Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 {
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931 }
932
933 /**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943 {
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965 }
966
967 /**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976 static u64 ata_hpa_resize(struct ata_device *dev)
977 {
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
980
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors, (long long)hpa_sectors);
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1004
1005 if (hpa_sectors) {
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 rc = -EIO;
1702 reason = "I/O error";
1703 goto err_out;
1704 }
1705
1706 swap_buf_le16(id, ATA_ID_WORDS);
1707
1708 /* sanity check */
1709 rc = -EINVAL;
1710 reason = "device reports illegal type";
1711
1712 if (class == ATA_DEV_ATA) {
1713 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1714 goto err_out;
1715 } else {
1716 if (ata_id_is_ata(id))
1717 goto err_out;
1718 }
1719
1720 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1721 tried_spinup = 1;
1722 /*
1723 * Drive powered-up in standby mode, and requires a specific
1724 * SET_FEATURES spin-up subcommand before it will accept
1725 * anything other than the original IDENTIFY command.
1726 */
1727 ata_tf_init(dev, &tf);
1728 tf.command = ATA_CMD_SET_FEATURES;
1729 tf.feature = SETFEATURES_SPINUP;
1730 tf.protocol = ATA_PROT_NODATA;
1731 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1732 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1733 if (err_mask) {
1734 rc = -EIO;
1735 reason = "SPINUP failed";
1736 goto err_out;
1737 }
1738 /*
1739 * If the drive initially returned incomplete IDENTIFY info,
1740 * we now must reissue the IDENTIFY command.
1741 */
1742 if (id[2] == 0x37c8)
1743 goto retry;
1744 }
1745
1746 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1747 /*
1748 * The exact sequence expected by certain pre-ATA4 drives is:
1749 * SRST RESET
1750 * IDENTIFY
1751 * INITIALIZE DEVICE PARAMETERS
1752 * anything else..
1753 * Some drives were very specific about that exact sequence.
1754 */
1755 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1756 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1757 if (err_mask) {
1758 rc = -EIO;
1759 reason = "INIT_DEV_PARAMS failed";
1760 goto err_out;
1761 }
1762
1763 /* current CHS translation info (id[53-58]) might be
1764 * changed. reread the identify device info.
1765 */
1766 flags &= ~ATA_READID_POSTRESET;
1767 goto retry;
1768 }
1769 }
1770
1771 *p_class = class;
1772
1773 return 0;
1774
1775 err_out:
1776 if (ata_msg_warn(ap))
1777 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1778 "(%s, err_mask=0x%x)\n", reason, err_mask);
1779 return rc;
1780 }
1781
1782 static inline u8 ata_dev_knobble(struct ata_device *dev)
1783 {
1784 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1785 }
1786
1787 static void ata_dev_config_ncq(struct ata_device *dev,
1788 char *desc, size_t desc_sz)
1789 {
1790 struct ata_port *ap = dev->ap;
1791 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1792
1793 if (!ata_id_has_ncq(dev->id)) {
1794 desc[0] = '\0';
1795 return;
1796 }
1797 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1798 snprintf(desc, desc_sz, "NCQ (not used)");
1799 return;
1800 }
1801 if (ap->flags & ATA_FLAG_NCQ) {
1802 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1803 dev->flags |= ATA_DFLAG_NCQ;
1804 }
1805
1806 if (hdepth >= ddepth)
1807 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1808 else
1809 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1810 }
1811
1812 /**
1813 * ata_dev_configure - Configure the specified ATA/ATAPI device
1814 * @dev: Target device to configure
1815 *
1816 * Configure @dev according to @dev->id. Generic and low-level
1817 * driver specific fixups are also applied.
1818 *
1819 * LOCKING:
1820 * Kernel thread context (may sleep)
1821 *
1822 * RETURNS:
1823 * 0 on success, -errno otherwise
1824 */
1825 int ata_dev_configure(struct ata_device *dev)
1826 {
1827 struct ata_port *ap = dev->ap;
1828 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1829 const u16 *id = dev->id;
1830 unsigned int xfer_mask;
1831 char revbuf[7]; /* XYZ-99\0 */
1832 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1833 char modelbuf[ATA_ID_PROD_LEN+1];
1834 int rc;
1835
1836 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1837 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1838 __FUNCTION__);
1839 return 0;
1840 }
1841
1842 if (ata_msg_probe(ap))
1843 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1844
1845 /* set _SDD */
1846 rc = ata_acpi_push_id(ap, dev->devno);
1847 if (rc) {
1848 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1849 rc);
1850 }
1851
1852 /* retrieve and execute the ATA task file of _GTF */
1853 ata_acpi_exec_tfs(ap);
1854
1855 /* print device capabilities */
1856 if (ata_msg_probe(ap))
1857 ata_dev_printk(dev, KERN_DEBUG,
1858 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1859 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1860 __FUNCTION__,
1861 id[49], id[82], id[83], id[84],
1862 id[85], id[86], id[87], id[88]);
1863
1864 /* initialize to-be-configured parameters */
1865 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1866 dev->max_sectors = 0;
1867 dev->cdb_len = 0;
1868 dev->n_sectors = 0;
1869 dev->cylinders = 0;
1870 dev->heads = 0;
1871 dev->sectors = 0;
1872
1873 /*
1874 * common ATA, ATAPI feature tests
1875 */
1876
1877 /* find max transfer mode; for printk only */
1878 xfer_mask = ata_id_xfermask(id);
1879
1880 if (ata_msg_probe(ap))
1881 ata_dump_id(id);
1882
1883 /* ATA-specific feature tests */
1884 if (dev->class == ATA_DEV_ATA) {
1885 if (ata_id_is_cfa(id)) {
1886 if (id[162] & 1) /* CPRM may make this media unusable */
1887 ata_dev_printk(dev, KERN_WARNING,
1888 "supports DRM functions and may "
1889 "not be fully accessable.\n");
1890 snprintf(revbuf, 7, "CFA");
1891 }
1892 else
1893 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1894
1895 dev->n_sectors = ata_id_n_sectors(id);
1896 dev->n_sectors_boot = dev->n_sectors;
1897
1898 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1899 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1900 sizeof(fwrevbuf));
1901
1902 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1903 sizeof(modelbuf));
1904
1905 if (dev->id[59] & 0x100)
1906 dev->multi_count = dev->id[59] & 0xff;
1907
1908 if (ata_id_has_lba(id)) {
1909 const char *lba_desc;
1910 char ncq_desc[20];
1911
1912 lba_desc = "LBA";
1913 dev->flags |= ATA_DFLAG_LBA;
1914 if (ata_id_has_lba48(id)) {
1915 dev->flags |= ATA_DFLAG_LBA48;
1916 lba_desc = "LBA48";
1917
1918 if (dev->n_sectors >= (1UL << 28) &&
1919 ata_id_has_flush_ext(id))
1920 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1921 }
1922
1923 if (ata_id_hpa_enabled(dev->id))
1924 dev->n_sectors = ata_hpa_resize(dev);
1925
1926 /* config NCQ */
1927 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1928
1929 /* print device info to dmesg */
1930 if (ata_msg_drv(ap) && print_info) {
1931 ata_dev_printk(dev, KERN_INFO,
1932 "%s: %s, %s, max %s\n",
1933 revbuf, modelbuf, fwrevbuf,
1934 ata_mode_string(xfer_mask));
1935 ata_dev_printk(dev, KERN_INFO,
1936 "%Lu sectors, multi %u: %s %s\n",
1937 (unsigned long long)dev->n_sectors,
1938 dev->multi_count, lba_desc, ncq_desc);
1939 }
1940 } else {
1941 /* CHS */
1942
1943 /* Default translation */
1944 dev->cylinders = id[1];
1945 dev->heads = id[3];
1946 dev->sectors = id[6];
1947
1948 if (ata_id_current_chs_valid(id)) {
1949 /* Current CHS translation is valid. */
1950 dev->cylinders = id[54];
1951 dev->heads = id[55];
1952 dev->sectors = id[56];
1953 }
1954
1955 /* print device info to dmesg */
1956 if (ata_msg_drv(ap) && print_info) {
1957 ata_dev_printk(dev, KERN_INFO,
1958 "%s: %s, %s, max %s\n",
1959 revbuf, modelbuf, fwrevbuf,
1960 ata_mode_string(xfer_mask));
1961 ata_dev_printk(dev, KERN_INFO,
1962 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1963 (unsigned long long)dev->n_sectors,
1964 dev->multi_count, dev->cylinders,
1965 dev->heads, dev->sectors);
1966 }
1967 }
1968
1969 dev->cdb_len = 16;
1970 }
1971
1972 /* ATAPI-specific feature tests */
1973 else if (dev->class == ATA_DEV_ATAPI) {
1974 char *cdb_intr_string = "";
1975
1976 rc = atapi_cdb_len(id);
1977 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1978 if (ata_msg_warn(ap))
1979 ata_dev_printk(dev, KERN_WARNING,
1980 "unsupported CDB len\n");
1981 rc = -EINVAL;
1982 goto err_out_nosup;
1983 }
1984 dev->cdb_len = (unsigned int) rc;
1985
1986 if (ata_id_cdb_intr(dev->id)) {
1987 dev->flags |= ATA_DFLAG_CDB_INTR;
1988 cdb_intr_string = ", CDB intr";
1989 }
1990
1991 /* print device info to dmesg */
1992 if (ata_msg_drv(ap) && print_info)
1993 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1994 ata_mode_string(xfer_mask),
1995 cdb_intr_string);
1996 }
1997
1998 /* determine max_sectors */
1999 dev->max_sectors = ATA_MAX_SECTORS;
2000 if (dev->flags & ATA_DFLAG_LBA48)
2001 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2002
2003 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2004 /* Let the user know. We don't want to disallow opens for
2005 rescue purposes, or in case the vendor is just a blithering
2006 idiot */
2007 if (print_info) {
2008 ata_dev_printk(dev, KERN_WARNING,
2009 "Drive reports diagnostics failure. This may indicate a drive\n");
2010 ata_dev_printk(dev, KERN_WARNING,
2011 "fault or invalid emulation. Contact drive vendor for information.\n");
2012 }
2013 }
2014
2015 /* limit bridge transfers to udma5, 200 sectors */
2016 if (ata_dev_knobble(dev)) {
2017 if (ata_msg_drv(ap) && print_info)
2018 ata_dev_printk(dev, KERN_INFO,
2019 "applying bridge limits\n");
2020 dev->udma_mask &= ATA_UDMA5;
2021 dev->max_sectors = ATA_MAX_SECTORS;
2022 }
2023
2024 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2025 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2026 dev->max_sectors);
2027
2028 /* limit ATAPI DMA to R/W commands only */
2029 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2030 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2031
2032 if (ap->ops->dev_config)
2033 ap->ops->dev_config(dev);
2034
2035 if (ata_msg_probe(ap))
2036 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2037 __FUNCTION__, ata_chk_status(ap));
2038 return 0;
2039
2040 err_out_nosup:
2041 if (ata_msg_probe(ap))
2042 ata_dev_printk(dev, KERN_DEBUG,
2043 "%s: EXIT, err\n", __FUNCTION__);
2044 return rc;
2045 }
2046
2047 /**
2048 * ata_cable_40wire - return 40 wire cable type
2049 * @ap: port
2050 *
2051 * Helper method for drivers which want to hardwire 40 wire cable
2052 * detection.
2053 */
2054
2055 int ata_cable_40wire(struct ata_port *ap)
2056 {
2057 return ATA_CBL_PATA40;
2058 }
2059
2060 /**
2061 * ata_cable_80wire - return 80 wire cable type
2062 * @ap: port
2063 *
2064 * Helper method for drivers which want to hardwire 80 wire cable
2065 * detection.
2066 */
2067
2068 int ata_cable_80wire(struct ata_port *ap)
2069 {
2070 return ATA_CBL_PATA80;
2071 }
2072
2073 /**
2074 * ata_cable_unknown - return unknown PATA cable.
2075 * @ap: port
2076 *
2077 * Helper method for drivers which have no PATA cable detection.
2078 */
2079
2080 int ata_cable_unknown(struct ata_port *ap)
2081 {
2082 return ATA_CBL_PATA_UNK;
2083 }
2084
2085 /**
2086 * ata_cable_sata - return SATA cable type
2087 * @ap: port
2088 *
2089 * Helper method for drivers which have SATA cables
2090 */
2091
2092 int ata_cable_sata(struct ata_port *ap)
2093 {
2094 return ATA_CBL_SATA;
2095 }
2096
2097 /**
2098 * ata_bus_probe - Reset and probe ATA bus
2099 * @ap: Bus to probe
2100 *
2101 * Master ATA bus probing function. Initiates a hardware-dependent
2102 * bus reset, then attempts to identify any devices found on
2103 * the bus.
2104 *
2105 * LOCKING:
2106 * PCI/etc. bus probe sem.
2107 *
2108 * RETURNS:
2109 * Zero on success, negative errno otherwise.
2110 */
2111
2112 int ata_bus_probe(struct ata_port *ap)
2113 {
2114 unsigned int classes[ATA_MAX_DEVICES];
2115 int tries[ATA_MAX_DEVICES];
2116 int i, rc;
2117 struct ata_device *dev;
2118
2119 ata_port_probe(ap);
2120
2121 for (i = 0; i < ATA_MAX_DEVICES; i++)
2122 tries[i] = ATA_PROBE_MAX_TRIES;
2123
2124 retry:
2125 /* reset and determine device classes */
2126 ap->ops->phy_reset(ap);
2127
2128 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2129 dev = &ap->device[i];
2130
2131 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2132 dev->class != ATA_DEV_UNKNOWN)
2133 classes[dev->devno] = dev->class;
2134 else
2135 classes[dev->devno] = ATA_DEV_NONE;
2136
2137 dev->class = ATA_DEV_UNKNOWN;
2138 }
2139
2140 ata_port_probe(ap);
2141
2142 /* after the reset the device state is PIO 0 and the controller
2143 state is undefined. Record the mode */
2144
2145 for (i = 0; i < ATA_MAX_DEVICES; i++)
2146 ap->device[i].pio_mode = XFER_PIO_0;
2147
2148 /* read IDENTIFY page and configure devices. We have to do the identify
2149 specific sequence bass-ackwards so that PDIAG- is released by
2150 the slave device */
2151
2152 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2153 dev = &ap->device[i];
2154
2155 if (tries[i])
2156 dev->class = classes[i];
2157
2158 if (!ata_dev_enabled(dev))
2159 continue;
2160
2161 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2162 dev->id);
2163 if (rc)
2164 goto fail;
2165 }
2166
2167 /* Now ask for the cable type as PDIAG- should have been released */
2168 if (ap->ops->cable_detect)
2169 ap->cbl = ap->ops->cable_detect(ap);
2170
2171 /* After the identify sequence we can now set up the devices. We do
2172 this in the normal order so that the user doesn't get confused */
2173
2174 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2175 dev = &ap->device[i];
2176 if (!ata_dev_enabled(dev))
2177 continue;
2178
2179 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2180 rc = ata_dev_configure(dev);
2181 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2182 if (rc)
2183 goto fail;
2184 }
2185
2186 /* configure transfer mode */
2187 rc = ata_set_mode(ap, &dev);
2188 if (rc)
2189 goto fail;
2190
2191 for (i = 0; i < ATA_MAX_DEVICES; i++)
2192 if (ata_dev_enabled(&ap->device[i]))
2193 return 0;
2194
2195 /* no device present, disable port */
2196 ata_port_disable(ap);
2197 ap->ops->port_disable(ap);
2198 return -ENODEV;
2199
2200 fail:
2201 tries[dev->devno]--;
2202
2203 switch (rc) {
2204 case -EINVAL:
2205 /* eeek, something went very wrong, give up */
2206 tries[dev->devno] = 0;
2207 break;
2208
2209 case -ENODEV:
2210 /* give it just one more chance */
2211 tries[dev->devno] = min(tries[dev->devno], 1);
2212 case -EIO:
2213 if (tries[dev->devno] == 1) {
2214 /* This is the last chance, better to slow
2215 * down than lose it.
2216 */
2217 sata_down_spd_limit(ap);
2218 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2219 }
2220 }
2221
2222 if (!tries[dev->devno])
2223 ata_dev_disable(dev);
2224
2225 goto retry;
2226 }
2227
2228 /**
2229 * ata_port_probe - Mark port as enabled
2230 * @ap: Port for which we indicate enablement
2231 *
2232 * Modify @ap data structure such that the system
2233 * thinks that the entire port is enabled.
2234 *
2235 * LOCKING: host lock, or some other form of
2236 * serialization.
2237 */
2238
2239 void ata_port_probe(struct ata_port *ap)
2240 {
2241 ap->flags &= ~ATA_FLAG_DISABLED;
2242 }
2243
2244 /**
2245 * sata_print_link_status - Print SATA link status
2246 * @ap: SATA port to printk link status about
2247 *
2248 * This function prints link speed and status of a SATA link.
2249 *
2250 * LOCKING:
2251 * None.
2252 */
2253 void sata_print_link_status(struct ata_port *ap)
2254 {
2255 u32 sstatus, scontrol, tmp;
2256
2257 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2258 return;
2259 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2260
2261 if (ata_port_online(ap)) {
2262 tmp = (sstatus >> 4) & 0xf;
2263 ata_port_printk(ap, KERN_INFO,
2264 "SATA link up %s (SStatus %X SControl %X)\n",
2265 sata_spd_string(tmp), sstatus, scontrol);
2266 } else {
2267 ata_port_printk(ap, KERN_INFO,
2268 "SATA link down (SStatus %X SControl %X)\n",
2269 sstatus, scontrol);
2270 }
2271 }
2272
2273 /**
2274 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2275 * @ap: SATA port associated with target SATA PHY.
2276 *
2277 * This function issues commands to standard SATA Sxxx
2278 * PHY registers, to wake up the phy (and device), and
2279 * clear any reset condition.
2280 *
2281 * LOCKING:
2282 * PCI/etc. bus probe sem.
2283 *
2284 */
2285 void __sata_phy_reset(struct ata_port *ap)
2286 {
2287 u32 sstatus;
2288 unsigned long timeout = jiffies + (HZ * 5);
2289
2290 if (ap->flags & ATA_FLAG_SATA_RESET) {
2291 /* issue phy wake/reset */
2292 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2293 /* Couldn't find anything in SATA I/II specs, but
2294 * AHCI-1.1 10.4.2 says at least 1 ms. */
2295 mdelay(1);
2296 }
2297 /* phy wake/clear reset */
2298 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2299
2300 /* wait for phy to become ready, if necessary */
2301 do {
2302 msleep(200);
2303 sata_scr_read(ap, SCR_STATUS, &sstatus);
2304 if ((sstatus & 0xf) != 1)
2305 break;
2306 } while (time_before(jiffies, timeout));
2307
2308 /* print link status */
2309 sata_print_link_status(ap);
2310
2311 /* TODO: phy layer with polling, timeouts, etc. */
2312 if (!ata_port_offline(ap))
2313 ata_port_probe(ap);
2314 else
2315 ata_port_disable(ap);
2316
2317 if (ap->flags & ATA_FLAG_DISABLED)
2318 return;
2319
2320 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2321 ata_port_disable(ap);
2322 return;
2323 }
2324
2325 ap->cbl = ATA_CBL_SATA;
2326 }
2327
2328 /**
2329 * sata_phy_reset - Reset SATA bus.
2330 * @ap: SATA port associated with target SATA PHY.
2331 *
2332 * This function resets the SATA bus, and then probes
2333 * the bus for devices.
2334 *
2335 * LOCKING:
2336 * PCI/etc. bus probe sem.
2337 *
2338 */
2339 void sata_phy_reset(struct ata_port *ap)
2340 {
2341 __sata_phy_reset(ap);
2342 if (ap->flags & ATA_FLAG_DISABLED)
2343 return;
2344 ata_bus_reset(ap);
2345 }
2346
2347 /**
2348 * ata_dev_pair - return other device on cable
2349 * @adev: device
2350 *
2351 * Obtain the other device on the same cable, or if none is
2352 * present NULL is returned
2353 */
2354
2355 struct ata_device *ata_dev_pair(struct ata_device *adev)
2356 {
2357 struct ata_port *ap = adev->ap;
2358 struct ata_device *pair = &ap->device[1 - adev->devno];
2359 if (!ata_dev_enabled(pair))
2360 return NULL;
2361 return pair;
2362 }
2363
2364 /**
2365 * ata_port_disable - Disable port.
2366 * @ap: Port to be disabled.
2367 *
2368 * Modify @ap data structure such that the system
2369 * thinks that the entire port is disabled, and should
2370 * never attempt to probe or communicate with devices
2371 * on this port.
2372 *
2373 * LOCKING: host lock, or some other form of
2374 * serialization.
2375 */
2376
2377 void ata_port_disable(struct ata_port *ap)
2378 {
2379 ap->device[0].class = ATA_DEV_NONE;
2380 ap->device[1].class = ATA_DEV_NONE;
2381 ap->flags |= ATA_FLAG_DISABLED;
2382 }
2383
2384 /**
2385 * sata_down_spd_limit - adjust SATA spd limit downward
2386 * @ap: Port to adjust SATA spd limit for
2387 *
2388 * Adjust SATA spd limit of @ap downward. Note that this
2389 * function only adjusts the limit. The change must be applied
2390 * using sata_set_spd().
2391 *
2392 * LOCKING:
2393 * Inherited from caller.
2394 *
2395 * RETURNS:
2396 * 0 on success, negative errno on failure
2397 */
2398 int sata_down_spd_limit(struct ata_port *ap)
2399 {
2400 u32 sstatus, spd, mask;
2401 int rc, highbit;
2402
2403 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2404 if (rc)
2405 return rc;
2406
2407 mask = ap->sata_spd_limit;
2408 if (mask <= 1)
2409 return -EINVAL;
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2412
2413 spd = (sstatus >> 4) & 0xf;
2414 if (spd <= 1)
2415 return -EINVAL;
2416 spd--;
2417 mask &= (1 << spd) - 1;
2418 if (!mask)
2419 return -EINVAL;
2420
2421 ap->sata_spd_limit = mask;
2422
2423 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2424 sata_spd_string(fls(mask)));
2425
2426 return 0;
2427 }
2428
2429 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2430 {
2431 u32 spd, limit;
2432
2433 if (ap->sata_spd_limit == UINT_MAX)
2434 limit = 0;
2435 else
2436 limit = fls(ap->sata_spd_limit);
2437
2438 spd = (*scontrol >> 4) & 0xf;
2439 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2440
2441 return spd != limit;
2442 }
2443
2444 /**
2445 * sata_set_spd_needed - is SATA spd configuration needed
2446 * @ap: Port in question
2447 *
2448 * Test whether the spd limit in SControl matches
2449 * @ap->sata_spd_limit. This function is used to determine
2450 * whether hardreset is necessary to apply SATA spd
2451 * configuration.
2452 *
2453 * LOCKING:
2454 * Inherited from caller.
2455 *
2456 * RETURNS:
2457 * 1 if SATA spd configuration is needed, 0 otherwise.
2458 */
2459 int sata_set_spd_needed(struct ata_port *ap)
2460 {
2461 u32 scontrol;
2462
2463 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2464 return 0;
2465
2466 return __sata_set_spd_needed(ap, &scontrol);
2467 }
2468
2469 /**
2470 * sata_set_spd - set SATA spd according to spd limit
2471 * @ap: Port to set SATA spd for
2472 *
2473 * Set SATA spd of @ap according to sata_spd_limit.
2474 *
2475 * LOCKING:
2476 * Inherited from caller.
2477 *
2478 * RETURNS:
2479 * 0 if spd doesn't need to be changed, 1 if spd has been
2480 * changed. Negative errno if SCR registers are inaccessible.
2481 */
2482 int sata_set_spd(struct ata_port *ap)
2483 {
2484 u32 scontrol;
2485 int rc;
2486
2487 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2488 return rc;
2489
2490 if (!__sata_set_spd_needed(ap, &scontrol))
2491 return 0;
2492
2493 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2494 return rc;
2495
2496 return 1;
2497 }
2498
2499 /*
2500 * This mode timing computation functionality is ported over from
2501 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2502 */
2503 /*
2504 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2505 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2506 * for UDMA6, which is currently supported only by Maxtor drives.
2507 *
2508 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2509 */
2510
2511 static const struct ata_timing ata_timing[] = {
2512
2513 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2514 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2515 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2516 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2517
2518 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2519 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2520 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2521 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2522 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2523
2524 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2525
2526 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2527 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2528 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2529
2530 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2531 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2532 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2533
2534 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2535 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2536 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2537 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2538
2539 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2540 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2541 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2542
2543 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2544
2545 { 0xFF }
2546 };
2547
2548 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2549 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2550
2551 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2552 {
2553 q->setup = EZ(t->setup * 1000, T);
2554 q->act8b = EZ(t->act8b * 1000, T);
2555 q->rec8b = EZ(t->rec8b * 1000, T);
2556 q->cyc8b = EZ(t->cyc8b * 1000, T);
2557 q->active = EZ(t->active * 1000, T);
2558 q->recover = EZ(t->recover * 1000, T);
2559 q->cycle = EZ(t->cycle * 1000, T);
2560 q->udma = EZ(t->udma * 1000, UT);
2561 }
2562
2563 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2564 struct ata_timing *m, unsigned int what)
2565 {
2566 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2567 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2568 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2569 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2570 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2571 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2572 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2573 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2574 }
2575
2576 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2577 {
2578 const struct ata_timing *t;
2579
2580 for (t = ata_timing; t->mode != speed; t++)
2581 if (t->mode == 0xFF)
2582 return NULL;
2583 return t;
2584 }
2585
2586 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2587 struct ata_timing *t, int T, int UT)
2588 {
2589 const struct ata_timing *s;
2590 struct ata_timing p;
2591
2592 /*
2593 * Find the mode.
2594 */
2595
2596 if (!(s = ata_timing_find_mode(speed)))
2597 return -EINVAL;
2598
2599 memcpy(t, s, sizeof(*s));
2600
2601 /*
2602 * If the drive is an EIDE drive, it can tell us it needs extended
2603 * PIO/MW_DMA cycle timing.
2604 */
2605
2606 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2607 memset(&p, 0, sizeof(p));
2608 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2609 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2610 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2611 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2612 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2613 }
2614 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2615 }
2616
2617 /*
2618 * Convert the timing to bus clock counts.
2619 */
2620
2621 ata_timing_quantize(t, t, T, UT);
2622
2623 /*
2624 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2625 * S.M.A.R.T * and some other commands. We have to ensure that the
2626 * DMA cycle timing is slower/equal than the fastest PIO timing.
2627 */
2628
2629 if (speed > XFER_PIO_6) {
2630 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2631 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2632 }
2633
2634 /*
2635 * Lengthen active & recovery time so that cycle time is correct.
2636 */
2637
2638 if (t->act8b + t->rec8b < t->cyc8b) {
2639 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2640 t->rec8b = t->cyc8b - t->act8b;
2641 }
2642
2643 if (t->active + t->recover < t->cycle) {
2644 t->active += (t->cycle - (t->active + t->recover)) / 2;
2645 t->recover = t->cycle - t->active;
2646 }
2647
2648 /* In a few cases quantisation may produce enough errors to
2649 leave t->cycle too low for the sum of active and recovery
2650 if so we must correct this */
2651 if (t->active + t->recover > t->cycle)
2652 t->cycle = t->active + t->recover;
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * ata_down_xfermask_limit - adjust dev xfer masks downward
2659 * @dev: Device to adjust xfer masks
2660 * @sel: ATA_DNXFER_* selector
2661 *
2662 * Adjust xfer masks of @dev downward. Note that this function
2663 * does not apply the change. Invoking ata_set_mode() afterwards
2664 * will apply the limit.
2665 *
2666 * LOCKING:
2667 * Inherited from caller.
2668 *
2669 * RETURNS:
2670 * 0 on success, negative errno on failure
2671 */
2672 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2673 {
2674 char buf[32];
2675 unsigned int orig_mask, xfer_mask;
2676 unsigned int pio_mask, mwdma_mask, udma_mask;
2677 int quiet, highbit;
2678
2679 quiet = !!(sel & ATA_DNXFER_QUIET);
2680 sel &= ~ATA_DNXFER_QUIET;
2681
2682 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2683 dev->mwdma_mask,
2684 dev->udma_mask);
2685 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2686
2687 switch (sel) {
2688 case ATA_DNXFER_PIO:
2689 highbit = fls(pio_mask) - 1;
2690 pio_mask &= ~(1 << highbit);
2691 break;
2692
2693 case ATA_DNXFER_DMA:
2694 if (udma_mask) {
2695 highbit = fls(udma_mask) - 1;
2696 udma_mask &= ~(1 << highbit);
2697 if (!udma_mask)
2698 return -ENOENT;
2699 } else if (mwdma_mask) {
2700 highbit = fls(mwdma_mask) - 1;
2701 mwdma_mask &= ~(1 << highbit);
2702 if (!mwdma_mask)
2703 return -ENOENT;
2704 }
2705 break;
2706
2707 case ATA_DNXFER_40C:
2708 udma_mask &= ATA_UDMA_MASK_40C;
2709 break;
2710
2711 case ATA_DNXFER_FORCE_PIO0:
2712 pio_mask &= 1;
2713 case ATA_DNXFER_FORCE_PIO:
2714 mwdma_mask = 0;
2715 udma_mask = 0;
2716 break;
2717
2718 default:
2719 BUG();
2720 }
2721
2722 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2723
2724 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2725 return -ENOENT;
2726
2727 if (!quiet) {
2728 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2729 snprintf(buf, sizeof(buf), "%s:%s",
2730 ata_mode_string(xfer_mask),
2731 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2732 else
2733 snprintf(buf, sizeof(buf), "%s",
2734 ata_mode_string(xfer_mask));
2735
2736 ata_dev_printk(dev, KERN_WARNING,
2737 "limiting speed to %s\n", buf);
2738 }
2739
2740 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2741 &dev->udma_mask);
2742
2743 return 0;
2744 }
2745
2746 static int ata_dev_set_mode(struct ata_device *dev)
2747 {
2748 struct ata_eh_context *ehc = &dev->ap->eh_context;
2749 unsigned int err_mask;
2750 int rc;
2751
2752 dev->flags &= ~ATA_DFLAG_PIO;
2753 if (dev->xfer_shift == ATA_SHIFT_PIO)
2754 dev->flags |= ATA_DFLAG_PIO;
2755
2756 err_mask = ata_dev_set_xfermode(dev);
2757 /* Old CFA may refuse this command, which is just fine */
2758 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2759 err_mask &= ~AC_ERR_DEV;
2760
2761 if (err_mask) {
2762 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2763 "(err_mask=0x%x)\n", err_mask);
2764 return -EIO;
2765 }
2766
2767 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2768 rc = ata_dev_revalidate(dev, 0);
2769 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2770 if (rc)
2771 return rc;
2772
2773 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2774 dev->xfer_shift, (int)dev->xfer_mode);
2775
2776 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2777 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2778 return 0;
2779 }
2780
2781 /**
2782 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2783 * @ap: port on which timings will be programmed
2784 * @r_failed_dev: out paramter for failed device
2785 *
2786 * Standard implementation of the function used to tune and set
2787 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2788 * ata_dev_set_mode() fails, pointer to the failing device is
2789 * returned in @r_failed_dev.
2790 *
2791 * LOCKING:
2792 * PCI/etc. bus probe sem.
2793 *
2794 * RETURNS:
2795 * 0 on success, negative errno otherwise
2796 */
2797
2798 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2799 {
2800 struct ata_device *dev;
2801 int i, rc = 0, used_dma = 0, found = 0;
2802
2803
2804 /* step 1: calculate xfer_mask */
2805 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2806 unsigned int pio_mask, dma_mask;
2807
2808 dev = &ap->device[i];
2809
2810 if (!ata_dev_enabled(dev))
2811 continue;
2812
2813 ata_dev_xfermask(dev);
2814
2815 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2816 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2817 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2818 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2819
2820 found = 1;
2821 if (dev->dma_mode)
2822 used_dma = 1;
2823 }
2824 if (!found)
2825 goto out;
2826
2827 /* step 2: always set host PIO timings */
2828 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2829 dev = &ap->device[i];
2830 if (!ata_dev_enabled(dev))
2831 continue;
2832
2833 if (!dev->pio_mode) {
2834 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2835 rc = -EINVAL;
2836 goto out;
2837 }
2838
2839 dev->xfer_mode = dev->pio_mode;
2840 dev->xfer_shift = ATA_SHIFT_PIO;
2841 if (ap->ops->set_piomode)
2842 ap->ops->set_piomode(ap, dev);
2843 }
2844
2845 /* step 3: set host DMA timings */
2846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2847 dev = &ap->device[i];
2848
2849 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2850 continue;
2851
2852 dev->xfer_mode = dev->dma_mode;
2853 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2854 if (ap->ops->set_dmamode)
2855 ap->ops->set_dmamode(ap, dev);
2856 }
2857
2858 /* step 4: update devices' xfer mode */
2859 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2860 dev = &ap->device[i];
2861
2862 /* don't update suspended devices' xfer mode */
2863 if (!ata_dev_ready(dev))
2864 continue;
2865
2866 rc = ata_dev_set_mode(dev);
2867 if (rc)
2868 goto out;
2869 }
2870
2871 /* Record simplex status. If we selected DMA then the other
2872 * host channels are not permitted to do so.
2873 */
2874 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2875 ap->host->simplex_claimed = ap;
2876
2877 /* step5: chip specific finalisation */
2878 if (ap->ops->post_set_mode)
2879 ap->ops->post_set_mode(ap);
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
2884 }
2885
2886 /**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902 {
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907 }
2908
2909 /**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
2919 * spin_lock_irqsave(host lock)
2920 */
2921
2922 static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924 {
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927 }
2928
2929 /**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
2943 */
2944 int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
2946 {
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
2959 if (status != 0xff && (status & ATA_BUSY))
2960 ata_port_printk(ap, KERN_WARNING,
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
2963
2964 timeout = timer_start + tmout;
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
2971 if (status == 0xff)
2972 return -ENODEV;
2973
2974 if (status & ATA_BUSY) {
2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
2978 return -EBUSY;
2979 }
2980
2981 return 0;
2982 }
2983
2984 /**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999 {
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
3009 if (status == 0xff)
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024 }
3025
3026 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
3028 {
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
3032 int rc, ret = 0;
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
3044 }
3045
3046 /* if device 1 was found in ata_devchk, wait for
3047 * register access, then wait for BSY to clear
3048 */
3049 while (dev1) {
3050 u8 nsect, lbal;
3051
3052 ap->ops->dev_select(ap, 1);
3053 nsect = ioread8(ioaddr->nsect_addr);
3054 lbal = ioread8(ioaddr->lbal_addr);
3055 if ((nsect == 1) && (lbal == 1))
3056 break;
3057 if (time_after(jiffies, deadline))
3058 return -EBUSY;
3059 msleep(50); /* give drive a breather */
3060 }
3061 if (dev1) {
3062 rc = ata_wait_ready(ap, deadline);
3063 if (rc) {
3064 if (rc != -ENODEV)
3065 return rc;
3066 ret = rc;
3067 }
3068 }
3069
3070 /* is all this really necessary? */
3071 ap->ops->dev_select(ap, 0);
3072 if (dev1)
3073 ap->ops->dev_select(ap, 1);
3074 if (dev0)
3075 ap->ops->dev_select(ap, 0);
3076
3077 return ret;
3078 }
3079
3080 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3081 unsigned long deadline)
3082 {
3083 struct ata_ioports *ioaddr = &ap->ioaddr;
3084
3085 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3086
3087 /* software reset. causes dev0 to be selected */
3088 iowrite8(ap->ctl, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3091 udelay(20); /* FIXME: flush */
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
3093
3094 /* spec mandates ">= 2ms" before checking status.
3095 * We wait 150ms, because that was the magic delay used for
3096 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3097 * between when the ATA command register is written, and then
3098 * status is checked. Because waiting for "a while" before
3099 * checking status is fine, post SRST, we perform this magic
3100 * delay here as well.
3101 *
3102 * Old drivers/ide uses the 2mS rule and then waits for ready
3103 */
3104 msleep(150);
3105
3106 /* Before we perform post reset processing we want to see if
3107 * the bus shows 0xFF because the odd clown forgets the D7
3108 * pulldown resistor.
3109 */
3110 if (ata_check_status(ap) == 0xFF)
3111 return -ENODEV;
3112
3113 return ata_bus_post_reset(ap, devmask, deadline);
3114 }
3115
3116 /**
3117 * ata_bus_reset - reset host port and associated ATA channel
3118 * @ap: port to reset
3119 *
3120 * This is typically the first time we actually start issuing
3121 * commands to the ATA channel. We wait for BSY to clear, then
3122 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3123 * result. Determine what devices, if any, are on the channel
3124 * by looking at the device 0/1 error register. Look at the signature
3125 * stored in each device's taskfile registers, to determine if
3126 * the device is ATA or ATAPI.
3127 *
3128 * LOCKING:
3129 * PCI/etc. bus probe sem.
3130 * Obtains host lock.
3131 *
3132 * SIDE EFFECTS:
3133 * Sets ATA_FLAG_DISABLED if bus reset fails.
3134 */
3135
3136 void ata_bus_reset(struct ata_port *ap)
3137 {
3138 struct ata_ioports *ioaddr = &ap->ioaddr;
3139 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3140 u8 err;
3141 unsigned int dev0, dev1 = 0, devmask = 0;
3142 int rc;
3143
3144 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3145
3146 /* determine if device 0/1 are present */
3147 if (ap->flags & ATA_FLAG_SATA_RESET)
3148 dev0 = 1;
3149 else {
3150 dev0 = ata_devchk(ap, 0);
3151 if (slave_possible)
3152 dev1 = ata_devchk(ap, 1);
3153 }
3154
3155 if (dev0)
3156 devmask |= (1 << 0);
3157 if (dev1)
3158 devmask |= (1 << 1);
3159
3160 /* select device 0 again */
3161 ap->ops->dev_select(ap, 0);
3162
3163 /* issue bus reset */
3164 if (ap->flags & ATA_FLAG_SRST) {
3165 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3166 if (rc && rc != -ENODEV)
3167 goto err_out;
3168 }
3169
3170 /*
3171 * determine by signature whether we have ATA or ATAPI devices
3172 */
3173 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3174 if ((slave_possible) && (err != 0x81))
3175 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3176
3177 /* re-enable interrupts */
3178 ap->ops->irq_on(ap);
3179
3180 /* is double-select really necessary? */
3181 if (ap->device[1].class != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 1);
3183 if (ap->device[0].class != ATA_DEV_NONE)
3184 ap->ops->dev_select(ap, 0);
3185
3186 /* if no devices were detected, disable this port */
3187 if ((ap->device[0].class == ATA_DEV_NONE) &&
3188 (ap->device[1].class == ATA_DEV_NONE))
3189 goto err_out;
3190
3191 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3192 /* set up device control for ATA_FLAG_SATA_RESET */
3193 iowrite8(ap->ctl, ioaddr->ctl_addr);
3194 }
3195
3196 DPRINTK("EXIT\n");
3197 return;
3198
3199 err_out:
3200 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3201 ap->ops->port_disable(ap);
3202
3203 DPRINTK("EXIT\n");
3204 }
3205
3206 /**
3207 * sata_phy_debounce - debounce SATA phy status
3208 * @ap: ATA port to debounce SATA phy status for
3209 * @params: timing parameters { interval, duratinon, timeout } in msec
3210 * @deadline: deadline jiffies for the operation
3211 *
3212 * Make sure SStatus of @ap reaches stable state, determined by
3213 * holding the same value where DET is not 1 for @duration polled
3214 * every @interval, before @timeout. Timeout constraints the
3215 * beginning of the stable state. Because DET gets stuck at 1 on
3216 * some controllers after hot unplugging, this functions waits
3217 * until timeout then returns 0 if DET is stable at 1.
3218 *
3219 * @timeout is further limited by @deadline. The sooner of the
3220 * two is used.
3221 *
3222 * LOCKING:
3223 * Kernel thread context (may sleep)
3224 *
3225 * RETURNS:
3226 * 0 on success, -errno on failure.
3227 */
3228 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3229 unsigned long deadline)
3230 {
3231 unsigned long interval_msec = params[0];
3232 unsigned long duration = msecs_to_jiffies(params[1]);
3233 unsigned long last_jiffies, t;
3234 u32 last, cur;
3235 int rc;
3236
3237 t = jiffies + msecs_to_jiffies(params[2]);
3238 if (time_before(t, deadline))
3239 deadline = t;
3240
3241 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3242 return rc;
3243 cur &= 0xf;
3244
3245 last = cur;
3246 last_jiffies = jiffies;
3247
3248 while (1) {
3249 msleep(interval_msec);
3250 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3251 return rc;
3252 cur &= 0xf;
3253
3254 /* DET stable? */
3255 if (cur == last) {
3256 if (cur == 1 && time_before(jiffies, deadline))
3257 continue;
3258 if (time_after(jiffies, last_jiffies + duration))
3259 return 0;
3260 continue;
3261 }
3262
3263 /* unstable, start over */
3264 last = cur;
3265 last_jiffies = jiffies;
3266
3267 /* check deadline */
3268 if (time_after(jiffies, deadline))
3269 return -EBUSY;
3270 }
3271 }
3272
3273 /**
3274 * sata_phy_resume - resume SATA phy
3275 * @ap: ATA port to resume SATA phy for
3276 * @params: timing parameters { interval, duratinon, timeout } in msec
3277 * @deadline: deadline jiffies for the operation
3278 *
3279 * Resume SATA phy of @ap and debounce it.
3280 *
3281 * LOCKING:
3282 * Kernel thread context (may sleep)
3283 *
3284 * RETURNS:
3285 * 0 on success, -errno on failure.
3286 */
3287 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3288 unsigned long deadline)
3289 {
3290 u32 scontrol;
3291 int rc;
3292
3293 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3294 return rc;
3295
3296 scontrol = (scontrol & 0x0f0) | 0x300;
3297
3298 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3299 return rc;
3300
3301 /* Some PHYs react badly if SStatus is pounded immediately
3302 * after resuming. Delay 200ms before debouncing.
3303 */
3304 msleep(200);
3305
3306 return sata_phy_debounce(ap, params, deadline);
3307 }
3308
3309 /**
3310 * ata_std_prereset - prepare for reset
3311 * @ap: ATA port to be reset
3312 * @deadline: deadline jiffies for the operation
3313 *
3314 * @ap is about to be reset. Initialize it. Failure from
3315 * prereset makes libata abort whole reset sequence and give up
3316 * that port, so prereset should be best-effort. It does its
3317 * best to prepare for reset sequence but if things go wrong, it
3318 * should just whine, not fail.
3319 *
3320 * LOCKING:
3321 * Kernel thread context (may sleep)
3322 *
3323 * RETURNS:
3324 * 0 on success, -errno otherwise.
3325 */
3326 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3327 {
3328 struct ata_eh_context *ehc = &ap->eh_context;
3329 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3330 int rc;
3331
3332 /* handle link resume */
3333 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3334 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3335 ehc->i.action |= ATA_EH_HARDRESET;
3336
3337 /* if we're about to do hardreset, nothing more to do */
3338 if (ehc->i.action & ATA_EH_HARDRESET)
3339 return 0;
3340
3341 /* if SATA, resume phy */
3342 if (ap->cbl == ATA_CBL_SATA) {
3343 rc = sata_phy_resume(ap, timing, deadline);
3344 /* whine about phy resume failure but proceed */
3345 if (rc && rc != -EOPNOTSUPP)
3346 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3347 "link for reset (errno=%d)\n", rc);
3348 }
3349
3350 /* Wait for !BSY if the controller can wait for the first D2H
3351 * Reg FIS and we don't know that no device is attached.
3352 */
3353 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3354 rc = ata_wait_ready(ap, deadline);
3355 if (rc) {
3356 ata_port_printk(ap, KERN_WARNING, "device not ready "
3357 "(errno=%d), forcing hardreset\n", rc);
3358 ehc->i.action |= ATA_EH_HARDRESET;
3359 }
3360 }
3361
3362 return 0;
3363 }
3364
3365 /**
3366 * ata_std_softreset - reset host port via ATA SRST
3367 * @ap: port to reset
3368 * @classes: resulting classes of attached devices
3369 * @deadline: deadline jiffies for the operation
3370 *
3371 * Reset host port using ATA SRST.
3372 *
3373 * LOCKING:
3374 * Kernel thread context (may sleep)
3375 *
3376 * RETURNS:
3377 * 0 on success, -errno otherwise.
3378 */
3379 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3380 unsigned long deadline)
3381 {
3382 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3383 unsigned int devmask = 0;
3384 int rc;
3385 u8 err;
3386
3387 DPRINTK("ENTER\n");
3388
3389 if (ata_port_offline(ap)) {
3390 classes[0] = ATA_DEV_NONE;
3391 goto out;
3392 }
3393
3394 /* determine if device 0/1 are present */
3395 if (ata_devchk(ap, 0))
3396 devmask |= (1 << 0);
3397 if (slave_possible && ata_devchk(ap, 1))
3398 devmask |= (1 << 1);
3399
3400 /* select device 0 again */
3401 ap->ops->dev_select(ap, 0);
3402
3403 /* issue bus reset */
3404 DPRINTK("about to softreset, devmask=%x\n", devmask);
3405 rc = ata_bus_softreset(ap, devmask, deadline);
3406 /* if link is occupied, -ENODEV too is an error */
3407 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3408 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3409 return rc;
3410 }
3411
3412 /* determine by signature whether we have ATA or ATAPI devices */
3413 classes[0] = ata_dev_try_classify(ap, 0, &err);
3414 if (slave_possible && err != 0x81)
3415 classes[1] = ata_dev_try_classify(ap, 1, &err);
3416
3417 out:
3418 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3419 return 0;
3420 }
3421
3422 /**
3423 * sata_port_hardreset - reset port via SATA phy reset
3424 * @ap: port to reset
3425 * @timing: timing parameters { interval, duratinon, timeout } in msec
3426 * @deadline: deadline jiffies for the operation
3427 *
3428 * SATA phy-reset host port using DET bits of SControl register.
3429 *
3430 * LOCKING:
3431 * Kernel thread context (may sleep)
3432 *
3433 * RETURNS:
3434 * 0 on success, -errno otherwise.
3435 */
3436 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3437 unsigned long deadline)
3438 {
3439 u32 scontrol;
3440 int rc;
3441
3442 DPRINTK("ENTER\n");
3443
3444 if (sata_set_spd_needed(ap)) {
3445 /* SATA spec says nothing about how to reconfigure
3446 * spd. To be on the safe side, turn off phy during
3447 * reconfiguration. This works for at least ICH7 AHCI
3448 * and Sil3124.
3449 */
3450 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3451 goto out;
3452
3453 scontrol = (scontrol & 0x0f0) | 0x304;
3454
3455 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3456 goto out;
3457
3458 sata_set_spd(ap);
3459 }
3460
3461 /* issue phy wake/reset */
3462 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3463 goto out;
3464
3465 scontrol = (scontrol & 0x0f0) | 0x301;
3466
3467 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3468 goto out;
3469
3470 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3471 * 10.4.2 says at least 1 ms.
3472 */
3473 msleep(1);
3474
3475 /* bring phy back */
3476 rc = sata_phy_resume(ap, timing, deadline);
3477 out:
3478 DPRINTK("EXIT, rc=%d\n", rc);
3479 return rc;
3480 }
3481
3482 /**
3483 * sata_std_hardreset - reset host port via SATA phy reset
3484 * @ap: port to reset
3485 * @class: resulting class of attached device
3486 * @deadline: deadline jiffies for the operation
3487 *
3488 * SATA phy-reset host port using DET bits of SControl register,
3489 * wait for !BSY and classify the attached device.
3490 *
3491 * LOCKING:
3492 * Kernel thread context (may sleep)
3493 *
3494 * RETURNS:
3495 * 0 on success, -errno otherwise.
3496 */
3497 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3498 unsigned long deadline)
3499 {
3500 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3501 int rc;
3502
3503 DPRINTK("ENTER\n");
3504
3505 /* do hardreset */
3506 rc = sata_port_hardreset(ap, timing, deadline);
3507 if (rc) {
3508 ata_port_printk(ap, KERN_ERR,
3509 "COMRESET failed (errno=%d)\n", rc);
3510 return rc;
3511 }
3512
3513 /* TODO: phy layer with polling, timeouts, etc. */
3514 if (ata_port_offline(ap)) {
3515 *class = ATA_DEV_NONE;
3516 DPRINTK("EXIT, link offline\n");
3517 return 0;
3518 }
3519
3520 /* wait a while before checking status, see SRST for more info */
3521 msleep(150);
3522
3523 rc = ata_wait_ready(ap, deadline);
3524 /* link occupied, -ENODEV too is an error */
3525 if (rc) {
3526 ata_port_printk(ap, KERN_ERR,
3527 "COMRESET failed (errno=%d)\n", rc);
3528 return rc;
3529 }
3530
3531 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3532
3533 *class = ata_dev_try_classify(ap, 0, NULL);
3534
3535 DPRINTK("EXIT, class=%u\n", *class);
3536 return 0;
3537 }
3538
3539 /**
3540 * ata_std_postreset - standard postreset callback
3541 * @ap: the target ata_port
3542 * @classes: classes of attached devices
3543 *
3544 * This function is invoked after a successful reset. Note that
3545 * the device might have been reset more than once using
3546 * different reset methods before postreset is invoked.
3547 *
3548 * LOCKING:
3549 * Kernel thread context (may sleep)
3550 */
3551 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3552 {
3553 u32 serror;
3554
3555 DPRINTK("ENTER\n");
3556
3557 /* print link status */
3558 sata_print_link_status(ap);
3559
3560 /* clear SError */
3561 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3562 sata_scr_write(ap, SCR_ERROR, serror);
3563
3564 /* re-enable interrupts */
3565 if (!ap->ops->error_handler)
3566 ap->ops->irq_on(ap);
3567
3568 /* is double-select really necessary? */
3569 if (classes[0] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 1);
3571 if (classes[1] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 0);
3573
3574 /* bail out if no device is present */
3575 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3576 DPRINTK("EXIT, no device\n");
3577 return;
3578 }
3579
3580 /* set up device control */
3581 if (ap->ioaddr.ctl_addr)
3582 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3583
3584 DPRINTK("EXIT\n");
3585 }
3586
3587 /**
3588 * ata_dev_same_device - Determine whether new ID matches configured device
3589 * @dev: device to compare against
3590 * @new_class: class of the new device
3591 * @new_id: IDENTIFY page of the new device
3592 *
3593 * Compare @new_class and @new_id against @dev and determine
3594 * whether @dev is the device indicated by @new_class and
3595 * @new_id.
3596 *
3597 * LOCKING:
3598 * None.
3599 *
3600 * RETURNS:
3601 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3602 */
3603 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3604 const u16 *new_id)
3605 {
3606 const u16 *old_id = dev->id;
3607 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3608 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3609 u64 new_n_sectors;
3610
3611 if (dev->class != new_class) {
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
3614 return 0;
3615 }
3616
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3621 new_n_sectors = ata_id_n_sectors(new_id);
3622
3623 if (strcmp(model[0], model[1])) {
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
3626 return 0;
3627 }
3628
3629 if (strcmp(serial[0], serial[1])) {
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
3632 return 0;
3633 }
3634
3635 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3636 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3637 "%llu != %llu\n",
3638 (unsigned long long)dev->n_sectors,
3639 (unsigned long long)new_n_sectors);
3640 /* Are we the boot time size - if so we appear to be the
3641 same disk at this point and our HPA got reapplied */
3642 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3643 && ata_id_hpa_enabled(new_id))
3644 return 1;
3645 return 0;
3646 }
3647
3648 return 1;
3649 }
3650
3651 /**
3652 * ata_dev_revalidate - Revalidate ATA device
3653 * @dev: device to revalidate
3654 * @readid_flags: read ID flags
3655 *
3656 * Re-read IDENTIFY page and make sure @dev is still attached to
3657 * the port.
3658 *
3659 * LOCKING:
3660 * Kernel thread context (may sleep)
3661 *
3662 * RETURNS:
3663 * 0 on success, negative errno otherwise
3664 */
3665 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3666 {
3667 unsigned int class = dev->class;
3668 u16 *id = (void *)dev->ap->sector_buf;
3669 int rc;
3670
3671 if (!ata_dev_enabled(dev)) {
3672 rc = -ENODEV;
3673 goto fail;
3674 }
3675
3676 /* read ID data */
3677 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3678 if (rc)
3679 goto fail;
3680
3681 /* is the device still there? */
3682 if (!ata_dev_same_device(dev, class, id)) {
3683 rc = -ENODEV;
3684 goto fail;
3685 }
3686
3687 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3688
3689 /* configure device according to the new ID */
3690 rc = ata_dev_configure(dev);
3691 if (rc == 0)
3692 return 0;
3693
3694 fail:
3695 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3696 return rc;
3697 }
3698
3699 struct ata_blacklist_entry {
3700 const char *model_num;
3701 const char *model_rev;
3702 unsigned long horkage;
3703 };
3704
3705 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3706 /* Devices with DMA related problems under Linux */
3707 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3708 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3709 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3711 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3713 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3714 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3715 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3716 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3717 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3718 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3719 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3720 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3721 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3722 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3723 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3724 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3725 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3726 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3727 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3728 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3729 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3730 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3731 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3732 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3733 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3734 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3735 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3736
3737 /* Weird ATAPI devices */
3738 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3739 ATA_HORKAGE_DMA_RW_ONLY },
3740
3741 /* Devices we expect to fail diagnostics */
3742
3743 /* Devices where NCQ should be avoided */
3744 /* NCQ is slow */
3745 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3746 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3747 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3748 /* NCQ is broken */
3749 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3750 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3751 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3752 /* Blacklist entries taken from Silicon Image 3124/3132
3753 Windows driver .inf file - also several Linux problem reports */
3754 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3755 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3756 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3757
3758 /* Devices with NCQ limits */
3759
3760 /* End Marker */
3761 { }
3762 };
3763
3764 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3765 {
3766 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3767 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3768 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3769
3770 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3771 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3772
3773 while (ad->model_num) {
3774 if (!strcmp(ad->model_num, model_num)) {
3775 if (ad->model_rev == NULL)
3776 return ad->horkage;
3777 if (!strcmp(ad->model_rev, model_rev))
3778 return ad->horkage;
3779 }
3780 ad++;
3781 }
3782 return 0;
3783 }
3784
3785 static int ata_dma_blacklisted(const struct ata_device *dev)
3786 {
3787 /* We don't support polling DMA.
3788 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3789 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3790 */
3791 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3792 (dev->flags & ATA_DFLAG_CDB_INTR))
3793 return 1;
3794 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3795 }
3796
3797 /**
3798 * ata_dev_xfermask - Compute supported xfermask of the given device
3799 * @dev: Device to compute xfermask for
3800 *
3801 * Compute supported xfermask of @dev and store it in
3802 * dev->*_mask. This function is responsible for applying all
3803 * known limits including host controller limits, device
3804 * blacklist, etc...
3805 *
3806 * LOCKING:
3807 * None.
3808 */
3809 static void ata_dev_xfermask(struct ata_device *dev)
3810 {
3811 struct ata_port *ap = dev->ap;
3812 struct ata_host *host = ap->host;
3813 unsigned long xfer_mask;
3814
3815 /* controller modes available */
3816 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3817 ap->mwdma_mask, ap->udma_mask);
3818
3819 /* drive modes available */
3820 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3821 dev->mwdma_mask, dev->udma_mask);
3822 xfer_mask &= ata_id_xfermask(dev->id);
3823
3824 /*
3825 * CFA Advanced TrueIDE timings are not allowed on a shared
3826 * cable
3827 */
3828 if (ata_dev_pair(dev)) {
3829 /* No PIO5 or PIO6 */
3830 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3831 /* No MWDMA3 or MWDMA 4 */
3832 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3833 }
3834
3835 if (ata_dma_blacklisted(dev)) {
3836 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3837 ata_dev_printk(dev, KERN_WARNING,
3838 "device is on DMA blacklist, disabling DMA\n");
3839 }
3840
3841 if ((host->flags & ATA_HOST_SIMPLEX) &&
3842 host->simplex_claimed && host->simplex_claimed != ap) {
3843 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3844 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3845 "other device, disabling DMA\n");
3846 }
3847
3848 if (ap->flags & ATA_FLAG_NO_IORDY)
3849 xfer_mask &= ata_pio_mask_no_iordy(dev);
3850
3851 if (ap->ops->mode_filter)
3852 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3853
3854 /* Apply cable rule here. Don't apply it early because when
3855 * we handle hot plug the cable type can itself change.
3856 * Check this last so that we know if the transfer rate was
3857 * solely limited by the cable.
3858 * Unknown or 80 wire cables reported host side are checked
3859 * drive side as well. Cases where we know a 40wire cable
3860 * is used safely for 80 are not checked here.
3861 */
3862 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3863 /* UDMA/44 or higher would be available */
3864 if((ap->cbl == ATA_CBL_PATA40) ||
3865 (ata_drive_40wire(dev->id) &&
3866 (ap->cbl == ATA_CBL_PATA_UNK ||
3867 ap->cbl == ATA_CBL_PATA80))) {
3868 ata_dev_printk(dev, KERN_WARNING,
3869 "limited to UDMA/33 due to 40-wire cable\n");
3870 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3871 }
3872
3873 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3874 &dev->mwdma_mask, &dev->udma_mask);
3875 }
3876
3877 /**
3878 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3879 * @dev: Device to which command will be sent
3880 *
3881 * Issue SET FEATURES - XFER MODE command to device @dev
3882 * on port @ap.
3883 *
3884 * LOCKING:
3885 * PCI/etc. bus probe sem.
3886 *
3887 * RETURNS:
3888 * 0 on success, AC_ERR_* mask otherwise.
3889 */
3890
3891 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3892 {
3893 struct ata_taskfile tf;
3894 unsigned int err_mask;
3895
3896 /* set up set-features taskfile */
3897 DPRINTK("set features - xfer mode\n");
3898
3899 ata_tf_init(dev, &tf);
3900 tf.command = ATA_CMD_SET_FEATURES;
3901 tf.feature = SETFEATURES_XFER;
3902 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3903 tf.protocol = ATA_PROT_NODATA;
3904 tf.nsect = dev->xfer_mode;
3905
3906 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3907
3908 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3909 return err_mask;
3910 }
3911
3912 /**
3913 * ata_dev_init_params - Issue INIT DEV PARAMS command
3914 * @dev: Device to which command will be sent
3915 * @heads: Number of heads (taskfile parameter)
3916 * @sectors: Number of sectors (taskfile parameter)
3917 *
3918 * LOCKING:
3919 * Kernel thread context (may sleep)
3920 *
3921 * RETURNS:
3922 * 0 on success, AC_ERR_* mask otherwise.
3923 */
3924 static unsigned int ata_dev_init_params(struct ata_device *dev,
3925 u16 heads, u16 sectors)
3926 {
3927 struct ata_taskfile tf;
3928 unsigned int err_mask;
3929
3930 /* Number of sectors per track 1-255. Number of heads 1-16 */
3931 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3932 return AC_ERR_INVALID;
3933
3934 /* set up init dev params taskfile */
3935 DPRINTK("init dev params \n");
3936
3937 ata_tf_init(dev, &tf);
3938 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3939 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3940 tf.protocol = ATA_PROT_NODATA;
3941 tf.nsect = sectors;
3942 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3943
3944 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3945
3946 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3947 return err_mask;
3948 }
3949
3950 /**
3951 * ata_sg_clean - Unmap DMA memory associated with command
3952 * @qc: Command containing DMA memory to be released
3953 *
3954 * Unmap all mapped DMA memory associated with this command.
3955 *
3956 * LOCKING:
3957 * spin_lock_irqsave(host lock)
3958 */
3959 void ata_sg_clean(struct ata_queued_cmd *qc)
3960 {
3961 struct ata_port *ap = qc->ap;
3962 struct scatterlist *sg = qc->__sg;
3963 int dir = qc->dma_dir;
3964 void *pad_buf = NULL;
3965
3966 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3967 WARN_ON(sg == NULL);
3968
3969 if (qc->flags & ATA_QCFLAG_SINGLE)
3970 WARN_ON(qc->n_elem > 1);
3971
3972 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3973
3974 /* if we padded the buffer out to 32-bit bound, and data
3975 * xfer direction is from-device, we must copy from the
3976 * pad buffer back into the supplied buffer
3977 */
3978 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3979 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3980
3981 if (qc->flags & ATA_QCFLAG_SG) {
3982 if (qc->n_elem)
3983 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3984 /* restore last sg */
3985 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3986 if (pad_buf) {
3987 struct scatterlist *psg = &qc->pad_sgent;
3988 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3989 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3990 kunmap_atomic(addr, KM_IRQ0);
3991 }
3992 } else {
3993 if (qc->n_elem)
3994 dma_unmap_single(ap->dev,
3995 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3996 dir);
3997 /* restore sg */
3998 sg->length += qc->pad_len;
3999 if (pad_buf)
4000 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4001 pad_buf, qc->pad_len);
4002 }
4003
4004 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4005 qc->__sg = NULL;
4006 }
4007
4008 /**
4009 * ata_fill_sg - Fill PCI IDE PRD table
4010 * @qc: Metadata associated with taskfile to be transferred
4011 *
4012 * Fill PCI IDE PRD (scatter-gather) table with segments
4013 * associated with the current disk command.
4014 *
4015 * LOCKING:
4016 * spin_lock_irqsave(host lock)
4017 *
4018 */
4019 static void ata_fill_sg(struct ata_queued_cmd *qc)
4020 {
4021 struct ata_port *ap = qc->ap;
4022 struct scatterlist *sg;
4023 unsigned int idx;
4024
4025 WARN_ON(qc->__sg == NULL);
4026 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4027
4028 idx = 0;
4029 ata_for_each_sg(sg, qc) {
4030 u32 addr, offset;
4031 u32 sg_len, len;
4032
4033 /* determine if physical DMA addr spans 64K boundary.
4034 * Note h/w doesn't support 64-bit, so we unconditionally
4035 * truncate dma_addr_t to u32.
4036 */
4037 addr = (u32) sg_dma_address(sg);
4038 sg_len = sg_dma_len(sg);
4039
4040 while (sg_len) {
4041 offset = addr & 0xffff;
4042 len = sg_len;
4043 if ((offset + sg_len) > 0x10000)
4044 len = 0x10000 - offset;
4045
4046 ap->prd[idx].addr = cpu_to_le32(addr);
4047 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4048 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4049
4050 idx++;
4051 sg_len -= len;
4052 addr += len;
4053 }
4054 }
4055
4056 if (idx)
4057 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4058 }
4059 /**
4060 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4061 * @qc: Metadata associated with taskfile to check
4062 *
4063 * Allow low-level driver to filter ATA PACKET commands, returning
4064 * a status indicating whether or not it is OK to use DMA for the
4065 * supplied PACKET command.
4066 *
4067 * LOCKING:
4068 * spin_lock_irqsave(host lock)
4069 *
4070 * RETURNS: 0 when ATAPI DMA can be used
4071 * nonzero otherwise
4072 */
4073 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4074 {
4075 struct ata_port *ap = qc->ap;
4076 int rc = 0; /* Assume ATAPI DMA is OK by default */
4077
4078 /* some drives can only do ATAPI DMA on read/write */
4079 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4080 struct scsi_cmnd *cmd = qc->scsicmd;
4081 u8 *scsicmd = cmd->cmnd;
4082
4083 switch (scsicmd[0]) {
4084 case READ_10:
4085 case WRITE_10:
4086 case READ_12:
4087 case WRITE_12:
4088 case READ_6:
4089 case WRITE_6:
4090 /* atapi dma maybe ok */
4091 break;
4092 default:
4093 /* turn off atapi dma */
4094 return 1;
4095 }
4096 }
4097
4098 if (ap->ops->check_atapi_dma)
4099 rc = ap->ops->check_atapi_dma(qc);
4100
4101 return rc;
4102 }
4103 /**
4104 * ata_qc_prep - Prepare taskfile for submission
4105 * @qc: Metadata associated with taskfile to be prepared
4106 *
4107 * Prepare ATA taskfile for submission.
4108 *
4109 * LOCKING:
4110 * spin_lock_irqsave(host lock)
4111 */
4112 void ata_qc_prep(struct ata_queued_cmd *qc)
4113 {
4114 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4115 return;
4116
4117 ata_fill_sg(qc);
4118 }
4119
4120 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4121
4122 /**
4123 * ata_sg_init_one - Associate command with memory buffer
4124 * @qc: Command to be associated
4125 * @buf: Memory buffer
4126 * @buflen: Length of memory buffer, in bytes.
4127 *
4128 * Initialize the data-related elements of queued_cmd @qc
4129 * to point to a single memory buffer, @buf of byte length @buflen.
4130 *
4131 * LOCKING:
4132 * spin_lock_irqsave(host lock)
4133 */
4134
4135 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4136 {
4137 qc->flags |= ATA_QCFLAG_SINGLE;
4138
4139 qc->__sg = &qc->sgent;
4140 qc->n_elem = 1;
4141 qc->orig_n_elem = 1;
4142 qc->buf_virt = buf;
4143 qc->nbytes = buflen;
4144
4145 sg_init_one(&qc->sgent, buf, buflen);
4146 }
4147
4148 /**
4149 * ata_sg_init - Associate command with scatter-gather table.
4150 * @qc: Command to be associated
4151 * @sg: Scatter-gather table.
4152 * @n_elem: Number of elements in s/g table.
4153 *
4154 * Initialize the data-related elements of queued_cmd @qc
4155 * to point to a scatter-gather table @sg, containing @n_elem
4156 * elements.
4157 *
4158 * LOCKING:
4159 * spin_lock_irqsave(host lock)
4160 */
4161
4162 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4163 unsigned int n_elem)
4164 {
4165 qc->flags |= ATA_QCFLAG_SG;
4166 qc->__sg = sg;
4167 qc->n_elem = n_elem;
4168 qc->orig_n_elem = n_elem;
4169 }
4170
4171 /**
4172 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4173 * @qc: Command with memory buffer to be mapped.
4174 *
4175 * DMA-map the memory buffer associated with queued_cmd @qc.
4176 *
4177 * LOCKING:
4178 * spin_lock_irqsave(host lock)
4179 *
4180 * RETURNS:
4181 * Zero on success, negative on error.
4182 */
4183
4184 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4185 {
4186 struct ata_port *ap = qc->ap;
4187 int dir = qc->dma_dir;
4188 struct scatterlist *sg = qc->__sg;
4189 dma_addr_t dma_address;
4190 int trim_sg = 0;
4191
4192 /* we must lengthen transfers to end on a 32-bit boundary */
4193 qc->pad_len = sg->length & 3;
4194 if (qc->pad_len) {
4195 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4196 struct scatterlist *psg = &qc->pad_sgent;
4197
4198 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4199
4200 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4201
4202 if (qc->tf.flags & ATA_TFLAG_WRITE)
4203 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4204 qc->pad_len);
4205
4206 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4207 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4208 /* trim sg */
4209 sg->length -= qc->pad_len;
4210 if (sg->length == 0)
4211 trim_sg = 1;
4212
4213 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4214 sg->length, qc->pad_len);
4215 }
4216
4217 if (trim_sg) {
4218 qc->n_elem--;
4219 goto skip_map;
4220 }
4221
4222 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4223 sg->length, dir);
4224 if (dma_mapping_error(dma_address)) {
4225 /* restore sg */
4226 sg->length += qc->pad_len;
4227 return -1;
4228 }
4229
4230 sg_dma_address(sg) = dma_address;
4231 sg_dma_len(sg) = sg->length;
4232
4233 skip_map:
4234 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4235 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4236
4237 return 0;
4238 }
4239
4240 /**
4241 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4242 * @qc: Command with scatter-gather table to be mapped.
4243 *
4244 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4245 *
4246 * LOCKING:
4247 * spin_lock_irqsave(host lock)
4248 *
4249 * RETURNS:
4250 * Zero on success, negative on error.
4251 *
4252 */
4253
4254 static int ata_sg_setup(struct ata_queued_cmd *qc)
4255 {
4256 struct ata_port *ap = qc->ap;
4257 struct scatterlist *sg = qc->__sg;
4258 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4259 int n_elem, pre_n_elem, dir, trim_sg = 0;
4260
4261 VPRINTK("ENTER, ata%u\n", ap->print_id);
4262 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4263
4264 /* we must lengthen transfers to end on a 32-bit boundary */
4265 qc->pad_len = lsg->length & 3;
4266 if (qc->pad_len) {
4267 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4268 struct scatterlist *psg = &qc->pad_sgent;
4269 unsigned int offset;
4270
4271 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4272
4273 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4274
4275 /*
4276 * psg->page/offset are used to copy to-be-written
4277 * data in this function or read data in ata_sg_clean.
4278 */
4279 offset = lsg->offset + lsg->length - qc->pad_len;
4280 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4281 psg->offset = offset_in_page(offset);
4282
4283 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4284 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4285 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4286 kunmap_atomic(addr, KM_IRQ0);
4287 }
4288
4289 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4290 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4291 /* trim last sg */
4292 lsg->length -= qc->pad_len;
4293 if (lsg->length == 0)
4294 trim_sg = 1;
4295
4296 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4297 qc->n_elem - 1, lsg->length, qc->pad_len);
4298 }
4299
4300 pre_n_elem = qc->n_elem;
4301 if (trim_sg && pre_n_elem)
4302 pre_n_elem--;
4303
4304 if (!pre_n_elem) {
4305 n_elem = 0;
4306 goto skip_map;
4307 }
4308
4309 dir = qc->dma_dir;
4310 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4311 if (n_elem < 1) {
4312 /* restore last sg */
4313 lsg->length += qc->pad_len;
4314 return -1;
4315 }
4316
4317 DPRINTK("%d sg elements mapped\n", n_elem);
4318
4319 skip_map:
4320 qc->n_elem = n_elem;
4321
4322 return 0;
4323 }
4324
4325 /**
4326 * swap_buf_le16 - swap halves of 16-bit words in place
4327 * @buf: Buffer to swap
4328 * @buf_words: Number of 16-bit words in buffer.
4329 *
4330 * Swap halves of 16-bit words if needed to convert from
4331 * little-endian byte order to native cpu byte order, or
4332 * vice-versa.
4333 *
4334 * LOCKING:
4335 * Inherited from caller.
4336 */
4337 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4338 {
4339 #ifdef __BIG_ENDIAN
4340 unsigned int i;
4341
4342 for (i = 0; i < buf_words; i++)
4343 buf[i] = le16_to_cpu(buf[i]);
4344 #endif /* __BIG_ENDIAN */
4345 }
4346
4347 /**
4348 * ata_data_xfer - Transfer data by PIO
4349 * @adev: device to target
4350 * @buf: data buffer
4351 * @buflen: buffer length
4352 * @write_data: read/write
4353 *
4354 * Transfer data from/to the device data register by PIO.
4355 *
4356 * LOCKING:
4357 * Inherited from caller.
4358 */
4359 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4360 unsigned int buflen, int write_data)
4361 {
4362 struct ata_port *ap = adev->ap;
4363 unsigned int words = buflen >> 1;
4364
4365 /* Transfer multiple of 2 bytes */
4366 if (write_data)
4367 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4368 else
4369 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4370
4371 /* Transfer trailing 1 byte, if any. */
4372 if (unlikely(buflen & 0x01)) {
4373 u16 align_buf[1] = { 0 };
4374 unsigned char *trailing_buf = buf + buflen - 1;
4375
4376 if (write_data) {
4377 memcpy(align_buf, trailing_buf, 1);
4378 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4379 } else {
4380 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4381 memcpy(trailing_buf, align_buf, 1);
4382 }
4383 }
4384 }
4385
4386 /**
4387 * ata_data_xfer_noirq - Transfer data by PIO
4388 * @adev: device to target
4389 * @buf: data buffer
4390 * @buflen: buffer length
4391 * @write_data: read/write
4392 *
4393 * Transfer data from/to the device data register by PIO. Do the
4394 * transfer with interrupts disabled.
4395 *
4396 * LOCKING:
4397 * Inherited from caller.
4398 */
4399 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4400 unsigned int buflen, int write_data)
4401 {
4402 unsigned long flags;
4403 local_irq_save(flags);
4404 ata_data_xfer(adev, buf, buflen, write_data);
4405 local_irq_restore(flags);
4406 }
4407
4408
4409 /**
4410 * ata_pio_sector - Transfer a sector of data.
4411 * @qc: Command on going
4412 *
4413 * Transfer qc->sect_size bytes of data from/to the ATA device.
4414 *
4415 * LOCKING:
4416 * Inherited from caller.
4417 */
4418
4419 static void ata_pio_sector(struct ata_queued_cmd *qc)
4420 {
4421 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4422 struct scatterlist *sg = qc->__sg;
4423 struct ata_port *ap = qc->ap;
4424 struct page *page;
4425 unsigned int offset;
4426 unsigned char *buf;
4427
4428 if (qc->curbytes == qc->nbytes - qc->sect_size)
4429 ap->hsm_task_state = HSM_ST_LAST;
4430
4431 page = sg[qc->cursg].page;
4432 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4433
4434 /* get the current page and offset */
4435 page = nth_page(page, (offset >> PAGE_SHIFT));
4436 offset %= PAGE_SIZE;
4437
4438 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4439
4440 if (PageHighMem(page)) {
4441 unsigned long flags;
4442
4443 /* FIXME: use a bounce buffer */
4444 local_irq_save(flags);
4445 buf = kmap_atomic(page, KM_IRQ0);
4446
4447 /* do the actual data transfer */
4448 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4449
4450 kunmap_atomic(buf, KM_IRQ0);
4451 local_irq_restore(flags);
4452 } else {
4453 buf = page_address(page);
4454 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4455 }
4456
4457 qc->curbytes += qc->sect_size;
4458 qc->cursg_ofs += qc->sect_size;
4459
4460 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4461 qc->cursg++;
4462 qc->cursg_ofs = 0;
4463 }
4464 }
4465
4466 /**
4467 * ata_pio_sectors - Transfer one or many sectors.
4468 * @qc: Command on going
4469 *
4470 * Transfer one or many sectors of data from/to the
4471 * ATA device for the DRQ request.
4472 *
4473 * LOCKING:
4474 * Inherited from caller.
4475 */
4476
4477 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4478 {
4479 if (is_multi_taskfile(&qc->tf)) {
4480 /* READ/WRITE MULTIPLE */
4481 unsigned int nsect;
4482
4483 WARN_ON(qc->dev->multi_count == 0);
4484
4485 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4486 qc->dev->multi_count);
4487 while (nsect--)
4488 ata_pio_sector(qc);
4489 } else
4490 ata_pio_sector(qc);
4491 }
4492
4493 /**
4494 * atapi_send_cdb - Write CDB bytes to hardware
4495 * @ap: Port to which ATAPI device is attached.
4496 * @qc: Taskfile currently active
4497 *
4498 * When device has indicated its readiness to accept
4499 * a CDB, this function is called. Send the CDB.
4500 *
4501 * LOCKING:
4502 * caller.
4503 */
4504
4505 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4506 {
4507 /* send SCSI cdb */
4508 DPRINTK("send cdb\n");
4509 WARN_ON(qc->dev->cdb_len < 12);
4510
4511 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4512 ata_altstatus(ap); /* flush */
4513
4514 switch (qc->tf.protocol) {
4515 case ATA_PROT_ATAPI:
4516 ap->hsm_task_state = HSM_ST;
4517 break;
4518 case ATA_PROT_ATAPI_NODATA:
4519 ap->hsm_task_state = HSM_ST_LAST;
4520 break;
4521 case ATA_PROT_ATAPI_DMA:
4522 ap->hsm_task_state = HSM_ST_LAST;
4523 /* initiate bmdma */
4524 ap->ops->bmdma_start(qc);
4525 break;
4526 }
4527 }
4528
4529 /**
4530 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4531 * @qc: Command on going
4532 * @bytes: number of bytes
4533 *
4534 * Transfer Transfer data from/to the ATAPI device.
4535 *
4536 * LOCKING:
4537 * Inherited from caller.
4538 *
4539 */
4540
4541 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4542 {
4543 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4544 struct scatterlist *sg = qc->__sg;
4545 struct ata_port *ap = qc->ap;
4546 struct page *page;
4547 unsigned char *buf;
4548 unsigned int offset, count;
4549
4550 if (qc->curbytes + bytes >= qc->nbytes)
4551 ap->hsm_task_state = HSM_ST_LAST;
4552
4553 next_sg:
4554 if (unlikely(qc->cursg >= qc->n_elem)) {
4555 /*
4556 * The end of qc->sg is reached and the device expects
4557 * more data to transfer. In order not to overrun qc->sg
4558 * and fulfill length specified in the byte count register,
4559 * - for read case, discard trailing data from the device
4560 * - for write case, padding zero data to the device
4561 */
4562 u16 pad_buf[1] = { 0 };
4563 unsigned int words = bytes >> 1;
4564 unsigned int i;
4565
4566 if (words) /* warning if bytes > 1 */
4567 ata_dev_printk(qc->dev, KERN_WARNING,
4568 "%u bytes trailing data\n", bytes);
4569
4570 for (i = 0; i < words; i++)
4571 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4572
4573 ap->hsm_task_state = HSM_ST_LAST;
4574 return;
4575 }
4576
4577 sg = &qc->__sg[qc->cursg];
4578
4579 page = sg->page;
4580 offset = sg->offset + qc->cursg_ofs;
4581
4582 /* get the current page and offset */
4583 page = nth_page(page, (offset >> PAGE_SHIFT));
4584 offset %= PAGE_SIZE;
4585
4586 /* don't overrun current sg */
4587 count = min(sg->length - qc->cursg_ofs, bytes);
4588
4589 /* don't cross page boundaries */
4590 count = min(count, (unsigned int)PAGE_SIZE - offset);
4591
4592 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4593
4594 if (PageHighMem(page)) {
4595 unsigned long flags;
4596
4597 /* FIXME: use bounce buffer */
4598 local_irq_save(flags);
4599 buf = kmap_atomic(page, KM_IRQ0);
4600
4601 /* do the actual data transfer */
4602 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4603
4604 kunmap_atomic(buf, KM_IRQ0);
4605 local_irq_restore(flags);
4606 } else {
4607 buf = page_address(page);
4608 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4609 }
4610
4611 bytes -= count;
4612 qc->curbytes += count;
4613 qc->cursg_ofs += count;
4614
4615 if (qc->cursg_ofs == sg->length) {
4616 qc->cursg++;
4617 qc->cursg_ofs = 0;
4618 }
4619
4620 if (bytes)
4621 goto next_sg;
4622 }
4623
4624 /**
4625 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4626 * @qc: Command on going
4627 *
4628 * Transfer Transfer data from/to the ATAPI device.
4629 *
4630 * LOCKING:
4631 * Inherited from caller.
4632 */
4633
4634 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4635 {
4636 struct ata_port *ap = qc->ap;
4637 struct ata_device *dev = qc->dev;
4638 unsigned int ireason, bc_lo, bc_hi, bytes;
4639 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4640
4641 /* Abuse qc->result_tf for temp storage of intermediate TF
4642 * here to save some kernel stack usage.
4643 * For normal completion, qc->result_tf is not relevant. For
4644 * error, qc->result_tf is later overwritten by ata_qc_complete().
4645 * So, the correctness of qc->result_tf is not affected.
4646 */
4647 ap->ops->tf_read(ap, &qc->result_tf);
4648 ireason = qc->result_tf.nsect;
4649 bc_lo = qc->result_tf.lbam;
4650 bc_hi = qc->result_tf.lbah;
4651 bytes = (bc_hi << 8) | bc_lo;
4652
4653 /* shall be cleared to zero, indicating xfer of data */
4654 if (ireason & (1 << 0))
4655 goto err_out;
4656
4657 /* make sure transfer direction matches expected */
4658 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4659 if (do_write != i_write)
4660 goto err_out;
4661
4662 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4663
4664 __atapi_pio_bytes(qc, bytes);
4665
4666 return;
4667
4668 err_out:
4669 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4670 qc->err_mask |= AC_ERR_HSM;
4671 ap->hsm_task_state = HSM_ST_ERR;
4672 }
4673
4674 /**
4675 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4676 * @ap: the target ata_port
4677 * @qc: qc on going
4678 *
4679 * RETURNS:
4680 * 1 if ok in workqueue, 0 otherwise.
4681 */
4682
4683 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4684 {
4685 if (qc->tf.flags & ATA_TFLAG_POLLING)
4686 return 1;
4687
4688 if (ap->hsm_task_state == HSM_ST_FIRST) {
4689 if (qc->tf.protocol == ATA_PROT_PIO &&
4690 (qc->tf.flags & ATA_TFLAG_WRITE))
4691 return 1;
4692
4693 if (is_atapi_taskfile(&qc->tf) &&
4694 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4695 return 1;
4696 }
4697
4698 return 0;
4699 }
4700
4701 /**
4702 * ata_hsm_qc_complete - finish a qc running on standard HSM
4703 * @qc: Command to complete
4704 * @in_wq: 1 if called from workqueue, 0 otherwise
4705 *
4706 * Finish @qc which is running on standard HSM.
4707 *
4708 * LOCKING:
4709 * If @in_wq is zero, spin_lock_irqsave(host lock).
4710 * Otherwise, none on entry and grabs host lock.
4711 */
4712 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4713 {
4714 struct ata_port *ap = qc->ap;
4715 unsigned long flags;
4716
4717 if (ap->ops->error_handler) {
4718 if (in_wq) {
4719 spin_lock_irqsave(ap->lock, flags);
4720
4721 /* EH might have kicked in while host lock is
4722 * released.
4723 */
4724 qc = ata_qc_from_tag(ap, qc->tag);
4725 if (qc) {
4726 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4727 ap->ops->irq_on(ap);
4728 ata_qc_complete(qc);
4729 } else
4730 ata_port_freeze(ap);
4731 }
4732
4733 spin_unlock_irqrestore(ap->lock, flags);
4734 } else {
4735 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4736 ata_qc_complete(qc);
4737 else
4738 ata_port_freeze(ap);
4739 }
4740 } else {
4741 if (in_wq) {
4742 spin_lock_irqsave(ap->lock, flags);
4743 ap->ops->irq_on(ap);
4744 ata_qc_complete(qc);
4745 spin_unlock_irqrestore(ap->lock, flags);
4746 } else
4747 ata_qc_complete(qc);
4748 }
4749
4750 ata_altstatus(ap); /* flush */
4751 }
4752
4753 /**
4754 * ata_hsm_move - move the HSM to the next state.
4755 * @ap: the target ata_port
4756 * @qc: qc on going
4757 * @status: current device status
4758 * @in_wq: 1 if called from workqueue, 0 otherwise
4759 *
4760 * RETURNS:
4761 * 1 when poll next status needed, 0 otherwise.
4762 */
4763 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4764 u8 status, int in_wq)
4765 {
4766 unsigned long flags = 0;
4767 int poll_next;
4768
4769 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4770
4771 /* Make sure ata_qc_issue_prot() does not throw things
4772 * like DMA polling into the workqueue. Notice that
4773 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4774 */
4775 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4776
4777 fsm_start:
4778 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4779 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4780
4781 switch (ap->hsm_task_state) {
4782 case HSM_ST_FIRST:
4783 /* Send first data block or PACKET CDB */
4784
4785 /* If polling, we will stay in the work queue after
4786 * sending the data. Otherwise, interrupt handler
4787 * takes over after sending the data.
4788 */
4789 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4790
4791 /* check device status */
4792 if (unlikely((status & ATA_DRQ) == 0)) {
4793 /* handle BSY=0, DRQ=0 as error */
4794 if (likely(status & (ATA_ERR | ATA_DF)))
4795 /* device stops HSM for abort/error */
4796 qc->err_mask |= AC_ERR_DEV;
4797 else
4798 /* HSM violation. Let EH handle this */
4799 qc->err_mask |= AC_ERR_HSM;
4800
4801 ap->hsm_task_state = HSM_ST_ERR;
4802 goto fsm_start;
4803 }
4804
4805 /* Device should not ask for data transfer (DRQ=1)
4806 * when it finds something wrong.
4807 * We ignore DRQ here and stop the HSM by
4808 * changing hsm_task_state to HSM_ST_ERR and
4809 * let the EH abort the command or reset the device.
4810 */
4811 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4812 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4813 "error, dev_stat 0x%X\n", status);
4814 qc->err_mask |= AC_ERR_HSM;
4815 ap->hsm_task_state = HSM_ST_ERR;
4816 goto fsm_start;
4817 }
4818
4819 /* Send the CDB (atapi) or the first data block (ata pio out).
4820 * During the state transition, interrupt handler shouldn't
4821 * be invoked before the data transfer is complete and
4822 * hsm_task_state is changed. Hence, the following locking.
4823 */
4824 if (in_wq)
4825 spin_lock_irqsave(ap->lock, flags);
4826
4827 if (qc->tf.protocol == ATA_PROT_PIO) {
4828 /* PIO data out protocol.
4829 * send first data block.
4830 */
4831
4832 /* ata_pio_sectors() might change the state
4833 * to HSM_ST_LAST. so, the state is changed here
4834 * before ata_pio_sectors().
4835 */
4836 ap->hsm_task_state = HSM_ST;
4837 ata_pio_sectors(qc);
4838 ata_altstatus(ap); /* flush */
4839 } else
4840 /* send CDB */
4841 atapi_send_cdb(ap, qc);
4842
4843 if (in_wq)
4844 spin_unlock_irqrestore(ap->lock, flags);
4845
4846 /* if polling, ata_pio_task() handles the rest.
4847 * otherwise, interrupt handler takes over from here.
4848 */
4849 break;
4850
4851 case HSM_ST:
4852 /* complete command or read/write the data register */
4853 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4854 /* ATAPI PIO protocol */
4855 if ((status & ATA_DRQ) == 0) {
4856 /* No more data to transfer or device error.
4857 * Device error will be tagged in HSM_ST_LAST.
4858 */
4859 ap->hsm_task_state = HSM_ST_LAST;
4860 goto fsm_start;
4861 }
4862
4863 /* Device should not ask for data transfer (DRQ=1)
4864 * when it finds something wrong.
4865 * We ignore DRQ here and stop the HSM by
4866 * changing hsm_task_state to HSM_ST_ERR and
4867 * let the EH abort the command or reset the device.
4868 */
4869 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4870 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4871 "device error, dev_stat 0x%X\n",
4872 status);
4873 qc->err_mask |= AC_ERR_HSM;
4874 ap->hsm_task_state = HSM_ST_ERR;
4875 goto fsm_start;
4876 }
4877
4878 atapi_pio_bytes(qc);
4879
4880 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4881 /* bad ireason reported by device */
4882 goto fsm_start;
4883
4884 } else {
4885 /* ATA PIO protocol */
4886 if (unlikely((status & ATA_DRQ) == 0)) {
4887 /* handle BSY=0, DRQ=0 as error */
4888 if (likely(status & (ATA_ERR | ATA_DF)))
4889 /* device stops HSM for abort/error */
4890 qc->err_mask |= AC_ERR_DEV;
4891 else
4892 /* HSM violation. Let EH handle this.
4893 * Phantom devices also trigger this
4894 * condition. Mark hint.
4895 */
4896 qc->err_mask |= AC_ERR_HSM |
4897 AC_ERR_NODEV_HINT;
4898
4899 ap->hsm_task_state = HSM_ST_ERR;
4900 goto fsm_start;
4901 }
4902
4903 /* For PIO reads, some devices may ask for
4904 * data transfer (DRQ=1) alone with ERR=1.
4905 * We respect DRQ here and transfer one
4906 * block of junk data before changing the
4907 * hsm_task_state to HSM_ST_ERR.
4908 *
4909 * For PIO writes, ERR=1 DRQ=1 doesn't make
4910 * sense since the data block has been
4911 * transferred to the device.
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4914 /* data might be corrputed */
4915 qc->err_mask |= AC_ERR_DEV;
4916
4917 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4918 ata_pio_sectors(qc);
4919 ata_altstatus(ap);
4920 status = ata_wait_idle(ap);
4921 }
4922
4923 if (status & (ATA_BUSY | ATA_DRQ))
4924 qc->err_mask |= AC_ERR_HSM;
4925
4926 /* ata_pio_sectors() might change the
4927 * state to HSM_ST_LAST. so, the state
4928 * is changed after ata_pio_sectors().
4929 */
4930 ap->hsm_task_state = HSM_ST_ERR;
4931 goto fsm_start;
4932 }
4933
4934 ata_pio_sectors(qc);
4935
4936 if (ap->hsm_task_state == HSM_ST_LAST &&
4937 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4938 /* all data read */
4939 ata_altstatus(ap);
4940 status = ata_wait_idle(ap);
4941 goto fsm_start;
4942 }
4943 }
4944
4945 ata_altstatus(ap); /* flush */
4946 poll_next = 1;
4947 break;
4948
4949 case HSM_ST_LAST:
4950 if (unlikely(!ata_ok(status))) {
4951 qc->err_mask |= __ac_err_mask(status);
4952 ap->hsm_task_state = HSM_ST_ERR;
4953 goto fsm_start;
4954 }
4955
4956 /* no more data to transfer */
4957 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4958 ap->print_id, qc->dev->devno, status);
4959
4960 WARN_ON(qc->err_mask);
4961
4962 ap->hsm_task_state = HSM_ST_IDLE;
4963
4964 /* complete taskfile transaction */
4965 ata_hsm_qc_complete(qc, in_wq);
4966
4967 poll_next = 0;
4968 break;
4969
4970 case HSM_ST_ERR:
4971 /* make sure qc->err_mask is available to
4972 * know what's wrong and recover
4973 */
4974 WARN_ON(qc->err_mask == 0);
4975
4976 ap->hsm_task_state = HSM_ST_IDLE;
4977
4978 /* complete taskfile transaction */
4979 ata_hsm_qc_complete(qc, in_wq);
4980
4981 poll_next = 0;
4982 break;
4983 default:
4984 poll_next = 0;
4985 BUG();
4986 }
4987
4988 return poll_next;
4989 }
4990
4991 static void ata_pio_task(struct work_struct *work)
4992 {
4993 struct ata_port *ap =
4994 container_of(work, struct ata_port, port_task.work);
4995 struct ata_queued_cmd *qc = ap->port_task_data;
4996 u8 status;
4997 int poll_next;
4998
4999 fsm_start:
5000 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5001
5002 /*
5003 * This is purely heuristic. This is a fast path.
5004 * Sometimes when we enter, BSY will be cleared in
5005 * a chk-status or two. If not, the drive is probably seeking
5006 * or something. Snooze for a couple msecs, then
5007 * chk-status again. If still busy, queue delayed work.
5008 */
5009 status = ata_busy_wait(ap, ATA_BUSY, 5);
5010 if (status & ATA_BUSY) {
5011 msleep(2);
5012 status = ata_busy_wait(ap, ATA_BUSY, 10);
5013 if (status & ATA_BUSY) {
5014 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5015 return;
5016 }
5017 }
5018
5019 /* move the HSM */
5020 poll_next = ata_hsm_move(ap, qc, status, 1);
5021
5022 /* another command or interrupt handler
5023 * may be running at this point.
5024 */
5025 if (poll_next)
5026 goto fsm_start;
5027 }
5028
5029 /**
5030 * ata_qc_new - Request an available ATA command, for queueing
5031 * @ap: Port associated with device @dev
5032 * @dev: Device from whom we request an available command structure
5033 *
5034 * LOCKING:
5035 * None.
5036 */
5037
5038 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5039 {
5040 struct ata_queued_cmd *qc = NULL;
5041 unsigned int i;
5042
5043 /* no command while frozen */
5044 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5045 return NULL;
5046
5047 /* the last tag is reserved for internal command. */
5048 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5049 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5050 qc = __ata_qc_from_tag(ap, i);
5051 break;
5052 }
5053
5054 if (qc)
5055 qc->tag = i;
5056
5057 return qc;
5058 }
5059
5060 /**
5061 * ata_qc_new_init - Request an available ATA command, and initialize it
5062 * @dev: Device from whom we request an available command structure
5063 *
5064 * LOCKING:
5065 * None.
5066 */
5067
5068 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5069 {
5070 struct ata_port *ap = dev->ap;
5071 struct ata_queued_cmd *qc;
5072
5073 qc = ata_qc_new(ap);
5074 if (qc) {
5075 qc->scsicmd = NULL;
5076 qc->ap = ap;
5077 qc->dev = dev;
5078
5079 ata_qc_reinit(qc);
5080 }
5081
5082 return qc;
5083 }
5084
5085 /**
5086 * ata_qc_free - free unused ata_queued_cmd
5087 * @qc: Command to complete
5088 *
5089 * Designed to free unused ata_queued_cmd object
5090 * in case something prevents using it.
5091 *
5092 * LOCKING:
5093 * spin_lock_irqsave(host lock)
5094 */
5095 void ata_qc_free(struct ata_queued_cmd *qc)
5096 {
5097 struct ata_port *ap = qc->ap;
5098 unsigned int tag;
5099
5100 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5101
5102 qc->flags = 0;
5103 tag = qc->tag;
5104 if (likely(ata_tag_valid(tag))) {
5105 qc->tag = ATA_TAG_POISON;
5106 clear_bit(tag, &ap->qc_allocated);
5107 }
5108 }
5109
5110 void __ata_qc_complete(struct ata_queued_cmd *qc)
5111 {
5112 struct ata_port *ap = qc->ap;
5113
5114 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5115 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5116
5117 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5118 ata_sg_clean(qc);
5119
5120 /* command should be marked inactive atomically with qc completion */
5121 if (qc->tf.protocol == ATA_PROT_NCQ)
5122 ap->sactive &= ~(1 << qc->tag);
5123 else
5124 ap->active_tag = ATA_TAG_POISON;
5125
5126 /* atapi: mark qc as inactive to prevent the interrupt handler
5127 * from completing the command twice later, before the error handler
5128 * is called. (when rc != 0 and atapi request sense is needed)
5129 */
5130 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5131 ap->qc_active &= ~(1 << qc->tag);
5132
5133 /* call completion callback */
5134 qc->complete_fn(qc);
5135 }
5136
5137 static void fill_result_tf(struct ata_queued_cmd *qc)
5138 {
5139 struct ata_port *ap = qc->ap;
5140
5141 qc->result_tf.flags = qc->tf.flags;
5142 ap->ops->tf_read(ap, &qc->result_tf);
5143 }
5144
5145 /**
5146 * ata_qc_complete - Complete an active ATA command
5147 * @qc: Command to complete
5148 * @err_mask: ATA Status register contents
5149 *
5150 * Indicate to the mid and upper layers that an ATA
5151 * command has completed, with either an ok or not-ok status.
5152 *
5153 * LOCKING:
5154 * spin_lock_irqsave(host lock)
5155 */
5156 void ata_qc_complete(struct ata_queued_cmd *qc)
5157 {
5158 struct ata_port *ap = qc->ap;
5159
5160 /* XXX: New EH and old EH use different mechanisms to
5161 * synchronize EH with regular execution path.
5162 *
5163 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5164 * Normal execution path is responsible for not accessing a
5165 * failed qc. libata core enforces the rule by returning NULL
5166 * from ata_qc_from_tag() for failed qcs.
5167 *
5168 * Old EH depends on ata_qc_complete() nullifying completion
5169 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5170 * not synchronize with interrupt handler. Only PIO task is
5171 * taken care of.
5172 */
5173 if (ap->ops->error_handler) {
5174 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5175
5176 if (unlikely(qc->err_mask))
5177 qc->flags |= ATA_QCFLAG_FAILED;
5178
5179 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5180 if (!ata_tag_internal(qc->tag)) {
5181 /* always fill result TF for failed qc */
5182 fill_result_tf(qc);
5183 ata_qc_schedule_eh(qc);
5184 return;
5185 }
5186 }
5187
5188 /* read result TF if requested */
5189 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5190 fill_result_tf(qc);
5191
5192 __ata_qc_complete(qc);
5193 } else {
5194 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5195 return;
5196
5197 /* read result TF if failed or requested */
5198 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5199 fill_result_tf(qc);
5200
5201 __ata_qc_complete(qc);
5202 }
5203 }
5204
5205 /**
5206 * ata_qc_complete_multiple - Complete multiple qcs successfully
5207 * @ap: port in question
5208 * @qc_active: new qc_active mask
5209 * @finish_qc: LLDD callback invoked before completing a qc
5210 *
5211 * Complete in-flight commands. This functions is meant to be
5212 * called from low-level driver's interrupt routine to complete
5213 * requests normally. ap->qc_active and @qc_active is compared
5214 * and commands are completed accordingly.
5215 *
5216 * LOCKING:
5217 * spin_lock_irqsave(host lock)
5218 *
5219 * RETURNS:
5220 * Number of completed commands on success, -errno otherwise.
5221 */
5222 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5223 void (*finish_qc)(struct ata_queued_cmd *))
5224 {
5225 int nr_done = 0;
5226 u32 done_mask;
5227 int i;
5228
5229 done_mask = ap->qc_active ^ qc_active;
5230
5231 if (unlikely(done_mask & qc_active)) {
5232 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5233 "(%08x->%08x)\n", ap->qc_active, qc_active);
5234 return -EINVAL;
5235 }
5236
5237 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5238 struct ata_queued_cmd *qc;
5239
5240 if (!(done_mask & (1 << i)))
5241 continue;
5242
5243 if ((qc = ata_qc_from_tag(ap, i))) {
5244 if (finish_qc)
5245 finish_qc(qc);
5246 ata_qc_complete(qc);
5247 nr_done++;
5248 }
5249 }
5250
5251 return nr_done;
5252 }
5253
5254 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5255 {
5256 struct ata_port *ap = qc->ap;
5257
5258 switch (qc->tf.protocol) {
5259 case ATA_PROT_NCQ:
5260 case ATA_PROT_DMA:
5261 case ATA_PROT_ATAPI_DMA:
5262 return 1;
5263
5264 case ATA_PROT_ATAPI:
5265 case ATA_PROT_PIO:
5266 if (ap->flags & ATA_FLAG_PIO_DMA)
5267 return 1;
5268
5269 /* fall through */
5270
5271 default:
5272 return 0;
5273 }
5274
5275 /* never reached */
5276 }
5277
5278 /**
5279 * ata_qc_issue - issue taskfile to device
5280 * @qc: command to issue to device
5281 *
5282 * Prepare an ATA command to submission to device.
5283 * This includes mapping the data into a DMA-able
5284 * area, filling in the S/G table, and finally
5285 * writing the taskfile to hardware, starting the command.
5286 *
5287 * LOCKING:
5288 * spin_lock_irqsave(host lock)
5289 */
5290 void ata_qc_issue(struct ata_queued_cmd *qc)
5291 {
5292 struct ata_port *ap = qc->ap;
5293
5294 /* Make sure only one non-NCQ command is outstanding. The
5295 * check is skipped for old EH because it reuses active qc to
5296 * request ATAPI sense.
5297 */
5298 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5299
5300 if (qc->tf.protocol == ATA_PROT_NCQ) {
5301 WARN_ON(ap->sactive & (1 << qc->tag));
5302 ap->sactive |= 1 << qc->tag;
5303 } else {
5304 WARN_ON(ap->sactive);
5305 ap->active_tag = qc->tag;
5306 }
5307
5308 qc->flags |= ATA_QCFLAG_ACTIVE;
5309 ap->qc_active |= 1 << qc->tag;
5310
5311 if (ata_should_dma_map(qc)) {
5312 if (qc->flags & ATA_QCFLAG_SG) {
5313 if (ata_sg_setup(qc))
5314 goto sg_err;
5315 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5316 if (ata_sg_setup_one(qc))
5317 goto sg_err;
5318 }
5319 } else {
5320 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5321 }
5322
5323 ap->ops->qc_prep(qc);
5324
5325 qc->err_mask |= ap->ops->qc_issue(qc);
5326 if (unlikely(qc->err_mask))
5327 goto err;
5328 return;
5329
5330 sg_err:
5331 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5332 qc->err_mask |= AC_ERR_SYSTEM;
5333 err:
5334 ata_qc_complete(qc);
5335 }
5336
5337 /**
5338 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5339 * @qc: command to issue to device
5340 *
5341 * Using various libata functions and hooks, this function
5342 * starts an ATA command. ATA commands are grouped into
5343 * classes called "protocols", and issuing each type of protocol
5344 * is slightly different.
5345 *
5346 * May be used as the qc_issue() entry in ata_port_operations.
5347 *
5348 * LOCKING:
5349 * spin_lock_irqsave(host lock)
5350 *
5351 * RETURNS:
5352 * Zero on success, AC_ERR_* mask on failure
5353 */
5354
5355 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5356 {
5357 struct ata_port *ap = qc->ap;
5358
5359 /* Use polling pio if the LLD doesn't handle
5360 * interrupt driven pio and atapi CDB interrupt.
5361 */
5362 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5363 switch (qc->tf.protocol) {
5364 case ATA_PROT_PIO:
5365 case ATA_PROT_NODATA:
5366 case ATA_PROT_ATAPI:
5367 case ATA_PROT_ATAPI_NODATA:
5368 qc->tf.flags |= ATA_TFLAG_POLLING;
5369 break;
5370 case ATA_PROT_ATAPI_DMA:
5371 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5372 /* see ata_dma_blacklisted() */
5373 BUG();
5374 break;
5375 default:
5376 break;
5377 }
5378 }
5379
5380 /* Some controllers show flaky interrupt behavior after
5381 * setting xfer mode. Use polling instead.
5382 */
5383 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5384 qc->tf.feature == SETFEATURES_XFER) &&
5385 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5386 qc->tf.flags |= ATA_TFLAG_POLLING;
5387
5388 /* select the device */
5389 ata_dev_select(ap, qc->dev->devno, 1, 0);
5390
5391 /* start the command */
5392 switch (qc->tf.protocol) {
5393 case ATA_PROT_NODATA:
5394 if (qc->tf.flags & ATA_TFLAG_POLLING)
5395 ata_qc_set_polling(qc);
5396
5397 ata_tf_to_host(ap, &qc->tf);
5398 ap->hsm_task_state = HSM_ST_LAST;
5399
5400 if (qc->tf.flags & ATA_TFLAG_POLLING)
5401 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5402
5403 break;
5404
5405 case ATA_PROT_DMA:
5406 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5407
5408 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5409 ap->ops->bmdma_setup(qc); /* set up bmdma */
5410 ap->ops->bmdma_start(qc); /* initiate bmdma */
5411 ap->hsm_task_state = HSM_ST_LAST;
5412 break;
5413
5414 case ATA_PROT_PIO:
5415 if (qc->tf.flags & ATA_TFLAG_POLLING)
5416 ata_qc_set_polling(qc);
5417
5418 ata_tf_to_host(ap, &qc->tf);
5419
5420 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5421 /* PIO data out protocol */
5422 ap->hsm_task_state = HSM_ST_FIRST;
5423 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5424
5425 /* always send first data block using
5426 * the ata_pio_task() codepath.
5427 */
5428 } else {
5429 /* PIO data in protocol */
5430 ap->hsm_task_state = HSM_ST;
5431
5432 if (qc->tf.flags & ATA_TFLAG_POLLING)
5433 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5434
5435 /* if polling, ata_pio_task() handles the rest.
5436 * otherwise, interrupt handler takes over from here.
5437 */
5438 }
5439
5440 break;
5441
5442 case ATA_PROT_ATAPI:
5443 case ATA_PROT_ATAPI_NODATA:
5444 if (qc->tf.flags & ATA_TFLAG_POLLING)
5445 ata_qc_set_polling(qc);
5446
5447 ata_tf_to_host(ap, &qc->tf);
5448
5449 ap->hsm_task_state = HSM_ST_FIRST;
5450
5451 /* send cdb by polling if no cdb interrupt */
5452 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5453 (qc->tf.flags & ATA_TFLAG_POLLING))
5454 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5455 break;
5456
5457 case ATA_PROT_ATAPI_DMA:
5458 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5459
5460 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5461 ap->ops->bmdma_setup(qc); /* set up bmdma */
5462 ap->hsm_task_state = HSM_ST_FIRST;
5463
5464 /* send cdb by polling if no cdb interrupt */
5465 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5466 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5467 break;
5468
5469 default:
5470 WARN_ON(1);
5471 return AC_ERR_SYSTEM;
5472 }
5473
5474 return 0;
5475 }
5476
5477 /**
5478 * ata_host_intr - Handle host interrupt for given (port, task)
5479 * @ap: Port on which interrupt arrived (possibly...)
5480 * @qc: Taskfile currently active in engine
5481 *
5482 * Handle host interrupt for given queued command. Currently,
5483 * only DMA interrupts are handled. All other commands are
5484 * handled via polling with interrupts disabled (nIEN bit).
5485 *
5486 * LOCKING:
5487 * spin_lock_irqsave(host lock)
5488 *
5489 * RETURNS:
5490 * One if interrupt was handled, zero if not (shared irq).
5491 */
5492
5493 inline unsigned int ata_host_intr (struct ata_port *ap,
5494 struct ata_queued_cmd *qc)
5495 {
5496 struct ata_eh_info *ehi = &ap->eh_info;
5497 u8 status, host_stat = 0;
5498
5499 VPRINTK("ata%u: protocol %d task_state %d\n",
5500 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5501
5502 /* Check whether we are expecting interrupt in this state */
5503 switch (ap->hsm_task_state) {
5504 case HSM_ST_FIRST:
5505 /* Some pre-ATAPI-4 devices assert INTRQ
5506 * at this state when ready to receive CDB.
5507 */
5508
5509 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5510 * The flag was turned on only for atapi devices.
5511 * No need to check is_atapi_taskfile(&qc->tf) again.
5512 */
5513 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5514 goto idle_irq;
5515 break;
5516 case HSM_ST_LAST:
5517 if (qc->tf.protocol == ATA_PROT_DMA ||
5518 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5519 /* check status of DMA engine */
5520 host_stat = ap->ops->bmdma_status(ap);
5521 VPRINTK("ata%u: host_stat 0x%X\n",
5522 ap->print_id, host_stat);
5523
5524 /* if it's not our irq... */
5525 if (!(host_stat & ATA_DMA_INTR))
5526 goto idle_irq;
5527
5528 /* before we do anything else, clear DMA-Start bit */
5529 ap->ops->bmdma_stop(qc);
5530
5531 if (unlikely(host_stat & ATA_DMA_ERR)) {
5532 /* error when transfering data to/from memory */
5533 qc->err_mask |= AC_ERR_HOST_BUS;
5534 ap->hsm_task_state = HSM_ST_ERR;
5535 }
5536 }
5537 break;
5538 case HSM_ST:
5539 break;
5540 default:
5541 goto idle_irq;
5542 }
5543
5544 /* check altstatus */
5545 status = ata_altstatus(ap);
5546 if (status & ATA_BUSY)
5547 goto idle_irq;
5548
5549 /* check main status, clearing INTRQ */
5550 status = ata_chk_status(ap);
5551 if (unlikely(status & ATA_BUSY))
5552 goto idle_irq;
5553
5554 /* ack bmdma irq events */
5555 ap->ops->irq_clear(ap);
5556
5557 ata_hsm_move(ap, qc, status, 0);
5558
5559 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5560 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5561 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5562
5563 return 1; /* irq handled */
5564
5565 idle_irq:
5566 ap->stats.idle_irq++;
5567
5568 #ifdef ATA_IRQ_TRAP
5569 if ((ap->stats.idle_irq % 1000) == 0) {
5570 ap->ops->irq_ack(ap, 0); /* debug trap */
5571 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5572 return 1;
5573 }
5574 #endif
5575 return 0; /* irq not handled */
5576 }
5577
5578 /**
5579 * ata_interrupt - Default ATA host interrupt handler
5580 * @irq: irq line (unused)
5581 * @dev_instance: pointer to our ata_host information structure
5582 *
5583 * Default interrupt handler for PCI IDE devices. Calls
5584 * ata_host_intr() for each port that is not disabled.
5585 *
5586 * LOCKING:
5587 * Obtains host lock during operation.
5588 *
5589 * RETURNS:
5590 * IRQ_NONE or IRQ_HANDLED.
5591 */
5592
5593 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5594 {
5595 struct ata_host *host = dev_instance;
5596 unsigned int i;
5597 unsigned int handled = 0;
5598 unsigned long flags;
5599
5600 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5601 spin_lock_irqsave(&host->lock, flags);
5602
5603 for (i = 0; i < host->n_ports; i++) {
5604 struct ata_port *ap;
5605
5606 ap = host->ports[i];
5607 if (ap &&
5608 !(ap->flags & ATA_FLAG_DISABLED)) {
5609 struct ata_queued_cmd *qc;
5610
5611 qc = ata_qc_from_tag(ap, ap->active_tag);
5612 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5613 (qc->flags & ATA_QCFLAG_ACTIVE))
5614 handled |= ata_host_intr(ap, qc);
5615 }
5616 }
5617
5618 spin_unlock_irqrestore(&host->lock, flags);
5619
5620 return IRQ_RETVAL(handled);
5621 }
5622
5623 /**
5624 * sata_scr_valid - test whether SCRs are accessible
5625 * @ap: ATA port to test SCR accessibility for
5626 *
5627 * Test whether SCRs are accessible for @ap.
5628 *
5629 * LOCKING:
5630 * None.
5631 *
5632 * RETURNS:
5633 * 1 if SCRs are accessible, 0 otherwise.
5634 */
5635 int sata_scr_valid(struct ata_port *ap)
5636 {
5637 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5638 }
5639
5640 /**
5641 * sata_scr_read - read SCR register of the specified port
5642 * @ap: ATA port to read SCR for
5643 * @reg: SCR to read
5644 * @val: Place to store read value
5645 *
5646 * Read SCR register @reg of @ap into *@val. This function is
5647 * guaranteed to succeed if the cable type of the port is SATA
5648 * and the port implements ->scr_read.
5649 *
5650 * LOCKING:
5651 * None.
5652 *
5653 * RETURNS:
5654 * 0 on success, negative errno on failure.
5655 */
5656 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5657 {
5658 if (sata_scr_valid(ap)) {
5659 *val = ap->ops->scr_read(ap, reg);
5660 return 0;
5661 }
5662 return -EOPNOTSUPP;
5663 }
5664
5665 /**
5666 * sata_scr_write - write SCR register of the specified port
5667 * @ap: ATA port to write SCR for
5668 * @reg: SCR to write
5669 * @val: value to write
5670 *
5671 * Write @val to SCR register @reg of @ap. This function is
5672 * guaranteed to succeed if the cable type of the port is SATA
5673 * and the port implements ->scr_read.
5674 *
5675 * LOCKING:
5676 * None.
5677 *
5678 * RETURNS:
5679 * 0 on success, negative errno on failure.
5680 */
5681 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5682 {
5683 if (sata_scr_valid(ap)) {
5684 ap->ops->scr_write(ap, reg, val);
5685 return 0;
5686 }
5687 return -EOPNOTSUPP;
5688 }
5689
5690 /**
5691 * sata_scr_write_flush - write SCR register of the specified port and flush
5692 * @ap: ATA port to write SCR for
5693 * @reg: SCR to write
5694 * @val: value to write
5695 *
5696 * This function is identical to sata_scr_write() except that this
5697 * function performs flush after writing to the register.
5698 *
5699 * LOCKING:
5700 * None.
5701 *
5702 * RETURNS:
5703 * 0 on success, negative errno on failure.
5704 */
5705 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5706 {
5707 if (sata_scr_valid(ap)) {
5708 ap->ops->scr_write(ap, reg, val);
5709 ap->ops->scr_read(ap, reg);
5710 return 0;
5711 }
5712 return -EOPNOTSUPP;
5713 }
5714
5715 /**
5716 * ata_port_online - test whether the given port is online
5717 * @ap: ATA port to test
5718 *
5719 * Test whether @ap is online. Note that this function returns 0
5720 * if online status of @ap cannot be obtained, so
5721 * ata_port_online(ap) != !ata_port_offline(ap).
5722 *
5723 * LOCKING:
5724 * None.
5725 *
5726 * RETURNS:
5727 * 1 if the port online status is available and online.
5728 */
5729 int ata_port_online(struct ata_port *ap)
5730 {
5731 u32 sstatus;
5732
5733 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5734 return 1;
5735 return 0;
5736 }
5737
5738 /**
5739 * ata_port_offline - test whether the given port is offline
5740 * @ap: ATA port to test
5741 *
5742 * Test whether @ap is offline. Note that this function returns
5743 * 0 if offline status of @ap cannot be obtained, so
5744 * ata_port_online(ap) != !ata_port_offline(ap).
5745 *
5746 * LOCKING:
5747 * None.
5748 *
5749 * RETURNS:
5750 * 1 if the port offline status is available and offline.
5751 */
5752 int ata_port_offline(struct ata_port *ap)
5753 {
5754 u32 sstatus;
5755
5756 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5757 return 1;
5758 return 0;
5759 }
5760
5761 int ata_flush_cache(struct ata_device *dev)
5762 {
5763 unsigned int err_mask;
5764 u8 cmd;
5765
5766 if (!ata_try_flush_cache(dev))
5767 return 0;
5768
5769 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5770 cmd = ATA_CMD_FLUSH_EXT;
5771 else
5772 cmd = ATA_CMD_FLUSH;
5773
5774 err_mask = ata_do_simple_cmd(dev, cmd);
5775 if (err_mask) {
5776 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5777 return -EIO;
5778 }
5779
5780 return 0;
5781 }
5782
5783 #ifdef CONFIG_PM
5784 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5785 unsigned int action, unsigned int ehi_flags,
5786 int wait)
5787 {
5788 unsigned long flags;
5789 int i, rc;
5790
5791 for (i = 0; i < host->n_ports; i++) {
5792 struct ata_port *ap = host->ports[i];
5793
5794 /* Previous resume operation might still be in
5795 * progress. Wait for PM_PENDING to clear.
5796 */
5797 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5798 ata_port_wait_eh(ap);
5799 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5800 }
5801
5802 /* request PM ops to EH */
5803 spin_lock_irqsave(ap->lock, flags);
5804
5805 ap->pm_mesg = mesg;
5806 if (wait) {
5807 rc = 0;
5808 ap->pm_result = &rc;
5809 }
5810
5811 ap->pflags |= ATA_PFLAG_PM_PENDING;
5812 ap->eh_info.action |= action;
5813 ap->eh_info.flags |= ehi_flags;
5814
5815 ata_port_schedule_eh(ap);
5816
5817 spin_unlock_irqrestore(ap->lock, flags);
5818
5819 /* wait and check result */
5820 if (wait) {
5821 ata_port_wait_eh(ap);
5822 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5823 if (rc)
5824 return rc;
5825 }
5826 }
5827
5828 return 0;
5829 }
5830
5831 /**
5832 * ata_host_suspend - suspend host
5833 * @host: host to suspend
5834 * @mesg: PM message
5835 *
5836 * Suspend @host. Actual operation is performed by EH. This
5837 * function requests EH to perform PM operations and waits for EH
5838 * to finish.
5839 *
5840 * LOCKING:
5841 * Kernel thread context (may sleep).
5842 *
5843 * RETURNS:
5844 * 0 on success, -errno on failure.
5845 */
5846 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5847 {
5848 int i, j, rc;
5849
5850 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5851 if (rc)
5852 goto fail;
5853
5854 /* EH is quiescent now. Fail if we have any ready device.
5855 * This happens if hotplug occurs between completion of device
5856 * suspension and here.
5857 */
5858 for (i = 0; i < host->n_ports; i++) {
5859 struct ata_port *ap = host->ports[i];
5860
5861 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5862 struct ata_device *dev = &ap->device[j];
5863
5864 if (ata_dev_ready(dev)) {
5865 ata_port_printk(ap, KERN_WARNING,
5866 "suspend failed, device %d "
5867 "still active\n", dev->devno);
5868 rc = -EBUSY;
5869 goto fail;
5870 }
5871 }
5872 }
5873
5874 host->dev->power.power_state = mesg;
5875 return 0;
5876
5877 fail:
5878 ata_host_resume(host);
5879 return rc;
5880 }
5881
5882 /**
5883 * ata_host_resume - resume host
5884 * @host: host to resume
5885 *
5886 * Resume @host. Actual operation is performed by EH. This
5887 * function requests EH to perform PM operations and returns.
5888 * Note that all resume operations are performed parallely.
5889 *
5890 * LOCKING:
5891 * Kernel thread context (may sleep).
5892 */
5893 void ata_host_resume(struct ata_host *host)
5894 {
5895 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5896 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5897 host->dev->power.power_state = PMSG_ON;
5898 }
5899 #endif
5900
5901 /**
5902 * ata_port_start - Set port up for dma.
5903 * @ap: Port to initialize
5904 *
5905 * Called just after data structures for each port are
5906 * initialized. Allocates space for PRD table.
5907 *
5908 * May be used as the port_start() entry in ata_port_operations.
5909 *
5910 * LOCKING:
5911 * Inherited from caller.
5912 */
5913 int ata_port_start(struct ata_port *ap)
5914 {
5915 struct device *dev = ap->dev;
5916 int rc;
5917
5918 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5919 GFP_KERNEL);
5920 if (!ap->prd)
5921 return -ENOMEM;
5922
5923 rc = ata_pad_alloc(ap, dev);
5924 if (rc)
5925 return rc;
5926
5927 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5928 (unsigned long long)ap->prd_dma);
5929 return 0;
5930 }
5931
5932 /**
5933 * ata_dev_init - Initialize an ata_device structure
5934 * @dev: Device structure to initialize
5935 *
5936 * Initialize @dev in preparation for probing.
5937 *
5938 * LOCKING:
5939 * Inherited from caller.
5940 */
5941 void ata_dev_init(struct ata_device *dev)
5942 {
5943 struct ata_port *ap = dev->ap;
5944 unsigned long flags;
5945
5946 /* SATA spd limit is bound to the first device */
5947 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5948
5949 /* High bits of dev->flags are used to record warm plug
5950 * requests which occur asynchronously. Synchronize using
5951 * host lock.
5952 */
5953 spin_lock_irqsave(ap->lock, flags);
5954 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5955 spin_unlock_irqrestore(ap->lock, flags);
5956
5957 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5958 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5959 dev->pio_mask = UINT_MAX;
5960 dev->mwdma_mask = UINT_MAX;
5961 dev->udma_mask = UINT_MAX;
5962 }
5963
5964 /**
5965 * ata_port_alloc - allocate and initialize basic ATA port resources
5966 * @host: ATA host this allocated port belongs to
5967 *
5968 * Allocate and initialize basic ATA port resources.
5969 *
5970 * RETURNS:
5971 * Allocate ATA port on success, NULL on failure.
5972 *
5973 * LOCKING:
5974 * Inherited from calling layer (may sleep).
5975 */
5976 struct ata_port *ata_port_alloc(struct ata_host *host)
5977 {
5978 struct ata_port *ap;
5979 unsigned int i;
5980
5981 DPRINTK("ENTER\n");
5982
5983 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5984 if (!ap)
5985 return NULL;
5986
5987 ap->lock = &host->lock;
5988 ap->flags = ATA_FLAG_DISABLED;
5989 ap->print_id = -1;
5990 ap->ctl = ATA_DEVCTL_OBS;
5991 ap->host = host;
5992 ap->dev = host->dev;
5993
5994 ap->hw_sata_spd_limit = UINT_MAX;
5995 ap->active_tag = ATA_TAG_POISON;
5996 ap->last_ctl = 0xFF;
5997
5998 #if defined(ATA_VERBOSE_DEBUG)
5999 /* turn on all debugging levels */
6000 ap->msg_enable = 0x00FF;
6001 #elif defined(ATA_DEBUG)
6002 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6003 #else
6004 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6005 #endif
6006
6007 INIT_DELAYED_WORK(&ap->port_task, NULL);
6008 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6009 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6010 INIT_LIST_HEAD(&ap->eh_done_q);
6011 init_waitqueue_head(&ap->eh_wait_q);
6012
6013 ap->cbl = ATA_CBL_NONE;
6014
6015 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6016 struct ata_device *dev = &ap->device[i];
6017 dev->ap = ap;
6018 dev->devno = i;
6019 ata_dev_init(dev);
6020 }
6021
6022 #ifdef ATA_IRQ_TRAP
6023 ap->stats.unhandled_irq = 1;
6024 ap->stats.idle_irq = 1;
6025 #endif
6026 return ap;
6027 }
6028
6029 static void ata_host_release(struct device *gendev, void *res)
6030 {
6031 struct ata_host *host = dev_get_drvdata(gendev);
6032 int i;
6033
6034 for (i = 0; i < host->n_ports; i++) {
6035 struct ata_port *ap = host->ports[i];
6036
6037 if (!ap)
6038 continue;
6039
6040 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6041 ap->ops->port_stop(ap);
6042 }
6043
6044 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6045 host->ops->host_stop(host);
6046
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
6050 if (!ap)
6051 continue;
6052
6053 if (ap->scsi_host)
6054 scsi_host_put(ap->scsi_host);
6055
6056 kfree(ap);
6057 host->ports[i] = NULL;
6058 }
6059
6060 dev_set_drvdata(gendev, NULL);
6061 }
6062
6063 /**
6064 * ata_host_alloc - allocate and init basic ATA host resources
6065 * @dev: generic device this host is associated with
6066 * @max_ports: maximum number of ATA ports associated with this host
6067 *
6068 * Allocate and initialize basic ATA host resources. LLD calls
6069 * this function to allocate a host, initializes it fully and
6070 * attaches it using ata_host_register().
6071 *
6072 * @max_ports ports are allocated and host->n_ports is
6073 * initialized to @max_ports. The caller is allowed to decrease
6074 * host->n_ports before calling ata_host_register(). The unused
6075 * ports will be automatically freed on registration.
6076 *
6077 * RETURNS:
6078 * Allocate ATA host on success, NULL on failure.
6079 *
6080 * LOCKING:
6081 * Inherited from calling layer (may sleep).
6082 */
6083 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6084 {
6085 struct ata_host *host;
6086 size_t sz;
6087 int i;
6088
6089 DPRINTK("ENTER\n");
6090
6091 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6092 return NULL;
6093
6094 /* alloc a container for our list of ATA ports (buses) */
6095 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6096 /* alloc a container for our list of ATA ports (buses) */
6097 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6098 if (!host)
6099 goto err_out;
6100
6101 devres_add(dev, host);
6102 dev_set_drvdata(dev, host);
6103
6104 spin_lock_init(&host->lock);
6105 host->dev = dev;
6106 host->n_ports = max_ports;
6107
6108 /* allocate ports bound to this host */
6109 for (i = 0; i < max_ports; i++) {
6110 struct ata_port *ap;
6111
6112 ap = ata_port_alloc(host);
6113 if (!ap)
6114 goto err_out;
6115
6116 ap->port_no = i;
6117 host->ports[i] = ap;
6118 }
6119
6120 devres_remove_group(dev, NULL);
6121 return host;
6122
6123 err_out:
6124 devres_release_group(dev, NULL);
6125 return NULL;
6126 }
6127
6128 /**
6129 * ata_host_alloc_pinfo - alloc host and init with port_info array
6130 * @dev: generic device this host is associated with
6131 * @ppi: array of ATA port_info to initialize host with
6132 * @n_ports: number of ATA ports attached to this host
6133 *
6134 * Allocate ATA host and initialize with info from @ppi. If NULL
6135 * terminated, @ppi may contain fewer entries than @n_ports. The
6136 * last entry will be used for the remaining ports.
6137 *
6138 * RETURNS:
6139 * Allocate ATA host on success, NULL on failure.
6140 *
6141 * LOCKING:
6142 * Inherited from calling layer (may sleep).
6143 */
6144 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6145 const struct ata_port_info * const * ppi,
6146 int n_ports)
6147 {
6148 const struct ata_port_info *pi;
6149 struct ata_host *host;
6150 int i, j;
6151
6152 host = ata_host_alloc(dev, n_ports);
6153 if (!host)
6154 return NULL;
6155
6156 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6157 struct ata_port *ap = host->ports[i];
6158
6159 if (ppi[j])
6160 pi = ppi[j++];
6161
6162 ap->pio_mask = pi->pio_mask;
6163 ap->mwdma_mask = pi->mwdma_mask;
6164 ap->udma_mask = pi->udma_mask;
6165 ap->flags |= pi->flags;
6166 ap->ops = pi->port_ops;
6167
6168 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6169 host->ops = pi->port_ops;
6170 if (!host->private_data && pi->private_data)
6171 host->private_data = pi->private_data;
6172 }
6173
6174 return host;
6175 }
6176
6177 /**
6178 * ata_host_start - start and freeze ports of an ATA host
6179 * @host: ATA host to start ports for
6180 *
6181 * Start and then freeze ports of @host. Started status is
6182 * recorded in host->flags, so this function can be called
6183 * multiple times. Ports are guaranteed to get started only
6184 * once. If host->ops isn't initialized yet, its set to the
6185 * first non-dummy port ops.
6186 *
6187 * LOCKING:
6188 * Inherited from calling layer (may sleep).
6189 *
6190 * RETURNS:
6191 * 0 if all ports are started successfully, -errno otherwise.
6192 */
6193 int ata_host_start(struct ata_host *host)
6194 {
6195 int i, rc;
6196
6197 if (host->flags & ATA_HOST_STARTED)
6198 return 0;
6199
6200 for (i = 0; i < host->n_ports; i++) {
6201 struct ata_port *ap = host->ports[i];
6202
6203 if (!host->ops && !ata_port_is_dummy(ap))
6204 host->ops = ap->ops;
6205
6206 if (ap->ops->port_start) {
6207 rc = ap->ops->port_start(ap);
6208 if (rc) {
6209 ata_port_printk(ap, KERN_ERR, "failed to "
6210 "start port (errno=%d)\n", rc);
6211 goto err_out;
6212 }
6213 }
6214
6215 ata_eh_freeze_port(ap);
6216 }
6217
6218 host->flags |= ATA_HOST_STARTED;
6219 return 0;
6220
6221 err_out:
6222 while (--i >= 0) {
6223 struct ata_port *ap = host->ports[i];
6224
6225 if (ap->ops->port_stop)
6226 ap->ops->port_stop(ap);
6227 }
6228 return rc;
6229 }
6230
6231 /**
6232 * ata_sas_host_init - Initialize a host struct
6233 * @host: host to initialize
6234 * @dev: device host is attached to
6235 * @flags: host flags
6236 * @ops: port_ops
6237 *
6238 * LOCKING:
6239 * PCI/etc. bus probe sem.
6240 *
6241 */
6242 /* KILLME - the only user left is ipr */
6243 void ata_host_init(struct ata_host *host, struct device *dev,
6244 unsigned long flags, const struct ata_port_operations *ops)
6245 {
6246 spin_lock_init(&host->lock);
6247 host->dev = dev;
6248 host->flags = flags;
6249 host->ops = ops;
6250 }
6251
6252 /**
6253 * ata_host_register - register initialized ATA host
6254 * @host: ATA host to register
6255 * @sht: template for SCSI host
6256 *
6257 * Register initialized ATA host. @host is allocated using
6258 * ata_host_alloc() and fully initialized by LLD. This function
6259 * starts ports, registers @host with ATA and SCSI layers and
6260 * probe registered devices.
6261 *
6262 * LOCKING:
6263 * Inherited from calling layer (may sleep).
6264 *
6265 * RETURNS:
6266 * 0 on success, -errno otherwise.
6267 */
6268 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6269 {
6270 int i, rc;
6271
6272 /* host must have been started */
6273 if (!(host->flags & ATA_HOST_STARTED)) {
6274 dev_printk(KERN_ERR, host->dev,
6275 "BUG: trying to register unstarted host\n");
6276 WARN_ON(1);
6277 return -EINVAL;
6278 }
6279
6280 /* Blow away unused ports. This happens when LLD can't
6281 * determine the exact number of ports to allocate at
6282 * allocation time.
6283 */
6284 for (i = host->n_ports; host->ports[i]; i++)
6285 kfree(host->ports[i]);
6286
6287 /* give ports names and add SCSI hosts */
6288 for (i = 0; i < host->n_ports; i++)
6289 host->ports[i]->print_id = ata_print_id++;
6290
6291 rc = ata_scsi_add_hosts(host, sht);
6292 if (rc)
6293 return rc;
6294
6295 /* set cable, sata_spd_limit and report */
6296 for (i = 0; i < host->n_ports; i++) {
6297 struct ata_port *ap = host->ports[i];
6298 int irq_line;
6299 u32 scontrol;
6300 unsigned long xfer_mask;
6301
6302 /* set SATA cable type if still unset */
6303 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6304 ap->cbl = ATA_CBL_SATA;
6305
6306 /* init sata_spd_limit to the current value */
6307 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6308 int spd = (scontrol >> 4) & 0xf;
6309 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6310 }
6311 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6312
6313 /* report the secondary IRQ for second channel legacy */
6314 irq_line = host->irq;
6315 if (i == 1 && host->irq2)
6316 irq_line = host->irq2;
6317
6318 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6319 ap->udma_mask);
6320
6321 /* print per-port info to dmesg */
6322 if (!ata_port_is_dummy(ap))
6323 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6324 "ctl 0x%p bmdma 0x%p irq %d\n",
6325 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6326 ata_mode_string(xfer_mask),
6327 ap->ioaddr.cmd_addr,
6328 ap->ioaddr.ctl_addr,
6329 ap->ioaddr.bmdma_addr,
6330 irq_line);
6331 else
6332 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6333 }
6334
6335 /* perform each probe synchronously */
6336 DPRINTK("probe begin\n");
6337 for (i = 0; i < host->n_ports; i++) {
6338 struct ata_port *ap = host->ports[i];
6339 int rc;
6340
6341 /* probe */
6342 if (ap->ops->error_handler) {
6343 struct ata_eh_info *ehi = &ap->eh_info;
6344 unsigned long flags;
6345
6346 ata_port_probe(ap);
6347
6348 /* kick EH for boot probing */
6349 spin_lock_irqsave(ap->lock, flags);
6350
6351 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6352 ehi->action |= ATA_EH_SOFTRESET;
6353 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6354
6355 ap->pflags |= ATA_PFLAG_LOADING;
6356 ata_port_schedule_eh(ap);
6357
6358 spin_unlock_irqrestore(ap->lock, flags);
6359
6360 /* wait for EH to finish */
6361 ata_port_wait_eh(ap);
6362 } else {
6363 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6364 rc = ata_bus_probe(ap);
6365 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6366
6367 if (rc) {
6368 /* FIXME: do something useful here?
6369 * Current libata behavior will
6370 * tear down everything when
6371 * the module is removed
6372 * or the h/w is unplugged.
6373 */
6374 }
6375 }
6376 }
6377
6378 /* probes are done, now scan each port's disk(s) */
6379 DPRINTK("host probe begin\n");
6380 for (i = 0; i < host->n_ports; i++) {
6381 struct ata_port *ap = host->ports[i];
6382
6383 ata_scsi_scan_host(ap);
6384 }
6385
6386 return 0;
6387 }
6388
6389 /**
6390 * ata_host_activate - start host, request IRQ and register it
6391 * @host: target ATA host
6392 * @irq: IRQ to request
6393 * @irq_handler: irq_handler used when requesting IRQ
6394 * @irq_flags: irq_flags used when requesting IRQ
6395 * @sht: scsi_host_template to use when registering the host
6396 *
6397 * After allocating an ATA host and initializing it, most libata
6398 * LLDs perform three steps to activate the host - start host,
6399 * request IRQ and register it. This helper takes necessasry
6400 * arguments and performs the three steps in one go.
6401 *
6402 * LOCKING:
6403 * Inherited from calling layer (may sleep).
6404 *
6405 * RETURNS:
6406 * 0 on success, -errno otherwise.
6407 */
6408 int ata_host_activate(struct ata_host *host, int irq,
6409 irq_handler_t irq_handler, unsigned long irq_flags,
6410 struct scsi_host_template *sht)
6411 {
6412 int rc;
6413
6414 rc = ata_host_start(host);
6415 if (rc)
6416 return rc;
6417
6418 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6419 dev_driver_string(host->dev), host);
6420 if (rc)
6421 return rc;
6422
6423 rc = ata_host_register(host, sht);
6424 /* if failed, just free the IRQ and leave ports alone */
6425 if (rc)
6426 devm_free_irq(host->dev, irq, host);
6427
6428 return rc;
6429 }
6430
6431 /**
6432 * ata_port_detach - Detach ATA port in prepration of device removal
6433 * @ap: ATA port to be detached
6434 *
6435 * Detach all ATA devices and the associated SCSI devices of @ap;
6436 * then, remove the associated SCSI host. @ap is guaranteed to
6437 * be quiescent on return from this function.
6438 *
6439 * LOCKING:
6440 * Kernel thread context (may sleep).
6441 */
6442 void ata_port_detach(struct ata_port *ap)
6443 {
6444 unsigned long flags;
6445 int i;
6446
6447 if (!ap->ops->error_handler)
6448 goto skip_eh;
6449
6450 /* tell EH we're leaving & flush EH */
6451 spin_lock_irqsave(ap->lock, flags);
6452 ap->pflags |= ATA_PFLAG_UNLOADING;
6453 spin_unlock_irqrestore(ap->lock, flags);
6454
6455 ata_port_wait_eh(ap);
6456
6457 /* EH is now guaranteed to see UNLOADING, so no new device
6458 * will be attached. Disable all existing devices.
6459 */
6460 spin_lock_irqsave(ap->lock, flags);
6461
6462 for (i = 0; i < ATA_MAX_DEVICES; i++)
6463 ata_dev_disable(&ap->device[i]);
6464
6465 spin_unlock_irqrestore(ap->lock, flags);
6466
6467 /* Final freeze & EH. All in-flight commands are aborted. EH
6468 * will be skipped and retrials will be terminated with bad
6469 * target.
6470 */
6471 spin_lock_irqsave(ap->lock, flags);
6472 ata_port_freeze(ap); /* won't be thawed */
6473 spin_unlock_irqrestore(ap->lock, flags);
6474
6475 ata_port_wait_eh(ap);
6476
6477 /* Flush hotplug task. The sequence is similar to
6478 * ata_port_flush_task().
6479 */
6480 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6481 cancel_delayed_work(&ap->hotplug_task);
6482 cancel_work_sync(&ap->hotplug_task.work);
6483
6484 skip_eh:
6485 /* remove the associated SCSI host */
6486 scsi_remove_host(ap->scsi_host);
6487 }
6488
6489 /**
6490 * ata_host_detach - Detach all ports of an ATA host
6491 * @host: Host to detach
6492 *
6493 * Detach all ports of @host.
6494 *
6495 * LOCKING:
6496 * Kernel thread context (may sleep).
6497 */
6498 void ata_host_detach(struct ata_host *host)
6499 {
6500 int i;
6501
6502 for (i = 0; i < host->n_ports; i++)
6503 ata_port_detach(host->ports[i]);
6504 }
6505
6506 /**
6507 * ata_std_ports - initialize ioaddr with standard port offsets.
6508 * @ioaddr: IO address structure to be initialized
6509 *
6510 * Utility function which initializes data_addr, error_addr,
6511 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6512 * device_addr, status_addr, and command_addr to standard offsets
6513 * relative to cmd_addr.
6514 *
6515 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6516 */
6517
6518 void ata_std_ports(struct ata_ioports *ioaddr)
6519 {
6520 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6521 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6522 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6523 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6524 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6525 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6526 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6527 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6528 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6529 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6530 }
6531
6532
6533 #ifdef CONFIG_PCI
6534
6535 /**
6536 * ata_pci_remove_one - PCI layer callback for device removal
6537 * @pdev: PCI device that was removed
6538 *
6539 * PCI layer indicates to libata via this hook that hot-unplug or
6540 * module unload event has occurred. Detach all ports. Resource
6541 * release is handled via devres.
6542 *
6543 * LOCKING:
6544 * Inherited from PCI layer (may sleep).
6545 */
6546 void ata_pci_remove_one(struct pci_dev *pdev)
6547 {
6548 struct device *dev = pci_dev_to_dev(pdev);
6549 struct ata_host *host = dev_get_drvdata(dev);
6550
6551 ata_host_detach(host);
6552 }
6553
6554 /* move to PCI subsystem */
6555 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6556 {
6557 unsigned long tmp = 0;
6558
6559 switch (bits->width) {
6560 case 1: {
6561 u8 tmp8 = 0;
6562 pci_read_config_byte(pdev, bits->reg, &tmp8);
6563 tmp = tmp8;
6564 break;
6565 }
6566 case 2: {
6567 u16 tmp16 = 0;
6568 pci_read_config_word(pdev, bits->reg, &tmp16);
6569 tmp = tmp16;
6570 break;
6571 }
6572 case 4: {
6573 u32 tmp32 = 0;
6574 pci_read_config_dword(pdev, bits->reg, &tmp32);
6575 tmp = tmp32;
6576 break;
6577 }
6578
6579 default:
6580 return -EINVAL;
6581 }
6582
6583 tmp &= bits->mask;
6584
6585 return (tmp == bits->val) ? 1 : 0;
6586 }
6587
6588 #ifdef CONFIG_PM
6589 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6590 {
6591 pci_save_state(pdev);
6592 pci_disable_device(pdev);
6593
6594 if (mesg.event == PM_EVENT_SUSPEND)
6595 pci_set_power_state(pdev, PCI_D3hot);
6596 }
6597
6598 int ata_pci_device_do_resume(struct pci_dev *pdev)
6599 {
6600 int rc;
6601
6602 pci_set_power_state(pdev, PCI_D0);
6603 pci_restore_state(pdev);
6604
6605 rc = pcim_enable_device(pdev);
6606 if (rc) {
6607 dev_printk(KERN_ERR, &pdev->dev,
6608 "failed to enable device after resume (%d)\n", rc);
6609 return rc;
6610 }
6611
6612 pci_set_master(pdev);
6613 return 0;
6614 }
6615
6616 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6617 {
6618 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6619 int rc = 0;
6620
6621 rc = ata_host_suspend(host, mesg);
6622 if (rc)
6623 return rc;
6624
6625 ata_pci_device_do_suspend(pdev, mesg);
6626
6627 return 0;
6628 }
6629
6630 int ata_pci_device_resume(struct pci_dev *pdev)
6631 {
6632 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6633 int rc;
6634
6635 rc = ata_pci_device_do_resume(pdev);
6636 if (rc == 0)
6637 ata_host_resume(host);
6638 return rc;
6639 }
6640 #endif /* CONFIG_PM */
6641
6642 #endif /* CONFIG_PCI */
6643
6644
6645 static int __init ata_init(void)
6646 {
6647 ata_probe_timeout *= HZ;
6648 ata_wq = create_workqueue("ata");
6649 if (!ata_wq)
6650 return -ENOMEM;
6651
6652 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6653 if (!ata_aux_wq) {
6654 destroy_workqueue(ata_wq);
6655 return -ENOMEM;
6656 }
6657
6658 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6659 return 0;
6660 }
6661
6662 static void __exit ata_exit(void)
6663 {
6664 destroy_workqueue(ata_wq);
6665 destroy_workqueue(ata_aux_wq);
6666 }
6667
6668 subsys_initcall(ata_init);
6669 module_exit(ata_exit);
6670
6671 static unsigned long ratelimit_time;
6672 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6673
6674 int ata_ratelimit(void)
6675 {
6676 int rc;
6677 unsigned long flags;
6678
6679 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6680
6681 if (time_after(jiffies, ratelimit_time)) {
6682 rc = 1;
6683 ratelimit_time = jiffies + (HZ/5);
6684 } else
6685 rc = 0;
6686
6687 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6688
6689 return rc;
6690 }
6691
6692 /**
6693 * ata_wait_register - wait until register value changes
6694 * @reg: IO-mapped register
6695 * @mask: Mask to apply to read register value
6696 * @val: Wait condition
6697 * @interval_msec: polling interval in milliseconds
6698 * @timeout_msec: timeout in milliseconds
6699 *
6700 * Waiting for some bits of register to change is a common
6701 * operation for ATA controllers. This function reads 32bit LE
6702 * IO-mapped register @reg and tests for the following condition.
6703 *
6704 * (*@reg & mask) != val
6705 *
6706 * If the condition is met, it returns; otherwise, the process is
6707 * repeated after @interval_msec until timeout.
6708 *
6709 * LOCKING:
6710 * Kernel thread context (may sleep)
6711 *
6712 * RETURNS:
6713 * The final register value.
6714 */
6715 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6716 unsigned long interval_msec,
6717 unsigned long timeout_msec)
6718 {
6719 unsigned long timeout;
6720 u32 tmp;
6721
6722 tmp = ioread32(reg);
6723
6724 /* Calculate timeout _after_ the first read to make sure
6725 * preceding writes reach the controller before starting to
6726 * eat away the timeout.
6727 */
6728 timeout = jiffies + (timeout_msec * HZ) / 1000;
6729
6730 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6731 msleep(interval_msec);
6732 tmp = ioread32(reg);
6733 }
6734
6735 return tmp;
6736 }
6737
6738 /*
6739 * Dummy port_ops
6740 */
6741 static void ata_dummy_noret(struct ata_port *ap) { }
6742 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6743 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6744
6745 static u8 ata_dummy_check_status(struct ata_port *ap)
6746 {
6747 return ATA_DRDY;
6748 }
6749
6750 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6751 {
6752 return AC_ERR_SYSTEM;
6753 }
6754
6755 const struct ata_port_operations ata_dummy_port_ops = {
6756 .port_disable = ata_port_disable,
6757 .check_status = ata_dummy_check_status,
6758 .check_altstatus = ata_dummy_check_status,
6759 .dev_select = ata_noop_dev_select,
6760 .qc_prep = ata_noop_qc_prep,
6761 .qc_issue = ata_dummy_qc_issue,
6762 .freeze = ata_dummy_noret,
6763 .thaw = ata_dummy_noret,
6764 .error_handler = ata_dummy_noret,
6765 .post_internal_cmd = ata_dummy_qc_noret,
6766 .irq_clear = ata_dummy_noret,
6767 .port_start = ata_dummy_ret0,
6768 .port_stop = ata_dummy_noret,
6769 };
6770
6771 const struct ata_port_info ata_dummy_port_info = {
6772 .port_ops = &ata_dummy_port_ops,
6773 };
6774
6775 /*
6776 * libata is essentially a library of internal helper functions for
6777 * low-level ATA host controller drivers. As such, the API/ABI is
6778 * likely to change as new drivers are added and updated.
6779 * Do not depend on ABI/API stability.
6780 */
6781
6782 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6783 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6784 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6785 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6786 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6787 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6788 EXPORT_SYMBOL_GPL(ata_std_ports);
6789 EXPORT_SYMBOL_GPL(ata_host_init);
6790 EXPORT_SYMBOL_GPL(ata_host_alloc);
6791 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6792 EXPORT_SYMBOL_GPL(ata_host_start);
6793 EXPORT_SYMBOL_GPL(ata_host_register);
6794 EXPORT_SYMBOL_GPL(ata_host_activate);
6795 EXPORT_SYMBOL_GPL(ata_host_detach);
6796 EXPORT_SYMBOL_GPL(ata_sg_init);
6797 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6798 EXPORT_SYMBOL_GPL(ata_hsm_move);
6799 EXPORT_SYMBOL_GPL(ata_qc_complete);
6800 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6801 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6802 EXPORT_SYMBOL_GPL(ata_tf_load);
6803 EXPORT_SYMBOL_GPL(ata_tf_read);
6804 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6805 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6806 EXPORT_SYMBOL_GPL(sata_print_link_status);
6807 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6808 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6809 EXPORT_SYMBOL_GPL(ata_check_status);
6810 EXPORT_SYMBOL_GPL(ata_altstatus);
6811 EXPORT_SYMBOL_GPL(ata_exec_command);
6812 EXPORT_SYMBOL_GPL(ata_port_start);
6813 EXPORT_SYMBOL_GPL(ata_interrupt);
6814 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6815 EXPORT_SYMBOL_GPL(ata_data_xfer);
6816 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6817 EXPORT_SYMBOL_GPL(ata_qc_prep);
6818 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6819 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6820 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6821 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6822 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6823 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6824 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6825 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6826 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6829 EXPORT_SYMBOL_GPL(ata_port_probe);
6830 EXPORT_SYMBOL_GPL(ata_dev_disable);
6831 EXPORT_SYMBOL_GPL(sata_set_spd);
6832 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6833 EXPORT_SYMBOL_GPL(sata_phy_resume);
6834 EXPORT_SYMBOL_GPL(sata_phy_reset);
6835 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6836 EXPORT_SYMBOL_GPL(ata_bus_reset);
6837 EXPORT_SYMBOL_GPL(ata_std_prereset);
6838 EXPORT_SYMBOL_GPL(ata_std_softreset);
6839 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6840 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6841 EXPORT_SYMBOL_GPL(ata_std_postreset);
6842 EXPORT_SYMBOL_GPL(ata_dev_classify);
6843 EXPORT_SYMBOL_GPL(ata_dev_pair);
6844 EXPORT_SYMBOL_GPL(ata_port_disable);
6845 EXPORT_SYMBOL_GPL(ata_ratelimit);
6846 EXPORT_SYMBOL_GPL(ata_wait_register);
6847 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6848 EXPORT_SYMBOL_GPL(ata_wait_ready);
6849 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6850 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6851 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6852 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6853 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6854 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6855 EXPORT_SYMBOL_GPL(ata_host_intr);
6856 EXPORT_SYMBOL_GPL(sata_scr_valid);
6857 EXPORT_SYMBOL_GPL(sata_scr_read);
6858 EXPORT_SYMBOL_GPL(sata_scr_write);
6859 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6860 EXPORT_SYMBOL_GPL(ata_port_online);
6861 EXPORT_SYMBOL_GPL(ata_port_offline);
6862 #ifdef CONFIG_PM
6863 EXPORT_SYMBOL_GPL(ata_host_suspend);
6864 EXPORT_SYMBOL_GPL(ata_host_resume);
6865 #endif /* CONFIG_PM */
6866 EXPORT_SYMBOL_GPL(ata_id_string);
6867 EXPORT_SYMBOL_GPL(ata_id_c_string);
6868 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6869 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6870 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6871
6872 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6873 EXPORT_SYMBOL_GPL(ata_timing_compute);
6874 EXPORT_SYMBOL_GPL(ata_timing_merge);
6875
6876 #ifdef CONFIG_PCI
6877 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6878 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6879 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6880 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6881 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6882 #ifdef CONFIG_PM
6883 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6884 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6885 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6886 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6887 #endif /* CONFIG_PM */
6888 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6889 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6890 #endif /* CONFIG_PCI */
6891
6892 #ifdef CONFIG_PM
6893 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6894 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6895 #endif /* CONFIG_PM */
6896
6897 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6898 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6899 EXPORT_SYMBOL_GPL(ata_port_abort);
6900 EXPORT_SYMBOL_GPL(ata_port_freeze);
6901 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6902 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6903 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6904 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6905 EXPORT_SYMBOL_GPL(ata_do_eh);
6906 EXPORT_SYMBOL_GPL(ata_irq_on);
6907 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6908 EXPORT_SYMBOL_GPL(ata_irq_ack);
6909 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6910 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6911
6912 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6913 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6914 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6915 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.192415 seconds and 6 git commands to generate.