libata passthru: update cached device paramters
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 {
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931 }
932
933 /**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943 {
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965 }
966
967 /**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976 static u64 ata_hpa_resize(struct ata_device *dev)
977 {
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
980
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors, (long long)hpa_sectors);
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1004
1005 if (hpa_sectors) {
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800 }
1801
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809 {
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831
1832 /**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1854 int rc;
1855
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
1859 return 0;
1860 }
1861
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864
1865 /* set _SDD */
1866 rc = ata_acpi_push_id(dev);
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 __FUNCTION__,
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1883
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1899
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1902
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1922 dev->n_sectors = ata_id_n_sectors(id);
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1929 char ncq_desc[20];
1930
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1935 lba_desc = "LBA48";
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 }
1941
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
1959 } else {
1960 /* CHS */
1961
1962 /* Default translation */
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
1966
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1972 }
1973
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
1986 }
1987
1988 dev->cdb_len = 16;
1989 }
1990
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1994
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2000 rc = -EINVAL;
2001 goto err_out_nosup;
2002 }
2003 dev->cdb_len = (unsigned int) rc;
2004
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2008 }
2009
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
2017 }
2018
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030 "Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032 "fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
2036 /* limit bridge transfers to udma5, 200 sectors */
2037 if (ata_dev_knobble(dev)) {
2038 if (ata_msg_drv(ap) && print_info)
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
2041 dev->udma_mask &= ATA_UDMA5;
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
2048
2049 /* limit ATAPI DMA to R/W commands only */
2050 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2051 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2052
2053 if (ap->ops->dev_config)
2054 ap->ops->dev_config(dev);
2055
2056 if (ata_msg_probe(ap))
2057 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2058 __FUNCTION__, ata_chk_status(ap));
2059 return 0;
2060
2061 err_out_nosup:
2062 if (ata_msg_probe(ap))
2063 ata_dev_printk(dev, KERN_DEBUG,
2064 "%s: EXIT, err\n", __FUNCTION__);
2065 return rc;
2066 }
2067
2068 /**
2069 * ata_cable_40wire - return 40 wire cable type
2070 * @ap: port
2071 *
2072 * Helper method for drivers which want to hardwire 40 wire cable
2073 * detection.
2074 */
2075
2076 int ata_cable_40wire(struct ata_port *ap)
2077 {
2078 return ATA_CBL_PATA40;
2079 }
2080
2081 /**
2082 * ata_cable_80wire - return 80 wire cable type
2083 * @ap: port
2084 *
2085 * Helper method for drivers which want to hardwire 80 wire cable
2086 * detection.
2087 */
2088
2089 int ata_cable_80wire(struct ata_port *ap)
2090 {
2091 return ATA_CBL_PATA80;
2092 }
2093
2094 /**
2095 * ata_cable_unknown - return unknown PATA cable.
2096 * @ap: port
2097 *
2098 * Helper method for drivers which have no PATA cable detection.
2099 */
2100
2101 int ata_cable_unknown(struct ata_port *ap)
2102 {
2103 return ATA_CBL_PATA_UNK;
2104 }
2105
2106 /**
2107 * ata_cable_sata - return SATA cable type
2108 * @ap: port
2109 *
2110 * Helper method for drivers which have SATA cables
2111 */
2112
2113 int ata_cable_sata(struct ata_port *ap)
2114 {
2115 return ATA_CBL_SATA;
2116 }
2117
2118 /**
2119 * ata_bus_probe - Reset and probe ATA bus
2120 * @ap: Bus to probe
2121 *
2122 * Master ATA bus probing function. Initiates a hardware-dependent
2123 * bus reset, then attempts to identify any devices found on
2124 * the bus.
2125 *
2126 * LOCKING:
2127 * PCI/etc. bus probe sem.
2128 *
2129 * RETURNS:
2130 * Zero on success, negative errno otherwise.
2131 */
2132
2133 int ata_bus_probe(struct ata_port *ap)
2134 {
2135 unsigned int classes[ATA_MAX_DEVICES];
2136 int tries[ATA_MAX_DEVICES];
2137 int i, rc;
2138 struct ata_device *dev;
2139
2140 ata_port_probe(ap);
2141
2142 for (i = 0; i < ATA_MAX_DEVICES; i++)
2143 tries[i] = ATA_PROBE_MAX_TRIES;
2144
2145 retry:
2146 /* reset and determine device classes */
2147 ap->ops->phy_reset(ap);
2148
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 dev = &ap->device[i];
2151
2152 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2153 dev->class != ATA_DEV_UNKNOWN)
2154 classes[dev->devno] = dev->class;
2155 else
2156 classes[dev->devno] = ATA_DEV_NONE;
2157
2158 dev->class = ATA_DEV_UNKNOWN;
2159 }
2160
2161 ata_port_probe(ap);
2162
2163 /* after the reset the device state is PIO 0 and the controller
2164 state is undefined. Record the mode */
2165
2166 for (i = 0; i < ATA_MAX_DEVICES; i++)
2167 ap->device[i].pio_mode = XFER_PIO_0;
2168
2169 /* read IDENTIFY page and configure devices. We have to do the identify
2170 specific sequence bass-ackwards so that PDIAG- is released by
2171 the slave device */
2172
2173 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2174 dev = &ap->device[i];
2175
2176 if (tries[i])
2177 dev->class = classes[i];
2178
2179 if (!ata_dev_enabled(dev))
2180 continue;
2181
2182 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2183 dev->id);
2184 if (rc)
2185 goto fail;
2186 }
2187
2188 /* Now ask for the cable type as PDIAG- should have been released */
2189 if (ap->ops->cable_detect)
2190 ap->cbl = ap->ops->cable_detect(ap);
2191
2192 /* After the identify sequence we can now set up the devices. We do
2193 this in the normal order so that the user doesn't get confused */
2194
2195 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2196 dev = &ap->device[i];
2197 if (!ata_dev_enabled(dev))
2198 continue;
2199
2200 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2201 rc = ata_dev_configure(dev);
2202 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2203 if (rc)
2204 goto fail;
2205 }
2206
2207 /* configure transfer mode */
2208 rc = ata_set_mode(ap, &dev);
2209 if (rc)
2210 goto fail;
2211
2212 for (i = 0; i < ATA_MAX_DEVICES; i++)
2213 if (ata_dev_enabled(&ap->device[i]))
2214 return 0;
2215
2216 /* no device present, disable port */
2217 ata_port_disable(ap);
2218 ap->ops->port_disable(ap);
2219 return -ENODEV;
2220
2221 fail:
2222 tries[dev->devno]--;
2223
2224 switch (rc) {
2225 case -EINVAL:
2226 /* eeek, something went very wrong, give up */
2227 tries[dev->devno] = 0;
2228 break;
2229
2230 case -ENODEV:
2231 /* give it just one more chance */
2232 tries[dev->devno] = min(tries[dev->devno], 1);
2233 case -EIO:
2234 if (tries[dev->devno] == 1) {
2235 /* This is the last chance, better to slow
2236 * down than lose it.
2237 */
2238 sata_down_spd_limit(ap);
2239 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2240 }
2241 }
2242
2243 if (!tries[dev->devno])
2244 ata_dev_disable(dev);
2245
2246 goto retry;
2247 }
2248
2249 /**
2250 * ata_port_probe - Mark port as enabled
2251 * @ap: Port for which we indicate enablement
2252 *
2253 * Modify @ap data structure such that the system
2254 * thinks that the entire port is enabled.
2255 *
2256 * LOCKING: host lock, or some other form of
2257 * serialization.
2258 */
2259
2260 void ata_port_probe(struct ata_port *ap)
2261 {
2262 ap->flags &= ~ATA_FLAG_DISABLED;
2263 }
2264
2265 /**
2266 * sata_print_link_status - Print SATA link status
2267 * @ap: SATA port to printk link status about
2268 *
2269 * This function prints link speed and status of a SATA link.
2270 *
2271 * LOCKING:
2272 * None.
2273 */
2274 void sata_print_link_status(struct ata_port *ap)
2275 {
2276 u32 sstatus, scontrol, tmp;
2277
2278 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2279 return;
2280 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2281
2282 if (ata_port_online(ap)) {
2283 tmp = (sstatus >> 4) & 0xf;
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link up %s (SStatus %X SControl %X)\n",
2286 sata_spd_string(tmp), sstatus, scontrol);
2287 } else {
2288 ata_port_printk(ap, KERN_INFO,
2289 "SATA link down (SStatus %X SControl %X)\n",
2290 sstatus, scontrol);
2291 }
2292 }
2293
2294 /**
2295 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2296 * @ap: SATA port associated with target SATA PHY.
2297 *
2298 * This function issues commands to standard SATA Sxxx
2299 * PHY registers, to wake up the phy (and device), and
2300 * clear any reset condition.
2301 *
2302 * LOCKING:
2303 * PCI/etc. bus probe sem.
2304 *
2305 */
2306 void __sata_phy_reset(struct ata_port *ap)
2307 {
2308 u32 sstatus;
2309 unsigned long timeout = jiffies + (HZ * 5);
2310
2311 if (ap->flags & ATA_FLAG_SATA_RESET) {
2312 /* issue phy wake/reset */
2313 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2314 /* Couldn't find anything in SATA I/II specs, but
2315 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 mdelay(1);
2317 }
2318 /* phy wake/clear reset */
2319 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2320
2321 /* wait for phy to become ready, if necessary */
2322 do {
2323 msleep(200);
2324 sata_scr_read(ap, SCR_STATUS, &sstatus);
2325 if ((sstatus & 0xf) != 1)
2326 break;
2327 } while (time_before(jiffies, timeout));
2328
2329 /* print link status */
2330 sata_print_link_status(ap);
2331
2332 /* TODO: phy layer with polling, timeouts, etc. */
2333 if (!ata_port_offline(ap))
2334 ata_port_probe(ap);
2335 else
2336 ata_port_disable(ap);
2337
2338 if (ap->flags & ATA_FLAG_DISABLED)
2339 return;
2340
2341 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2342 ata_port_disable(ap);
2343 return;
2344 }
2345
2346 ap->cbl = ATA_CBL_SATA;
2347 }
2348
2349 /**
2350 * sata_phy_reset - Reset SATA bus.
2351 * @ap: SATA port associated with target SATA PHY.
2352 *
2353 * This function resets the SATA bus, and then probes
2354 * the bus for devices.
2355 *
2356 * LOCKING:
2357 * PCI/etc. bus probe sem.
2358 *
2359 */
2360 void sata_phy_reset(struct ata_port *ap)
2361 {
2362 __sata_phy_reset(ap);
2363 if (ap->flags & ATA_FLAG_DISABLED)
2364 return;
2365 ata_bus_reset(ap);
2366 }
2367
2368 /**
2369 * ata_dev_pair - return other device on cable
2370 * @adev: device
2371 *
2372 * Obtain the other device on the same cable, or if none is
2373 * present NULL is returned
2374 */
2375
2376 struct ata_device *ata_dev_pair(struct ata_device *adev)
2377 {
2378 struct ata_port *ap = adev->ap;
2379 struct ata_device *pair = &ap->device[1 - adev->devno];
2380 if (!ata_dev_enabled(pair))
2381 return NULL;
2382 return pair;
2383 }
2384
2385 /**
2386 * ata_port_disable - Disable port.
2387 * @ap: Port to be disabled.
2388 *
2389 * Modify @ap data structure such that the system
2390 * thinks that the entire port is disabled, and should
2391 * never attempt to probe or communicate with devices
2392 * on this port.
2393 *
2394 * LOCKING: host lock, or some other form of
2395 * serialization.
2396 */
2397
2398 void ata_port_disable(struct ata_port *ap)
2399 {
2400 ap->device[0].class = ATA_DEV_NONE;
2401 ap->device[1].class = ATA_DEV_NONE;
2402 ap->flags |= ATA_FLAG_DISABLED;
2403 }
2404
2405 /**
2406 * sata_down_spd_limit - adjust SATA spd limit downward
2407 * @ap: Port to adjust SATA spd limit for
2408 *
2409 * Adjust SATA spd limit of @ap downward. Note that this
2410 * function only adjusts the limit. The change must be applied
2411 * using sata_set_spd().
2412 *
2413 * LOCKING:
2414 * Inherited from caller.
2415 *
2416 * RETURNS:
2417 * 0 on success, negative errno on failure
2418 */
2419 int sata_down_spd_limit(struct ata_port *ap)
2420 {
2421 u32 sstatus, spd, mask;
2422 int rc, highbit;
2423
2424 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2425 if (rc)
2426 return rc;
2427
2428 mask = ap->sata_spd_limit;
2429 if (mask <= 1)
2430 return -EINVAL;
2431 highbit = fls(mask) - 1;
2432 mask &= ~(1 << highbit);
2433
2434 spd = (sstatus >> 4) & 0xf;
2435 if (spd <= 1)
2436 return -EINVAL;
2437 spd--;
2438 mask &= (1 << spd) - 1;
2439 if (!mask)
2440 return -EINVAL;
2441
2442 ap->sata_spd_limit = mask;
2443
2444 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2445 sata_spd_string(fls(mask)));
2446
2447 return 0;
2448 }
2449
2450 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2451 {
2452 u32 spd, limit;
2453
2454 if (ap->sata_spd_limit == UINT_MAX)
2455 limit = 0;
2456 else
2457 limit = fls(ap->sata_spd_limit);
2458
2459 spd = (*scontrol >> 4) & 0xf;
2460 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2461
2462 return spd != limit;
2463 }
2464
2465 /**
2466 * sata_set_spd_needed - is SATA spd configuration needed
2467 * @ap: Port in question
2468 *
2469 * Test whether the spd limit in SControl matches
2470 * @ap->sata_spd_limit. This function is used to determine
2471 * whether hardreset is necessary to apply SATA spd
2472 * configuration.
2473 *
2474 * LOCKING:
2475 * Inherited from caller.
2476 *
2477 * RETURNS:
2478 * 1 if SATA spd configuration is needed, 0 otherwise.
2479 */
2480 int sata_set_spd_needed(struct ata_port *ap)
2481 {
2482 u32 scontrol;
2483
2484 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2485 return 0;
2486
2487 return __sata_set_spd_needed(ap, &scontrol);
2488 }
2489
2490 /**
2491 * sata_set_spd - set SATA spd according to spd limit
2492 * @ap: Port to set SATA spd for
2493 *
2494 * Set SATA spd of @ap according to sata_spd_limit.
2495 *
2496 * LOCKING:
2497 * Inherited from caller.
2498 *
2499 * RETURNS:
2500 * 0 if spd doesn't need to be changed, 1 if spd has been
2501 * changed. Negative errno if SCR registers are inaccessible.
2502 */
2503 int sata_set_spd(struct ata_port *ap)
2504 {
2505 u32 scontrol;
2506 int rc;
2507
2508 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2509 return rc;
2510
2511 if (!__sata_set_spd_needed(ap, &scontrol))
2512 return 0;
2513
2514 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2515 return rc;
2516
2517 return 1;
2518 }
2519
2520 /*
2521 * This mode timing computation functionality is ported over from
2522 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 */
2524 /*
2525 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2526 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2527 * for UDMA6, which is currently supported only by Maxtor drives.
2528 *
2529 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2530 */
2531
2532 static const struct ata_timing ata_timing[] = {
2533
2534 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2535 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2536 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2537 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2538
2539 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2540 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2541 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2542 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2543 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2544
2545 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2546
2547 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2548 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2549 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2550
2551 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2552 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2553 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2554
2555 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2556 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2557 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2558 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2559
2560 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2561 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2562 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2563
2564 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2565
2566 { 0xFF }
2567 };
2568
2569 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2570 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2571
2572 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2573 {
2574 q->setup = EZ(t->setup * 1000, T);
2575 q->act8b = EZ(t->act8b * 1000, T);
2576 q->rec8b = EZ(t->rec8b * 1000, T);
2577 q->cyc8b = EZ(t->cyc8b * 1000, T);
2578 q->active = EZ(t->active * 1000, T);
2579 q->recover = EZ(t->recover * 1000, T);
2580 q->cycle = EZ(t->cycle * 1000, T);
2581 q->udma = EZ(t->udma * 1000, UT);
2582 }
2583
2584 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2585 struct ata_timing *m, unsigned int what)
2586 {
2587 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2588 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2589 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2590 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2591 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2592 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2593 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2594 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2595 }
2596
2597 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2598 {
2599 const struct ata_timing *t;
2600
2601 for (t = ata_timing; t->mode != speed; t++)
2602 if (t->mode == 0xFF)
2603 return NULL;
2604 return t;
2605 }
2606
2607 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2608 struct ata_timing *t, int T, int UT)
2609 {
2610 const struct ata_timing *s;
2611 struct ata_timing p;
2612
2613 /*
2614 * Find the mode.
2615 */
2616
2617 if (!(s = ata_timing_find_mode(speed)))
2618 return -EINVAL;
2619
2620 memcpy(t, s, sizeof(*s));
2621
2622 /*
2623 * If the drive is an EIDE drive, it can tell us it needs extended
2624 * PIO/MW_DMA cycle timing.
2625 */
2626
2627 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2628 memset(&p, 0, sizeof(p));
2629 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2630 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2631 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2632 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2633 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2634 }
2635 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2636 }
2637
2638 /*
2639 * Convert the timing to bus clock counts.
2640 */
2641
2642 ata_timing_quantize(t, t, T, UT);
2643
2644 /*
2645 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2646 * S.M.A.R.T * and some other commands. We have to ensure that the
2647 * DMA cycle timing is slower/equal than the fastest PIO timing.
2648 */
2649
2650 if (speed > XFER_PIO_6) {
2651 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2652 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2653 }
2654
2655 /*
2656 * Lengthen active & recovery time so that cycle time is correct.
2657 */
2658
2659 if (t->act8b + t->rec8b < t->cyc8b) {
2660 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2661 t->rec8b = t->cyc8b - t->act8b;
2662 }
2663
2664 if (t->active + t->recover < t->cycle) {
2665 t->active += (t->cycle - (t->active + t->recover)) / 2;
2666 t->recover = t->cycle - t->active;
2667 }
2668
2669 /* In a few cases quantisation may produce enough errors to
2670 leave t->cycle too low for the sum of active and recovery
2671 if so we must correct this */
2672 if (t->active + t->recover > t->cycle)
2673 t->cycle = t->active + t->recover;
2674
2675 return 0;
2676 }
2677
2678 /**
2679 * ata_down_xfermask_limit - adjust dev xfer masks downward
2680 * @dev: Device to adjust xfer masks
2681 * @sel: ATA_DNXFER_* selector
2682 *
2683 * Adjust xfer masks of @dev downward. Note that this function
2684 * does not apply the change. Invoking ata_set_mode() afterwards
2685 * will apply the limit.
2686 *
2687 * LOCKING:
2688 * Inherited from caller.
2689 *
2690 * RETURNS:
2691 * 0 on success, negative errno on failure
2692 */
2693 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2694 {
2695 char buf[32];
2696 unsigned int orig_mask, xfer_mask;
2697 unsigned int pio_mask, mwdma_mask, udma_mask;
2698 int quiet, highbit;
2699
2700 quiet = !!(sel & ATA_DNXFER_QUIET);
2701 sel &= ~ATA_DNXFER_QUIET;
2702
2703 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2704 dev->mwdma_mask,
2705 dev->udma_mask);
2706 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2707
2708 switch (sel) {
2709 case ATA_DNXFER_PIO:
2710 highbit = fls(pio_mask) - 1;
2711 pio_mask &= ~(1 << highbit);
2712 break;
2713
2714 case ATA_DNXFER_DMA:
2715 if (udma_mask) {
2716 highbit = fls(udma_mask) - 1;
2717 udma_mask &= ~(1 << highbit);
2718 if (!udma_mask)
2719 return -ENOENT;
2720 } else if (mwdma_mask) {
2721 highbit = fls(mwdma_mask) - 1;
2722 mwdma_mask &= ~(1 << highbit);
2723 if (!mwdma_mask)
2724 return -ENOENT;
2725 }
2726 break;
2727
2728 case ATA_DNXFER_40C:
2729 udma_mask &= ATA_UDMA_MASK_40C;
2730 break;
2731
2732 case ATA_DNXFER_FORCE_PIO0:
2733 pio_mask &= 1;
2734 case ATA_DNXFER_FORCE_PIO:
2735 mwdma_mask = 0;
2736 udma_mask = 0;
2737 break;
2738
2739 default:
2740 BUG();
2741 }
2742
2743 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2744
2745 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2746 return -ENOENT;
2747
2748 if (!quiet) {
2749 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2750 snprintf(buf, sizeof(buf), "%s:%s",
2751 ata_mode_string(xfer_mask),
2752 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2753 else
2754 snprintf(buf, sizeof(buf), "%s",
2755 ata_mode_string(xfer_mask));
2756
2757 ata_dev_printk(dev, KERN_WARNING,
2758 "limiting speed to %s\n", buf);
2759 }
2760
2761 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2762 &dev->udma_mask);
2763
2764 return 0;
2765 }
2766
2767 static int ata_dev_set_mode(struct ata_device *dev)
2768 {
2769 struct ata_eh_context *ehc = &dev->ap->eh_context;
2770 unsigned int err_mask;
2771 int rc;
2772
2773 dev->flags &= ~ATA_DFLAG_PIO;
2774 if (dev->xfer_shift == ATA_SHIFT_PIO)
2775 dev->flags |= ATA_DFLAG_PIO;
2776
2777 err_mask = ata_dev_set_xfermode(dev);
2778 /* Old CFA may refuse this command, which is just fine */
2779 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2780 err_mask &= ~AC_ERR_DEV;
2781
2782 if (err_mask) {
2783 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2784 "(err_mask=0x%x)\n", err_mask);
2785 return -EIO;
2786 }
2787
2788 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2789 rc = ata_dev_revalidate(dev, 0);
2790 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2791 if (rc)
2792 return rc;
2793
2794 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2795 dev->xfer_shift, (int)dev->xfer_mode);
2796
2797 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2798 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2799 return 0;
2800 }
2801
2802 /**
2803 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2804 * @ap: port on which timings will be programmed
2805 * @r_failed_dev: out paramter for failed device
2806 *
2807 * Standard implementation of the function used to tune and set
2808 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2809 * ata_dev_set_mode() fails, pointer to the failing device is
2810 * returned in @r_failed_dev.
2811 *
2812 * LOCKING:
2813 * PCI/etc. bus probe sem.
2814 *
2815 * RETURNS:
2816 * 0 on success, negative errno otherwise
2817 */
2818
2819 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2820 {
2821 struct ata_device *dev;
2822 int i, rc = 0, used_dma = 0, found = 0;
2823
2824
2825 /* step 1: calculate xfer_mask */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 unsigned int pio_mask, dma_mask;
2828
2829 dev = &ap->device[i];
2830
2831 if (!ata_dev_enabled(dev))
2832 continue;
2833
2834 ata_dev_xfermask(dev);
2835
2836 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2837 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2838 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2839 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2840
2841 found = 1;
2842 if (dev->dma_mode)
2843 used_dma = 1;
2844 }
2845 if (!found)
2846 goto out;
2847
2848 /* step 2: always set host PIO timings */
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851 if (!ata_dev_enabled(dev))
2852 continue;
2853
2854 if (!dev->pio_mode) {
2855 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2856 rc = -EINVAL;
2857 goto out;
2858 }
2859
2860 dev->xfer_mode = dev->pio_mode;
2861 dev->xfer_shift = ATA_SHIFT_PIO;
2862 if (ap->ops->set_piomode)
2863 ap->ops->set_piomode(ap, dev);
2864 }
2865
2866 /* step 3: set host DMA timings */
2867 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2868 dev = &ap->device[i];
2869
2870 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2871 continue;
2872
2873 dev->xfer_mode = dev->dma_mode;
2874 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2875 if (ap->ops->set_dmamode)
2876 ap->ops->set_dmamode(ap, dev);
2877 }
2878
2879 /* step 4: update devices' xfer mode */
2880 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2881 dev = &ap->device[i];
2882
2883 /* don't update suspended devices' xfer mode */
2884 if (!ata_dev_enabled(dev))
2885 continue;
2886
2887 rc = ata_dev_set_mode(dev);
2888 if (rc)
2889 goto out;
2890 }
2891
2892 /* Record simplex status. If we selected DMA then the other
2893 * host channels are not permitted to do so.
2894 */
2895 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2896 ap->host->simplex_claimed = ap;
2897
2898 out:
2899 if (rc)
2900 *r_failed_dev = dev;
2901 return rc;
2902 }
2903
2904 /**
2905 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2906 * @ap: port on which timings will be programmed
2907 * @r_failed_dev: out paramter for failed device
2908 *
2909 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2910 * ata_set_mode() fails, pointer to the failing device is
2911 * returned in @r_failed_dev.
2912 *
2913 * LOCKING:
2914 * PCI/etc. bus probe sem.
2915 *
2916 * RETURNS:
2917 * 0 on success, negative errno otherwise
2918 */
2919 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2920 {
2921 /* has private set_mode? */
2922 if (ap->ops->set_mode)
2923 return ap->ops->set_mode(ap, r_failed_dev);
2924 return ata_do_set_mode(ap, r_failed_dev);
2925 }
2926
2927 /**
2928 * ata_tf_to_host - issue ATA taskfile to host controller
2929 * @ap: port to which command is being issued
2930 * @tf: ATA taskfile register set
2931 *
2932 * Issues ATA taskfile register set to ATA host controller,
2933 * with proper synchronization with interrupt handler and
2934 * other threads.
2935 *
2936 * LOCKING:
2937 * spin_lock_irqsave(host lock)
2938 */
2939
2940 static inline void ata_tf_to_host(struct ata_port *ap,
2941 const struct ata_taskfile *tf)
2942 {
2943 ap->ops->tf_load(ap, tf);
2944 ap->ops->exec_command(ap, tf);
2945 }
2946
2947 /**
2948 * ata_busy_sleep - sleep until BSY clears, or timeout
2949 * @ap: port containing status register to be polled
2950 * @tmout_pat: impatience timeout
2951 * @tmout: overall timeout
2952 *
2953 * Sleep until ATA Status register bit BSY clears,
2954 * or a timeout occurs.
2955 *
2956 * LOCKING:
2957 * Kernel thread context (may sleep).
2958 *
2959 * RETURNS:
2960 * 0 on success, -errno otherwise.
2961 */
2962 int ata_busy_sleep(struct ata_port *ap,
2963 unsigned long tmout_pat, unsigned long tmout)
2964 {
2965 unsigned long timer_start, timeout;
2966 u8 status;
2967
2968 status = ata_busy_wait(ap, ATA_BUSY, 300);
2969 timer_start = jiffies;
2970 timeout = timer_start + tmout_pat;
2971 while (status != 0xff && (status & ATA_BUSY) &&
2972 time_before(jiffies, timeout)) {
2973 msleep(50);
2974 status = ata_busy_wait(ap, ATA_BUSY, 3);
2975 }
2976
2977 if (status != 0xff && (status & ATA_BUSY))
2978 ata_port_printk(ap, KERN_WARNING,
2979 "port is slow to respond, please be patient "
2980 "(Status 0x%x)\n", status);
2981
2982 timeout = timer_start + tmout;
2983 while (status != 0xff && (status & ATA_BUSY) &&
2984 time_before(jiffies, timeout)) {
2985 msleep(50);
2986 status = ata_chk_status(ap);
2987 }
2988
2989 if (status == 0xff)
2990 return -ENODEV;
2991
2992 if (status & ATA_BUSY) {
2993 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2994 "(%lu secs, Status 0x%x)\n",
2995 tmout / HZ, status);
2996 return -EBUSY;
2997 }
2998
2999 return 0;
3000 }
3001
3002 /**
3003 * ata_wait_ready - sleep until BSY clears, or timeout
3004 * @ap: port containing status register to be polled
3005 * @deadline: deadline jiffies for the operation
3006 *
3007 * Sleep until ATA Status register bit BSY clears, or timeout
3008 * occurs.
3009 *
3010 * LOCKING:
3011 * Kernel thread context (may sleep).
3012 *
3013 * RETURNS:
3014 * 0 on success, -errno otherwise.
3015 */
3016 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3017 {
3018 unsigned long start = jiffies;
3019 int warned = 0;
3020
3021 while (1) {
3022 u8 status = ata_chk_status(ap);
3023 unsigned long now = jiffies;
3024
3025 if (!(status & ATA_BUSY))
3026 return 0;
3027 if (!ata_port_online(ap) && status == 0xff)
3028 return -ENODEV;
3029 if (time_after(now, deadline))
3030 return -EBUSY;
3031
3032 if (!warned && time_after(now, start + 5 * HZ) &&
3033 (deadline - now > 3 * HZ)) {
3034 ata_port_printk(ap, KERN_WARNING,
3035 "port is slow to respond, please be patient "
3036 "(Status 0x%x)\n", status);
3037 warned = 1;
3038 }
3039
3040 msleep(50);
3041 }
3042 }
3043
3044 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3045 unsigned long deadline)
3046 {
3047 struct ata_ioports *ioaddr = &ap->ioaddr;
3048 unsigned int dev0 = devmask & (1 << 0);
3049 unsigned int dev1 = devmask & (1 << 1);
3050 int rc, ret = 0;
3051
3052 /* if device 0 was found in ata_devchk, wait for its
3053 * BSY bit to clear
3054 */
3055 if (dev0) {
3056 rc = ata_wait_ready(ap, deadline);
3057 if (rc) {
3058 if (rc != -ENODEV)
3059 return rc;
3060 ret = rc;
3061 }
3062 }
3063
3064 /* if device 1 was found in ata_devchk, wait for
3065 * register access, then wait for BSY to clear
3066 */
3067 while (dev1) {
3068 u8 nsect, lbal;
3069
3070 ap->ops->dev_select(ap, 1);
3071 nsect = ioread8(ioaddr->nsect_addr);
3072 lbal = ioread8(ioaddr->lbal_addr);
3073 if ((nsect == 1) && (lbal == 1))
3074 break;
3075 if (time_after(jiffies, deadline))
3076 return -EBUSY;
3077 msleep(50); /* give drive a breather */
3078 }
3079 if (dev1) {
3080 rc = ata_wait_ready(ap, deadline);
3081 if (rc) {
3082 if (rc != -ENODEV)
3083 return rc;
3084 ret = rc;
3085 }
3086 }
3087
3088 /* is all this really necessary? */
3089 ap->ops->dev_select(ap, 0);
3090 if (dev1)
3091 ap->ops->dev_select(ap, 1);
3092 if (dev0)
3093 ap->ops->dev_select(ap, 0);
3094
3095 return ret;
3096 }
3097
3098 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3099 unsigned long deadline)
3100 {
3101 struct ata_ioports *ioaddr = &ap->ioaddr;
3102
3103 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3104
3105 /* software reset. causes dev0 to be selected */
3106 iowrite8(ap->ctl, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap->ctl, ioaddr->ctl_addr);
3111
3112 /* spec mandates ">= 2ms" before checking status.
3113 * We wait 150ms, because that was the magic delay used for
3114 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3115 * between when the ATA command register is written, and then
3116 * status is checked. Because waiting for "a while" before
3117 * checking status is fine, post SRST, we perform this magic
3118 * delay here as well.
3119 *
3120 * Old drivers/ide uses the 2mS rule and then waits for ready
3121 */
3122 msleep(150);
3123
3124 /* Before we perform post reset processing we want to see if
3125 * the bus shows 0xFF because the odd clown forgets the D7
3126 * pulldown resistor.
3127 */
3128 if (ata_check_status(ap) == 0xFF)
3129 return -ENODEV;
3130
3131 return ata_bus_post_reset(ap, devmask, deadline);
3132 }
3133
3134 /**
3135 * ata_bus_reset - reset host port and associated ATA channel
3136 * @ap: port to reset
3137 *
3138 * This is typically the first time we actually start issuing
3139 * commands to the ATA channel. We wait for BSY to clear, then
3140 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3141 * result. Determine what devices, if any, are on the channel
3142 * by looking at the device 0/1 error register. Look at the signature
3143 * stored in each device's taskfile registers, to determine if
3144 * the device is ATA or ATAPI.
3145 *
3146 * LOCKING:
3147 * PCI/etc. bus probe sem.
3148 * Obtains host lock.
3149 *
3150 * SIDE EFFECTS:
3151 * Sets ATA_FLAG_DISABLED if bus reset fails.
3152 */
3153
3154 void ata_bus_reset(struct ata_port *ap)
3155 {
3156 struct ata_ioports *ioaddr = &ap->ioaddr;
3157 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3158 u8 err;
3159 unsigned int dev0, dev1 = 0, devmask = 0;
3160 int rc;
3161
3162 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3163
3164 /* determine if device 0/1 are present */
3165 if (ap->flags & ATA_FLAG_SATA_RESET)
3166 dev0 = 1;
3167 else {
3168 dev0 = ata_devchk(ap, 0);
3169 if (slave_possible)
3170 dev1 = ata_devchk(ap, 1);
3171 }
3172
3173 if (dev0)
3174 devmask |= (1 << 0);
3175 if (dev1)
3176 devmask |= (1 << 1);
3177
3178 /* select device 0 again */
3179 ap->ops->dev_select(ap, 0);
3180
3181 /* issue bus reset */
3182 if (ap->flags & ATA_FLAG_SRST) {
3183 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3184 if (rc && rc != -ENODEV)
3185 goto err_out;
3186 }
3187
3188 /*
3189 * determine by signature whether we have ATA or ATAPI devices
3190 */
3191 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3192 if ((slave_possible) && (err != 0x81))
3193 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3194
3195 /* re-enable interrupts */
3196 ap->ops->irq_on(ap);
3197
3198 /* is double-select really necessary? */
3199 if (ap->device[1].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 1);
3201 if (ap->device[0].class != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 0);
3203
3204 /* if no devices were detected, disable this port */
3205 if ((ap->device[0].class == ATA_DEV_NONE) &&
3206 (ap->device[1].class == ATA_DEV_NONE))
3207 goto err_out;
3208
3209 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3210 /* set up device control for ATA_FLAG_SATA_RESET */
3211 iowrite8(ap->ctl, ioaddr->ctl_addr);
3212 }
3213
3214 DPRINTK("EXIT\n");
3215 return;
3216
3217 err_out:
3218 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3219 ap->ops->port_disable(ap);
3220
3221 DPRINTK("EXIT\n");
3222 }
3223
3224 /**
3225 * sata_phy_debounce - debounce SATA phy status
3226 * @ap: ATA port to debounce SATA phy status for
3227 * @params: timing parameters { interval, duratinon, timeout } in msec
3228 * @deadline: deadline jiffies for the operation
3229 *
3230 * Make sure SStatus of @ap reaches stable state, determined by
3231 * holding the same value where DET is not 1 for @duration polled
3232 * every @interval, before @timeout. Timeout constraints the
3233 * beginning of the stable state. Because DET gets stuck at 1 on
3234 * some controllers after hot unplugging, this functions waits
3235 * until timeout then returns 0 if DET is stable at 1.
3236 *
3237 * @timeout is further limited by @deadline. The sooner of the
3238 * two is used.
3239 *
3240 * LOCKING:
3241 * Kernel thread context (may sleep)
3242 *
3243 * RETURNS:
3244 * 0 on success, -errno on failure.
3245 */
3246 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3247 unsigned long deadline)
3248 {
3249 unsigned long interval_msec = params[0];
3250 unsigned long duration = msecs_to_jiffies(params[1]);
3251 unsigned long last_jiffies, t;
3252 u32 last, cur;
3253 int rc;
3254
3255 t = jiffies + msecs_to_jiffies(params[2]);
3256 if (time_before(t, deadline))
3257 deadline = t;
3258
3259 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3260 return rc;
3261 cur &= 0xf;
3262
3263 last = cur;
3264 last_jiffies = jiffies;
3265
3266 while (1) {
3267 msleep(interval_msec);
3268 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3269 return rc;
3270 cur &= 0xf;
3271
3272 /* DET stable? */
3273 if (cur == last) {
3274 if (cur == 1 && time_before(jiffies, deadline))
3275 continue;
3276 if (time_after(jiffies, last_jiffies + duration))
3277 return 0;
3278 continue;
3279 }
3280
3281 /* unstable, start over */
3282 last = cur;
3283 last_jiffies = jiffies;
3284
3285 /* check deadline */
3286 if (time_after(jiffies, deadline))
3287 return -EBUSY;
3288 }
3289 }
3290
3291 /**
3292 * sata_phy_resume - resume SATA phy
3293 * @ap: ATA port to resume SATA phy for
3294 * @params: timing parameters { interval, duratinon, timeout } in msec
3295 * @deadline: deadline jiffies for the operation
3296 *
3297 * Resume SATA phy of @ap and debounce it.
3298 *
3299 * LOCKING:
3300 * Kernel thread context (may sleep)
3301 *
3302 * RETURNS:
3303 * 0 on success, -errno on failure.
3304 */
3305 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3306 unsigned long deadline)
3307 {
3308 u32 scontrol;
3309 int rc;
3310
3311 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3312 return rc;
3313
3314 scontrol = (scontrol & 0x0f0) | 0x300;
3315
3316 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3317 return rc;
3318
3319 /* Some PHYs react badly if SStatus is pounded immediately
3320 * after resuming. Delay 200ms before debouncing.
3321 */
3322 msleep(200);
3323
3324 return sata_phy_debounce(ap, params, deadline);
3325 }
3326
3327 /**
3328 * ata_std_prereset - prepare for reset
3329 * @ap: ATA port to be reset
3330 * @deadline: deadline jiffies for the operation
3331 *
3332 * @ap is about to be reset. Initialize it. Failure from
3333 * prereset makes libata abort whole reset sequence and give up
3334 * that port, so prereset should be best-effort. It does its
3335 * best to prepare for reset sequence but if things go wrong, it
3336 * should just whine, not fail.
3337 *
3338 * LOCKING:
3339 * Kernel thread context (may sleep)
3340 *
3341 * RETURNS:
3342 * 0 on success, -errno otherwise.
3343 */
3344 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3345 {
3346 struct ata_eh_context *ehc = &ap->eh_context;
3347 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3348 int rc;
3349
3350 /* handle link resume */
3351 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3352 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3353 ehc->i.action |= ATA_EH_HARDRESET;
3354
3355 /* if we're about to do hardreset, nothing more to do */
3356 if (ehc->i.action & ATA_EH_HARDRESET)
3357 return 0;
3358
3359 /* if SATA, resume phy */
3360 if (ap->cbl == ATA_CBL_SATA) {
3361 rc = sata_phy_resume(ap, timing, deadline);
3362 /* whine about phy resume failure but proceed */
3363 if (rc && rc != -EOPNOTSUPP)
3364 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3365 "link for reset (errno=%d)\n", rc);
3366 }
3367
3368 /* Wait for !BSY if the controller can wait for the first D2H
3369 * Reg FIS and we don't know that no device is attached.
3370 */
3371 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3372 rc = ata_wait_ready(ap, deadline);
3373 if (rc && rc != -ENODEV) {
3374 ata_port_printk(ap, KERN_WARNING, "device not ready "
3375 "(errno=%d), forcing hardreset\n", rc);
3376 ehc->i.action |= ATA_EH_HARDRESET;
3377 }
3378 }
3379
3380 return 0;
3381 }
3382
3383 /**
3384 * ata_std_softreset - reset host port via ATA SRST
3385 * @ap: port to reset
3386 * @classes: resulting classes of attached devices
3387 * @deadline: deadline jiffies for the operation
3388 *
3389 * Reset host port using ATA SRST.
3390 *
3391 * LOCKING:
3392 * Kernel thread context (may sleep)
3393 *
3394 * RETURNS:
3395 * 0 on success, -errno otherwise.
3396 */
3397 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3398 unsigned long deadline)
3399 {
3400 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3401 unsigned int devmask = 0;
3402 int rc;
3403 u8 err;
3404
3405 DPRINTK("ENTER\n");
3406
3407 if (ata_port_offline(ap)) {
3408 classes[0] = ATA_DEV_NONE;
3409 goto out;
3410 }
3411
3412 /* determine if device 0/1 are present */
3413 if (ata_devchk(ap, 0))
3414 devmask |= (1 << 0);
3415 if (slave_possible && ata_devchk(ap, 1))
3416 devmask |= (1 << 1);
3417
3418 /* select device 0 again */
3419 ap->ops->dev_select(ap, 0);
3420
3421 /* issue bus reset */
3422 DPRINTK("about to softreset, devmask=%x\n", devmask);
3423 rc = ata_bus_softreset(ap, devmask, deadline);
3424 /* if link is occupied, -ENODEV too is an error */
3425 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3426 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3427 return rc;
3428 }
3429
3430 /* determine by signature whether we have ATA or ATAPI devices */
3431 classes[0] = ata_dev_try_classify(ap, 0, &err);
3432 if (slave_possible && err != 0x81)
3433 classes[1] = ata_dev_try_classify(ap, 1, &err);
3434
3435 out:
3436 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3437 return 0;
3438 }
3439
3440 /**
3441 * sata_port_hardreset - reset port via SATA phy reset
3442 * @ap: port to reset
3443 * @timing: timing parameters { interval, duratinon, timeout } in msec
3444 * @deadline: deadline jiffies for the operation
3445 *
3446 * SATA phy-reset host port using DET bits of SControl register.
3447 *
3448 * LOCKING:
3449 * Kernel thread context (may sleep)
3450 *
3451 * RETURNS:
3452 * 0 on success, -errno otherwise.
3453 */
3454 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3455 unsigned long deadline)
3456 {
3457 u32 scontrol;
3458 int rc;
3459
3460 DPRINTK("ENTER\n");
3461
3462 if (sata_set_spd_needed(ap)) {
3463 /* SATA spec says nothing about how to reconfigure
3464 * spd. To be on the safe side, turn off phy during
3465 * reconfiguration. This works for at least ICH7 AHCI
3466 * and Sil3124.
3467 */
3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3469 goto out;
3470
3471 scontrol = (scontrol & 0x0f0) | 0x304;
3472
3473 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3474 goto out;
3475
3476 sata_set_spd(ap);
3477 }
3478
3479 /* issue phy wake/reset */
3480 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3481 goto out;
3482
3483 scontrol = (scontrol & 0x0f0) | 0x301;
3484
3485 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3486 goto out;
3487
3488 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3489 * 10.4.2 says at least 1 ms.
3490 */
3491 msleep(1);
3492
3493 /* bring phy back */
3494 rc = sata_phy_resume(ap, timing, deadline);
3495 out:
3496 DPRINTK("EXIT, rc=%d\n", rc);
3497 return rc;
3498 }
3499
3500 /**
3501 * sata_std_hardreset - reset host port via SATA phy reset
3502 * @ap: port to reset
3503 * @class: resulting class of attached device
3504 * @deadline: deadline jiffies for the operation
3505 *
3506 * SATA phy-reset host port using DET bits of SControl register,
3507 * wait for !BSY and classify the attached device.
3508 *
3509 * LOCKING:
3510 * Kernel thread context (may sleep)
3511 *
3512 * RETURNS:
3513 * 0 on success, -errno otherwise.
3514 */
3515 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3516 unsigned long deadline)
3517 {
3518 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3519 int rc;
3520
3521 DPRINTK("ENTER\n");
3522
3523 /* do hardreset */
3524 rc = sata_port_hardreset(ap, timing, deadline);
3525 if (rc) {
3526 ata_port_printk(ap, KERN_ERR,
3527 "COMRESET failed (errno=%d)\n", rc);
3528 return rc;
3529 }
3530
3531 /* TODO: phy layer with polling, timeouts, etc. */
3532 if (ata_port_offline(ap)) {
3533 *class = ATA_DEV_NONE;
3534 DPRINTK("EXIT, link offline\n");
3535 return 0;
3536 }
3537
3538 /* wait a while before checking status, see SRST for more info */
3539 msleep(150);
3540
3541 rc = ata_wait_ready(ap, deadline);
3542 /* link occupied, -ENODEV too is an error */
3543 if (rc) {
3544 ata_port_printk(ap, KERN_ERR,
3545 "COMRESET failed (errno=%d)\n", rc);
3546 return rc;
3547 }
3548
3549 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3550
3551 *class = ata_dev_try_classify(ap, 0, NULL);
3552
3553 DPRINTK("EXIT, class=%u\n", *class);
3554 return 0;
3555 }
3556
3557 /**
3558 * ata_std_postreset - standard postreset callback
3559 * @ap: the target ata_port
3560 * @classes: classes of attached devices
3561 *
3562 * This function is invoked after a successful reset. Note that
3563 * the device might have been reset more than once using
3564 * different reset methods before postreset is invoked.
3565 *
3566 * LOCKING:
3567 * Kernel thread context (may sleep)
3568 */
3569 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3570 {
3571 u32 serror;
3572
3573 DPRINTK("ENTER\n");
3574
3575 /* print link status */
3576 sata_print_link_status(ap);
3577
3578 /* clear SError */
3579 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3580 sata_scr_write(ap, SCR_ERROR, serror);
3581
3582 /* re-enable interrupts */
3583 if (!ap->ops->error_handler)
3584 ap->ops->irq_on(ap);
3585
3586 /* is double-select really necessary? */
3587 if (classes[0] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 1);
3589 if (classes[1] != ATA_DEV_NONE)
3590 ap->ops->dev_select(ap, 0);
3591
3592 /* bail out if no device is present */
3593 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3594 DPRINTK("EXIT, no device\n");
3595 return;
3596 }
3597
3598 /* set up device control */
3599 if (ap->ioaddr.ctl_addr)
3600 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3601
3602 DPRINTK("EXIT\n");
3603 }
3604
3605 /**
3606 * ata_dev_same_device - Determine whether new ID matches configured device
3607 * @dev: device to compare against
3608 * @new_class: class of the new device
3609 * @new_id: IDENTIFY page of the new device
3610 *
3611 * Compare @new_class and @new_id against @dev and determine
3612 * whether @dev is the device indicated by @new_class and
3613 * @new_id.
3614 *
3615 * LOCKING:
3616 * None.
3617 *
3618 * RETURNS:
3619 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3620 */
3621 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3622 const u16 *new_id)
3623 {
3624 const u16 *old_id = dev->id;
3625 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3626 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3627
3628 if (dev->class != new_class) {
3629 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3630 dev->class, new_class);
3631 return 0;
3632 }
3633
3634 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3635 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3636 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3637 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3638
3639 if (strcmp(model[0], model[1])) {
3640 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3641 "'%s' != '%s'\n", model[0], model[1]);
3642 return 0;
3643 }
3644
3645 if (strcmp(serial[0], serial[1])) {
3646 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3647 "'%s' != '%s'\n", serial[0], serial[1]);
3648 return 0;
3649 }
3650
3651 return 1;
3652 }
3653
3654 /**
3655 * ata_dev_reread_id - Re-read IDENTIFY data
3656 * @adev: target ATA device
3657 * @readid_flags: read ID flags
3658 *
3659 * Re-read IDENTIFY page and make sure @dev is still attached to
3660 * the port.
3661 *
3662 * LOCKING:
3663 * Kernel thread context (may sleep)
3664 *
3665 * RETURNS:
3666 * 0 on success, negative errno otherwise
3667 */
3668 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3669 {
3670 unsigned int class = dev->class;
3671 u16 *id = (void *)dev->ap->sector_buf;
3672 int rc;
3673
3674 /* read ID data */
3675 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3676 if (rc)
3677 return rc;
3678
3679 /* is the device still there? */
3680 if (!ata_dev_same_device(dev, class, id))
3681 return -ENODEV;
3682
3683 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3684 return 0;
3685 }
3686
3687 /**
3688 * ata_dev_revalidate - Revalidate ATA device
3689 * @dev: device to revalidate
3690 * @readid_flags: read ID flags
3691 *
3692 * Re-read IDENTIFY page, make sure @dev is still attached to the
3693 * port and reconfigure it according to the new IDENTIFY page.
3694 *
3695 * LOCKING:
3696 * Kernel thread context (may sleep)
3697 *
3698 * RETURNS:
3699 * 0 on success, negative errno otherwise
3700 */
3701 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3702 {
3703 u64 n_sectors = dev->n_sectors;
3704 int rc;
3705
3706 if (!ata_dev_enabled(dev))
3707 return -ENODEV;
3708
3709 /* re-read ID */
3710 rc = ata_dev_reread_id(dev, readid_flags);
3711 if (rc)
3712 goto fail;
3713
3714 /* configure device according to the new ID */
3715 rc = ata_dev_configure(dev);
3716 if (rc)
3717 goto fail;
3718
3719 /* verify n_sectors hasn't changed */
3720 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3721 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3722 "%llu != %llu\n",
3723 (unsigned long long)n_sectors,
3724 (unsigned long long)dev->n_sectors);
3725 rc = -ENODEV;
3726 goto fail;
3727 }
3728
3729 return 0;
3730
3731 fail:
3732 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3733 return rc;
3734 }
3735
3736 struct ata_blacklist_entry {
3737 const char *model_num;
3738 const char *model_rev;
3739 unsigned long horkage;
3740 };
3741
3742 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3743 /* Devices with DMA related problems under Linux */
3744 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3750 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3751 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3756 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3757 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3758 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3760 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3762 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3763 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3764 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3765 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3766 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3767 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3768 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3769 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3770 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3771 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3772 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3773 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3774
3775 /* Weird ATAPI devices */
3776 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3777 ATA_HORKAGE_DMA_RW_ONLY },
3778
3779 /* Devices we expect to fail diagnostics */
3780
3781 /* Devices where NCQ should be avoided */
3782 /* NCQ is slow */
3783 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3784 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3785 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3786 /* NCQ is broken */
3787 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3788 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3789 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3790 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3791 /* Blacklist entries taken from Silicon Image 3124/3132
3792 Windows driver .inf file - also several Linux problem reports */
3793 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3794 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3795 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3796 /* Drives which do spurious command completion */
3797 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3798
3799 /* Devices with NCQ limits */
3800
3801 /* End Marker */
3802 { }
3803 };
3804
3805 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3806 {
3807 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3808 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3809 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3810
3811 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3812 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3813
3814 while (ad->model_num) {
3815 if (!strcmp(ad->model_num, model_num)) {
3816 if (ad->model_rev == NULL)
3817 return ad->horkage;
3818 if (!strcmp(ad->model_rev, model_rev))
3819 return ad->horkage;
3820 }
3821 ad++;
3822 }
3823 return 0;
3824 }
3825
3826 static int ata_dma_blacklisted(const struct ata_device *dev)
3827 {
3828 /* We don't support polling DMA.
3829 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3830 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3831 */
3832 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3833 (dev->flags & ATA_DFLAG_CDB_INTR))
3834 return 1;
3835 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3836 }
3837
3838 /**
3839 * ata_dev_xfermask - Compute supported xfermask of the given device
3840 * @dev: Device to compute xfermask for
3841 *
3842 * Compute supported xfermask of @dev and store it in
3843 * dev->*_mask. This function is responsible for applying all
3844 * known limits including host controller limits, device
3845 * blacklist, etc...
3846 *
3847 * LOCKING:
3848 * None.
3849 */
3850 static void ata_dev_xfermask(struct ata_device *dev)
3851 {
3852 struct ata_port *ap = dev->ap;
3853 struct ata_host *host = ap->host;
3854 unsigned long xfer_mask;
3855
3856 /* controller modes available */
3857 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3858 ap->mwdma_mask, ap->udma_mask);
3859
3860 /* drive modes available */
3861 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3862 dev->mwdma_mask, dev->udma_mask);
3863 xfer_mask &= ata_id_xfermask(dev->id);
3864
3865 /*
3866 * CFA Advanced TrueIDE timings are not allowed on a shared
3867 * cable
3868 */
3869 if (ata_dev_pair(dev)) {
3870 /* No PIO5 or PIO6 */
3871 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3872 /* No MWDMA3 or MWDMA 4 */
3873 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3874 }
3875
3876 if (ata_dma_blacklisted(dev)) {
3877 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3878 ata_dev_printk(dev, KERN_WARNING,
3879 "device is on DMA blacklist, disabling DMA\n");
3880 }
3881
3882 if ((host->flags & ATA_HOST_SIMPLEX) &&
3883 host->simplex_claimed && host->simplex_claimed != ap) {
3884 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3885 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3886 "other device, disabling DMA\n");
3887 }
3888
3889 if (ap->flags & ATA_FLAG_NO_IORDY)
3890 xfer_mask &= ata_pio_mask_no_iordy(dev);
3891
3892 if (ap->ops->mode_filter)
3893 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3894
3895 /* Apply cable rule here. Don't apply it early because when
3896 * we handle hot plug the cable type can itself change.
3897 * Check this last so that we know if the transfer rate was
3898 * solely limited by the cable.
3899 * Unknown or 80 wire cables reported host side are checked
3900 * drive side as well. Cases where we know a 40wire cable
3901 * is used safely for 80 are not checked here.
3902 */
3903 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3904 /* UDMA/44 or higher would be available */
3905 if((ap->cbl == ATA_CBL_PATA40) ||
3906 (ata_drive_40wire(dev->id) &&
3907 (ap->cbl == ATA_CBL_PATA_UNK ||
3908 ap->cbl == ATA_CBL_PATA80))) {
3909 ata_dev_printk(dev, KERN_WARNING,
3910 "limited to UDMA/33 due to 40-wire cable\n");
3911 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3912 }
3913
3914 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3915 &dev->mwdma_mask, &dev->udma_mask);
3916 }
3917
3918 /**
3919 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3920 * @dev: Device to which command will be sent
3921 *
3922 * Issue SET FEATURES - XFER MODE command to device @dev
3923 * on port @ap.
3924 *
3925 * LOCKING:
3926 * PCI/etc. bus probe sem.
3927 *
3928 * RETURNS:
3929 * 0 on success, AC_ERR_* mask otherwise.
3930 */
3931
3932 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3933 {
3934 struct ata_taskfile tf;
3935 unsigned int err_mask;
3936
3937 /* set up set-features taskfile */
3938 DPRINTK("set features - xfer mode\n");
3939
3940 /* Some controllers and ATAPI devices show flaky interrupt
3941 * behavior after setting xfer mode. Use polling instead.
3942 */
3943 ata_tf_init(dev, &tf);
3944 tf.command = ATA_CMD_SET_FEATURES;
3945 tf.feature = SETFEATURES_XFER;
3946 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3947 tf.protocol = ATA_PROT_NODATA;
3948 tf.nsect = dev->xfer_mode;
3949
3950 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3951
3952 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3953 return err_mask;
3954 }
3955
3956 /**
3957 * ata_dev_init_params - Issue INIT DEV PARAMS command
3958 * @dev: Device to which command will be sent
3959 * @heads: Number of heads (taskfile parameter)
3960 * @sectors: Number of sectors (taskfile parameter)
3961 *
3962 * LOCKING:
3963 * Kernel thread context (may sleep)
3964 *
3965 * RETURNS:
3966 * 0 on success, AC_ERR_* mask otherwise.
3967 */
3968 static unsigned int ata_dev_init_params(struct ata_device *dev,
3969 u16 heads, u16 sectors)
3970 {
3971 struct ata_taskfile tf;
3972 unsigned int err_mask;
3973
3974 /* Number of sectors per track 1-255. Number of heads 1-16 */
3975 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3976 return AC_ERR_INVALID;
3977
3978 /* set up init dev params taskfile */
3979 DPRINTK("init dev params \n");
3980
3981 ata_tf_init(dev, &tf);
3982 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3983 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3984 tf.protocol = ATA_PROT_NODATA;
3985 tf.nsect = sectors;
3986 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3987
3988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3989
3990 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3991 return err_mask;
3992 }
3993
3994 /**
3995 * ata_sg_clean - Unmap DMA memory associated with command
3996 * @qc: Command containing DMA memory to be released
3997 *
3998 * Unmap all mapped DMA memory associated with this command.
3999 *
4000 * LOCKING:
4001 * spin_lock_irqsave(host lock)
4002 */
4003 void ata_sg_clean(struct ata_queued_cmd *qc)
4004 {
4005 struct ata_port *ap = qc->ap;
4006 struct scatterlist *sg = qc->__sg;
4007 int dir = qc->dma_dir;
4008 void *pad_buf = NULL;
4009
4010 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4011 WARN_ON(sg == NULL);
4012
4013 if (qc->flags & ATA_QCFLAG_SINGLE)
4014 WARN_ON(qc->n_elem > 1);
4015
4016 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4017
4018 /* if we padded the buffer out to 32-bit bound, and data
4019 * xfer direction is from-device, we must copy from the
4020 * pad buffer back into the supplied buffer
4021 */
4022 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4023 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4024
4025 if (qc->flags & ATA_QCFLAG_SG) {
4026 if (qc->n_elem)
4027 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4028 /* restore last sg */
4029 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4030 if (pad_buf) {
4031 struct scatterlist *psg = &qc->pad_sgent;
4032 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4033 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4034 kunmap_atomic(addr, KM_IRQ0);
4035 }
4036 } else {
4037 if (qc->n_elem)
4038 dma_unmap_single(ap->dev,
4039 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4040 dir);
4041 /* restore sg */
4042 sg->length += qc->pad_len;
4043 if (pad_buf)
4044 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4045 pad_buf, qc->pad_len);
4046 }
4047
4048 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4049 qc->__sg = NULL;
4050 }
4051
4052 /**
4053 * ata_fill_sg - Fill PCI IDE PRD table
4054 * @qc: Metadata associated with taskfile to be transferred
4055 *
4056 * Fill PCI IDE PRD (scatter-gather) table with segments
4057 * associated with the current disk command.
4058 *
4059 * LOCKING:
4060 * spin_lock_irqsave(host lock)
4061 *
4062 */
4063 static void ata_fill_sg(struct ata_queued_cmd *qc)
4064 {
4065 struct ata_port *ap = qc->ap;
4066 struct scatterlist *sg;
4067 unsigned int idx;
4068
4069 WARN_ON(qc->__sg == NULL);
4070 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4071
4072 idx = 0;
4073 ata_for_each_sg(sg, qc) {
4074 u32 addr, offset;
4075 u32 sg_len, len;
4076
4077 /* determine if physical DMA addr spans 64K boundary.
4078 * Note h/w doesn't support 64-bit, so we unconditionally
4079 * truncate dma_addr_t to u32.
4080 */
4081 addr = (u32) sg_dma_address(sg);
4082 sg_len = sg_dma_len(sg);
4083
4084 while (sg_len) {
4085 offset = addr & 0xffff;
4086 len = sg_len;
4087 if ((offset + sg_len) > 0x10000)
4088 len = 0x10000 - offset;
4089
4090 ap->prd[idx].addr = cpu_to_le32(addr);
4091 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4092 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4093
4094 idx++;
4095 sg_len -= len;
4096 addr += len;
4097 }
4098 }
4099
4100 if (idx)
4101 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4102 }
4103 /**
4104 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4105 * @qc: Metadata associated with taskfile to check
4106 *
4107 * Allow low-level driver to filter ATA PACKET commands, returning
4108 * a status indicating whether or not it is OK to use DMA for the
4109 * supplied PACKET command.
4110 *
4111 * LOCKING:
4112 * spin_lock_irqsave(host lock)
4113 *
4114 * RETURNS: 0 when ATAPI DMA can be used
4115 * nonzero otherwise
4116 */
4117 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4118 {
4119 struct ata_port *ap = qc->ap;
4120 int rc = 0; /* Assume ATAPI DMA is OK by default */
4121
4122 /* some drives can only do ATAPI DMA on read/write */
4123 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4124 struct scsi_cmnd *cmd = qc->scsicmd;
4125 u8 *scsicmd = cmd->cmnd;
4126
4127 switch (scsicmd[0]) {
4128 case READ_10:
4129 case WRITE_10:
4130 case READ_12:
4131 case WRITE_12:
4132 case READ_6:
4133 case WRITE_6:
4134 /* atapi dma maybe ok */
4135 break;
4136 default:
4137 /* turn off atapi dma */
4138 return 1;
4139 }
4140 }
4141
4142 if (ap->ops->check_atapi_dma)
4143 rc = ap->ops->check_atapi_dma(qc);
4144
4145 return rc;
4146 }
4147 /**
4148 * ata_qc_prep - Prepare taskfile for submission
4149 * @qc: Metadata associated with taskfile to be prepared
4150 *
4151 * Prepare ATA taskfile for submission.
4152 *
4153 * LOCKING:
4154 * spin_lock_irqsave(host lock)
4155 */
4156 void ata_qc_prep(struct ata_queued_cmd *qc)
4157 {
4158 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4159 return;
4160
4161 ata_fill_sg(qc);
4162 }
4163
4164 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4165
4166 /**
4167 * ata_sg_init_one - Associate command with memory buffer
4168 * @qc: Command to be associated
4169 * @buf: Memory buffer
4170 * @buflen: Length of memory buffer, in bytes.
4171 *
4172 * Initialize the data-related elements of queued_cmd @qc
4173 * to point to a single memory buffer, @buf of byte length @buflen.
4174 *
4175 * LOCKING:
4176 * spin_lock_irqsave(host lock)
4177 */
4178
4179 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4180 {
4181 qc->flags |= ATA_QCFLAG_SINGLE;
4182
4183 qc->__sg = &qc->sgent;
4184 qc->n_elem = 1;
4185 qc->orig_n_elem = 1;
4186 qc->buf_virt = buf;
4187 qc->nbytes = buflen;
4188
4189 sg_init_one(&qc->sgent, buf, buflen);
4190 }
4191
4192 /**
4193 * ata_sg_init - Associate command with scatter-gather table.
4194 * @qc: Command to be associated
4195 * @sg: Scatter-gather table.
4196 * @n_elem: Number of elements in s/g table.
4197 *
4198 * Initialize the data-related elements of queued_cmd @qc
4199 * to point to a scatter-gather table @sg, containing @n_elem
4200 * elements.
4201 *
4202 * LOCKING:
4203 * spin_lock_irqsave(host lock)
4204 */
4205
4206 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4207 unsigned int n_elem)
4208 {
4209 qc->flags |= ATA_QCFLAG_SG;
4210 qc->__sg = sg;
4211 qc->n_elem = n_elem;
4212 qc->orig_n_elem = n_elem;
4213 }
4214
4215 /**
4216 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4217 * @qc: Command with memory buffer to be mapped.
4218 *
4219 * DMA-map the memory buffer associated with queued_cmd @qc.
4220 *
4221 * LOCKING:
4222 * spin_lock_irqsave(host lock)
4223 *
4224 * RETURNS:
4225 * Zero on success, negative on error.
4226 */
4227
4228 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4229 {
4230 struct ata_port *ap = qc->ap;
4231 int dir = qc->dma_dir;
4232 struct scatterlist *sg = qc->__sg;
4233 dma_addr_t dma_address;
4234 int trim_sg = 0;
4235
4236 /* we must lengthen transfers to end on a 32-bit boundary */
4237 qc->pad_len = sg->length & 3;
4238 if (qc->pad_len) {
4239 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4240 struct scatterlist *psg = &qc->pad_sgent;
4241
4242 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4243
4244 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4245
4246 if (qc->tf.flags & ATA_TFLAG_WRITE)
4247 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4248 qc->pad_len);
4249
4250 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4251 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4252 /* trim sg */
4253 sg->length -= qc->pad_len;
4254 if (sg->length == 0)
4255 trim_sg = 1;
4256
4257 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4258 sg->length, qc->pad_len);
4259 }
4260
4261 if (trim_sg) {
4262 qc->n_elem--;
4263 goto skip_map;
4264 }
4265
4266 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4267 sg->length, dir);
4268 if (dma_mapping_error(dma_address)) {
4269 /* restore sg */
4270 sg->length += qc->pad_len;
4271 return -1;
4272 }
4273
4274 sg_dma_address(sg) = dma_address;
4275 sg_dma_len(sg) = sg->length;
4276
4277 skip_map:
4278 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4279 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4280
4281 return 0;
4282 }
4283
4284 /**
4285 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4286 * @qc: Command with scatter-gather table to be mapped.
4287 *
4288 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4289 *
4290 * LOCKING:
4291 * spin_lock_irqsave(host lock)
4292 *
4293 * RETURNS:
4294 * Zero on success, negative on error.
4295 *
4296 */
4297
4298 static int ata_sg_setup(struct ata_queued_cmd *qc)
4299 {
4300 struct ata_port *ap = qc->ap;
4301 struct scatterlist *sg = qc->__sg;
4302 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4303 int n_elem, pre_n_elem, dir, trim_sg = 0;
4304
4305 VPRINTK("ENTER, ata%u\n", ap->print_id);
4306 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4307
4308 /* we must lengthen transfers to end on a 32-bit boundary */
4309 qc->pad_len = lsg->length & 3;
4310 if (qc->pad_len) {
4311 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4312 struct scatterlist *psg = &qc->pad_sgent;
4313 unsigned int offset;
4314
4315 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4316
4317 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4318
4319 /*
4320 * psg->page/offset are used to copy to-be-written
4321 * data in this function or read data in ata_sg_clean.
4322 */
4323 offset = lsg->offset + lsg->length - qc->pad_len;
4324 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4325 psg->offset = offset_in_page(offset);
4326
4327 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4328 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4329 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4330 kunmap_atomic(addr, KM_IRQ0);
4331 }
4332
4333 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4334 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4335 /* trim last sg */
4336 lsg->length -= qc->pad_len;
4337 if (lsg->length == 0)
4338 trim_sg = 1;
4339
4340 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4341 qc->n_elem - 1, lsg->length, qc->pad_len);
4342 }
4343
4344 pre_n_elem = qc->n_elem;
4345 if (trim_sg && pre_n_elem)
4346 pre_n_elem--;
4347
4348 if (!pre_n_elem) {
4349 n_elem = 0;
4350 goto skip_map;
4351 }
4352
4353 dir = qc->dma_dir;
4354 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4355 if (n_elem < 1) {
4356 /* restore last sg */
4357 lsg->length += qc->pad_len;
4358 return -1;
4359 }
4360
4361 DPRINTK("%d sg elements mapped\n", n_elem);
4362
4363 skip_map:
4364 qc->n_elem = n_elem;
4365
4366 return 0;
4367 }
4368
4369 /**
4370 * swap_buf_le16 - swap halves of 16-bit words in place
4371 * @buf: Buffer to swap
4372 * @buf_words: Number of 16-bit words in buffer.
4373 *
4374 * Swap halves of 16-bit words if needed to convert from
4375 * little-endian byte order to native cpu byte order, or
4376 * vice-versa.
4377 *
4378 * LOCKING:
4379 * Inherited from caller.
4380 */
4381 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4382 {
4383 #ifdef __BIG_ENDIAN
4384 unsigned int i;
4385
4386 for (i = 0; i < buf_words; i++)
4387 buf[i] = le16_to_cpu(buf[i]);
4388 #endif /* __BIG_ENDIAN */
4389 }
4390
4391 /**
4392 * ata_data_xfer - Transfer data by PIO
4393 * @adev: device to target
4394 * @buf: data buffer
4395 * @buflen: buffer length
4396 * @write_data: read/write
4397 *
4398 * Transfer data from/to the device data register by PIO.
4399 *
4400 * LOCKING:
4401 * Inherited from caller.
4402 */
4403 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4404 unsigned int buflen, int write_data)
4405 {
4406 struct ata_port *ap = adev->ap;
4407 unsigned int words = buflen >> 1;
4408
4409 /* Transfer multiple of 2 bytes */
4410 if (write_data)
4411 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4412 else
4413 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4414
4415 /* Transfer trailing 1 byte, if any. */
4416 if (unlikely(buflen & 0x01)) {
4417 u16 align_buf[1] = { 0 };
4418 unsigned char *trailing_buf = buf + buflen - 1;
4419
4420 if (write_data) {
4421 memcpy(align_buf, trailing_buf, 1);
4422 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4423 } else {
4424 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4425 memcpy(trailing_buf, align_buf, 1);
4426 }
4427 }
4428 }
4429
4430 /**
4431 * ata_data_xfer_noirq - Transfer data by PIO
4432 * @adev: device to target
4433 * @buf: data buffer
4434 * @buflen: buffer length
4435 * @write_data: read/write
4436 *
4437 * Transfer data from/to the device data register by PIO. Do the
4438 * transfer with interrupts disabled.
4439 *
4440 * LOCKING:
4441 * Inherited from caller.
4442 */
4443 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4444 unsigned int buflen, int write_data)
4445 {
4446 unsigned long flags;
4447 local_irq_save(flags);
4448 ata_data_xfer(adev, buf, buflen, write_data);
4449 local_irq_restore(flags);
4450 }
4451
4452
4453 /**
4454 * ata_pio_sector - Transfer a sector of data.
4455 * @qc: Command on going
4456 *
4457 * Transfer qc->sect_size bytes of data from/to the ATA device.
4458 *
4459 * LOCKING:
4460 * Inherited from caller.
4461 */
4462
4463 static void ata_pio_sector(struct ata_queued_cmd *qc)
4464 {
4465 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4466 struct scatterlist *sg = qc->__sg;
4467 struct ata_port *ap = qc->ap;
4468 struct page *page;
4469 unsigned int offset;
4470 unsigned char *buf;
4471
4472 if (qc->curbytes == qc->nbytes - qc->sect_size)
4473 ap->hsm_task_state = HSM_ST_LAST;
4474
4475 page = sg[qc->cursg].page;
4476 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4477
4478 /* get the current page and offset */
4479 page = nth_page(page, (offset >> PAGE_SHIFT));
4480 offset %= PAGE_SIZE;
4481
4482 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4483
4484 if (PageHighMem(page)) {
4485 unsigned long flags;
4486
4487 /* FIXME: use a bounce buffer */
4488 local_irq_save(flags);
4489 buf = kmap_atomic(page, KM_IRQ0);
4490
4491 /* do the actual data transfer */
4492 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4493
4494 kunmap_atomic(buf, KM_IRQ0);
4495 local_irq_restore(flags);
4496 } else {
4497 buf = page_address(page);
4498 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4499 }
4500
4501 qc->curbytes += qc->sect_size;
4502 qc->cursg_ofs += qc->sect_size;
4503
4504 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4505 qc->cursg++;
4506 qc->cursg_ofs = 0;
4507 }
4508 }
4509
4510 /**
4511 * ata_pio_sectors - Transfer one or many sectors.
4512 * @qc: Command on going
4513 *
4514 * Transfer one or many sectors of data from/to the
4515 * ATA device for the DRQ request.
4516 *
4517 * LOCKING:
4518 * Inherited from caller.
4519 */
4520
4521 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4522 {
4523 if (is_multi_taskfile(&qc->tf)) {
4524 /* READ/WRITE MULTIPLE */
4525 unsigned int nsect;
4526
4527 WARN_ON(qc->dev->multi_count == 0);
4528
4529 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4530 qc->dev->multi_count);
4531 while (nsect--)
4532 ata_pio_sector(qc);
4533 } else
4534 ata_pio_sector(qc);
4535 }
4536
4537 /**
4538 * atapi_send_cdb - Write CDB bytes to hardware
4539 * @ap: Port to which ATAPI device is attached.
4540 * @qc: Taskfile currently active
4541 *
4542 * When device has indicated its readiness to accept
4543 * a CDB, this function is called. Send the CDB.
4544 *
4545 * LOCKING:
4546 * caller.
4547 */
4548
4549 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4550 {
4551 /* send SCSI cdb */
4552 DPRINTK("send cdb\n");
4553 WARN_ON(qc->dev->cdb_len < 12);
4554
4555 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4556 ata_altstatus(ap); /* flush */
4557
4558 switch (qc->tf.protocol) {
4559 case ATA_PROT_ATAPI:
4560 ap->hsm_task_state = HSM_ST;
4561 break;
4562 case ATA_PROT_ATAPI_NODATA:
4563 ap->hsm_task_state = HSM_ST_LAST;
4564 break;
4565 case ATA_PROT_ATAPI_DMA:
4566 ap->hsm_task_state = HSM_ST_LAST;
4567 /* initiate bmdma */
4568 ap->ops->bmdma_start(qc);
4569 break;
4570 }
4571 }
4572
4573 /**
4574 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4575 * @qc: Command on going
4576 * @bytes: number of bytes
4577 *
4578 * Transfer Transfer data from/to the ATAPI device.
4579 *
4580 * LOCKING:
4581 * Inherited from caller.
4582 *
4583 */
4584
4585 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4586 {
4587 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4588 struct scatterlist *sg = qc->__sg;
4589 struct ata_port *ap = qc->ap;
4590 struct page *page;
4591 unsigned char *buf;
4592 unsigned int offset, count;
4593
4594 if (qc->curbytes + bytes >= qc->nbytes)
4595 ap->hsm_task_state = HSM_ST_LAST;
4596
4597 next_sg:
4598 if (unlikely(qc->cursg >= qc->n_elem)) {
4599 /*
4600 * The end of qc->sg is reached and the device expects
4601 * more data to transfer. In order not to overrun qc->sg
4602 * and fulfill length specified in the byte count register,
4603 * - for read case, discard trailing data from the device
4604 * - for write case, padding zero data to the device
4605 */
4606 u16 pad_buf[1] = { 0 };
4607 unsigned int words = bytes >> 1;
4608 unsigned int i;
4609
4610 if (words) /* warning if bytes > 1 */
4611 ata_dev_printk(qc->dev, KERN_WARNING,
4612 "%u bytes trailing data\n", bytes);
4613
4614 for (i = 0; i < words; i++)
4615 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4616
4617 ap->hsm_task_state = HSM_ST_LAST;
4618 return;
4619 }
4620
4621 sg = &qc->__sg[qc->cursg];
4622
4623 page = sg->page;
4624 offset = sg->offset + qc->cursg_ofs;
4625
4626 /* get the current page and offset */
4627 page = nth_page(page, (offset >> PAGE_SHIFT));
4628 offset %= PAGE_SIZE;
4629
4630 /* don't overrun current sg */
4631 count = min(sg->length - qc->cursg_ofs, bytes);
4632
4633 /* don't cross page boundaries */
4634 count = min(count, (unsigned int)PAGE_SIZE - offset);
4635
4636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4637
4638 if (PageHighMem(page)) {
4639 unsigned long flags;
4640
4641 /* FIXME: use bounce buffer */
4642 local_irq_save(flags);
4643 buf = kmap_atomic(page, KM_IRQ0);
4644
4645 /* do the actual data transfer */
4646 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4647
4648 kunmap_atomic(buf, KM_IRQ0);
4649 local_irq_restore(flags);
4650 } else {
4651 buf = page_address(page);
4652 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4653 }
4654
4655 bytes -= count;
4656 qc->curbytes += count;
4657 qc->cursg_ofs += count;
4658
4659 if (qc->cursg_ofs == sg->length) {
4660 qc->cursg++;
4661 qc->cursg_ofs = 0;
4662 }
4663
4664 if (bytes)
4665 goto next_sg;
4666 }
4667
4668 /**
4669 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4670 * @qc: Command on going
4671 *
4672 * Transfer Transfer data from/to the ATAPI device.
4673 *
4674 * LOCKING:
4675 * Inherited from caller.
4676 */
4677
4678 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4679 {
4680 struct ata_port *ap = qc->ap;
4681 struct ata_device *dev = qc->dev;
4682 unsigned int ireason, bc_lo, bc_hi, bytes;
4683 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4684
4685 /* Abuse qc->result_tf for temp storage of intermediate TF
4686 * here to save some kernel stack usage.
4687 * For normal completion, qc->result_tf is not relevant. For
4688 * error, qc->result_tf is later overwritten by ata_qc_complete().
4689 * So, the correctness of qc->result_tf is not affected.
4690 */
4691 ap->ops->tf_read(ap, &qc->result_tf);
4692 ireason = qc->result_tf.nsect;
4693 bc_lo = qc->result_tf.lbam;
4694 bc_hi = qc->result_tf.lbah;
4695 bytes = (bc_hi << 8) | bc_lo;
4696
4697 /* shall be cleared to zero, indicating xfer of data */
4698 if (ireason & (1 << 0))
4699 goto err_out;
4700
4701 /* make sure transfer direction matches expected */
4702 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4703 if (do_write != i_write)
4704 goto err_out;
4705
4706 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4707
4708 __atapi_pio_bytes(qc, bytes);
4709
4710 return;
4711
4712 err_out:
4713 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4714 qc->err_mask |= AC_ERR_HSM;
4715 ap->hsm_task_state = HSM_ST_ERR;
4716 }
4717
4718 /**
4719 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4720 * @ap: the target ata_port
4721 * @qc: qc on going
4722 *
4723 * RETURNS:
4724 * 1 if ok in workqueue, 0 otherwise.
4725 */
4726
4727 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4728 {
4729 if (qc->tf.flags & ATA_TFLAG_POLLING)
4730 return 1;
4731
4732 if (ap->hsm_task_state == HSM_ST_FIRST) {
4733 if (qc->tf.protocol == ATA_PROT_PIO &&
4734 (qc->tf.flags & ATA_TFLAG_WRITE))
4735 return 1;
4736
4737 if (is_atapi_taskfile(&qc->tf) &&
4738 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4739 return 1;
4740 }
4741
4742 return 0;
4743 }
4744
4745 /**
4746 * ata_hsm_qc_complete - finish a qc running on standard HSM
4747 * @qc: Command to complete
4748 * @in_wq: 1 if called from workqueue, 0 otherwise
4749 *
4750 * Finish @qc which is running on standard HSM.
4751 *
4752 * LOCKING:
4753 * If @in_wq is zero, spin_lock_irqsave(host lock).
4754 * Otherwise, none on entry and grabs host lock.
4755 */
4756 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4757 {
4758 struct ata_port *ap = qc->ap;
4759 unsigned long flags;
4760
4761 if (ap->ops->error_handler) {
4762 if (in_wq) {
4763 spin_lock_irqsave(ap->lock, flags);
4764
4765 /* EH might have kicked in while host lock is
4766 * released.
4767 */
4768 qc = ata_qc_from_tag(ap, qc->tag);
4769 if (qc) {
4770 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4771 ap->ops->irq_on(ap);
4772 ata_qc_complete(qc);
4773 } else
4774 ata_port_freeze(ap);
4775 }
4776
4777 spin_unlock_irqrestore(ap->lock, flags);
4778 } else {
4779 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4780 ata_qc_complete(qc);
4781 else
4782 ata_port_freeze(ap);
4783 }
4784 } else {
4785 if (in_wq) {
4786 spin_lock_irqsave(ap->lock, flags);
4787 ap->ops->irq_on(ap);
4788 ata_qc_complete(qc);
4789 spin_unlock_irqrestore(ap->lock, flags);
4790 } else
4791 ata_qc_complete(qc);
4792 }
4793
4794 ata_altstatus(ap); /* flush */
4795 }
4796
4797 /**
4798 * ata_hsm_move - move the HSM to the next state.
4799 * @ap: the target ata_port
4800 * @qc: qc on going
4801 * @status: current device status
4802 * @in_wq: 1 if called from workqueue, 0 otherwise
4803 *
4804 * RETURNS:
4805 * 1 when poll next status needed, 0 otherwise.
4806 */
4807 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4808 u8 status, int in_wq)
4809 {
4810 unsigned long flags = 0;
4811 int poll_next;
4812
4813 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4814
4815 /* Make sure ata_qc_issue_prot() does not throw things
4816 * like DMA polling into the workqueue. Notice that
4817 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4818 */
4819 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4820
4821 fsm_start:
4822 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4823 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4824
4825 switch (ap->hsm_task_state) {
4826 case HSM_ST_FIRST:
4827 /* Send first data block or PACKET CDB */
4828
4829 /* If polling, we will stay in the work queue after
4830 * sending the data. Otherwise, interrupt handler
4831 * takes over after sending the data.
4832 */
4833 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4834
4835 /* check device status */
4836 if (unlikely((status & ATA_DRQ) == 0)) {
4837 /* handle BSY=0, DRQ=0 as error */
4838 if (likely(status & (ATA_ERR | ATA_DF)))
4839 /* device stops HSM for abort/error */
4840 qc->err_mask |= AC_ERR_DEV;
4841 else
4842 /* HSM violation. Let EH handle this */
4843 qc->err_mask |= AC_ERR_HSM;
4844
4845 ap->hsm_task_state = HSM_ST_ERR;
4846 goto fsm_start;
4847 }
4848
4849 /* Device should not ask for data transfer (DRQ=1)
4850 * when it finds something wrong.
4851 * We ignore DRQ here and stop the HSM by
4852 * changing hsm_task_state to HSM_ST_ERR and
4853 * let the EH abort the command or reset the device.
4854 */
4855 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4856 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4857 "error, dev_stat 0x%X\n", status);
4858 qc->err_mask |= AC_ERR_HSM;
4859 ap->hsm_task_state = HSM_ST_ERR;
4860 goto fsm_start;
4861 }
4862
4863 /* Send the CDB (atapi) or the first data block (ata pio out).
4864 * During the state transition, interrupt handler shouldn't
4865 * be invoked before the data transfer is complete and
4866 * hsm_task_state is changed. Hence, the following locking.
4867 */
4868 if (in_wq)
4869 spin_lock_irqsave(ap->lock, flags);
4870
4871 if (qc->tf.protocol == ATA_PROT_PIO) {
4872 /* PIO data out protocol.
4873 * send first data block.
4874 */
4875
4876 /* ata_pio_sectors() might change the state
4877 * to HSM_ST_LAST. so, the state is changed here
4878 * before ata_pio_sectors().
4879 */
4880 ap->hsm_task_state = HSM_ST;
4881 ata_pio_sectors(qc);
4882 ata_altstatus(ap); /* flush */
4883 } else
4884 /* send CDB */
4885 atapi_send_cdb(ap, qc);
4886
4887 if (in_wq)
4888 spin_unlock_irqrestore(ap->lock, flags);
4889
4890 /* if polling, ata_pio_task() handles the rest.
4891 * otherwise, interrupt handler takes over from here.
4892 */
4893 break;
4894
4895 case HSM_ST:
4896 /* complete command or read/write the data register */
4897 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4898 /* ATAPI PIO protocol */
4899 if ((status & ATA_DRQ) == 0) {
4900 /* No more data to transfer or device error.
4901 * Device error will be tagged in HSM_ST_LAST.
4902 */
4903 ap->hsm_task_state = HSM_ST_LAST;
4904 goto fsm_start;
4905 }
4906
4907 /* Device should not ask for data transfer (DRQ=1)
4908 * when it finds something wrong.
4909 * We ignore DRQ here and stop the HSM by
4910 * changing hsm_task_state to HSM_ST_ERR and
4911 * let the EH abort the command or reset the device.
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4914 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4915 "device error, dev_stat 0x%X\n",
4916 status);
4917 qc->err_mask |= AC_ERR_HSM;
4918 ap->hsm_task_state = HSM_ST_ERR;
4919 goto fsm_start;
4920 }
4921
4922 atapi_pio_bytes(qc);
4923
4924 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4925 /* bad ireason reported by device */
4926 goto fsm_start;
4927
4928 } else {
4929 /* ATA PIO protocol */
4930 if (unlikely((status & ATA_DRQ) == 0)) {
4931 /* handle BSY=0, DRQ=0 as error */
4932 if (likely(status & (ATA_ERR | ATA_DF)))
4933 /* device stops HSM for abort/error */
4934 qc->err_mask |= AC_ERR_DEV;
4935 else
4936 /* HSM violation. Let EH handle this.
4937 * Phantom devices also trigger this
4938 * condition. Mark hint.
4939 */
4940 qc->err_mask |= AC_ERR_HSM |
4941 AC_ERR_NODEV_HINT;
4942
4943 ap->hsm_task_state = HSM_ST_ERR;
4944 goto fsm_start;
4945 }
4946
4947 /* For PIO reads, some devices may ask for
4948 * data transfer (DRQ=1) alone with ERR=1.
4949 * We respect DRQ here and transfer one
4950 * block of junk data before changing the
4951 * hsm_task_state to HSM_ST_ERR.
4952 *
4953 * For PIO writes, ERR=1 DRQ=1 doesn't make
4954 * sense since the data block has been
4955 * transferred to the device.
4956 */
4957 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4958 /* data might be corrputed */
4959 qc->err_mask |= AC_ERR_DEV;
4960
4961 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4962 ata_pio_sectors(qc);
4963 ata_altstatus(ap);
4964 status = ata_wait_idle(ap);
4965 }
4966
4967 if (status & (ATA_BUSY | ATA_DRQ))
4968 qc->err_mask |= AC_ERR_HSM;
4969
4970 /* ata_pio_sectors() might change the
4971 * state to HSM_ST_LAST. so, the state
4972 * is changed after ata_pio_sectors().
4973 */
4974 ap->hsm_task_state = HSM_ST_ERR;
4975 goto fsm_start;
4976 }
4977
4978 ata_pio_sectors(qc);
4979
4980 if (ap->hsm_task_state == HSM_ST_LAST &&
4981 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4982 /* all data read */
4983 ata_altstatus(ap);
4984 status = ata_wait_idle(ap);
4985 goto fsm_start;
4986 }
4987 }
4988
4989 ata_altstatus(ap); /* flush */
4990 poll_next = 1;
4991 break;
4992
4993 case HSM_ST_LAST:
4994 if (unlikely(!ata_ok(status))) {
4995 qc->err_mask |= __ac_err_mask(status);
4996 ap->hsm_task_state = HSM_ST_ERR;
4997 goto fsm_start;
4998 }
4999
5000 /* no more data to transfer */
5001 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5002 ap->print_id, qc->dev->devno, status);
5003
5004 WARN_ON(qc->err_mask);
5005
5006 ap->hsm_task_state = HSM_ST_IDLE;
5007
5008 /* complete taskfile transaction */
5009 ata_hsm_qc_complete(qc, in_wq);
5010
5011 poll_next = 0;
5012 break;
5013
5014 case HSM_ST_ERR:
5015 /* make sure qc->err_mask is available to
5016 * know what's wrong and recover
5017 */
5018 WARN_ON(qc->err_mask == 0);
5019
5020 ap->hsm_task_state = HSM_ST_IDLE;
5021
5022 /* complete taskfile transaction */
5023 ata_hsm_qc_complete(qc, in_wq);
5024
5025 poll_next = 0;
5026 break;
5027 default:
5028 poll_next = 0;
5029 BUG();
5030 }
5031
5032 return poll_next;
5033 }
5034
5035 static void ata_pio_task(struct work_struct *work)
5036 {
5037 struct ata_port *ap =
5038 container_of(work, struct ata_port, port_task.work);
5039 struct ata_queued_cmd *qc = ap->port_task_data;
5040 u8 status;
5041 int poll_next;
5042
5043 fsm_start:
5044 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5045
5046 /*
5047 * This is purely heuristic. This is a fast path.
5048 * Sometimes when we enter, BSY will be cleared in
5049 * a chk-status or two. If not, the drive is probably seeking
5050 * or something. Snooze for a couple msecs, then
5051 * chk-status again. If still busy, queue delayed work.
5052 */
5053 status = ata_busy_wait(ap, ATA_BUSY, 5);
5054 if (status & ATA_BUSY) {
5055 msleep(2);
5056 status = ata_busy_wait(ap, ATA_BUSY, 10);
5057 if (status & ATA_BUSY) {
5058 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5059 return;
5060 }
5061 }
5062
5063 /* move the HSM */
5064 poll_next = ata_hsm_move(ap, qc, status, 1);
5065
5066 /* another command or interrupt handler
5067 * may be running at this point.
5068 */
5069 if (poll_next)
5070 goto fsm_start;
5071 }
5072
5073 /**
5074 * ata_qc_new - Request an available ATA command, for queueing
5075 * @ap: Port associated with device @dev
5076 * @dev: Device from whom we request an available command structure
5077 *
5078 * LOCKING:
5079 * None.
5080 */
5081
5082 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5083 {
5084 struct ata_queued_cmd *qc = NULL;
5085 unsigned int i;
5086
5087 /* no command while frozen */
5088 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5089 return NULL;
5090
5091 /* the last tag is reserved for internal command. */
5092 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5093 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5094 qc = __ata_qc_from_tag(ap, i);
5095 break;
5096 }
5097
5098 if (qc)
5099 qc->tag = i;
5100
5101 return qc;
5102 }
5103
5104 /**
5105 * ata_qc_new_init - Request an available ATA command, and initialize it
5106 * @dev: Device from whom we request an available command structure
5107 *
5108 * LOCKING:
5109 * None.
5110 */
5111
5112 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5113 {
5114 struct ata_port *ap = dev->ap;
5115 struct ata_queued_cmd *qc;
5116
5117 qc = ata_qc_new(ap);
5118 if (qc) {
5119 qc->scsicmd = NULL;
5120 qc->ap = ap;
5121 qc->dev = dev;
5122
5123 ata_qc_reinit(qc);
5124 }
5125
5126 return qc;
5127 }
5128
5129 /**
5130 * ata_qc_free - free unused ata_queued_cmd
5131 * @qc: Command to complete
5132 *
5133 * Designed to free unused ata_queued_cmd object
5134 * in case something prevents using it.
5135 *
5136 * LOCKING:
5137 * spin_lock_irqsave(host lock)
5138 */
5139 void ata_qc_free(struct ata_queued_cmd *qc)
5140 {
5141 struct ata_port *ap = qc->ap;
5142 unsigned int tag;
5143
5144 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5145
5146 qc->flags = 0;
5147 tag = qc->tag;
5148 if (likely(ata_tag_valid(tag))) {
5149 qc->tag = ATA_TAG_POISON;
5150 clear_bit(tag, &ap->qc_allocated);
5151 }
5152 }
5153
5154 void __ata_qc_complete(struct ata_queued_cmd *qc)
5155 {
5156 struct ata_port *ap = qc->ap;
5157
5158 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5159 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5160
5161 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5162 ata_sg_clean(qc);
5163
5164 /* command should be marked inactive atomically with qc completion */
5165 if (qc->tf.protocol == ATA_PROT_NCQ)
5166 ap->sactive &= ~(1 << qc->tag);
5167 else
5168 ap->active_tag = ATA_TAG_POISON;
5169
5170 /* atapi: mark qc as inactive to prevent the interrupt handler
5171 * from completing the command twice later, before the error handler
5172 * is called. (when rc != 0 and atapi request sense is needed)
5173 */
5174 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5175 ap->qc_active &= ~(1 << qc->tag);
5176
5177 /* call completion callback */
5178 qc->complete_fn(qc);
5179 }
5180
5181 static void fill_result_tf(struct ata_queued_cmd *qc)
5182 {
5183 struct ata_port *ap = qc->ap;
5184
5185 qc->result_tf.flags = qc->tf.flags;
5186 ap->ops->tf_read(ap, &qc->result_tf);
5187 }
5188
5189 /**
5190 * ata_qc_complete - Complete an active ATA command
5191 * @qc: Command to complete
5192 * @err_mask: ATA Status register contents
5193 *
5194 * Indicate to the mid and upper layers that an ATA
5195 * command has completed, with either an ok or not-ok status.
5196 *
5197 * LOCKING:
5198 * spin_lock_irqsave(host lock)
5199 */
5200 void ata_qc_complete(struct ata_queued_cmd *qc)
5201 {
5202 struct ata_port *ap = qc->ap;
5203
5204 /* XXX: New EH and old EH use different mechanisms to
5205 * synchronize EH with regular execution path.
5206 *
5207 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5208 * Normal execution path is responsible for not accessing a
5209 * failed qc. libata core enforces the rule by returning NULL
5210 * from ata_qc_from_tag() for failed qcs.
5211 *
5212 * Old EH depends on ata_qc_complete() nullifying completion
5213 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5214 * not synchronize with interrupt handler. Only PIO task is
5215 * taken care of.
5216 */
5217 if (ap->ops->error_handler) {
5218 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5219
5220 if (unlikely(qc->err_mask))
5221 qc->flags |= ATA_QCFLAG_FAILED;
5222
5223 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5224 if (!ata_tag_internal(qc->tag)) {
5225 /* always fill result TF for failed qc */
5226 fill_result_tf(qc);
5227 ata_qc_schedule_eh(qc);
5228 return;
5229 }
5230 }
5231
5232 /* read result TF if requested */
5233 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5234 fill_result_tf(qc);
5235
5236 __ata_qc_complete(qc);
5237 } else {
5238 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5239 return;
5240
5241 /* read result TF if failed or requested */
5242 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5243 fill_result_tf(qc);
5244
5245 __ata_qc_complete(qc);
5246 }
5247 }
5248
5249 /**
5250 * ata_qc_complete_multiple - Complete multiple qcs successfully
5251 * @ap: port in question
5252 * @qc_active: new qc_active mask
5253 * @finish_qc: LLDD callback invoked before completing a qc
5254 *
5255 * Complete in-flight commands. This functions is meant to be
5256 * called from low-level driver's interrupt routine to complete
5257 * requests normally. ap->qc_active and @qc_active is compared
5258 * and commands are completed accordingly.
5259 *
5260 * LOCKING:
5261 * spin_lock_irqsave(host lock)
5262 *
5263 * RETURNS:
5264 * Number of completed commands on success, -errno otherwise.
5265 */
5266 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5267 void (*finish_qc)(struct ata_queued_cmd *))
5268 {
5269 int nr_done = 0;
5270 u32 done_mask;
5271 int i;
5272
5273 done_mask = ap->qc_active ^ qc_active;
5274
5275 if (unlikely(done_mask & qc_active)) {
5276 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5277 "(%08x->%08x)\n", ap->qc_active, qc_active);
5278 return -EINVAL;
5279 }
5280
5281 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5282 struct ata_queued_cmd *qc;
5283
5284 if (!(done_mask & (1 << i)))
5285 continue;
5286
5287 if ((qc = ata_qc_from_tag(ap, i))) {
5288 if (finish_qc)
5289 finish_qc(qc);
5290 ata_qc_complete(qc);
5291 nr_done++;
5292 }
5293 }
5294
5295 return nr_done;
5296 }
5297
5298 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5299 {
5300 struct ata_port *ap = qc->ap;
5301
5302 switch (qc->tf.protocol) {
5303 case ATA_PROT_NCQ:
5304 case ATA_PROT_DMA:
5305 case ATA_PROT_ATAPI_DMA:
5306 return 1;
5307
5308 case ATA_PROT_ATAPI:
5309 case ATA_PROT_PIO:
5310 if (ap->flags & ATA_FLAG_PIO_DMA)
5311 return 1;
5312
5313 /* fall through */
5314
5315 default:
5316 return 0;
5317 }
5318
5319 /* never reached */
5320 }
5321
5322 /**
5323 * ata_qc_issue - issue taskfile to device
5324 * @qc: command to issue to device
5325 *
5326 * Prepare an ATA command to submission to device.
5327 * This includes mapping the data into a DMA-able
5328 * area, filling in the S/G table, and finally
5329 * writing the taskfile to hardware, starting the command.
5330 *
5331 * LOCKING:
5332 * spin_lock_irqsave(host lock)
5333 */
5334 void ata_qc_issue(struct ata_queued_cmd *qc)
5335 {
5336 struct ata_port *ap = qc->ap;
5337
5338 /* Make sure only one non-NCQ command is outstanding. The
5339 * check is skipped for old EH because it reuses active qc to
5340 * request ATAPI sense.
5341 */
5342 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5343
5344 if (qc->tf.protocol == ATA_PROT_NCQ) {
5345 WARN_ON(ap->sactive & (1 << qc->tag));
5346 ap->sactive |= 1 << qc->tag;
5347 } else {
5348 WARN_ON(ap->sactive);
5349 ap->active_tag = qc->tag;
5350 }
5351
5352 qc->flags |= ATA_QCFLAG_ACTIVE;
5353 ap->qc_active |= 1 << qc->tag;
5354
5355 if (ata_should_dma_map(qc)) {
5356 if (qc->flags & ATA_QCFLAG_SG) {
5357 if (ata_sg_setup(qc))
5358 goto sg_err;
5359 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5360 if (ata_sg_setup_one(qc))
5361 goto sg_err;
5362 }
5363 } else {
5364 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5365 }
5366
5367 ap->ops->qc_prep(qc);
5368
5369 qc->err_mask |= ap->ops->qc_issue(qc);
5370 if (unlikely(qc->err_mask))
5371 goto err;
5372 return;
5373
5374 sg_err:
5375 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5376 qc->err_mask |= AC_ERR_SYSTEM;
5377 err:
5378 ata_qc_complete(qc);
5379 }
5380
5381 /**
5382 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5383 * @qc: command to issue to device
5384 *
5385 * Using various libata functions and hooks, this function
5386 * starts an ATA command. ATA commands are grouped into
5387 * classes called "protocols", and issuing each type of protocol
5388 * is slightly different.
5389 *
5390 * May be used as the qc_issue() entry in ata_port_operations.
5391 *
5392 * LOCKING:
5393 * spin_lock_irqsave(host lock)
5394 *
5395 * RETURNS:
5396 * Zero on success, AC_ERR_* mask on failure
5397 */
5398
5399 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5400 {
5401 struct ata_port *ap = qc->ap;
5402
5403 /* Use polling pio if the LLD doesn't handle
5404 * interrupt driven pio and atapi CDB interrupt.
5405 */
5406 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5407 switch (qc->tf.protocol) {
5408 case ATA_PROT_PIO:
5409 case ATA_PROT_NODATA:
5410 case ATA_PROT_ATAPI:
5411 case ATA_PROT_ATAPI_NODATA:
5412 qc->tf.flags |= ATA_TFLAG_POLLING;
5413 break;
5414 case ATA_PROT_ATAPI_DMA:
5415 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5416 /* see ata_dma_blacklisted() */
5417 BUG();
5418 break;
5419 default:
5420 break;
5421 }
5422 }
5423
5424 /* select the device */
5425 ata_dev_select(ap, qc->dev->devno, 1, 0);
5426
5427 /* start the command */
5428 switch (qc->tf.protocol) {
5429 case ATA_PROT_NODATA:
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
5431 ata_qc_set_polling(qc);
5432
5433 ata_tf_to_host(ap, &qc->tf);
5434 ap->hsm_task_state = HSM_ST_LAST;
5435
5436 if (qc->tf.flags & ATA_TFLAG_POLLING)
5437 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5438
5439 break;
5440
5441 case ATA_PROT_DMA:
5442 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5443
5444 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5445 ap->ops->bmdma_setup(qc); /* set up bmdma */
5446 ap->ops->bmdma_start(qc); /* initiate bmdma */
5447 ap->hsm_task_state = HSM_ST_LAST;
5448 break;
5449
5450 case ATA_PROT_PIO:
5451 if (qc->tf.flags & ATA_TFLAG_POLLING)
5452 ata_qc_set_polling(qc);
5453
5454 ata_tf_to_host(ap, &qc->tf);
5455
5456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5457 /* PIO data out protocol */
5458 ap->hsm_task_state = HSM_ST_FIRST;
5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5460
5461 /* always send first data block using
5462 * the ata_pio_task() codepath.
5463 */
5464 } else {
5465 /* PIO data in protocol */
5466 ap->hsm_task_state = HSM_ST;
5467
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
5469 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5470
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5473 */
5474 }
5475
5476 break;
5477
5478 case ATA_PROT_ATAPI:
5479 case ATA_PROT_ATAPI_NODATA:
5480 if (qc->tf.flags & ATA_TFLAG_POLLING)
5481 ata_qc_set_polling(qc);
5482
5483 ata_tf_to_host(ap, &qc->tf);
5484
5485 ap->hsm_task_state = HSM_ST_FIRST;
5486
5487 /* send cdb by polling if no cdb interrupt */
5488 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5489 (qc->tf.flags & ATA_TFLAG_POLLING))
5490 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5491 break;
5492
5493 case ATA_PROT_ATAPI_DMA:
5494 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5495
5496 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5497 ap->ops->bmdma_setup(qc); /* set up bmdma */
5498 ap->hsm_task_state = HSM_ST_FIRST;
5499
5500 /* send cdb by polling if no cdb interrupt */
5501 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5503 break;
5504
5505 default:
5506 WARN_ON(1);
5507 return AC_ERR_SYSTEM;
5508 }
5509
5510 return 0;
5511 }
5512
5513 /**
5514 * ata_host_intr - Handle host interrupt for given (port, task)
5515 * @ap: Port on which interrupt arrived (possibly...)
5516 * @qc: Taskfile currently active in engine
5517 *
5518 * Handle host interrupt for given queued command. Currently,
5519 * only DMA interrupts are handled. All other commands are
5520 * handled via polling with interrupts disabled (nIEN bit).
5521 *
5522 * LOCKING:
5523 * spin_lock_irqsave(host lock)
5524 *
5525 * RETURNS:
5526 * One if interrupt was handled, zero if not (shared irq).
5527 */
5528
5529 inline unsigned int ata_host_intr (struct ata_port *ap,
5530 struct ata_queued_cmd *qc)
5531 {
5532 struct ata_eh_info *ehi = &ap->eh_info;
5533 u8 status, host_stat = 0;
5534
5535 VPRINTK("ata%u: protocol %d task_state %d\n",
5536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5537
5538 /* Check whether we are expecting interrupt in this state */
5539 switch (ap->hsm_task_state) {
5540 case HSM_ST_FIRST:
5541 /* Some pre-ATAPI-4 devices assert INTRQ
5542 * at this state when ready to receive CDB.
5543 */
5544
5545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5546 * The flag was turned on only for atapi devices.
5547 * No need to check is_atapi_taskfile(&qc->tf) again.
5548 */
5549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5550 goto idle_irq;
5551 break;
5552 case HSM_ST_LAST:
5553 if (qc->tf.protocol == ATA_PROT_DMA ||
5554 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5555 /* check status of DMA engine */
5556 host_stat = ap->ops->bmdma_status(ap);
5557 VPRINTK("ata%u: host_stat 0x%X\n",
5558 ap->print_id, host_stat);
5559
5560 /* if it's not our irq... */
5561 if (!(host_stat & ATA_DMA_INTR))
5562 goto idle_irq;
5563
5564 /* before we do anything else, clear DMA-Start bit */
5565 ap->ops->bmdma_stop(qc);
5566
5567 if (unlikely(host_stat & ATA_DMA_ERR)) {
5568 /* error when transfering data to/from memory */
5569 qc->err_mask |= AC_ERR_HOST_BUS;
5570 ap->hsm_task_state = HSM_ST_ERR;
5571 }
5572 }
5573 break;
5574 case HSM_ST:
5575 break;
5576 default:
5577 goto idle_irq;
5578 }
5579
5580 /* check altstatus */
5581 status = ata_altstatus(ap);
5582 if (status & ATA_BUSY)
5583 goto idle_irq;
5584
5585 /* check main status, clearing INTRQ */
5586 status = ata_chk_status(ap);
5587 if (unlikely(status & ATA_BUSY))
5588 goto idle_irq;
5589
5590 /* ack bmdma irq events */
5591 ap->ops->irq_clear(ap);
5592
5593 ata_hsm_move(ap, qc, status, 0);
5594
5595 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5596 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5597 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5598
5599 return 1; /* irq handled */
5600
5601 idle_irq:
5602 ap->stats.idle_irq++;
5603
5604 #ifdef ATA_IRQ_TRAP
5605 if ((ap->stats.idle_irq % 1000) == 0) {
5606 ap->ops->irq_ack(ap, 0); /* debug trap */
5607 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5608 return 1;
5609 }
5610 #endif
5611 return 0; /* irq not handled */
5612 }
5613
5614 /**
5615 * ata_interrupt - Default ATA host interrupt handler
5616 * @irq: irq line (unused)
5617 * @dev_instance: pointer to our ata_host information structure
5618 *
5619 * Default interrupt handler for PCI IDE devices. Calls
5620 * ata_host_intr() for each port that is not disabled.
5621 *
5622 * LOCKING:
5623 * Obtains host lock during operation.
5624 *
5625 * RETURNS:
5626 * IRQ_NONE or IRQ_HANDLED.
5627 */
5628
5629 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5630 {
5631 struct ata_host *host = dev_instance;
5632 unsigned int i;
5633 unsigned int handled = 0;
5634 unsigned long flags;
5635
5636 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5637 spin_lock_irqsave(&host->lock, flags);
5638
5639 for (i = 0; i < host->n_ports; i++) {
5640 struct ata_port *ap;
5641
5642 ap = host->ports[i];
5643 if (ap &&
5644 !(ap->flags & ATA_FLAG_DISABLED)) {
5645 struct ata_queued_cmd *qc;
5646
5647 qc = ata_qc_from_tag(ap, ap->active_tag);
5648 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5649 (qc->flags & ATA_QCFLAG_ACTIVE))
5650 handled |= ata_host_intr(ap, qc);
5651 }
5652 }
5653
5654 spin_unlock_irqrestore(&host->lock, flags);
5655
5656 return IRQ_RETVAL(handled);
5657 }
5658
5659 /**
5660 * sata_scr_valid - test whether SCRs are accessible
5661 * @ap: ATA port to test SCR accessibility for
5662 *
5663 * Test whether SCRs are accessible for @ap.
5664 *
5665 * LOCKING:
5666 * None.
5667 *
5668 * RETURNS:
5669 * 1 if SCRs are accessible, 0 otherwise.
5670 */
5671 int sata_scr_valid(struct ata_port *ap)
5672 {
5673 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5674 }
5675
5676 /**
5677 * sata_scr_read - read SCR register of the specified port
5678 * @ap: ATA port to read SCR for
5679 * @reg: SCR to read
5680 * @val: Place to store read value
5681 *
5682 * Read SCR register @reg of @ap into *@val. This function is
5683 * guaranteed to succeed if the cable type of the port is SATA
5684 * and the port implements ->scr_read.
5685 *
5686 * LOCKING:
5687 * None.
5688 *
5689 * RETURNS:
5690 * 0 on success, negative errno on failure.
5691 */
5692 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5693 {
5694 if (sata_scr_valid(ap)) {
5695 *val = ap->ops->scr_read(ap, reg);
5696 return 0;
5697 }
5698 return -EOPNOTSUPP;
5699 }
5700
5701 /**
5702 * sata_scr_write - write SCR register of the specified port
5703 * @ap: ATA port to write SCR for
5704 * @reg: SCR to write
5705 * @val: value to write
5706 *
5707 * Write @val to SCR register @reg of @ap. This function is
5708 * guaranteed to succeed if the cable type of the port is SATA
5709 * and the port implements ->scr_read.
5710 *
5711 * LOCKING:
5712 * None.
5713 *
5714 * RETURNS:
5715 * 0 on success, negative errno on failure.
5716 */
5717 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5718 {
5719 if (sata_scr_valid(ap)) {
5720 ap->ops->scr_write(ap, reg, val);
5721 return 0;
5722 }
5723 return -EOPNOTSUPP;
5724 }
5725
5726 /**
5727 * sata_scr_write_flush - write SCR register of the specified port and flush
5728 * @ap: ATA port to write SCR for
5729 * @reg: SCR to write
5730 * @val: value to write
5731 *
5732 * This function is identical to sata_scr_write() except that this
5733 * function performs flush after writing to the register.
5734 *
5735 * LOCKING:
5736 * None.
5737 *
5738 * RETURNS:
5739 * 0 on success, negative errno on failure.
5740 */
5741 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5742 {
5743 if (sata_scr_valid(ap)) {
5744 ap->ops->scr_write(ap, reg, val);
5745 ap->ops->scr_read(ap, reg);
5746 return 0;
5747 }
5748 return -EOPNOTSUPP;
5749 }
5750
5751 /**
5752 * ata_port_online - test whether the given port is online
5753 * @ap: ATA port to test
5754 *
5755 * Test whether @ap is online. Note that this function returns 0
5756 * if online status of @ap cannot be obtained, so
5757 * ata_port_online(ap) != !ata_port_offline(ap).
5758 *
5759 * LOCKING:
5760 * None.
5761 *
5762 * RETURNS:
5763 * 1 if the port online status is available and online.
5764 */
5765 int ata_port_online(struct ata_port *ap)
5766 {
5767 u32 sstatus;
5768
5769 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5770 return 1;
5771 return 0;
5772 }
5773
5774 /**
5775 * ata_port_offline - test whether the given port is offline
5776 * @ap: ATA port to test
5777 *
5778 * Test whether @ap is offline. Note that this function returns
5779 * 0 if offline status of @ap cannot be obtained, so
5780 * ata_port_online(ap) != !ata_port_offline(ap).
5781 *
5782 * LOCKING:
5783 * None.
5784 *
5785 * RETURNS:
5786 * 1 if the port offline status is available and offline.
5787 */
5788 int ata_port_offline(struct ata_port *ap)
5789 {
5790 u32 sstatus;
5791
5792 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5793 return 1;
5794 return 0;
5795 }
5796
5797 int ata_flush_cache(struct ata_device *dev)
5798 {
5799 unsigned int err_mask;
5800 u8 cmd;
5801
5802 if (!ata_try_flush_cache(dev))
5803 return 0;
5804
5805 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5806 cmd = ATA_CMD_FLUSH_EXT;
5807 else
5808 cmd = ATA_CMD_FLUSH;
5809
5810 err_mask = ata_do_simple_cmd(dev, cmd);
5811 if (err_mask) {
5812 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5813 return -EIO;
5814 }
5815
5816 return 0;
5817 }
5818
5819 #ifdef CONFIG_PM
5820 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5821 unsigned int action, unsigned int ehi_flags,
5822 int wait)
5823 {
5824 unsigned long flags;
5825 int i, rc;
5826
5827 for (i = 0; i < host->n_ports; i++) {
5828 struct ata_port *ap = host->ports[i];
5829
5830 /* Previous resume operation might still be in
5831 * progress. Wait for PM_PENDING to clear.
5832 */
5833 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5834 ata_port_wait_eh(ap);
5835 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5836 }
5837
5838 /* request PM ops to EH */
5839 spin_lock_irqsave(ap->lock, flags);
5840
5841 ap->pm_mesg = mesg;
5842 if (wait) {
5843 rc = 0;
5844 ap->pm_result = &rc;
5845 }
5846
5847 ap->pflags |= ATA_PFLAG_PM_PENDING;
5848 ap->eh_info.action |= action;
5849 ap->eh_info.flags |= ehi_flags;
5850
5851 ata_port_schedule_eh(ap);
5852
5853 spin_unlock_irqrestore(ap->lock, flags);
5854
5855 /* wait and check result */
5856 if (wait) {
5857 ata_port_wait_eh(ap);
5858 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5859 if (rc)
5860 return rc;
5861 }
5862 }
5863
5864 return 0;
5865 }
5866
5867 /**
5868 * ata_host_suspend - suspend host
5869 * @host: host to suspend
5870 * @mesg: PM message
5871 *
5872 * Suspend @host. Actual operation is performed by EH. This
5873 * function requests EH to perform PM operations and waits for EH
5874 * to finish.
5875 *
5876 * LOCKING:
5877 * Kernel thread context (may sleep).
5878 *
5879 * RETURNS:
5880 * 0 on success, -errno on failure.
5881 */
5882 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5883 {
5884 int rc;
5885
5886 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5887 if (rc == 0)
5888 host->dev->power.power_state = mesg;
5889 return rc;
5890 }
5891
5892 /**
5893 * ata_host_resume - resume host
5894 * @host: host to resume
5895 *
5896 * Resume @host. Actual operation is performed by EH. This
5897 * function requests EH to perform PM operations and returns.
5898 * Note that all resume operations are performed parallely.
5899 *
5900 * LOCKING:
5901 * Kernel thread context (may sleep).
5902 */
5903 void ata_host_resume(struct ata_host *host)
5904 {
5905 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5906 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5907 host->dev->power.power_state = PMSG_ON;
5908 }
5909 #endif
5910
5911 /**
5912 * ata_port_start - Set port up for dma.
5913 * @ap: Port to initialize
5914 *
5915 * Called just after data structures for each port are
5916 * initialized. Allocates space for PRD table.
5917 *
5918 * May be used as the port_start() entry in ata_port_operations.
5919 *
5920 * LOCKING:
5921 * Inherited from caller.
5922 */
5923 int ata_port_start(struct ata_port *ap)
5924 {
5925 struct device *dev = ap->dev;
5926 int rc;
5927
5928 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5929 GFP_KERNEL);
5930 if (!ap->prd)
5931 return -ENOMEM;
5932
5933 rc = ata_pad_alloc(ap, dev);
5934 if (rc)
5935 return rc;
5936
5937 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5938 (unsigned long long)ap->prd_dma);
5939 return 0;
5940 }
5941
5942 /**
5943 * ata_dev_init - Initialize an ata_device structure
5944 * @dev: Device structure to initialize
5945 *
5946 * Initialize @dev in preparation for probing.
5947 *
5948 * LOCKING:
5949 * Inherited from caller.
5950 */
5951 void ata_dev_init(struct ata_device *dev)
5952 {
5953 struct ata_port *ap = dev->ap;
5954 unsigned long flags;
5955
5956 /* SATA spd limit is bound to the first device */
5957 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5958
5959 /* High bits of dev->flags are used to record warm plug
5960 * requests which occur asynchronously. Synchronize using
5961 * host lock.
5962 */
5963 spin_lock_irqsave(ap->lock, flags);
5964 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5965 spin_unlock_irqrestore(ap->lock, flags);
5966
5967 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5968 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5969 dev->pio_mask = UINT_MAX;
5970 dev->mwdma_mask = UINT_MAX;
5971 dev->udma_mask = UINT_MAX;
5972 }
5973
5974 /**
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
5977 *
5978 * Allocate and initialize basic ATA port resources.
5979 *
5980 * RETURNS:
5981 * Allocate ATA port on success, NULL on failure.
5982 *
5983 * LOCKING:
5984 * Inherited from calling layer (may sleep).
5985 */
5986 struct ata_port *ata_port_alloc(struct ata_host *host)
5987 {
5988 struct ata_port *ap;
5989 unsigned int i;
5990
5991 DPRINTK("ENTER\n");
5992
5993 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5994 if (!ap)
5995 return NULL;
5996
5997 ap->pflags |= ATA_PFLAG_INITIALIZING;
5998 ap->lock = &host->lock;
5999 ap->flags = ATA_FLAG_DISABLED;
6000 ap->print_id = -1;
6001 ap->ctl = ATA_DEVCTL_OBS;
6002 ap->host = host;
6003 ap->dev = host->dev;
6004
6005 ap->hw_sata_spd_limit = UINT_MAX;
6006 ap->active_tag = ATA_TAG_POISON;
6007 ap->last_ctl = 0xFF;
6008
6009 #if defined(ATA_VERBOSE_DEBUG)
6010 /* turn on all debugging levels */
6011 ap->msg_enable = 0x00FF;
6012 #elif defined(ATA_DEBUG)
6013 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6014 #else
6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6016 #endif
6017
6018 INIT_DELAYED_WORK(&ap->port_task, NULL);
6019 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6020 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6021 INIT_LIST_HEAD(&ap->eh_done_q);
6022 init_waitqueue_head(&ap->eh_wait_q);
6023
6024 ap->cbl = ATA_CBL_NONE;
6025
6026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6027 struct ata_device *dev = &ap->device[i];
6028 dev->ap = ap;
6029 dev->devno = i;
6030 ata_dev_init(dev);
6031 }
6032
6033 #ifdef ATA_IRQ_TRAP
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6036 #endif
6037 return ap;
6038 }
6039
6040 static void ata_host_release(struct device *gendev, void *res)
6041 {
6042 struct ata_host *host = dev_get_drvdata(gendev);
6043 int i;
6044
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6047
6048 if (!ap)
6049 continue;
6050
6051 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6052 ap->ops->port_stop(ap);
6053 }
6054
6055 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6056 host->ops->host_stop(host);
6057
6058 for (i = 0; i < host->n_ports; i++) {
6059 struct ata_port *ap = host->ports[i];
6060
6061 if (!ap)
6062 continue;
6063
6064 if (ap->scsi_host)
6065 scsi_host_put(ap->scsi_host);
6066
6067 kfree(ap);
6068 host->ports[i] = NULL;
6069 }
6070
6071 dev_set_drvdata(gendev, NULL);
6072 }
6073
6074 /**
6075 * ata_host_alloc - allocate and init basic ATA host resources
6076 * @dev: generic device this host is associated with
6077 * @max_ports: maximum number of ATA ports associated with this host
6078 *
6079 * Allocate and initialize basic ATA host resources. LLD calls
6080 * this function to allocate a host, initializes it fully and
6081 * attaches it using ata_host_register().
6082 *
6083 * @max_ports ports are allocated and host->n_ports is
6084 * initialized to @max_ports. The caller is allowed to decrease
6085 * host->n_ports before calling ata_host_register(). The unused
6086 * ports will be automatically freed on registration.
6087 *
6088 * RETURNS:
6089 * Allocate ATA host on success, NULL on failure.
6090 *
6091 * LOCKING:
6092 * Inherited from calling layer (may sleep).
6093 */
6094 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6095 {
6096 struct ata_host *host;
6097 size_t sz;
6098 int i;
6099
6100 DPRINTK("ENTER\n");
6101
6102 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6103 return NULL;
6104
6105 /* alloc a container for our list of ATA ports (buses) */
6106 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6107 /* alloc a container for our list of ATA ports (buses) */
6108 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6109 if (!host)
6110 goto err_out;
6111
6112 devres_add(dev, host);
6113 dev_set_drvdata(dev, host);
6114
6115 spin_lock_init(&host->lock);
6116 host->dev = dev;
6117 host->n_ports = max_ports;
6118
6119 /* allocate ports bound to this host */
6120 for (i = 0; i < max_ports; i++) {
6121 struct ata_port *ap;
6122
6123 ap = ata_port_alloc(host);
6124 if (!ap)
6125 goto err_out;
6126
6127 ap->port_no = i;
6128 host->ports[i] = ap;
6129 }
6130
6131 devres_remove_group(dev, NULL);
6132 return host;
6133
6134 err_out:
6135 devres_release_group(dev, NULL);
6136 return NULL;
6137 }
6138
6139 /**
6140 * ata_host_alloc_pinfo - alloc host and init with port_info array
6141 * @dev: generic device this host is associated with
6142 * @ppi: array of ATA port_info to initialize host with
6143 * @n_ports: number of ATA ports attached to this host
6144 *
6145 * Allocate ATA host and initialize with info from @ppi. If NULL
6146 * terminated, @ppi may contain fewer entries than @n_ports. The
6147 * last entry will be used for the remaining ports.
6148 *
6149 * RETURNS:
6150 * Allocate ATA host on success, NULL on failure.
6151 *
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6154 */
6155 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6156 const struct ata_port_info * const * ppi,
6157 int n_ports)
6158 {
6159 const struct ata_port_info *pi;
6160 struct ata_host *host;
6161 int i, j;
6162
6163 host = ata_host_alloc(dev, n_ports);
6164 if (!host)
6165 return NULL;
6166
6167 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6168 struct ata_port *ap = host->ports[i];
6169
6170 if (ppi[j])
6171 pi = ppi[j++];
6172
6173 ap->pio_mask = pi->pio_mask;
6174 ap->mwdma_mask = pi->mwdma_mask;
6175 ap->udma_mask = pi->udma_mask;
6176 ap->flags |= pi->flags;
6177 ap->ops = pi->port_ops;
6178
6179 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6180 host->ops = pi->port_ops;
6181 if (!host->private_data && pi->private_data)
6182 host->private_data = pi->private_data;
6183 }
6184
6185 return host;
6186 }
6187
6188 /**
6189 * ata_host_start - start and freeze ports of an ATA host
6190 * @host: ATA host to start ports for
6191 *
6192 * Start and then freeze ports of @host. Started status is
6193 * recorded in host->flags, so this function can be called
6194 * multiple times. Ports are guaranteed to get started only
6195 * once. If host->ops isn't initialized yet, its set to the
6196 * first non-dummy port ops.
6197 *
6198 * LOCKING:
6199 * Inherited from calling layer (may sleep).
6200 *
6201 * RETURNS:
6202 * 0 if all ports are started successfully, -errno otherwise.
6203 */
6204 int ata_host_start(struct ata_host *host)
6205 {
6206 int i, rc;
6207
6208 if (host->flags & ATA_HOST_STARTED)
6209 return 0;
6210
6211 for (i = 0; i < host->n_ports; i++) {
6212 struct ata_port *ap = host->ports[i];
6213
6214 if (!host->ops && !ata_port_is_dummy(ap))
6215 host->ops = ap->ops;
6216
6217 if (ap->ops->port_start) {
6218 rc = ap->ops->port_start(ap);
6219 if (rc) {
6220 ata_port_printk(ap, KERN_ERR, "failed to "
6221 "start port (errno=%d)\n", rc);
6222 goto err_out;
6223 }
6224 }
6225
6226 ata_eh_freeze_port(ap);
6227 }
6228
6229 host->flags |= ATA_HOST_STARTED;
6230 return 0;
6231
6232 err_out:
6233 while (--i >= 0) {
6234 struct ata_port *ap = host->ports[i];
6235
6236 if (ap->ops->port_stop)
6237 ap->ops->port_stop(ap);
6238 }
6239 return rc;
6240 }
6241
6242 /**
6243 * ata_sas_host_init - Initialize a host struct
6244 * @host: host to initialize
6245 * @dev: device host is attached to
6246 * @flags: host flags
6247 * @ops: port_ops
6248 *
6249 * LOCKING:
6250 * PCI/etc. bus probe sem.
6251 *
6252 */
6253 /* KILLME - the only user left is ipr */
6254 void ata_host_init(struct ata_host *host, struct device *dev,
6255 unsigned long flags, const struct ata_port_operations *ops)
6256 {
6257 spin_lock_init(&host->lock);
6258 host->dev = dev;
6259 host->flags = flags;
6260 host->ops = ops;
6261 }
6262
6263 /**
6264 * ata_host_register - register initialized ATA host
6265 * @host: ATA host to register
6266 * @sht: template for SCSI host
6267 *
6268 * Register initialized ATA host. @host is allocated using
6269 * ata_host_alloc() and fully initialized by LLD. This function
6270 * starts ports, registers @host with ATA and SCSI layers and
6271 * probe registered devices.
6272 *
6273 * LOCKING:
6274 * Inherited from calling layer (may sleep).
6275 *
6276 * RETURNS:
6277 * 0 on success, -errno otherwise.
6278 */
6279 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6280 {
6281 int i, rc;
6282
6283 /* host must have been started */
6284 if (!(host->flags & ATA_HOST_STARTED)) {
6285 dev_printk(KERN_ERR, host->dev,
6286 "BUG: trying to register unstarted host\n");
6287 WARN_ON(1);
6288 return -EINVAL;
6289 }
6290
6291 /* Blow away unused ports. This happens when LLD can't
6292 * determine the exact number of ports to allocate at
6293 * allocation time.
6294 */
6295 for (i = host->n_ports; host->ports[i]; i++)
6296 kfree(host->ports[i]);
6297
6298 /* give ports names and add SCSI hosts */
6299 for (i = 0; i < host->n_ports; i++)
6300 host->ports[i]->print_id = ata_print_id++;
6301
6302 rc = ata_scsi_add_hosts(host, sht);
6303 if (rc)
6304 return rc;
6305
6306 /* set cable, sata_spd_limit and report */
6307 for (i = 0; i < host->n_ports; i++) {
6308 struct ata_port *ap = host->ports[i];
6309 int irq_line;
6310 u32 scontrol;
6311 unsigned long xfer_mask;
6312
6313 /* set SATA cable type if still unset */
6314 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6315 ap->cbl = ATA_CBL_SATA;
6316
6317 /* init sata_spd_limit to the current value */
6318 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6319 int spd = (scontrol >> 4) & 0xf;
6320 if (spd)
6321 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6322 }
6323 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6324
6325 /* report the secondary IRQ for second channel legacy */
6326 irq_line = host->irq;
6327 if (i == 1 && host->irq2)
6328 irq_line = host->irq2;
6329
6330 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6331 ap->udma_mask);
6332
6333 /* print per-port info to dmesg */
6334 if (!ata_port_is_dummy(ap))
6335 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6336 "ctl 0x%p bmdma 0x%p irq %d\n",
6337 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6338 ata_mode_string(xfer_mask),
6339 ap->ioaddr.cmd_addr,
6340 ap->ioaddr.ctl_addr,
6341 ap->ioaddr.bmdma_addr,
6342 irq_line);
6343 else
6344 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6345 }
6346
6347 /* perform each probe synchronously */
6348 DPRINTK("probe begin\n");
6349 for (i = 0; i < host->n_ports; i++) {
6350 struct ata_port *ap = host->ports[i];
6351 int rc;
6352
6353 /* probe */
6354 if (ap->ops->error_handler) {
6355 struct ata_eh_info *ehi = &ap->eh_info;
6356 unsigned long flags;
6357
6358 ata_port_probe(ap);
6359
6360 /* kick EH for boot probing */
6361 spin_lock_irqsave(ap->lock, flags);
6362
6363 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6364 ehi->action |= ATA_EH_SOFTRESET;
6365 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6366
6367 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6368 ap->pflags |= ATA_PFLAG_LOADING;
6369 ata_port_schedule_eh(ap);
6370
6371 spin_unlock_irqrestore(ap->lock, flags);
6372
6373 /* wait for EH to finish */
6374 ata_port_wait_eh(ap);
6375 } else {
6376 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6377 rc = ata_bus_probe(ap);
6378 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6379
6380 if (rc) {
6381 /* FIXME: do something useful here?
6382 * Current libata behavior will
6383 * tear down everything when
6384 * the module is removed
6385 * or the h/w is unplugged.
6386 */
6387 }
6388 }
6389 }
6390
6391 /* probes are done, now scan each port's disk(s) */
6392 DPRINTK("host probe begin\n");
6393 for (i = 0; i < host->n_ports; i++) {
6394 struct ata_port *ap = host->ports[i];
6395
6396 ata_scsi_scan_host(ap);
6397 }
6398
6399 return 0;
6400 }
6401
6402 /**
6403 * ata_host_activate - start host, request IRQ and register it
6404 * @host: target ATA host
6405 * @irq: IRQ to request
6406 * @irq_handler: irq_handler used when requesting IRQ
6407 * @irq_flags: irq_flags used when requesting IRQ
6408 * @sht: scsi_host_template to use when registering the host
6409 *
6410 * After allocating an ATA host and initializing it, most libata
6411 * LLDs perform three steps to activate the host - start host,
6412 * request IRQ and register it. This helper takes necessasry
6413 * arguments and performs the three steps in one go.
6414 *
6415 * LOCKING:
6416 * Inherited from calling layer (may sleep).
6417 *
6418 * RETURNS:
6419 * 0 on success, -errno otherwise.
6420 */
6421 int ata_host_activate(struct ata_host *host, int irq,
6422 irq_handler_t irq_handler, unsigned long irq_flags,
6423 struct scsi_host_template *sht)
6424 {
6425 int rc;
6426
6427 rc = ata_host_start(host);
6428 if (rc)
6429 return rc;
6430
6431 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6432 dev_driver_string(host->dev), host);
6433 if (rc)
6434 return rc;
6435
6436 rc = ata_host_register(host, sht);
6437 /* if failed, just free the IRQ and leave ports alone */
6438 if (rc)
6439 devm_free_irq(host->dev, irq, host);
6440
6441 /* Used to print device info at probe */
6442 host->irq = irq;
6443
6444 return rc;
6445 }
6446
6447 /**
6448 * ata_port_detach - Detach ATA port in prepration of device removal
6449 * @ap: ATA port to be detached
6450 *
6451 * Detach all ATA devices and the associated SCSI devices of @ap;
6452 * then, remove the associated SCSI host. @ap is guaranteed to
6453 * be quiescent on return from this function.
6454 *
6455 * LOCKING:
6456 * Kernel thread context (may sleep).
6457 */
6458 void ata_port_detach(struct ata_port *ap)
6459 {
6460 unsigned long flags;
6461 int i;
6462
6463 if (!ap->ops->error_handler)
6464 goto skip_eh;
6465
6466 /* tell EH we're leaving & flush EH */
6467 spin_lock_irqsave(ap->lock, flags);
6468 ap->pflags |= ATA_PFLAG_UNLOADING;
6469 spin_unlock_irqrestore(ap->lock, flags);
6470
6471 ata_port_wait_eh(ap);
6472
6473 /* EH is now guaranteed to see UNLOADING, so no new device
6474 * will be attached. Disable all existing devices.
6475 */
6476 spin_lock_irqsave(ap->lock, flags);
6477
6478 for (i = 0; i < ATA_MAX_DEVICES; i++)
6479 ata_dev_disable(&ap->device[i]);
6480
6481 spin_unlock_irqrestore(ap->lock, flags);
6482
6483 /* Final freeze & EH. All in-flight commands are aborted. EH
6484 * will be skipped and retrials will be terminated with bad
6485 * target.
6486 */
6487 spin_lock_irqsave(ap->lock, flags);
6488 ata_port_freeze(ap); /* won't be thawed */
6489 spin_unlock_irqrestore(ap->lock, flags);
6490
6491 ata_port_wait_eh(ap);
6492
6493 /* Flush hotplug task. The sequence is similar to
6494 * ata_port_flush_task().
6495 */
6496 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6497 cancel_delayed_work(&ap->hotplug_task);
6498 cancel_work_sync(&ap->hotplug_task.work);
6499
6500 skip_eh:
6501 /* remove the associated SCSI host */
6502 scsi_remove_host(ap->scsi_host);
6503 }
6504
6505 /**
6506 * ata_host_detach - Detach all ports of an ATA host
6507 * @host: Host to detach
6508 *
6509 * Detach all ports of @host.
6510 *
6511 * LOCKING:
6512 * Kernel thread context (may sleep).
6513 */
6514 void ata_host_detach(struct ata_host *host)
6515 {
6516 int i;
6517
6518 for (i = 0; i < host->n_ports; i++)
6519 ata_port_detach(host->ports[i]);
6520 }
6521
6522 /**
6523 * ata_std_ports - initialize ioaddr with standard port offsets.
6524 * @ioaddr: IO address structure to be initialized
6525 *
6526 * Utility function which initializes data_addr, error_addr,
6527 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6528 * device_addr, status_addr, and command_addr to standard offsets
6529 * relative to cmd_addr.
6530 *
6531 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6532 */
6533
6534 void ata_std_ports(struct ata_ioports *ioaddr)
6535 {
6536 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6537 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6538 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6539 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6540 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6541 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6542 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6543 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6544 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6545 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6546 }
6547
6548
6549 #ifdef CONFIG_PCI
6550
6551 /**
6552 * ata_pci_remove_one - PCI layer callback for device removal
6553 * @pdev: PCI device that was removed
6554 *
6555 * PCI layer indicates to libata via this hook that hot-unplug or
6556 * module unload event has occurred. Detach all ports. Resource
6557 * release is handled via devres.
6558 *
6559 * LOCKING:
6560 * Inherited from PCI layer (may sleep).
6561 */
6562 void ata_pci_remove_one(struct pci_dev *pdev)
6563 {
6564 struct device *dev = pci_dev_to_dev(pdev);
6565 struct ata_host *host = dev_get_drvdata(dev);
6566
6567 ata_host_detach(host);
6568 }
6569
6570 /* move to PCI subsystem */
6571 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6572 {
6573 unsigned long tmp = 0;
6574
6575 switch (bits->width) {
6576 case 1: {
6577 u8 tmp8 = 0;
6578 pci_read_config_byte(pdev, bits->reg, &tmp8);
6579 tmp = tmp8;
6580 break;
6581 }
6582 case 2: {
6583 u16 tmp16 = 0;
6584 pci_read_config_word(pdev, bits->reg, &tmp16);
6585 tmp = tmp16;
6586 break;
6587 }
6588 case 4: {
6589 u32 tmp32 = 0;
6590 pci_read_config_dword(pdev, bits->reg, &tmp32);
6591 tmp = tmp32;
6592 break;
6593 }
6594
6595 default:
6596 return -EINVAL;
6597 }
6598
6599 tmp &= bits->mask;
6600
6601 return (tmp == bits->val) ? 1 : 0;
6602 }
6603
6604 #ifdef CONFIG_PM
6605 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6606 {
6607 pci_save_state(pdev);
6608 pci_disable_device(pdev);
6609
6610 if (mesg.event == PM_EVENT_SUSPEND)
6611 pci_set_power_state(pdev, PCI_D3hot);
6612 }
6613
6614 int ata_pci_device_do_resume(struct pci_dev *pdev)
6615 {
6616 int rc;
6617
6618 pci_set_power_state(pdev, PCI_D0);
6619 pci_restore_state(pdev);
6620
6621 rc = pcim_enable_device(pdev);
6622 if (rc) {
6623 dev_printk(KERN_ERR, &pdev->dev,
6624 "failed to enable device after resume (%d)\n", rc);
6625 return rc;
6626 }
6627
6628 pci_set_master(pdev);
6629 return 0;
6630 }
6631
6632 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6633 {
6634 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6635 int rc = 0;
6636
6637 rc = ata_host_suspend(host, mesg);
6638 if (rc)
6639 return rc;
6640
6641 ata_pci_device_do_suspend(pdev, mesg);
6642
6643 return 0;
6644 }
6645
6646 int ata_pci_device_resume(struct pci_dev *pdev)
6647 {
6648 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6649 int rc;
6650
6651 rc = ata_pci_device_do_resume(pdev);
6652 if (rc == 0)
6653 ata_host_resume(host);
6654 return rc;
6655 }
6656 #endif /* CONFIG_PM */
6657
6658 #endif /* CONFIG_PCI */
6659
6660
6661 static int __init ata_init(void)
6662 {
6663 ata_probe_timeout *= HZ;
6664 ata_wq = create_workqueue("ata");
6665 if (!ata_wq)
6666 return -ENOMEM;
6667
6668 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6669 if (!ata_aux_wq) {
6670 destroy_workqueue(ata_wq);
6671 return -ENOMEM;
6672 }
6673
6674 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6675 return 0;
6676 }
6677
6678 static void __exit ata_exit(void)
6679 {
6680 destroy_workqueue(ata_wq);
6681 destroy_workqueue(ata_aux_wq);
6682 }
6683
6684 subsys_initcall(ata_init);
6685 module_exit(ata_exit);
6686
6687 static unsigned long ratelimit_time;
6688 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6689
6690 int ata_ratelimit(void)
6691 {
6692 int rc;
6693 unsigned long flags;
6694
6695 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6696
6697 if (time_after(jiffies, ratelimit_time)) {
6698 rc = 1;
6699 ratelimit_time = jiffies + (HZ/5);
6700 } else
6701 rc = 0;
6702
6703 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6704
6705 return rc;
6706 }
6707
6708 /**
6709 * ata_wait_register - wait until register value changes
6710 * @reg: IO-mapped register
6711 * @mask: Mask to apply to read register value
6712 * @val: Wait condition
6713 * @interval_msec: polling interval in milliseconds
6714 * @timeout_msec: timeout in milliseconds
6715 *
6716 * Waiting for some bits of register to change is a common
6717 * operation for ATA controllers. This function reads 32bit LE
6718 * IO-mapped register @reg and tests for the following condition.
6719 *
6720 * (*@reg & mask) != val
6721 *
6722 * If the condition is met, it returns; otherwise, the process is
6723 * repeated after @interval_msec until timeout.
6724 *
6725 * LOCKING:
6726 * Kernel thread context (may sleep)
6727 *
6728 * RETURNS:
6729 * The final register value.
6730 */
6731 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6732 unsigned long interval_msec,
6733 unsigned long timeout_msec)
6734 {
6735 unsigned long timeout;
6736 u32 tmp;
6737
6738 tmp = ioread32(reg);
6739
6740 /* Calculate timeout _after_ the first read to make sure
6741 * preceding writes reach the controller before starting to
6742 * eat away the timeout.
6743 */
6744 timeout = jiffies + (timeout_msec * HZ) / 1000;
6745
6746 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6747 msleep(interval_msec);
6748 tmp = ioread32(reg);
6749 }
6750
6751 return tmp;
6752 }
6753
6754 /*
6755 * Dummy port_ops
6756 */
6757 static void ata_dummy_noret(struct ata_port *ap) { }
6758 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6759 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6760
6761 static u8 ata_dummy_check_status(struct ata_port *ap)
6762 {
6763 return ATA_DRDY;
6764 }
6765
6766 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6767 {
6768 return AC_ERR_SYSTEM;
6769 }
6770
6771 const struct ata_port_operations ata_dummy_port_ops = {
6772 .port_disable = ata_port_disable,
6773 .check_status = ata_dummy_check_status,
6774 .check_altstatus = ata_dummy_check_status,
6775 .dev_select = ata_noop_dev_select,
6776 .qc_prep = ata_noop_qc_prep,
6777 .qc_issue = ata_dummy_qc_issue,
6778 .freeze = ata_dummy_noret,
6779 .thaw = ata_dummy_noret,
6780 .error_handler = ata_dummy_noret,
6781 .post_internal_cmd = ata_dummy_qc_noret,
6782 .irq_clear = ata_dummy_noret,
6783 .port_start = ata_dummy_ret0,
6784 .port_stop = ata_dummy_noret,
6785 };
6786
6787 const struct ata_port_info ata_dummy_port_info = {
6788 .port_ops = &ata_dummy_port_ops,
6789 };
6790
6791 /*
6792 * libata is essentially a library of internal helper functions for
6793 * low-level ATA host controller drivers. As such, the API/ABI is
6794 * likely to change as new drivers are added and updated.
6795 * Do not depend on ABI/API stability.
6796 */
6797
6798 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6799 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6800 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6801 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6802 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6803 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6804 EXPORT_SYMBOL_GPL(ata_std_ports);
6805 EXPORT_SYMBOL_GPL(ata_host_init);
6806 EXPORT_SYMBOL_GPL(ata_host_alloc);
6807 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6808 EXPORT_SYMBOL_GPL(ata_host_start);
6809 EXPORT_SYMBOL_GPL(ata_host_register);
6810 EXPORT_SYMBOL_GPL(ata_host_activate);
6811 EXPORT_SYMBOL_GPL(ata_host_detach);
6812 EXPORT_SYMBOL_GPL(ata_sg_init);
6813 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6814 EXPORT_SYMBOL_GPL(ata_hsm_move);
6815 EXPORT_SYMBOL_GPL(ata_qc_complete);
6816 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6817 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6818 EXPORT_SYMBOL_GPL(ata_tf_load);
6819 EXPORT_SYMBOL_GPL(ata_tf_read);
6820 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6821 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6822 EXPORT_SYMBOL_GPL(sata_print_link_status);
6823 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6824 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6825 EXPORT_SYMBOL_GPL(ata_check_status);
6826 EXPORT_SYMBOL_GPL(ata_altstatus);
6827 EXPORT_SYMBOL_GPL(ata_exec_command);
6828 EXPORT_SYMBOL_GPL(ata_port_start);
6829 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6830 EXPORT_SYMBOL_GPL(ata_interrupt);
6831 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6832 EXPORT_SYMBOL_GPL(ata_data_xfer);
6833 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6834 EXPORT_SYMBOL_GPL(ata_qc_prep);
6835 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6837 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6838 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6839 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6840 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6841 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6842 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6843 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6844 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6845 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6846 EXPORT_SYMBOL_GPL(ata_port_probe);
6847 EXPORT_SYMBOL_GPL(ata_dev_disable);
6848 EXPORT_SYMBOL_GPL(sata_set_spd);
6849 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6850 EXPORT_SYMBOL_GPL(sata_phy_resume);
6851 EXPORT_SYMBOL_GPL(sata_phy_reset);
6852 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6853 EXPORT_SYMBOL_GPL(ata_bus_reset);
6854 EXPORT_SYMBOL_GPL(ata_std_prereset);
6855 EXPORT_SYMBOL_GPL(ata_std_softreset);
6856 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6857 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6858 EXPORT_SYMBOL_GPL(ata_std_postreset);
6859 EXPORT_SYMBOL_GPL(ata_dev_classify);
6860 EXPORT_SYMBOL_GPL(ata_dev_pair);
6861 EXPORT_SYMBOL_GPL(ata_port_disable);
6862 EXPORT_SYMBOL_GPL(ata_ratelimit);
6863 EXPORT_SYMBOL_GPL(ata_wait_register);
6864 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6865 EXPORT_SYMBOL_GPL(ata_wait_ready);
6866 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6867 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6868 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6869 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6870 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6871 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6872 EXPORT_SYMBOL_GPL(ata_host_intr);
6873 EXPORT_SYMBOL_GPL(sata_scr_valid);
6874 EXPORT_SYMBOL_GPL(sata_scr_read);
6875 EXPORT_SYMBOL_GPL(sata_scr_write);
6876 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6877 EXPORT_SYMBOL_GPL(ata_port_online);
6878 EXPORT_SYMBOL_GPL(ata_port_offline);
6879 #ifdef CONFIG_PM
6880 EXPORT_SYMBOL_GPL(ata_host_suspend);
6881 EXPORT_SYMBOL_GPL(ata_host_resume);
6882 #endif /* CONFIG_PM */
6883 EXPORT_SYMBOL_GPL(ata_id_string);
6884 EXPORT_SYMBOL_GPL(ata_id_c_string);
6885 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6886 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6887 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6888
6889 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6890 EXPORT_SYMBOL_GPL(ata_timing_compute);
6891 EXPORT_SYMBOL_GPL(ata_timing_merge);
6892
6893 #ifdef CONFIG_PCI
6894 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6895 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6896 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6897 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6898 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6899 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6900 #ifdef CONFIG_PM
6901 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6902 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6903 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6904 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6905 #endif /* CONFIG_PM */
6906 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6907 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6908 #endif /* CONFIG_PCI */
6909
6910 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6911 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6912 EXPORT_SYMBOL_GPL(ata_port_abort);
6913 EXPORT_SYMBOL_GPL(ata_port_freeze);
6914 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6915 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6916 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6917 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6918 EXPORT_SYMBOL_GPL(ata_do_eh);
6919 EXPORT_SYMBOL_GPL(ata_irq_on);
6920 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6921 EXPORT_SYMBOL_GPL(ata_irq_ack);
6922 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6923 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6924
6925 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6926 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6927 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6928 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.259511 seconds and 6 git commands to generate.