libata: Handle drives that require a spin-up command before first access
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904 {
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930 }
931
932 /**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941 {
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963 }
964
965 /**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974 static u64 ata_hpa_resize(struct ata_device *dev)
975 {
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, hpa_sectors = %lld\n",
986 __FUNCTION__, sectors, hpa_sectors);
987
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
993 sectors, hpa_sectors);
994
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 else
999 hpa_sectors = ata_set_native_max_address(dev, hpa_sectors);
1000
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO,
1003 "native size increased to %lld sectors\n", hpa_sectors);
1004 return hpa_sectors;
1005 }
1006 }
1007 }
1008 return sectors;
1009 }
1010
1011 static u64 ata_id_n_sectors(const u16 *id)
1012 {
1013 if (ata_id_has_lba(id)) {
1014 if (ata_id_has_lba48(id))
1015 return ata_id_u64(id, 100);
1016 else
1017 return ata_id_u32(id, 60);
1018 } else {
1019 if (ata_id_current_chs_valid(id))
1020 return ata_id_u32(id, 57);
1021 else
1022 return id[1] * id[3] * id[6];
1023 }
1024 }
1025
1026 /**
1027 * ata_id_to_dma_mode - Identify DMA mode from id block
1028 * @dev: device to identify
1029 * @unknown: mode to assume if we cannot tell
1030 *
1031 * Set up the timing values for the device based upon the identify
1032 * reported values for the DMA mode. This function is used by drivers
1033 * which rely upon firmware configured modes, but wish to report the
1034 * mode correctly when possible.
1035 *
1036 * In addition we emit similarly formatted messages to the default
1037 * ata_dev_set_mode handler, in order to provide consistency of
1038 * presentation.
1039 */
1040
1041 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1042 {
1043 unsigned int mask;
1044 u8 mode;
1045
1046 /* Pack the DMA modes */
1047 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1048 if (dev->id[53] & 0x04)
1049 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1050
1051 /* Select the mode in use */
1052 mode = ata_xfer_mask2mode(mask);
1053
1054 if (mode != 0) {
1055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1056 ata_mode_string(mask));
1057 } else {
1058 /* SWDMA perhaps ? */
1059 mode = unknown;
1060 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1061 }
1062
1063 /* Configure the device reporting */
1064 dev->xfer_mode = mode;
1065 dev->xfer_shift = ata_xfer_mode2shift(mode);
1066 }
1067
1068 /**
1069 * ata_noop_dev_select - Select device 0/1 on ATA bus
1070 * @ap: ATA channel to manipulate
1071 * @device: ATA device (numbered from zero) to select
1072 *
1073 * This function performs no actual function.
1074 *
1075 * May be used as the dev_select() entry in ata_port_operations.
1076 *
1077 * LOCKING:
1078 * caller.
1079 */
1080 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1081 {
1082 }
1083
1084
1085 /**
1086 * ata_std_dev_select - Select device 0/1 on ATA bus
1087 * @ap: ATA channel to manipulate
1088 * @device: ATA device (numbered from zero) to select
1089 *
1090 * Use the method defined in the ATA specification to
1091 * make either device 0, or device 1, active on the
1092 * ATA channel. Works with both PIO and MMIO.
1093 *
1094 * May be used as the dev_select() entry in ata_port_operations.
1095 *
1096 * LOCKING:
1097 * caller.
1098 */
1099
1100 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1101 {
1102 u8 tmp;
1103
1104 if (device == 0)
1105 tmp = ATA_DEVICE_OBS;
1106 else
1107 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1108
1109 iowrite8(tmp, ap->ioaddr.device_addr);
1110 ata_pause(ap); /* needed; also flushes, for mmio */
1111 }
1112
1113 /**
1114 * ata_dev_select - Select device 0/1 on ATA bus
1115 * @ap: ATA channel to manipulate
1116 * @device: ATA device (numbered from zero) to select
1117 * @wait: non-zero to wait for Status register BSY bit to clear
1118 * @can_sleep: non-zero if context allows sleeping
1119 *
1120 * Use the method defined in the ATA specification to
1121 * make either device 0, or device 1, active on the
1122 * ATA channel.
1123 *
1124 * This is a high-level version of ata_std_dev_select(),
1125 * which additionally provides the services of inserting
1126 * the proper pauses and status polling, where needed.
1127 *
1128 * LOCKING:
1129 * caller.
1130 */
1131
1132 void ata_dev_select(struct ata_port *ap, unsigned int device,
1133 unsigned int wait, unsigned int can_sleep)
1134 {
1135 if (ata_msg_probe(ap))
1136 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1137 "device %u, wait %u\n", device, wait);
1138
1139 if (wait)
1140 ata_wait_idle(ap);
1141
1142 ap->ops->dev_select(ap, device);
1143
1144 if (wait) {
1145 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1146 msleep(150);
1147 ata_wait_idle(ap);
1148 }
1149 }
1150
1151 /**
1152 * ata_dump_id - IDENTIFY DEVICE info debugging output
1153 * @id: IDENTIFY DEVICE page to dump
1154 *
1155 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1156 * page.
1157 *
1158 * LOCKING:
1159 * caller.
1160 */
1161
1162 static inline void ata_dump_id(const u16 *id)
1163 {
1164 DPRINTK("49==0x%04x "
1165 "53==0x%04x "
1166 "63==0x%04x "
1167 "64==0x%04x "
1168 "75==0x%04x \n",
1169 id[49],
1170 id[53],
1171 id[63],
1172 id[64],
1173 id[75]);
1174 DPRINTK("80==0x%04x "
1175 "81==0x%04x "
1176 "82==0x%04x "
1177 "83==0x%04x "
1178 "84==0x%04x \n",
1179 id[80],
1180 id[81],
1181 id[82],
1182 id[83],
1183 id[84]);
1184 DPRINTK("88==0x%04x "
1185 "93==0x%04x\n",
1186 id[88],
1187 id[93]);
1188 }
1189
1190 /**
1191 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1192 * @id: IDENTIFY data to compute xfer mask from
1193 *
1194 * Compute the xfermask for this device. This is not as trivial
1195 * as it seems if we must consider early devices correctly.
1196 *
1197 * FIXME: pre IDE drive timing (do we care ?).
1198 *
1199 * LOCKING:
1200 * None.
1201 *
1202 * RETURNS:
1203 * Computed xfermask
1204 */
1205 static unsigned int ata_id_xfermask(const u16 *id)
1206 {
1207 unsigned int pio_mask, mwdma_mask, udma_mask;
1208
1209 /* Usual case. Word 53 indicates word 64 is valid */
1210 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1211 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1212 pio_mask <<= 3;
1213 pio_mask |= 0x7;
1214 } else {
1215 /* If word 64 isn't valid then Word 51 high byte holds
1216 * the PIO timing number for the maximum. Turn it into
1217 * a mask.
1218 */
1219 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1220 if (mode < 5) /* Valid PIO range */
1221 pio_mask = (2 << mode) - 1;
1222 else
1223 pio_mask = 1;
1224
1225 /* But wait.. there's more. Design your standards by
1226 * committee and you too can get a free iordy field to
1227 * process. However its the speeds not the modes that
1228 * are supported... Note drivers using the timing API
1229 * will get this right anyway
1230 */
1231 }
1232
1233 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1234
1235 if (ata_id_is_cfa(id)) {
1236 /*
1237 * Process compact flash extended modes
1238 */
1239 int pio = id[163] & 0x7;
1240 int dma = (id[163] >> 3) & 7;
1241
1242 if (pio)
1243 pio_mask |= (1 << 5);
1244 if (pio > 1)
1245 pio_mask |= (1 << 6);
1246 if (dma)
1247 mwdma_mask |= (1 << 3);
1248 if (dma > 1)
1249 mwdma_mask |= (1 << 4);
1250 }
1251
1252 udma_mask = 0;
1253 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1254 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1255
1256 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1257 }
1258
1259 /**
1260 * ata_port_queue_task - Queue port_task
1261 * @ap: The ata_port to queue port_task for
1262 * @fn: workqueue function to be scheduled
1263 * @data: data for @fn to use
1264 * @delay: delay time for workqueue function
1265 *
1266 * Schedule @fn(@data) for execution after @delay jiffies using
1267 * port_task. There is one port_task per port and it's the
1268 * user(low level driver)'s responsibility to make sure that only
1269 * one task is active at any given time.
1270 *
1271 * libata core layer takes care of synchronization between
1272 * port_task and EH. ata_port_queue_task() may be ignored for EH
1273 * synchronization.
1274 *
1275 * LOCKING:
1276 * Inherited from caller.
1277 */
1278 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1279 unsigned long delay)
1280 {
1281 int rc;
1282
1283 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1284 return;
1285
1286 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1287 ap->port_task_data = data;
1288
1289 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1290
1291 /* rc == 0 means that another user is using port task */
1292 WARN_ON(rc == 0);
1293 }
1294
1295 /**
1296 * ata_port_flush_task - Flush port_task
1297 * @ap: The ata_port to flush port_task for
1298 *
1299 * After this function completes, port_task is guranteed not to
1300 * be running or scheduled.
1301 *
1302 * LOCKING:
1303 * Kernel thread context (may sleep)
1304 */
1305 void ata_port_flush_task(struct ata_port *ap)
1306 {
1307 unsigned long flags;
1308
1309 DPRINTK("ENTER\n");
1310
1311 spin_lock_irqsave(ap->lock, flags);
1312 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1313 spin_unlock_irqrestore(ap->lock, flags);
1314
1315 DPRINTK("flush #1\n");
1316 flush_workqueue(ata_wq);
1317
1318 /*
1319 * At this point, if a task is running, it's guaranteed to see
1320 * the FLUSH flag; thus, it will never queue pio tasks again.
1321 * Cancel and flush.
1322 */
1323 if (!cancel_delayed_work(&ap->port_task)) {
1324 if (ata_msg_ctl(ap))
1325 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1326 __FUNCTION__);
1327 flush_workqueue(ata_wq);
1328 }
1329
1330 spin_lock_irqsave(ap->lock, flags);
1331 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1332 spin_unlock_irqrestore(ap->lock, flags);
1333
1334 if (ata_msg_ctl(ap))
1335 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1336 }
1337
1338 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1339 {
1340 struct completion *waiting = qc->private_data;
1341
1342 complete(waiting);
1343 }
1344
1345 /**
1346 * ata_exec_internal_sg - execute libata internal command
1347 * @dev: Device to which the command is sent
1348 * @tf: Taskfile registers for the command and the result
1349 * @cdb: CDB for packet command
1350 * @dma_dir: Data tranfer direction of the command
1351 * @sg: sg list for the data buffer of the command
1352 * @n_elem: Number of sg entries
1353 *
1354 * Executes libata internal command with timeout. @tf contains
1355 * command on entry and result on return. Timeout and error
1356 * conditions are reported via return value. No recovery action
1357 * is taken after a command times out. It's caller's duty to
1358 * clean up after timeout.
1359 *
1360 * LOCKING:
1361 * None. Should be called with kernel context, might sleep.
1362 *
1363 * RETURNS:
1364 * Zero on success, AC_ERR_* mask on failure
1365 */
1366 unsigned ata_exec_internal_sg(struct ata_device *dev,
1367 struct ata_taskfile *tf, const u8 *cdb,
1368 int dma_dir, struct scatterlist *sg,
1369 unsigned int n_elem)
1370 {
1371 struct ata_port *ap = dev->ap;
1372 u8 command = tf->command;
1373 struct ata_queued_cmd *qc;
1374 unsigned int tag, preempted_tag;
1375 u32 preempted_sactive, preempted_qc_active;
1376 DECLARE_COMPLETION_ONSTACK(wait);
1377 unsigned long flags;
1378 unsigned int err_mask;
1379 int rc;
1380
1381 spin_lock_irqsave(ap->lock, flags);
1382
1383 /* no internal command while frozen */
1384 if (ap->pflags & ATA_PFLAG_FROZEN) {
1385 spin_unlock_irqrestore(ap->lock, flags);
1386 return AC_ERR_SYSTEM;
1387 }
1388
1389 /* initialize internal qc */
1390
1391 /* XXX: Tag 0 is used for drivers with legacy EH as some
1392 * drivers choke if any other tag is given. This breaks
1393 * ata_tag_internal() test for those drivers. Don't use new
1394 * EH stuff without converting to it.
1395 */
1396 if (ap->ops->error_handler)
1397 tag = ATA_TAG_INTERNAL;
1398 else
1399 tag = 0;
1400
1401 if (test_and_set_bit(tag, &ap->qc_allocated))
1402 BUG();
1403 qc = __ata_qc_from_tag(ap, tag);
1404
1405 qc->tag = tag;
1406 qc->scsicmd = NULL;
1407 qc->ap = ap;
1408 qc->dev = dev;
1409 ata_qc_reinit(qc);
1410
1411 preempted_tag = ap->active_tag;
1412 preempted_sactive = ap->sactive;
1413 preempted_qc_active = ap->qc_active;
1414 ap->active_tag = ATA_TAG_POISON;
1415 ap->sactive = 0;
1416 ap->qc_active = 0;
1417
1418 /* prepare & issue qc */
1419 qc->tf = *tf;
1420 if (cdb)
1421 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1422 qc->flags |= ATA_QCFLAG_RESULT_TF;
1423 qc->dma_dir = dma_dir;
1424 if (dma_dir != DMA_NONE) {
1425 unsigned int i, buflen = 0;
1426
1427 for (i = 0; i < n_elem; i++)
1428 buflen += sg[i].length;
1429
1430 ata_sg_init(qc, sg, n_elem);
1431 qc->nbytes = buflen;
1432 }
1433
1434 qc->private_data = &wait;
1435 qc->complete_fn = ata_qc_complete_internal;
1436
1437 ata_qc_issue(qc);
1438
1439 spin_unlock_irqrestore(ap->lock, flags);
1440
1441 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1442
1443 ata_port_flush_task(ap);
1444
1445 if (!rc) {
1446 spin_lock_irqsave(ap->lock, flags);
1447
1448 /* We're racing with irq here. If we lose, the
1449 * following test prevents us from completing the qc
1450 * twice. If we win, the port is frozen and will be
1451 * cleaned up by ->post_internal_cmd().
1452 */
1453 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1454 qc->err_mask |= AC_ERR_TIMEOUT;
1455
1456 if (ap->ops->error_handler)
1457 ata_port_freeze(ap);
1458 else
1459 ata_qc_complete(qc);
1460
1461 if (ata_msg_warn(ap))
1462 ata_dev_printk(dev, KERN_WARNING,
1463 "qc timeout (cmd 0x%x)\n", command);
1464 }
1465
1466 spin_unlock_irqrestore(ap->lock, flags);
1467 }
1468
1469 /* do post_internal_cmd */
1470 if (ap->ops->post_internal_cmd)
1471 ap->ops->post_internal_cmd(qc);
1472
1473 /* perform minimal error analysis */
1474 if (qc->flags & ATA_QCFLAG_FAILED) {
1475 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1476 qc->err_mask |= AC_ERR_DEV;
1477
1478 if (!qc->err_mask)
1479 qc->err_mask |= AC_ERR_OTHER;
1480
1481 if (qc->err_mask & ~AC_ERR_OTHER)
1482 qc->err_mask &= ~AC_ERR_OTHER;
1483 }
1484
1485 /* finish up */
1486 spin_lock_irqsave(ap->lock, flags);
1487
1488 *tf = qc->result_tf;
1489 err_mask = qc->err_mask;
1490
1491 ata_qc_free(qc);
1492 ap->active_tag = preempted_tag;
1493 ap->sactive = preempted_sactive;
1494 ap->qc_active = preempted_qc_active;
1495
1496 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1497 * Until those drivers are fixed, we detect the condition
1498 * here, fail the command with AC_ERR_SYSTEM and reenable the
1499 * port.
1500 *
1501 * Note that this doesn't change any behavior as internal
1502 * command failure results in disabling the device in the
1503 * higher layer for LLDDs without new reset/EH callbacks.
1504 *
1505 * Kill the following code as soon as those drivers are fixed.
1506 */
1507 if (ap->flags & ATA_FLAG_DISABLED) {
1508 err_mask |= AC_ERR_SYSTEM;
1509 ata_port_probe(ap);
1510 }
1511
1512 spin_unlock_irqrestore(ap->lock, flags);
1513
1514 return err_mask;
1515 }
1516
1517 /**
1518 * ata_exec_internal - execute libata internal command
1519 * @dev: Device to which the command is sent
1520 * @tf: Taskfile registers for the command and the result
1521 * @cdb: CDB for packet command
1522 * @dma_dir: Data tranfer direction of the command
1523 * @buf: Data buffer of the command
1524 * @buflen: Length of data buffer
1525 *
1526 * Wrapper around ata_exec_internal_sg() which takes simple
1527 * buffer instead of sg list.
1528 *
1529 * LOCKING:
1530 * None. Should be called with kernel context, might sleep.
1531 *
1532 * RETURNS:
1533 * Zero on success, AC_ERR_* mask on failure
1534 */
1535 unsigned ata_exec_internal(struct ata_device *dev,
1536 struct ata_taskfile *tf, const u8 *cdb,
1537 int dma_dir, void *buf, unsigned int buflen)
1538 {
1539 struct scatterlist *psg = NULL, sg;
1540 unsigned int n_elem = 0;
1541
1542 if (dma_dir != DMA_NONE) {
1543 WARN_ON(!buf);
1544 sg_init_one(&sg, buf, buflen);
1545 psg = &sg;
1546 n_elem++;
1547 }
1548
1549 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1550 }
1551
1552 /**
1553 * ata_do_simple_cmd - execute simple internal command
1554 * @dev: Device to which the command is sent
1555 * @cmd: Opcode to execute
1556 *
1557 * Execute a 'simple' command, that only consists of the opcode
1558 * 'cmd' itself, without filling any other registers
1559 *
1560 * LOCKING:
1561 * Kernel thread context (may sleep).
1562 *
1563 * RETURNS:
1564 * Zero on success, AC_ERR_* mask on failure
1565 */
1566 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1567 {
1568 struct ata_taskfile tf;
1569
1570 ata_tf_init(dev, &tf);
1571
1572 tf.command = cmd;
1573 tf.flags |= ATA_TFLAG_DEVICE;
1574 tf.protocol = ATA_PROT_NODATA;
1575
1576 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1577 }
1578
1579 /**
1580 * ata_pio_need_iordy - check if iordy needed
1581 * @adev: ATA device
1582 *
1583 * Check if the current speed of the device requires IORDY. Used
1584 * by various controllers for chip configuration.
1585 */
1586
1587 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1588 {
1589 /* Controller doesn't support IORDY. Probably a pointless check
1590 as the caller should know this */
1591 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1592 return 0;
1593 /* PIO3 and higher it is mandatory */
1594 if (adev->pio_mode > XFER_PIO_2)
1595 return 1;
1596 /* We turn it on when possible */
1597 if (ata_id_has_iordy(adev->id))
1598 return 1;
1599 return 0;
1600 }
1601
1602 /**
1603 * ata_pio_mask_no_iordy - Return the non IORDY mask
1604 * @adev: ATA device
1605 *
1606 * Compute the highest mode possible if we are not using iordy. Return
1607 * -1 if no iordy mode is available.
1608 */
1609
1610 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1611 {
1612 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1613 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1614 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1615 /* Is the speed faster than the drive allows non IORDY ? */
1616 if (pio) {
1617 /* This is cycle times not frequency - watch the logic! */
1618 if (pio > 240) /* PIO2 is 240nS per cycle */
1619 return 3 << ATA_SHIFT_PIO;
1620 return 7 << ATA_SHIFT_PIO;
1621 }
1622 }
1623 return 3 << ATA_SHIFT_PIO;
1624 }
1625
1626 /**
1627 * ata_dev_read_id - Read ID data from the specified device
1628 * @dev: target device
1629 * @p_class: pointer to class of the target device (may be changed)
1630 * @flags: ATA_READID_* flags
1631 * @id: buffer to read IDENTIFY data into
1632 *
1633 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1634 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1635 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1636 * for pre-ATA4 drives.
1637 *
1638 * LOCKING:
1639 * Kernel thread context (may sleep)
1640 *
1641 * RETURNS:
1642 * 0 on success, -errno otherwise.
1643 */
1644 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1645 unsigned int flags, u16 *id)
1646 {
1647 struct ata_port *ap = dev->ap;
1648 unsigned int class = *p_class;
1649 struct ata_taskfile tf;
1650 unsigned int err_mask = 0;
1651 const char *reason;
1652 int tried_spinup = 0;
1653 int rc;
1654
1655 if (ata_msg_ctl(ap))
1656 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1657
1658 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1659 retry:
1660 ata_tf_init(dev, &tf);
1661
1662 switch (class) {
1663 case ATA_DEV_ATA:
1664 tf.command = ATA_CMD_ID_ATA;
1665 break;
1666 case ATA_DEV_ATAPI:
1667 tf.command = ATA_CMD_ID_ATAPI;
1668 break;
1669 default:
1670 rc = -ENODEV;
1671 reason = "unsupported class";
1672 goto err_out;
1673 }
1674
1675 tf.protocol = ATA_PROT_PIO;
1676
1677 /* Some devices choke if TF registers contain garbage. Make
1678 * sure those are properly initialized.
1679 */
1680 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1681
1682 /* Device presence detection is unreliable on some
1683 * controllers. Always poll IDENTIFY if available.
1684 */
1685 tf.flags |= ATA_TFLAG_POLLING;
1686
1687 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1688 id, sizeof(id[0]) * ATA_ID_WORDS);
1689 if (err_mask) {
1690 if (err_mask & AC_ERR_NODEV_HINT) {
1691 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1692 ap->print_id, dev->devno);
1693 return -ENOENT;
1694 }
1695
1696 rc = -EIO;
1697 reason = "I/O error";
1698 goto err_out;
1699 }
1700
1701 swap_buf_le16(id, ATA_ID_WORDS);
1702
1703 /* sanity check */
1704 rc = -EINVAL;
1705 reason = "device reports illegal type";
1706
1707 if (class == ATA_DEV_ATA) {
1708 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1709 goto err_out;
1710 } else {
1711 if (ata_id_is_ata(id))
1712 goto err_out;
1713 }
1714
1715 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1716 tried_spinup = 1;
1717 /*
1718 * Drive powered-up in standby mode, and requires a specific
1719 * SET_FEATURES spin-up subcommand before it will accept
1720 * anything other than the original IDENTIFY command.
1721 */
1722 ata_tf_init(dev, &tf);
1723 tf.command = ATA_CMD_SET_FEATURES;
1724 tf.feature = SETFEATURES_SPINUP;
1725 tf.protocol = ATA_PROT_NODATA;
1726 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1727 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1728 if (err_mask) {
1729 rc = -EIO;
1730 reason = "SPINUP failed";
1731 goto err_out;
1732 }
1733 /*
1734 * If the drive initially returned incomplete IDENTIFY info,
1735 * we now must reissue the IDENTIFY command.
1736 */
1737 if (id[2] == 0x37c8)
1738 goto retry;
1739 }
1740
1741 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1742 /*
1743 * The exact sequence expected by certain pre-ATA4 drives is:
1744 * SRST RESET
1745 * IDENTIFY
1746 * INITIALIZE DEVICE PARAMETERS
1747 * anything else..
1748 * Some drives were very specific about that exact sequence.
1749 */
1750 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1751 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1752 if (err_mask) {
1753 rc = -EIO;
1754 reason = "INIT_DEV_PARAMS failed";
1755 goto err_out;
1756 }
1757
1758 /* current CHS translation info (id[53-58]) might be
1759 * changed. reread the identify device info.
1760 */
1761 flags &= ~ATA_READID_POSTRESET;
1762 goto retry;
1763 }
1764 }
1765
1766 *p_class = class;
1767
1768 return 0;
1769
1770 err_out:
1771 if (ata_msg_warn(ap))
1772 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1773 "(%s, err_mask=0x%x)\n", reason, err_mask);
1774 return rc;
1775 }
1776
1777 static inline u8 ata_dev_knobble(struct ata_device *dev)
1778 {
1779 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1780 }
1781
1782 static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784 {
1785 struct ata_port *ap = dev->ap;
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
1792 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
1796 if (ap->flags & ATA_FLAG_NCQ) {
1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805 }
1806
1807 /**
1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
1813 *
1814 * LOCKING:
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
1819 */
1820 int ata_dev_configure(struct ata_device *dev)
1821 {
1822 struct ata_port *ap = dev->ap;
1823 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1824 const u16 *id = dev->id;
1825 unsigned int xfer_mask;
1826 char revbuf[7]; /* XYZ-99\0 */
1827 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1828 char modelbuf[ATA_ID_PROD_LEN+1];
1829 int rc;
1830
1831 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1832 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1833 __FUNCTION__);
1834 return 0;
1835 }
1836
1837 if (ata_msg_probe(ap))
1838 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1839
1840 /* set _SDD */
1841 rc = ata_acpi_push_id(ap, dev->devno);
1842 if (rc) {
1843 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1844 rc);
1845 }
1846
1847 /* retrieve and execute the ATA task file of _GTF */
1848 ata_acpi_exec_tfs(ap);
1849
1850 /* print device capabilities */
1851 if (ata_msg_probe(ap))
1852 ata_dev_printk(dev, KERN_DEBUG,
1853 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1854 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1855 __FUNCTION__,
1856 id[49], id[82], id[83], id[84],
1857 id[85], id[86], id[87], id[88]);
1858
1859 /* initialize to-be-configured parameters */
1860 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1861 dev->max_sectors = 0;
1862 dev->cdb_len = 0;
1863 dev->n_sectors = 0;
1864 dev->cylinders = 0;
1865 dev->heads = 0;
1866 dev->sectors = 0;
1867
1868 /*
1869 * common ATA, ATAPI feature tests
1870 */
1871
1872 /* find max transfer mode; for printk only */
1873 xfer_mask = ata_id_xfermask(id);
1874
1875 if (ata_msg_probe(ap))
1876 ata_dump_id(id);
1877
1878 /* ATA-specific feature tests */
1879 if (dev->class == ATA_DEV_ATA) {
1880 if (ata_id_is_cfa(id)) {
1881 if (id[162] & 1) /* CPRM may make this media unusable */
1882 ata_dev_printk(dev, KERN_WARNING,
1883 "supports DRM functions and may "
1884 "not be fully accessable.\n");
1885 snprintf(revbuf, 7, "CFA");
1886 }
1887 else
1888 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1889
1890 dev->n_sectors = ata_id_n_sectors(id);
1891 dev->n_sectors_boot = dev->n_sectors;
1892
1893 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1894 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1895 sizeof(fwrevbuf));
1896
1897 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1898 sizeof(modelbuf));
1899
1900 if (dev->id[59] & 0x100)
1901 dev->multi_count = dev->id[59] & 0xff;
1902
1903 if (ata_id_has_lba(id)) {
1904 const char *lba_desc;
1905 char ncq_desc[20];
1906
1907 lba_desc = "LBA";
1908 dev->flags |= ATA_DFLAG_LBA;
1909 if (ata_id_has_lba48(id)) {
1910 dev->flags |= ATA_DFLAG_LBA48;
1911 lba_desc = "LBA48";
1912
1913 if (dev->n_sectors >= (1UL << 28) &&
1914 ata_id_has_flush_ext(id))
1915 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1916 }
1917
1918 if (ata_id_hpa_enabled(dev->id))
1919 dev->n_sectors = ata_hpa_resize(dev);
1920
1921 /* config NCQ */
1922 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1923
1924 /* print device info to dmesg */
1925 if (ata_msg_drv(ap) && print_info) {
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%s: %s, %s, max %s\n",
1928 revbuf, modelbuf, fwrevbuf,
1929 ata_mode_string(xfer_mask));
1930 ata_dev_printk(dev, KERN_INFO,
1931 "%Lu sectors, multi %u: %s %s\n",
1932 (unsigned long long)dev->n_sectors,
1933 dev->multi_count, lba_desc, ncq_desc);
1934 }
1935 } else {
1936 /* CHS */
1937
1938 /* Default translation */
1939 dev->cylinders = id[1];
1940 dev->heads = id[3];
1941 dev->sectors = id[6];
1942
1943 if (ata_id_current_chs_valid(id)) {
1944 /* Current CHS translation is valid. */
1945 dev->cylinders = id[54];
1946 dev->heads = id[55];
1947 dev->sectors = id[56];
1948 }
1949
1950 /* print device info to dmesg */
1951 if (ata_msg_drv(ap) && print_info) {
1952 ata_dev_printk(dev, KERN_INFO,
1953 "%s: %s, %s, max %s\n",
1954 revbuf, modelbuf, fwrevbuf,
1955 ata_mode_string(xfer_mask));
1956 ata_dev_printk(dev, KERN_INFO,
1957 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1958 (unsigned long long)dev->n_sectors,
1959 dev->multi_count, dev->cylinders,
1960 dev->heads, dev->sectors);
1961 }
1962 }
1963
1964 dev->cdb_len = 16;
1965 }
1966
1967 /* ATAPI-specific feature tests */
1968 else if (dev->class == ATA_DEV_ATAPI) {
1969 char *cdb_intr_string = "";
1970
1971 rc = atapi_cdb_len(id);
1972 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1973 if (ata_msg_warn(ap))
1974 ata_dev_printk(dev, KERN_WARNING,
1975 "unsupported CDB len\n");
1976 rc = -EINVAL;
1977 goto err_out_nosup;
1978 }
1979 dev->cdb_len = (unsigned int) rc;
1980
1981 if (ata_id_cdb_intr(dev->id)) {
1982 dev->flags |= ATA_DFLAG_CDB_INTR;
1983 cdb_intr_string = ", CDB intr";
1984 }
1985
1986 /* print device info to dmesg */
1987 if (ata_msg_drv(ap) && print_info)
1988 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1989 ata_mode_string(xfer_mask),
1990 cdb_intr_string);
1991 }
1992
1993 /* determine max_sectors */
1994 dev->max_sectors = ATA_MAX_SECTORS;
1995 if (dev->flags & ATA_DFLAG_LBA48)
1996 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1997
1998 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1999 /* Let the user know. We don't want to disallow opens for
2000 rescue purposes, or in case the vendor is just a blithering
2001 idiot */
2002 if (print_info) {
2003 ata_dev_printk(dev, KERN_WARNING,
2004 "Drive reports diagnostics failure. This may indicate a drive\n");
2005 ata_dev_printk(dev, KERN_WARNING,
2006 "fault or invalid emulation. Contact drive vendor for information.\n");
2007 }
2008 }
2009
2010 /* limit bridge transfers to udma5, 200 sectors */
2011 if (ata_dev_knobble(dev)) {
2012 if (ata_msg_drv(ap) && print_info)
2013 ata_dev_printk(dev, KERN_INFO,
2014 "applying bridge limits\n");
2015 dev->udma_mask &= ATA_UDMA5;
2016 dev->max_sectors = ATA_MAX_SECTORS;
2017 }
2018
2019 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2020 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2021 dev->max_sectors);
2022
2023 /* limit ATAPI DMA to R/W commands only */
2024 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2025 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2026
2027 if (ap->ops->dev_config)
2028 ap->ops->dev_config(dev);
2029
2030 if (ata_msg_probe(ap))
2031 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2032 __FUNCTION__, ata_chk_status(ap));
2033 return 0;
2034
2035 err_out_nosup:
2036 if (ata_msg_probe(ap))
2037 ata_dev_printk(dev, KERN_DEBUG,
2038 "%s: EXIT, err\n", __FUNCTION__);
2039 return rc;
2040 }
2041
2042 /**
2043 * ata_cable_40wire - return 40 wire cable type
2044 * @ap: port
2045 *
2046 * Helper method for drivers which want to hardwire 40 wire cable
2047 * detection.
2048 */
2049
2050 int ata_cable_40wire(struct ata_port *ap)
2051 {
2052 return ATA_CBL_PATA40;
2053 }
2054
2055 /**
2056 * ata_cable_80wire - return 80 wire cable type
2057 * @ap: port
2058 *
2059 * Helper method for drivers which want to hardwire 80 wire cable
2060 * detection.
2061 */
2062
2063 int ata_cable_80wire(struct ata_port *ap)
2064 {
2065 return ATA_CBL_PATA80;
2066 }
2067
2068 /**
2069 * ata_cable_unknown - return unknown PATA cable.
2070 * @ap: port
2071 *
2072 * Helper method for drivers which have no PATA cable detection.
2073 */
2074
2075 int ata_cable_unknown(struct ata_port *ap)
2076 {
2077 return ATA_CBL_PATA_UNK;
2078 }
2079
2080 /**
2081 * ata_cable_sata - return SATA cable type
2082 * @ap: port
2083 *
2084 * Helper method for drivers which have SATA cables
2085 */
2086
2087 int ata_cable_sata(struct ata_port *ap)
2088 {
2089 return ATA_CBL_SATA;
2090 }
2091
2092 /**
2093 * ata_bus_probe - Reset and probe ATA bus
2094 * @ap: Bus to probe
2095 *
2096 * Master ATA bus probing function. Initiates a hardware-dependent
2097 * bus reset, then attempts to identify any devices found on
2098 * the bus.
2099 *
2100 * LOCKING:
2101 * PCI/etc. bus probe sem.
2102 *
2103 * RETURNS:
2104 * Zero on success, negative errno otherwise.
2105 */
2106
2107 int ata_bus_probe(struct ata_port *ap)
2108 {
2109 unsigned int classes[ATA_MAX_DEVICES];
2110 int tries[ATA_MAX_DEVICES];
2111 int i, rc;
2112 struct ata_device *dev;
2113
2114 ata_port_probe(ap);
2115
2116 for (i = 0; i < ATA_MAX_DEVICES; i++)
2117 tries[i] = ATA_PROBE_MAX_TRIES;
2118
2119 retry:
2120 /* reset and determine device classes */
2121 ap->ops->phy_reset(ap);
2122
2123 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2124 dev = &ap->device[i];
2125
2126 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2127 dev->class != ATA_DEV_UNKNOWN)
2128 classes[dev->devno] = dev->class;
2129 else
2130 classes[dev->devno] = ATA_DEV_NONE;
2131
2132 dev->class = ATA_DEV_UNKNOWN;
2133 }
2134
2135 ata_port_probe(ap);
2136
2137 /* after the reset the device state is PIO 0 and the controller
2138 state is undefined. Record the mode */
2139
2140 for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 ap->device[i].pio_mode = XFER_PIO_0;
2142
2143 /* read IDENTIFY page and configure devices. We have to do the identify
2144 specific sequence bass-ackwards so that PDIAG- is released by
2145 the slave device */
2146
2147 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2148 dev = &ap->device[i];
2149
2150 if (tries[i])
2151 dev->class = classes[i];
2152
2153 if (!ata_dev_enabled(dev))
2154 continue;
2155
2156 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2157 dev->id);
2158 if (rc)
2159 goto fail;
2160 }
2161
2162 /* Now ask for the cable type as PDIAG- should have been released */
2163 if (ap->ops->cable_detect)
2164 ap->cbl = ap->ops->cable_detect(ap);
2165
2166 /* After the identify sequence we can now set up the devices. We do
2167 this in the normal order so that the user doesn't get confused */
2168
2169 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2170 dev = &ap->device[i];
2171 if (!ata_dev_enabled(dev))
2172 continue;
2173
2174 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2175 rc = ata_dev_configure(dev);
2176 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2177 if (rc)
2178 goto fail;
2179 }
2180
2181 /* configure transfer mode */
2182 rc = ata_set_mode(ap, &dev);
2183 if (rc)
2184 goto fail;
2185
2186 for (i = 0; i < ATA_MAX_DEVICES; i++)
2187 if (ata_dev_enabled(&ap->device[i]))
2188 return 0;
2189
2190 /* no device present, disable port */
2191 ata_port_disable(ap);
2192 ap->ops->port_disable(ap);
2193 return -ENODEV;
2194
2195 fail:
2196 tries[dev->devno]--;
2197
2198 switch (rc) {
2199 case -EINVAL:
2200 /* eeek, something went very wrong, give up */
2201 tries[dev->devno] = 0;
2202 break;
2203
2204 case -ENODEV:
2205 /* give it just one more chance */
2206 tries[dev->devno] = min(tries[dev->devno], 1);
2207 case -EIO:
2208 if (tries[dev->devno] == 1) {
2209 /* This is the last chance, better to slow
2210 * down than lose it.
2211 */
2212 sata_down_spd_limit(ap);
2213 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2214 }
2215 }
2216
2217 if (!tries[dev->devno])
2218 ata_dev_disable(dev);
2219
2220 goto retry;
2221 }
2222
2223 /**
2224 * ata_port_probe - Mark port as enabled
2225 * @ap: Port for which we indicate enablement
2226 *
2227 * Modify @ap data structure such that the system
2228 * thinks that the entire port is enabled.
2229 *
2230 * LOCKING: host lock, or some other form of
2231 * serialization.
2232 */
2233
2234 void ata_port_probe(struct ata_port *ap)
2235 {
2236 ap->flags &= ~ATA_FLAG_DISABLED;
2237 }
2238
2239 /**
2240 * sata_print_link_status - Print SATA link status
2241 * @ap: SATA port to printk link status about
2242 *
2243 * This function prints link speed and status of a SATA link.
2244 *
2245 * LOCKING:
2246 * None.
2247 */
2248 void sata_print_link_status(struct ata_port *ap)
2249 {
2250 u32 sstatus, scontrol, tmp;
2251
2252 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2253 return;
2254 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2255
2256 if (ata_port_online(ap)) {
2257 tmp = (sstatus >> 4) & 0xf;
2258 ata_port_printk(ap, KERN_INFO,
2259 "SATA link up %s (SStatus %X SControl %X)\n",
2260 sata_spd_string(tmp), sstatus, scontrol);
2261 } else {
2262 ata_port_printk(ap, KERN_INFO,
2263 "SATA link down (SStatus %X SControl %X)\n",
2264 sstatus, scontrol);
2265 }
2266 }
2267
2268 /**
2269 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2270 * @ap: SATA port associated with target SATA PHY.
2271 *
2272 * This function issues commands to standard SATA Sxxx
2273 * PHY registers, to wake up the phy (and device), and
2274 * clear any reset condition.
2275 *
2276 * LOCKING:
2277 * PCI/etc. bus probe sem.
2278 *
2279 */
2280 void __sata_phy_reset(struct ata_port *ap)
2281 {
2282 u32 sstatus;
2283 unsigned long timeout = jiffies + (HZ * 5);
2284
2285 if (ap->flags & ATA_FLAG_SATA_RESET) {
2286 /* issue phy wake/reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2288 /* Couldn't find anything in SATA I/II specs, but
2289 * AHCI-1.1 10.4.2 says at least 1 ms. */
2290 mdelay(1);
2291 }
2292 /* phy wake/clear reset */
2293 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2294
2295 /* wait for phy to become ready, if necessary */
2296 do {
2297 msleep(200);
2298 sata_scr_read(ap, SCR_STATUS, &sstatus);
2299 if ((sstatus & 0xf) != 1)
2300 break;
2301 } while (time_before(jiffies, timeout));
2302
2303 /* print link status */
2304 sata_print_link_status(ap);
2305
2306 /* TODO: phy layer with polling, timeouts, etc. */
2307 if (!ata_port_offline(ap))
2308 ata_port_probe(ap);
2309 else
2310 ata_port_disable(ap);
2311
2312 if (ap->flags & ATA_FLAG_DISABLED)
2313 return;
2314
2315 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2316 ata_port_disable(ap);
2317 return;
2318 }
2319
2320 ap->cbl = ATA_CBL_SATA;
2321 }
2322
2323 /**
2324 * sata_phy_reset - Reset SATA bus.
2325 * @ap: SATA port associated with target SATA PHY.
2326 *
2327 * This function resets the SATA bus, and then probes
2328 * the bus for devices.
2329 *
2330 * LOCKING:
2331 * PCI/etc. bus probe sem.
2332 *
2333 */
2334 void sata_phy_reset(struct ata_port *ap)
2335 {
2336 __sata_phy_reset(ap);
2337 if (ap->flags & ATA_FLAG_DISABLED)
2338 return;
2339 ata_bus_reset(ap);
2340 }
2341
2342 /**
2343 * ata_dev_pair - return other device on cable
2344 * @adev: device
2345 *
2346 * Obtain the other device on the same cable, or if none is
2347 * present NULL is returned
2348 */
2349
2350 struct ata_device *ata_dev_pair(struct ata_device *adev)
2351 {
2352 struct ata_port *ap = adev->ap;
2353 struct ata_device *pair = &ap->device[1 - adev->devno];
2354 if (!ata_dev_enabled(pair))
2355 return NULL;
2356 return pair;
2357 }
2358
2359 /**
2360 * ata_port_disable - Disable port.
2361 * @ap: Port to be disabled.
2362 *
2363 * Modify @ap data structure such that the system
2364 * thinks that the entire port is disabled, and should
2365 * never attempt to probe or communicate with devices
2366 * on this port.
2367 *
2368 * LOCKING: host lock, or some other form of
2369 * serialization.
2370 */
2371
2372 void ata_port_disable(struct ata_port *ap)
2373 {
2374 ap->device[0].class = ATA_DEV_NONE;
2375 ap->device[1].class = ATA_DEV_NONE;
2376 ap->flags |= ATA_FLAG_DISABLED;
2377 }
2378
2379 /**
2380 * sata_down_spd_limit - adjust SATA spd limit downward
2381 * @ap: Port to adjust SATA spd limit for
2382 *
2383 * Adjust SATA spd limit of @ap downward. Note that this
2384 * function only adjusts the limit. The change must be applied
2385 * using sata_set_spd().
2386 *
2387 * LOCKING:
2388 * Inherited from caller.
2389 *
2390 * RETURNS:
2391 * 0 on success, negative errno on failure
2392 */
2393 int sata_down_spd_limit(struct ata_port *ap)
2394 {
2395 u32 sstatus, spd, mask;
2396 int rc, highbit;
2397
2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2399 if (rc)
2400 return rc;
2401
2402 mask = ap->sata_spd_limit;
2403 if (mask <= 1)
2404 return -EINVAL;
2405 highbit = fls(mask) - 1;
2406 mask &= ~(1 << highbit);
2407
2408 spd = (sstatus >> 4) & 0xf;
2409 if (spd <= 1)
2410 return -EINVAL;
2411 spd--;
2412 mask &= (1 << spd) - 1;
2413 if (!mask)
2414 return -EINVAL;
2415
2416 ap->sata_spd_limit = mask;
2417
2418 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2419 sata_spd_string(fls(mask)));
2420
2421 return 0;
2422 }
2423
2424 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2425 {
2426 u32 spd, limit;
2427
2428 if (ap->sata_spd_limit == UINT_MAX)
2429 limit = 0;
2430 else
2431 limit = fls(ap->sata_spd_limit);
2432
2433 spd = (*scontrol >> 4) & 0xf;
2434 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2435
2436 return spd != limit;
2437 }
2438
2439 /**
2440 * sata_set_spd_needed - is SATA spd configuration needed
2441 * @ap: Port in question
2442 *
2443 * Test whether the spd limit in SControl matches
2444 * @ap->sata_spd_limit. This function is used to determine
2445 * whether hardreset is necessary to apply SATA spd
2446 * configuration.
2447 *
2448 * LOCKING:
2449 * Inherited from caller.
2450 *
2451 * RETURNS:
2452 * 1 if SATA spd configuration is needed, 0 otherwise.
2453 */
2454 int sata_set_spd_needed(struct ata_port *ap)
2455 {
2456 u32 scontrol;
2457
2458 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2459 return 0;
2460
2461 return __sata_set_spd_needed(ap, &scontrol);
2462 }
2463
2464 /**
2465 * sata_set_spd - set SATA spd according to spd limit
2466 * @ap: Port to set SATA spd for
2467 *
2468 * Set SATA spd of @ap according to sata_spd_limit.
2469 *
2470 * LOCKING:
2471 * Inherited from caller.
2472 *
2473 * RETURNS:
2474 * 0 if spd doesn't need to be changed, 1 if spd has been
2475 * changed. Negative errno if SCR registers are inaccessible.
2476 */
2477 int sata_set_spd(struct ata_port *ap)
2478 {
2479 u32 scontrol;
2480 int rc;
2481
2482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2483 return rc;
2484
2485 if (!__sata_set_spd_needed(ap, &scontrol))
2486 return 0;
2487
2488 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2489 return rc;
2490
2491 return 1;
2492 }
2493
2494 /*
2495 * This mode timing computation functionality is ported over from
2496 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2497 */
2498 /*
2499 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2500 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2501 * for UDMA6, which is currently supported only by Maxtor drives.
2502 *
2503 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2504 */
2505
2506 static const struct ata_timing ata_timing[] = {
2507
2508 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2509 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2510 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2511 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2512
2513 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2514 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2515 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2516 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2517 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2518
2519 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2520
2521 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2522 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2523 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2524
2525 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2526 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2527 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2528
2529 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2530 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2531 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2532 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2533
2534 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2535 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2536 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2537
2538 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2539
2540 { 0xFF }
2541 };
2542
2543 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2544 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2545
2546 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2547 {
2548 q->setup = EZ(t->setup * 1000, T);
2549 q->act8b = EZ(t->act8b * 1000, T);
2550 q->rec8b = EZ(t->rec8b * 1000, T);
2551 q->cyc8b = EZ(t->cyc8b * 1000, T);
2552 q->active = EZ(t->active * 1000, T);
2553 q->recover = EZ(t->recover * 1000, T);
2554 q->cycle = EZ(t->cycle * 1000, T);
2555 q->udma = EZ(t->udma * 1000, UT);
2556 }
2557
2558 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2559 struct ata_timing *m, unsigned int what)
2560 {
2561 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2562 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2563 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2564 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2565 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2566 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2567 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2568 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2569 }
2570
2571 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2572 {
2573 const struct ata_timing *t;
2574
2575 for (t = ata_timing; t->mode != speed; t++)
2576 if (t->mode == 0xFF)
2577 return NULL;
2578 return t;
2579 }
2580
2581 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2582 struct ata_timing *t, int T, int UT)
2583 {
2584 const struct ata_timing *s;
2585 struct ata_timing p;
2586
2587 /*
2588 * Find the mode.
2589 */
2590
2591 if (!(s = ata_timing_find_mode(speed)))
2592 return -EINVAL;
2593
2594 memcpy(t, s, sizeof(*s));
2595
2596 /*
2597 * If the drive is an EIDE drive, it can tell us it needs extended
2598 * PIO/MW_DMA cycle timing.
2599 */
2600
2601 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2602 memset(&p, 0, sizeof(p));
2603 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2604 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2605 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2606 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2607 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2608 }
2609 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2610 }
2611
2612 /*
2613 * Convert the timing to bus clock counts.
2614 */
2615
2616 ata_timing_quantize(t, t, T, UT);
2617
2618 /*
2619 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2620 * S.M.A.R.T * and some other commands. We have to ensure that the
2621 * DMA cycle timing is slower/equal than the fastest PIO timing.
2622 */
2623
2624 if (speed > XFER_PIO_6) {
2625 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2626 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2627 }
2628
2629 /*
2630 * Lengthen active & recovery time so that cycle time is correct.
2631 */
2632
2633 if (t->act8b + t->rec8b < t->cyc8b) {
2634 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2635 t->rec8b = t->cyc8b - t->act8b;
2636 }
2637
2638 if (t->active + t->recover < t->cycle) {
2639 t->active += (t->cycle - (t->active + t->recover)) / 2;
2640 t->recover = t->cycle - t->active;
2641 }
2642
2643 return 0;
2644 }
2645
2646 /**
2647 * ata_down_xfermask_limit - adjust dev xfer masks downward
2648 * @dev: Device to adjust xfer masks
2649 * @sel: ATA_DNXFER_* selector
2650 *
2651 * Adjust xfer masks of @dev downward. Note that this function
2652 * does not apply the change. Invoking ata_set_mode() afterwards
2653 * will apply the limit.
2654 *
2655 * LOCKING:
2656 * Inherited from caller.
2657 *
2658 * RETURNS:
2659 * 0 on success, negative errno on failure
2660 */
2661 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2662 {
2663 char buf[32];
2664 unsigned int orig_mask, xfer_mask;
2665 unsigned int pio_mask, mwdma_mask, udma_mask;
2666 int quiet, highbit;
2667
2668 quiet = !!(sel & ATA_DNXFER_QUIET);
2669 sel &= ~ATA_DNXFER_QUIET;
2670
2671 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2672 dev->mwdma_mask,
2673 dev->udma_mask);
2674 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2675
2676 switch (sel) {
2677 case ATA_DNXFER_PIO:
2678 highbit = fls(pio_mask) - 1;
2679 pio_mask &= ~(1 << highbit);
2680 break;
2681
2682 case ATA_DNXFER_DMA:
2683 if (udma_mask) {
2684 highbit = fls(udma_mask) - 1;
2685 udma_mask &= ~(1 << highbit);
2686 if (!udma_mask)
2687 return -ENOENT;
2688 } else if (mwdma_mask) {
2689 highbit = fls(mwdma_mask) - 1;
2690 mwdma_mask &= ~(1 << highbit);
2691 if (!mwdma_mask)
2692 return -ENOENT;
2693 }
2694 break;
2695
2696 case ATA_DNXFER_40C:
2697 udma_mask &= ATA_UDMA_MASK_40C;
2698 break;
2699
2700 case ATA_DNXFER_FORCE_PIO0:
2701 pio_mask &= 1;
2702 case ATA_DNXFER_FORCE_PIO:
2703 mwdma_mask = 0;
2704 udma_mask = 0;
2705 break;
2706
2707 default:
2708 BUG();
2709 }
2710
2711 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2712
2713 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2714 return -ENOENT;
2715
2716 if (!quiet) {
2717 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2718 snprintf(buf, sizeof(buf), "%s:%s",
2719 ata_mode_string(xfer_mask),
2720 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2721 else
2722 snprintf(buf, sizeof(buf), "%s",
2723 ata_mode_string(xfer_mask));
2724
2725 ata_dev_printk(dev, KERN_WARNING,
2726 "limiting speed to %s\n", buf);
2727 }
2728
2729 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2730 &dev->udma_mask);
2731
2732 return 0;
2733 }
2734
2735 static int ata_dev_set_mode(struct ata_device *dev)
2736 {
2737 struct ata_eh_context *ehc = &dev->ap->eh_context;
2738 unsigned int err_mask;
2739 int rc;
2740
2741 dev->flags &= ~ATA_DFLAG_PIO;
2742 if (dev->xfer_shift == ATA_SHIFT_PIO)
2743 dev->flags |= ATA_DFLAG_PIO;
2744
2745 err_mask = ata_dev_set_xfermode(dev);
2746 /* Old CFA may refuse this command, which is just fine */
2747 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2748 err_mask &= ~AC_ERR_DEV;
2749
2750 if (err_mask) {
2751 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2752 "(err_mask=0x%x)\n", err_mask);
2753 return -EIO;
2754 }
2755
2756 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2757 rc = ata_dev_revalidate(dev, 0);
2758 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2759 if (rc)
2760 return rc;
2761
2762 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2763 dev->xfer_shift, (int)dev->xfer_mode);
2764
2765 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2766 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2767 return 0;
2768 }
2769
2770 /**
2771 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2772 * @ap: port on which timings will be programmed
2773 * @r_failed_dev: out paramter for failed device
2774 *
2775 * Standard implementation of the function used to tune and set
2776 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2777 * ata_dev_set_mode() fails, pointer to the failing device is
2778 * returned in @r_failed_dev.
2779 *
2780 * LOCKING:
2781 * PCI/etc. bus probe sem.
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786
2787 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2788 {
2789 struct ata_device *dev;
2790 int i, rc = 0, used_dma = 0, found = 0;
2791
2792
2793 /* step 1: calculate xfer_mask */
2794 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2795 unsigned int pio_mask, dma_mask;
2796
2797 dev = &ap->device[i];
2798
2799 if (!ata_dev_enabled(dev))
2800 continue;
2801
2802 ata_dev_xfermask(dev);
2803
2804 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2805 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2806 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2807 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2808
2809 found = 1;
2810 if (dev->dma_mode)
2811 used_dma = 1;
2812 }
2813 if (!found)
2814 goto out;
2815
2816 /* step 2: always set host PIO timings */
2817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2818 dev = &ap->device[i];
2819 if (!ata_dev_enabled(dev))
2820 continue;
2821
2822 if (!dev->pio_mode) {
2823 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2824 rc = -EINVAL;
2825 goto out;
2826 }
2827
2828 dev->xfer_mode = dev->pio_mode;
2829 dev->xfer_shift = ATA_SHIFT_PIO;
2830 if (ap->ops->set_piomode)
2831 ap->ops->set_piomode(ap, dev);
2832 }
2833
2834 /* step 3: set host DMA timings */
2835 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2836 dev = &ap->device[i];
2837
2838 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2839 continue;
2840
2841 dev->xfer_mode = dev->dma_mode;
2842 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2843 if (ap->ops->set_dmamode)
2844 ap->ops->set_dmamode(ap, dev);
2845 }
2846
2847 /* step 4: update devices' xfer mode */
2848 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2849 dev = &ap->device[i];
2850
2851 /* don't update suspended devices' xfer mode */
2852 if (!ata_dev_ready(dev))
2853 continue;
2854
2855 rc = ata_dev_set_mode(dev);
2856 if (rc)
2857 goto out;
2858 }
2859
2860 /* Record simplex status. If we selected DMA then the other
2861 * host channels are not permitted to do so.
2862 */
2863 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2864 ap->host->simplex_claimed = ap;
2865
2866 /* step5: chip specific finalisation */
2867 if (ap->ops->post_set_mode)
2868 ap->ops->post_set_mode(ap);
2869 out:
2870 if (rc)
2871 *r_failed_dev = dev;
2872 return rc;
2873 }
2874
2875 /**
2876 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2877 * @ap: port on which timings will be programmed
2878 * @r_failed_dev: out paramter for failed device
2879 *
2880 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2881 * ata_set_mode() fails, pointer to the failing device is
2882 * returned in @r_failed_dev.
2883 *
2884 * LOCKING:
2885 * PCI/etc. bus probe sem.
2886 *
2887 * RETURNS:
2888 * 0 on success, negative errno otherwise
2889 */
2890 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2891 {
2892 /* has private set_mode? */
2893 if (ap->ops->set_mode)
2894 return ap->ops->set_mode(ap, r_failed_dev);
2895 return ata_do_set_mode(ap, r_failed_dev);
2896 }
2897
2898 /**
2899 * ata_tf_to_host - issue ATA taskfile to host controller
2900 * @ap: port to which command is being issued
2901 * @tf: ATA taskfile register set
2902 *
2903 * Issues ATA taskfile register set to ATA host controller,
2904 * with proper synchronization with interrupt handler and
2905 * other threads.
2906 *
2907 * LOCKING:
2908 * spin_lock_irqsave(host lock)
2909 */
2910
2911 static inline void ata_tf_to_host(struct ata_port *ap,
2912 const struct ata_taskfile *tf)
2913 {
2914 ap->ops->tf_load(ap, tf);
2915 ap->ops->exec_command(ap, tf);
2916 }
2917
2918 /**
2919 * ata_busy_sleep - sleep until BSY clears, or timeout
2920 * @ap: port containing status register to be polled
2921 * @tmout_pat: impatience timeout
2922 * @tmout: overall timeout
2923 *
2924 * Sleep until ATA Status register bit BSY clears,
2925 * or a timeout occurs.
2926 *
2927 * LOCKING:
2928 * Kernel thread context (may sleep).
2929 *
2930 * RETURNS:
2931 * 0 on success, -errno otherwise.
2932 */
2933 int ata_busy_sleep(struct ata_port *ap,
2934 unsigned long tmout_pat, unsigned long tmout)
2935 {
2936 unsigned long timer_start, timeout;
2937 u8 status;
2938
2939 status = ata_busy_wait(ap, ATA_BUSY, 300);
2940 timer_start = jiffies;
2941 timeout = timer_start + tmout_pat;
2942 while (status != 0xff && (status & ATA_BUSY) &&
2943 time_before(jiffies, timeout)) {
2944 msleep(50);
2945 status = ata_busy_wait(ap, ATA_BUSY, 3);
2946 }
2947
2948 if (status != 0xff && (status & ATA_BUSY))
2949 ata_port_printk(ap, KERN_WARNING,
2950 "port is slow to respond, please be patient "
2951 "(Status 0x%x)\n", status);
2952
2953 timeout = timer_start + tmout;
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
2956 msleep(50);
2957 status = ata_chk_status(ap);
2958 }
2959
2960 if (status == 0xff)
2961 return -ENODEV;
2962
2963 if (status & ATA_BUSY) {
2964 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2965 "(%lu secs, Status 0x%x)\n",
2966 tmout / HZ, status);
2967 return -EBUSY;
2968 }
2969
2970 return 0;
2971 }
2972
2973 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2974 {
2975 struct ata_ioports *ioaddr = &ap->ioaddr;
2976 unsigned int dev0 = devmask & (1 << 0);
2977 unsigned int dev1 = devmask & (1 << 1);
2978 unsigned long timeout;
2979
2980 /* if device 0 was found in ata_devchk, wait for its
2981 * BSY bit to clear
2982 */
2983 if (dev0)
2984 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2985
2986 /* if device 1 was found in ata_devchk, wait for
2987 * register access, then wait for BSY to clear
2988 */
2989 timeout = jiffies + ATA_TMOUT_BOOT;
2990 while (dev1) {
2991 u8 nsect, lbal;
2992
2993 ap->ops->dev_select(ap, 1);
2994 nsect = ioread8(ioaddr->nsect_addr);
2995 lbal = ioread8(ioaddr->lbal_addr);
2996 if ((nsect == 1) && (lbal == 1))
2997 break;
2998 if (time_after(jiffies, timeout)) {
2999 dev1 = 0;
3000 break;
3001 }
3002 msleep(50); /* give drive a breather */
3003 }
3004 if (dev1)
3005 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3006
3007 /* is all this really necessary? */
3008 ap->ops->dev_select(ap, 0);
3009 if (dev1)
3010 ap->ops->dev_select(ap, 1);
3011 if (dev0)
3012 ap->ops->dev_select(ap, 0);
3013 }
3014
3015 static unsigned int ata_bus_softreset(struct ata_port *ap,
3016 unsigned int devmask)
3017 {
3018 struct ata_ioports *ioaddr = &ap->ioaddr;
3019
3020 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3021
3022 /* software reset. causes dev0 to be selected */
3023 iowrite8(ap->ctl, ioaddr->ctl_addr);
3024 udelay(20); /* FIXME: flush */
3025 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3026 udelay(20); /* FIXME: flush */
3027 iowrite8(ap->ctl, ioaddr->ctl_addr);
3028
3029 /* spec mandates ">= 2ms" before checking status.
3030 * We wait 150ms, because that was the magic delay used for
3031 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3032 * between when the ATA command register is written, and then
3033 * status is checked. Because waiting for "a while" before
3034 * checking status is fine, post SRST, we perform this magic
3035 * delay here as well.
3036 *
3037 * Old drivers/ide uses the 2mS rule and then waits for ready
3038 */
3039 msleep(150);
3040
3041 /* Before we perform post reset processing we want to see if
3042 * the bus shows 0xFF because the odd clown forgets the D7
3043 * pulldown resistor.
3044 */
3045 if (ata_check_status(ap) == 0xFF)
3046 return 0;
3047
3048 ata_bus_post_reset(ap, devmask);
3049
3050 return 0;
3051 }
3052
3053 /**
3054 * ata_bus_reset - reset host port and associated ATA channel
3055 * @ap: port to reset
3056 *
3057 * This is typically the first time we actually start issuing
3058 * commands to the ATA channel. We wait for BSY to clear, then
3059 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3060 * result. Determine what devices, if any, are on the channel
3061 * by looking at the device 0/1 error register. Look at the signature
3062 * stored in each device's taskfile registers, to determine if
3063 * the device is ATA or ATAPI.
3064 *
3065 * LOCKING:
3066 * PCI/etc. bus probe sem.
3067 * Obtains host lock.
3068 *
3069 * SIDE EFFECTS:
3070 * Sets ATA_FLAG_DISABLED if bus reset fails.
3071 */
3072
3073 void ata_bus_reset(struct ata_port *ap)
3074 {
3075 struct ata_ioports *ioaddr = &ap->ioaddr;
3076 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3077 u8 err;
3078 unsigned int dev0, dev1 = 0, devmask = 0;
3079
3080 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3081
3082 /* determine if device 0/1 are present */
3083 if (ap->flags & ATA_FLAG_SATA_RESET)
3084 dev0 = 1;
3085 else {
3086 dev0 = ata_devchk(ap, 0);
3087 if (slave_possible)
3088 dev1 = ata_devchk(ap, 1);
3089 }
3090
3091 if (dev0)
3092 devmask |= (1 << 0);
3093 if (dev1)
3094 devmask |= (1 << 1);
3095
3096 /* select device 0 again */
3097 ap->ops->dev_select(ap, 0);
3098
3099 /* issue bus reset */
3100 if (ap->flags & ATA_FLAG_SRST)
3101 if (ata_bus_softreset(ap, devmask))
3102 goto err_out;
3103
3104 /*
3105 * determine by signature whether we have ATA or ATAPI devices
3106 */
3107 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3108 if ((slave_possible) && (err != 0x81))
3109 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3110
3111 /* re-enable interrupts */
3112 ap->ops->irq_on(ap);
3113
3114 /* is double-select really necessary? */
3115 if (ap->device[1].class != ATA_DEV_NONE)
3116 ap->ops->dev_select(ap, 1);
3117 if (ap->device[0].class != ATA_DEV_NONE)
3118 ap->ops->dev_select(ap, 0);
3119
3120 /* if no devices were detected, disable this port */
3121 if ((ap->device[0].class == ATA_DEV_NONE) &&
3122 (ap->device[1].class == ATA_DEV_NONE))
3123 goto err_out;
3124
3125 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3126 /* set up device control for ATA_FLAG_SATA_RESET */
3127 iowrite8(ap->ctl, ioaddr->ctl_addr);
3128 }
3129
3130 DPRINTK("EXIT\n");
3131 return;
3132
3133 err_out:
3134 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3135 ap->ops->port_disable(ap);
3136
3137 DPRINTK("EXIT\n");
3138 }
3139
3140 /**
3141 * sata_phy_debounce - debounce SATA phy status
3142 * @ap: ATA port to debounce SATA phy status for
3143 * @params: timing parameters { interval, duratinon, timeout } in msec
3144 *
3145 * Make sure SStatus of @ap reaches stable state, determined by
3146 * holding the same value where DET is not 1 for @duration polled
3147 * every @interval, before @timeout. Timeout constraints the
3148 * beginning of the stable state. Because, after hot unplugging,
3149 * DET gets stuck at 1 on some controllers, this functions waits
3150 * until timeout then returns 0 if DET is stable at 1.
3151 *
3152 * LOCKING:
3153 * Kernel thread context (may sleep)
3154 *
3155 * RETURNS:
3156 * 0 on success, -errno on failure.
3157 */
3158 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
3159 {
3160 unsigned long interval_msec = params[0];
3161 unsigned long duration = params[1] * HZ / 1000;
3162 unsigned long timeout = jiffies + params[2] * HZ / 1000;
3163 unsigned long last_jiffies;
3164 u32 last, cur;
3165 int rc;
3166
3167 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3168 return rc;
3169 cur &= 0xf;
3170
3171 last = cur;
3172 last_jiffies = jiffies;
3173
3174 while (1) {
3175 msleep(interval_msec);
3176 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3177 return rc;
3178 cur &= 0xf;
3179
3180 /* DET stable? */
3181 if (cur == last) {
3182 if (cur == 1 && time_before(jiffies, timeout))
3183 continue;
3184 if (time_after(jiffies, last_jiffies + duration))
3185 return 0;
3186 continue;
3187 }
3188
3189 /* unstable, start over */
3190 last = cur;
3191 last_jiffies = jiffies;
3192
3193 /* check timeout */
3194 if (time_after(jiffies, timeout))
3195 return -EBUSY;
3196 }
3197 }
3198
3199 /**
3200 * sata_phy_resume - resume SATA phy
3201 * @ap: ATA port to resume SATA phy for
3202 * @params: timing parameters { interval, duratinon, timeout } in msec
3203 *
3204 * Resume SATA phy of @ap and debounce it.
3205 *
3206 * LOCKING:
3207 * Kernel thread context (may sleep)
3208 *
3209 * RETURNS:
3210 * 0 on success, -errno on failure.
3211 */
3212 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
3213 {
3214 u32 scontrol;
3215 int rc;
3216
3217 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3218 return rc;
3219
3220 scontrol = (scontrol & 0x0f0) | 0x300;
3221
3222 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3223 return rc;
3224
3225 /* Some PHYs react badly if SStatus is pounded immediately
3226 * after resuming. Delay 200ms before debouncing.
3227 */
3228 msleep(200);
3229
3230 return sata_phy_debounce(ap, params);
3231 }
3232
3233 static void ata_wait_spinup(struct ata_port *ap)
3234 {
3235 struct ata_eh_context *ehc = &ap->eh_context;
3236 unsigned long end, secs;
3237 int rc;
3238
3239 /* first, debounce phy if SATA */
3240 if (ap->cbl == ATA_CBL_SATA) {
3241 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
3242
3243 /* if debounced successfully and offline, no need to wait */
3244 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3245 return;
3246 }
3247
3248 /* okay, let's give the drive time to spin up */
3249 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3250 secs = ((end - jiffies) + HZ - 1) / HZ;
3251
3252 if (time_after(jiffies, end))
3253 return;
3254
3255 if (secs > 5)
3256 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3257 "(%lu secs)\n", secs);
3258
3259 schedule_timeout_uninterruptible(end - jiffies);
3260 }
3261
3262 /**
3263 * ata_std_prereset - prepare for reset
3264 * @ap: ATA port to be reset
3265 *
3266 * @ap is about to be reset. Initialize it.
3267 *
3268 * LOCKING:
3269 * Kernel thread context (may sleep)
3270 *
3271 * RETURNS:
3272 * 0 on success, -errno otherwise.
3273 */
3274 int ata_std_prereset(struct ata_port *ap)
3275 {
3276 struct ata_eh_context *ehc = &ap->eh_context;
3277 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3278 int rc;
3279
3280 /* handle link resume & hotplug spinup */
3281 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3282 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3283 ehc->i.action |= ATA_EH_HARDRESET;
3284
3285 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3286 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3287 ata_wait_spinup(ap);
3288
3289 /* if we're about to do hardreset, nothing more to do */
3290 if (ehc->i.action & ATA_EH_HARDRESET)
3291 return 0;
3292
3293 /* if SATA, resume phy */
3294 if (ap->cbl == ATA_CBL_SATA) {
3295 rc = sata_phy_resume(ap, timing);
3296 if (rc && rc != -EOPNOTSUPP) {
3297 /* phy resume failed */
3298 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3299 "link for reset (errno=%d)\n", rc);
3300 return rc;
3301 }
3302 }
3303
3304 /* Wait for !BSY if the controller can wait for the first D2H
3305 * Reg FIS and we don't know that no device is attached.
3306 */
3307 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3308 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3309
3310 return 0;
3311 }
3312
3313 /**
3314 * ata_std_softreset - reset host port via ATA SRST
3315 * @ap: port to reset
3316 * @classes: resulting classes of attached devices
3317 *
3318 * Reset host port using ATA SRST.
3319 *
3320 * LOCKING:
3321 * Kernel thread context (may sleep)
3322 *
3323 * RETURNS:
3324 * 0 on success, -errno otherwise.
3325 */
3326 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3327 {
3328 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3329 unsigned int devmask = 0, err_mask;
3330 u8 err;
3331
3332 DPRINTK("ENTER\n");
3333
3334 if (ata_port_offline(ap)) {
3335 classes[0] = ATA_DEV_NONE;
3336 goto out;
3337 }
3338
3339 /* determine if device 0/1 are present */
3340 if (ata_devchk(ap, 0))
3341 devmask |= (1 << 0);
3342 if (slave_possible && ata_devchk(ap, 1))
3343 devmask |= (1 << 1);
3344
3345 /* select device 0 again */
3346 ap->ops->dev_select(ap, 0);
3347
3348 /* issue bus reset */
3349 DPRINTK("about to softreset, devmask=%x\n", devmask);
3350 err_mask = ata_bus_softreset(ap, devmask);
3351 if (err_mask) {
3352 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3353 err_mask);
3354 return -EIO;
3355 }
3356
3357 /* determine by signature whether we have ATA or ATAPI devices */
3358 classes[0] = ata_dev_try_classify(ap, 0, &err);
3359 if (slave_possible && err != 0x81)
3360 classes[1] = ata_dev_try_classify(ap, 1, &err);
3361
3362 out:
3363 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3364 return 0;
3365 }
3366
3367 /**
3368 * sata_port_hardreset - reset port via SATA phy reset
3369 * @ap: port to reset
3370 * @timing: timing parameters { interval, duratinon, timeout } in msec
3371 *
3372 * SATA phy-reset host port using DET bits of SControl register.
3373 *
3374 * LOCKING:
3375 * Kernel thread context (may sleep)
3376 *
3377 * RETURNS:
3378 * 0 on success, -errno otherwise.
3379 */
3380 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3381 {
3382 u32 scontrol;
3383 int rc;
3384
3385 DPRINTK("ENTER\n");
3386
3387 if (sata_set_spd_needed(ap)) {
3388 /* SATA spec says nothing about how to reconfigure
3389 * spd. To be on the safe side, turn off phy during
3390 * reconfiguration. This works for at least ICH7 AHCI
3391 * and Sil3124.
3392 */
3393 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3394 goto out;
3395
3396 scontrol = (scontrol & 0x0f0) | 0x304;
3397
3398 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3399 goto out;
3400
3401 sata_set_spd(ap);
3402 }
3403
3404 /* issue phy wake/reset */
3405 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3406 goto out;
3407
3408 scontrol = (scontrol & 0x0f0) | 0x301;
3409
3410 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3411 goto out;
3412
3413 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3414 * 10.4.2 says at least 1 ms.
3415 */
3416 msleep(1);
3417
3418 /* bring phy back */
3419 rc = sata_phy_resume(ap, timing);
3420 out:
3421 DPRINTK("EXIT, rc=%d\n", rc);
3422 return rc;
3423 }
3424
3425 /**
3426 * sata_std_hardreset - reset host port via SATA phy reset
3427 * @ap: port to reset
3428 * @class: resulting class of attached device
3429 *
3430 * SATA phy-reset host port using DET bits of SControl register,
3431 * wait for !BSY and classify the attached device.
3432 *
3433 * LOCKING:
3434 * Kernel thread context (may sleep)
3435 *
3436 * RETURNS:
3437 * 0 on success, -errno otherwise.
3438 */
3439 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3440 {
3441 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3442 int rc;
3443
3444 DPRINTK("ENTER\n");
3445
3446 /* do hardreset */
3447 rc = sata_port_hardreset(ap, timing);
3448 if (rc) {
3449 ata_port_printk(ap, KERN_ERR,
3450 "COMRESET failed (errno=%d)\n", rc);
3451 return rc;
3452 }
3453
3454 /* TODO: phy layer with polling, timeouts, etc. */
3455 if (ata_port_offline(ap)) {
3456 *class = ATA_DEV_NONE;
3457 DPRINTK("EXIT, link offline\n");
3458 return 0;
3459 }
3460
3461 /* wait a while before checking status, see SRST for more info */
3462 msleep(150);
3463
3464 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3465 ata_port_printk(ap, KERN_ERR,
3466 "COMRESET failed (device not ready)\n");
3467 return -EIO;
3468 }
3469
3470 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3471
3472 *class = ata_dev_try_classify(ap, 0, NULL);
3473
3474 DPRINTK("EXIT, class=%u\n", *class);
3475 return 0;
3476 }
3477
3478 /**
3479 * ata_std_postreset - standard postreset callback
3480 * @ap: the target ata_port
3481 * @classes: classes of attached devices
3482 *
3483 * This function is invoked after a successful reset. Note that
3484 * the device might have been reset more than once using
3485 * different reset methods before postreset is invoked.
3486 *
3487 * LOCKING:
3488 * Kernel thread context (may sleep)
3489 */
3490 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3491 {
3492 u32 serror;
3493
3494 DPRINTK("ENTER\n");
3495
3496 /* print link status */
3497 sata_print_link_status(ap);
3498
3499 /* clear SError */
3500 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3501 sata_scr_write(ap, SCR_ERROR, serror);
3502
3503 /* re-enable interrupts */
3504 if (!ap->ops->error_handler)
3505 ap->ops->irq_on(ap);
3506
3507 /* is double-select really necessary? */
3508 if (classes[0] != ATA_DEV_NONE)
3509 ap->ops->dev_select(ap, 1);
3510 if (classes[1] != ATA_DEV_NONE)
3511 ap->ops->dev_select(ap, 0);
3512
3513 /* bail out if no device is present */
3514 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3515 DPRINTK("EXIT, no device\n");
3516 return;
3517 }
3518
3519 /* set up device control */
3520 if (ap->ioaddr.ctl_addr)
3521 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3522
3523 DPRINTK("EXIT\n");
3524 }
3525
3526 /**
3527 * ata_dev_same_device - Determine whether new ID matches configured device
3528 * @dev: device to compare against
3529 * @new_class: class of the new device
3530 * @new_id: IDENTIFY page of the new device
3531 *
3532 * Compare @new_class and @new_id against @dev and determine
3533 * whether @dev is the device indicated by @new_class and
3534 * @new_id.
3535 *
3536 * LOCKING:
3537 * None.
3538 *
3539 * RETURNS:
3540 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3541 */
3542 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3543 const u16 *new_id)
3544 {
3545 const u16 *old_id = dev->id;
3546 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3547 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3548 u64 new_n_sectors;
3549
3550 if (dev->class != new_class) {
3551 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3552 dev->class, new_class);
3553 return 0;
3554 }
3555
3556 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3557 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3558 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3559 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3560 new_n_sectors = ata_id_n_sectors(new_id);
3561
3562 if (strcmp(model[0], model[1])) {
3563 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3564 "'%s' != '%s'\n", model[0], model[1]);
3565 return 0;
3566 }
3567
3568 if (strcmp(serial[0], serial[1])) {
3569 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3570 "'%s' != '%s'\n", serial[0], serial[1]);
3571 return 0;
3572 }
3573
3574 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3575 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3576 "%llu != %llu\n",
3577 (unsigned long long)dev->n_sectors,
3578 (unsigned long long)new_n_sectors);
3579 /* Are we the boot time size - if so we appear to be the
3580 same disk at this point and our HPA got reapplied */
3581 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3582 && ata_id_hpa_enabled(new_id))
3583 return 1;
3584 return 0;
3585 }
3586
3587 return 1;
3588 }
3589
3590 /**
3591 * ata_dev_revalidate - Revalidate ATA device
3592 * @dev: device to revalidate
3593 * @readid_flags: read ID flags
3594 *
3595 * Re-read IDENTIFY page and make sure @dev is still attached to
3596 * the port.
3597 *
3598 * LOCKING:
3599 * Kernel thread context (may sleep)
3600 *
3601 * RETURNS:
3602 * 0 on success, negative errno otherwise
3603 */
3604 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3605 {
3606 unsigned int class = dev->class;
3607 u16 *id = (void *)dev->ap->sector_buf;
3608 int rc;
3609
3610 if (!ata_dev_enabled(dev)) {
3611 rc = -ENODEV;
3612 goto fail;
3613 }
3614
3615 /* read ID data */
3616 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3617 if (rc)
3618 goto fail;
3619
3620 /* is the device still there? */
3621 if (!ata_dev_same_device(dev, class, id)) {
3622 rc = -ENODEV;
3623 goto fail;
3624 }
3625
3626 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3627
3628 /* configure device according to the new ID */
3629 rc = ata_dev_configure(dev);
3630 if (rc == 0)
3631 return 0;
3632
3633 fail:
3634 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3635 return rc;
3636 }
3637
3638 struct ata_blacklist_entry {
3639 const char *model_num;
3640 const char *model_rev;
3641 unsigned long horkage;
3642 };
3643
3644 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3645 /* Devices with DMA related problems under Linux */
3646 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3647 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3648 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3649 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3650 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3651 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3652 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3653 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3654 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3655 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3656 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3657 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3658 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3659 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3660 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3661 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3662 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3663 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3664 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3665 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3666 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3667 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3668 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3669 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3670 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3671 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3672 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3673 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3674 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3675
3676 /* Weird ATAPI devices */
3677 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3678 ATA_HORKAGE_DMA_RW_ONLY },
3679
3680 /* Devices we expect to fail diagnostics */
3681
3682 /* Devices where NCQ should be avoided */
3683 /* NCQ is slow */
3684 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3685 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3686 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3687 /* NCQ is broken */
3688 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3689 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3690 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3691 /* Blacklist entries taken from Silicon Image 3124/3132
3692 Windows driver .inf file - also several Linux problem reports */
3693 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3694 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3695 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3696
3697 /* Devices with NCQ limits */
3698
3699 /* End Marker */
3700 { }
3701 };
3702
3703 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3704 {
3705 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3706 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3707 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3708
3709 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3710 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3711
3712 while (ad->model_num) {
3713 if (!strcmp(ad->model_num, model_num)) {
3714 if (ad->model_rev == NULL)
3715 return ad->horkage;
3716 if (!strcmp(ad->model_rev, model_rev))
3717 return ad->horkage;
3718 }
3719 ad++;
3720 }
3721 return 0;
3722 }
3723
3724 static int ata_dma_blacklisted(const struct ata_device *dev)
3725 {
3726 /* We don't support polling DMA.
3727 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3728 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3729 */
3730 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3731 (dev->flags & ATA_DFLAG_CDB_INTR))
3732 return 1;
3733 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3734 }
3735
3736 /**
3737 * ata_dev_xfermask - Compute supported xfermask of the given device
3738 * @dev: Device to compute xfermask for
3739 *
3740 * Compute supported xfermask of @dev and store it in
3741 * dev->*_mask. This function is responsible for applying all
3742 * known limits including host controller limits, device
3743 * blacklist, etc...
3744 *
3745 * LOCKING:
3746 * None.
3747 */
3748 static void ata_dev_xfermask(struct ata_device *dev)
3749 {
3750 struct ata_port *ap = dev->ap;
3751 struct ata_host *host = ap->host;
3752 unsigned long xfer_mask;
3753
3754 /* controller modes available */
3755 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3756 ap->mwdma_mask, ap->udma_mask);
3757
3758 /* drive modes available */
3759 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3760 dev->mwdma_mask, dev->udma_mask);
3761 xfer_mask &= ata_id_xfermask(dev->id);
3762
3763 /*
3764 * CFA Advanced TrueIDE timings are not allowed on a shared
3765 * cable
3766 */
3767 if (ata_dev_pair(dev)) {
3768 /* No PIO5 or PIO6 */
3769 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3770 /* No MWDMA3 or MWDMA 4 */
3771 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3772 }
3773
3774 if (ata_dma_blacklisted(dev)) {
3775 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3776 ata_dev_printk(dev, KERN_WARNING,
3777 "device is on DMA blacklist, disabling DMA\n");
3778 }
3779
3780 if ((host->flags & ATA_HOST_SIMPLEX) &&
3781 host->simplex_claimed && host->simplex_claimed != ap) {
3782 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3783 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3784 "other device, disabling DMA\n");
3785 }
3786
3787 if (ap->flags & ATA_FLAG_NO_IORDY)
3788 xfer_mask &= ata_pio_mask_no_iordy(dev);
3789
3790 if (ap->ops->mode_filter)
3791 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3792
3793 /* Apply cable rule here. Don't apply it early because when
3794 * we handle hot plug the cable type can itself change.
3795 * Check this last so that we know if the transfer rate was
3796 * solely limited by the cable.
3797 * Unknown or 80 wire cables reported host side are checked
3798 * drive side as well. Cases where we know a 40wire cable
3799 * is used safely for 80 are not checked here.
3800 */
3801 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3802 /* UDMA/44 or higher would be available */
3803 if((ap->cbl == ATA_CBL_PATA40) ||
3804 (ata_drive_40wire(dev->id) &&
3805 (ap->cbl == ATA_CBL_PATA_UNK ||
3806 ap->cbl == ATA_CBL_PATA80))) {
3807 ata_dev_printk(dev, KERN_WARNING,
3808 "limited to UDMA/33 due to 40-wire cable\n");
3809 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3810 }
3811
3812 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3813 &dev->mwdma_mask, &dev->udma_mask);
3814 }
3815
3816 /**
3817 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3818 * @dev: Device to which command will be sent
3819 *
3820 * Issue SET FEATURES - XFER MODE command to device @dev
3821 * on port @ap.
3822 *
3823 * LOCKING:
3824 * PCI/etc. bus probe sem.
3825 *
3826 * RETURNS:
3827 * 0 on success, AC_ERR_* mask otherwise.
3828 */
3829
3830 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3831 {
3832 struct ata_taskfile tf;
3833 unsigned int err_mask;
3834
3835 /* set up set-features taskfile */
3836 DPRINTK("set features - xfer mode\n");
3837
3838 ata_tf_init(dev, &tf);
3839 tf.command = ATA_CMD_SET_FEATURES;
3840 tf.feature = SETFEATURES_XFER;
3841 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3842 tf.protocol = ATA_PROT_NODATA;
3843 tf.nsect = dev->xfer_mode;
3844
3845 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3846
3847 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3848 return err_mask;
3849 }
3850
3851 /**
3852 * ata_dev_init_params - Issue INIT DEV PARAMS command
3853 * @dev: Device to which command will be sent
3854 * @heads: Number of heads (taskfile parameter)
3855 * @sectors: Number of sectors (taskfile parameter)
3856 *
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3859 *
3860 * RETURNS:
3861 * 0 on success, AC_ERR_* mask otherwise.
3862 */
3863 static unsigned int ata_dev_init_params(struct ata_device *dev,
3864 u16 heads, u16 sectors)
3865 {
3866 struct ata_taskfile tf;
3867 unsigned int err_mask;
3868
3869 /* Number of sectors per track 1-255. Number of heads 1-16 */
3870 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3871 return AC_ERR_INVALID;
3872
3873 /* set up init dev params taskfile */
3874 DPRINTK("init dev params \n");
3875
3876 ata_tf_init(dev, &tf);
3877 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3878 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3879 tf.protocol = ATA_PROT_NODATA;
3880 tf.nsect = sectors;
3881 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3882
3883 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3884
3885 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3886 return err_mask;
3887 }
3888
3889 /**
3890 * ata_sg_clean - Unmap DMA memory associated with command
3891 * @qc: Command containing DMA memory to be released
3892 *
3893 * Unmap all mapped DMA memory associated with this command.
3894 *
3895 * LOCKING:
3896 * spin_lock_irqsave(host lock)
3897 */
3898 void ata_sg_clean(struct ata_queued_cmd *qc)
3899 {
3900 struct ata_port *ap = qc->ap;
3901 struct scatterlist *sg = qc->__sg;
3902 int dir = qc->dma_dir;
3903 void *pad_buf = NULL;
3904
3905 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3906 WARN_ON(sg == NULL);
3907
3908 if (qc->flags & ATA_QCFLAG_SINGLE)
3909 WARN_ON(qc->n_elem > 1);
3910
3911 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3912
3913 /* if we padded the buffer out to 32-bit bound, and data
3914 * xfer direction is from-device, we must copy from the
3915 * pad buffer back into the supplied buffer
3916 */
3917 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3918 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3919
3920 if (qc->flags & ATA_QCFLAG_SG) {
3921 if (qc->n_elem)
3922 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3923 /* restore last sg */
3924 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3925 if (pad_buf) {
3926 struct scatterlist *psg = &qc->pad_sgent;
3927 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3928 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3929 kunmap_atomic(addr, KM_IRQ0);
3930 }
3931 } else {
3932 if (qc->n_elem)
3933 dma_unmap_single(ap->dev,
3934 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3935 dir);
3936 /* restore sg */
3937 sg->length += qc->pad_len;
3938 if (pad_buf)
3939 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3940 pad_buf, qc->pad_len);
3941 }
3942
3943 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3944 qc->__sg = NULL;
3945 }
3946
3947 /**
3948 * ata_fill_sg - Fill PCI IDE PRD table
3949 * @qc: Metadata associated with taskfile to be transferred
3950 *
3951 * Fill PCI IDE PRD (scatter-gather) table with segments
3952 * associated with the current disk command.
3953 *
3954 * LOCKING:
3955 * spin_lock_irqsave(host lock)
3956 *
3957 */
3958 static void ata_fill_sg(struct ata_queued_cmd *qc)
3959 {
3960 struct ata_port *ap = qc->ap;
3961 struct scatterlist *sg;
3962 unsigned int idx;
3963
3964 WARN_ON(qc->__sg == NULL);
3965 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3966
3967 idx = 0;
3968 ata_for_each_sg(sg, qc) {
3969 u32 addr, offset;
3970 u32 sg_len, len;
3971
3972 /* determine if physical DMA addr spans 64K boundary.
3973 * Note h/w doesn't support 64-bit, so we unconditionally
3974 * truncate dma_addr_t to u32.
3975 */
3976 addr = (u32) sg_dma_address(sg);
3977 sg_len = sg_dma_len(sg);
3978
3979 while (sg_len) {
3980 offset = addr & 0xffff;
3981 len = sg_len;
3982 if ((offset + sg_len) > 0x10000)
3983 len = 0x10000 - offset;
3984
3985 ap->prd[idx].addr = cpu_to_le32(addr);
3986 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3987 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3988
3989 idx++;
3990 sg_len -= len;
3991 addr += len;
3992 }
3993 }
3994
3995 if (idx)
3996 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3997 }
3998 /**
3999 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4000 * @qc: Metadata associated with taskfile to check
4001 *
4002 * Allow low-level driver to filter ATA PACKET commands, returning
4003 * a status indicating whether or not it is OK to use DMA for the
4004 * supplied PACKET command.
4005 *
4006 * LOCKING:
4007 * spin_lock_irqsave(host lock)
4008 *
4009 * RETURNS: 0 when ATAPI DMA can be used
4010 * nonzero otherwise
4011 */
4012 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4013 {
4014 struct ata_port *ap = qc->ap;
4015 int rc = 0; /* Assume ATAPI DMA is OK by default */
4016
4017 /* some drives can only do ATAPI DMA on read/write */
4018 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4019 struct scsi_cmnd *cmd = qc->scsicmd;
4020 u8 *scsicmd = cmd->cmnd;
4021
4022 switch (scsicmd[0]) {
4023 case READ_10:
4024 case WRITE_10:
4025 case READ_12:
4026 case WRITE_12:
4027 case READ_6:
4028 case WRITE_6:
4029 /* atapi dma maybe ok */
4030 break;
4031 default:
4032 /* turn off atapi dma */
4033 return 1;
4034 }
4035 }
4036
4037 if (ap->ops->check_atapi_dma)
4038 rc = ap->ops->check_atapi_dma(qc);
4039
4040 return rc;
4041 }
4042 /**
4043 * ata_qc_prep - Prepare taskfile for submission
4044 * @qc: Metadata associated with taskfile to be prepared
4045 *
4046 * Prepare ATA taskfile for submission.
4047 *
4048 * LOCKING:
4049 * spin_lock_irqsave(host lock)
4050 */
4051 void ata_qc_prep(struct ata_queued_cmd *qc)
4052 {
4053 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4054 return;
4055
4056 ata_fill_sg(qc);
4057 }
4058
4059 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4060
4061 /**
4062 * ata_sg_init_one - Associate command with memory buffer
4063 * @qc: Command to be associated
4064 * @buf: Memory buffer
4065 * @buflen: Length of memory buffer, in bytes.
4066 *
4067 * Initialize the data-related elements of queued_cmd @qc
4068 * to point to a single memory buffer, @buf of byte length @buflen.
4069 *
4070 * LOCKING:
4071 * spin_lock_irqsave(host lock)
4072 */
4073
4074 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4075 {
4076 qc->flags |= ATA_QCFLAG_SINGLE;
4077
4078 qc->__sg = &qc->sgent;
4079 qc->n_elem = 1;
4080 qc->orig_n_elem = 1;
4081 qc->buf_virt = buf;
4082 qc->nbytes = buflen;
4083
4084 sg_init_one(&qc->sgent, buf, buflen);
4085 }
4086
4087 /**
4088 * ata_sg_init - Associate command with scatter-gather table.
4089 * @qc: Command to be associated
4090 * @sg: Scatter-gather table.
4091 * @n_elem: Number of elements in s/g table.
4092 *
4093 * Initialize the data-related elements of queued_cmd @qc
4094 * to point to a scatter-gather table @sg, containing @n_elem
4095 * elements.
4096 *
4097 * LOCKING:
4098 * spin_lock_irqsave(host lock)
4099 */
4100
4101 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4102 unsigned int n_elem)
4103 {
4104 qc->flags |= ATA_QCFLAG_SG;
4105 qc->__sg = sg;
4106 qc->n_elem = n_elem;
4107 qc->orig_n_elem = n_elem;
4108 }
4109
4110 /**
4111 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4112 * @qc: Command with memory buffer to be mapped.
4113 *
4114 * DMA-map the memory buffer associated with queued_cmd @qc.
4115 *
4116 * LOCKING:
4117 * spin_lock_irqsave(host lock)
4118 *
4119 * RETURNS:
4120 * Zero on success, negative on error.
4121 */
4122
4123 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4124 {
4125 struct ata_port *ap = qc->ap;
4126 int dir = qc->dma_dir;
4127 struct scatterlist *sg = qc->__sg;
4128 dma_addr_t dma_address;
4129 int trim_sg = 0;
4130
4131 /* we must lengthen transfers to end on a 32-bit boundary */
4132 qc->pad_len = sg->length & 3;
4133 if (qc->pad_len) {
4134 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4135 struct scatterlist *psg = &qc->pad_sgent;
4136
4137 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4138
4139 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4140
4141 if (qc->tf.flags & ATA_TFLAG_WRITE)
4142 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4143 qc->pad_len);
4144
4145 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4146 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4147 /* trim sg */
4148 sg->length -= qc->pad_len;
4149 if (sg->length == 0)
4150 trim_sg = 1;
4151
4152 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4153 sg->length, qc->pad_len);
4154 }
4155
4156 if (trim_sg) {
4157 qc->n_elem--;
4158 goto skip_map;
4159 }
4160
4161 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4162 sg->length, dir);
4163 if (dma_mapping_error(dma_address)) {
4164 /* restore sg */
4165 sg->length += qc->pad_len;
4166 return -1;
4167 }
4168
4169 sg_dma_address(sg) = dma_address;
4170 sg_dma_len(sg) = sg->length;
4171
4172 skip_map:
4173 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4174 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4175
4176 return 0;
4177 }
4178
4179 /**
4180 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4181 * @qc: Command with scatter-gather table to be mapped.
4182 *
4183 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4184 *
4185 * LOCKING:
4186 * spin_lock_irqsave(host lock)
4187 *
4188 * RETURNS:
4189 * Zero on success, negative on error.
4190 *
4191 */
4192
4193 static int ata_sg_setup(struct ata_queued_cmd *qc)
4194 {
4195 struct ata_port *ap = qc->ap;
4196 struct scatterlist *sg = qc->__sg;
4197 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4198 int n_elem, pre_n_elem, dir, trim_sg = 0;
4199
4200 VPRINTK("ENTER, ata%u\n", ap->print_id);
4201 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4202
4203 /* we must lengthen transfers to end on a 32-bit boundary */
4204 qc->pad_len = lsg->length & 3;
4205 if (qc->pad_len) {
4206 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4207 struct scatterlist *psg = &qc->pad_sgent;
4208 unsigned int offset;
4209
4210 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4211
4212 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4213
4214 /*
4215 * psg->page/offset are used to copy to-be-written
4216 * data in this function or read data in ata_sg_clean.
4217 */
4218 offset = lsg->offset + lsg->length - qc->pad_len;
4219 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4220 psg->offset = offset_in_page(offset);
4221
4222 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4223 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4224 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4225 kunmap_atomic(addr, KM_IRQ0);
4226 }
4227
4228 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4229 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4230 /* trim last sg */
4231 lsg->length -= qc->pad_len;
4232 if (lsg->length == 0)
4233 trim_sg = 1;
4234
4235 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4236 qc->n_elem - 1, lsg->length, qc->pad_len);
4237 }
4238
4239 pre_n_elem = qc->n_elem;
4240 if (trim_sg && pre_n_elem)
4241 pre_n_elem--;
4242
4243 if (!pre_n_elem) {
4244 n_elem = 0;
4245 goto skip_map;
4246 }
4247
4248 dir = qc->dma_dir;
4249 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4250 if (n_elem < 1) {
4251 /* restore last sg */
4252 lsg->length += qc->pad_len;
4253 return -1;
4254 }
4255
4256 DPRINTK("%d sg elements mapped\n", n_elem);
4257
4258 skip_map:
4259 qc->n_elem = n_elem;
4260
4261 return 0;
4262 }
4263
4264 /**
4265 * swap_buf_le16 - swap halves of 16-bit words in place
4266 * @buf: Buffer to swap
4267 * @buf_words: Number of 16-bit words in buffer.
4268 *
4269 * Swap halves of 16-bit words if needed to convert from
4270 * little-endian byte order to native cpu byte order, or
4271 * vice-versa.
4272 *
4273 * LOCKING:
4274 * Inherited from caller.
4275 */
4276 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4277 {
4278 #ifdef __BIG_ENDIAN
4279 unsigned int i;
4280
4281 for (i = 0; i < buf_words; i++)
4282 buf[i] = le16_to_cpu(buf[i]);
4283 #endif /* __BIG_ENDIAN */
4284 }
4285
4286 /**
4287 * ata_data_xfer - Transfer data by PIO
4288 * @adev: device to target
4289 * @buf: data buffer
4290 * @buflen: buffer length
4291 * @write_data: read/write
4292 *
4293 * Transfer data from/to the device data register by PIO.
4294 *
4295 * LOCKING:
4296 * Inherited from caller.
4297 */
4298 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4299 unsigned int buflen, int write_data)
4300 {
4301 struct ata_port *ap = adev->ap;
4302 unsigned int words = buflen >> 1;
4303
4304 /* Transfer multiple of 2 bytes */
4305 if (write_data)
4306 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4307 else
4308 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4309
4310 /* Transfer trailing 1 byte, if any. */
4311 if (unlikely(buflen & 0x01)) {
4312 u16 align_buf[1] = { 0 };
4313 unsigned char *trailing_buf = buf + buflen - 1;
4314
4315 if (write_data) {
4316 memcpy(align_buf, trailing_buf, 1);
4317 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4318 } else {
4319 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4320 memcpy(trailing_buf, align_buf, 1);
4321 }
4322 }
4323 }
4324
4325 /**
4326 * ata_data_xfer_noirq - Transfer data by PIO
4327 * @adev: device to target
4328 * @buf: data buffer
4329 * @buflen: buffer length
4330 * @write_data: read/write
4331 *
4332 * Transfer data from/to the device data register by PIO. Do the
4333 * transfer with interrupts disabled.
4334 *
4335 * LOCKING:
4336 * Inherited from caller.
4337 */
4338 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4339 unsigned int buflen, int write_data)
4340 {
4341 unsigned long flags;
4342 local_irq_save(flags);
4343 ata_data_xfer(adev, buf, buflen, write_data);
4344 local_irq_restore(flags);
4345 }
4346
4347
4348 /**
4349 * ata_pio_sector - Transfer a sector of data.
4350 * @qc: Command on going
4351 *
4352 * Transfer qc->sect_size bytes of data from/to the ATA device.
4353 *
4354 * LOCKING:
4355 * Inherited from caller.
4356 */
4357
4358 static void ata_pio_sector(struct ata_queued_cmd *qc)
4359 {
4360 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4361 struct scatterlist *sg = qc->__sg;
4362 struct ata_port *ap = qc->ap;
4363 struct page *page;
4364 unsigned int offset;
4365 unsigned char *buf;
4366
4367 if (qc->curbytes == qc->nbytes - qc->sect_size)
4368 ap->hsm_task_state = HSM_ST_LAST;
4369
4370 page = sg[qc->cursg].page;
4371 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4372
4373 /* get the current page and offset */
4374 page = nth_page(page, (offset >> PAGE_SHIFT));
4375 offset %= PAGE_SIZE;
4376
4377 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4378
4379 if (PageHighMem(page)) {
4380 unsigned long flags;
4381
4382 /* FIXME: use a bounce buffer */
4383 local_irq_save(flags);
4384 buf = kmap_atomic(page, KM_IRQ0);
4385
4386 /* do the actual data transfer */
4387 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4388
4389 kunmap_atomic(buf, KM_IRQ0);
4390 local_irq_restore(flags);
4391 } else {
4392 buf = page_address(page);
4393 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4394 }
4395
4396 qc->curbytes += qc->sect_size;
4397 qc->cursg_ofs += qc->sect_size;
4398
4399 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4400 qc->cursg++;
4401 qc->cursg_ofs = 0;
4402 }
4403 }
4404
4405 /**
4406 * ata_pio_sectors - Transfer one or many sectors.
4407 * @qc: Command on going
4408 *
4409 * Transfer one or many sectors of data from/to the
4410 * ATA device for the DRQ request.
4411 *
4412 * LOCKING:
4413 * Inherited from caller.
4414 */
4415
4416 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4417 {
4418 if (is_multi_taskfile(&qc->tf)) {
4419 /* READ/WRITE MULTIPLE */
4420 unsigned int nsect;
4421
4422 WARN_ON(qc->dev->multi_count == 0);
4423
4424 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4425 qc->dev->multi_count);
4426 while (nsect--)
4427 ata_pio_sector(qc);
4428 } else
4429 ata_pio_sector(qc);
4430 }
4431
4432 /**
4433 * atapi_send_cdb - Write CDB bytes to hardware
4434 * @ap: Port to which ATAPI device is attached.
4435 * @qc: Taskfile currently active
4436 *
4437 * When device has indicated its readiness to accept
4438 * a CDB, this function is called. Send the CDB.
4439 *
4440 * LOCKING:
4441 * caller.
4442 */
4443
4444 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4445 {
4446 /* send SCSI cdb */
4447 DPRINTK("send cdb\n");
4448 WARN_ON(qc->dev->cdb_len < 12);
4449
4450 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4451 ata_altstatus(ap); /* flush */
4452
4453 switch (qc->tf.protocol) {
4454 case ATA_PROT_ATAPI:
4455 ap->hsm_task_state = HSM_ST;
4456 break;
4457 case ATA_PROT_ATAPI_NODATA:
4458 ap->hsm_task_state = HSM_ST_LAST;
4459 break;
4460 case ATA_PROT_ATAPI_DMA:
4461 ap->hsm_task_state = HSM_ST_LAST;
4462 /* initiate bmdma */
4463 ap->ops->bmdma_start(qc);
4464 break;
4465 }
4466 }
4467
4468 /**
4469 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4470 * @qc: Command on going
4471 * @bytes: number of bytes
4472 *
4473 * Transfer Transfer data from/to the ATAPI device.
4474 *
4475 * LOCKING:
4476 * Inherited from caller.
4477 *
4478 */
4479
4480 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4481 {
4482 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4483 struct scatterlist *sg = qc->__sg;
4484 struct ata_port *ap = qc->ap;
4485 struct page *page;
4486 unsigned char *buf;
4487 unsigned int offset, count;
4488
4489 if (qc->curbytes + bytes >= qc->nbytes)
4490 ap->hsm_task_state = HSM_ST_LAST;
4491
4492 next_sg:
4493 if (unlikely(qc->cursg >= qc->n_elem)) {
4494 /*
4495 * The end of qc->sg is reached and the device expects
4496 * more data to transfer. In order not to overrun qc->sg
4497 * and fulfill length specified in the byte count register,
4498 * - for read case, discard trailing data from the device
4499 * - for write case, padding zero data to the device
4500 */
4501 u16 pad_buf[1] = { 0 };
4502 unsigned int words = bytes >> 1;
4503 unsigned int i;
4504
4505 if (words) /* warning if bytes > 1 */
4506 ata_dev_printk(qc->dev, KERN_WARNING,
4507 "%u bytes trailing data\n", bytes);
4508
4509 for (i = 0; i < words; i++)
4510 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4511
4512 ap->hsm_task_state = HSM_ST_LAST;
4513 return;
4514 }
4515
4516 sg = &qc->__sg[qc->cursg];
4517
4518 page = sg->page;
4519 offset = sg->offset + qc->cursg_ofs;
4520
4521 /* get the current page and offset */
4522 page = nth_page(page, (offset >> PAGE_SHIFT));
4523 offset %= PAGE_SIZE;
4524
4525 /* don't overrun current sg */
4526 count = min(sg->length - qc->cursg_ofs, bytes);
4527
4528 /* don't cross page boundaries */
4529 count = min(count, (unsigned int)PAGE_SIZE - offset);
4530
4531 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4532
4533 if (PageHighMem(page)) {
4534 unsigned long flags;
4535
4536 /* FIXME: use bounce buffer */
4537 local_irq_save(flags);
4538 buf = kmap_atomic(page, KM_IRQ0);
4539
4540 /* do the actual data transfer */
4541 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4542
4543 kunmap_atomic(buf, KM_IRQ0);
4544 local_irq_restore(flags);
4545 } else {
4546 buf = page_address(page);
4547 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4548 }
4549
4550 bytes -= count;
4551 qc->curbytes += count;
4552 qc->cursg_ofs += count;
4553
4554 if (qc->cursg_ofs == sg->length) {
4555 qc->cursg++;
4556 qc->cursg_ofs = 0;
4557 }
4558
4559 if (bytes)
4560 goto next_sg;
4561 }
4562
4563 /**
4564 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4565 * @qc: Command on going
4566 *
4567 * Transfer Transfer data from/to the ATAPI device.
4568 *
4569 * LOCKING:
4570 * Inherited from caller.
4571 */
4572
4573 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4574 {
4575 struct ata_port *ap = qc->ap;
4576 struct ata_device *dev = qc->dev;
4577 unsigned int ireason, bc_lo, bc_hi, bytes;
4578 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4579
4580 /* Abuse qc->result_tf for temp storage of intermediate TF
4581 * here to save some kernel stack usage.
4582 * For normal completion, qc->result_tf is not relevant. For
4583 * error, qc->result_tf is later overwritten by ata_qc_complete().
4584 * So, the correctness of qc->result_tf is not affected.
4585 */
4586 ap->ops->tf_read(ap, &qc->result_tf);
4587 ireason = qc->result_tf.nsect;
4588 bc_lo = qc->result_tf.lbam;
4589 bc_hi = qc->result_tf.lbah;
4590 bytes = (bc_hi << 8) | bc_lo;
4591
4592 /* shall be cleared to zero, indicating xfer of data */
4593 if (ireason & (1 << 0))
4594 goto err_out;
4595
4596 /* make sure transfer direction matches expected */
4597 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4598 if (do_write != i_write)
4599 goto err_out;
4600
4601 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4602
4603 __atapi_pio_bytes(qc, bytes);
4604
4605 return;
4606
4607 err_out:
4608 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4609 qc->err_mask |= AC_ERR_HSM;
4610 ap->hsm_task_state = HSM_ST_ERR;
4611 }
4612
4613 /**
4614 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4615 * @ap: the target ata_port
4616 * @qc: qc on going
4617 *
4618 * RETURNS:
4619 * 1 if ok in workqueue, 0 otherwise.
4620 */
4621
4622 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4623 {
4624 if (qc->tf.flags & ATA_TFLAG_POLLING)
4625 return 1;
4626
4627 if (ap->hsm_task_state == HSM_ST_FIRST) {
4628 if (qc->tf.protocol == ATA_PROT_PIO &&
4629 (qc->tf.flags & ATA_TFLAG_WRITE))
4630 return 1;
4631
4632 if (is_atapi_taskfile(&qc->tf) &&
4633 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4634 return 1;
4635 }
4636
4637 return 0;
4638 }
4639
4640 /**
4641 * ata_hsm_qc_complete - finish a qc running on standard HSM
4642 * @qc: Command to complete
4643 * @in_wq: 1 if called from workqueue, 0 otherwise
4644 *
4645 * Finish @qc which is running on standard HSM.
4646 *
4647 * LOCKING:
4648 * If @in_wq is zero, spin_lock_irqsave(host lock).
4649 * Otherwise, none on entry and grabs host lock.
4650 */
4651 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4652 {
4653 struct ata_port *ap = qc->ap;
4654 unsigned long flags;
4655
4656 if (ap->ops->error_handler) {
4657 if (in_wq) {
4658 spin_lock_irqsave(ap->lock, flags);
4659
4660 /* EH might have kicked in while host lock is
4661 * released.
4662 */
4663 qc = ata_qc_from_tag(ap, qc->tag);
4664 if (qc) {
4665 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4666 ap->ops->irq_on(ap);
4667 ata_qc_complete(qc);
4668 } else
4669 ata_port_freeze(ap);
4670 }
4671
4672 spin_unlock_irqrestore(ap->lock, flags);
4673 } else {
4674 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4675 ata_qc_complete(qc);
4676 else
4677 ata_port_freeze(ap);
4678 }
4679 } else {
4680 if (in_wq) {
4681 spin_lock_irqsave(ap->lock, flags);
4682 ap->ops->irq_on(ap);
4683 ata_qc_complete(qc);
4684 spin_unlock_irqrestore(ap->lock, flags);
4685 } else
4686 ata_qc_complete(qc);
4687 }
4688
4689 ata_altstatus(ap); /* flush */
4690 }
4691
4692 /**
4693 * ata_hsm_move - move the HSM to the next state.
4694 * @ap: the target ata_port
4695 * @qc: qc on going
4696 * @status: current device status
4697 * @in_wq: 1 if called from workqueue, 0 otherwise
4698 *
4699 * RETURNS:
4700 * 1 when poll next status needed, 0 otherwise.
4701 */
4702 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4703 u8 status, int in_wq)
4704 {
4705 unsigned long flags = 0;
4706 int poll_next;
4707
4708 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4709
4710 /* Make sure ata_qc_issue_prot() does not throw things
4711 * like DMA polling into the workqueue. Notice that
4712 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4713 */
4714 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4715
4716 fsm_start:
4717 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4718 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4719
4720 switch (ap->hsm_task_state) {
4721 case HSM_ST_FIRST:
4722 /* Send first data block or PACKET CDB */
4723
4724 /* If polling, we will stay in the work queue after
4725 * sending the data. Otherwise, interrupt handler
4726 * takes over after sending the data.
4727 */
4728 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4729
4730 /* check device status */
4731 if (unlikely((status & ATA_DRQ) == 0)) {
4732 /* handle BSY=0, DRQ=0 as error */
4733 if (likely(status & (ATA_ERR | ATA_DF)))
4734 /* device stops HSM for abort/error */
4735 qc->err_mask |= AC_ERR_DEV;
4736 else
4737 /* HSM violation. Let EH handle this */
4738 qc->err_mask |= AC_ERR_HSM;
4739
4740 ap->hsm_task_state = HSM_ST_ERR;
4741 goto fsm_start;
4742 }
4743
4744 /* Device should not ask for data transfer (DRQ=1)
4745 * when it finds something wrong.
4746 * We ignore DRQ here and stop the HSM by
4747 * changing hsm_task_state to HSM_ST_ERR and
4748 * let the EH abort the command or reset the device.
4749 */
4750 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4751 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4752 "error, dev_stat 0x%X\n", status);
4753 qc->err_mask |= AC_ERR_HSM;
4754 ap->hsm_task_state = HSM_ST_ERR;
4755 goto fsm_start;
4756 }
4757
4758 /* Send the CDB (atapi) or the first data block (ata pio out).
4759 * During the state transition, interrupt handler shouldn't
4760 * be invoked before the data transfer is complete and
4761 * hsm_task_state is changed. Hence, the following locking.
4762 */
4763 if (in_wq)
4764 spin_lock_irqsave(ap->lock, flags);
4765
4766 if (qc->tf.protocol == ATA_PROT_PIO) {
4767 /* PIO data out protocol.
4768 * send first data block.
4769 */
4770
4771 /* ata_pio_sectors() might change the state
4772 * to HSM_ST_LAST. so, the state is changed here
4773 * before ata_pio_sectors().
4774 */
4775 ap->hsm_task_state = HSM_ST;
4776 ata_pio_sectors(qc);
4777 ata_altstatus(ap); /* flush */
4778 } else
4779 /* send CDB */
4780 atapi_send_cdb(ap, qc);
4781
4782 if (in_wq)
4783 spin_unlock_irqrestore(ap->lock, flags);
4784
4785 /* if polling, ata_pio_task() handles the rest.
4786 * otherwise, interrupt handler takes over from here.
4787 */
4788 break;
4789
4790 case HSM_ST:
4791 /* complete command or read/write the data register */
4792 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4793 /* ATAPI PIO protocol */
4794 if ((status & ATA_DRQ) == 0) {
4795 /* No more data to transfer or device error.
4796 * Device error will be tagged in HSM_ST_LAST.
4797 */
4798 ap->hsm_task_state = HSM_ST_LAST;
4799 goto fsm_start;
4800 }
4801
4802 /* Device should not ask for data transfer (DRQ=1)
4803 * when it finds something wrong.
4804 * We ignore DRQ here and stop the HSM by
4805 * changing hsm_task_state to HSM_ST_ERR and
4806 * let the EH abort the command or reset the device.
4807 */
4808 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4809 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4810 "device error, dev_stat 0x%X\n",
4811 status);
4812 qc->err_mask |= AC_ERR_HSM;
4813 ap->hsm_task_state = HSM_ST_ERR;
4814 goto fsm_start;
4815 }
4816
4817 atapi_pio_bytes(qc);
4818
4819 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4820 /* bad ireason reported by device */
4821 goto fsm_start;
4822
4823 } else {
4824 /* ATA PIO protocol */
4825 if (unlikely((status & ATA_DRQ) == 0)) {
4826 /* handle BSY=0, DRQ=0 as error */
4827 if (likely(status & (ATA_ERR | ATA_DF)))
4828 /* device stops HSM for abort/error */
4829 qc->err_mask |= AC_ERR_DEV;
4830 else
4831 /* HSM violation. Let EH handle this.
4832 * Phantom devices also trigger this
4833 * condition. Mark hint.
4834 */
4835 qc->err_mask |= AC_ERR_HSM |
4836 AC_ERR_NODEV_HINT;
4837
4838 ap->hsm_task_state = HSM_ST_ERR;
4839 goto fsm_start;
4840 }
4841
4842 /* For PIO reads, some devices may ask for
4843 * data transfer (DRQ=1) alone with ERR=1.
4844 * We respect DRQ here and transfer one
4845 * block of junk data before changing the
4846 * hsm_task_state to HSM_ST_ERR.
4847 *
4848 * For PIO writes, ERR=1 DRQ=1 doesn't make
4849 * sense since the data block has been
4850 * transferred to the device.
4851 */
4852 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4853 /* data might be corrputed */
4854 qc->err_mask |= AC_ERR_DEV;
4855
4856 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4857 ata_pio_sectors(qc);
4858 ata_altstatus(ap);
4859 status = ata_wait_idle(ap);
4860 }
4861
4862 if (status & (ATA_BUSY | ATA_DRQ))
4863 qc->err_mask |= AC_ERR_HSM;
4864
4865 /* ata_pio_sectors() might change the
4866 * state to HSM_ST_LAST. so, the state
4867 * is changed after ata_pio_sectors().
4868 */
4869 ap->hsm_task_state = HSM_ST_ERR;
4870 goto fsm_start;
4871 }
4872
4873 ata_pio_sectors(qc);
4874
4875 if (ap->hsm_task_state == HSM_ST_LAST &&
4876 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4877 /* all data read */
4878 ata_altstatus(ap);
4879 status = ata_wait_idle(ap);
4880 goto fsm_start;
4881 }
4882 }
4883
4884 ata_altstatus(ap); /* flush */
4885 poll_next = 1;
4886 break;
4887
4888 case HSM_ST_LAST:
4889 if (unlikely(!ata_ok(status))) {
4890 qc->err_mask |= __ac_err_mask(status);
4891 ap->hsm_task_state = HSM_ST_ERR;
4892 goto fsm_start;
4893 }
4894
4895 /* no more data to transfer */
4896 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4897 ap->print_id, qc->dev->devno, status);
4898
4899 WARN_ON(qc->err_mask);
4900
4901 ap->hsm_task_state = HSM_ST_IDLE;
4902
4903 /* complete taskfile transaction */
4904 ata_hsm_qc_complete(qc, in_wq);
4905
4906 poll_next = 0;
4907 break;
4908
4909 case HSM_ST_ERR:
4910 /* make sure qc->err_mask is available to
4911 * know what's wrong and recover
4912 */
4913 WARN_ON(qc->err_mask == 0);
4914
4915 ap->hsm_task_state = HSM_ST_IDLE;
4916
4917 /* complete taskfile transaction */
4918 ata_hsm_qc_complete(qc, in_wq);
4919
4920 poll_next = 0;
4921 break;
4922 default:
4923 poll_next = 0;
4924 BUG();
4925 }
4926
4927 return poll_next;
4928 }
4929
4930 static void ata_pio_task(struct work_struct *work)
4931 {
4932 struct ata_port *ap =
4933 container_of(work, struct ata_port, port_task.work);
4934 struct ata_queued_cmd *qc = ap->port_task_data;
4935 u8 status;
4936 int poll_next;
4937
4938 fsm_start:
4939 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4940
4941 /*
4942 * This is purely heuristic. This is a fast path.
4943 * Sometimes when we enter, BSY will be cleared in
4944 * a chk-status or two. If not, the drive is probably seeking
4945 * or something. Snooze for a couple msecs, then
4946 * chk-status again. If still busy, queue delayed work.
4947 */
4948 status = ata_busy_wait(ap, ATA_BUSY, 5);
4949 if (status & ATA_BUSY) {
4950 msleep(2);
4951 status = ata_busy_wait(ap, ATA_BUSY, 10);
4952 if (status & ATA_BUSY) {
4953 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4954 return;
4955 }
4956 }
4957
4958 /* move the HSM */
4959 poll_next = ata_hsm_move(ap, qc, status, 1);
4960
4961 /* another command or interrupt handler
4962 * may be running at this point.
4963 */
4964 if (poll_next)
4965 goto fsm_start;
4966 }
4967
4968 /**
4969 * ata_qc_new - Request an available ATA command, for queueing
4970 * @ap: Port associated with device @dev
4971 * @dev: Device from whom we request an available command structure
4972 *
4973 * LOCKING:
4974 * None.
4975 */
4976
4977 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4978 {
4979 struct ata_queued_cmd *qc = NULL;
4980 unsigned int i;
4981
4982 /* no command while frozen */
4983 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4984 return NULL;
4985
4986 /* the last tag is reserved for internal command. */
4987 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4988 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4989 qc = __ata_qc_from_tag(ap, i);
4990 break;
4991 }
4992
4993 if (qc)
4994 qc->tag = i;
4995
4996 return qc;
4997 }
4998
4999 /**
5000 * ata_qc_new_init - Request an available ATA command, and initialize it
5001 * @dev: Device from whom we request an available command structure
5002 *
5003 * LOCKING:
5004 * None.
5005 */
5006
5007 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5008 {
5009 struct ata_port *ap = dev->ap;
5010 struct ata_queued_cmd *qc;
5011
5012 qc = ata_qc_new(ap);
5013 if (qc) {
5014 qc->scsicmd = NULL;
5015 qc->ap = ap;
5016 qc->dev = dev;
5017
5018 ata_qc_reinit(qc);
5019 }
5020
5021 return qc;
5022 }
5023
5024 /**
5025 * ata_qc_free - free unused ata_queued_cmd
5026 * @qc: Command to complete
5027 *
5028 * Designed to free unused ata_queued_cmd object
5029 * in case something prevents using it.
5030 *
5031 * LOCKING:
5032 * spin_lock_irqsave(host lock)
5033 */
5034 void ata_qc_free(struct ata_queued_cmd *qc)
5035 {
5036 struct ata_port *ap = qc->ap;
5037 unsigned int tag;
5038
5039 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5040
5041 qc->flags = 0;
5042 tag = qc->tag;
5043 if (likely(ata_tag_valid(tag))) {
5044 qc->tag = ATA_TAG_POISON;
5045 clear_bit(tag, &ap->qc_allocated);
5046 }
5047 }
5048
5049 void __ata_qc_complete(struct ata_queued_cmd *qc)
5050 {
5051 struct ata_port *ap = qc->ap;
5052
5053 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5054 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5055
5056 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5057 ata_sg_clean(qc);
5058
5059 /* command should be marked inactive atomically with qc completion */
5060 if (qc->tf.protocol == ATA_PROT_NCQ)
5061 ap->sactive &= ~(1 << qc->tag);
5062 else
5063 ap->active_tag = ATA_TAG_POISON;
5064
5065 /* atapi: mark qc as inactive to prevent the interrupt handler
5066 * from completing the command twice later, before the error handler
5067 * is called. (when rc != 0 and atapi request sense is needed)
5068 */
5069 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5070 ap->qc_active &= ~(1 << qc->tag);
5071
5072 /* call completion callback */
5073 qc->complete_fn(qc);
5074 }
5075
5076 static void fill_result_tf(struct ata_queued_cmd *qc)
5077 {
5078 struct ata_port *ap = qc->ap;
5079
5080 qc->result_tf.flags = qc->tf.flags;
5081 ap->ops->tf_read(ap, &qc->result_tf);
5082 }
5083
5084 /**
5085 * ata_qc_complete - Complete an active ATA command
5086 * @qc: Command to complete
5087 * @err_mask: ATA Status register contents
5088 *
5089 * Indicate to the mid and upper layers that an ATA
5090 * command has completed, with either an ok or not-ok status.
5091 *
5092 * LOCKING:
5093 * spin_lock_irqsave(host lock)
5094 */
5095 void ata_qc_complete(struct ata_queued_cmd *qc)
5096 {
5097 struct ata_port *ap = qc->ap;
5098
5099 /* XXX: New EH and old EH use different mechanisms to
5100 * synchronize EH with regular execution path.
5101 *
5102 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5103 * Normal execution path is responsible for not accessing a
5104 * failed qc. libata core enforces the rule by returning NULL
5105 * from ata_qc_from_tag() for failed qcs.
5106 *
5107 * Old EH depends on ata_qc_complete() nullifying completion
5108 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5109 * not synchronize with interrupt handler. Only PIO task is
5110 * taken care of.
5111 */
5112 if (ap->ops->error_handler) {
5113 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5114
5115 if (unlikely(qc->err_mask))
5116 qc->flags |= ATA_QCFLAG_FAILED;
5117
5118 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5119 if (!ata_tag_internal(qc->tag)) {
5120 /* always fill result TF for failed qc */
5121 fill_result_tf(qc);
5122 ata_qc_schedule_eh(qc);
5123 return;
5124 }
5125 }
5126
5127 /* read result TF if requested */
5128 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5129 fill_result_tf(qc);
5130
5131 __ata_qc_complete(qc);
5132 } else {
5133 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5134 return;
5135
5136 /* read result TF if failed or requested */
5137 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5138 fill_result_tf(qc);
5139
5140 __ata_qc_complete(qc);
5141 }
5142 }
5143
5144 /**
5145 * ata_qc_complete_multiple - Complete multiple qcs successfully
5146 * @ap: port in question
5147 * @qc_active: new qc_active mask
5148 * @finish_qc: LLDD callback invoked before completing a qc
5149 *
5150 * Complete in-flight commands. This functions is meant to be
5151 * called from low-level driver's interrupt routine to complete
5152 * requests normally. ap->qc_active and @qc_active is compared
5153 * and commands are completed accordingly.
5154 *
5155 * LOCKING:
5156 * spin_lock_irqsave(host lock)
5157 *
5158 * RETURNS:
5159 * Number of completed commands on success, -errno otherwise.
5160 */
5161 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5162 void (*finish_qc)(struct ata_queued_cmd *))
5163 {
5164 int nr_done = 0;
5165 u32 done_mask;
5166 int i;
5167
5168 done_mask = ap->qc_active ^ qc_active;
5169
5170 if (unlikely(done_mask & qc_active)) {
5171 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5172 "(%08x->%08x)\n", ap->qc_active, qc_active);
5173 return -EINVAL;
5174 }
5175
5176 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5177 struct ata_queued_cmd *qc;
5178
5179 if (!(done_mask & (1 << i)))
5180 continue;
5181
5182 if ((qc = ata_qc_from_tag(ap, i))) {
5183 if (finish_qc)
5184 finish_qc(qc);
5185 ata_qc_complete(qc);
5186 nr_done++;
5187 }
5188 }
5189
5190 return nr_done;
5191 }
5192
5193 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5194 {
5195 struct ata_port *ap = qc->ap;
5196
5197 switch (qc->tf.protocol) {
5198 case ATA_PROT_NCQ:
5199 case ATA_PROT_DMA:
5200 case ATA_PROT_ATAPI_DMA:
5201 return 1;
5202
5203 case ATA_PROT_ATAPI:
5204 case ATA_PROT_PIO:
5205 if (ap->flags & ATA_FLAG_PIO_DMA)
5206 return 1;
5207
5208 /* fall through */
5209
5210 default:
5211 return 0;
5212 }
5213
5214 /* never reached */
5215 }
5216
5217 /**
5218 * ata_qc_issue - issue taskfile to device
5219 * @qc: command to issue to device
5220 *
5221 * Prepare an ATA command to submission to device.
5222 * This includes mapping the data into a DMA-able
5223 * area, filling in the S/G table, and finally
5224 * writing the taskfile to hardware, starting the command.
5225 *
5226 * LOCKING:
5227 * spin_lock_irqsave(host lock)
5228 */
5229 void ata_qc_issue(struct ata_queued_cmd *qc)
5230 {
5231 struct ata_port *ap = qc->ap;
5232
5233 /* Make sure only one non-NCQ command is outstanding. The
5234 * check is skipped for old EH because it reuses active qc to
5235 * request ATAPI sense.
5236 */
5237 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5238
5239 if (qc->tf.protocol == ATA_PROT_NCQ) {
5240 WARN_ON(ap->sactive & (1 << qc->tag));
5241 ap->sactive |= 1 << qc->tag;
5242 } else {
5243 WARN_ON(ap->sactive);
5244 ap->active_tag = qc->tag;
5245 }
5246
5247 qc->flags |= ATA_QCFLAG_ACTIVE;
5248 ap->qc_active |= 1 << qc->tag;
5249
5250 if (ata_should_dma_map(qc)) {
5251 if (qc->flags & ATA_QCFLAG_SG) {
5252 if (ata_sg_setup(qc))
5253 goto sg_err;
5254 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5255 if (ata_sg_setup_one(qc))
5256 goto sg_err;
5257 }
5258 } else {
5259 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5260 }
5261
5262 ap->ops->qc_prep(qc);
5263
5264 qc->err_mask |= ap->ops->qc_issue(qc);
5265 if (unlikely(qc->err_mask))
5266 goto err;
5267 return;
5268
5269 sg_err:
5270 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5271 qc->err_mask |= AC_ERR_SYSTEM;
5272 err:
5273 ata_qc_complete(qc);
5274 }
5275
5276 /**
5277 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5278 * @qc: command to issue to device
5279 *
5280 * Using various libata functions and hooks, this function
5281 * starts an ATA command. ATA commands are grouped into
5282 * classes called "protocols", and issuing each type of protocol
5283 * is slightly different.
5284 *
5285 * May be used as the qc_issue() entry in ata_port_operations.
5286 *
5287 * LOCKING:
5288 * spin_lock_irqsave(host lock)
5289 *
5290 * RETURNS:
5291 * Zero on success, AC_ERR_* mask on failure
5292 */
5293
5294 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5295 {
5296 struct ata_port *ap = qc->ap;
5297
5298 /* Use polling pio if the LLD doesn't handle
5299 * interrupt driven pio and atapi CDB interrupt.
5300 */
5301 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5302 switch (qc->tf.protocol) {
5303 case ATA_PROT_PIO:
5304 case ATA_PROT_NODATA:
5305 case ATA_PROT_ATAPI:
5306 case ATA_PROT_ATAPI_NODATA:
5307 qc->tf.flags |= ATA_TFLAG_POLLING;
5308 break;
5309 case ATA_PROT_ATAPI_DMA:
5310 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5311 /* see ata_dma_blacklisted() */
5312 BUG();
5313 break;
5314 default:
5315 break;
5316 }
5317 }
5318
5319 /* Some controllers show flaky interrupt behavior after
5320 * setting xfer mode. Use polling instead.
5321 */
5322 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5323 qc->tf.feature == SETFEATURES_XFER) &&
5324 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5325 qc->tf.flags |= ATA_TFLAG_POLLING;
5326
5327 /* select the device */
5328 ata_dev_select(ap, qc->dev->devno, 1, 0);
5329
5330 /* start the command */
5331 switch (qc->tf.protocol) {
5332 case ATA_PROT_NODATA:
5333 if (qc->tf.flags & ATA_TFLAG_POLLING)
5334 ata_qc_set_polling(qc);
5335
5336 ata_tf_to_host(ap, &qc->tf);
5337 ap->hsm_task_state = HSM_ST_LAST;
5338
5339 if (qc->tf.flags & ATA_TFLAG_POLLING)
5340 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5341
5342 break;
5343
5344 case ATA_PROT_DMA:
5345 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5346
5347 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5348 ap->ops->bmdma_setup(qc); /* set up bmdma */
5349 ap->ops->bmdma_start(qc); /* initiate bmdma */
5350 ap->hsm_task_state = HSM_ST_LAST;
5351 break;
5352
5353 case ATA_PROT_PIO:
5354 if (qc->tf.flags & ATA_TFLAG_POLLING)
5355 ata_qc_set_polling(qc);
5356
5357 ata_tf_to_host(ap, &qc->tf);
5358
5359 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5360 /* PIO data out protocol */
5361 ap->hsm_task_state = HSM_ST_FIRST;
5362 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5363
5364 /* always send first data block using
5365 * the ata_pio_task() codepath.
5366 */
5367 } else {
5368 /* PIO data in protocol */
5369 ap->hsm_task_state = HSM_ST;
5370
5371 if (qc->tf.flags & ATA_TFLAG_POLLING)
5372 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5373
5374 /* if polling, ata_pio_task() handles the rest.
5375 * otherwise, interrupt handler takes over from here.
5376 */
5377 }
5378
5379 break;
5380
5381 case ATA_PROT_ATAPI:
5382 case ATA_PROT_ATAPI_NODATA:
5383 if (qc->tf.flags & ATA_TFLAG_POLLING)
5384 ata_qc_set_polling(qc);
5385
5386 ata_tf_to_host(ap, &qc->tf);
5387
5388 ap->hsm_task_state = HSM_ST_FIRST;
5389
5390 /* send cdb by polling if no cdb interrupt */
5391 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5392 (qc->tf.flags & ATA_TFLAG_POLLING))
5393 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5394 break;
5395
5396 case ATA_PROT_ATAPI_DMA:
5397 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5398
5399 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5400 ap->ops->bmdma_setup(qc); /* set up bmdma */
5401 ap->hsm_task_state = HSM_ST_FIRST;
5402
5403 /* send cdb by polling if no cdb interrupt */
5404 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5405 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5406 break;
5407
5408 default:
5409 WARN_ON(1);
5410 return AC_ERR_SYSTEM;
5411 }
5412
5413 return 0;
5414 }
5415
5416 /**
5417 * ata_host_intr - Handle host interrupt for given (port, task)
5418 * @ap: Port on which interrupt arrived (possibly...)
5419 * @qc: Taskfile currently active in engine
5420 *
5421 * Handle host interrupt for given queued command. Currently,
5422 * only DMA interrupts are handled. All other commands are
5423 * handled via polling with interrupts disabled (nIEN bit).
5424 *
5425 * LOCKING:
5426 * spin_lock_irqsave(host lock)
5427 *
5428 * RETURNS:
5429 * One if interrupt was handled, zero if not (shared irq).
5430 */
5431
5432 inline unsigned int ata_host_intr (struct ata_port *ap,
5433 struct ata_queued_cmd *qc)
5434 {
5435 struct ata_eh_info *ehi = &ap->eh_info;
5436 u8 status, host_stat = 0;
5437
5438 VPRINTK("ata%u: protocol %d task_state %d\n",
5439 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5440
5441 /* Check whether we are expecting interrupt in this state */
5442 switch (ap->hsm_task_state) {
5443 case HSM_ST_FIRST:
5444 /* Some pre-ATAPI-4 devices assert INTRQ
5445 * at this state when ready to receive CDB.
5446 */
5447
5448 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5449 * The flag was turned on only for atapi devices.
5450 * No need to check is_atapi_taskfile(&qc->tf) again.
5451 */
5452 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5453 goto idle_irq;
5454 break;
5455 case HSM_ST_LAST:
5456 if (qc->tf.protocol == ATA_PROT_DMA ||
5457 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5458 /* check status of DMA engine */
5459 host_stat = ap->ops->bmdma_status(ap);
5460 VPRINTK("ata%u: host_stat 0x%X\n",
5461 ap->print_id, host_stat);
5462
5463 /* if it's not our irq... */
5464 if (!(host_stat & ATA_DMA_INTR))
5465 goto idle_irq;
5466
5467 /* before we do anything else, clear DMA-Start bit */
5468 ap->ops->bmdma_stop(qc);
5469
5470 if (unlikely(host_stat & ATA_DMA_ERR)) {
5471 /* error when transfering data to/from memory */
5472 qc->err_mask |= AC_ERR_HOST_BUS;
5473 ap->hsm_task_state = HSM_ST_ERR;
5474 }
5475 }
5476 break;
5477 case HSM_ST:
5478 break;
5479 default:
5480 goto idle_irq;
5481 }
5482
5483 /* check altstatus */
5484 status = ata_altstatus(ap);
5485 if (status & ATA_BUSY)
5486 goto idle_irq;
5487
5488 /* check main status, clearing INTRQ */
5489 status = ata_chk_status(ap);
5490 if (unlikely(status & ATA_BUSY))
5491 goto idle_irq;
5492
5493 /* ack bmdma irq events */
5494 ap->ops->irq_clear(ap);
5495
5496 ata_hsm_move(ap, qc, status, 0);
5497
5498 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5499 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5500 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5501
5502 return 1; /* irq handled */
5503
5504 idle_irq:
5505 ap->stats.idle_irq++;
5506
5507 #ifdef ATA_IRQ_TRAP
5508 if ((ap->stats.idle_irq % 1000) == 0) {
5509 ap->ops->irq_ack(ap, 0); /* debug trap */
5510 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5511 return 1;
5512 }
5513 #endif
5514 return 0; /* irq not handled */
5515 }
5516
5517 /**
5518 * ata_interrupt - Default ATA host interrupt handler
5519 * @irq: irq line (unused)
5520 * @dev_instance: pointer to our ata_host information structure
5521 *
5522 * Default interrupt handler for PCI IDE devices. Calls
5523 * ata_host_intr() for each port that is not disabled.
5524 *
5525 * LOCKING:
5526 * Obtains host lock during operation.
5527 *
5528 * RETURNS:
5529 * IRQ_NONE or IRQ_HANDLED.
5530 */
5531
5532 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5533 {
5534 struct ata_host *host = dev_instance;
5535 unsigned int i;
5536 unsigned int handled = 0;
5537 unsigned long flags;
5538
5539 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5540 spin_lock_irqsave(&host->lock, flags);
5541
5542 for (i = 0; i < host->n_ports; i++) {
5543 struct ata_port *ap;
5544
5545 ap = host->ports[i];
5546 if (ap &&
5547 !(ap->flags & ATA_FLAG_DISABLED)) {
5548 struct ata_queued_cmd *qc;
5549
5550 qc = ata_qc_from_tag(ap, ap->active_tag);
5551 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5552 (qc->flags & ATA_QCFLAG_ACTIVE))
5553 handled |= ata_host_intr(ap, qc);
5554 }
5555 }
5556
5557 spin_unlock_irqrestore(&host->lock, flags);
5558
5559 return IRQ_RETVAL(handled);
5560 }
5561
5562 /**
5563 * sata_scr_valid - test whether SCRs are accessible
5564 * @ap: ATA port to test SCR accessibility for
5565 *
5566 * Test whether SCRs are accessible for @ap.
5567 *
5568 * LOCKING:
5569 * None.
5570 *
5571 * RETURNS:
5572 * 1 if SCRs are accessible, 0 otherwise.
5573 */
5574 int sata_scr_valid(struct ata_port *ap)
5575 {
5576 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5577 }
5578
5579 /**
5580 * sata_scr_read - read SCR register of the specified port
5581 * @ap: ATA port to read SCR for
5582 * @reg: SCR to read
5583 * @val: Place to store read value
5584 *
5585 * Read SCR register @reg of @ap into *@val. This function is
5586 * guaranteed to succeed if the cable type of the port is SATA
5587 * and the port implements ->scr_read.
5588 *
5589 * LOCKING:
5590 * None.
5591 *
5592 * RETURNS:
5593 * 0 on success, negative errno on failure.
5594 */
5595 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5596 {
5597 if (sata_scr_valid(ap)) {
5598 *val = ap->ops->scr_read(ap, reg);
5599 return 0;
5600 }
5601 return -EOPNOTSUPP;
5602 }
5603
5604 /**
5605 * sata_scr_write - write SCR register of the specified port
5606 * @ap: ATA port to write SCR for
5607 * @reg: SCR to write
5608 * @val: value to write
5609 *
5610 * Write @val to SCR register @reg of @ap. This function is
5611 * guaranteed to succeed if the cable type of the port is SATA
5612 * and the port implements ->scr_read.
5613 *
5614 * LOCKING:
5615 * None.
5616 *
5617 * RETURNS:
5618 * 0 on success, negative errno on failure.
5619 */
5620 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5621 {
5622 if (sata_scr_valid(ap)) {
5623 ap->ops->scr_write(ap, reg, val);
5624 return 0;
5625 }
5626 return -EOPNOTSUPP;
5627 }
5628
5629 /**
5630 * sata_scr_write_flush - write SCR register of the specified port and flush
5631 * @ap: ATA port to write SCR for
5632 * @reg: SCR to write
5633 * @val: value to write
5634 *
5635 * This function is identical to sata_scr_write() except that this
5636 * function performs flush after writing to the register.
5637 *
5638 * LOCKING:
5639 * None.
5640 *
5641 * RETURNS:
5642 * 0 on success, negative errno on failure.
5643 */
5644 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5645 {
5646 if (sata_scr_valid(ap)) {
5647 ap->ops->scr_write(ap, reg, val);
5648 ap->ops->scr_read(ap, reg);
5649 return 0;
5650 }
5651 return -EOPNOTSUPP;
5652 }
5653
5654 /**
5655 * ata_port_online - test whether the given port is online
5656 * @ap: ATA port to test
5657 *
5658 * Test whether @ap is online. Note that this function returns 0
5659 * if online status of @ap cannot be obtained, so
5660 * ata_port_online(ap) != !ata_port_offline(ap).
5661 *
5662 * LOCKING:
5663 * None.
5664 *
5665 * RETURNS:
5666 * 1 if the port online status is available and online.
5667 */
5668 int ata_port_online(struct ata_port *ap)
5669 {
5670 u32 sstatus;
5671
5672 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5673 return 1;
5674 return 0;
5675 }
5676
5677 /**
5678 * ata_port_offline - test whether the given port is offline
5679 * @ap: ATA port to test
5680 *
5681 * Test whether @ap is offline. Note that this function returns
5682 * 0 if offline status of @ap cannot be obtained, so
5683 * ata_port_online(ap) != !ata_port_offline(ap).
5684 *
5685 * LOCKING:
5686 * None.
5687 *
5688 * RETURNS:
5689 * 1 if the port offline status is available and offline.
5690 */
5691 int ata_port_offline(struct ata_port *ap)
5692 {
5693 u32 sstatus;
5694
5695 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5696 return 1;
5697 return 0;
5698 }
5699
5700 int ata_flush_cache(struct ata_device *dev)
5701 {
5702 unsigned int err_mask;
5703 u8 cmd;
5704
5705 if (!ata_try_flush_cache(dev))
5706 return 0;
5707
5708 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5709 cmd = ATA_CMD_FLUSH_EXT;
5710 else
5711 cmd = ATA_CMD_FLUSH;
5712
5713 err_mask = ata_do_simple_cmd(dev, cmd);
5714 if (err_mask) {
5715 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5716 return -EIO;
5717 }
5718
5719 return 0;
5720 }
5721
5722 #ifdef CONFIG_PM
5723 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5724 unsigned int action, unsigned int ehi_flags,
5725 int wait)
5726 {
5727 unsigned long flags;
5728 int i, rc;
5729
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
5732
5733 /* Previous resume operation might still be in
5734 * progress. Wait for PM_PENDING to clear.
5735 */
5736 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5737 ata_port_wait_eh(ap);
5738 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5739 }
5740
5741 /* request PM ops to EH */
5742 spin_lock_irqsave(ap->lock, flags);
5743
5744 ap->pm_mesg = mesg;
5745 if (wait) {
5746 rc = 0;
5747 ap->pm_result = &rc;
5748 }
5749
5750 ap->pflags |= ATA_PFLAG_PM_PENDING;
5751 ap->eh_info.action |= action;
5752 ap->eh_info.flags |= ehi_flags;
5753
5754 ata_port_schedule_eh(ap);
5755
5756 spin_unlock_irqrestore(ap->lock, flags);
5757
5758 /* wait and check result */
5759 if (wait) {
5760 ata_port_wait_eh(ap);
5761 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5762 if (rc)
5763 return rc;
5764 }
5765 }
5766
5767 return 0;
5768 }
5769
5770 /**
5771 * ata_host_suspend - suspend host
5772 * @host: host to suspend
5773 * @mesg: PM message
5774 *
5775 * Suspend @host. Actual operation is performed by EH. This
5776 * function requests EH to perform PM operations and waits for EH
5777 * to finish.
5778 *
5779 * LOCKING:
5780 * Kernel thread context (may sleep).
5781 *
5782 * RETURNS:
5783 * 0 on success, -errno on failure.
5784 */
5785 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5786 {
5787 int i, j, rc;
5788
5789 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5790 if (rc)
5791 goto fail;
5792
5793 /* EH is quiescent now. Fail if we have any ready device.
5794 * This happens if hotplug occurs between completion of device
5795 * suspension and here.
5796 */
5797 for (i = 0; i < host->n_ports; i++) {
5798 struct ata_port *ap = host->ports[i];
5799
5800 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5801 struct ata_device *dev = &ap->device[j];
5802
5803 if (ata_dev_ready(dev)) {
5804 ata_port_printk(ap, KERN_WARNING,
5805 "suspend failed, device %d "
5806 "still active\n", dev->devno);
5807 rc = -EBUSY;
5808 goto fail;
5809 }
5810 }
5811 }
5812
5813 host->dev->power.power_state = mesg;
5814 return 0;
5815
5816 fail:
5817 ata_host_resume(host);
5818 return rc;
5819 }
5820
5821 /**
5822 * ata_host_resume - resume host
5823 * @host: host to resume
5824 *
5825 * Resume @host. Actual operation is performed by EH. This
5826 * function requests EH to perform PM operations and returns.
5827 * Note that all resume operations are performed parallely.
5828 *
5829 * LOCKING:
5830 * Kernel thread context (may sleep).
5831 */
5832 void ata_host_resume(struct ata_host *host)
5833 {
5834 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5835 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5836 host->dev->power.power_state = PMSG_ON;
5837 }
5838 #endif
5839
5840 /**
5841 * ata_port_start - Set port up for dma.
5842 * @ap: Port to initialize
5843 *
5844 * Called just after data structures for each port are
5845 * initialized. Allocates space for PRD table.
5846 *
5847 * May be used as the port_start() entry in ata_port_operations.
5848 *
5849 * LOCKING:
5850 * Inherited from caller.
5851 */
5852 int ata_port_start(struct ata_port *ap)
5853 {
5854 struct device *dev = ap->dev;
5855 int rc;
5856
5857 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5858 GFP_KERNEL);
5859 if (!ap->prd)
5860 return -ENOMEM;
5861
5862 rc = ata_pad_alloc(ap, dev);
5863 if (rc)
5864 return rc;
5865
5866 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5867 (unsigned long long)ap->prd_dma);
5868 return 0;
5869 }
5870
5871 /**
5872 * ata_dev_init - Initialize an ata_device structure
5873 * @dev: Device structure to initialize
5874 *
5875 * Initialize @dev in preparation for probing.
5876 *
5877 * LOCKING:
5878 * Inherited from caller.
5879 */
5880 void ata_dev_init(struct ata_device *dev)
5881 {
5882 struct ata_port *ap = dev->ap;
5883 unsigned long flags;
5884
5885 /* SATA spd limit is bound to the first device */
5886 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5887
5888 /* High bits of dev->flags are used to record warm plug
5889 * requests which occur asynchronously. Synchronize using
5890 * host lock.
5891 */
5892 spin_lock_irqsave(ap->lock, flags);
5893 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5894 spin_unlock_irqrestore(ap->lock, flags);
5895
5896 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5897 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5898 dev->pio_mask = UINT_MAX;
5899 dev->mwdma_mask = UINT_MAX;
5900 dev->udma_mask = UINT_MAX;
5901 }
5902
5903 /**
5904 * ata_port_alloc - allocate and initialize basic ATA port resources
5905 * @host: ATA host this allocated port belongs to
5906 *
5907 * Allocate and initialize basic ATA port resources.
5908 *
5909 * RETURNS:
5910 * Allocate ATA port on success, NULL on failure.
5911 *
5912 * LOCKING:
5913 * Inherited from calling layer (may sleep).
5914 */
5915 struct ata_port *ata_port_alloc(struct ata_host *host)
5916 {
5917 struct ata_port *ap;
5918 unsigned int i;
5919
5920 DPRINTK("ENTER\n");
5921
5922 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5923 if (!ap)
5924 return NULL;
5925
5926 ap->lock = &host->lock;
5927 ap->flags = ATA_FLAG_DISABLED;
5928 ap->print_id = -1;
5929 ap->ctl = ATA_DEVCTL_OBS;
5930 ap->host = host;
5931 ap->dev = host->dev;
5932
5933 ap->hw_sata_spd_limit = UINT_MAX;
5934 ap->active_tag = ATA_TAG_POISON;
5935 ap->last_ctl = 0xFF;
5936
5937 #if defined(ATA_VERBOSE_DEBUG)
5938 /* turn on all debugging levels */
5939 ap->msg_enable = 0x00FF;
5940 #elif defined(ATA_DEBUG)
5941 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5942 #else
5943 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5944 #endif
5945
5946 INIT_DELAYED_WORK(&ap->port_task, NULL);
5947 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5948 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5949 INIT_LIST_HEAD(&ap->eh_done_q);
5950 init_waitqueue_head(&ap->eh_wait_q);
5951
5952 ap->cbl = ATA_CBL_NONE;
5953
5954 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5955 struct ata_device *dev = &ap->device[i];
5956 dev->ap = ap;
5957 dev->devno = i;
5958 ata_dev_init(dev);
5959 }
5960
5961 #ifdef ATA_IRQ_TRAP
5962 ap->stats.unhandled_irq = 1;
5963 ap->stats.idle_irq = 1;
5964 #endif
5965 return ap;
5966 }
5967
5968 static void ata_host_release(struct device *gendev, void *res)
5969 {
5970 struct ata_host *host = dev_get_drvdata(gendev);
5971 int i;
5972
5973 for (i = 0; i < host->n_ports; i++) {
5974 struct ata_port *ap = host->ports[i];
5975
5976 if (!ap)
5977 continue;
5978
5979 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
5980 ap->ops->port_stop(ap);
5981 }
5982
5983 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
5984 host->ops->host_stop(host);
5985
5986 for (i = 0; i < host->n_ports; i++) {
5987 struct ata_port *ap = host->ports[i];
5988
5989 if (!ap)
5990 continue;
5991
5992 if (ap->scsi_host)
5993 scsi_host_put(ap->scsi_host);
5994
5995 kfree(ap);
5996 host->ports[i] = NULL;
5997 }
5998
5999 dev_set_drvdata(gendev, NULL);
6000 }
6001
6002 /**
6003 * ata_host_alloc - allocate and init basic ATA host resources
6004 * @dev: generic device this host is associated with
6005 * @max_ports: maximum number of ATA ports associated with this host
6006 *
6007 * Allocate and initialize basic ATA host resources. LLD calls
6008 * this function to allocate a host, initializes it fully and
6009 * attaches it using ata_host_register().
6010 *
6011 * @max_ports ports are allocated and host->n_ports is
6012 * initialized to @max_ports. The caller is allowed to decrease
6013 * host->n_ports before calling ata_host_register(). The unused
6014 * ports will be automatically freed on registration.
6015 *
6016 * RETURNS:
6017 * Allocate ATA host on success, NULL on failure.
6018 *
6019 * LOCKING:
6020 * Inherited from calling layer (may sleep).
6021 */
6022 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6023 {
6024 struct ata_host *host;
6025 size_t sz;
6026 int i;
6027
6028 DPRINTK("ENTER\n");
6029
6030 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6031 return NULL;
6032
6033 /* alloc a container for our list of ATA ports (buses) */
6034 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6035 /* alloc a container for our list of ATA ports (buses) */
6036 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6037 if (!host)
6038 goto err_out;
6039
6040 devres_add(dev, host);
6041 dev_set_drvdata(dev, host);
6042
6043 spin_lock_init(&host->lock);
6044 host->dev = dev;
6045 host->n_ports = max_ports;
6046
6047 /* allocate ports bound to this host */
6048 for (i = 0; i < max_ports; i++) {
6049 struct ata_port *ap;
6050
6051 ap = ata_port_alloc(host);
6052 if (!ap)
6053 goto err_out;
6054
6055 ap->port_no = i;
6056 host->ports[i] = ap;
6057 }
6058
6059 devres_remove_group(dev, NULL);
6060 return host;
6061
6062 err_out:
6063 devres_release_group(dev, NULL);
6064 return NULL;
6065 }
6066
6067 /**
6068 * ata_host_alloc_pinfo - alloc host and init with port_info array
6069 * @dev: generic device this host is associated with
6070 * @ppi: array of ATA port_info to initialize host with
6071 * @n_ports: number of ATA ports attached to this host
6072 *
6073 * Allocate ATA host and initialize with info from @ppi. If NULL
6074 * terminated, @ppi may contain fewer entries than @n_ports. The
6075 * last entry will be used for the remaining ports.
6076 *
6077 * RETURNS:
6078 * Allocate ATA host on success, NULL on failure.
6079 *
6080 * LOCKING:
6081 * Inherited from calling layer (may sleep).
6082 */
6083 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6084 const struct ata_port_info * const * ppi,
6085 int n_ports)
6086 {
6087 const struct ata_port_info *pi;
6088 struct ata_host *host;
6089 int i, j;
6090
6091 host = ata_host_alloc(dev, n_ports);
6092 if (!host)
6093 return NULL;
6094
6095 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
6097
6098 if (ppi[j])
6099 pi = ppi[j++];
6100
6101 ap->pio_mask = pi->pio_mask;
6102 ap->mwdma_mask = pi->mwdma_mask;
6103 ap->udma_mask = pi->udma_mask;
6104 ap->flags |= pi->flags;
6105 ap->ops = pi->port_ops;
6106
6107 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6108 host->ops = pi->port_ops;
6109 if (!host->private_data && pi->private_data)
6110 host->private_data = pi->private_data;
6111 }
6112
6113 return host;
6114 }
6115
6116 /**
6117 * ata_host_start - start and freeze ports of an ATA host
6118 * @host: ATA host to start ports for
6119 *
6120 * Start and then freeze ports of @host. Started status is
6121 * recorded in host->flags, so this function can be called
6122 * multiple times. Ports are guaranteed to get started only
6123 * once. If host->ops isn't initialized yet, its set to the
6124 * first non-dummy port ops.
6125 *
6126 * LOCKING:
6127 * Inherited from calling layer (may sleep).
6128 *
6129 * RETURNS:
6130 * 0 if all ports are started successfully, -errno otherwise.
6131 */
6132 int ata_host_start(struct ata_host *host)
6133 {
6134 int i, rc;
6135
6136 if (host->flags & ATA_HOST_STARTED)
6137 return 0;
6138
6139 for (i = 0; i < host->n_ports; i++) {
6140 struct ata_port *ap = host->ports[i];
6141
6142 if (!host->ops && !ata_port_is_dummy(ap))
6143 host->ops = ap->ops;
6144
6145 if (ap->ops->port_start) {
6146 rc = ap->ops->port_start(ap);
6147 if (rc) {
6148 ata_port_printk(ap, KERN_ERR, "failed to "
6149 "start port (errno=%d)\n", rc);
6150 goto err_out;
6151 }
6152 }
6153
6154 ata_eh_freeze_port(ap);
6155 }
6156
6157 host->flags |= ATA_HOST_STARTED;
6158 return 0;
6159
6160 err_out:
6161 while (--i >= 0) {
6162 struct ata_port *ap = host->ports[i];
6163
6164 if (ap->ops->port_stop)
6165 ap->ops->port_stop(ap);
6166 }
6167 return rc;
6168 }
6169
6170 /**
6171 * ata_sas_host_init - Initialize a host struct
6172 * @host: host to initialize
6173 * @dev: device host is attached to
6174 * @flags: host flags
6175 * @ops: port_ops
6176 *
6177 * LOCKING:
6178 * PCI/etc. bus probe sem.
6179 *
6180 */
6181 /* KILLME - the only user left is ipr */
6182 void ata_host_init(struct ata_host *host, struct device *dev,
6183 unsigned long flags, const struct ata_port_operations *ops)
6184 {
6185 spin_lock_init(&host->lock);
6186 host->dev = dev;
6187 host->flags = flags;
6188 host->ops = ops;
6189 }
6190
6191 /**
6192 * ata_host_register - register initialized ATA host
6193 * @host: ATA host to register
6194 * @sht: template for SCSI host
6195 *
6196 * Register initialized ATA host. @host is allocated using
6197 * ata_host_alloc() and fully initialized by LLD. This function
6198 * starts ports, registers @host with ATA and SCSI layers and
6199 * probe registered devices.
6200 *
6201 * LOCKING:
6202 * Inherited from calling layer (may sleep).
6203 *
6204 * RETURNS:
6205 * 0 on success, -errno otherwise.
6206 */
6207 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6208 {
6209 int i, rc;
6210
6211 /* host must have been started */
6212 if (!(host->flags & ATA_HOST_STARTED)) {
6213 dev_printk(KERN_ERR, host->dev,
6214 "BUG: trying to register unstarted host\n");
6215 WARN_ON(1);
6216 return -EINVAL;
6217 }
6218
6219 /* Blow away unused ports. This happens when LLD can't
6220 * determine the exact number of ports to allocate at
6221 * allocation time.
6222 */
6223 for (i = host->n_ports; host->ports[i]; i++)
6224 kfree(host->ports[i]);
6225
6226 /* give ports names and add SCSI hosts */
6227 for (i = 0; i < host->n_ports; i++)
6228 host->ports[i]->print_id = ata_print_id++;
6229
6230 rc = ata_scsi_add_hosts(host, sht);
6231 if (rc)
6232 return rc;
6233
6234 /* set cable, sata_spd_limit and report */
6235 for (i = 0; i < host->n_ports; i++) {
6236 struct ata_port *ap = host->ports[i];
6237 int irq_line;
6238 u32 scontrol;
6239 unsigned long xfer_mask;
6240
6241 /* set SATA cable type if still unset */
6242 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6243 ap->cbl = ATA_CBL_SATA;
6244
6245 /* init sata_spd_limit to the current value */
6246 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6247 int spd = (scontrol >> 4) & 0xf;
6248 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6249 }
6250 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6251
6252 /* report the secondary IRQ for second channel legacy */
6253 irq_line = host->irq;
6254 if (i == 1 && host->irq2)
6255 irq_line = host->irq2;
6256
6257 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6258 ap->udma_mask);
6259
6260 /* print per-port info to dmesg */
6261 if (!ata_port_is_dummy(ap))
6262 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6263 "ctl 0x%p bmdma 0x%p irq %d\n",
6264 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6265 ata_mode_string(xfer_mask),
6266 ap->ioaddr.cmd_addr,
6267 ap->ioaddr.ctl_addr,
6268 ap->ioaddr.bmdma_addr,
6269 irq_line);
6270 else
6271 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6272 }
6273
6274 /* perform each probe synchronously */
6275 DPRINTK("probe begin\n");
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap = host->ports[i];
6278 int rc;
6279
6280 /* probe */
6281 if (ap->ops->error_handler) {
6282 struct ata_eh_info *ehi = &ap->eh_info;
6283 unsigned long flags;
6284
6285 ata_port_probe(ap);
6286
6287 /* kick EH for boot probing */
6288 spin_lock_irqsave(ap->lock, flags);
6289
6290 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6291 ehi->action |= ATA_EH_SOFTRESET;
6292 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6293
6294 ap->pflags |= ATA_PFLAG_LOADING;
6295 ata_port_schedule_eh(ap);
6296
6297 spin_unlock_irqrestore(ap->lock, flags);
6298
6299 /* wait for EH to finish */
6300 ata_port_wait_eh(ap);
6301 } else {
6302 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6303 rc = ata_bus_probe(ap);
6304 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6305
6306 if (rc) {
6307 /* FIXME: do something useful here?
6308 * Current libata behavior will
6309 * tear down everything when
6310 * the module is removed
6311 * or the h/w is unplugged.
6312 */
6313 }
6314 }
6315 }
6316
6317 /* probes are done, now scan each port's disk(s) */
6318 DPRINTK("host probe begin\n");
6319 for (i = 0; i < host->n_ports; i++) {
6320 struct ata_port *ap = host->ports[i];
6321
6322 ata_scsi_scan_host(ap);
6323 }
6324
6325 return 0;
6326 }
6327
6328 /**
6329 * ata_host_activate - start host, request IRQ and register it
6330 * @host: target ATA host
6331 * @irq: IRQ to request
6332 * @irq_handler: irq_handler used when requesting IRQ
6333 * @irq_flags: irq_flags used when requesting IRQ
6334 * @sht: scsi_host_template to use when registering the host
6335 *
6336 * After allocating an ATA host and initializing it, most libata
6337 * LLDs perform three steps to activate the host - start host,
6338 * request IRQ and register it. This helper takes necessasry
6339 * arguments and performs the three steps in one go.
6340 *
6341 * LOCKING:
6342 * Inherited from calling layer (may sleep).
6343 *
6344 * RETURNS:
6345 * 0 on success, -errno otherwise.
6346 */
6347 int ata_host_activate(struct ata_host *host, int irq,
6348 irq_handler_t irq_handler, unsigned long irq_flags,
6349 struct scsi_host_template *sht)
6350 {
6351 int rc;
6352
6353 rc = ata_host_start(host);
6354 if (rc)
6355 return rc;
6356
6357 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6358 dev_driver_string(host->dev), host);
6359 if (rc)
6360 return rc;
6361
6362 rc = ata_host_register(host, sht);
6363 /* if failed, just free the IRQ and leave ports alone */
6364 if (rc)
6365 devm_free_irq(host->dev, irq, host);
6366
6367 return rc;
6368 }
6369
6370 /**
6371 * ata_port_detach - Detach ATA port in prepration of device removal
6372 * @ap: ATA port to be detached
6373 *
6374 * Detach all ATA devices and the associated SCSI devices of @ap;
6375 * then, remove the associated SCSI host. @ap is guaranteed to
6376 * be quiescent on return from this function.
6377 *
6378 * LOCKING:
6379 * Kernel thread context (may sleep).
6380 */
6381 void ata_port_detach(struct ata_port *ap)
6382 {
6383 unsigned long flags;
6384 int i;
6385
6386 if (!ap->ops->error_handler)
6387 goto skip_eh;
6388
6389 /* tell EH we're leaving & flush EH */
6390 spin_lock_irqsave(ap->lock, flags);
6391 ap->pflags |= ATA_PFLAG_UNLOADING;
6392 spin_unlock_irqrestore(ap->lock, flags);
6393
6394 ata_port_wait_eh(ap);
6395
6396 /* EH is now guaranteed to see UNLOADING, so no new device
6397 * will be attached. Disable all existing devices.
6398 */
6399 spin_lock_irqsave(ap->lock, flags);
6400
6401 for (i = 0; i < ATA_MAX_DEVICES; i++)
6402 ata_dev_disable(&ap->device[i]);
6403
6404 spin_unlock_irqrestore(ap->lock, flags);
6405
6406 /* Final freeze & EH. All in-flight commands are aborted. EH
6407 * will be skipped and retrials will be terminated with bad
6408 * target.
6409 */
6410 spin_lock_irqsave(ap->lock, flags);
6411 ata_port_freeze(ap); /* won't be thawed */
6412 spin_unlock_irqrestore(ap->lock, flags);
6413
6414 ata_port_wait_eh(ap);
6415
6416 /* Flush hotplug task. The sequence is similar to
6417 * ata_port_flush_task().
6418 */
6419 flush_workqueue(ata_aux_wq);
6420 cancel_delayed_work(&ap->hotplug_task);
6421 flush_workqueue(ata_aux_wq);
6422
6423 skip_eh:
6424 /* remove the associated SCSI host */
6425 scsi_remove_host(ap->scsi_host);
6426 }
6427
6428 /**
6429 * ata_host_detach - Detach all ports of an ATA host
6430 * @host: Host to detach
6431 *
6432 * Detach all ports of @host.
6433 *
6434 * LOCKING:
6435 * Kernel thread context (may sleep).
6436 */
6437 void ata_host_detach(struct ata_host *host)
6438 {
6439 int i;
6440
6441 for (i = 0; i < host->n_ports; i++)
6442 ata_port_detach(host->ports[i]);
6443 }
6444
6445 /**
6446 * ata_std_ports - initialize ioaddr with standard port offsets.
6447 * @ioaddr: IO address structure to be initialized
6448 *
6449 * Utility function which initializes data_addr, error_addr,
6450 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6451 * device_addr, status_addr, and command_addr to standard offsets
6452 * relative to cmd_addr.
6453 *
6454 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6455 */
6456
6457 void ata_std_ports(struct ata_ioports *ioaddr)
6458 {
6459 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6460 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6461 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6462 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6463 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6464 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6465 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6466 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6467 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6468 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6469 }
6470
6471
6472 #ifdef CONFIG_PCI
6473
6474 /**
6475 * ata_pci_remove_one - PCI layer callback for device removal
6476 * @pdev: PCI device that was removed
6477 *
6478 * PCI layer indicates to libata via this hook that hot-unplug or
6479 * module unload event has occurred. Detach all ports. Resource
6480 * release is handled via devres.
6481 *
6482 * LOCKING:
6483 * Inherited from PCI layer (may sleep).
6484 */
6485 void ata_pci_remove_one(struct pci_dev *pdev)
6486 {
6487 struct device *dev = pci_dev_to_dev(pdev);
6488 struct ata_host *host = dev_get_drvdata(dev);
6489
6490 ata_host_detach(host);
6491 }
6492
6493 /* move to PCI subsystem */
6494 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6495 {
6496 unsigned long tmp = 0;
6497
6498 switch (bits->width) {
6499 case 1: {
6500 u8 tmp8 = 0;
6501 pci_read_config_byte(pdev, bits->reg, &tmp8);
6502 tmp = tmp8;
6503 break;
6504 }
6505 case 2: {
6506 u16 tmp16 = 0;
6507 pci_read_config_word(pdev, bits->reg, &tmp16);
6508 tmp = tmp16;
6509 break;
6510 }
6511 case 4: {
6512 u32 tmp32 = 0;
6513 pci_read_config_dword(pdev, bits->reg, &tmp32);
6514 tmp = tmp32;
6515 break;
6516 }
6517
6518 default:
6519 return -EINVAL;
6520 }
6521
6522 tmp &= bits->mask;
6523
6524 return (tmp == bits->val) ? 1 : 0;
6525 }
6526
6527 #ifdef CONFIG_PM
6528 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6529 {
6530 pci_save_state(pdev);
6531 pci_disable_device(pdev);
6532
6533 if (mesg.event == PM_EVENT_SUSPEND)
6534 pci_set_power_state(pdev, PCI_D3hot);
6535 }
6536
6537 int ata_pci_device_do_resume(struct pci_dev *pdev)
6538 {
6539 int rc;
6540
6541 pci_set_power_state(pdev, PCI_D0);
6542 pci_restore_state(pdev);
6543
6544 rc = pcim_enable_device(pdev);
6545 if (rc) {
6546 dev_printk(KERN_ERR, &pdev->dev,
6547 "failed to enable device after resume (%d)\n", rc);
6548 return rc;
6549 }
6550
6551 pci_set_master(pdev);
6552 return 0;
6553 }
6554
6555 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6556 {
6557 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6558 int rc = 0;
6559
6560 rc = ata_host_suspend(host, mesg);
6561 if (rc)
6562 return rc;
6563
6564 ata_pci_device_do_suspend(pdev, mesg);
6565
6566 return 0;
6567 }
6568
6569 int ata_pci_device_resume(struct pci_dev *pdev)
6570 {
6571 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6572 int rc;
6573
6574 rc = ata_pci_device_do_resume(pdev);
6575 if (rc == 0)
6576 ata_host_resume(host);
6577 return rc;
6578 }
6579 #endif /* CONFIG_PM */
6580
6581 #endif /* CONFIG_PCI */
6582
6583
6584 static int __init ata_init(void)
6585 {
6586 ata_probe_timeout *= HZ;
6587 ata_wq = create_workqueue("ata");
6588 if (!ata_wq)
6589 return -ENOMEM;
6590
6591 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6592 if (!ata_aux_wq) {
6593 destroy_workqueue(ata_wq);
6594 return -ENOMEM;
6595 }
6596
6597 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6598 return 0;
6599 }
6600
6601 static void __exit ata_exit(void)
6602 {
6603 destroy_workqueue(ata_wq);
6604 destroy_workqueue(ata_aux_wq);
6605 }
6606
6607 subsys_initcall(ata_init);
6608 module_exit(ata_exit);
6609
6610 static unsigned long ratelimit_time;
6611 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6612
6613 int ata_ratelimit(void)
6614 {
6615 int rc;
6616 unsigned long flags;
6617
6618 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6619
6620 if (time_after(jiffies, ratelimit_time)) {
6621 rc = 1;
6622 ratelimit_time = jiffies + (HZ/5);
6623 } else
6624 rc = 0;
6625
6626 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6627
6628 return rc;
6629 }
6630
6631 /**
6632 * ata_wait_register - wait until register value changes
6633 * @reg: IO-mapped register
6634 * @mask: Mask to apply to read register value
6635 * @val: Wait condition
6636 * @interval_msec: polling interval in milliseconds
6637 * @timeout_msec: timeout in milliseconds
6638 *
6639 * Waiting for some bits of register to change is a common
6640 * operation for ATA controllers. This function reads 32bit LE
6641 * IO-mapped register @reg and tests for the following condition.
6642 *
6643 * (*@reg & mask) != val
6644 *
6645 * If the condition is met, it returns; otherwise, the process is
6646 * repeated after @interval_msec until timeout.
6647 *
6648 * LOCKING:
6649 * Kernel thread context (may sleep)
6650 *
6651 * RETURNS:
6652 * The final register value.
6653 */
6654 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6655 unsigned long interval_msec,
6656 unsigned long timeout_msec)
6657 {
6658 unsigned long timeout;
6659 u32 tmp;
6660
6661 tmp = ioread32(reg);
6662
6663 /* Calculate timeout _after_ the first read to make sure
6664 * preceding writes reach the controller before starting to
6665 * eat away the timeout.
6666 */
6667 timeout = jiffies + (timeout_msec * HZ) / 1000;
6668
6669 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6670 msleep(interval_msec);
6671 tmp = ioread32(reg);
6672 }
6673
6674 return tmp;
6675 }
6676
6677 /*
6678 * Dummy port_ops
6679 */
6680 static void ata_dummy_noret(struct ata_port *ap) { }
6681 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6682 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6683
6684 static u8 ata_dummy_check_status(struct ata_port *ap)
6685 {
6686 return ATA_DRDY;
6687 }
6688
6689 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6690 {
6691 return AC_ERR_SYSTEM;
6692 }
6693
6694 const struct ata_port_operations ata_dummy_port_ops = {
6695 .port_disable = ata_port_disable,
6696 .check_status = ata_dummy_check_status,
6697 .check_altstatus = ata_dummy_check_status,
6698 .dev_select = ata_noop_dev_select,
6699 .qc_prep = ata_noop_qc_prep,
6700 .qc_issue = ata_dummy_qc_issue,
6701 .freeze = ata_dummy_noret,
6702 .thaw = ata_dummy_noret,
6703 .error_handler = ata_dummy_noret,
6704 .post_internal_cmd = ata_dummy_qc_noret,
6705 .irq_clear = ata_dummy_noret,
6706 .port_start = ata_dummy_ret0,
6707 .port_stop = ata_dummy_noret,
6708 };
6709
6710 const struct ata_port_info ata_dummy_port_info = {
6711 .port_ops = &ata_dummy_port_ops,
6712 };
6713
6714 /*
6715 * libata is essentially a library of internal helper functions for
6716 * low-level ATA host controller drivers. As such, the API/ABI is
6717 * likely to change as new drivers are added and updated.
6718 * Do not depend on ABI/API stability.
6719 */
6720
6721 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6722 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6723 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6724 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6725 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6726 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6727 EXPORT_SYMBOL_GPL(ata_std_ports);
6728 EXPORT_SYMBOL_GPL(ata_host_init);
6729 EXPORT_SYMBOL_GPL(ata_host_alloc);
6730 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6731 EXPORT_SYMBOL_GPL(ata_host_start);
6732 EXPORT_SYMBOL_GPL(ata_host_register);
6733 EXPORT_SYMBOL_GPL(ata_host_activate);
6734 EXPORT_SYMBOL_GPL(ata_host_detach);
6735 EXPORT_SYMBOL_GPL(ata_sg_init);
6736 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6737 EXPORT_SYMBOL_GPL(ata_hsm_move);
6738 EXPORT_SYMBOL_GPL(ata_qc_complete);
6739 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6740 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6741 EXPORT_SYMBOL_GPL(ata_tf_load);
6742 EXPORT_SYMBOL_GPL(ata_tf_read);
6743 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6744 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6745 EXPORT_SYMBOL_GPL(sata_print_link_status);
6746 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6747 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6748 EXPORT_SYMBOL_GPL(ata_check_status);
6749 EXPORT_SYMBOL_GPL(ata_altstatus);
6750 EXPORT_SYMBOL_GPL(ata_exec_command);
6751 EXPORT_SYMBOL_GPL(ata_port_start);
6752 EXPORT_SYMBOL_GPL(ata_interrupt);
6753 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6754 EXPORT_SYMBOL_GPL(ata_data_xfer);
6755 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6756 EXPORT_SYMBOL_GPL(ata_qc_prep);
6757 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6758 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6759 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6760 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6761 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6762 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6763 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6764 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6765 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6766 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6767 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6768 EXPORT_SYMBOL_GPL(ata_port_probe);
6769 EXPORT_SYMBOL_GPL(ata_dev_disable);
6770 EXPORT_SYMBOL_GPL(sata_set_spd);
6771 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6772 EXPORT_SYMBOL_GPL(sata_phy_resume);
6773 EXPORT_SYMBOL_GPL(sata_phy_reset);
6774 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6775 EXPORT_SYMBOL_GPL(ata_bus_reset);
6776 EXPORT_SYMBOL_GPL(ata_std_prereset);
6777 EXPORT_SYMBOL_GPL(ata_std_softreset);
6778 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6779 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6780 EXPORT_SYMBOL_GPL(ata_std_postreset);
6781 EXPORT_SYMBOL_GPL(ata_dev_classify);
6782 EXPORT_SYMBOL_GPL(ata_dev_pair);
6783 EXPORT_SYMBOL_GPL(ata_port_disable);
6784 EXPORT_SYMBOL_GPL(ata_ratelimit);
6785 EXPORT_SYMBOL_GPL(ata_wait_register);
6786 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6787 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6788 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6789 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6790 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6791 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6792 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6793 EXPORT_SYMBOL_GPL(ata_host_intr);
6794 EXPORT_SYMBOL_GPL(sata_scr_valid);
6795 EXPORT_SYMBOL_GPL(sata_scr_read);
6796 EXPORT_SYMBOL_GPL(sata_scr_write);
6797 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6798 EXPORT_SYMBOL_GPL(ata_port_online);
6799 EXPORT_SYMBOL_GPL(ata_port_offline);
6800 #ifdef CONFIG_PM
6801 EXPORT_SYMBOL_GPL(ata_host_suspend);
6802 EXPORT_SYMBOL_GPL(ata_host_resume);
6803 #endif /* CONFIG_PM */
6804 EXPORT_SYMBOL_GPL(ata_id_string);
6805 EXPORT_SYMBOL_GPL(ata_id_c_string);
6806 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6807 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6808 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6809
6810 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6811 EXPORT_SYMBOL_GPL(ata_timing_compute);
6812 EXPORT_SYMBOL_GPL(ata_timing_merge);
6813
6814 #ifdef CONFIG_PCI
6815 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6816 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6817 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6818 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6819 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6820 #ifdef CONFIG_PM
6821 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6822 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6823 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6824 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6825 #endif /* CONFIG_PM */
6826 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6827 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6828 #endif /* CONFIG_PCI */
6829
6830 #ifdef CONFIG_PM
6831 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6832 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6833 #endif /* CONFIG_PM */
6834
6835 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6836 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6837 EXPORT_SYMBOL_GPL(ata_port_abort);
6838 EXPORT_SYMBOL_GPL(ata_port_freeze);
6839 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6840 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6841 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6842 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6843 EXPORT_SYMBOL_GPL(ata_do_eh);
6844 EXPORT_SYMBOL_GPL(ata_irq_on);
6845 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6846 EXPORT_SYMBOL_GPL(ata_irq_ack);
6847 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6848 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6849
6850 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6851 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6852 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6853 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.161446 seconds and 6 git commands to generate.