 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2996 * S.M.A.R.T * and some other commands. We have to ensure that the
2997 * DMA cycle timing is slower/equal than the fastest PIO timing.
2998 */
2999
3000 if (speed > XFER_PIO_6) {
3001 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3002 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3003 }
3004
3005 /*
3006 * Lengthen active & recovery time so that cycle time is correct.
3007 */
3008
3009 if (t->act8b + t->rec8b < t->cyc8b) {
3010 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3011 t->rec8b = t->cyc8b - t->act8b;
3012 }
3013
3014 if (t->active + t->recover < t->cycle) {
3015 t->active += (t->cycle - (t->active + t->recover)) / 2;
3016 t->recover = t->cycle - t->active;
3017 }
3018
3019 /* In a few cases quantisation may produce enough errors to
3020 leave t->cycle too low for the sum of active and recovery
3021 if so we must correct this */
3022 if (t->active + t->recover > t->cycle)
3023 t->cycle = t->active + t->recover;
3024
3025 return 0;
3026 }
3027
3028 /**
3029 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3030 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3031 * @cycle: cycle duration in ns
3032 *
3033 * Return matching xfer mode for @cycle. The returned mode is of
3034 * the transfer type specified by @xfer_shift. If @cycle is too
3035 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3036 * than the fastest known mode, the fasted mode is returned.
3037 *
3038 * LOCKING:
3039 * None.
3040 *
3041 * RETURNS:
3042 * Matching xfer_mode, 0xff if no match found.
3043 */
3044 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3045 {
3046 u8 base_mode = 0xff, last_mode = 0xff;
3047 const struct ata_xfer_ent *ent;
3048 const struct ata_timing *t;
3049
3050 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3051 if (ent->shift == xfer_shift)
3052 base_mode = ent->base;
3053
3054 for (t = ata_timing_find_mode(base_mode);
3055 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3056 unsigned short this_cycle;
3057
3058 switch (xfer_shift) {
3059 case ATA_SHIFT_PIO:
3060 case ATA_SHIFT_MWDMA:
3061 this_cycle = t->cycle;
3062 break;
3063 case ATA_SHIFT_UDMA:
3064 this_cycle = t->udma;
3065 break;
3066 default:
3067 return 0xff;
3068 }
3069
3070 if (cycle > this_cycle)
3071 break;
3072
3073 last_mode = t->mode;
3074 }
3075
3076 return last_mode;
3077 }
3078
3079 /**
3080 * ata_down_xfermask_limit - adjust dev xfer masks downward
3081 * @dev: Device to adjust xfer masks
3082 * @sel: ATA_DNXFER_* selector
3083 *
3084 * Adjust xfer masks of @dev downward. Note that this function
3085 * does not apply the change. Invoking ata_set_mode() afterwards
3086 * will apply the limit.
3087 *
3088 * LOCKING:
3089 * Inherited from caller.
3090 *
3091 * RETURNS:
3092 * 0 on success, negative errno on failure
3093 */
3094 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3095 {
3096 char buf[32];
3097 unsigned long orig_mask, xfer_mask;
3098 unsigned long pio_mask, mwdma_mask, udma_mask;
3099 int quiet, highbit;
3100
3101 quiet = !!(sel & ATA_DNXFER_QUIET);
3102 sel &= ~ATA_DNXFER_QUIET;
3103
3104 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3105 dev->mwdma_mask,
3106 dev->udma_mask);
3107 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3108
3109 switch (sel) {
3110 case ATA_DNXFER_PIO:
3111 highbit = fls(pio_mask) - 1;
3112 pio_mask &= ~(1 << highbit);
3113 break;
3114
3115 case ATA_DNXFER_DMA:
3116 if (udma_mask) {
3117 highbit = fls(udma_mask) - 1;
3118 udma_mask &= ~(1 << highbit);
3119 if (!udma_mask)
3120 return -ENOENT;
3121 } else if (mwdma_mask) {
3122 highbit = fls(mwdma_mask) - 1;
3123 mwdma_mask &= ~(1 << highbit);
3124 if (!mwdma_mask)
3125 return -ENOENT;
3126 }
3127 break;
3128
3129 case ATA_DNXFER_40C:
3130 udma_mask &= ATA_UDMA_MASK_40C;
3131 break;
3132
3133 case ATA_DNXFER_FORCE_PIO0:
3134 pio_mask &= 1;
3135 case ATA_DNXFER_FORCE_PIO:
3136 mwdma_mask = 0;
3137 udma_mask = 0;
3138 break;
3139
3140 default:
3141 BUG();
3142 }
3143
3144 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3145
3146 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3147 return -ENOENT;
3148
3149 if (!quiet) {
3150 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3151 snprintf(buf, sizeof(buf), "%s:%s",
3152 ata_mode_string(xfer_mask),
3153 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3154 else
3155 snprintf(buf, sizeof(buf), "%s",
3156 ata_mode_string(xfer_mask));
3157
3158 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3159 }
3160
3161 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3162 &dev->udma_mask);
3163
3164 return 0;
3165 }
3166
3167 static int ata_dev_set_mode(struct ata_device *dev)
3168 {
3169 struct ata_port *ap = dev->link->ap;
3170 struct ata_eh_context *ehc = &dev->link->eh_context;
3171 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3172 const char *dev_err_whine = "";
3173 int ign_dev_err = 0;
3174 unsigned int err_mask = 0;
3175 int rc;
3176
3177 dev->flags &= ~ATA_DFLAG_PIO;
3178 if (dev->xfer_shift == ATA_SHIFT_PIO)
3179 dev->flags |= ATA_DFLAG_PIO;
3180
3181 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3182 dev_err_whine = " (SET_XFERMODE skipped)";
3183 else {
3184 if (nosetxfer)
3185 ata_dev_warn(dev,
3186 "NOSETXFER but PATA detected - can't "
3187 "skip SETXFER, might malfunction\n");
3188 err_mask = ata_dev_set_xfermode(dev);
3189 }
3190
3191 if (err_mask & ~AC_ERR_DEV)
3192 goto fail;
3193
3194 /* revalidate */
3195 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3196 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3197 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3198 if (rc)
3199 return rc;
3200
3201 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3202 /* Old CFA may refuse this command, which is just fine */
3203 if (ata_id_is_cfa(dev->id))
3204 ign_dev_err = 1;
3205 /* Catch several broken garbage emulations plus some pre
3206 ATA devices */
3207 if (ata_id_major_version(dev->id) == 0 &&
3208 dev->pio_mode <= XFER_PIO_2)
3209 ign_dev_err = 1;
3210 /* Some very old devices and some bad newer ones fail
3211 any kind of SET_XFERMODE request but support PIO0-2
3212 timings and no IORDY */
3213 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3214 ign_dev_err = 1;
3215 }
3216 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3217 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3218 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3219 dev->dma_mode == XFER_MW_DMA_0 &&
3220 (dev->id[63] >> 8) & 1)
3221 ign_dev_err = 1;
3222
3223 /* if the device is actually configured correctly, ignore dev err */
3224 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3225 ign_dev_err = 1;
3226
3227 if (err_mask & AC_ERR_DEV) {
3228 if (!ign_dev_err)
3229 goto fail;
3230 else
3231 dev_err_whine = " (device error ignored)";
3232 }
3233
3234 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3235 dev->xfer_shift, (int)dev->xfer_mode);
3236
3237 ata_dev_info(dev, "configured for %s%s\n",
3238 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3239 dev_err_whine);
3240
3241 return 0;
3242
3243 fail:
3244 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3245 return -EIO;
3246 }
3247
3248 /**
3249 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3250 * @link: link on which timings will be programmed
3251 * @r_failed_dev: out parameter for failed device
3252 *
3253 * Standard implementation of the function used to tune and set
3254 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3255 * ata_dev_set_mode() fails, pointer to the failing device is
3256 * returned in @r_failed_dev.
3257 *
3258 * LOCKING:
3259 * PCI/etc. bus probe sem.
3260 *
3261 * RETURNS:
3262 * 0 on success, negative errno otherwise
3263 */
3264
3265 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3266 {
3267 struct ata_port *ap = link->ap;
3268 struct ata_device *dev;
3269 int rc = 0, used_dma = 0, found = 0;
3270
3271 /* step 1: calculate xfer_mask */
3272 ata_for_each_dev(dev, link, ENABLED) {
3273 unsigned long pio_mask, dma_mask;
3274 unsigned int mode_mask;
3275
3276 mode_mask = ATA_DMA_MASK_ATA;
3277 if (dev->class == ATA_DEV_ATAPI)
3278 mode_mask = ATA_DMA_MASK_ATAPI;
3279 else if (ata_id_is_cfa(dev->id))
3280 mode_mask = ATA_DMA_MASK_CFA;
3281
3282 ata_dev_xfermask(dev);
3283 ata_force_xfermask(dev);
3284
3285 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3286
3287 if (libata_dma_mask & mode_mask)
3288 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3289 dev->udma_mask);
3290 else
3291 dma_mask = 0;
3292
3293 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3294 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3295
3296 found = 1;
3297 if (ata_dma_enabled(dev))
3298 used_dma = 1;
3299 }
3300 if (!found)
3301 goto out;
3302
3303 /* step 2: always set host PIO timings */
3304 ata_for_each_dev(dev, link, ENABLED) {
3305 if (dev->pio_mode == 0xff) {
3306 ata_dev_warn(dev, "no PIO support\n");
3307 rc = -EINVAL;
3308 goto out;
3309 }
3310
3311 dev->xfer_mode = dev->pio_mode;
3312 dev->xfer_shift = ATA_SHIFT_PIO;
3313 if (ap->ops->set_piomode)
3314 ap->ops->set_piomode(ap, dev);
3315 }
3316
3317 /* step 3: set host DMA timings */
3318 ata_for_each_dev(dev, link, ENABLED) {
3319 if (!ata_dma_enabled(dev))
3320 continue;
3321
3322 dev->xfer_mode = dev->dma_mode;
3323 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3324 if (ap->ops->set_dmamode)
3325 ap->ops->set_dmamode(ap, dev);
3326 }
3327
3328 /* step 4: update devices' xfer mode */
3329 ata_for_each_dev(dev, link, ENABLED) {
3330 rc = ata_dev_set_mode(dev);
3331 if (rc)
3332 goto out;
3333 }
3334
3335 /* Record simplex status. If we selected DMA then the other
3336 * host channels are not permitted to do so.
3337 */
3338 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3339 ap->host->simplex_claimed = ap;
3340
3341 out:
3342 if (rc)
3343 *r_failed_dev = dev;
3344 return rc;
3345 }
3346
3347 /**
3348 * ata_wait_ready - wait for link to become ready
3349 * @link: link to be waited on
3350 * @deadline: deadline jiffies for the operation
3351 * @check_ready: callback to check link readiness
3352 *
3353 * Wait for @link to become ready. @check_ready should return
3354 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3355 * link doesn't seem to be occupied, other errno for other error
3356 * conditions.
3357 *
3358 * Transient -ENODEV conditions are allowed for
3359 * ATA_TMOUT_FF_WAIT.
3360 *
3361 * LOCKING:
3362 * EH context.
3363 *
3364 * RETURNS:
3365 * 0 if @linke is ready before @deadline; otherwise, -errno.
3366 */
3367 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3368 int (*check_ready)(struct ata_link *link))
3369 {
3370 unsigned long start = jiffies;
3371 unsigned long nodev_deadline;
3372 int warned = 0;
3373
3374 /* choose which 0xff timeout to use, read comment in libata.h */
3375 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3376 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3377 else
3378 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3379
3380 /* Slave readiness can't be tested separately from master. On
3381 * M/S emulation configuration, this function should be called
3382 * only on the master and it will handle both master and slave.
3383 */
3384 WARN_ON(link == link->ap->slave_link);
3385
3386 if (time_after(nodev_deadline, deadline))
3387 nodev_deadline = deadline;
3388
3389 while (1) {
3390 unsigned long now = jiffies;
3391 int ready, tmp;
3392
3393 ready = tmp = check_ready(link);
3394 if (ready > 0)
3395 return 0;
3396
3397 /*
3398 * -ENODEV could be transient. Ignore -ENODEV if link
3399 * is online. Also, some SATA devices take a long
3400 * time to clear 0xff after reset. Wait for
3401 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3402 * offline.
3403 *
3404 * Note that some PATA controllers (pata_ali) explode
3405 * if status register is read more than once when
3406 * there's no device attached.
3407 */
3408 if (ready == -ENODEV) {
3409 if (ata_link_online(link))
3410 ready = 0;
3411 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3412 !ata_link_offline(link) &&
3413 time_before(now, nodev_deadline))
3414 ready = 0;
3415 }
3416
3417 if (ready)
3418 return ready;
3419 if (time_after(now, deadline))
3420 return -EBUSY;
3421
3422 if (!warned && time_after(now, start + 5 * HZ) &&
3423 (deadline - now > 3 * HZ)) {
3424 ata_link_warn(link,
3425 "link is slow to respond, please be patient "
3426 "(ready=%d)\n", tmp);
3427 warned = 1;
3428 }
3429
3430 ata_msleep(link->ap, 50);
3431 }
3432 }
3433
3434 /**
3435 * ata_wait_after_reset - wait for link to become ready after reset
3436 * @link: link to be waited on
3437 * @deadline: deadline jiffies for the operation
3438 * @check_ready: callback to check link readiness
3439 *
3440 * Wait for @link to become ready after reset.
3441 *
3442 * LOCKING:
3443 * EH context.
3444 *
3445 * RETURNS:
3446 * 0 if @linke is ready before @deadline; otherwise, -errno.
3447 */
3448 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3449 int (*check_ready)(struct ata_link *link))
3450 {
3451 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3452
3453 return ata_wait_ready(link, deadline, check_ready);
3454 }
3455
3456 /**
3457 * sata_link_debounce - debounce SATA phy status
3458 * @link: ATA link to debounce SATA phy status for
3459 * @params: timing parameters { interval, duratinon, timeout } in msec
3460 * @deadline: deadline jiffies for the operation
3461 *
3462 * Make sure SStatus of @link reaches stable state, determined by
3463 * holding the same value where DET is not 1 for @duration polled
3464 * every @interval, before @timeout. Timeout constraints the
3465 * beginning of the stable state. Because DET gets stuck at 1 on
3466 * some controllers after hot unplugging, this functions waits
3467 * until timeout then returns 0 if DET is stable at 1.
3468 *
3469 * @timeout is further limited by @deadline. The sooner of the
3470 * two is used.
3471 *
3472 * LOCKING:
3473 * Kernel thread context (may sleep)
3474 *
3475 * RETURNS:
3476 * 0 on success, -errno on failure.
3477 */
3478 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3479 unsigned long deadline)
3480 {
3481 unsigned long interval = params[0];
3482 unsigned long duration = params[1];
3483 unsigned long last_jiffies, t;
3484 u32 last, cur;
3485 int rc;
3486
3487 t = ata_deadline(jiffies, params[2]);
3488 if (time_before(t, deadline))
3489 deadline = t;
3490
3491 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3492 return rc;
3493 cur &= 0xf;
3494
3495 last = cur;
3496 last_jiffies = jiffies;
3497
3498 while (1) {
3499 ata_msleep(link->ap, interval);
3500 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3501 return rc;
3502 cur &= 0xf;
3503
3504 /* DET stable? */
3505 if (cur == last) {
3506 if (cur == 1 && time_before(jiffies, deadline))
3507 continue;
3508 if (time_after(jiffies,
3509 ata_deadline(last_jiffies, duration)))
3510 return 0;
3511 continue;
3512 }
3513
3514 /* unstable, start over */
3515 last = cur;
3516 last_jiffies = jiffies;
3517
3518 /* Check deadline. If debouncing failed, return
3519 * -EPIPE to tell upper layer to lower link speed.
3520 */
3521 if (time_after(jiffies, deadline))
3522 return -EPIPE;
3523 }
3524 }
3525
3526 /**
3527 * sata_link_resume - resume SATA link
3528 * @link: ATA link to resume SATA
3529 * @params: timing parameters { interval, duratinon, timeout } in msec
3530 * @deadline: deadline jiffies for the operation
3531 *
3532 * Resume SATA phy @link and debounce it.
3533 *
3534 * LOCKING:
3535 * Kernel thread context (may sleep)
3536 *
3537 * RETURNS:
3538 * 0 on success, -errno on failure.
3539 */
3540 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3541 unsigned long deadline)
3542 {
3543 int tries = ATA_LINK_RESUME_TRIES;
3544 u32 scontrol, serror;
3545 int rc;
3546
3547 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3548 return rc;
3549
3550 /*
3551 * Writes to SControl sometimes get ignored under certain
3552 * controllers (ata_piix SIDPR). Make sure DET actually is
3553 * cleared.
3554 */
3555 do {
3556 scontrol = (scontrol & 0x0f0) | 0x300;
3557 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3558 return rc;
3559 /*
3560 * Some PHYs react badly if SStatus is pounded
3561 * immediately after resuming. Delay 200ms before
3562 * debouncing.
3563 */
3564 ata_msleep(link->ap, 200);
3565
3566 /* is SControl restored correctly? */
3567 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3568 return rc;
3569 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3570
3571 if ((scontrol & 0xf0f) != 0x300) {
3572 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3573 scontrol);
3574 return 0;
3575 }
3576
3577 if (tries < ATA_LINK_RESUME_TRIES)
3578 ata_link_warn(link, "link resume succeeded after %d retries\n",
3579 ATA_LINK_RESUME_TRIES - tries);
3580
3581 if ((rc = sata_link_debounce(link, params, deadline)))
3582 return rc;
3583
3584 /* clear SError, some PHYs require this even for SRST to work */
3585 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3586 rc = sata_scr_write(link, SCR_ERROR, serror);
3587
3588 return rc != -EINVAL ? rc : 0;
3589 }
3590
3591 /**
3592 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3593 * @link: ATA link to manipulate SControl for
3594 * @policy: LPM policy to configure
3595 * @spm_wakeup: initiate LPM transition to active state
3596 *
3597 * Manipulate the IPM field of the SControl register of @link
3598 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3599 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3600 * the link. This function also clears PHYRDY_CHG before
3601 * returning.
3602 *
3603 * LOCKING:
3604 * EH context.
3605 *
3606 * RETURNS:
3607 * 0 on succes, -errno otherwise.
3608 */
3609 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3610 bool spm_wakeup)
3611 {
3612 struct ata_eh_context *ehc = &link->eh_context;
3613 bool woken_up = false;
3614 u32 scontrol;
3615 int rc;
3616
3617 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3618 if (rc)
3619 return rc;
3620
3621 switch (policy) {
3622 case ATA_LPM_MAX_POWER:
3623 /* disable all LPM transitions */
3624 scontrol |= (0x7 << 8);
3625 /* initiate transition to active state */
3626 if (spm_wakeup) {
3627 scontrol |= (0x4 << 12);
3628 woken_up = true;
3629 }
3630 break;
3631 case ATA_LPM_MED_POWER:
3632 /* allow LPM to PARTIAL */
3633 scontrol &= ~(0x1 << 8);
3634 scontrol |= (0x6 << 8);
3635 break;
3636 case ATA_LPM_MIN_POWER:
3637 if (ata_link_nr_enabled(link) > 0)
3638 /* no restrictions on LPM transitions */
3639 scontrol &= ~(0x7 << 8);
3640 else {
3641 /* empty port, power off */
3642 scontrol &= ~0xf;
3643 scontrol |= (0x1 << 2);
3644 }
3645 break;
3646 default:
3647 WARN_ON(1);
3648 }
3649
3650 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3651 if (rc)
3652 return rc;
3653
3654 /* give the link time to transit out of LPM state */
3655 if (woken_up)
3656 msleep(10);
3657
3658 /* clear PHYRDY_CHG from SError */
3659 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3660 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3661 }
3662
3663 /**
3664 * ata_std_prereset - prepare for reset
3665 * @link: ATA link to be reset
3666 * @deadline: deadline jiffies for the operation
3667 *
3668 * @link is about to be reset. Initialize it. Failure from
3669 * prereset makes libata abort whole reset sequence and give up
3670 * that port, so prereset should be best-effort. It does its
3671 * best to prepare for reset sequence but if things go wrong, it
3672 * should just whine, not fail.
3673 *
3674 * LOCKING:
3675 * Kernel thread context (may sleep)
3676 *
3677 * RETURNS:
3678 * 0 on success, -errno otherwise.
3679 */
3680 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3681 {
3682 struct ata_port *ap = link->ap;
3683 struct ata_eh_context *ehc = &link->eh_context;
3684 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3685 int rc;
3686
3687 /* if we're about to do hardreset, nothing more to do */
3688 if (ehc->i.action & ATA_EH_HARDRESET)
3689 return 0;
3690
3691 /* if SATA, resume link */
3692 if (ap->flags & ATA_FLAG_SATA) {
3693 rc = sata_link_resume(link, timing, deadline);
3694 /* whine about phy resume failure but proceed */
3695 if (rc && rc != -EOPNOTSUPP)
3696 ata_link_warn(link,
3697 "failed to resume link for reset (errno=%d)\n",
3698 rc);
3699 }
3700
3701 /* no point in trying softreset on offline link */
3702 if (ata_phys_link_offline(link))
3703 ehc->i.action &= ~ATA_EH_SOFTRESET;
3704
3705 return 0;
3706 }
3707
3708 /**
3709 * sata_link_hardreset - reset link via SATA phy reset
3710 * @link: link to reset
3711 * @timing: timing parameters { interval, duratinon, timeout } in msec
3712 * @deadline: deadline jiffies for the operation
3713 * @online: optional out parameter indicating link onlineness
3714 * @check_ready: optional callback to check link readiness
3715 *
3716 * SATA phy-reset @link using DET bits of SControl register.
3717 * After hardreset, link readiness is waited upon using
3718 * ata_wait_ready() if @check_ready is specified. LLDs are
3719 * allowed to not specify @check_ready and wait itself after this
3720 * function returns. Device classification is LLD's
3721 * responsibility.
3722 *
3723 * *@online is set to one iff reset succeeded and @link is online
3724 * after reset.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 *
3729 * RETURNS:
3730 * 0 on success, -errno otherwise.
3731 */
3732 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3733 unsigned long deadline,
3734 bool *online, int (*check_ready)(struct ata_link *))
3735 {
3736 u32 scontrol;
3737 int rc;
3738
3739 DPRINTK("ENTER\n");
3740
3741 if (online)
3742 *online = false;
3743
3744 if (sata_set_spd_needed(link)) {
3745 /* SATA spec says nothing about how to reconfigure
3746 * spd. To be on the safe side, turn off phy during
3747 * reconfiguration. This works for at least ICH7 AHCI
3748 * and Sil3124.
3749 */
3750 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3751 goto out;
3752
3753 scontrol = (scontrol & 0x0f0) | 0x304;
3754
3755 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3756 goto out;
3757
3758 sata_set_spd(link);
3759 }
3760
3761 /* issue phy wake/reset */
3762 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3763 goto out;
3764
3765 scontrol = (scontrol & 0x0f0) | 0x301;
3766
3767 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3768 goto out;
3769
3770 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3771 * 10.4.2 says at least 1 ms.
3772 */
3773 ata_msleep(link->ap, 1);
3774
3775 /* bring link back */
3776 rc = sata_link_resume(link, timing, deadline);
3777 if (rc)
3778 goto out;
3779 /* if link is offline nothing more to do */
3780 if (ata_phys_link_offline(link))
3781 goto out;
3782
3783 /* Link is online. From this point, -ENODEV too is an error. */
3784 if (online)
3785 *online = true;
3786
3787 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3788 /* If PMP is supported, we have to do follow-up SRST.
3789 * Some PMPs don't send D2H Reg FIS after hardreset if
3790 * the first port is empty. Wait only for
3791 * ATA_TMOUT_PMP_SRST_WAIT.
3792 */
3793 if (check_ready) {
3794 unsigned long pmp_deadline;
3795
3796 pmp_deadline = ata_deadline(jiffies,
3797 ATA_TMOUT_PMP_SRST_WAIT);
3798 if (time_after(pmp_deadline, deadline))
3799 pmp_deadline = deadline;
3800 ata_wait_ready(link, pmp_deadline, check_ready);
3801 }
3802 rc = -EAGAIN;
3803 goto out;
3804 }
3805
3806 rc = 0;
3807 if (check_ready)
3808 rc = ata_wait_ready(link, deadline, check_ready);
3809 out:
3810 if (rc && rc != -EAGAIN) {
3811 /* online is set iff link is online && reset succeeded */
3812 if (online)
3813 *online = false;
3814 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3815 }
3816 DPRINTK("EXIT, rc=%d\n", rc);
3817 return rc;
3818 }
3819
3820 /**
3821 * sata_std_hardreset - COMRESET w/o waiting or classification
3822 * @link: link to reset
3823 * @class: resulting class of attached device
3824 * @deadline: deadline jiffies for the operation
3825 *
3826 * Standard SATA COMRESET w/o waiting or classification.
3827 *
3828 * LOCKING:
3829 * Kernel thread context (may sleep)
3830 *
3831 * RETURNS:
3832 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3833 */
3834 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3835 unsigned long deadline)
3836 {
3837 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3838 bool online;
3839 int rc;
3840
3841 /* do hardreset */
3842 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3843 return online ? -EAGAIN : rc;
3844 }
3845
3846 /**
3847 * ata_std_postreset - standard postreset callback
3848 * @link: the target ata_link
3849 * @classes: classes of attached devices
3850 *
3851 * This function is invoked after a successful reset. Note that
3852 * the device might have been reset more than once using
3853 * different reset methods before postreset is invoked.
3854 *
3855 * LOCKING:
3856 * Kernel thread context (may sleep)
3857 */
3858 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3859 {
3860 u32 serror;
3861
3862 DPRINTK("ENTER\n");
3863
3864 /* reset complete, clear SError */
3865 if (!sata_scr_read(link, SCR_ERROR, &serror))
3866 sata_scr_write(link, SCR_ERROR, serror);
3867
3868 /* print link status */
3869 sata_print_link_status(link);
3870
3871 DPRINTK("EXIT\n");
3872 }
3873
3874 /**
3875 * ata_dev_same_device - Determine whether new ID matches configured device
3876 * @dev: device to compare against
3877 * @new_class: class of the new device
3878 * @new_id: IDENTIFY page of the new device
3879 *
3880 * Compare @new_class and @new_id against @dev and determine
3881 * whether @dev is the device indicated by @new_class and
3882 * @new_id.
3883 *
3884 * LOCKING:
3885 * None.
3886 *
3887 * RETURNS:
3888 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3889 */
3890 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3891 const u16 *new_id)
3892 {
3893 const u16 *old_id = dev->id;
3894 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3895 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3896
3897 if (dev->class != new_class) {
3898 ata_dev_info(dev, "class mismatch %d != %d\n",
3899 dev->class, new_class);
3900 return 0;
3901 }
3902
3903 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3904 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3905 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3906 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3907
3908 if (strcmp(model[0], model[1])) {
3909 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3910 model[0], model[1]);
3911 return 0;
3912 }
3913
3914 if (strcmp(serial[0], serial[1])) {
3915 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3916 serial[0], serial[1]);
3917 return 0;
3918 }
3919
3920 return 1;
3921 }
3922
3923 /**
3924 * ata_dev_reread_id - Re-read IDENTIFY data
3925 * @dev: target ATA device
3926 * @readid_flags: read ID flags
3927 *
3928 * Re-read IDENTIFY page and make sure @dev is still attached to
3929 * the port.
3930 *
3931 * LOCKING:
3932 * Kernel thread context (may sleep)
3933 *
3934 * RETURNS:
3935 * 0 on success, negative errno otherwise
3936 */
3937 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3938 {
3939 unsigned int class = dev->class;
3940 u16 *id = (void *)dev->link->ap->sector_buf;
3941 int rc;
3942
3943 /* read ID data */
3944 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3945 if (rc)
3946 return rc;
3947
3948 /* is the device still there? */
3949 if (!ata_dev_same_device(dev, class, id))
3950 return -ENODEV;
3951
3952 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3953 return 0;
3954 }
3955
3956 /**
3957 * ata_dev_revalidate - Revalidate ATA device
3958 * @dev: device to revalidate
3959 * @new_class: new class code
3960 * @readid_flags: read ID flags
3961 *
3962 * Re-read IDENTIFY page, make sure @dev is still attached to the
3963 * port and reconfigure it according to the new IDENTIFY page.
3964 *
3965 * LOCKING:
3966 * Kernel thread context (may sleep)
3967 *
3968 * RETURNS:
3969 * 0 on success, negative errno otherwise
3970 */
3971 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3972 unsigned int readid_flags)
3973 {
3974 u64 n_sectors = dev->n_sectors;
3975 u64 n_native_sectors = dev->n_native_sectors;
3976 int rc;
3977
3978 if (!ata_dev_enabled(dev))
3979 return -ENODEV;
3980
3981 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3982 if (ata_class_enabled(new_class) &&
3983 new_class != ATA_DEV_ATA &&
3984 new_class != ATA_DEV_ATAPI &&
3985 new_class != ATA_DEV_SEMB) {
3986 ata_dev_info(dev, "class mismatch %u != %u\n",
3987 dev->class, new_class);
3988 rc = -ENODEV;
3989 goto fail;
3990 }
3991
3992 /* re-read ID */
3993 rc = ata_dev_reread_id(dev, readid_flags);
3994 if (rc)
3995 goto fail;
3996
3997 /* configure device according to the new ID */
3998 rc = ata_dev_configure(dev);
3999 if (rc)
4000 goto fail;
4001
4002 /* verify n_sectors hasn't changed */
4003 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4004 dev->n_sectors == n_sectors)
4005 return 0;
4006
4007 /* n_sectors has changed */
4008 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4009 (unsigned long long)n_sectors,
4010 (unsigned long long)dev->n_sectors);
4011
4012 /*
4013 * Something could have caused HPA to be unlocked
4014 * involuntarily. If n_native_sectors hasn't changed and the
4015 * new size matches it, keep the device.
4016 */
4017 if (dev->n_native_sectors == n_native_sectors &&
4018 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4019 ata_dev_warn(dev,
4020 "new n_sectors matches native, probably "
4021 "late HPA unlock, n_sectors updated\n");
4022 /* use the larger n_sectors */
4023 return 0;
4024 }
4025
4026 /*
4027 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4028 * unlocking HPA in those cases.
4029 *
4030 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4031 */
4032 if (dev->n_native_sectors == n_native_sectors &&
4033 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4034 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4035 ata_dev_warn(dev,
4036 "old n_sectors matches native, probably "
4037 "late HPA lock, will try to unlock HPA\n");
4038 /* try unlocking HPA */
4039 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4040 rc = -EIO;
4041 } else
4042 rc = -ENODEV;
4043
4044 /* restore original n_[native_]sectors and fail */
4045 dev->n_native_sectors = n_native_sectors;
4046 dev->n_sectors = n_sectors;
4047 fail:
4048 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4049 return rc;
4050 }
4051
4052 struct ata_blacklist_entry {
4053 const char *model_num;
4054 const char *model_rev;
4055 unsigned long horkage;
4056 };
4057
4058 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4059 /* Devices with DMA related problems under Linux */
4060 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4061 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4062 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4066 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4067 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4068 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4069 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4071 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4072 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4073 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4074 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4075 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4076 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4077 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4078 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4079 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4080 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4081 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4082 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4083 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4084 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4085 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4086 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4087 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4088 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4089 /* Odd clown on sil3726/4726 PMPs */
4090 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4091
4092 /* Weird ATAPI devices */
4093 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4094 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4095
4096 /* Devices we expect to fail diagnostics */
4097
4098 /* Devices where NCQ should be avoided */
4099 /* NCQ is slow */
4100 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4101 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4102 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4103 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4104 /* NCQ is broken */
4105 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4106 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4107 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4108 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4109 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4110
4111 /* Seagate NCQ + FLUSH CACHE firmware bug */
4112 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4113 ATA_HORKAGE_FIRMWARE_WARN },
4114
4115 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4116 ATA_HORKAGE_FIRMWARE_WARN },
4117
4118 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4119 ATA_HORKAGE_FIRMWARE_WARN },
4120
4121 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4122 ATA_HORKAGE_FIRMWARE_WARN },
4123
4124 /* Blacklist entries taken from Silicon Image 3124/3132
4125 Windows driver .inf file - also several Linux problem reports */
4126 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4127 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4128 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4129
4130 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4131 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4132
4133 /* devices which puke on READ_NATIVE_MAX */
4134 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4135 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4136 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4137 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4138
4139 /* this one allows HPA unlocking but fails IOs on the area */
4140 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4141
4142 /* Devices which report 1 sector over size HPA */
4143 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4144 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4145 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4146
4147 /* Devices which get the IVB wrong */
4148 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4149 /* Maybe we should just blacklist TSSTcorp... */
4150 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4151
4152 /* Devices that do not need bridging limits applied */
4153 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4154 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4155
4156 /* Devices which aren't very happy with higher link speeds */
4157 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4158 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4159
4160 /*
4161 * Devices which choke on SETXFER. Applies only if both the
4162 * device and controller are SATA.
4163 */
4164 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4165 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4166 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4167 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4168 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4169
4170 /* End Marker */
4171 { }
4172 };
4173
4174 /**
4175 * glob_match - match a text string against a glob-style pattern
4176 * @text: the string to be examined
4177 * @pattern: the glob-style pattern to be matched against
4178 *
4179 * Either/both of text and pattern can be empty strings.
4180 *
4181 * Match text against a glob-style pattern, with wildcards and simple sets:
4182 *
4183 * ? matches any single character.
4184 * * matches any run of characters.
4185 * [xyz] matches a single character from the set: x, y, or z.
4186 * [a-d] matches a single character from the range: a, b, c, or d.
4187 * [a-d0-9] matches a single character from either range.
4188 *
4189 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4190 * Behaviour with malformed patterns is undefined, though generally reasonable.
4191 *
4192 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4193 *
4194 * This function uses one level of recursion per '*' in pattern.
4195 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4196 * this will not cause stack problems for any reasonable use here.
4197 *
4198 * RETURNS:
4199 * 0 on match, 1 otherwise.
4200 */
4201 static int glob_match (const char *text, const char *pattern)
4202 {
4203 do {
4204 /* Match single character or a '?' wildcard */
4205 if (*text == *pattern || *pattern == '?') {
4206 if (!*pattern++)
4207 return 0; /* End of both strings: match */
4208 } else {
4209 /* Match single char against a '[' bracketed ']' pattern set */
4210 if (!*text || *pattern != '[')
4211 break; /* Not a pattern set */
4212 while (*++pattern && *pattern != ']' && *text != *pattern) {
4213 if (*pattern == '-' && *(pattern - 1) != '[')
4214 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4215 ++pattern;
4216 break;
4217 }
4218 }
4219 if (!*pattern || *pattern == ']')
4220 return 1; /* No match */
4221 while (*pattern && *pattern++ != ']');
4222 }
4223 } while (*++text && *pattern);
4224
4225 /* Match any run of chars against a '*' wildcard */
4226 if (*pattern == '*') {
4227 if (!*++pattern)
4228 return 0; /* Match: avoid recursion at end of pattern */
4229 /* Loop to handle additional pattern chars after the wildcard */
4230 while (*text) {
4231 if (glob_match(text, pattern) == 0)
4232 return 0; /* Remainder matched */
4233 ++text; /* Absorb (match) this char and try again */
4234 }
4235 }
4236 if (!*text && !*pattern)
4237 return 0; /* End of both strings: match */
4238 return 1; /* No match */
4239 }
4240
4241 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4242 {
4243 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4244 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4245 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4246
4247 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4248 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4249
4250 while (ad->model_num) {
4251 if (!glob_match(model_num, ad->model_num)) {
4252 if (ad->model_rev == NULL)
4253 return ad->horkage;
4254 if (!glob_match(model_rev, ad->model_rev))
4255 return ad->horkage;
4256 }
4257 ad++;
4258 }
4259 return 0;
4260 }
4261
4262 static int ata_dma_blacklisted(const struct ata_device *dev)
4263 {
4264 /* We don't support polling DMA.
4265 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4266 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4267 */
4268 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4269 (dev->flags & ATA_DFLAG_CDB_INTR))
4270 return 1;
4271 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4272 }
4273
4274 /**
4275 * ata_is_40wire - check drive side detection
4276 * @dev: device
4277 *
4278 * Perform drive side detection decoding, allowing for device vendors
4279 * who can't follow the documentation.
4280 */
4281
4282 static int ata_is_40wire(struct ata_device *dev)
4283 {
4284 if (dev->horkage & ATA_HORKAGE_IVB)
4285 return ata_drive_40wire_relaxed(dev->id);
4286 return ata_drive_40wire(dev->id);
4287 }
4288
4289 /**
4290 * cable_is_40wire - 40/80/SATA decider
4291 * @ap: port to consider
4292 *
4293 * This function encapsulates the policy for speed management
4294 * in one place. At the moment we don't cache the result but
4295 * there is a good case for setting ap->cbl to the result when
4296 * we are called with unknown cables (and figuring out if it
4297 * impacts hotplug at all).
4298 *
4299 * Return 1 if the cable appears to be 40 wire.
4300 */
4301
4302 static int cable_is_40wire(struct ata_port *ap)
4303 {
4304 struct ata_link *link;
4305 struct ata_device *dev;
4306
4307 /* If the controller thinks we are 40 wire, we are. */
4308 if (ap->cbl == ATA_CBL_PATA40)
4309 return 1;
4310
4311 /* If the controller thinks we are 80 wire, we are. */
4312 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4313 return 0;
4314
4315 /* If the system is known to be 40 wire short cable (eg
4316 * laptop), then we allow 80 wire modes even if the drive
4317 * isn't sure.
4318 */
4319 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4320 return 0;
4321
4322 /* If the controller doesn't know, we scan.
4323 *
4324 * Note: We look for all 40 wire detects at this point. Any
4325 * 80 wire detect is taken to be 80 wire cable because
4326 * - in many setups only the one drive (slave if present) will
4327 * give a valid detect
4328 * - if you have a non detect capable drive you don't want it
4329 * to colour the choice
4330 */
4331 ata_for_each_link(link, ap, EDGE) {
4332 ata_for_each_dev(dev, link, ENABLED) {
4333 if (!ata_is_40wire(dev))
4334 return 0;
4335 }
4336 }
4337 return 1;
4338 }
4339
4340 /**
4341 * ata_dev_xfermask - Compute supported xfermask of the given device
4342 * @dev: Device to compute xfermask for
4343 *
4344 * Compute supported xfermask of @dev and store it in
4345 * dev->*_mask. This function is responsible for applying all
4346 * known limits including host controller limits, device
4347 * blacklist, etc...
4348 *
4349 * LOCKING:
4350 * None.
4351 */
4352 static void ata_dev_xfermask(struct ata_device *dev)
4353 {
4354 struct ata_link *link = dev->link;
4355 struct ata_port *ap = link->ap;
4356 struct ata_host *host = ap->host;
4357 unsigned long xfer_mask;
4358
4359 /* controller modes available */
4360 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4361 ap->mwdma_mask, ap->udma_mask);
4362
4363 /* drive modes available */
4364 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4365 dev->mwdma_mask, dev->udma_mask);
4366 xfer_mask &= ata_id_xfermask(dev->id);
4367
4368 /*
4369 * CFA Advanced TrueIDE timings are not allowed on a shared
4370 * cable
4371 */
4372 if (ata_dev_pair(dev)) {
4373 /* No PIO5 or PIO6 */
4374 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4375 /* No MWDMA3 or MWDMA 4 */
4376 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4377 }
4378
4379 if (ata_dma_blacklisted(dev)) {
4380 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4381 ata_dev_warn(dev,
4382 "device is on DMA blacklist, disabling DMA\n");
4383 }
4384
4385 if ((host->flags & ATA_HOST_SIMPLEX) &&
4386 host->simplex_claimed && host->simplex_claimed != ap) {
4387 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4388 ata_dev_warn(dev,
4389 "simplex DMA is claimed by other device, disabling DMA\n");
4390 }
4391
4392 if (ap->flags & ATA_FLAG_NO_IORDY)
4393 xfer_mask &= ata_pio_mask_no_iordy(dev);
4394
4395 if (ap->ops->mode_filter)
4396 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4397
4398 /* Apply cable rule here. Don't apply it early because when
4399 * we handle hot plug the cable type can itself change.
4400 * Check this last so that we know if the transfer rate was
4401 * solely limited by the cable.
4402 * Unknown or 80 wire cables reported host side are checked
4403 * drive side as well. Cases where we know a 40wire cable
4404 * is used safely for 80 are not checked here.
4405 */
4406 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4407 /* UDMA/44 or higher would be available */
4408 if (cable_is_40wire(ap)) {
4409 ata_dev_warn(dev,
4410 "limited to UDMA/33 due to 40-wire cable\n");
4411 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4412 }
4413
4414 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4415 &dev->mwdma_mask, &dev->udma_mask);
4416 }
4417
4418 /**
4419 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4420 * @dev: Device to which command will be sent
4421 *
4422 * Issue SET FEATURES - XFER MODE command to device @dev
4423 * on port @ap.
4424 *
4425 * LOCKING:
4426 * PCI/etc. bus probe sem.
4427 *
4428 * RETURNS:
4429 * 0 on success, AC_ERR_* mask otherwise.
4430 */
4431
4432 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4433 {
4434 struct ata_taskfile tf;
4435 unsigned int err_mask;
4436
4437 /* set up set-features taskfile */
4438 DPRINTK("set features - xfer mode\n");
4439
4440 /* Some controllers and ATAPI devices show flaky interrupt
4441 * behavior after setting xfer mode. Use polling instead.
4442 */
4443 ata_tf_init(dev, &tf);
4444 tf.command = ATA_CMD_SET_FEATURES;
4445 tf.feature = SETFEATURES_XFER;
4446 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4447 tf.protocol = ATA_PROT_NODATA;
4448 /* If we are using IORDY we must send the mode setting command */
4449 if (ata_pio_need_iordy(dev))
4450 tf.nsect = dev->xfer_mode;
4451 /* If the device has IORDY and the controller does not - turn it off */
4452 else if (ata_id_has_iordy(dev->id))
4453 tf.nsect = 0x01;
4454 else /* In the ancient relic department - skip all of this */
4455 return 0;
4456
4457 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4458
4459 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4460 return err_mask;
4461 }
4462
4463 /**
4464 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4465 * @dev: Device to which command will be sent
4466 * @enable: Whether to enable or disable the feature
4467 * @feature: The sector count represents the feature to set
4468 *
4469 * Issue SET FEATURES - SATA FEATURES command to device @dev
4470 * on port @ap with sector count
4471 *
4472 * LOCKING:
4473 * PCI/etc. bus probe sem.
4474 *
4475 * RETURNS:
4476 * 0 on success, AC_ERR_* mask otherwise.
4477 */
4478 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4479 {
4480 struct ata_taskfile tf;
4481 unsigned int err_mask;
4482
4483 /* set up set-features taskfile */
4484 DPRINTK("set features - SATA features\n");
4485
4486 ata_tf_init(dev, &tf);
4487 tf.command = ATA_CMD_SET_FEATURES;
4488 tf.feature = enable;
4489 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4490 tf.protocol = ATA_PROT_NODATA;
4491 tf.nsect = feature;
4492
4493 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4494
4495 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4496 return err_mask;
4497 }
4498 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4499
4500 /**
4501 * ata_dev_init_params - Issue INIT DEV PARAMS command
4502 * @dev: Device to which command will be sent
4503 * @heads: Number of heads (taskfile parameter)
4504 * @sectors: Number of sectors (taskfile parameter)
4505 *
4506 * LOCKING:
4507 * Kernel thread context (may sleep)
4508 *
4509 * RETURNS:
4510 * 0 on success, AC_ERR_* mask otherwise.
4511 */
4512 static unsigned int ata_dev_init_params(struct ata_device *dev,
4513 u16 heads, u16 sectors)
4514 {
4515 struct ata_taskfile tf;
4516 unsigned int err_mask;
4517
4518 /* Number of sectors per track 1-255. Number of heads 1-16 */
4519 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4520 return AC_ERR_INVALID;
4521
4522 /* set up init dev params taskfile */
4523 DPRINTK("init dev params \n");
4524
4525 ata_tf_init(dev, &tf);
4526 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4528 tf.protocol = ATA_PROT_NODATA;
4529 tf.nsect = sectors;
4530 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4531
4532 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4533 /* A clean abort indicates an original or just out of spec drive
4534 and we should continue as we issue the setup based on the
4535 drive reported working geometry */
4536 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4537 err_mask = 0;
4538
4539 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4540 return err_mask;
4541 }
4542
4543 /**
4544 * ata_sg_clean - Unmap DMA memory associated with command
4545 * @qc: Command containing DMA memory to be released
4546 *
4547 * Unmap all mapped DMA memory associated with this command.
4548 *
4549 * LOCKING:
4550 * spin_lock_irqsave(host lock)
4551 */
4552 void ata_sg_clean(struct ata_queued_cmd *qc)
4553 {
4554 struct ata_port *ap = qc->ap;
4555 struct scatterlist *sg = qc->sg;
4556 int dir = qc->dma_dir;
4557
4558 WARN_ON_ONCE(sg == NULL);
4559
4560 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4561
4562 if (qc->n_elem)
4563 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4564
4565 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4566 qc->sg = NULL;
4567 }
4568
4569 /**
4570 * atapi_check_dma - Check whether ATAPI DMA can be supported
4571 * @qc: Metadata associated with taskfile to check
4572 *
4573 * Allow low-level driver to filter ATA PACKET commands, returning
4574 * a status indicating whether or not it is OK to use DMA for the
4575 * supplied PACKET command.
4576 *
4577 * LOCKING:
4578 * spin_lock_irqsave(host lock)
4579 *
4580 * RETURNS: 0 when ATAPI DMA can be used
4581 * nonzero otherwise
4582 */
4583 int atapi_check_dma(struct ata_queued_cmd *qc)
4584 {
4585 struct ata_port *ap = qc->ap;
4586
4587 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4588 * few ATAPI devices choke on such DMA requests.
4589 */
4590 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4591 unlikely(qc->nbytes & 15))
4592 return 1;
4593
4594 if (ap->ops->check_atapi_dma)
4595 return ap->ops->check_atapi_dma(qc);
4596
4597 return 0;
4598 }
4599
4600 /**
4601 * ata_std_qc_defer - Check whether a qc needs to be deferred
4602 * @qc: ATA command in question
4603 *
4604 * Non-NCQ commands cannot run with any other command, NCQ or
4605 * not. As upper layer only knows the queue depth, we are
4606 * responsible for maintaining exclusion. This function checks
4607 * whether a new command @qc can be issued.
4608 *
4609 * LOCKING:
4610 * spin_lock_irqsave(host lock)
4611 *
4612 * RETURNS:
4613 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4614 */
4615 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4616 {
4617 struct ata_link *link = qc->dev->link;
4618
4619 if (qc->tf.protocol == ATA_PROT_NCQ) {
4620 if (!ata_tag_valid(link->active_tag))
4621 return 0;
4622 } else {
4623 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4624 return 0;
4625 }
4626
4627 return ATA_DEFER_LINK;
4628 }
4629
4630 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4631
4632 /**
4633 * ata_sg_init - Associate command with scatter-gather table.
4634 * @qc: Command to be associated
4635 * @sg: Scatter-gather table.
4636 * @n_elem: Number of elements in s/g table.
4637 *
4638 * Initialize the data-related elements of queued_cmd @qc
4639 * to point to a scatter-gather table @sg, containing @n_elem
4640 * elements.
4641 *
4642 * LOCKING:
4643 * spin_lock_irqsave(host lock)
4644 */
4645 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4646 unsigned int n_elem)
4647 {
4648 qc->sg = sg;
4649 qc->n_elem = n_elem;
4650 qc->cursg = qc->sg;
4651 }
4652
4653 /**
4654 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4655 * @qc: Command with scatter-gather table to be mapped.
4656 *
4657 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4658 *
4659 * LOCKING:
4660 * spin_lock_irqsave(host lock)
4661 *
4662 * RETURNS:
4663 * Zero on success, negative on error.
4664 *
4665 */
4666 static int ata_sg_setup(struct ata_queued_cmd *qc)
4667 {
4668 struct ata_port *ap = qc->ap;
4669 unsigned int n_elem;
4670
4671 VPRINTK("ENTER, ata%u\n", ap->print_id);
4672
4673 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4674 if (n_elem < 1)
4675 return -1;
4676
4677 DPRINTK("%d sg elements mapped\n", n_elem);
4678 qc->orig_n_elem = qc->n_elem;
4679 qc->n_elem = n_elem;
4680 qc->flags |= ATA_QCFLAG_DMAMAP;
4681
4682 return 0;
4683 }
4684
4685 /**
4686 * swap_buf_le16 - swap halves of 16-bit words in place
4687 * @buf: Buffer to swap
4688 * @buf_words: Number of 16-bit words in buffer.
4689 *
4690 * Swap halves of 16-bit words if needed to convert from
4691 * little-endian byte order to native cpu byte order, or
4692 * vice-versa.
4693 *
4694 * LOCKING:
4695 * Inherited from caller.
4696 */
4697 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4698 {
4699 #ifdef __BIG_ENDIAN
4700 unsigned int i;
4701
4702 for (i = 0; i < buf_words; i++)
4703 buf[i] = le16_to_cpu(buf[i]);
4704 #endif /* __BIG_ENDIAN */
4705 }
4706
4707 /**
4708 * ata_qc_new - Request an available ATA command, for queueing
4709 * @ap: target port
4710 *
4711 * LOCKING:
4712 * None.
4713 */
4714
4715 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4716 {
4717 struct ata_queued_cmd *qc = NULL;
4718 unsigned int i;
4719
4720 /* no command while frozen */
4721 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4722 return NULL;
4723
4724 /* the last tag is reserved for internal command. */
4725 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4726 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4727 qc = __ata_qc_from_tag(ap, i);
4728 break;
4729 }
4730
4731 if (qc)
4732 qc->tag = i;
4733
4734 return qc;
4735 }
4736
4737 /**
4738 * ata_qc_new_init - Request an available ATA command, and initialize it
4739 * @dev: Device from whom we request an available command structure
4740 *
4741 * LOCKING:
4742 * None.
4743 */
4744
4745 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4746 {
4747 struct ata_port *ap = dev->link->ap;
4748 struct ata_queued_cmd *qc;
4749
4750 qc = ata_qc_new(ap);
4751 if (qc) {
4752 qc->scsicmd = NULL;
4753 qc->ap = ap;
4754 qc->dev = dev;
4755
4756 ata_qc_reinit(qc);
4757 }
4758
4759 return qc;
4760 }
4761
4762 /**
4763 * ata_qc_free - free unused ata_queued_cmd
4764 * @qc: Command to complete
4765 *
4766 * Designed to free unused ata_queued_cmd object
4767 * in case something prevents using it.
4768 *
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4771 */
4772 void ata_qc_free(struct ata_queued_cmd *qc)
4773 {
4774 struct ata_port *ap;
4775 unsigned int tag;
4776
4777 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4778 ap = qc->ap;
4779
4780 qc->flags = 0;
4781 tag = qc->tag;
4782 if (likely(ata_tag_valid(tag))) {
4783 qc->tag = ATA_TAG_POISON;
4784 clear_bit(tag, &ap->qc_allocated);
4785 }
4786 }
4787
4788 void __ata_qc_complete(struct ata_queued_cmd *qc)
4789 {
4790 struct ata_port *ap;
4791 struct ata_link *link;
4792
4793 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4794 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4795 ap = qc->ap;
4796 link = qc->dev->link;
4797
4798 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4799 ata_sg_clean(qc);
4800
4801 /* command should be marked inactive atomically with qc completion */
4802 if (qc->tf.protocol == ATA_PROT_NCQ) {
4803 link->sactive &= ~(1 << qc->tag);
4804 if (!link->sactive)
4805 ap->nr_active_links--;
4806 } else {
4807 link->active_tag = ATA_TAG_POISON;
4808 ap->nr_active_links--;
4809 }
4810
4811 /* clear exclusive status */
4812 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4813 ap->excl_link == link))
4814 ap->excl_link = NULL;
4815
4816 /* atapi: mark qc as inactive to prevent the interrupt handler
4817 * from completing the command twice later, before the error handler
4818 * is called. (when rc != 0 and atapi request sense is needed)
4819 */
4820 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4821 ap->qc_active &= ~(1 << qc->tag);
4822
4823 /* call completion callback */
4824 qc->complete_fn(qc);
4825 }
4826
4827 static void fill_result_tf(struct ata_queued_cmd *qc)
4828 {
4829 struct ata_port *ap = qc->ap;
4830
4831 qc->result_tf.flags = qc->tf.flags;
4832 ap->ops->qc_fill_rtf(qc);
4833 }
4834
4835 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4836 {
4837 struct ata_device *dev = qc->dev;
4838
4839 if (ata_is_nodata(qc->tf.protocol))
4840 return;
4841
4842 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4843 return;
4844
4845 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4846 }
4847
4848 /**
4849 * ata_qc_complete - Complete an active ATA command
4850 * @qc: Command to complete
4851 *
4852 * Indicate to the mid and upper layers that an ATA command has
4853 * completed, with either an ok or not-ok status.
4854 *
4855 * Refrain from calling this function multiple times when
4856 * successfully completing multiple NCQ commands.
4857 * ata_qc_complete_multiple() should be used instead, which will
4858 * properly update IRQ expect state.
4859 *
4860 * LOCKING:
4861 * spin_lock_irqsave(host lock)
4862 */
4863 void ata_qc_complete(struct ata_queued_cmd *qc)
4864 {
4865 struct ata_port *ap = qc->ap;
4866
4867 /* XXX: New EH and old EH use different mechanisms to
4868 * synchronize EH with regular execution path.
4869 *
4870 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4871 * Normal execution path is responsible for not accessing a
4872 * failed qc. libata core enforces the rule by returning NULL
4873 * from ata_qc_from_tag() for failed qcs.
4874 *
4875 * Old EH depends on ata_qc_complete() nullifying completion
4876 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4877 * not synchronize with interrupt handler. Only PIO task is
4878 * taken care of.
4879 */
4880 if (ap->ops->error_handler) {
4881 struct ata_device *dev = qc->dev;
4882 struct ata_eh_info *ehi = &dev->link->eh_info;
4883
4884 if (unlikely(qc->err_mask))
4885 qc->flags |= ATA_QCFLAG_FAILED;
4886
4887 /*
4888 * Finish internal commands without any further processing
4889 * and always with the result TF filled.
4890 */
4891 if (unlikely(ata_tag_internal(qc->tag))) {
4892 fill_result_tf(qc);
4893 __ata_qc_complete(qc);
4894 return;
4895 }
4896
4897 /*
4898 * Non-internal qc has failed. Fill the result TF and
4899 * summon EH.
4900 */
4901 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4902 fill_result_tf(qc);
4903 ata_qc_schedule_eh(qc);
4904 return;
4905 }
4906
4907 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4908
4909 /* read result TF if requested */
4910 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4911 fill_result_tf(qc);
4912
4913 /* Some commands need post-processing after successful
4914 * completion.
4915 */
4916 switch (qc->tf.command) {
4917 case ATA_CMD_SET_FEATURES:
4918 if (qc->tf.feature != SETFEATURES_WC_ON &&
4919 qc->tf.feature != SETFEATURES_WC_OFF)
4920 break;
4921 /* fall through */
4922 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4923 case ATA_CMD_SET_MULTI: /* multi_count changed */
4924 /* revalidate device */
4925 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4926 ata_port_schedule_eh(ap);
4927 break;
4928
4929 case ATA_CMD_SLEEP:
4930 dev->flags |= ATA_DFLAG_SLEEPING;
4931 break;
4932 }
4933
4934 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4935 ata_verify_xfer(qc);
4936
4937 __ata_qc_complete(qc);
4938 } else {
4939 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4940 return;
4941
4942 /* read result TF if failed or requested */
4943 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4944 fill_result_tf(qc);
4945
4946 __ata_qc_complete(qc);
4947 }
4948 }
4949
4950 /**
4951 * ata_qc_complete_multiple - Complete multiple qcs successfully
4952 * @ap: port in question
4953 * @qc_active: new qc_active mask
4954 *
4955 * Complete in-flight commands. This functions is meant to be
4956 * called from low-level driver's interrupt routine to complete
4957 * requests normally. ap->qc_active and @qc_active is compared
4958 * and commands are completed accordingly.
4959 *
4960 * Always use this function when completing multiple NCQ commands
4961 * from IRQ handlers instead of calling ata_qc_complete()
4962 * multiple times to keep IRQ expect status properly in sync.
4963 *
4964 * LOCKING:
4965 * spin_lock_irqsave(host lock)
4966 *
4967 * RETURNS:
4968 * Number of completed commands on success, -errno otherwise.
4969 */
4970 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4971 {
4972 int nr_done = 0;
4973 u32 done_mask;
4974
4975 done_mask = ap->qc_active ^ qc_active;
4976
4977 if (unlikely(done_mask & qc_active)) {
4978 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4979 ap->qc_active, qc_active);
4980 return -EINVAL;
4981 }
4982
4983 while (done_mask) {
4984 struct ata_queued_cmd *qc;
4985 unsigned int tag = __ffs(done_mask);
4986
4987 qc = ata_qc_from_tag(ap, tag);
4988 if (qc) {
4989 ata_qc_complete(qc);
4990 nr_done++;
4991 }
4992 done_mask &= ~(1 << tag);
4993 }
4994
4995 return nr_done;
4996 }
4997
4998 /**
4999 * ata_qc_issue - issue taskfile to device
5000 * @qc: command to issue to device
5001 *
5002 * Prepare an ATA command to submission to device.
5003 * This includes mapping the data into a DMA-able
5004 * area, filling in the S/G table, and finally
5005 * writing the taskfile to hardware, starting the command.
5006 *
5007 * LOCKING:
5008 * spin_lock_irqsave(host lock)
5009 */
5010 void ata_qc_issue(struct ata_queued_cmd *qc)
5011 {
5012 struct ata_port *ap = qc->ap;
5013 struct ata_link *link = qc->dev->link;
5014 u8 prot = qc->tf.protocol;
5015
5016 /* Make sure only one non-NCQ command is outstanding. The
5017 * check is skipped for old EH because it reuses active qc to
5018 * request ATAPI sense.
5019 */
5020 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5021
5022 if (ata_is_ncq(prot)) {
5023 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5024
5025 if (!link->sactive)
5026 ap->nr_active_links++;
5027 link->sactive |= 1 << qc->tag;
5028 } else {
5029 WARN_ON_ONCE(link->sactive);
5030
5031 ap->nr_active_links++;
5032 link->active_tag = qc->tag;
5033 }
5034
5035 qc->flags |= ATA_QCFLAG_ACTIVE;
5036 ap->qc_active |= 1 << qc->tag;
5037
5038 /*
5039 * We guarantee to LLDs that they will have at least one
5040 * non-zero sg if the command is a data command.
5041 */
5042 if (WARN_ON_ONCE(ata_is_data(prot) &&
5043 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5044 goto sys_err;
5045
5046 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5047 (ap->flags & ATA_FLAG_PIO_DMA)))
5048 if (ata_sg_setup(qc))
5049 goto sys_err;
5050
5051 /* if device is sleeping, schedule reset and abort the link */
5052 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5053 link->eh_info.action |= ATA_EH_RESET;
5054 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5055 ata_link_abort(link);
5056 return;
5057 }
5058
5059 ap->ops->qc_prep(qc);
5060
5061 qc->err_mask |= ap->ops->qc_issue(qc);
5062 if (unlikely(qc->err_mask))
5063 goto err;
5064 return;
5065
5066 sys_err:
5067 qc->err_mask |= AC_ERR_SYSTEM;
5068 err:
5069 ata_qc_complete(qc);
5070 }
5071
5072 /**
5073 * sata_scr_valid - test whether SCRs are accessible
5074 * @link: ATA link to test SCR accessibility for
5075 *
5076 * Test whether SCRs are accessible for @link.
5077 *
5078 * LOCKING:
5079 * None.
5080 *
5081 * RETURNS:
5082 * 1 if SCRs are accessible, 0 otherwise.
5083 */
5084 int sata_scr_valid(struct ata_link *link)
5085 {
5086 struct ata_port *ap = link->ap;
5087
5088 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5089 }
5090
5091 /**
5092 * sata_scr_read - read SCR register of the specified port
5093 * @link: ATA link to read SCR for
5094 * @reg: SCR to read
5095 * @val: Place to store read value
5096 *
5097 * Read SCR register @reg of @link into *@val. This function is
5098 * guaranteed to succeed if @link is ap->link, the cable type of
5099 * the port is SATA and the port implements ->scr_read.
5100 *
5101 * LOCKING:
5102 * None if @link is ap->link. Kernel thread context otherwise.
5103 *
5104 * RETURNS:
5105 * 0 on success, negative errno on failure.
5106 */
5107 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5108 {
5109 if (ata_is_host_link(link)) {
5110 if (sata_scr_valid(link))
5111 return link->ap->ops->scr_read(link, reg, val);
5112 return -EOPNOTSUPP;
5113 }
5114
5115 return sata_pmp_scr_read(link, reg, val);
5116 }
5117
5118 /**
5119 * sata_scr_write - write SCR register of the specified port
5120 * @link: ATA link to write SCR for
5121 * @reg: SCR to write
5122 * @val: value to write
5123 *
5124 * Write @val to SCR register @reg of @link. This function is
5125 * guaranteed to succeed if @link is ap->link, the cable type of
5126 * the port is SATA and the port implements ->scr_read.
5127 *
5128 * LOCKING:
5129 * None if @link is ap->link. Kernel thread context otherwise.
5130 *
5131 * RETURNS:
5132 * 0 on success, negative errno on failure.
5133 */
5134 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5135 {
5136 if (ata_is_host_link(link)) {
5137 if (sata_scr_valid(link))
5138 return link->ap->ops->scr_write(link, reg, val);
5139 return -EOPNOTSUPP;
5140 }
5141
5142 return sata_pmp_scr_write(link, reg, val);
5143 }
5144
5145 /**
5146 * sata_scr_write_flush - write SCR register of the specified port and flush
5147 * @link: ATA link to write SCR for
5148 * @reg: SCR to write
5149 * @val: value to write
5150 *
5151 * This function is identical to sata_scr_write() except that this
5152 * function performs flush after writing to the register.
5153 *
5154 * LOCKING:
5155 * None if @link is ap->link. Kernel thread context otherwise.
5156 *
5157 * RETURNS:
5158 * 0 on success, negative errno on failure.
5159 */
5160 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5161 {
5162 if (ata_is_host_link(link)) {
5163 int rc;
5164
5165 if (sata_scr_valid(link)) {
5166 rc = link->ap->ops->scr_write(link, reg, val);
5167 if (rc == 0)
5168 rc = link->ap->ops->scr_read(link, reg, &val);
5169 return rc;
5170 }
5171 return -EOPNOTSUPP;
5172 }
5173
5174 return sata_pmp_scr_write(link, reg, val);
5175 }
5176
5177 /**
5178 * ata_phys_link_online - test whether the given link is online
5179 * @link: ATA link to test
5180 *
5181 * Test whether @link is online. Note that this function returns
5182 * 0 if online status of @link cannot be obtained, so
5183 * ata_link_online(link) != !ata_link_offline(link).
5184 *
5185 * LOCKING:
5186 * None.
5187 *
5188 * RETURNS:
5189 * True if the port online status is available and online.
5190 */
5191 bool ata_phys_link_online(struct ata_link *link)
5192 {
5193 u32 sstatus;
5194
5195 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5196 ata_sstatus_online(sstatus))
5197 return true;
5198 return false;
5199 }
5200
5201 /**
5202 * ata_phys_link_offline - test whether the given link is offline
5203 * @link: ATA link to test
5204 *
5205 * Test whether @link is offline. Note that this function
5206 * returns 0 if offline status of @link cannot be obtained, so
5207 * ata_link_online(link) != !ata_link_offline(link).
5208 *
5209 * LOCKING:
5210 * None.
5211 *
5212 * RETURNS:
5213 * True if the port offline status is available and offline.
5214 */
5215 bool ata_phys_link_offline(struct ata_link *link)
5216 {
5217 u32 sstatus;
5218
5219 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5220 !ata_sstatus_online(sstatus))
5221 return true;
5222 return false;
5223 }
5224
5225 /**
5226 * ata_link_online - test whether the given link is online
5227 * @link: ATA link to test
5228 *
5229 * Test whether @link is online. This is identical to
5230 * ata_phys_link_online() when there's no slave link. When
5231 * there's a slave link, this function should only be called on
5232 * the master link and will return true if any of M/S links is
5233 * online.
5234 *
5235 * LOCKING:
5236 * None.
5237 *
5238 * RETURNS:
5239 * True if the port online status is available and online.
5240 */
5241 bool ata_link_online(struct ata_link *link)
5242 {
5243 struct ata_link *slave = link->ap->slave_link;
5244
5245 WARN_ON(link == slave); /* shouldn't be called on slave link */
5246
5247 return ata_phys_link_online(link) ||
5248 (slave && ata_phys_link_online(slave));
5249 }
5250
5251 /**
5252 * ata_link_offline - test whether the given link is offline
5253 * @link: ATA link to test
5254 *
5255 * Test whether @link is offline. This is identical to
5256 * ata_phys_link_offline() when there's no slave link. When
5257 * there's a slave link, this function should only be called on
5258 * the master link and will return true if both M/S links are
5259 * offline.
5260 *
5261 * LOCKING:
5262 * None.
5263 *
5264 * RETURNS:
5265 * True if the port offline status is available and offline.
5266 */
5267 bool ata_link_offline(struct ata_link *link)
5268 {
5269 struct ata_link *slave = link->ap->slave_link;
5270
5271 WARN_ON(link == slave); /* shouldn't be called on slave link */
5272
5273 return ata_phys_link_offline(link) &&
5274 (!slave || ata_phys_link_offline(slave));
5275 }
5276
5277 #ifdef CONFIG_PM
5278 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5279 unsigned int action, unsigned int ehi_flags,
5280 int *async)
5281 {
5282 struct ata_link *link;
5283 unsigned long flags;
5284 int rc = 0;
5285
5286 /* Previous resume operation might still be in
5287 * progress. Wait for PM_PENDING to clear.
5288 */
5289 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5290 if (async) {
5291 *async = -EAGAIN;
5292 return 0;
5293 }
5294 ata_port_wait_eh(ap);
5295 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5296 }
5297
5298 /* request PM ops to EH */
5299 spin_lock_irqsave(ap->lock, flags);
5300
5301 ap->pm_mesg = mesg;
5302 if (async)
5303 ap->pm_result = async;
5304 else
5305 ap->pm_result = &rc;
5306
5307 ap->pflags |= ATA_PFLAG_PM_PENDING;
5308 ata_for_each_link(link, ap, HOST_FIRST) {
5309 link->eh_info.action |= action;
5310 link->eh_info.flags |= ehi_flags;
5311 }
5312
5313 ata_port_schedule_eh(ap);
5314
5315 spin_unlock_irqrestore(ap->lock, flags);
5316
5317 /* wait and check result */
5318 if (!async) {
5319 ata_port_wait_eh(ap);
5320 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5321 }
5322
5323 return rc;
5324 }
5325
5326 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5327 {
5328 unsigned int ehi_flags = ATA_EHI_QUIET;
5329 int rc;
5330
5331 /*
5332 * On some hardware, device fails to respond after spun down
5333 * for suspend. As the device won't be used before being
5334 * resumed, we don't need to touch the device. Ask EH to skip
5335 * the usual stuff and proceed directly to suspend.
5336 *
5337 * http://thread.gmane.org/gmane.linux.ide/46764
5338 */
5339 if (mesg.event == PM_EVENT_SUSPEND)
5340 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5341
5342 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5343 return rc;
5344 }
5345
5346 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5347 {
5348 struct ata_port *ap = to_ata_port(dev);
5349
5350 return __ata_port_suspend_common(ap, mesg, NULL);
5351 }
5352
5353 static int ata_port_suspend(struct device *dev)
5354 {
5355 if (pm_runtime_suspended(dev))
5356 return 0;
5357
5358 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5359 }
5360
5361 static int ata_port_do_freeze(struct device *dev)
5362 {
5363 if (pm_runtime_suspended(dev))
5364 pm_runtime_resume(dev);
5365
5366 return ata_port_suspend_common(dev, PMSG_FREEZE);
5367 }
5368
5369 static int ata_port_poweroff(struct device *dev)
5370 {
5371 if (pm_runtime_suspended(dev))
5372 return 0;
5373
5374 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5375 }
5376
5377 static int __ata_port_resume_common(struct ata_port *ap, int *async)
5378 {
5379 int rc;
5380
5381 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5382 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5383 return rc;
5384 }
5385
5386 static int ata_port_resume_common(struct device *dev)
5387 {
5388 struct ata_port *ap = to_ata_port(dev);
5389
5390 return __ata_port_resume_common(ap, NULL);
5391 }
5392
5393 static int ata_port_resume(struct device *dev)
5394 {
5395 int rc;
5396
5397 rc = ata_port_resume_common(dev);
5398 if (!rc) {
5399 pm_runtime_disable(dev);
5400 pm_runtime_set_active(dev);
5401 pm_runtime_enable(dev);
5402 }
5403
5404 return rc;
5405 }
5406
5407 static int ata_port_runtime_idle(struct device *dev)
5408 {
5409 return pm_runtime_suspend(dev);
5410 }
5411
5412 static const struct dev_pm_ops ata_port_pm_ops = {
5413 .suspend = ata_port_suspend,
5414 .resume = ata_port_resume,
5415 .freeze = ata_port_do_freeze,
5416 .thaw = ata_port_resume,
5417 .poweroff = ata_port_poweroff,
5418 .restore = ata_port_resume,
5419
5420 .runtime_suspend = ata_port_suspend,
5421 .runtime_resume = ata_port_resume_common,
5422 .runtime_idle = ata_port_runtime_idle,
5423 };
5424
5425 /* sas ports don't participate in pm runtime management of ata_ports,
5426 * and need to resume ata devices at the domain level, not the per-port
5427 * level. sas suspend/resume is async to allow parallel port recovery
5428 * since sas has multiple ata_port instances per Scsi_Host.
5429 */
5430 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5431 {
5432 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5433 }
5434 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5435
5436 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5437 {
5438 return __ata_port_resume_common(ap, async);
5439 }
5440 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5441
5442
5443 /**
5444 * ata_host_suspend - suspend host
5445 * @host: host to suspend
5446 * @mesg: PM message
5447 *
5448 * Suspend @host. Actual operation is performed by port suspend.
5449 */
5450 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5451 {
5452 host->dev->power.power_state = mesg;
5453 return 0;
5454 }
5455
5456 /**
5457 * ata_host_resume - resume host
5458 * @host: host to resume
5459 *
5460 * Resume @host. Actual operation is performed by port resume.
5461 */
5462 void ata_host_resume(struct ata_host *host)
5463 {
5464 host->dev->power.power_state = PMSG_ON;
5465 }
5466 #endif
5467
5468 struct device_type ata_port_type = {
5469 .name = "ata_port",
5470 #ifdef CONFIG_PM
5471 .pm = &ata_port_pm_ops,
5472 #endif
5473 };
5474
5475 /**
5476 * ata_dev_init - Initialize an ata_device structure
5477 * @dev: Device structure to initialize
5478 *
5479 * Initialize @dev in preparation for probing.
5480 *
5481 * LOCKING:
5482 * Inherited from caller.
5483 */
5484 void ata_dev_init(struct ata_device *dev)
5485 {
5486 struct ata_link *link = ata_dev_phys_link(dev);
5487 struct ata_port *ap = link->ap;
5488 unsigned long flags;
5489
5490 /* SATA spd limit is bound to the attached device, reset together */
5491 link->sata_spd_limit = link->hw_sata_spd_limit;
5492 link->sata_spd = 0;
5493
5494 /* High bits of dev->flags are used to record warm plug
5495 * requests which occur asynchronously. Synchronize using
5496 * host lock.
5497 */
5498 spin_lock_irqsave(ap->lock, flags);
5499 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5500 dev->horkage = 0;
5501 spin_unlock_irqrestore(ap->lock, flags);
5502
5503 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5504 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5505 dev->pio_mask = UINT_MAX;
5506 dev->mwdma_mask = UINT_MAX;
5507 dev->udma_mask = UINT_MAX;
5508 }
5509
5510 /**
5511 * ata_link_init - Initialize an ata_link structure
5512 * @ap: ATA port link is attached to
5513 * @link: Link structure to initialize
5514 * @pmp: Port multiplier port number
5515 *
5516 * Initialize @link.
5517 *
5518 * LOCKING:
5519 * Kernel thread context (may sleep)
5520 */
5521 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5522 {
5523 int i;
5524
5525 /* clear everything except for devices */
5526 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5527 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5528
5529 link->ap = ap;
5530 link->pmp = pmp;
5531 link->active_tag = ATA_TAG_POISON;
5532 link->hw_sata_spd_limit = UINT_MAX;
5533
5534 /* can't use iterator, ap isn't initialized yet */
5535 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5536 struct ata_device *dev = &link->device[i];
5537
5538 dev->link = link;
5539 dev->devno = dev - link->device;
5540 #ifdef CONFIG_ATA_ACPI
5541 dev->gtf_filter = ata_acpi_gtf_filter;
5542 #endif
5543 ata_dev_init(dev);
5544 }
5545 }
5546
5547 /**
5548 * sata_link_init_spd - Initialize link->sata_spd_limit
5549 * @link: Link to configure sata_spd_limit for
5550 *
5551 * Initialize @link->[hw_]sata_spd_limit to the currently
5552 * configured value.
5553 *
5554 * LOCKING:
5555 * Kernel thread context (may sleep).
5556 *
5557 * RETURNS:
5558 * 0 on success, -errno on failure.
5559 */
5560 int sata_link_init_spd(struct ata_link *link)
5561 {
5562 u8 spd;
5563 int rc;
5564
5565 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5566 if (rc)
5567 return rc;
5568
5569 spd = (link->saved_scontrol >> 4) & 0xf;
5570 if (spd)
5571 link->hw_sata_spd_limit &= (1 << spd) - 1;
5572
5573 ata_force_link_limits(link);
5574
5575 link->sata_spd_limit = link->hw_sata_spd_limit;
5576
5577 return 0;
5578 }
5579
5580 /**
5581 * ata_port_alloc - allocate and initialize basic ATA port resources
5582 * @host: ATA host this allocated port belongs to
5583 *
5584 * Allocate and initialize basic ATA port resources.
5585 *
5586 * RETURNS:
5587 * Allocate ATA port on success, NULL on failure.
5588 *
5589 * LOCKING:
5590 * Inherited from calling layer (may sleep).
5591 */
5592 struct ata_port *ata_port_alloc(struct ata_host *host)
5593 {
5594 struct ata_port *ap;
5595
5596 DPRINTK("ENTER\n");
5597
5598 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5599 if (!ap)
5600 return NULL;
5601
5602 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5603 ap->lock = &host->lock;
5604 ap->print_id = -1;
5605 ap->host = host;
5606 ap->dev = host->dev;
5607
5608 #if defined(ATA_VERBOSE_DEBUG)
5609 /* turn on all debugging levels */
5610 ap->msg_enable = 0x00FF;
5611 #elif defined(ATA_DEBUG)
5612 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5613 #else
5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5615 #endif
5616
5617 mutex_init(&ap->scsi_scan_mutex);
5618 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5619 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5620 INIT_LIST_HEAD(&ap->eh_done_q);
5621 init_waitqueue_head(&ap->eh_wait_q);
5622 init_completion(&ap->park_req_pending);
5623 init_timer_deferrable(&ap->fastdrain_timer);
5624 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5625 ap->fastdrain_timer.data = (unsigned long)ap;
5626
5627 ap->cbl = ATA_CBL_NONE;
5628
5629 ata_link_init(ap, &ap->link, 0);
5630
5631 #ifdef ATA_IRQ_TRAP
5632 ap->stats.unhandled_irq = 1;
5633 ap->stats.idle_irq = 1;
5634 #endif
5635 ata_sff_port_init(ap);
5636
5637 return ap;
5638 }
5639
5640 static void ata_host_release(struct device *gendev, void *res)
5641 {
5642 struct ata_host *host = dev_get_drvdata(gendev);
5643 int i;
5644
5645 for (i = 0; i < host->n_ports; i++) {
5646 struct ata_port *ap = host->ports[i];
5647
5648 if (!ap)
5649 continue;
5650
5651 if (ap->scsi_host)
5652 scsi_host_put(ap->scsi_host);
5653
5654 kfree(ap->pmp_link);
5655 kfree(ap->slave_link);
5656 kfree(ap);
5657 host->ports[i] = NULL;
5658 }
5659
5660 dev_set_drvdata(gendev, NULL);
5661 }
5662
5663 /**
5664 * ata_host_alloc - allocate and init basic ATA host resources
5665 * @dev: generic device this host is associated with
5666 * @max_ports: maximum number of ATA ports associated with this host
5667 *
5668 * Allocate and initialize basic ATA host resources. LLD calls
5669 * this function to allocate a host, initializes it fully and
5670 * attaches it using ata_host_register().
5671 *
5672 * @max_ports ports are allocated and host->n_ports is
5673 * initialized to @max_ports. The caller is allowed to decrease
5674 * host->n_ports before calling ata_host_register(). The unused
5675 * ports will be automatically freed on registration.
5676 *
5677 * RETURNS:
5678 * Allocate ATA host on success, NULL on failure.
5679 *
5680 * LOCKING:
5681 * Inherited from calling layer (may sleep).
5682 */
5683 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5684 {
5685 struct ata_host *host;
5686 size_t sz;
5687 int i;
5688
5689 DPRINTK("ENTER\n");
5690
5691 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5692 return NULL;
5693
5694 /* alloc a container for our list of ATA ports (buses) */
5695 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5696 /* alloc a container for our list of ATA ports (buses) */
5697 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5698 if (!host)
5699 goto err_out;
5700
5701 devres_add(dev, host);
5702 dev_set_drvdata(dev, host);
5703
5704 spin_lock_init(&host->lock);
5705 mutex_init(&host->eh_mutex);
5706 host->dev = dev;
5707 host->n_ports = max_ports;
5708
5709 /* allocate ports bound to this host */
5710 for (i = 0; i < max_ports; i++) {
5711 struct ata_port *ap;
5712
5713 ap = ata_port_alloc(host);
5714 if (!ap)
5715 goto err_out;
5716
5717 ap->port_no = i;
5718 host->ports[i] = ap;
5719 }
5720
5721 devres_remove_group(dev, NULL);
5722 return host;
5723
5724 err_out:
5725 devres_release_group(dev, NULL);
5726 return NULL;
5727 }
5728
5729 /**
5730 * ata_host_alloc_pinfo - alloc host and init with port_info array
5731 * @dev: generic device this host is associated with
5732 * @ppi: array of ATA port_info to initialize host with
5733 * @n_ports: number of ATA ports attached to this host
5734 *
5735 * Allocate ATA host and initialize with info from @ppi. If NULL
5736 * terminated, @ppi may contain fewer entries than @n_ports. The
5737 * last entry will be used for the remaining ports.
5738 *
5739 * RETURNS:
5740 * Allocate ATA host on success, NULL on failure.
5741 *
5742 * LOCKING:
5743 * Inherited from calling layer (may sleep).
5744 */
5745 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5746 const struct ata_port_info * const * ppi,
5747 int n_ports)
5748 {
5749 const struct ata_port_info *pi;
5750 struct ata_host *host;
5751 int i, j;
5752
5753 host = ata_host_alloc(dev, n_ports);
5754 if (!host)
5755 return NULL;
5756
5757 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5758 struct ata_port *ap = host->ports[i];
5759
5760 if (ppi[j])
5761 pi = ppi[j++];
5762
5763 ap->pio_mask = pi->pio_mask;
5764 ap->mwdma_mask = pi->mwdma_mask;
5765 ap->udma_mask = pi->udma_mask;
5766 ap->flags |= pi->flags;
5767 ap->link.flags |= pi->link_flags;
5768 ap->ops = pi->port_ops;
5769
5770 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5771 host->ops = pi->port_ops;
5772 }
5773
5774 return host;
5775 }
5776
5777 /**
5778 * ata_slave_link_init - initialize slave link
5779 * @ap: port to initialize slave link for
5780 *
5781 * Create and initialize slave link for @ap. This enables slave
5782 * link handling on the port.
5783 *
5784 * In libata, a port contains links and a link contains devices.
5785 * There is single host link but if a PMP is attached to it,
5786 * there can be multiple fan-out links. On SATA, there's usually
5787 * a single device connected to a link but PATA and SATA
5788 * controllers emulating TF based interface can have two - master
5789 * and slave.
5790 *
5791 * However, there are a few controllers which don't fit into this
5792 * abstraction too well - SATA controllers which emulate TF
5793 * interface with both master and slave devices but also have
5794 * separate SCR register sets for each device. These controllers
5795 * need separate links for physical link handling
5796 * (e.g. onlineness, link speed) but should be treated like a
5797 * traditional M/S controller for everything else (e.g. command
5798 * issue, softreset).
5799 *
5800 * slave_link is libata's way of handling this class of
5801 * controllers without impacting core layer too much. For
5802 * anything other than physical link handling, the default host
5803 * link is used for both master and slave. For physical link
5804 * handling, separate @ap->slave_link is used. All dirty details
5805 * are implemented inside libata core layer. From LLD's POV, the
5806 * only difference is that prereset, hardreset and postreset are
5807 * called once more for the slave link, so the reset sequence
5808 * looks like the following.
5809 *
5810 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5811 * softreset(M) -> postreset(M) -> postreset(S)
5812 *
5813 * Note that softreset is called only for the master. Softreset
5814 * resets both M/S by definition, so SRST on master should handle
5815 * both (the standard method will work just fine).
5816 *
5817 * LOCKING:
5818 * Should be called before host is registered.
5819 *
5820 * RETURNS:
5821 * 0 on success, -errno on failure.
5822 */
5823 int ata_slave_link_init(struct ata_port *ap)
5824 {
5825 struct ata_link *link;
5826
5827 WARN_ON(ap->slave_link);
5828 WARN_ON(ap->flags & ATA_FLAG_PMP);
5829
5830 link = kzalloc(sizeof(*link), GFP_KERNEL);
5831 if (!link)
5832 return -ENOMEM;
5833
5834 ata_link_init(ap, link, 1);
5835 ap->slave_link = link;
5836 return 0;
5837 }
5838
5839 static void ata_host_stop(struct device *gendev, void *res)
5840 {
5841 struct ata_host *host = dev_get_drvdata(gendev);
5842 int i;
5843
5844 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5845
5846 for (i = 0; i < host->n_ports; i++) {
5847 struct ata_port *ap = host->ports[i];
5848
5849 if (ap->ops->port_stop)
5850 ap->ops->port_stop(ap);
5851 }
5852
5853 if (host->ops->host_stop)
5854 host->ops->host_stop(host);
5855 }
5856
5857 /**
5858 * ata_finalize_port_ops - finalize ata_port_operations
5859 * @ops: ata_port_operations to finalize
5860 *
5861 * An ata_port_operations can inherit from another ops and that
5862 * ops can again inherit from another. This can go on as many
5863 * times as necessary as long as there is no loop in the
5864 * inheritance chain.
5865 *
5866 * Ops tables are finalized when the host is started. NULL or
5867 * unspecified entries are inherited from the closet ancestor
5868 * which has the method and the entry is populated with it.
5869 * After finalization, the ops table directly points to all the
5870 * methods and ->inherits is no longer necessary and cleared.
5871 *
5872 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5873 *
5874 * LOCKING:
5875 * None.
5876 */
5877 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5878 {
5879 static DEFINE_SPINLOCK(lock);
5880 const struct ata_port_operations *cur;
5881 void **begin = (void **)ops;
5882 void **end = (void **)&ops->inherits;
5883 void **pp;
5884
5885 if (!ops || !ops->inherits)
5886 return;
5887
5888 spin_lock(&lock);
5889
5890 for (cur = ops->inherits; cur; cur = cur->inherits) {
5891 void **inherit = (void **)cur;
5892
5893 for (pp = begin; pp < end; pp++, inherit++)
5894 if (!*pp)
5895 *pp = *inherit;
5896 }
5897
5898 for (pp = begin; pp < end; pp++)
5899 if (IS_ERR(*pp))
5900 *pp = NULL;
5901
5902 ops->inherits = NULL;
5903
5904 spin_unlock(&lock);
5905 }
5906
5907 /**
5908 * ata_host_start - start and freeze ports of an ATA host
5909 * @host: ATA host to start ports for
5910 *
5911 * Start and then freeze ports of @host. Started status is
5912 * recorded in host->flags, so this function can be called
5913 * multiple times. Ports are guaranteed to get started only
5914 * once. If host->ops isn't initialized yet, its set to the
5915 * first non-dummy port ops.
5916 *
5917 * LOCKING:
5918 * Inherited from calling layer (may sleep).
5919 *
5920 * RETURNS:
5921 * 0 if all ports are started successfully, -errno otherwise.
5922 */
5923 int ata_host_start(struct ata_host *host)
5924 {
5925 int have_stop = 0;
5926 void *start_dr = NULL;
5927 int i, rc;
5928
5929 if (host->flags & ATA_HOST_STARTED)
5930 return 0;
5931
5932 ata_finalize_port_ops(host->ops);
5933
5934 for (i = 0; i < host->n_ports; i++) {
5935 struct ata_port *ap = host->ports[i];
5936
5937 ata_finalize_port_ops(ap->ops);
5938
5939 if (!host->ops && !ata_port_is_dummy(ap))
5940 host->ops = ap->ops;
5941
5942 if (ap->ops->port_stop)
5943 have_stop = 1;
5944 }
5945
5946 if (host->ops->host_stop)
5947 have_stop = 1;
5948
5949 if (have_stop) {
5950 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5951 if (!start_dr)
5952 return -ENOMEM;
5953 }
5954
5955 for (i = 0; i < host->n_ports; i++) {
5956 struct ata_port *ap = host->ports[i];
5957
5958 if (ap->ops->port_start) {
5959 rc = ap->ops->port_start(ap);
5960 if (rc) {
5961 if (rc != -ENODEV)
5962 dev_err(host->dev,
5963 "failed to start port %d (errno=%d)\n",
5964 i, rc);
5965 goto err_out;
5966 }
5967 }
5968 ata_eh_freeze_port(ap);
5969 }
5970
5971 if (start_dr)
5972 devres_add(host->dev, start_dr);
5973 host->flags |= ATA_HOST_STARTED;
5974 return 0;
5975
5976 err_out:
5977 while (--i >= 0) {
5978 struct ata_port *ap = host->ports[i];
5979
5980 if (ap->ops->port_stop)
5981 ap->ops->port_stop(ap);
5982 }
5983 devres_free(start_dr);
5984 return rc;
5985 }
5986
5987 /**
5988 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5989 * @host: host to initialize
5990 * @dev: device host is attached to
5991 * @ops: port_ops
5992 *
5993 */
5994 void ata_host_init(struct ata_host *host, struct device *dev,
5995 struct ata_port_operations *ops)
5996 {
5997 spin_lock_init(&host->lock);
5998 mutex_init(&host->eh_mutex);
5999 host->dev = dev;
6000 host->ops = ops;
6001 }
6002
6003 void __ata_port_probe(struct ata_port *ap)
6004 {
6005 struct ata_eh_info *ehi = &ap->link.eh_info;
6006 unsigned long flags;
6007
6008 /* kick EH for boot probing */
6009 spin_lock_irqsave(ap->lock, flags);
6010
6011 ehi->probe_mask |= ATA_ALL_DEVICES;
6012 ehi->action |= ATA_EH_RESET;
6013 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6014
6015 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6016 ap->pflags |= ATA_PFLAG_LOADING;
6017 ata_port_schedule_eh(ap);
6018
6019 spin_unlock_irqrestore(ap->lock, flags);
6020 }
6021
6022 int ata_port_probe(struct ata_port *ap)
6023 {
6024 int rc = 0;
6025
6026 if (ap->ops->error_handler) {
6027 __ata_port_probe(ap);
6028 ata_port_wait_eh(ap);
6029 } else {
6030 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6031 rc = ata_bus_probe(ap);
6032 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6033 }
6034 return rc;
6035 }
6036
6037
6038 static void async_port_probe(void *data, async_cookie_t cookie)
6039 {
6040 struct ata_port *ap = data;
6041
6042 /*
6043 * If we're not allowed to scan this host in parallel,
6044 * we need to wait until all previous scans have completed
6045 * before going further.
6046 * Jeff Garzik says this is only within a controller, so we
6047 * don't need to wait for port 0, only for later ports.
6048 */
6049 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6050 async_synchronize_cookie(cookie);
6051
6052 (void)ata_port_probe(ap);
6053
6054 /* in order to keep device order, we need to synchronize at this point */
6055 async_synchronize_cookie(cookie);
6056
6057 ata_scsi_scan_host(ap, 1);
6058 }
6059
6060 /**
6061 * ata_host_register - register initialized ATA host
6062 * @host: ATA host to register
6063 * @sht: template for SCSI host
6064 *
6065 * Register initialized ATA host. @host is allocated using
6066 * ata_host_alloc() and fully initialized by LLD. This function
6067 * starts ports, registers @host with ATA and SCSI layers and
6068 * probe registered devices.
6069 *
6070 * LOCKING:
6071 * Inherited from calling layer (may sleep).
6072 *
6073 * RETURNS:
6074 * 0 on success, -errno otherwise.
6075 */
6076 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6077 {
6078 int i, rc;
6079
6080 /* host must have been started */
6081 if (!(host->flags & ATA_HOST_STARTED)) {
6082 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6083 WARN_ON(1);
6084 return -EINVAL;
6085 }
6086
6087 /* Blow away unused ports. This happens when LLD can't
6088 * determine the exact number of ports to allocate at
6089 * allocation time.
6090 */
6091 for (i = host->n_ports; host->ports[i]; i++)
6092 kfree(host->ports[i]);
6093
6094 /* give ports names and add SCSI hosts */
6095 for (i = 0; i < host->n_ports; i++)
6096 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6097
6098
6099 /* Create associated sysfs transport objects */
6100 for (i = 0; i < host->n_ports; i++) {
6101 rc = ata_tport_add(host->dev,host->ports[i]);
6102 if (rc) {
6103 goto err_tadd;
6104 }
6105 }
6106
6107 rc = ata_scsi_add_hosts(host, sht);
6108 if (rc)
6109 goto err_tadd;
6110
6111 /* set cable, sata_spd_limit and report */
6112 for (i = 0; i < host->n_ports; i++) {
6113 struct ata_port *ap = host->ports[i];
6114 unsigned long xfer_mask;
6115
6116 /* set SATA cable type if still unset */
6117 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6118 ap->cbl = ATA_CBL_SATA;
6119
6120 /* init sata_spd_limit to the current value */
6121 sata_link_init_spd(&ap->link);
6122 if (ap->slave_link)
6123 sata_link_init_spd(ap->slave_link);
6124
6125 /* print per-port info to dmesg */
6126 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6127 ap->udma_mask);
6128
6129 if (!ata_port_is_dummy(ap)) {
6130 ata_port_info(ap, "%cATA max %s %s\n",
6131 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6132 ata_mode_string(xfer_mask),
6133 ap->link.eh_info.desc);
6134 ata_ehi_clear_desc(&ap->link.eh_info);
6135 } else
6136 ata_port_info(ap, "DUMMY\n");
6137 }
6138
6139 /* perform each probe asynchronously */
6140 for (i = 0; i < host->n_ports; i++) {
6141 struct ata_port *ap = host->ports[i];
6142 async_schedule(async_port_probe, ap);
6143 }
6144
6145 return 0;
6146
6147 err_tadd:
6148 while (--i >= 0) {
6149 ata_tport_delete(host->ports[i]);
6150 }
6151 return rc;
6152
6153 }
6154
6155 /**
6156 * ata_host_activate - start host, request IRQ and register it
6157 * @host: target ATA host
6158 * @irq: IRQ to request
6159 * @irq_handler: irq_handler used when requesting IRQ
6160 * @irq_flags: irq_flags used when requesting IRQ
6161 * @sht: scsi_host_template to use when registering the host
6162 *
6163 * After allocating an ATA host and initializing it, most libata
6164 * LLDs perform three steps to activate the host - start host,
6165 * request IRQ and register it. This helper takes necessasry
6166 * arguments and performs the three steps in one go.
6167 *
6168 * An invalid IRQ skips the IRQ registration and expects the host to
6169 * have set polling mode on the port. In this case, @irq_handler
6170 * should be NULL.
6171 *
6172 * LOCKING:
6173 * Inherited from calling layer (may sleep).
6174 *
6175 * RETURNS:
6176 * 0 on success, -errno otherwise.
6177 */
6178 int ata_host_activate(struct ata_host *host, int irq,
6179 irq_handler_t irq_handler, unsigned long irq_flags,
6180 struct scsi_host_template *sht)
6181 {
6182 int i, rc;
6183
6184 rc = ata_host_start(host);
6185 if (rc)
6186 return rc;
6187
6188 /* Special case for polling mode */
6189 if (!irq) {
6190 WARN_ON(irq_handler);
6191 return ata_host_register(host, sht);
6192 }
6193
6194 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6195 dev_driver_string(host->dev), host);
6196 if (rc)
6197 return rc;
6198
6199 for (i = 0; i < host->n_ports; i++)
6200 ata_port_desc(host->ports[i], "irq %d", irq);
6201
6202 rc = ata_host_register(host, sht);
6203 /* if failed, just free the IRQ and leave ports alone */
6204 if (rc)
6205 devm_free_irq(host->dev, irq, host);
6206
6207 return rc;
6208 }
6209
6210 /**
6211 * ata_port_detach - Detach ATA port in prepration of device removal
6212 * @ap: ATA port to be detached
6213 *
6214 * Detach all ATA devices and the associated SCSI devices of @ap;
6215 * then, remove the associated SCSI host. @ap is guaranteed to
6216 * be quiescent on return from this function.
6217 *
6218 * LOCKING:
6219 * Kernel thread context (may sleep).
6220 */
6221 static void ata_port_detach(struct ata_port *ap)
6222 {
6223 unsigned long flags;
6224
6225 if (!ap->ops->error_handler)
6226 goto skip_eh;
6227
6228 /* tell EH we're leaving & flush EH */
6229 spin_lock_irqsave(ap->lock, flags);
6230 ap->pflags |= ATA_PFLAG_UNLOADING;
6231 ata_port_schedule_eh(ap);
6232 spin_unlock_irqrestore(ap->lock, flags);
6233
6234 /* wait till EH commits suicide */
6235 ata_port_wait_eh(ap);
6236
6237 /* it better be dead now */
6238 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6239
6240 cancel_delayed_work_sync(&ap->hotplug_task);
6241
6242 skip_eh:
6243 if (ap->pmp_link) {
6244 int i;
6245 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6246 ata_tlink_delete(&ap->pmp_link[i]);
6247 }
6248 ata_tport_delete(ap);
6249
6250 /* remove the associated SCSI host */
6251 scsi_remove_host(ap->scsi_host);
6252 }
6253
6254 /**
6255 * ata_host_detach - Detach all ports of an ATA host
6256 * @host: Host to detach
6257 *
6258 * Detach all ports of @host.
6259 *
6260 * LOCKING:
6261 * Kernel thread context (may sleep).
6262 */
6263 void ata_host_detach(struct ata_host *host)
6264 {
6265 int i;
6266
6267 for (i = 0; i < host->n_ports; i++)
6268 ata_port_detach(host->ports[i]);
6269
6270 /* the host is dead now, dissociate ACPI */
6271 ata_acpi_dissociate(host);
6272 }
6273
6274 #ifdef CONFIG_PCI
6275
6276 /**
6277 * ata_pci_remove_one - PCI layer callback for device removal
6278 * @pdev: PCI device that was removed
6279 *
6280 * PCI layer indicates to libata via this hook that hot-unplug or
6281 * module unload event has occurred. Detach all ports. Resource
6282 * release is handled via devres.
6283 *
6284 * LOCKING:
6285 * Inherited from PCI layer (may sleep).
6286 */
6287 void ata_pci_remove_one(struct pci_dev *pdev)
6288 {
6289 struct device *dev = &pdev->dev;
6290 struct ata_host *host = dev_get_drvdata(dev);
6291
6292 ata_host_detach(host);
6293 }
6294
6295 /* move to PCI subsystem */
6296 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6297 {
6298 unsigned long tmp = 0;
6299
6300 switch (bits->width) {
6301 case 1: {
6302 u8 tmp8 = 0;
6303 pci_read_config_byte(pdev, bits->reg, &tmp8);
6304 tmp = tmp8;
6305 break;
6306 }
6307 case 2: {
6308 u16 tmp16 = 0;
6309 pci_read_config_word(pdev, bits->reg, &tmp16);
6310 tmp = tmp16;
6311 break;
6312 }
6313 case 4: {
6314 u32 tmp32 = 0;
6315 pci_read_config_dword(pdev, bits->reg, &tmp32);
6316 tmp = tmp32;
6317 break;
6318 }
6319
6320 default:
6321 return -EINVAL;
6322 }
6323
6324 tmp &= bits->mask;
6325
6326 return (tmp == bits->val) ? 1 : 0;
6327 }
6328
6329 #ifdef CONFIG_PM
6330 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6331 {
6332 pci_save_state(pdev);
6333 pci_disable_device(pdev);
6334
6335 if (mesg.event & PM_EVENT_SLEEP)
6336 pci_set_power_state(pdev, PCI_D3hot);
6337 }
6338
6339 int ata_pci_device_do_resume(struct pci_dev *pdev)
6340 {
6341 int rc;
6342
6343 pci_set_power_state(pdev, PCI_D0);
6344 pci_restore_state(pdev);
6345
6346 rc = pcim_enable_device(pdev);
6347 if (rc) {
6348 dev_err(&pdev->dev,
6349 "failed to enable device after resume (%d)\n", rc);
6350 return rc;
6351 }
6352
6353 pci_set_master(pdev);
6354 return 0;
6355 }
6356
6357 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6358 {
6359 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6360 int rc = 0;
6361
6362 rc = ata_host_suspend(host, mesg);
6363 if (rc)
6364 return rc;
6365
6366 ata_pci_device_do_suspend(pdev, mesg);
6367
6368 return 0;
6369 }
6370
6371 int ata_pci_device_resume(struct pci_dev *pdev)
6372 {
6373 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6374 int rc;
6375
6376 rc = ata_pci_device_do_resume(pdev);
6377 if (rc == 0)
6378 ata_host_resume(host);
6379 return rc;
6380 }
6381 #endif /* CONFIG_PM */
6382
6383 #endif /* CONFIG_PCI */
6384
6385 static int __init ata_parse_force_one(char **cur,
6386 struct ata_force_ent *force_ent,
6387 const char **reason)
6388 {
6389 /* FIXME: Currently, there's no way to tag init const data and
6390 * using __initdata causes build failure on some versions of
6391 * gcc. Once __initdataconst is implemented, add const to the
6392 * following structure.
6393 */
6394 static struct ata_force_param force_tbl[] __initdata = {
6395 { "40c", .cbl = ATA_CBL_PATA40 },
6396 { "80c", .cbl = ATA_CBL_PATA80 },
6397 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6398 { "unk", .cbl = ATA_CBL_PATA_UNK },
6399 { "ign", .cbl = ATA_CBL_PATA_IGN },
6400 { "sata", .cbl = ATA_CBL_SATA },
6401 { "1.5Gbps", .spd_limit = 1 },
6402 { "3.0Gbps", .spd_limit = 2 },
6403 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6404 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6405 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6406 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6407 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6408 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6409 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6410 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6411 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6412 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6413 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6414 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6415 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6416 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6417 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6418 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6419 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6420 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6421 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6422 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6423 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6424 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6425 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6426 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6427 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6428 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6429 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6430 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6431 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6432 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6433 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6434 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6435 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6436 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6437 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6438 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6439 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6440 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6441 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6442 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6443 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6444 };
6445 char *start = *cur, *p = *cur;
6446 char *id, *val, *endp;
6447 const struct ata_force_param *match_fp = NULL;
6448 int nr_matches = 0, i;
6449
6450 /* find where this param ends and update *cur */
6451 while (*p != '\0' && *p != ',')
6452 p++;
6453
6454 if (*p == '\0')
6455 *cur = p;
6456 else
6457 *cur = p + 1;
6458
6459 *p = '\0';
6460
6461 /* parse */
6462 p = strchr(start, ':');
6463 if (!p) {
6464 val = strstrip(start);
6465 goto parse_val;
6466 }
6467 *p = '\0';
6468
6469 id = strstrip(start);
6470 val = strstrip(p + 1);
6471
6472 /* parse id */
6473 p = strchr(id, '.');
6474 if (p) {
6475 *p++ = '\0';
6476 force_ent->device = simple_strtoul(p, &endp, 10);
6477 if (p == endp || *endp != '\0') {
6478 *reason = "invalid device";
6479 return -EINVAL;
6480 }
6481 }
6482
6483 force_ent->port = simple_strtoul(id, &endp, 10);
6484 if (p == endp || *endp != '\0') {
6485 *reason = "invalid port/link";
6486 return -EINVAL;
6487 }
6488
6489 parse_val:
6490 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6491 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6492 const struct ata_force_param *fp = &force_tbl[i];
6493
6494 if (strncasecmp(val, fp->name, strlen(val)))
6495 continue;
6496
6497 nr_matches++;
6498 match_fp = fp;
6499
6500 if (strcasecmp(val, fp->name) == 0) {
6501 nr_matches = 1;
6502 break;
6503 }
6504 }
6505
6506 if (!nr_matches) {
6507 *reason = "unknown value";
6508 return -EINVAL;
6509 }
6510 if (nr_matches > 1) {
6511 *reason = "ambigious value";
6512 return -EINVAL;
6513 }
6514
6515 force_ent->param = *match_fp;
6516
6517 return 0;
6518 }
6519
6520 static void __init ata_parse_force_param(void)
6521 {
6522 int idx = 0, size = 1;
6523 int last_port = -1, last_device = -1;
6524 char *p, *cur, *next;
6525
6526 /* calculate maximum number of params and allocate force_tbl */
6527 for (p = ata_force_param_buf; *p; p++)
6528 if (*p == ',')
6529 size++;
6530
6531 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6532 if (!ata_force_tbl) {
6533 printk(KERN_WARNING "ata: failed to extend force table, "
6534 "libata.force ignored\n");
6535 return;
6536 }
6537
6538 /* parse and populate the table */
6539 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6540 const char *reason = "";
6541 struct ata_force_ent te = { .port = -1, .device = -1 };
6542
6543 next = cur;
6544 if (ata_parse_force_one(&next, &te, &reason)) {
6545 printk(KERN_WARNING "ata: failed to parse force "
6546 "parameter \"%s\" (%s)\n",
6547 cur, reason);
6548 continue;
6549 }
6550
6551 if (te.port == -1) {
6552 te.port = last_port;
6553 te.device = last_device;
6554 }
6555
6556 ata_force_tbl[idx++] = te;
6557
6558 last_port = te.port;
6559 last_device = te.device;
6560 }
6561
6562 ata_force_tbl_size = idx;
6563 }
6564
6565 static int __init ata_init(void)
6566 {
6567 int rc;
6568
6569 ata_parse_force_param();
6570
6571 ata_acpi_register();
6572
6573 rc = ata_sff_init();
6574 if (rc) {
6575 kfree(ata_force_tbl);
6576 return rc;
6577 }
6578
6579 libata_transport_init();
6580 ata_scsi_transport_template = ata_attach_transport();
6581 if (!ata_scsi_transport_template) {
6582 ata_sff_exit();
6583 rc = -ENOMEM;
6584 goto err_out;
6585 }
6586
6587 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6588 return 0;
6589
6590 err_out:
6591 return rc;
6592 }
6593
6594 static void __exit ata_exit(void)
6595 {
6596 ata_release_transport(ata_scsi_transport_template);
6597 libata_transport_exit();
6598 ata_sff_exit();
6599 ata_acpi_unregister();
6600 kfree(ata_force_tbl);
6601 }
6602
6603 subsys_initcall(ata_init);
6604 module_exit(ata_exit);
6605
6606 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6607
6608 int ata_ratelimit(void)
6609 {
6610 return __ratelimit(&ratelimit);
6611 }
6612
6613 /**
6614 * ata_msleep - ATA EH owner aware msleep
6615 * @ap: ATA port to attribute the sleep to
6616 * @msecs: duration to sleep in milliseconds
6617 *
6618 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6619 * ownership is released before going to sleep and reacquired
6620 * after the sleep is complete. IOW, other ports sharing the
6621 * @ap->host will be allowed to own the EH while this task is
6622 * sleeping.
6623 *
6624 * LOCKING:
6625 * Might sleep.
6626 */
6627 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6628 {
6629 bool owns_eh = ap && ap->host->eh_owner == current;
6630
6631 if (owns_eh)
6632 ata_eh_release(ap);
6633
6634 msleep(msecs);
6635
6636 if (owns_eh)
6637 ata_eh_acquire(ap);
6638 }
6639
6640 /**
6641 * ata_wait_register - wait until register value changes
6642 * @ap: ATA port to wait register for, can be NULL
6643 * @reg: IO-mapped register
6644 * @mask: Mask to apply to read register value
6645 * @val: Wait condition
6646 * @interval: polling interval in milliseconds
6647 * @timeout: timeout in milliseconds
6648 *
6649 * Waiting for some bits of register to change is a common
6650 * operation for ATA controllers. This function reads 32bit LE
6651 * IO-mapped register @reg and tests for the following condition.
6652 *
6653 * (*@reg & mask) != val
6654 *
6655 * If the condition is met, it returns; otherwise, the process is
6656 * repeated after @interval_msec until timeout.
6657 *
6658 * LOCKING:
6659 * Kernel thread context (may sleep)
6660 *
6661 * RETURNS:
6662 * The final register value.
6663 */
6664 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6665 unsigned long interval, unsigned long timeout)
6666 {
6667 unsigned long deadline;
6668 u32 tmp;
6669
6670 tmp = ioread32(reg);
6671
6672 /* Calculate timeout _after_ the first read to make sure
6673 * preceding writes reach the controller before starting to
6674 * eat away the timeout.
6675 */
6676 deadline = ata_deadline(jiffies, timeout);
6677
6678 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6679 ata_msleep(ap, interval);
6680 tmp = ioread32(reg);
6681 }
6682
6683 return tmp;
6684 }
6685
6686 /*
6687 * Dummy port_ops
6688 */
6689 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6690 {
6691 return AC_ERR_SYSTEM;
6692 }
6693
6694 static void ata_dummy_error_handler(struct ata_port *ap)
6695 {
6696 /* truly dummy */
6697 }
6698
6699 struct ata_port_operations ata_dummy_port_ops = {
6700 .qc_prep = ata_noop_qc_prep,
6701 .qc_issue = ata_dummy_qc_issue,
6702 .error_handler = ata_dummy_error_handler,
6703 .sched_eh = ata_std_sched_eh,
6704 .end_eh = ata_std_end_eh,
6705 };
6706
6707 const struct ata_port_info ata_dummy_port_info = {
6708 .port_ops = &ata_dummy_port_ops,
6709 };
6710
6711 /*
6712 * Utility print functions
6713 */
6714 int ata_port_printk(const struct ata_port *ap, const char *level,
6715 const char *fmt, ...)
6716 {
6717 struct va_format vaf;
6718 va_list args;
6719 int r;
6720
6721 va_start(args, fmt);
6722
6723 vaf.fmt = fmt;
6724 vaf.va = &args;
6725
6726 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6727
6728 va_end(args);
6729
6730 return r;
6731 }
6732 EXPORT_SYMBOL(ata_port_printk);
6733
6734 int ata_link_printk(const struct ata_link *link, const char *level,
6735 const char *fmt, ...)
6736 {
6737 struct va_format vaf;
6738 va_list args;
6739 int r;
6740
6741 va_start(args, fmt);
6742
6743 vaf.fmt = fmt;
6744 vaf.va = &args;
6745
6746 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6747 r = printk("%sata%u.%02u: %pV",
6748 level, link->ap->print_id, link->pmp, &vaf);
6749 else
6750 r = printk("%sata%u: %pV",
6751 level, link->ap->print_id, &vaf);
6752
6753 va_end(args);
6754
6755 return r;
6756 }
6757 EXPORT_SYMBOL(ata_link_printk);
6758
6759 int ata_dev_printk(const struct ata_device *dev, const char *level,
6760 const char *fmt, ...)
6761 {
6762 struct va_format vaf;
6763 va_list args;
6764 int r;
6765
6766 va_start(args, fmt);
6767
6768 vaf.fmt = fmt;
6769 vaf.va = &args;
6770
6771 r = printk("%sata%u.%02u: %pV",
6772 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6773 &vaf);
6774
6775 va_end(args);
6776
6777 return r;
6778 }
6779 EXPORT_SYMBOL(ata_dev_printk);
6780
6781 void ata_print_version(const struct device *dev, const char *version)
6782 {
6783 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6784 }
6785 EXPORT_SYMBOL(ata_print_version);
6786
6787 /*
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6792 */
6793 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6794 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6795 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6796 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6797 EXPORT_SYMBOL_GPL(sata_port_ops);
6798 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6799 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6800 EXPORT_SYMBOL_GPL(ata_link_next);
6801 EXPORT_SYMBOL_GPL(ata_dev_next);
6802 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6803 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6804 EXPORT_SYMBOL_GPL(ata_host_init);
6805 EXPORT_SYMBOL_GPL(ata_host_alloc);
6806 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6807 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6808 EXPORT_SYMBOL_GPL(ata_host_start);
6809 EXPORT_SYMBOL_GPL(ata_host_register);
6810 EXPORT_SYMBOL_GPL(ata_host_activate);
6811 EXPORT_SYMBOL_GPL(ata_host_detach);
6812 EXPORT_SYMBOL_GPL(ata_sg_init);
6813 EXPORT_SYMBOL_GPL(ata_qc_complete);
6814 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6815 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6816 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6817 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6818 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6819 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6820 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6821 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6822 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6823 EXPORT_SYMBOL_GPL(ata_mode_string);
6824 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6825 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6826 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6827 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6828 EXPORT_SYMBOL_GPL(ata_dev_disable);
6829 EXPORT_SYMBOL_GPL(sata_set_spd);
6830 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6831 EXPORT_SYMBOL_GPL(sata_link_debounce);
6832 EXPORT_SYMBOL_GPL(sata_link_resume);
6833 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6834 EXPORT_SYMBOL_GPL(ata_std_prereset);
6835 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6836 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6837 EXPORT_SYMBOL_GPL(ata_std_postreset);
6838 EXPORT_SYMBOL_GPL(ata_dev_classify);
6839 EXPORT_SYMBOL_GPL(ata_dev_pair);
6840 EXPORT_SYMBOL_GPL(ata_ratelimit);
6841 EXPORT_SYMBOL_GPL(ata_msleep);
6842 EXPORT_SYMBOL_GPL(ata_wait_register);
6843 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6844 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6845 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6846 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6847 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6848 EXPORT_SYMBOL_GPL(sata_scr_valid);
6849 EXPORT_SYMBOL_GPL(sata_scr_read);
6850 EXPORT_SYMBOL_GPL(sata_scr_write);
6851 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6852 EXPORT_SYMBOL_GPL(ata_link_online);
6853 EXPORT_SYMBOL_GPL(ata_link_offline);
6854 #ifdef CONFIG_PM
6855 EXPORT_SYMBOL_GPL(ata_host_suspend);
6856 EXPORT_SYMBOL_GPL(ata_host_resume);
6857 #endif /* CONFIG_PM */
6858 EXPORT_SYMBOL_GPL(ata_id_string);
6859 EXPORT_SYMBOL_GPL(ata_id_c_string);
6860 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6861 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6862
6863 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6864 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6865 EXPORT_SYMBOL_GPL(ata_timing_compute);
6866 EXPORT_SYMBOL_GPL(ata_timing_merge);
6867 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6868
6869 #ifdef CONFIG_PCI
6870 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6871 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6872 #ifdef CONFIG_PM
6873 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6874 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6875 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6876 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6877 #endif /* CONFIG_PM */
6878 #endif /* CONFIG_PCI */
6879
6880 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6881 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6882 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6883 EXPORT_SYMBOL_GPL(ata_port_desc);
6884 #ifdef CONFIG_PCI
6885 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6886 #endif /* CONFIG_PCI */
6887 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6888 EXPORT_SYMBOL_GPL(ata_link_abort);
6889 EXPORT_SYMBOL_GPL(ata_port_abort);
6890 EXPORT_SYMBOL_GPL(ata_port_freeze);
6891 EXPORT_SYMBOL_GPL(sata_async_notification);
6892 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6893 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6894 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6895 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6896 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6897 EXPORT_SYMBOL_GPL(ata_do_eh);
6898 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6899
6900 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6901 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6902 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6903 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6904 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.27462 seconds and 5 git commands to generate.